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Abstract. In this work, we introduce Modular Algebraic Proof Con-
tingent Payment (MAPCP), a novel zero-knowledge contingent payment
(ZKCP) construction. Unlike previous approaches, MAPCP is the first
that simultaneously avoids using zk-SNARKs as the tool for zero-knowledge
proofs and HTLC contracts to atomically exchange a secret for a pay-
ment. As a result, MAPCP sidesteps the common reference string (crs)
creation problem and is compatible with virtually any cryptocurrency,
even those with limited or no smart contract support. Moreover, MAPCP
contributes to fungibility, as its payment transactions blend seamlessly
with standard cryptocurrency payments.
We analyze the security of MAPCP and demonstrate its atomicity, mean-
ing that, (i) the buyer gets the digital product after the payment is pub-
lished in the blockchain (buyer security); and (ii) the seller receives the
payment if the buyer gets access to the digital product (seller security).
Moreover, we present a construction of MAPCP in a use case where a
customer pays a notary in exchange for a document signature.

Keywords: Zero Knowledge Contingent Payment · Blockchain · Zero
Knowledge Proof

1 Introduction

Cryptocurrencies are now increasingly accepted for purchasing digital products
such as music, software, e-books, authentication tokens for websites, or mobile
phone plans [28, 3, 13, 21, 29, 4, 7]. At first sight, this use case resembles the fair
exchange problem [11] in which two parties want to swap digital goods such that
neither can cheat the other. As an illustrative example, consider a buyer, who
holds α funds on a blockchain and wants to transfer them to a seller in exchange
for a digital product s (e.g., a solution to a Sudoku puzzle). Here, the buyer
⋆ The work was carried out while the author was affiliated with IMDEA Software
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Fig. 1: Maxwell’s ZKCP protocol. Solid arrows denote communication between parties
and/or the blockchain whereas dashed arrows denote reads from the blockchain. Boxes
represent local functionality executed by each individual user or the blockchain. In
the blockchain, a tuple (α, user/contract) denotes that user/contract owns α funds,
whereas square bracket denotes data stored in the blockchain. The dotted line denotes
the separation between ZKCP phases.

wants the seller to first provide the Sudoku’s solution so that they can verify
its correctness before transferring the funds, whereas the seller insists on not
sending the solution to the buyer until they have received the funds.

The fair exchange problem is provably unsolvable without a trusted party [11].
However, existing blockchains enable a weaker version of fair exchange, where
the blockchain assumes the role of the trusted third party to faithfully execute
a smart contract. A smart contract permits a user to lock funds so that they are
only released if the contract’s logic is satisfied. Henceforth, in our running exam-
ple, the buyer can lock funds into a smart contract that (i) encodes the Sudoku
puzzle and its rules; and (ii) establishes that the seller can retrieve the funds by
providing a valid solution to the Sudoku puzzle. While working in theory, the
issue in practice with existing blockchains is that they either offer complex smart
contract logic with high transaction fees (e.g., Ethereum) or limit the supported
logic due to restrictions in the scripting language (e.g., Bitcoin) or the absence
thereof of such scripting language (e.g., Monero).

As a first attempt to overcome this practical challenge, Maxwell [23] intro-
duced the zero-knowledge contingent payment ZKCP protocol. Maxwell’s ZKCP
relies on a smart contract called hash time-lock contract (HTLC) [32] that is
supported by some of the existing blockchains such as Ethereum or Bitcoin. An
HTLC contract is defined w.r.t. two users, namely, the buyer and the seller, a
hash value h := H(k) (where k is chosen uniformly at random), the amount
of funds (i.e., α) and a timeout t, as follows: (i) If the seller produces a value
k∗ such that H(k∗) = h before t expires, the seller can withdraw α; (ii) after t
expires, the buyer can get α refunded.
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With HTLC in place, Maxwell’s ZKCP runs in two phases, as illustrated
in Figure 1. First, during the setup phase, 1○ the seller encrypts the solution s
using a fresh encryption key k into ct← Enc(k, s). The seller also computes h←
H(k) together with a zero-knowledge proof π certifying that (i) the ciphertext ct
is the encryption of s under key k, (ii) h is the hash of k, and (iii) s is actually
the product the buyer wants (e.g., a valid solution to the Sudoku puzzle). Upon
receiving ct, h, and π, 2○ the buyer checks the validity of π .

During the execution phase, 3○ the buyer creates an HTLC contract locking
α funds. The HTLC is defined w.r.t. the buyer and seller as users, and h and
time t as parameters. After the seller checks that the HTLC is included in the
blockchain 4○, the seller can claim the funds locked in the HTLC contract by
submitting k to the contract before time t 5○, thereby making k available on
the blockchain. Then, the buyer reads the blockchain to learn k and uses it to
decrypt ct and obtain the product s 6○. On the other hand, if the seller does not
claim the funds in the HTLC contract before t, the buyer can reclaim the funds
held in the HTLC contract.

The HTLC contract ensures the atomicity of the exchange, meaning that
payment to the seller is only made if the seller discloses the otherwise secret key k.
Moreover, the protocol ensures that the seller cannot cheat by requiring the proof
system to achieve soundness, i.e., the seller cannot create a valid proof if any of
the statements (i), (ii) or (iii) is not true. Additionally, the proof system must be
zero-knowledge to prevent the buyer from obtaining any sensitive information,
that would reveal the key k or the product s, from the proof π itself.

1.1 Challenges

The Maxwell’s ZKCP presents the following practical challenges:

– Trusted setup: The necessary proofs are implemented using zk-SNARKS, a
generic zero-knowledge proof system that permits one to prove statements of
any NP relation, hence those needed in step 1○ of ZKCP. Practically efficient
zk-SNARKS require running a setup algorithm that outputs a common refer-
ence string crs (i.e., a public parameter required to compute and verify proofs)
along with a trapdoor. It is essential that the adversary does not know the
trapdoor in order to ensure both the soundness and zero-knowledge proper-
ties. This raises the question of who should initially run the setup algorithm.
This problem was labeled as the crs problem. For instance, the introduction
of a trusted third party to generate the crs is undesirable since the purpose
of ZKCP is to solve the fair exchange problem in a trustless manner. Allowing
the buyer or the seller to do the setup introduces subtle yet crucial security
issues [9, 18]. A decentralized ceremony introduces computation and commu-
nication overhead, scaling linearly with the number of participants [26].

– Interoperability : The required HTLC contract is not available in cryptocur-
rencies that lack any kind of scripting functionality such as Monero. Never-
theless, compatibility with these cryptocurrencies remain of interest due to
their strong privacy guarantees for transactions.
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– Fungibility : The required HTLC contract leaves a trace on the blockchain,
revealing details about the parties involved in the transaction and the amount
of the contingent payment —sensitive information that the seller would prefer
to keep confidential from competitors. To ensure fungibility, it is essential that
the transactions involved in ZKCP blend seamlessly with standard transfers
between users.

1.2 Contributions

In this work, we present Modular Algebraic Proof Contingent Payment (MAPCP),
a novel protocol for ZKCP that builds upon the following key insights. First, we
observe that the seller can replace the operation h← H(k) by h← gk, where g is
the generator of a cyclic group. Second, using the commit-and-prove technique
in [10] one can modularize the statement required in ZKCP into two simple state-
ments: (i) s is a valid product; and (ii) ct is an encryption of s under key k and
h = gk. Moreover, both statements share the clause “the commitment com com-
mits to the value s” to ensure that the same value s is used in both statements.
In this modular setting, we observe that the statement (ii) can consist solely
of algebraic conditions with the appropriate constructions of the corresponding
cryptographic schemes, enabling the use of zero-knowledge proofs without the
crs problem (e.g., Sigma protocols). To support any arbitrary value s, we can
still rely on zk-SNARKS to prove the statement (i). Going beyond, we observe
that statement (i) can also be done algebraically for certain digital products (as
we show e.g., in Section 6 for selling a digital signature), in which case we can
use Sigma protocols (cf. Appendix A.5) to prove it and merge (i) and (ii) into a
single proof using their composability properties.

Third, we observe that the HTLC contract leverages the blockchain to facil-
itate the fair exchange of a payment for the key k. Instead, in MAPCP we use
a two-party protocol called PayForWitness, which differs from HTLC but still
allows for a fair exchange between a payment and the key k when encoded as
h = gk (cf. Section 5). Such a two-party protocol only requires that the scripting
language of the blockchain supports the authorization of transactions based on
digital signatures, thereby increasing the interoperability and fungibility of our
approach.

Fourth, we analyze the atomicity of MAPCP and show with cryptographic
proofs that MAPCP achieves the notion of atomicity in [9], that intuitively en-
codes that (i) if the buyer pays the seller, then the buyer gets the product (i.e.,
security for the buyer); and (ii) if the seller delivers the product to the buyer,
then the seller gets the payment (i.e., security for the seller).

Finally, we present a proof of concept of MAPCP for the use case where the
buyer, who holds a digital document, wants to pay a notary (i.e., the seller) for
its signature on the document.
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1.3 Related Work

Security Analysis of Existing ZKCP. The initial ZKCP presented by Maxwell [23]
was analyzed and shown insecure in consecutive academic works [9, 18], moti-
vating thereby the design of alternative ZKCP protocols.

ZKCP from Subversion Zero-knowledge. To overcome the security issue in Maxwell’s
ZKCP, the notion of subversion zero-knowledge was proposed in [6]. This notion
asserts that the security of the proofs can be maintained even if the crs is gen-
erated by the adversary. To adapt SNARKs to be subversion zero-knowledge,
certain sanity checks must be conducted on the crs. However, performing all
these checks could result in execution times of up to an hour [9], which hin-
ders its practicality. Moreover, the protocol still relies on HTLC, hindering its
interoperability and fungibility.

ZKCP from Zero-knowledge Service Payments. An alternative construction for
ZKCP was proposed by Campanelli et al. [9] based on the notion of zero-knowledge
service payment (ZKCSP). A ZKCSP differs from a ZKCP in the statement of the
proof. In particular, the seller in ZKCSP proves a statement of the form “I either
have the product s and h = H(k), or I do not have the product s and h ̸= H(k)”.
The security of this protocol was first studied under the notion of witness indis-
tinguishability [17], a notion that asserts that even if the adversary breaks the
zero-knowledge property of the proof, they learn information that is common to
all possible witnesses, i.e., the adversary does not learn any meaningful infor-
mation. However, it was later shown that even with witness-indistinguishability,
both the ZKCSP protocol and the ZKCP from ZKCSP constructions were still in-
secure [18]. A stronger notion called trapdoor subversion witness indistinguisha-
bility was introduced in [25] and used to prove the ZKCP-from-ZKCSP con-
struction secure. Nevertheless, the ZKCP-from-ZKCSP construction still relies
on HTLC contracts and zk-SNARKS, suffering from the crs creation problem
and lacking practical properties such as interoperability and fungibility.

Smart Contract-based Generic Fair Exchange. In FairSwap [12], Dziembowski
et al. leverages the Turing complete language only available in certain cryp-
tocurrencies (e.g., Ethereum) to design a smart contract that execute the fair
exchange of a witness of an arbitrary NP statement for α funds. A subsequent
work, OptiSwap [14] improves the efficiency of FairSwap by allowing the parties
to conduct the exchange optimistically and using an interactive smart contract
to resolve disputes if they arise. This line of work faces challenges w.r.t interoper-
ability and fungibility, since smart contract relies on logic that is only supported
by ledgers with a Turing-complete language. Moreover, such a contract reveals
the complete logic of the exchange in the publicly available ledger maintained
by the blockchain.

ZKCP Tailored for Data Exchange. Another line of work has focused on design-
ing ZKCP that let the buyer pay the seller in exchange for a (possibly long) piece
of data. The works in [19, 20] extend the HTLC contract to encode the release
of several chunks of data atomically. Still they rely on zk-SNARKS to prove
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the validity of the statement required by the buyer before funding the HTLC
contract. Therefore, this line of work also faces challenges related to crs creation
problem, interoperability, and fungibility.

Similar to our work, a recent work [30] also moves away from HTLC con-
tracts providing a construction that only requires digital signatures from the
underlying blockchain. However, the proof system (which is based on KZG com-
mitments) requires a trusted setup, hence encountering similar challenges with
the crs problem as existing works on ZKCP. Moreover, this work relies on the
assumption that the buyer has access to a commitment to the correct data (e.g.,
their own files outsourced to a cloud storage provider). While this assumption
is valid for their use case (i.e., a user downloading data they stored on a paid
server), it does not necessarily hold for every use case of ZKCP. For example,
when buying a new book, the buyer does not have a commitment to the product
beforehand.

In summary, our work proposes the first construction for ZKCP that permits
to simultaneously depart from zk-SNARKS and the HTLC contract.

2 Key Ideas and Solution Overview

Maxwell’s ZKCP permits a buyer to pay a seller in exchange for a product s such
that f(s) = 1, where f : S −→ {0, 1} is an efficiently computable predicate that
encodes whether a product s ∈ S is valid (e.g., s is a valid solution for a given
Sudoku puzzle).

The first practical challenge in Maxwell’s ZKCP is that it relies on zk-SNARKS
to generate a zero-knowledge proof for the relation

Rf,H((h, ct); (s, k))⇔ f(s) = 1 ∧ h = H(k) ∧ ct = Enc(k, s)

In the following, we present the rationale behind our decision to move away
from zk-SNARKs in our Modular Algebraic Proof Contingent Payment (MAPCP)
protocol.

Modularizing the Proof. We observe that we can divide the aforementioned re-
lation into two parts. First, a relation regarding the correctness of the product
can be defined as R1(f; s) ⇔ f(s) = 1. Second, a relation concerning the ability
to retrieve the product following a successful payment in the HTLC contract:
R2
H((h, ct); (s, k)) ⇔ h = H(k) ∧ ct = Enc(k, s). This approach enables a mod-

ular handling of the relations, as it allows the seller to create separate proofs
for R1 and R2

H, rather than proving a statement in Rf,H. The buyer can then
independently verify the validity of both proofs.

A technical subtlety with this approach is that proving that both R1 and R2
H

hold is not the same as proving that Rf,H holds. A malicious seller can use a
value s to generate a proof for R1 and a totally different value s′ to generate a
proof for R2

H. Consequently, while both proofs may verify correctly, the product
that the buyer receives (i.e., s′) is not the desired one, as specified in R1.
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To overcome this subtlety, we leverage the commit and prove technique in [8].
Intuitively, we can augment each of the relations R1 and R2

H by including a
commitment to the product s as follows:

R1((f, coms); (s))⇔ f(s) = 1 ∧ coms = Commit(s)

R2
H((h, ct, coms); (s, k))⇔ h = H(k) ∧ ct = Enc(k, s) ∧ coms = Commit(s)

With access to the committed value coms, the buyer can be assured that if both
relations hold, they must be referring to the same product s.

With this modular approach to the proof established, we now explore how to
prove each statement using a proof system that does not require a trusted setup
(e.g., Sigma protocols).

Making the Proof Relation Amenable to Sigma Protocols. A concrete implemen-
tation of a proof for R1 is application dependent. On the one hand, if the product
s has an algebraic structure (e.g., a Schnorr signature), then one could prove the
complete R1 as a Sigma protocol. On the other hand, for applications where the
product has a more complex structure (e.g., a solution to a Sudoku puzzle), it
might still be necessary to use a zk-SNARK for R1.

As regards to R2
H, we observe that we can slightly modify it such that it is

amenable to be proven with Sigma protocols. Specifically, the challenge in us-
ing Sigma protocols lies in the substatement h = H(k). Our observation is that
there exist Sigma protocols to prove knowledge of the plaintext of an encryption
scheme (e.g., ElGamal [15]) and a commitment scheme (e.g., Pedersen Commit-
ment [27]). Hence, instead of using a non-algebraic hash function like SHA-256
or Keccak, as in current implementations of the HTLC contract, we propose
using an algebraic instance of the hash function, such as h = gk, where g is a
generator of a cyclic group. In this manner, the proof for the thereby modified
R2
H can always be instantiated using a Sigma protocol.

In summary, we have decomposed the proof statement into two substate-
ments: the (modified) R2

H can always be proven using a Sigma protocol, while
the concrete proof system for R1 depends on the specific application and the
concrete definition of f. When R1 can be proven using a Sigma protocol, we com-
pletely move away from zk-SNARKs, eliminating the need for a trusted setup
and improving the overall efficiency of the protocol. When R1 requires a zk-
SNARK, hence a trusted setup is still necessary, our approach offers improved
efficiency compared to prior work, since we have simplified the statement that
needs to be proven with the zk-SNARK. This contributes to our goal to depart
from a trusted setup and address the crs problem.

The reader might have noticed that modifying the hash function in R2
H makes

it incompatible with HTLC contracts that are deployed in some of the current
cryptocurrencies since they instantiate the hash function to a concrete function
(i.e., SHA-256 or Keccak) other than the one we require (i.e., h = gk). Hence,
our next step is to overcome this challenge.

Replace HTLC-based Payment by Adaptor Signature-based Payment. Incorpo-
rating the modified relation R2

H into a ZKCP protocol would require a cryptocur-
rency that supports a smart contract similar to HTLC, but with the condition
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that the seller receives the payment after disclosing the discrete logarithm of h.
One option is to design and deploy such a smart contract on cryptocurrencies
that support an expressive scripting language (e.g., Ethereum). However, this
approach hinders the interoperability and fungibility objectives of our work.

Instead, we propose to leverage adaptor signatures [5]. Adaptor signatures
extend standard digital signatures by linking the creation of a signature with
the leakage of a secret value. Intuitively, one can first create a pre-signature σ̂
which is computed with respect to some public statement (e.g., h = gk). The
pre-signature can be adapted into a standard digital signature by anyone who
knows the secret value that is related to the public statement (e.g., k in our
case). Finally, with both the pre-signature and the digital signature, the secret
value can be extracted.

Note that the public statement and the secret value cannot be arbitrary, but
rather, there must exist a certain relation between public statements and secret
values. We will refer to this relation as RAS. An example of such relation is the
discrete logarithm, defined as RAS(h; k)⇔ h = gk.

There exist adaptor signature schemes that extend the widely used ECDSA
and Schnorr digital signatures [5], which are employed in nearly all cryptocur-
rencies to authorize transactions. Notably, some cryptocurrencies, like Monero,
do not support hash-based payments but do support payments based on link-
able ring signatures for which a construction of adaptor signatures exists [31,
24]. Hence, a ZKCP protocol that replaces HTLC-based payments with adaptor
signature-based payments would be compatible with most cryptocurrencies, in-
cluding e.g., Monero. This contributes to our goal of improving interoperability.

Furthermore, payments using adaptor signatures blend with those made with
standard digital signatures, meaning both payments appear identical when pub-
lished in the blockchain. As a consequence, it becomes harder for an observer
of the blockchain to determine whether a payment is the result of the ZKCP
protocol or a standard transaction between two users. This contributes to our
goal of improving fungibility.

In a bit more technical detail, by leveraging adaptor signatures it is possible
to design a protocol in which the buyer pays the seller in exchange for the discrete
logarithm of the value h = gk. We will call this protocol PayForWitness and the
high-level idea of how this protocol works is as follows:

1. The buyer transfers coins into an account shared with the seller so that the
funds can be transferred further when both buyer and seller agree to it.

2. The buyer uses their signing key to create a pre-signature σ̂ of a transaction
with respect to the public statement h. This transaction transfers funds from
the shared account to the seller and it is required to be signed by the buyer
to be valid. Then, the buyer sends this pre-signature to the seller.

3. The seller uses the secret k to adapt the pre-signature σ̂ into a signature σ.
The latter is a valid signature of the transaction under the buyer’s verification
key. The seller submits the transaction and the signature to the blockchain.

4. The blockchain validates that σ is a correct signature of the transaction and
transfer the funds from the shared account to the seller.
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Fig. 2: Illustrative example of our ZKCP protocol. We use the same notation as in Fig-
ure 1. Here, txp is the transaction that pays α coins from buyer to seller.

5. Thereafter, the buyer can read the signature σ from the blockchain. Using
both the signature and the pre-signature, buyer can extract the secret k.

Therefore, at the end of this protocol, the seller gets the funds and the buyer
gets the secret k in exchange.

Putting Everything Together. In summary, we have a protocol that allows the
buyer to pay in exchange for the discrete logarithm of a group element h = gk. In
addition, we have a modular approach to proving, in zero-knowledge, that this
discrete logarithm can be used to decrypt a ciphertext into the correct product.
Figure 2 depicts the steps of how a ZKCP protocol using these modifications
would work at a high level. We will describe these steps where the index numbers
refer to those of the figure.

During the setup phase, 1○ the seller samples a key k, encrypts the product s
into a ciphertext ct and computes h := gk. They also compute a commitment to
the product coms and generate proofs π1 (regarding the correctness of the prod-
uct) and π2 (regarding the payment and encryption methods). Upon receiving
π1, π2, ct, coms and h, 2○ the buyer verifies both proofs and sends to the seller
a pre-signature σ′ of the payment transaction. Next, 3○ the buyer submits to
the blockchain a transaction that transfers the α funds to an account shared
between buyer and seller.

During the execution phase, 4○ the seller adapts the pre-signature into a
signature and submits this signature of the payment to the blockchain. 5○ the
blockchain verifies the signature and transfers the funds from the shared account
to the seller. Finally, 6○ the buyer retrieve the signature from the ledger and
extracts the key k and decrypt the product s.
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3 Preliminaries

Notation. We denote the security parameter by n ∈ N, by which each crypto-
graphic scheme and adversary is parameterized. We denote by negl(n) a negligible
function. A function f : N→ R is negligible if its absolute value is smaller than
the inverse of any polynomial (i.e., if ∀d ∃k0 ∀n ≥ k0 : |negl(n)| ≤ 1/nd). We de-
note by x←$ X the uniform sampling of the variable x from the set X . We write
x← A(y) to denote that a probabilistic polynomial time (PPT) algorithm A on
input y outputs x. If A is a deterministic polynomial time (DPT) algorithm, we
use the notation x := A(y). We use the notation s← s1 + s2 for the assignment
of computation results. We use the notation σ := (σ1, σ2) for parsing a tuple
σ composed of two elements σ1 and σ2. We use the dot notation to access the
elements of a tuple (e.g., we denote by σ.σ1 the element σ1 of σ).

Hard Languages. Let R be a relation with the associated language LR :=
{x|∃w s.t. (x,w) ∈ R}. We say R is hard if it is efficiently decidable, there ex-
ists an efficient instant sampling function GenR and it is one-way (i.e., it is
computationally infeasible for an efficient adversary to output a witness w for a
given statement x such that (x,w) ∈ R).

Hash Functions. A hash scheme H is an algorithm H, where h← H(m) computes
a hash value on input a message m. We require that the hash scheme satisfies
the properties of collision resistance, preimage resistance, and second-preimage
resistance.

Non-Interactive Zero Knowledge Argument Systems. A non-interactive zero-
knowledge argument system NIZK consists of three algorithms NIZK := (CrsGen,
Prove,Verify), where CrsGen is the public parameter (i.e., common reference
string) generation algorithm; π ← Prove(crs, x,w) is the prover algorithm for
a statement x and a witness w; and {0, 1} ← Verify(crs, x, π) is the verification
algorithm. A NIZK argument system allows a prover to convince a verifier, using
a proof π, about the existence of a witness w for a statement x without revealing
any information apart from the fact that it knows the witness w. We require the
NIZK argument system to satisfy the usual properties of completeness, compu-
tational soundness and computational zero-knowledge.

Commitment Schemes. A commitment scheme COM is a tuple of algorithms
COM := (Setup,Commit,Open), where Setup is the public parameters generation
algorithm; (com, open) ← Commit(p, x) is the commitment creation algorithm
for a value x; and {0, 1} ← Open(p, x, com, open) is the verification algorithm. A
commitment scheme should satisfy the properties of binding and hiding.

Public Key Encryption. A public key encryption scheme PKE is a tuple of
algorithms PKE := (KeyGen,Enc,Dec), where (dk, ek) ← KeyGen(1n) is the key
generation algorithm; ct ← Enc(ek,m) is the encryption algorithm on input a
public key ek and a message m; and {m,⊥} ← Dec(dk, ct) is the decryption
algorithm. A public key encryption scheme should satisfy indistinguishability
under chosen-plaintext attacks.
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Digital Signatures. A digital signature DS is a tuple of algorithms DS :=
(KeyGen,Sign,Vrfy), where (sk, vk) ← KeyGen(1n) is the key generation algo-
rithm; σ ← Sign(sk,m) is the signing algorithm on input the signing key sk and
a message m; and {0, 1} ← Vrfy(vk,m, σ) is the verification algorithm. A digi-
tal signature scheme should satisfy existential unforgeability under an adaptative
chosen-message attack.

Adaptor Signatures. An adaptor signature scheme AS is a tuple of algorithms
AS := (KeyGen,PreSign,PreVrfy,Adapt,Extract) defined with respect to a hard
relation R and a digital signature scheme DS. For every statement/witness pair
(x,w) ∈ R, key pair (sk, vk)← KeyGen(1n) and a message m, we have that σ̂ ←
PreSign(sk,m, x) is a pre-signature; and σ ← Adapt(σ̂,w) is a valid signature; and
(pre-)verification holds under vk and m for σ̂ and σ, respectively. Furthermore, it
holds that w← Extract(σ̂, σ, x). An adaptor signature scheme should satisfy the
notions of existential unforgeability under a chosen-message attack, pre-signature
adaptability and witness extractability.

UTXO Model. Following the notation in [5], in the UTXO model, coins are held
in outputs. An output θ is a tuple (α,φ) where α denotes the number of coins
associated with θ and φ defines the conditions (also known as scripts) that need
to be satisfied to spend the output.

A transaction transfers coins across outputs, meaning it maps (possibly mul-
tiple) existing outputs to a list of new outputs. The existing outputs included in
the transaction are called transaction inputs. In other words, transaction inputs
are those tied with previously unspent transaction outputs of older transactions.
Formally, a transaction tx is a tuple (txid, ins, outs,wits) where txid ∈ {0, 1}∗
is the unique identifier of tx and is calculated as txid := H([tx]), where H is a
hash function modeled as a random oracle and [tx] is the body of the transaction
defined as [tx] := (ins, outs); ins is a vector of strings identifying all transaction
inputs; outs := (θ1, . . . , θn) is a vector of new outputs; and wits ∈ {0, 1}∗ con-
tains the witness allowing to spend the transaction inputs. For readability, we
write [tx] := (ins, outs) as [tx] := ins→ outs.

The conditions of transaction outputs might be complex. Hence, we describe
our notation for some of them. We denote by φ := vk the condition of signature
verification w.r.t. vk on the body of the spending transaction. We denote by
φ := h the condition of providing a value m ∈M such that h = H(m). We denote
by φ := +t the condition that at least t rounds passed since the publication of the
transaction containing this output. Finally, an output can require a conjunction
or disjunction of several conditions. We denote the conjunction of conditions
by φ1 ∧ . . . ∧ φn for some n ∈ N. We denote the disjunction of conditions by
φ1 ∨ . . . ∨ φn for some n ∈ N.

We say that a transaction tx is valid if the sum of the coins in the trans-
action inputs is at least the sum of the coins in the transaction outputs, i.e.,∑

θi∈tx.ins θi.α ≥
∑

θj∈tx.outs θj .α.
We say that a transaction tx is authorized if, for each input θi ∈ tx.ins, the

transaction contains a witness in tx.wits such that the condition θi.φ is satisfied.
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A ledger L maintains the set of all transactions. We assume users can interact
with such a ledger with the following operations:

Submit(tx). This operation takes as input a transaction tx. If the transaction
is valid, authorized, and none of its inputs appear in a different transaction
tx′ ∈ L, then tx is appended to L. Otherwise, tx is discarded.

LedgerRead([tx]). This operation takes as input the body of a transaction [tx].
It returns tx ∈ L such that tx.txid = H([tx]) if it exists, or ⊥ otherwise.

4 Problem Description: Contingent Payment

Environment. A zero-knowledge contingent payment (ZKCP) involves a digital
product s and two parties: buyer B and seller S. The buyer owns a key pair
(vkB, skB) whereas the seller owns a key pair (vkS, skS). There exists a blockchain
where the buyer owns α funds. This means that there exists an unspent output
θ := (α,φ) where φ := vkB. Moreover, to ease readability, we assume that
the blockchain supports transaction authorization verification based on a single
digital signature (i.e., φ := vk), multi-signatures (i.e., φ := vk0 ∧ . . . ∧ vkn), and
timelocks (i.e., φ := +t).

Remark 1. Our approach is compatible with blockchains that only support trans-
action authorization verification based on a single digital signature (i.e., φ := vk),
since multi-signatures (i.e., φ := vk0 ∧ . . . ∧ vkn) can be handled in a two-party
protocol and encoded as a single public key [16] and timelock smart contracts
can be replaced by cryptographic timelock puzzles [22].

Notably, we do not assume that the blockchain supports transaction autho-
rization verification based on hash pre-images (i.e., φ := h), hence we have
the same minimal assumptions on the blockchain as prior works on protocols
with interoperability across ledgers [33]. Finally, we assume that the predicate
f : S −→ {0, 1} does not leak the product s. More formally, the predicate f satis-
fies the following one-way property: ∀ PPT A,Pr[ f(s) = 1|s← A(f)] < negl(n).

Threat Model. The two parties carrying out a zero-knowledge contingent pay-
ment, namely the buyer and the seller, are mutually distrustful. Moreover, we
assume that the blockchain accepts a transaction only if it is valid, correctly
authorized, and none of its inputs appear already in a previous transaction (i.e.,
they are not already spent).

We next define the zero-knowledge contingent payment protocol as an in-
stance of a fair exchange protocol, as defined in [9].

Definition 1 (Zero-knowledge contingent payment). A zero-knowledge con-
tingent payment protocol is a two-party communication protocol ZKCP :=
⟨S(s, f, (vkS, skS), vkB),B(f, vkS, (vkB, skB)⟩, where:

– seller runs algorithm S on input the product s, the predicate f : S −→ {0, 1},
the seller key pair (vkS, skS) and the buyer public key vkB,
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– buyer runs algorithm B on input the predicate f, the buyer key pair (vkB, skB)
and the seller public key vkB.

A ZKCP is complete if the execution of the protocol by honest parties results
in (i) the seller getting α from the buyer; and (ii) the buyer obtaining product s.

4.1 Security Definitions

Here we recall the security notions of a zero-knowledge contingent payment,
namely, Extractability and Zero-knowledge, as defined in [9].

Let ViewB be the view of the buyer on an execution of the ZKCP protocol, de-
fined as ViewB(s, f) := CoinsB ∥Messages(⟨S(. . .),B(. . .)⟩) ∥Out(⟨S(. . .),B(. . .)⟩),
where CoinsB denotes the randomness used by the buyer, Messages denotes the
messages exchanged between the parties executing the ZKCP protocol, and Out
denotes the outputs of all parties after executing the ZKCP protocol.

Definition 2 (Extractability). A ZKCP is extractable if at the end of the
protocol the balance of any possibly malicious and efficient seller algorithm Ŝ
increases with non-negligible probability, then there exists an efficient extractor
algorithm Ext that on input the predicate f, and the view of the buyer ViewB,
outputs ŝ such that f(̂s) = 1.

Intuitively, this property ensures that, at the end of the protocol, if the seller
gets the α from the buyer, then the buyer must be able to extract product s.

Definition 3 (Zero-knowledge). A ZKCP is zero-knowledge if for any possi-
bly malicious and efficient B̂, there exists an efficient simulator algorithm SimB̂

which, on input the predicate f, outputs a distribution which is computationally
indistinguishable from ViewB̂(s, f).

Intuitively, this property guarantees that any potentially malicious B̂ does
not inadvertently gain information about the secret input s during the protocol
execution, unless B̂ transfers α to S.

5 Our Protocol for Modular ZKCP (MAPCP)

MAPCP is divided into two phases, namely, setup and execution. During the
setup phase (cf. Section 5.1), the seller runs ZKCPProve to encrypt the product
and prove its correctness. The buyer then verifies the validity of the proof using
ZKCPVerify. During the execution phase (cf. Section 5.2), the buyer and the
seller engage in the PayForWitness protocol where the buyer pays the seller in
exchange for the decryption key, thereby obtaining the product s.
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5.1 Setup Phase: Product Setup and Proofs

Building Blocks. We require a public key encryption scheme PKE, a commitment
scheme COM, and a non-interactive zero knowledge proof system NIZK with the
properties described in Section 3.

Overview of our Construction. Recall that during the product setup phase, the
seller encrypts the product s into a ciphertext ct and must convince the buyer
of two key points: (i) the ct indeed encrypts the product s; and (ii) the product
s satisfies the predicate f. Furthermore, as we will discuss in the execution phase
(cf. Section 5.2), the seller must also convince the buyer of a third key point:
(iii) the encryption and decryption key pair has been generated according to the
key generation algorithm of the public key encryption scheme.

Technically, these three key points can be encoded in the following three
relations:

– RPKE((ct, ek); (s, r))⇔ (ct := Enc(ek, s; r)).
– Rprod(f ; s)⇔ (f(s) = 1).
– RKey(ek; (dk, r′))⇔ ((dk, ek) := KeyGen(1n; r′)).

The seller can leverage a NIZK scheme to convince the buyer that these
three relations hold. While prior works rely on a single, general purpose NIZK
instance to prove the three relations together (e.g., using zk-SNARKS), our
approach relies on two different NIZK instances, one for the Rprod and one for
RPKE and RKey. As discussed in Section 2, this is interesting because while the
NIZK instance to prove Rprod may still need to be general purpose if the predicate
f is complex, the NIZK instance to prove RPKE and RKey can be simpler, e.g.,
a simple Sigma protocol when PKE is instantiated as e.g., ElGamal with keys
as group elements in a cyclic group. However, running the two NIZK instances
in parallel does not ensure that the product s used in Rprod is the same as the
one used in RPKE. To account for that, we consider a fourth relation defined
as RCOM((coms, p); (opens, s, r′′)) ⇔ ((coms, opens) := Commit(p, s; r′′)) to prove
that a given commitment coms commits to the product s. By using the same
commitment in both NIZK instances, the buyer is assured that both instances
are proven with regard to the same product s.

More precisely, our first construction for ZKCPProve and ZKCPVerify (cf. Fig-
ure 5) relies on two NIZK instances, namely, NIZKRΣ

and NIZKRΩ
, for the rela-

tions:

– RΣ((ct, ek, coms, p); (r, dk, r′, opens, s, r′′))⇔ (((ct, ek), (s, r)) ∈ RPKE∧(ek, (dk, r′)) ∈
RKey ∧ ((coms, p), (opens, s, r′′)) ∈ RCOM)

– RΩ((f, coms, p); (s, opens, r′′))⇔ (f(s) = 1 ∧ ((coms, p), (opens, s, r′′)) ∈ RCOM)

Furthermore, we observe that if the relation Rprod can be proven with a simple
Sigma protocol, we can resort to a single NIZK instance to prove the following
relation:

Rmerged((f, ct, ek); (r, dk, r′, s))⇔ (((ct, ek), (s, r)) ∈ RPKE∧(ek, (dk, r′)) ∈ RKey∧(f, s) ∈ Rprod)
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ZKCPProve(s, f,pp)

pp := (p, crsΩ , crsΣ)

(coms, opens)← COM.Commit(p, s)
(dk, ek)← PKE.KeyGen(1n)

ct← PKE.Enc(ek, s)
πΩ ← NIZKRΩ .Prove(crsΩ , (f, coms, p),

(s, opens, r
′′))

πΣ ← NIZKRΣ .Prove(crsΣ , (ct, ek, coms, p),
(r, dk, r′, opens, s, r

′′))

return ((πΩ , πΣ), ek, (ct, coms))

ZKCPVerify(f,pp,π, ek, ct)

pp := (p, crsΩ , crsΣ)

π := (πΩ , πΣ)

ct := (ct, coms)

b0 ← NIZKRΩ .Verify(crsΩ , πΩ ,

(f, coms, p))
b1 ← NIZKRΣ .Verify(crsΣ , πΣ ,

(ct, ek, coms, p))
return b0 ∧ b1

Fig. 3: Algorithms ZKCPProve and ZKCPVerify.

In Section 6 we show a concrete example where Rprod can be proven as a Sigma
protocol. It is important to note that this construction differs from previous
approaches that rely on a single NIZK instance, as those methods require the
instance to be a general-purpose one (e.g., zk-SNARKs).

5.2 Execution Phase: PayForWitness

Building Blocks. We require an adaptor signature scheme AS.

Notation. Henceforth, we use the following notation: sk, vk, and tx denote
signing keys, verification keys, and transactions, respectively. These symbols may
include up to two subscripts: The first subscript indicates the party who owns the
key (B for Buyer and S for Seller). The second subscript, if present, denotes the
associated transaction, using l for the lock transaction, p for the pay transaction,
and r for the recover transaction. For instance, the symbol vkB,l refers to the
buyer’s verification key controlling the input of the lock transaction.

In the next, to ease the readability we first introduce the transactions that
we use in the execution phase and then overview our protocol for PayForWitness.

Transactions. The transactions involved in PayForWitness are:

– The lock transaction txl: (α, vkB,l) → (α, (vkB,p ∧ vkS,p) ∨ (vkB,r + t)) moves
α funds from an output controlled by B to a shared output that is jointly
controlled by B and S.

– The pay transaction txp: (α, (vkB,p ∧ vkS,p) ∨ (vkB,r + t)) → (α, vkS) moves
α funds from the output that is jointly controlled by B and S to an output
controlled by S.

– The refund transaction txr: (α, (vkB,p∧vkS,p)∨(vkB,r+t))→ (α, vkB). If time
t has passed, it moves α funds from the output that is jointly controlled by B
and S to an output controlled by the B.
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LockPayment(skB,l, skB,p, ek)

σB,l ← Sign(skB,l, txl)

Submit(σB,l, txl)

σ̂B,p ← PreSign(skB,p, txp, ek)

return σ̂B,p

AdaptPayment(σ̂B,p, ek, dk, skS,p)

σB,l ← LedgerRead(txl)

if σB,l = ⊥ abort

b = ¬PreVrfy(vkB,p, txp, σ̂B,p, ek)

if b abort

σB,p ← Adapt(σ̂B,p, dk)

σS,p ← Sign(skS,p, txp)

if Vrfy(vkB,p, txp, σB,p)

Submit((σB,p, σS,p), txp)

ExtractWitness(skB,r, σ̂B,p, ek)

σB,p ← LedgerRead(txp)

if σB,p = ⊥
σB,r ← Sign(skB,r, txr)

Submit(σB,r, txr)

return ⊥
else

dk← Extract(σ̂B,p, σB,p, ek)

return dk

PayForWitness⟨Seller,Buyer⟩

S(skS,p, ek, dk) B(skB,l, skB,p, skB,r, ek)

σ̂B,p ← LockPayment(skB,l, skB,p, ek)

σ̂B,p

wait ∆t

AdaptPayment(σ̂B,p, ek, dk, skS,p)

wait 2∆t

dk← ExtractWitness(skB,r, σ̂B,p, ek)

Fig. 4: On the bottom, the PayForWitness protocol. On the top: the algorithms required
by the protocol. For readability, we assume that all transactions and public keys are
available to both B and S.

We explain the need to lock the funds using the txl transaction in Appendix B

Overview of our Construction. The goal of the PayForWitness is to let B pay S
α funds in exchange for a witness w. For that, they engage in a protocol where
B has as input the private keys skB,l, skB,p, and skB,r which are the signing keys
to be used to sign transactions txl, txp, and txr, respectively; whereas S has
as input the witness w and the private key skS,p used to sign transaction txp.
Hereby, we assume that the corresponding public keys and the aforementioned
transactions are available to both parties.

In this setting, the PayForWitness protocol works as illustrated in Figure 4
and described next. We require that (x ;w) ∈ RAS and that the adaptor signa-
ture scheme extends a digital signature scheme which can be used to authorize
transactions in the blockchain. Moreover, we assume that in the blockchain there
exists an output holding α funds, which is controlled by the buyer and associated
with the verification key vkB,l. During the protocol execution, the blockchain ver-
ifies the authorization of the transactions submitted by B and S. If valid, the
blockchain adds them to the publicly available ledger.



Algebraic Zero Knowledge Contingent Payment 17

1. B executes the LockPayment algorithm to authorize and submit txl. α funds
are then locked in an output that is shared between B and S. To spend these
funds, both signatures from both B (σB,p) and S (σS,p) are required, or after
time t, only B’s signature (σB,r) is needed. B then computes a pre-signature
σ̂B,p for the transaction txp w.r.t. statement x and forwards it to S.

2. S waits ∆t (i.e., the upper bound on the time it takes for a transaction to
be included in the blockchain) and checks that B previously included txl in
the blockchain. If so, S adapts the pre-signature into a valid signature σB,p

by executing the Adapt algorithm of the adaptor signature scheme using the
witness w. Thereafter, S generates their own signature σS,p and submits txp

along with both signatures.
3. If after waiting 2∆t, B sees that txp is published on the blockchain, B executes

the Extract algorithm of the adaptor signature scheme using the pre-signature
σ̂B,p, the signature σB,p, and the statement x to extract the witness w. Oth-
erwise, B generates a signature σB,r for the txr transaction and submits it to
reclaim their funds.

Property of the Adaptor Signature Hard Relation. The idea of the protocol is that
the Buyer buys the witness w which can later be used to decrypt the ciphertext
and get the secret s. The Buyer learns this witness by extracting it from a
pre-signature σ̂ and a signature σ using the Extract algorithm of the adaptor
signature scheme. Even if the pre-signature is correctly pre-signed with respect
to a statement x such that, (x,w) ∈ RAS, we need to enforce that the Extract
algorithm returns exactly that witness w which will allow Buyer to decrypt the
secret. In other words, we need to avoid the event that ŵ← Extract(σ̂, σ, x) such
that (x, ŵ) ∈ RAS but w ̸= ŵ. To address this, we require that the hard relation
RAS satisfies the following property that ensures that there is only one witness
for a given statement:

Definition 4 (Injectiveness). A hard relation R is injective if for all state-
ments x, it holds that: (x,w) ∈ R ∧ (x, ŵ) ∈ R =⇒ w = ŵ.

5.3 Everything Together: Our Modular Algebraic Proof Contingent
Payment

Our Modular Algebraic Proof Contingent Payment protocol is depicted in Fig-
ure 5. The seller begins by generating proofs using the ZKCPProve algorithm,
resulting in a vector π, which includes πΣ and πΩ ; the encryption key ek, that
is the statement of the RAS relation; and a vector of ciphertexts ct, containing
both the product s and its commitment. The seller sends these to the buyer, who
verifies the proofs and is now confident that the ciphertext contains the desired
product. The buyer then only needs to purchase the decryption key dk corre-
sponding to ek, and thus, the seller and buyer proceed with the PayForWitness
protocol. Upon completion, the seller receives the α funds, and the buyer obtains
the decryption key, which they use to decrypt ct and retrieve s.
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S(s, f, (vkS, skS), vkB,pp) B(f, (vkB, skB), vkS,pp)

π, ek, ct← ZKCPProve(s, f,pp)

π, ek, ct

assert ZKCPVerify(f,pp,π, ek, ct)
PayForWitness⟨skS,p, s, x,w⟩ w← PayForWitness⟨skB,l, skB,p,

skB,r, x⟩
s← Dec(w, ct)

Fig. 5: The ZKCP-Protocol between parties Seller and Buyer. Here, we assume that
pp is a common input to both parties.

Security Analysis Next, we state our security theorems and provide a sketch
of our security analysis. We defer the formal security proofs to Appendix D.

Theorem 1. If the predicate f is one-way; the adaptor signature scheme has ex-
istential unforgeability and witness extractability; the hard relation of the adaptor
signature scheme RAS is injective; the commitment scheme is binding and hiding;
the encryption scheme has IND-CPA; and the NIZKs are knowledge-sound and
zero-knowledge, then the ZKCP-Protocol defined in Figure 5 is secure as defined
in Section 4.1.

Proof sketch 1 (Extraction for ZKCP-Protocol) It follows from the security
of the adaptor signature scheme and the knowledge-soundness of the non-interactive
zero-knowledge proofs:

Assume that a malicious Seller A is able to get the α funds. We want to
prove that the honest Buyer can then extract the secret s such that f(s) = 1.
A getting the α funds requires that A published txp to the blockchain. Thus, A

presented the witness authorizing txp. This witness is the pair of signatures σB,p

and σS,p. A knows the signing key skS,p therefore it is easy for A to compute
σS,p. A computed σB,p by either adapting the pre-signature σ̂B,p or some other
way. If A computed σ̂B,p in some other way, then this would contradict the
unforgeability of the adaptor signature scheme. Thus, A likely computed σB,p by
adapting σ̂B,p using w. A only gets the pre-signature σ̂B,p if the buyer sends it.
The honest buyer computes σ̂B,p by pre-signing txp with respect to the signing
key skB,p and the statement x. The buyer only sends the pre-signature σ̂B,p if the
proofs πΣ and πΩ verify. The knowledge-soundness property of πΩ implies that
f(s) = 1. The knowledge-soundness property of πΣ implies that (i) the ciphertext
ct encrypts the product s, and (ii) w is the decryption key for the ciphertext. The
binding property of the commitment scheme implies that the product s used in
πΩ is the same used in πΣ. The buyer can extract a witness w’ from the pre-
signature σ̂B,p and the signature σB,p. This witness w’ must be a valid witness
for the statement x. Otherwise A would break the witness extractability property



Algebraic Zero Knowledge Contingent Payment 19

of the adaptor signature scheme. The injectiveness property of the hard relation
implies that the extracted witness w’ is exactly the witness w. Therefore the buyer
can use w to decrypt the ciphertext ct. From such a decryption, the buyer obtains
s.

Proof sketch 2 (Zero-knowledge for ZKCP-Protocol) The security proof con-
sists in describing a simulator SimB̂ that on input f outputs a distribution indis-
tinguishable from ViewB̂(s, f). This simulator is formally defined in Figure 28.
Essentially, it sets the commitment coms to 0 and the ciphertext ct of 0. Then
generates proofs πΣ and πΩ using their respective simulators and proceeds as
prescribed by the protocol. Finally, when the Seller would need to adapt the pre-
signature, the simulator would abort. We construct this simulator step by step by
changing one line at a time, showing in each step that the distribution computed
is indistinguishable from the one before. When changing the proofs into simulated
ones, we use their zero-knowledge property. When changing the commitment into
a commitment to 0, we use the hiding property. When changing the ciphertext
to encrypt 0, we use the IND-CPA property. When changing aborting instead of
adapting the pre-signature, we use the one-wayness of the predicate f. Finally,
we arrive at a simulator that does not use the secret s to compute the view of the
protocol, thereby showing that the protocol does not leak sensitive information
about the secret s.

6 Application

As an illustrative use case for our MAPCP protocol, we consider a notary who
attests digital documents using a digital signature scheme. A customer wishing to
get their document attested can engage with the notary to receive the attestation
(e.g., a digital signature on the document) in exchange for paying the notary α
units of a pre-agreed cryptocurrency. If the customer and notary wanted to use
the MAPCP, the different building blocks of the construction we presented should
be instantiated according to their needs, as we describe next.

Application Setting. A customer, who holds a document m, wishes to pay a
notary for the Schnorr signature on m using notary’s signing key sk. We recall
the Schnorr signature scheme in Figure 7. Technically, given a Schnorr signature
σ = (e, s), the customer wants to pay in exchange for the scalar s. For that, they
execute the MAPCP (c.f. Section 5), where the different required relations are
set as described next. All of them are proven using a Sigma protocol.

First, the product-dependent relation Rprod is defined as

Rprod((vk, e, r); (s, sk))⇔ gsvke = r ∧ vk = gsk

To see why is defined like that, observe that a signature is verified if e matches
a hash value e′. This hash value depends on a group element r, as well as public
information like the verification key vk and the message m. The group element r
is defined as gevks, so the notary must prove knowledge of both e and s such that
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this equality is satisfied. Hence, r must be provided as the statement. Moreover,
by knowing r, the buyer can compute the hash e′ using the verification algorithm
and expect it to be equal to e, since a mismatch would cause the verification to
fail. This implies that r being a public statement reveals e, but this is not an
issue because knowing e does enable the buyer to compute the value s; doing so
would violate the pre-image resistance of the hash and the discrete logarithm
problem. For simplicity of notation, we assume that e is also given as a public
statement.

Second, naturally we instantiate the relation required in adaptor signatures
as the discrete logarithm relation. Technically, RAS(x;w)⇔ x = gw.

Third, we instantiate the public-key encryption scheme. The goal here is to
encrypt the element s of the Schnorr signature. We can do this with exponential
ElGamal where the key generation algorithm KeyGen is the same as the GenR
algorithm of RAS. However this presents a challenge. With exponential ElGamal,
the decryption of the ciphertext would return gs and one must break the discrete
logarithm assumption to extract s. The problem is that s is random, therefore
this cannot be directly and efficiently achieved. One solution is to split s in bits
si for i ∈ [0 . . . |s| − 1] such that s =

∑|s|−1
i=0 si2

i. The notary would encrypt
each one of these bits as cti ← Enc(x, si). These ciphertexts are of the form
(gti , ektigsi) where ti is the randomness chosen in the encryption algorithm. Due
to the homomorphic properties of ElGamal encryption, the ciphertext ct that
encrypts the value s is the product

∏|s|−1
i=0 (cti)2

i

= (gt, ektg
∑|s|−1

i=0 si2
i

) where
t =

∑|s|−1
i=0 ti2

i. When the buyer needs to decrypt, they must decrypt each
ciphertext cti to get gsi and then break this discrete logarithm. However, in this
case si is either 0 or 1, therefore it is feasible to do.

For the sake of simplicity of notation, let us say that a ciphertext ct is of the
form (A,B). With this instantiation of the public-key encryption scheme, the
notary must proof that each ciphertext cti encrypts a bit si that can be either
1 or 0. These facts can be represented as hard relations Ri((A,B, ek); (ti, si))⇔
(A = gti) ∧ (B = ekti ∨ B = ektig). Moreover, the notary must prove that the
product of these ciphertexts, ct, is an ElGamal encryption of s. In conclusion, the
hard relation RPKE is defined as follows. Let A =

∏|s|−1
i=0 A2i

i and B =
∏|s|−1

i=0 B2i

i .

RPKE(({(Ai, Bi)}i∈[0...|s|−1], A,B, ek, gs); ({(ti, si)}i∈[0...|s|−1], s))⇔
(∀i ∈ [0 . . . |s| − 1] : (Ai = gti) ∧ (Bi = ekti ∨Bi = ektig))∧

(A = g
∑|s|−1

i=0 ti2
i ∧B = ek

∑|s|−1
i=0 ti2

i

gs)

Finally, since Rprod can be proven using a Sigma protocol, we define the final
relation RΣ as

RΣ((vk, e, r, g
s, x, {(Ai, Bi)}i∈[0...|s|−1]); (s, sk,w, {(ti, si)}i∈[0...|s|−1]))⇔

gsvke = r ∧ vk = gsk ∧ x = gw∧
(∀i ∈ [0 . . . |s| − 1] : (Ai = gti) ∧ (Bi = xti ∨Bi = xtig))∧

(A = g
∑|s|−1

i=0 ti2
i ∧B = x

∑|s|−1
i=0 ti2

i

gs)
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7 Conclusion

In this work, we presented MAPCP, a protocol for obtaining digital goods in
exchange for a cryptocurrency payment. Our protocol differs from previous works
in that it is the first one that simultaneously departs from using zk-SNARKS
for the zero-knowledge proofs and HTLC for atomic exchange of coins and a
secret. Given that, MAPCP does not suffer from the crs creation problem and
provides interoperability and fungibility, important properties for the privacy
of the users. We analyze the security of MAPCP and provide a proof of concept
implementation where a customer pays a notary in exchange for the signature on
a document. Our evaluation shows that MAPCP is practical even on commodity
hardware.

As future work, we find it interesting to study whether our modular treatment
for ZKCP also applies to the problem of ZKCSP. Our preliminary work in this
direction is in Appendix C.
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A Extended Preliminaries

A.1 Hard Languages

Definition 5 (Binary relation). A binary relation R is a function R : X ×
W → {0, 1}. The language associated to R is LR := {x ∈ X | ∃w ∈ W : R(x,w) = 1}

Definition 6 (Hard relation). A relation R is hard if (i) there exists a PPT
sampling algorithm GenR(1n) that on input the security parameter 1n, it outputs
(x,w) ∈ R; (ii) there exists a PPT algorithm D such that D(x,w) = 1⇔ (x,w) ∈
R; (iii) for all PPT algorithms A it holds that:

Pr

[
(x,w∗) ∈ R

∣∣∣∣∣(x,w)← GenR(1n)
w∗ ← A(x)

]
≤ negl(n)

A.2 Hash Functions

Definition 7 (Hash function). A hash function H is defined as follows:
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h ← H(m). A DPT algorithm that takes as input a message m. It outputs a
hash value h.

We now review the notions of security for a hash function.

Definition 8 (Colllision resistance). A hash function H is collision resistant
if for all PPT adversaries A, there is a negligible function negl(n) such that:

Pr[CollResA,H(n) = 1] ≤ negl(n)

where CollResA,H(n) is defined as follows:

CollResA,H(n)

1 : (m,m′)← AH

2 : b0 := (m ̸= m′)

3 : b1 := (H(m) = H(m′))

4 : return b0 ∧ b1

Definition 9 (Pre-image resistance). A hash function H is preimage re-
sistant if for all PPT adversaries A, there is a negligible function negl(n) such
that:

Pr[PreImageResA,H(n) = 1] ≤ negl(n)

where PreImageResA,H(n) is defined as follows:

PreImageResA,H(n)

1 : h←$ H
2 : m← A(h)
3 : return h = H(m)

Definition 10 (Second Pre-image resistance). A hash function H is sec-
ond preimage resistant if for all PPT adversaries A, there is a negligible function
negl(n) such that:

Pr[SecondPreImageResA,H(n) = 1] ≤ negl(n)

where SecondPreImageResA,H(n) is defined as follows:

SecondPreImageResA,H(n)

1 : m←$ M
2 : m′ ← A(m)

3 : b0 := (m ̸= m′)

4 : b1 := (H(m) = H(m′))

5 : return b0 ∧ b1
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A.3 Non-Interactive Zero Knowledge Proofs

Definition 11 (Non-Interactive Zero Knowledge Proof). A non-interactive
zero knowledge proof for a relation R is a tuple of algorithms NIZK := (CrsGen,
Prove,Verify) defined as follows:

crs← CrsGen(1n). A PPT algorithm that takes as input the security parameter
1n. It outputs a common reference string crs.

π ← Prove(crs, x,w). A PPT algorithm that takes as input the common reference
string crs, a statement x and a witness w. It outputs a proof π

{0, 1} ← Verify(crs, x, π). A DPT algorithm that takes as input the common
reference string, a statement x and a proof π. It outputs a bit b ∈ {0, 1}.

A NIZK is complete if for all (x,w) ∈ R and all crs ← CrsGen(1n) it holds
that:

Pr

[
Verify(crs, x, π) = 1

∣∣∣∣∣ crs← CrsGen(1n)
π ← Prove(crs, x,w)

]
≥ 1− negl(n)

We now review the notion of security for a non-interactive zero-knowledge
proof.

Definition 12 (Zero-knowledge). A non-interactive zero knowledge proof
NIZK := (CrsGen,Prove,Verify) is zero-knowledge if there exist two PPT simula-
tors (CrsSim,ProveSim) such that for every PPT adversary A, then the following
probability is negligible in n:

∣∣∣∣∣Pr
(x,w) ∈ R∧
1← A(π)

∣∣∣∣∣(crs)← CrsGen(1n)
(x,w)← A(crs)

π ← Prove(crs,w, x)

− Pr

(x,w) ∈ R∧
1← A(π)

∣∣∣∣∣ (crs, τ)← CrsSim(1n)
(x,w)← A(crs)

π ← ProveSim(crs, τ , x)

 ∣∣∣∣∣
Definition 13 (Knowledge-soundness). A non-interactive zero knowledge
proof NIZK := (CrsGen,Prove,Verify) is knowledge-sound if there exists a PPT
algorithm Ext such that for all adversaries A, it holds that:

Pr

1← Verify(crs, x, π)
(x,w) ̸∈ R

∣∣∣∣∣
crs← CrsGen(1n)
(x, π)← A(crs)

w← ExtA(crs, x, π)

 ≤ negl(n)

A.4 Commitment Schemes

Definition 14 (Commitment Scheme). A commitment scheme COM :=
(Setup,Commit,Open) is defined as follows:

p← Setup(1n). A PPT algorithm that takes as input the security parameter 1n

and outputs the commitment parameters p.
(com, open)← Commit(p, x). A PPT algorithm that takes as input the commit-

ment parameters p and a message x. It outputs the commitment com and the
opening information open.
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{0, 1} ← Open(p, x, com, open). A PPT algorithm tha takes as input the commit-
ment parameters p, a commited value x, a commitment com and the opening
information open. It outputs a bit b ∈ {0, 1}.

A commitment scheme is correct if for every message x ∈ X it holds that:

Pr

[
Open(p, x, com, open)

∣∣∣∣∣ p← Setup(1n)
(com, open)← Commit(p, x)

]
≥ 1− negl(n)

We now review the notions of security for a commitment scheme.

Definition 15 (Binding). A commitment scheme COM := (Setup,Commit,
Open) is binding if for all PPT adversaries A, there is a negligible function
negl(n) such that:

Pr[BindingA,COM(n) = 1] ≤ negl(n)

where the experiment BindingA,COM(n) is defined as follows:

BindingA,COM(n)

1 : p← Setup(1n)

2 : (com, open, x, open′, x′)← A(p)
3 : b0 := Open(p, x, com, open)
4 : b1 := Open(p, x′, com, open′)

5 : b2 := x ̸= x′

6 : return b0 ∧ b1 ∧ b2

Definition 16 (Hiding). A commitment scheme COM := (Setup,Commit,
Open) is hiding if for all PPT adversaries A, there is a negligible function negl(n)
such that

Pr[HidingA,COM(n) = 1] ≤ 1

2
+ negl(n)

where the experiment HidingA,COM(n) is defined as follows:

HidingA,COM(n)

1 : p← Setup(1n)

2 : (x0, x1)← A(p)
3 : b←$ {0, 1}
4 : (comb, openb)← Commit(p, xb)
5 : b∗ ← A(comb)

6 : return b = b∗
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P((v;w) ∈ R) V(v ∈ V )

a← α(v;w;uP)

announcement a

c ∈R C

challenge c

r ← ρ(v;w; c;uP)

response r

ϕ(v; a; c; r)?

Fig. 6: Sigma Protocol for Relation R. Conversation (a; c; r) accepting if ϕ(v; a; c; r)
holds. Polynomial time predicate ϕ, finite set C ̸= ∅, random tape uP , PPT algorithms
α and ρ.

A.5 Sigma Protocols

Definition 17 (Sigma Protocol for Relation R). A Sigma protocol for re-
lation R is a protocol between a prover P and a verifier V of the form given
in Figure 6 satisfying the following three properties.

Completeness. If P and V follow the protocol, then V always accepts.
Special soundness. There exists a PPT algorithm E (extractor) which given any

v ∈ V and any pair of accepting conversations (a; c; r) and (a; c′; r′) with
c ̸= c′ always computes a witness w satisfying (v;w) ∈ R.

Special honest-verifier zero-knowledgeness. There exists a PPT algorithm S
(simulator) which given any v ∈ LR and any challenge c ∈ C produces
conversations (a; c; r) with the same probability distribution as conversations
between honest P and V on common input v and challenge c, where P uses
any witness w satisfying (v;w) ∈ R. Furthermore, given any v ∈ V \LR, sim-
ulator S is just required to produce arbitrary accepting conversations (a; c; r),
for any given challenge c ∈ C.

If C consists of a single element, the Sigma protocol is said to be trivial.

A.6 Public Key Encryption

Definition 18 (Public key encryption scheme). A public key encryption
scheme PKE := (KeyGen,Enc,Dec) is defined as follows:

(dk, ek) ← KeyGen(1n). A PPT algorithm that takes as input the security pa-
rameter 1n. It outputs a pair of encryption and decryption keys (dk, ek).
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ct ← Enc(ek,m). A PPT algorithm that takes as input the encryption key ek
and a message m. It outputs a ciphertext ct.

{m,⊥} ← Dec(dk, ct). A DPT algorithm that takes as input the decryption key
dk and a ciphertext ct. It outputs a message m or a special symbol ⊥ denoting
failure.

A public key encryption scheme is correct if for every message m ∈ M it
holds that:

Pr

[
m = m′

∣∣∣∣∣ (dk, ek)← KeyGen(1n)
m′ := Dec(dk,Enc(ek,m))

]
= 1

We now review the notion of security for a public key encryption scheme.

Definition 19 (Indistinguishable encryptions under chosen-plaintext
attacks).

A public key encryption scheme PKE := (KeyGen,Enc,Dec) has indistin-
guishable encryptions under chosen-plaintext attacks (or is CPA-secure) if for
all PPT adversaries A, there is a negligible function negl(n) such that:

Pr
[
PubKcpa

A,PKE(n) = 1
]
≤ 1

2
+ negl(n)

where the experiment PubKcpa
A,PKE(n) is defined as follows:

PubKcpa
A,PKE(n)

1 : (dk, ek)← KeyGen(1n)

2 : (m0,m1)← A(ek)
3 : b←$ {0, 1}
4 : ctb ← Enc(ek,mb)

5 : b∗ ← A(ctb)
6 : b0 := (|m0| = |m1|)
7 : b1 := (b = b∗)

8 : return b0 ∧ b1

A.7 Digital Signatures

Definition 20 (Digital signature scheme). A digital signature scheme DS :=
(KeyGen,Sign,Vrfy) is defined as follows:

(sk, vk) ← KeyGen(1n). A PPT algorithm that takes as input the security pa-
rameter 1n. It outputs a pair of signing and verification keys (sk, vk).

σ ← Sign(sk,m). A PPT algorithm that takes as input the signing key sk and a
message m. It outputs a signature σ.

{0, 1} ← Vrfy(vk,m, σ). A DPT algorithm that takes as input the verification
key vk, a message m, and a signature σ. It outputs a bit b ∈ {0, 1}.
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KeyGen(1n)

1 : sk←$ Zp

2 : vk := gsk

3 : return (sk, vk)

Sign(sk,m)

1 : z ←$ {0, 1}λ

2 : r := gz

3 : e← H(vk, r,m)

4 : s := z + e · sk
5 : return (e, s)

Vrfy(vk,m, σ)

1 : (e, s) := σ

2 : r := ge ∗ vks

3 : e′ := H(vk, r,m)

4 : return e = e′

Fig. 7: Algorithms of Schnorr signatures.

A digital signature scheme is correct if for every m ∈M it holds that:

Pr

[
Vrfy(vk,m, σ)

∣∣∣∣∣(sk, vk)← KeyGen(1n)
σ ← Sign(sk,m)

]
≥ 1− negl(n)

We now review the notion of security for a digital signature scheme.

Definition 21 (Existential unforgeability under an adaptative chosen-
message attack). A digital signature scheme DS := (KeyGen,Sign,Vrfy) is
existentially unforgeable under an adaptative chosen-message attack (or just
secure) if for all PPT adversaries A, there is a negligible function negl(n) such
that:

Pr[Sig-ForgeA,DS(n) = 1] ≤ negl(n)

where the experiment Sig-ForgeA,DS(n) is defined as follows:

Sig-ForgeA,DS(n)

1 : (sk, vk)← KeyGen(1n)

2 : (m, σ)← AOSign(vk)

3 : b0 := m ̸∈ Q
4 : b1 := Vrfy(vk,m, σ)

5 : return b0 ∧ b1

OSign(m)

1 : σ ← Sign(sk,m)

2 : Q := Q∪m
3 : return σ

Schnorr Signatures For completeness, we revise here the implementation of
Schnorr Signatures, since they are used as building block in our tested and
evaluation.

A.8 Adaptor Signatures

Definition 22 (Adaptor signature scheme). An adaptor signature scheme
is a tuple of algorithms AS := (KeyGen,PreSign,PreVrfy,Adapt,Extract) with
respect to a digital signature scheme DS and a hard relation R is defined as
follows:
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(sk, vk) ← KeyGen(1n). A PPT algorithm that takes as input the security pa-
rameter 1n. It outputs a pair of signing and verification keys (sk, vk).

σ̂ ← PreSign(sk,m, x). A PPT algorithm that takes as input the signing key sk,
a message m and a statement x ∈ X . It outputs a pre-signature σ̂.

{0, 1} ← PreVrfy(vk,m, σ̂, x). A DPT algorithm that takes as input the verifi-
cation key vk, a message m, a pre-signature σ and a statement x ∈ X . It
outputs a bit b ∈ {0, 1}.

σ ← Adapt(σ̂,w). A PPT algorithm that takes as input a pre-signature σ̂ and a
witness w ∈ W. It outputs a signature σ.

w← Extract(σ̂, σ, x). A DPT algorithm that takes as input a pre-signature σ̂, a
signature σ and a statement x ∈ X . It outputs a witness w ∈ W.

An adaptor signature scheme is pre-signature correct if for every m ∈ M it
holds that:

Pr

PreVrfy(vk,m, x, σ̂)

∣∣∣∣∣(sk, vk)← KeyGen(1n)
(x,w)← GenR(1n)

σ̂ ← PreSign(sk,m, x)

 ≥ 1− negl(n)

We now review the notion of security for an adaptor signature scheme.

Definition 23 (Existential unforgeability under a chosen-message at-
tack). An adaptor signature scheme AS := (KeyGen,PreSign,PreVrfy,Adapt,
Extract) is existentially unforgeable under a chosen-message attack if for all
PPT adversaries A, there is a negligible function negl(n) such that:

Pr[ASig-EUF-CMAA,AS(n) = 1] ≤ negl(n)

where the experiment ASig-EUF-CMAA,AS(n) is defined as follows:

ASig-EUF-CMAA,AS(n)

1 : (sk, vk)← KeyGen(1n)

2 : (x,w)← GenR(1n)

3 : m← AOSign,OPreSign(vk)

4 : σ̂ ← PreSign(sk,m, x)

5 : σ ← AOSign,OPreSign(σ̂, x)
6 : b0 := m ̸∈ Q
7 : b1 := Vrfy(vk,m, σ)

8 : return b0 ∧ b1

OSign(m)

1 : σ ← Sign(σ,m)

2 : Q := Q∪m
3 : return σ

OPreSign(m, x)

1 : σ̂ ← PreSign(sk,m, x)
2 : Q := Q∪m
3 : return σ̂

Definition 24 (Pre-signature adaptability). An adaptor signature scheme
AS := (KeyGen,PreSign,PreVrfy,Adapt,Extract) is pre-signature adaptable if for
any message m ∈ M, any statement/witness pair (x,w) ∈ R, any key pair
(sk, vk)← KeyGen(1n) and any pre-signature σ̂ such that PreVrfy(vk,m, x, σ̂) = 1
it holds that:

Pr

[
Vrfy(vk,m, σ)

∣∣∣∣∣σ ← Adapt(σ̂,w)

]
≥ 1− negl(n)
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Definition 25 (Witness extractability). An adaptor signature scheme AS :=
(KeyGen,PreSign,PreVrfy,Adapt,Extract) is witness extractable if for all PPT
adversaries A, there is a negligible function negl(n) such that:

Pr[ASig-WEA,AS(n) = 1] ≤ negl(n)

where the experiment ASig-WEA,AS(n) is defined as follows:

ASig-WEA,AS(n)

1 : (sk, vk)← KeyGen(1n)

2 : (m, x)← AOSign,OPreSign(vk)

3 : σ̂ ← PreSign(sk,m, x)

4 : σ ← AOSign,OPreSign(σ̂, x)
5 : w′ ← Extract(σ̂, σ, x)
6 : b0 := m ̸∈ Q
7 : b1 := Vrfy(vk,m, σ)

8 : b2 := (x,w′) ̸∈ R

9 : return b0 ∧ b1

OSign(m)

1 : σ ← Sign(σ,m)

2 : Q := Q∪m
3 : return σ

OPreSign(m, x)

1 : σ̂ ← PreSign(sk,m, x)
2 : Q := Q∪m
3 : return σ̂

B The Logic Behind Locking Funds

Recall that the construction in Section 5.1 requires a lock transaction. This
transaction, txl, transfers funds of the buyer to an output shared by both the
seller and the buyer. To be more specific, the lock transaction is defined as
(α, vkB,l) → (α, (vkB,p ∧ vkS,p) ∨ (vkB,r + t)). In this notation the subscripts
B and S on the verification keys imply that buyer and seller respectively own
the corresponding signing keys. Authorizations to spend the output of the lock
transaction require either (i) a signature from each party or (ii) a signature from
the buyer after some timeout. Later, there will be transactions txp and txr that
spend the locked funds and move them to outputs controlled by either the seller
or the buyer respectively.

This is a common technique that prevents double spending attacks and grief-
ing attacks.

B.1 double spending attacks

For illustration purposes, assume that the buyer directly moves the funds they
initially held to the seller. A bit more technically, the funds are moved by a trans-
action txp defined as (α, vkB)→ (α, vkS). Recall that, in the MAPCP protocol, it
is the seller who authorizes the transaction txp with the signature σB from the
buyer. Then, the buyer reads this authorizing signature from the ledger and uses
it to extract the witness they wanted to buy. However, note that in a blockchain
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setting, the seller submits the transaction txp together with the authorizing sig-
nature by broadcasting it to the different validators of the blockchain. Note that
if the buyer is one of those validators, the buyer can extract the witness they
wanted to buy before the transaction txp is actually published. The time window
between the submission and the publication of the transaction txp enables the
buyer to perform a double spending attack.

In a double spending attack, the buyer submits a different transaction txp’.
This transaction spends the same output (α, vkB) that is an input for the trans-
action txp. The goal is that txp’ moves these funds to an output controlled by
the buyer. To be more specific, txp’ is defined as (α, vkB) → (α, vk′B). Both txp

and txp’ are submitted roughly at the same time. However, the order in which
these transactions are published is non-deterministic. It could be the case that
txp’ is published before txp. If this is the case, txp would no longer be a valid
transaction, because the output it tries to spend has already been spent by txp.
In this situation, the buyer would succeed on his attack: (i) the buyer has seen
the signature σB and can extract the witness they wanted to buy; and (ii) the
buyer still controls the funds.

To prevent this attack the seller asks the buyer to lock their funds in an
output controlled by both the seller and the buyer. In other words, the seller
should not broadcast the signature σB until the see published a transaction txl

defined as (α, vkB,l)→ (α, (vkB,p∧vkS,p)). This way, the buyer cannot spend the
output created by this transaction as they would need a signature σS from the
seller. This technique prevents double spending attacks from a malicious seller.

B.2 griefing attacks

The technique preventing double spending attacks is not sufficient. The buyer
locking their funds as described before enables the seller to perform a griefing
attack. In this attack, the seller waits until the buyer locks their funds by pub-
lishing the transaction txl defined as (α, vkB,l)→ (α, (vkB,p ∧ vkS,p)). Then, the
seller simply aborts or stops collaborating. This achieves that, even though the
seller will not earn the funds, the buyer will not learn the witness they wanted
to buy either. Moreover, the buyer cannot recover the funds they locked.

To prevent this attack, we need to modify the transaction txl. The buyer
should be able to spend the locked funds after enough time has passed. This way,
they are able to recover their funds in the case that the seller stops collaborating.
Thus, the transaction txl must be defined as (α, vkB,l) → (α, (vkB,p ∧ vkS,p) ∨
(vkB,r + t)).

C Our Protocol for Modular ZKCSP

C.1 Problem Description

Campanelli et al. [9] observed that a slight variation of the ZKCP can serve as
a protocol to pay for a service instead of a product, contributing the so-called
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zero-knowledge contingent service payment (ZKCSP). As an illustrative example,
consider that a cloud user (i.e., the buyer) is interested to pay a cloud storage
service provider (i.e., the seller) for a proof of the integrity of their outsourced
files [2]. Similarly to the contingent payment scenario, the seller must provide a
proof that convinces the buyer that their files are correctly stored and can be
fully retrieved. However, as soon as the buyer receives such proof, they no longer
have an incentive to pay since it is the proof itself what the buyer is interested
in.

To address this challenge, the fundamental concept of ZKCSP is to retain the
same protocol as ZKCP, with the only difference being what is certified by the
zero-knowledge proof. Concretely, the proof in ZKCSP is used by the seller to
prove to the buyer that “either the files are in my storage and k is a preimage
of h (i.e., h := H(k)) or I neither keep the files nor have a preimage of h”. A bit
more formally, the seller needs to prove the following relation:

Rf,H(h; s, k)⇔ (f(s) ∧ h = H(k)) ∨ (¬f(s) ∧ h = Ĥ(k))

where Ĥ is a hash function different from H. More precisely it must hold that Ĥ
and H are claw-free and indistinguishable. Claw-freeness means that it is com-
putationally hard to find a pair of values k0, k1 such that H(k0) = Ĥ(k1). Indis-
tinguishability means that their outputs must have the same distribution.

A ZKCSP has to provide the following guarantees. First, if the buyer pays
the seller, then the buyer learns that the seller knows s such that f(s) = 1 bot
no additional information beyond that. Second, the buyer does not learn any
information without first paying to the HTLC contract.

For the first guarantee, recall that the HTLC contract is configured with
h = H(k) as its parameter. Hence, if the seller gets paid, they must have provided
a value k in satisfying the HTLC: h = H(k). This ensures that the clause (f(s)∧
h = H(k)) is satisfied. Note that the claw-freeness property is required in this
context. If the adversary is able to find a value that produces the same output
for both hash functions, the buyer would be unable to determine which branch
of the relation is true.

For the second guarantee, the buyer must not be able to tell which branch
of the relation —either f(s) ∧ h = H(k) or ¬f(s) ∧ h = Ĥ(k)— is true until they
pay and learn the value k. Note that the indistinguishability property is required
here. The buyer gets h from the seller in order to setup the HTLC contract. If
the outputs of H and Ĥ are easy to distinguish, then the buyer could tell which
branch of the proof is true by looking at h. Therefore, the buyer could easily
learn whether it is true that the service is being provided or not before paying.

In this section we present Modular Algebraic Proof Contingent Service Pay-
ment (MAPCSP), a protocol that implements ZKCSP, analyze its security and
present a proof of concept.

Similarly to MAPCP, MAPCSP is divided into setup phase and execution
phase. Considering the setup phase, the proofs need to be adjusted to align with
the service payment scenario. The execution phase is identical to that of MAPCP
(cf. Section 5.2).
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ZKCSPProve(s, f,pp)

pp := (p, crsΩ , crsΣ)

bit := f(s)
(combit, openbit)← COM.Commit(p, bit)
(x,w)← RAS.GenR(1

n)

πΩ ← NIZKRΩ .Prove(crsΩ , (f, combit, p),
(s, openbit))

πΣ ← NIZKRΣ .Prove(crsΣ , (x, coms),

(w, opens))

return ((πΩ , πΣ), x, (combit))

ZKCSPVerify(f,pp,π, x, ct)

pp := (p, crsΩ , crsΣ)

π := (πΩ , πΣ)

ct := (combit)

b0 ← NIZKRΩ .Verify(crsΩ , πΩ ,

(f, combit, p))
b1 ← NIZKRΣ .Verify(crsΣ , πΣ ,

(x, combit))

return b0 ∧ b1

Fig. 8: Algorithms ZKCSPProve and ZKCSPVerify.

C.2 Setup Phase: Product Setup and Proofs

Building blocks. We require a commitment scheme COM and a non-interactive
zero knowledge proof system NIZK with the properties described in Section 3.

Overview Of Our Construction. In MAPCSP, the product setup phase conceals
the result of evaluating f(s) within a commitment combit and must convince the
buyer of two key points: (i) the commitment combit effectively conceals the bit
obtained from evaluating f(s); and (ii) if combit represents a commitment to 1,
the payment will be authorized. We observe that, in our implementation of the
PayForWitness protocol, the payment is only authorized if S knows a witness w
and a statement x such that (x,w) ∈ RAS. We use this fact to encode the previous
points in the following relations:

– RΣ((combit, x); (openbit,w))⇔ ((combit, openbit) := Commit(1)∧(x,w) ∈ RAS)∨
(x,w) ∈ R̂AS

– RΩ((f, combit); (s, openbit))⇔ (combit, openbit) := Commit(f(s))

Furthermore, we observe that if the relation Rprod can be proven with a Sigma
protocol, we can resort to our second construction where the seller uses a single
NIZK instance to prove the following relation:

RΣ((f, x); (s,w))⇔ (f(s) = 1 ∧ (x,w) ∈ RAS) ∨ (x,w) ∈ R̂AS

In Appendix C.6 we showcase a proof of concept where Rprod can be proven as
a Sigma protocol. Hence, we can utilize the same API defined for the ZKCPProve
and ZKCPVerify algorithms presented in Figure 8.

Properties Of The Adaptor Signature Hard Relation.
The protocol requires relations RAS and R̂AS to be mutually exclusive. This

means that a Seller cannot know two witnesses w and ŵ for the same statement
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x such that (x,w) ∈ RAS and (x, ŵ) ∈ R̂AS. Otherwise, a malicious seller could
compute a proof for RΣ using (x, ŵ) ∈ R̂AS and later use (x,w) ∈ RAS in the
execution phase. This would result in the seller getting the α from the buyer
without really knowing s such that f(s) = 1, in other words, without really
providing the service. To capture this, we define the claw-free property:

Definition 26 (Claw free). Two hard relations R and R̂ are claw free if for
all PPT A, there exists a negligible function negl(n) such that

Pr

[
(x,w) ∈ R ∧ (x, ŵ) ∈ R̂

∣∣∣∣∣x,w, ŵ← A(1n)
]
≤ negl(n)

Another requirement of RAS and R̂AS is that their statements should be in-
distinguishable. This helps us hide which branch of the RΣ relation is true. We
formalize this property as follows:

Definition 27 (Indistinguishability). Two hard relations R and R̂ are in-
distinguishable if for all PPT A, there exists a negligible function negl(n) such
that ∣∣∣∣∣Pr [1← A(x)|(x,w)← GenR(1n)]−

Pr
[
1← A(x)|(x,w)← ĜenR(1n)

] ∣∣∣∣∣
≤ negl(n)

Observation. The claw-freeness property implies that

Pr
[
(x,w) ∈ R̂|(x,w)← GenR(1n)

]
≤ negl(n)∧

Pr
[
(x,w) ∈ R|(x,w)← ĜenR(1n)

]
≤ negl(n)

Therefore, proving (x,w) ∈ R implies that (x,w) ̸∈ R̂ with overwhelming proba-
bility.

Theorem 2. Let RAS be the discrete logarithm relation with respect to a group
generator g. i.e. RAS(x;w) ⇔ x = gw. Let R̂AS be the discrete logarithm relation
with respect to a different generator of the same group h. i.e. R̂AS(x;w)⇔ x = hw.
Assume that the discrete logarithm between g and h is unknown. i.e. the secret
value β such that h = gβ is unknown. Then RAS and R̂AS are claw-free.

Proof sketch 3 It follows from the fact that an adversary that outputs ŵ on
input (x,w) such that (x, ŵ) ∈ R̂ could be used to find the discrete logarithm
between g and h: β = w/ŵ



36 J. Gomez-Martinez et al.

Theorem 3. Let RAS and R̂AS be the hard relations defined in Theorem 2 with
respect to the same generators g and h. Then RAS and R̂AS are indistinguishable.

Proof sketch 4 It follows from the fact that the set of witnesses and statements
are the same for both hard relations and the GenR algorithms of both relations
yield the same distributions on both witnesses and statements.

C.3 Everything Together: Our Modular Algebraic Proof Contingent
Service Payment

We leverage Figure 5 to illustrate our Modular Algebraic Proof Contingent Ser-
vice Payment. The MAPCSP follows the same design as MAPCP, except that
instead of using the ZKCPProve and ZKCPVerify algorithms, we use the algo-
rithms ZKCSPProve and ZKCSPVerify defined in Figure 8. The seller begins by
generating proofs using the ZKCSPProve algorithm, resulting in π (which in-
cludes πΣ and πΩ); the statement x of the relation RAS (or the relation R̂AS) and
the commitment to the value bit (that is the result of evaluating f(s)). The seller
sends these elements to the buyer. Then the buyer verifies the proofs. At this
point, the buyer knows that the seller knows a witness w that either (x,w) ∈ RAS

or (x,w) ∈ R̂AS. If the former is the case, then that would mean that the seller is
providing the service. The buyer then only needs to purchase the witness w to
learn which branch of the relation RΣ is true. By learning this, the buyer learns
the value of the knowledge bit bit. And thus, the seller and buyer proceed with
the PayForWitness protocol. Upon completion, the seller receives the α funds,
and the buyer learns that knowledge bit bit is indeed 1, which implies that the
service is provided. As a remark, if bit is 0, the seller will not get the α funds
upon completing the PayForWitness protocol. The reason is that the adaptor sig-
nature scheme used in the PayForWitness protocol should be instantiated w.r.t.
the relation RAS. This implies that the seller gets the α funds only if they know
a witness w such that (x,w) ∈ RAS.

C.4 Security Definitions

Here we recall the security notions of a zero-knowledge contingent service pay-
ment, namely, Extractability and Zero-knowledge, as defined in [9].

Let ViewB be the view of the buyer on an execution of the ZKCSP protocol.
It is defined as:

ViewB(s, f) := CoinsB ∥Messages(⟨S(. . .),B(. . .)⟩) ∥Out(⟨S(. . .),B(. . .)⟩)

Where CoinsB denotes the randomness used by the buyer, Messages denotes
the messages exchanged between the parties executing the ZKCSP protocol, and
Out denotes the outputs of all parties after executing the ZKCSP protocol.
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Definition 28 (Extractability). A ZKCSP is extractable if at the end of
the protocol the balance of any possibly malicious and efficient seller algorithm Ŝ
increases with non-negligible probability, then there exists an efficient extractor
algorithm Ext that on input the predicate f, and the view of the buyer ViewB,
outputs bit such that f(̂s) = bit = 1.

Intuitively, this property ensures that, at the end of the protocol, if the seller
gets the α from the buyer, then the buyer knows that seller is providing the
service.

Definition 29 (Zero-knowledge). A ZKCSP is zero-knowledge if for any
possibly malicious and efficient B̂, there exists an efficient simulator algorithm
SimB̂ which, on input the predicate f, outputs a distribution which is computa-
tionally indistinguishable from ViewB̂(s, f)

Intuitively, this property guarantees that any potentially malicious B̂ does
not inadvertently gain information about the secret input s during the protocol
execution, unless B̂ transfers α to S.

C.5 Security Analyis

Theorem 4. If the predicate f is one-way; the adaptor signature scheme has ex-
istential unforgeability and witness extractability; the hard relation of the adaptor
signature scheme RAS is injective; the hard relations RAS and R̂AS are claw-free
and indistinguishable; the commitment scheme is binding and hiding; and the
NIZKs used for RΣ and RΩ are knowledge-sound and zero-knowledge, then the
MAPCSP protocol is secure.

Proof sketch 5 (Extraction for ZKCSP-Protocol) The proof follows the same
steps of the proof for extraction of MAPCP with an deviation at the end. The ex-
tractor retrieves the witness w and instead of then recovering the s, the extractor
returns whether (x,w) ∈ RAS or not. The claw-freeness property of RAS and R̂AS

ensures that this check will be true with overwhelming probability.

Proof sketch 6 (Zero-knowledge for ZKCSP-Protocol) The proof is the same
as the one of zero-knowledge for ZKCP-Protocol with the difference that: (i) In-
stead of hiding the commit to the secret, we use the hiding of the commit to
the knowledge bit. (ii) The encryption scheme is not required. (iii) the indistin-
guishability property of the hard relations RAS and R̂AS needs to be used.

C.6 Application: Selling the Service of Knowing a Schnorr
Signature

To illustrate an application of the MAPCSP, we developed a proof of concept.
We use the same building blocks as in Section 6: Schnorr adaptor signatures, the
discrete logarithm relation for RAS, and relation Rprod.
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Table 1: Benchmarking results. Network usage denotes the amount of data that both
parties send to each other while interacting. Signature size stored denotes the size of
the signatures to be stored in the blockchain.

Secp256k1 NistP256
Seller setup: 0.46 µs 1.3 µs

Buyer lock payment: 0.56 µs 1.59 µs
Seller adapt signature: 0.16 µs 0.46 µs

Buyer extracting witness: < 0.01 µs < 1 µs
network usage: 576 bytes 576 bytes

blockchain storage: 128 bytes 128 bytes

The relation RΣ that we will need to prove is:

RΣ((x, vk, e, r); (w, s, sk))⇔ x = hw ∨

gsvke = r∧
vk = gsk∧
x = gw


Note that, for this particular implementation, we need two distinct generators
from the same group, with an unknown discrete logarithm between them. To
derive these generators, the buyer and seller can either engage in a Diffie-Hellman
exchange or compute the second generator by hashing the first one onto the
curve.

With all the building blocks set, the protocol follows the steps described
in Section 5.

Testbed and Evaluation Results. We have developed our proof of concept [1]
in Rust using the libraries and benchmarking that we did with MAPCP. For
benchmarking, we run the cryptographic operations for the complete protocol
1000 times and calculated the average times in microseconds. The experiments
have been executed in the same machine.

We show the results of the benchmarking in Table 1. Here, we see that the
computation overhead for most of the operations is below 1 millisecond whereas
the communication overhead is below 600 bytes, making the approach practi-
cal even in commodity hardware. Additionally, to study the impact of different
curves, we repeated the experiments with curves secp256k1 and nistp256, ob-
serving that the former (currently used e.g., in Bitcoin) yields to more efficient
computation. Nevertheless, both curves impose a small computation overhad,
whereas the communication overhead remains the same.

D ZKCP Security Proofs

D.1 Extraction

Proof (Proof of extraction for MAPCP). We want to prove extraction 2 for the
protocol described in Figure 5. To increase the balance of Ŝeller at the end of
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Ext(f,ViewB)

1 : σB,p, σ̂B,p, x, ct := ViewB

2 : w′ ← Extract(σB,p, σ̂B,p, x)
3 : s′ ← Dec(w′, ct)
4 : return s′

Fig. 9: Extractor algorithm.

the protocol, it is necessary that Ŝeller has published transaction txp together
with its valid signatures σB,p and σS,p. This requires that both signatures for
txp verify. Thus, let W be the event:

W = “Vrfy(vkB,p, σB,p, txp) = 1 ∧ Vrfy(vkS,p, σS,p, txp) = 1”

Therefore, we formalize the extraction property as:

Pr[W ] > negl⇒ ∃ExtPPT :

Pr [f(̂s) = 0|̂s← Ext(f,ViewB)] < negl

If the balance of Ŝeller has increased, then that means that the pay trans-
action txp has been published. Therefore all the preconditions are satisfied and
such algorithm must exist. This algorithm is defined in Figure 9.

We want to prove that, if the condition on the left hand side is satisfied,
then the extraction algorithm we presented returns s’ such that f(s′) = 1 with
overwhelming probability.

Event W only happens when transaction txp is submitted along with the
signatures σB,p and σS,p. Hence the malicious Ŝeller must have found a way to
compute them. Ŝeller knows the signing key used in σS,p, so they can compute
it normally.

Ŝeller requires σ̂B,p in order to compute σB,p. Otherwise Ŝeller would have
been able to forge a valid signature breaking the signature unforgeability prop-
erty of the underlying digital signature scheme as shown in Figure 10.

The pre-signature σ̂B,p is computed by an honest Buyer using the PreSign al-
gorithm. However, following the protocol, Buyer only computes the pre-signature
if both proofs πΣ and πΩ verify. Therefore, we say that

Pr[W ] > negl(n)⇒
VerifyΣ(crsΣ , (ct, x, coms, p), πΣ) = 1 ∧ VerifyΩ(crsΩ , (f, coms, p), πΩ) = 1

In the extraction algorithm, we compute w’ and s’. The witness w’ is com-
puted by extracting from the signature and pre-signature. It must be the case
that (x,w′) ∈ RAS. Otherwise, the malicious Ŝeller could be used to break witness
extractability of the adaptor signature scheme as shown in Figure 11.
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Challenger B

Q := ∅
(vk, sk)← KeyGen(1n)

vk-
p← Setup(1n)

crsΩ ← CrsGenΩ(1n); crsΣ ← CrsGenΣ(1n)

x, ct, coms, πΩ , πΣ ← Ŝeller(vk, p, crsΣ , crsΩ)

if VerifyΩ(crsΩ , (f, coms, p), πΩ) = 0∨
VerifyΣ(crsΣ , (ct, x, coms, p), πΣ) = 0 then

abort

σ̂B,p := 0

σB,p ← Ŝeller(σ̂B,p)
tx, σB�

return tx /∈ Q∧
Vrfy(vk,m∗, σ∗) = 1

Fig. 10: Game where adversary B would use adversary Ŝeller in order to break the
signature unforgeability of the digital signature scheme.

Since the relation RAS is injective, this w’ must be the only witness such that
(x,w′) ∈ RAS.

The extractor algorithm of πΣ , denoted ExtΣ , on input the statements coms,
x, ct, returns ôpens, ŵ and ŝ. These witnesses satisfy the hard relation of the
NIZK:

(x, ŵ) ∈ RAS ∧ (coms, opens) = Commit(p, ŝ) ∧ ct = Enc(ŵ, ŝ)

Otherwise, Ŝeller could be used to break the knowledge-soundness of the
NIZK as shown in Figure 12.

Again, since RAS is injective, for each x, there is only one w satisfying (x,w) ∈
RAS, therefore w′ = ŵ. Thus, because of the correctness of the encryption scheme,
we know that ŝ = Dec(w′, ct), which is precisely what the second line of the
extractor algorithm does. We can conclude that ŝ = s′.

The extractor algorithm of πΩ , denoted ExtΩ , returns s̃ and õpens such that

f(̃s) = 1 ∧ (coms, õpens) = Commit(p, s̃)

Again, this must be the case, as otherwise, Ŝeller could be used to break the
knowledge-soundness of the NIZK as shown in Figure 13
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Challenger B

Q := ∅
(vk, sk)← KeyGen(1n)

vk-
p← Setup(1n)

crsΩ ← CrsGenΩ(1n); crsΣ ← CrsGenΣ(1n)

x, ct, coms, πΩ , πΣ ← Ŝeller(vk, p, crsΣ , crsΩ)

if VerifyΩ(crsΩ , (f, coms, p), πΩ) = 0∨
VerifyΣ(crsΣ , (ct, x, coms, p), πΣ) = 0 then

abort

tx, x�
σ̂B,p ← PreSign(sk, tx, x)

σ̂B,p-
σB,p ← Ŝeller(σ̂B,p)

σB,p�
return tx /∈ Q∧
(x,Extract(σB,p, σ̂B,p, x)) /∈ RAS∧
Vrfy(vk,m∗, σ∗) = 1

Fig. 11: Game where adversary B would use adversary Ŝeller in order to break the
witness extractability of the adaptor signature scheme.

Since coms is part of the statement of both proofs it must be the case that
s̃ = ŝ = s′. Otherwise, the extractors of both proofs could be used to break the
binding of the commitment scheme as shown in Figure 14.

Therefore, s′ = s̃ and it is true that f(s′) = 1.

D.2 Zero-knowledge

Proof (Proof of zero-knowledge for MAPCP).
In order to prove zero-knowledge 3 for the protocol described in Figure 5, we

need to find a simulator that on input f generates a view that is indistinguish-
able from the one generated by the actual protocol. In order to construct such
simulator we modify the intended pseudocode of the Buyer line by line creating
computationally indistinguishable simulators in each step until we arrive at the
simulator that does not require the secret s as input.

For reference, the pseudocode of the protocol is shown in Figure 15.
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Challenger B

crsΣ ← CrsGenΣ(1n) crsΣ -

p← Setup(1n)

crsΩ ← CrsGenΩ(1n)

(sk, vk)← KeyGen(1n)

x, coms, ct, πΩ , πΣ ← Ŝeller(
p, vk, crsΩ , crsΣ)

πΣ , x, coms, ct, p�
(w′, s′, open′

s)← ExtBΣ(crsΣ , πΣ ,

(x, coms, ct, p))
return

VerifyΣ(crsΣ , πΣ , (x, coms, ct, p))∧
((w′, open′

s, s
′), (x, coms, ct, p)) ̸∈ RΣ

Fig. 12: Game where adversary B would use adversary Ŝeller in order to break the
knowledge-soundness of proof πΣ .

The code of the simulator, named Sim5, will be in Figure 25.
Note that both the seller protocol and the simulator can have two differ-

ent possible views: (coms, x, ct, πΩ , πΣ) and (coms, x, ct, πΩ , πΣ , σ) depending on
whether the buyer oracle returns a valid σ̂ or not.

We claim that:

{Seller(s, f, crsΩ , crsΣ , p)}s,f
c≡ {Sim5(f, crsΩ , crsΣ , p)}f

We present the code of the first simulator in Figure 16.
We claim that:

{Seller(s, f, crsΩ , crsΣ , p)}s,f
c≡ {Sim1(s, f, crsΩ , crsΣ , p)}s,f

Assume that this is not the case. Then, there would exist a distinguisher A
between Sim1 and the seller. This distinguisher wins in the game that we show
in Figure 17.

If such distinguisher exists, we can build a distinguisher B that breaks the
zero-knowledge property of the NIZK of πΩ as we show in Figure 18.

Arriving at a contradiction. Therefore, it must hold that:

{Seller(s, f, crsΩ , crsΣ , p)}s,f
c≡ {Sim1(s, f, crsΩ , crsΣ , p)}s,f

We present the code of the second simulator in Figure 19.
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Challenger B

crsΩ ← CrsGenΩ(1n) crsΩ -

p← Setup(1n)

crsΣ ← CrsGenΣ(1n)

(sk, vk)← KeyGen(1n)

x, coms, ct, πΩ , πΣ ← Ŝeller(
p, vk, crsΣ , crsΩ)

πΩ , f, coms, p�
(s′, open′

s)← ExtBΩ(crsΩ , πΩ ,

(f, p, coms))

return

VerifyΩ(crsΩ , πΩ , (f, p, coms))∧
((s′, open′

s), (f, p, coms)) ̸∈ RΩ

Fig. 13: Game where adversary B would use adversary Ŝeller in order to break the
knowledge-soundness of proof πΩ .

We claim that:

{Sim1(s, f, crsΩ , crsΣ , p)}s,f
c≡ {Sim2(s, f, crsΩ , crsΣ , p)}s,f

An therefore it would hold that:

{Seller(s, f, crsΩ , crsΣ , p)}s,f
c≡ {Sim2(s, f, crsΩ , crsΣ , p)}s,f

Assume that this is not the case. Then, there would exist a distinguisher A
that wins the game shown in Figure 20, with non-negligible probability.

Then, we could create a distinguisher B that breaks the zero knowledge
property of the NIZK proof system for πΣ as shown in Figure 21.

Arriving at a contradiction. Therefore, it must hold that:

{Sim1(s, f, crsΩ , crsΣ , p)}s,f
c≡ {Sim2(s, f, crsΩ , crsΣ , p)}s,f

We present the code of the third simulator in Figure 22.
We claim that:

{Sim2(s, f, crsΩ , crsΣ , p)}s,f
c≡ {Sim3(s, f, crsΩ , crsΣ , p)}s,f

An therefore it would hold that:

{Seller(s, f, crsΩ , crsΣ , p)}s,f
c≡ {Sim3(s, f, crsΩ , crsΣ , p)}s,f
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Challenger B

p← Setup(1n) p -

crsΣ ← CrsGenΣ(1n);

crsΩ ← CrsGenΩ(1n)

(sk, vk)← KeyGen(1n)

x, coms, ct, πΩ , πΩ ← Ŝeller(
p, crsΣ , crsΩ , vk)

(̃s, õpens)← ExtŜeller
Ω (crsΩ , πΩ ,

(coms, f, p))

(_, open′
s, s

′)← ExtŜeller
Σ (crsΣ , πΣ ,

(x, coms, ct, p))
s̃, õpens, s

′, open′
s, coms�

b0 := Open(p, s̃,

õpens, coms)

b1 := Open(p, s′,
open′

s, coms)

b2 := s̃ ̸= s′

return b0 ∧ b1 ∧ b2

Fig. 14: Game where adversary B would use adversary Ŝeller in order to break the
binding property of the commitment scheme.

Assume that this is not the case. Then, there would exist a distinguisher
A that is able to distinguish between algorithms Sim2 and Sim3 as modeled
in Figure 23.

Then, we could create a distinguisher B that breaks the hiding property of
the commitment scheme as shown in Figure 24.

Arriving at a contradiction. Therefore, it must hold that:

{Sim2(s, f, crsΩ , crsΣ , p)}s,f
c≡ {Sim3(s, f, crsΩ , crsΣ , p)}s,f

We present the code of the fourth simulator in Figure 25.
We claim that:

{Sim4(s, f, crsΩ , crsΣ , p)}s,f
c≡ {Sim3(s, f, crsΩ , crsΣ , p)}s,f

An therefore it would hold that:

{Seller(s, f, crsΩ , crsΣ , p)}s,f
c≡ {Sim4(f, s, crsΩ , crsΣ , p)}f

Assume for the sake of contradiction that there exists a distinguisher A such
that given game of Figure 26 is able to win with non-negligible probability.
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Seller(s, f, crsΩ , crsΣ , p)

1 : x,w, ct, coms, opens ← ZKCPSetup(p, s)
2 : πΩ , πΣ ← ZKCPProve(f, s, x,w, ct, coms, p, opens, crsΩ , crsΣ)

3 : σ̂B,p ← Buyer(πΩ , πΣ , coms, x, ct)
4 : wait ∆t

5 : AdaptPayment(txl, vkB,p, txp, σ̂B,p, x,w, skS,p)

Fig. 15: Pseudocode of the seller.

Sim1(s, f, crsΩ , crsΣ , p)

1 : x,w, ct, coms, opens ← ZKCPSetup(p, s)
2 : πΩ , πΣ ← ZKCPProveSim1(f, s, x,w, ct, coms, p, opens, crsΩ , crsΣ)

3 : σ̂B,p ← Buyer(πΩ , πΣ , coms, x, ct)
4 : wait ∆t

5 : AdaptPayment(txl, vkB,p, txp, σ̂B,p, x,w, skS,p)

ZKCPProveSim1(f, s, x,w, ct, coms, p, opens, crsΩ , crsΣ)

1 : πΩ ← ProveSimΩ(crsΩ , (f, coms, p))
2 : πΣ ← Prove(crsΣ , (x, ct, coms, p), (w, s, opens))

3 : return πΩ , πΣ

Fig. 16: Pseudocode of the first simulator.

Note that, due to the definition of the AdaptPayment protocol, Sim4 is a
faithful computation of Sim3 in the cases where f(s) = 0. Therefore, the ad-
versary A can distinguish in the cases where they input a secret s such that
f(s) = 1. But A being able to distinguish between Sim4 and Sim3 with non-
negligible probability would imply that A can find such s with non-negligible
probability.

Therefore, we could create a distinguisher B that breaks the one-wayness
property of the predicate f in Figure 27.

We present the fifth and final simulator in Figure 28
We claim that:

{Sim5(f, crsΩ , crsΣ , p)}f
c≡ {Sim4(s, f, crsΩ , crsΣ , p)}s,f

An therefore it would hold that:

{Seller(s, f, crsΩ , crsΣ , p)}s,f
c≡ {Sim5(f, crsΩ , crsΣ , p)}f

Assume for the sake of contradiction that there exists a distinguisher A such
that given game of Figure 29 is able to win with non-negligible probability.

We need to show that, if A wins with non-negligible probability, then we
can use it to create an adversary B that breaks the IND-CPA of the encryption
scheme as shown in Figure 30.
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Challenger[b]

p← Setup(1n)

crsΣ ← CrsGenΣ(1n)

if b = 0 then

crsΩ ← CrsGenΩ(1n)

else

crsΩ ← CrsSimΩ(1n)

s← A(crsΩ , crsΣ , p)
x,w, ct, coms, opens ← ZKCPSetup(p, s)
if b = 0 then

πΩ , πΣ ← ZKCPProve(f, s, x,w, ct,
coms, p, opens, crsΩ , crsΣ)

else

πΩ , πΣ ← ZKCPProveSim1(f, s, x,w, ct,
coms, p, opens, crsΩ , crsΣ)

σ̂ ← A(ct, x, coms, πΩ , πΣ)

wait ∆t

AdaptPayment(txl, vkB,p, txp, σ̂B,p, x,w, skS,p)

b̂← A(·)

return b̂ = b

Fig. 17: Game where adversary A tries to distinguish between algorithms Seller and
Sim1.

Therefore, there does not exist such distinguisher and we have:

{Seller(s, f, crsΩ , crsΣ , p)}s,f
c≡ {Sim5(f, crsΩ , crsΣ , p)}f

E ZKCSP Security Proofs

E.1 Extraction

Proof (Proof of extraction for MAPCSP). We want to prove extraction Defini-
tion 2 for the MAPCSP protocol To increase the balance of Ŝeller at the end of
the protocol, it is necessary that Ŝeller has published transaction txp together
with its valid signatures σB,p and σS,p. This requires that both signatures for
txp verify. Thus, let W be the event:

W = “Vrfy(vkB,p, σB,p, txp) = 1 ∧ Vrfy(vkS,p, σS,p, txp) = 1”
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Therefore, we formalize the extraction property as:

Pr[W ] > negl⇒ ∃ExtPPT :

Pr [f(̂s) = 0|̂s← Ext(f,ViewB)] < negl

If the balance of Ŝeller has increased, then that means that the pay trans-
action txp has been published. Therefore the precondition is satisfied and such
algorithm must exist. This algorithm is defined in Figure 31.

We want to prove that, if the condition on the left hand side is satisfied, then
the extraction algorithm we presented returns 1 with overwhelming probability.

Event W only happens when transaction txp is submitted along with the
signatures σB,p and σS,p. Hence the malicious Ŝeller must have found a way to
compute them. Ŝeller knows the signing key used in σS,p, so they can compute
it normally.

In order to compute σB,p, Ŝeller requires σ̂B,p. Otherwise Ŝeller would be
able to forge a valid signature breaking the signature unforgeability property of
the underlying digital signature scheme as shown in Figure 32.

The pre-signature σ̂B,p is computed by an honest Buyer using the PreSign al-
gorithm. However, following the protocol, Buyer only computes the pre-signature
if both proofs πΣ and πΩ verify. Therefore, we say that

Pr[W ] > negl⇒ VerifyΣ(crsΣ , (combit, p, x), πΣ) = 1∧VerifyΩ(crsΩ , (combit, p), πΩ) = 1

Now, in the extractor algorithm, we use the extract algorithm of the adaptor
signature scheme in order to get w’ from σ̂B,p and σB,p. We argue that this
witness satisfies (x,w) ∈ RAS. Otherwise, Ŝeller could be used to break witness
extractability of the adaptor signature scheme as shown in Figure 33.

Next, we see that πΣ is a NIZK satisfying the knowledge-soundness prop-
erty. Therefore its extractor algorithm ExtŜeller

Σ , on input (x, combit) returns
(ŵ, ôpenbit) such that:

(
(x, ŵ) ∈ RAS∧

(combit, openbit) = Commit(p, 1)

)
∨
(

(x, ŵ) ∈ R̂AS∧
(combit, openbit) = Commit(p, 0)

)
Otherwise, Ŝeller could be used to break the knowledge-soundness property

of the NIZK as shown in Figure 34.
Now, we have w′ and ŵ such that (x,w′) ∈ RAS and (x, ŵ) ∈ RAS∨(x, ŵ) ∈ R̂AS.
Assume that w′ ̸= ŵ. RAS is injective, therefore necessarily (x, ŵ) ∈ R̂AS. Then

we would have found an adversary B that using both Ŝeller and ExtŜeller
Σ breaks

the claw-freeness of RAS and R̂AS as shown in Figure 35.
We conclude that w′ = ŵ. Since (x, ŵ) ∈ RAS, it must be the case that

(combit, ôpenbit) = Commit(p, 1).
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Since πΩ is also a NIZK that is knowledge-sound, then we know that there
exists an extractor ExtŜeller

Ω that on input (f, combit), outputs (õpenbit, s̃) such
that:

bit = f(s) ∧ (combit, õpenbit) = Commit(p, bit)

As otherwise, Seller could be used to break knowledge-soundness of the NIZK
as shown in Figure 36

We just need to show that (combit, õpenbit) = Commit(p, 1). To do this, we
need to note that õpenbit = ôpenbit, as otherwise, an adversary would be able
to use both extractors ExtΣ and ExtΩ to break the binding property of the
commitment scheme as shown in Figure 37.

Therefore, it must be the case that õpenbit = ôpenbit. Since we knew that
(combit, ôpenbit) = Commit(p, 1), we can conclude that (combit, õpenbit) = Commit(p, 1).
Hence, bit = 1 and, since f(s) = bit, it must be the case that f(s) = 1.

E.2 Zero-knowledge

Proof (Proof of zero-knowledge for MAPCSP).
In order to prove zero-knowledge 3 for the protocol described in Figure 5, we

need to find a simulator that on input f generates a view that is indistinguish-
able from the one generated by the actual protocol. In order to construct such
simulator, we modify the intended pseudocode of the Buyer line by line creat-
ing computationally indistinguishable simulators until we arrive at the final one
that we need, showing in every step that these simulators generate a view that
is indistinguishable from V iewB̂(s, f).

For reference, the pseudocode of the protocol is presented in Figure 38.
We present the code for the first simulator in Figure 39.
We claim that:

{Seller(s, f, crsΩ , crsΣ , p)}s,f
c≡ {Sim1(s, f, crsΩ , crsΣ , p)}s,f

Assume that this is not the case. Then, there would exist a distinguisher A
between Sim1 and the seller. This distinguisher wins the game that we show
in Figure 40.

If such distinguisher exists, we can build a distinguisher B that breaks the
zero-knowledge property of the NIZK of πΩ as we show in Figure 41

Arriving at a contradiction. Therefore, it must hold that:

{Seller(s, f, crsΩ , crsΣ , p)}s,f
c≡ {Sim1(s, f, crsΩ , crsΣ , p)}s,f

We present the code for the second simulator in Figure 42.
We claim that:

{Sim1(s, f, crsΩ , crsΣ , p)}s,f
c≡ {Sim2(s, f, crsΩ , crsΣ , p)}s,f

Therefore:

{Seller(s, f, crsΩ , crsΣ , p)}s,f
c≡ {Sim2(s, f, crsΩ , crsΣ , p)}s,f
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Assume that this is not the case. Then, there would exist a distinguisher A
that wins the game shown in Figure 43, with non-negligible probability.

Then, we could create a distinguisher B that breaks the zero knowledge
property of the NIZK proof system for πΩ as shown in Figure 44.

Arriving at a contradiction. Therefore, it must hold that:

{Seller(s, f, crsΩ , crsΣ , p)}s,f
c≡ {Sim2(s, f, crsΩ , crsΣ , p)}s,f

We present the code of the third simulator in Figure 45.
We claim that:

{Sim3(s, f, crsΩ , crsΣ , p)}s,f
c≡ {Sim2(s, f, crsΩ , crsΣ , p)}s,f

Therefore:

{Sim3(s, f, crsΩ , crsΣ , p)}s,f
c≡ {Seller(s, f, crsΩ , crsΣ , p)}s,f

Assume that this is not the case. Then, there would exist a distinguisher A
that wins the game shown in Figure 46.

Note that, due to the definition of the AdaptPayment protocol, Sim3 is a
faithful computation of Sim2 (and therefore, a faithful computation of Seller) in
the cases where f(s) = 0. Therefore, the adversary A can distinguish in the cases
where they input a secret s such that f(s) = 1. But A being able to distinguish
between Sim3 and Sim2 with non-negligible probability would imply that A can
find such s with non-negligible probability.

Therefore, we could create a distinguisher B that breaks the one-wayness
property of the predicate f in Figure 47.

Arriving at a contradiction. Therefore, it must hold that:

{Sim2(s, f, crsΩ , crsΣ , p)}s,f
c≡ {Sim3(s, f, crsΩ , crsΣ , p)}s,f

We present the code for the fourth simulator in Figure 48.
We claim that:

{Sim4(s, f, crsΩ , crsΣ , p)}s,f
c≡ {Sim3(s, f, crsΩ , crsΣ , p)}s,f

Therefore:

{Sim4(s, f, crsΩ , crsΣ , p)}s,f
c≡ {seller(s, f, crsΩ , crsΣ , p)}s,f

Assume that this is not the case. Then, there would exist a distinguisher A
that wins the game shown in Figure 49.

Then, we could create a distinguisher B that breaks the indistinguishability
between RAS and R̂AS as shown in Figure 50.

Arriving at a contradiction. Therefore, it must hold that:

{Sim3(s, f, crsΩ , crsΣ , p)}s,f
c≡ {Sim4(s, f, crsΩ , crsΣ , p)}s,f

We present the code for the fifth simulator in Figure 51.
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We claim that:

{Sim5(f, crsΩ , crsΣ , p)}f
c≡ {Sim4(s, f, crsΩ , crsΣ , p)}s,f

Therefore:
{Sim5(f, crsΩ , crsΣ , p)}f

c≡ {seller(s, f)}s,f
Assume that this is not the case. Then, there would exist a distinguisher A

that wins the game shown in Figure 52.
Then, we could create a distinguisher B that breaks the hiding property of

the commitment scheme with respect to combit as shown in Figure 53.
Arriving at a contradiction. Therefore, it must hold that:

{Sim5(f, crsΩ , crsΣ , p)}f
c≡ {Sim4(s, f, crsΩ , crsΣ , p)}s,f
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Challenger[b] B

if b = 0 then

crsΩ ← CrsGenΩ(1n)

else

crsΩ ← CrsSimΩ(1n)
crsΩ-

p← Setup(1n)

crsΣ ← CrsGenΣ(1n)

s← A(crsΩ , crsΣ , p)
(x,w, ct,
coms, opens)← ZKCPSetup(p, s)
πΣ ← ProveΣ(crsΣ ,

(x, ct, coms, p), (w, s, opens))
coms, p, f, s, opens�

if b = 0 then

πΩ ← ProveΩ(crsΩ , (coms, f, p),
(opens, s))

else

πΩ ← ProveSimΩ(crsΩ ,

(f, coms, p))
πΩ-

σ̂ ← A(ct, x, coms, πΩ , πΣ)

wait ∆t

AdaptPayment(txl, vkB,p, txp,

σ̂B,p, x,w, skS,p)

b̂← A(·)
b̂�

return b̂ = b

Fig. 18: Game showing how adversary B would use adversary A in order to break the
zero knowledge of proof πΩ .
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Sim2(s, f, crsΩ , crsΣ , p)

1 : x,w, ct, coms, opens ← ZKCPSetup(p, s)
2 : πΩ , πΣ ← ZKCPProveSim2(f, s, x,w, ct, coms, p, opens, crsΩ , crsΣ)

3 : σ̂B,p ← Buyer(πΩ , πΣ , coms, x, ct)
4 : wait ∆t

5 : AdaptPayment(txl, vkB,p, txp, σ̂B,p, x,w, skS,p)
6 :

ZKCPProveSim2(f, x, ct, coms, p, opens, crsΩ , crsΣ)

1 : πΩ ← ProveSimΩ(crsΩ , (f, coms, p))
2 : πΣ ← ProveSimΣ(crsΣ , (coms, x, ct, p))
3 : return πΩ , πΣ

Fig. 19: Pseudocode of the second simulator.

Challenger[b]

p← Setup(1n)

crsΩ ← CrsSimΩ(1n)

if b = 0 then

crsΣ ← CrsGenΣ(1n)

else

crsΣ ← CrsSimΣ(1n)

s← A(crsΩ , crsΣ , p)
x,w, ct, coms, opens ← ZKCPSetup(p, s)
if b = 0 then

πΩ , πΣ ← ZKCPProveSim1(f, s, x,w, ct, coms, p, opens, crsΩ , crsΣ)

else

πΩ , πΣ ← ZKCPProveSim2(f, x, ct, coms, p, opens, crsΩ , crsΣ)

σ̂ ← A(ct, x, coms, πΩ , πΣ)

wait ∆t

AdaptPayment(txl, vkB,p, txp, σ̂B,p, x,w, skS,p)

b̂← A(·)

return b̂ = b

Fig. 20: Game where adversary A tries to distinguish between algorithms Sim1 and
Sim2.



Algebraic Zero Knowledge Contingent Payment 53

Challenger[b] B

if b = 0 then

crsΣ ← CrsGenΣ(1n)

else

crsΣ ← CrsSimΣ(1n)

crsΣ -
p← Setup(1n)

crsΩ ← CrsSimΩ(1n)

s← A(crsΩ , crsΣ , p)
(x,w, ct,
coms, opens)← ZKCPSetup(p, s)
πΩ ← ProveSimΩ(crsΩ , (f, coms, p))

ct, coms, p, x, s, opens,w�
if b = 0 then

πΣ ← ProveΣ(crsΣ ,

(coms, x, ct, p),
(opens,w, s))

else

πΣ ← ProveSimΣ(crsΣ ,

(x, ct, coms, p))
πΣ -

σ̂ ← A(ct, x, coms, πΩ , πΣ)

wait ∆t

AdaptPayment(txl, vkB,p, txp,

σ̂B,p, x,w, skS,p)

b̂← A(·)
b̂�

return b̂ = b

Fig. 21: Game showing how adversary B would use adversary A in order to break the
zero-knowledge or proof πΣ .
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Sim3(s, f, crsΩ , crsΣ , p)

1 : x,w, ct, coms, opens ← ZKCPSetupSim3(p, s)
2 : πΩ , πΣ ← ZKCPProveSim2(f, x, ct, coms, p, opens, crsΩ , crsΣ)

3 : σ̂B,p ← Buyer(πΩ , πΣ , coms, x, ct)
4 : wait ∆t

5 : AdaptPayment(txl, vkB,p, txp, σ̂B,p, x,w, skS,p)
6 :

ZKCPSetupSim3(p, s)

1 : (coms, opens)← Commit(0)

2 : (x,w)← GenR(1n)

3 : ct← Enc(w, s)
4 : return x,w, ct, coms, opens

Fig. 22: Pseudocode of the third simulator.

Challenger[b]

p← Setup(1n)

crsΩ ← CrsGenΩ(1n)

crsΣ ← CrsSimΣ(1n)

s← A(crsΩ , crsΣ , p)
if b = 0 then

x,w, ct, coms, opens ← ZKCPSetup(p, s)
else

x,w, ct, coms, opens ← ZKCPSetupSim1(p, s)
πΩ , πΣ ← ZKCPProveSim2(f, x, ct, coms, p, opens, crsΩ , crsΣ)

σ̂ ← A(ct, x, coms, πΩ , πΣ)

wait ∆t

AdaptPayment(txl, vkB,p, txp, σ̂B,p, x,w, skS,p)

b̂← A(·)

return b̂ = b

Fig. 23: Game where adversary A tries to distinguish between algorithms Sim2 and
Sim3.
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Challenger[b] B

p← Setup(1n) p -
crsΣ ← CrsSimΣ(1n)

crsΩ ← CrsSimΩ(1n)

s← A(crsΩ , crsΣ , p)
(x,w)← GenR(1n)

ct← Enc(w, s)
s0 := 0

s1 := s
s0, s1�

(opens, coms)← Commit(sb, p)
coms-

πΩ ← ProveSimΩ(crsΩ , (f, coms, p))
πΣ ← ProveSimΣ(crsΣ , (x, ct, coms, p))
σ̂ ← A(ct, x, coms, πΩ , πΣ)

wait ∆t

AdaptPayment(txl, vkB,p, txp,

σ̂B,p, x,w, skS,p)

b̂← A(·)
b̂�

return b̂ = b

Fig. 24: Game showing how adversary B would use A in order to break the hiding
property of the commitment scheme.

Sim4(s, f, crsΩ , crsΣ , p)

1 : x,w, ct, coms, opens ← ZKCPSetupSim3(p, s)
2 : πΩ , πΣ ← ZKCPProveSim2(f, x, ct, coms, p, opens, crsΩ , crsΣ)

3 : σ̂B,p ← Buyer(πΩ , πΣ , coms, x, ct)
4 : wait ∆t

5 : abort

Fig. 25: Pseudocode of the fourth simulator.
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Challenger[b]

p← Setup(1n)

crsΣ ← CrsSimΣ(1n)

crsΩ ← CrsSimΩ(1n)

s← A(crsΩ , crsΣ , p)
x,w, ct, coms, opens ← ZKCSPSetupSim3(s, p)
σ̂ ← A(coms, x, ct, πΩ , πΣ)

wait ∆t

if b = 0 then

AdaptPayment(txl, vkB,p, txp, σ̂B,p, x,w, skS,p)
else

abort

b̂← A(·)

return b̂ = b

Fig. 26: Game where adversary A tries to distinguish between Sim3 and Sim4.

Challenger[b] B

p← Setup(1n)

crsΣ ← CrsSimΣ(1n)

crsΩ ← CrsSimΩ(1n)

s← A(crsΩ , crsΣ , p)
s�

return f(s) = 1

Fig. 27: Game showing how adversary B would useA in order to break the one-wayness
of predicate f.
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Sim5(s, f, crsΩ , crsΣ , p)

1 : x,w, ct, coms, opens ← ZKCPSetupSim5(p)
2 : πΩ , πΣ ← ZKCPProveSim2(f, x, ct, coms, p, opens, crsΩ , crsΣ)

3 : σ̂B,p ← Buyer(πΩ , πΣ , coms, x, ct)
4 : wait ∆t

5 : abort

ZKCPSetupSim5(p)

1 : (coms, opens)← Commit(0)

2 : (x,w)← GenR(1n)

3 : ct← Enc(w, 0)
4 : return x,w, ct, coms, opens

Fig. 28: Pseudocode of the fifth simulator.

Challenger[b]

p← Setup(1n)

crsΣ ← CrsSimΣ(1n)

crsΩ ← CrsSimΩ(1n)

s← A(crsΩ , crsΣ , p)
if b = 0 then

x,w, ct, coms, opens ← ZKCPSetupSim4(p, s)
else

x,w, ct, coms, opens ← ZKCPSetupSim5(p)
endif

πΩ , πΣ ← ZKCPProveSim2(f, x, ct, coms, p, opens, crsΩ , crsΣ)

σ̂ ← A(ct, x, πΩ , πΣ)

wait ∆t

abort

b̂← A(·)

return b̂ = b

Fig. 29: Game where adversary A tries to distinguish between algorithms Sim4 and
Sim5.
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Challenger[b] B

(x,w)← KeyGen(1n) x -

p← Setup(1n)

crsΣ ← CrsSimΣ(1n)

crsΩ ← CrsSimΩ(1n)

s0 = 0

s1 ← A(crsΩ , crsΣ , p)
assert f(s1) = 0

(coms, opens)← Commit(0)

s0, s1�
ct← Enc(x, sb)

ct-
πΩ ← ProveSimΩ(crsΩ , (f, coms, p))
πΣ ← ProveSimΣ(crsΣ , (x, ct, coms, p))
σ̂ ← A(ct, x, coms, πΩ , πΣ)

wait ∆t

abort b̂← A(·)

b̂�
return b̂ = b

Fig. 30: Game showing how adversary B would use A in order to break the IND-CPA
security property of the encryption scheme.

Ext(f,ViewB)

1 : σB,p, σ̂B,p, x := ViewB

2 : w′ ← Extract(σB,p, σ̂B,p, x)
3 : return (x,w′) ∈ RAS

Fig. 31: Extractor algorithm.
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Challenger B

Q := ∅
(vk, sk)← KeyGen(1n)

vk-
crsΩ ← CrsGenΩ(1n); crsΣ ← CrsGenΣ(1n)

p← Setup(1n)

x, combit, πΩ , πΣ ← Ŝeller(vk, crsΩ , crsΣ , p)
if VerifyΩ(crsΩ , (combit, p), πΩ) = 0∨

VerifyΣ(crsΣ , (combit, p, x), πΣ) = 0 then

abort

σ̂B,p := 0

σB ← Ŝeller(σ̂B,p)
tx, σB�

return tx /∈ Q∧
Vrfy(vk, tx, σB) = 1

Fig. 32: Game where adversary B would use adversary Ŝeller in order to break the
signature unforgeability of the digital signature scheme.
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Challenger B

Q := ∅
(vk, sk)← KeyGen(1n)

vk-
crsΩ ← CrsGenΩ(1n); crsΣ ← CrsGenΣ(1n)

p← Setup(1n)

x, combit, πΩ , πΣ ← Ŝeller(vk, crsΩ , crsΣ , p)
if VerifyΩ(crsΩ , (combit, p), πΩ) = 0∨

VerifyΣ(crsΣ , (combit, p, x), πΣ) = 0 then

abort
tx, x�

σ̂B,p ← PreSign(sk, tx, x)
σ̂B,p-

σB,p ← Ŝeller(σ̂B,p)
σB�

return tx /∈ Q∧
(x,Extract(σB, σ̂B,p, x)) /∈ R∧
Vrfy(vk, tx, σB) = 1

Fig. 33: Game where adversary B would use adversary Ŝeller in order to break the
witness extractability of the adaptor signature scheme.

Challenger B

crsΣ ← CrsGenΣ(1n) crsΣ -

crsΩ ← CrsGenΩ(1n)

(sk, vk)← KeyGen(1n)

p← Setup(1n)

x, combit, πΩ , πΣ ← Ŝeller(
vk, crsΩ , crsΣ , p)

πΣ , (x, combit, p)�
(w′, open′

bit)← ExtBΣ(crsΣ , πΣ ,

(x, combit, p))
return

VerifyΣ(crsΣ , πΣ , (x, combit, p))∧
((w′, open′

bit), (x, combit, p)) ̸∈ RΣ

Fig. 34: Game where adversary B would use adversary Ŝeller in order to break the
knowledge-soundness of proof πΣ .
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Challenger B

crsΩ ← CrsGenΩ(1n); crsΣ ← CrsGenΣ(1n)

(vk, sk)← KeyGen(1n)

p← Setup(1n)

x, combit, πΩ , πΣ ← Ŝeller(vk, crsΩ , crsΣ , p)
σ̂ ← PreSign(sk, tx, x)

σ ← Ŝeller(σ̂)

(ŵ, ôpenbit)← ExtŜeller
Σ (crsΣ , πΣ ,

(x, combit, p))
w′ ← Extract(σ̂, σ, x)

x,w′, ŵ�
return (x,w′) ∈ RAS∧

(x, ŵ) ∈ R̂AS

Fig. 35: Game where adversary B would use adversary Ŝeller and ExtŜeller
Σ in order to

break the claw-freeness property of RAS and R̂AS.

Challenger B

crsΩ ← CrsSimΩ(1n) crsΣ -

crsΣ ← CrsGenΣ(1n)

(vk, sk)← KeyGen(1n)

p← Setup(1n)

x, combit, πΩ , πΣ ← Ŝeller(
vk, crsΩ , crsΣ , p)

πΩ , (combit, p)�
(open′

bit, s
′)← ExtŜeller

Ω (crsΩ , πΩ ,

(f, combit, p))
return

VerifyΩ(crsΩ , πΩ , (f, combit, p))∧
((open′

bit, s
′), (f, combit, p)) ̸∈ RΣ

Fig. 36: Game where adversary B would use adversary Ŝeller in order to break the
knowledge-soundness property of the proof πΩ .
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Challenger B

p← Setup(1n) p -

crsΩ ← CrsGenΩ(1n)

crsΣ ← CrsGenΣ(1n)

(vk, sk)← KeyGen(1n)

x, coms, ct, πΩ , πΩ ← Ŝeller(
vk, crsΩ , crsΣ , p)

(̃s, õpenbit)← ExtBΩ(crsΩ , πΩ ,

(combit, p, f))

(open′
s, s

′)← ExtBΣ(crsΣ , πΣ ,

(x, combit, p))

b̃ := f(̃s)
b′ := f(s′)

b̃, õpenbit, b
′, open′

bit, combit�
b0 := Open(p, b̃,

õpenbit, combit)

b1 := Open(p, b′),
open′

bit, combit)

b2 := b̃ ̸= b′

return b0 ∧ b1 ∧ b2

Fig. 37: Game where adversary B would use adversary Ŝeller in order to break the
binding property of the commitment scheme.

Seller(s, f, crsΩ , crsΣ , p)

1 : x,w, combit, openbit ← ZKCSPSetup(p, s)
2 : πΩ , πΣ ← ZKCSPProve(f, s, x,w, combit, p, openbit, crsΩ , crsΣ)

3 : σ̂B,p ← Buyer(πΩ , πΣ , combit, p, x)
4 : wait ∆t

5 : AdaptPayment(txl, vkB,p, txp, σ̂B,p, x,w, skS,p)

Fig. 38: Pseudocode of the seller.
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Sim1(s, f, crsΩ , crsΣ , p)

1 : x,w, combit, openbit ← ZKCSPSetup(p, s)
2 : πΩ , πΣ ← ZKCSPProveSim1(f, s, x,w, combit, p, openbit, crsΩ , crsΣ)

3 : σ̂B,p ← Buyer(πΩ , πΣ , combit, p, x)
4 : wait ∆t

5 : AdaptPayment(txl, vkB,p, txp, σ̂B,p, x,w, skS,p)
6 :

ZKCSPProveSim1(f, s, x,w, combit, p, openbit, crsΩ , crsΣ)

1 : πΩ ← ProveSimΩ(crsΩ , (f, combit, p))
2 : πΣ ← Prove(crsΣ , (combit, p, x), (openbit,w))
3 : return πΩ , πΣ

Fig. 39: Pseudocode of the first simulator.

Challenger[b]

p← Setup(1n)

crsΣ ← CrsGenΣ(1n)

if b = 0 then

crsΩ ← CrsGenΩ(1n)

else

crsΩ ← CrsSimΩ(1n)

s← A(crsΣ , crsΩ , p)
x,w, combit, openbit ← ZKCSPSetup(p, s)
if b = 0 then

πΩ , πΣ ← ZKCSPProve(f, s, x,w, combit, p, openbit, crsΩ , crsΣ)

else

πΩ , πΣ ← ZKCSPProveSim1(f, s, x,w, combit, p, openbit, crsΩ , crsΣ)

σ̂ ← A(x, combit, p, πΩ , πΣ)

wait ∆t

AdaptPayment(txl, vkB,p, txp, σ̂B,p, x,w, skS,p)

b̂← A(·)

return b̂ = b

Fig. 40: Game where adversary A tries to distinguish between algorithms Seller and
Sim1.



64 J. Gomez-Martinez et al.

Challenger[b] B

if b = 0 then

crsΩ ← CrsGenΩ(1n)

else

crsΩ ← CrsSimΩ(1n)
crsΩ-

p← Setup(1n)

crsΣ ← CrsGenΣ(1n)

s← A(crsΩ , crsΣ , p)
x,w, combit, openbit ←

ZKCSPSetup(p, s)
combit, p, openbit, f, s�

if b = 0 then

πΩ ← ProveΩ(crsΩ ,

(combit, p, f), (openbit, s))
else

πΩ ← ProveSimΩ(crsΩ ,

(f, combit, p))
πΩ -

πΣ ← ProveΣ(crsΣ ,

(combit, p, x), (openbit,w))
σ̂ ← A(combit, p, x, πΩ , πΣ)

wait ∆t

AdaptPayment(txl, vkB,p, txp,

σ̂B,p, x,w, skS,p)

b̂← A(·)
b̂�

return b̂ = b

Fig. 41: Game showing how adversary B would use adversary A in order to break the
zero-knowledge of the proof πΩ .
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Sim2(s, f, crsΩ , crsΣ , p)

1 : x,w, combit, openbit ← ZKCSPSetup(p, s)
2 : πΩ , πΣ ← ZKCSPProveSim2(f, s, x,w, combit, p, openbit, crsΩ , crsΣ)

3 : σ̂B,p ← Buyer(πΩ , πΣ , combit, p, x)
4 : wait ∆t

5 : AdaptPayment(txl, vkB,p, txp, σ̂B,p, x,w, skS,p)
6 :

ZKCSPProveSim2(f, x, combit, p, crsΩ , crsΣ)

1 : πΩ ← ProveSimΩ(crsΩ , (f, combit, p))
2 : πΣ ← ProveSimΣ(crsΣ , (x, combit, p))
3 : return πΩ , πΣ

Fig. 42: Pseudocode of the second simulator.

Challenger[b]

p← Setup(1n)

crsΩ ← CrsSimΩ(1n)

if b = 0 then

crsΣ ← CrsGenΣ(1n)

else

crsΣ ← CrsSimΣ(1n)

s← A(crsΩ , crsΣ , p)
x,w, combit, openbit ← ZKCSPSetup(p, s)
if b = 0 then

πΩ , πΣ ← ZKCSPProveSim1(f, s, x,w, combit, p, openbit, crsΩ , crsΣ)

else

πΩ , πΣ ← ZKCSPProveSim2(f, s, x,w, combit, p, openbitcrsΩ , crsΣ)

σ̂ ← A(combit, p, x, πΩ , πΣ)

wait ∆t

AdaptPayment(txl, vkB,p, txp, σ̂B,p, x,w, skS,p)

b̂← A(·)

return b̂ = b

Fig. 43: Game where adversary A tries to distinguish between Sim1 and Sim2.
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Challenger[b] B

if b = 0 then

crsΣ ← CrsGenΣ(1n)

else

crsΣ ← CrsSimΣ(1n)
crsΣ-

p← Setup(1n)

crsΩ ← CrsGenΩ(1n)

s← A(crsΩ , crsΣ , p)
x,w, combit, openbit ←

ZKCSPSetup(p, s)
combit, p, openbit, x,w�

if b = 0 then

πΣ ← ProveΣ(crsΣ ,

(x, combit, p), (w, openbit))

else

πΣ ← ProveΣ(crsΣ ,

(x, combit, p))
πΩ -

πΩ ← ProveSimΩ(crsΩ ,

(x, combit, p))
σ̂ ← A(combit, p, x, πΩ , πΣ)

wait ∆t

AdaptPayment(txl, vkB,p, txp,

σ̂B,p, x,w, skS,p)

b̂← A(·)
b̂�

return b̂ = b

Fig. 44: Game showing how adversary B would use A in order to break the zero-
knowledge of proof πΣ .
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Sim3(s, f, crsΩ , crsΣ , p)

1 : x,w, combit, openbit ← ZKCSPSetupSim3(p, s)
2 : πΩ , πΣ ← ZKCSPProveSim2(f, x, combit, p, openbit, crsΩ , crsΣ)

3 : σ̂B,p ← Buyer(πΩ , πΣ , combit, p, x)
4 : wait ∆t

5 : abort

Fig. 45: Pseudocode of the third simulator.

Challenger[b]

p← Setup(1n)

crsΣ ← CrsSimΣ(1n)

crsΩ ← CrsSimΩ(1n)

s← A(crsΩ , crsΣ , p)
x,w, combit, openbit ← ZKCSPSetupSim3(p, s)
σ̂ ← A(combit, p, x, πΩ , πΣ)

wait ∆t

if b = 0 then

AdaptPayment(txl, vkB,p, txp, σ̂B,p, x,w, skS,p)
else

abort

b̂← A(·)

return b̂ = b

Fig. 46: Game where adversary A tries to distinguish between Sim3 and Sim2.

Challenger[b] B

p← Setup(1n)

crsΣ ← CrsSimΣ(1n)

crsΩ ← CrsSimΩ(1n)

s← A(crsΩ , crsΣ , p)
s�

return f(s)

Fig. 47: Game showing how adversary B would useA in order to break the one-wayness
of the predicate f.
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Sim4(s, f, crsΩ , crsΣ , p)

1 : x,w, combit, openbit ← ZKCSPSetupSim4(p, s)
2 : πΩ , πΣ ← ZKCSPProveSim2(f, x, combit, p, openbitcrsΩ , crsΣ)

3 : σ̂B,p ← Buyer(πΩ , πΣ , combit, p, x)
4 : wait ∆t

5 : abort

ZKCSPSetupSim4(p, s)

1 : (combit, openbit)← Commit(p, f(s))

2 : (x,w)← ĜenR(1n)

3 : return x,w, combit

Fig. 48: Pseudocode of the fourth simulator.

Challenger[b]

p← Setup(1n)

crsΣ ← CrsSimΣ(1n)

crsΩ ← CrsSimΩ(1n)

s← A(crsΩ , crsΣ , p)
if b = 0 then

x,w, combit, openbit ← ZKCSPSetupSim3(p, s)
else

x,w, combit, openbit ← ZKCSPSetupSim4(p, s)
σ̂ ← A(combit, p, x, πΩ , πΣ)

wait ∆t

abort

b̂← A(·)

return b̂ = b

Fig. 49: Game where adversary A tries to distinguish between Sim3 and Sim4.
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Challenger[b] B

if b = 0

(x,w)← GenR(1n)

else

(x,w)← ĜenR(1n)
x -

crsΣ ← CrsSimΣ(1n)

crsΩ ← CrsSimΩ(1n)

p← Setup(1n)

s← A(crsΩ , crsΣ , p)
(combit, openbit)← Commit(p, f(s))
πΩ ← ProveSimΩ(crsΩ , (f, combit, p))
πΣ ← ProveSimΣ(crsΣ , (x, combit, p))
σ̂ ← A(x, combit, p, πΩ , πΣ)

wait ∆t

abort b̂← A(·)
b̂�

return b̂ = b

Fig. 50: Game showing how adversary B would use A in order to break the indistin-
guishability of relations RAS and R̂AS.

Sim5(f, crsΩ , crsΣ , p)

1 : x,w, combit, openbit ← ZKCSPSetupSim5(p, )
2 : πΩ , πΣ ← ZKCSPProveSim2(f, x, combit, p, openbitcrsΩ , crsΣ)

3 : σ̂B,p ← Buyer(πΩ , πΣ , combit, p, x)
4 : wait ∆t

5 : abort

ZKCSPSetupSim5(p)

1 : (combit, openbit)← Commit(p, 0)

2 : (x,w)← ĜenR(1n)

3 : return x,w, combit

Fig. 51: Pseudocode of the fifth simulator.
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Challenger[b]

p← Setup(1n)

crsΣ ← CrsSimΣ(1n)

crsΩ ← CrsSimΩ(1n)

s← A(crsΩ , crsΣ , p)
if b = 0 then

x,w, combit, openbit ← ZKCSPSetupSim4(p, s)
else

x,w, combit, openbit ← ZKCSPSetupSim5(p)
σ̂ ← A(combit, p, x, πΩ , πΣ)

wait ∆t

abort

b̂← A(·)

return b̂ = b

Fig. 52: Game where adversary A tries to distinguish between Sim4 and Sim5.
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Challenger[b] B

p← Setup(1n) p -
crsΣ ← CrsSimΣ(1n)

crsΩ ← CrsSimΩ(1n)

s← A(crsΩ , crsΣ , p)
(x,w)← GenR(1n)

bit0 := 0

bit1 := f(s)
bit0, bit1�

(combit, openbit)← Commit(p, bitb)
combit-

πΩ ← ProveSimΩ(crsΩ , (f, combit, p))
πΣ ← ProveSimΣ(crsΣ , (x, combit, p))
σ̂ ← A(x, combit, p, πΩ , πΣ)

wait ∆t

abort

b̂← A(·)
b̂�

return b̂ = b

Fig. 53: Game showing how adversary B would use A in order to break the hiding
property of the commitment scheme.


