
Efficient Succinct Zero-Knowledge Arguments in
the CL Framework

Agathe Beaugrand1,2, Guilhem Castagnos1, and Fabien Laguillaumie2

1 Université de Bordeaux, CNRS, INRIA, IMB, UMR 5251, F-33400 Talence, France.
{agathe.beaugrand,guilhem.castagnos}@math.u-bordeaux.fr

2 Université de Montpellier, CNRS, LIRMM, Montpellier, France.
fabien.laguillaumie@lirmm.fr

Abstract. The CL cryptosystem, introduced by Castagnos and Laguil-
laumie in 2015, is a linearly homomorphic encryption scheme that has
seen numerous developments and applications in recent years, particu-
larly in the field of secure multiparty computation. Designing efficient
zero-knowledge proofs for the CL framework is critical, especially for
achieving adaptive security for such multiparty protocols. This is a chal-
lenging task due to the particularities of class groups of quadratic fields
used to instantiate the groups of unknown order required in the CL
framework.

In this work, we provide efficient proofs and arguments for statements
involving a large number of ciphertexts. We propose a new batched proof
for correctness of CL ciphertexts and new succinct arguments for correct-
ness of a shuffle of these ciphertexts. Previous efficient proofs of shuffle
for linearly homomorphic encryption were designed for Elgamal “in the
exponent” which has only a limited homomorphic property.

In the line of a recent work by Braun, Damg̊ard and Orlandi (CRYPTO
2023), all the new proofs and arguments provide partial extractability,
a property that we formally introduce here. Thanks to this notion, we
show that bulletproof techniques, which are in general implemented with
groups of known prime order, can be applied in the CL framework despite
the use of unknown order groups, giving non interactive arguments of
logarithmic sizes.

To prove the practicability of our approach we have implemented these
protocols with the BICYCL library, showing that computation and com-
munication costs are competitive. We also illustrate that the partial ex-
tractability of our proofs provide enough guarantees for complex ap-
plications by presenting a bipartite private set intersection sum proto-
col which achieves security against malicious adversaries using CL en-
cryption, removing limitations of a solution proposed by Miao et al.
(CRYPTO 2020).

Keywords: class group cryptography, CL cryptosystem, linearly homomorphic
encryption, ZK proofs, verifiable shuffle, multi-party computation

mailto:agathe.beaugrand@math.u-bordeaux.fr,guilhem.castagnos@math.u-bordeaux.fr
mailto:fabien.laguillaumie@lirmm.fr

1 Introduction

The CL encryption scheme is a discrete-logarithm based linearly homomorphic
encryption protocol, proposed by Castagnos and Laguillaumie in [CL15], and
refined later in [CLT18]. It is built upon groups of unknown orders, and more
particularly class groups of imaginary quadratic fields. Its security relies on a
problem that is believed to be harder than the computation of discrete logarithms
in multiplicative groups of finite fields or the factorization problem, which makes
it more efficient in terms of communication and computational cost compared
to other protocols, like Paillier encryption (cf. the implementation of [BCIL23]).
It shares similarities with Elgamal “in the exponent”, but suffers no limitation
on the size of the message space, since the final discrete logarithm computation
can be done in polynomial-time. An important consequence is that the message
space can be as large as Z/qZ, where q is a prime number of several hundred
bits.

When designing complex protocols with linearly homomorphic encryption,
zero-knowledge (ZK) proofs are often required to ensure security against mali-
cious adversaries by ensuring a certain behavior of the parties. ZK proofs and
arguments related to CL encryption, such as proofs of correct generation of keys,
proofs of correctness of ciphertexts or proofs of correct homomorphic operations
have been first explored in [CCL+19,CCL+20]. In these works, two assumptions
specific to class groups were used to ensure soundness of the proofs: the low or-
der and strong root assumptions. Later, several works have improved efficiency
or have proved soundness by relying on other assumptions [YCX21,DMZ+21].
More recently, [BDO23,BCD+24] use a new assumption called rough order as-
sumption that greatly simplifies the design of ZK proofs for the CL framework.
In [BDO23], a notion of proof of plaintext knowledge is also defined, which proves
that a CL ciphertext actually encrypts a known plaintext, for which soundness
is much easier to prove than in a proof of knowledge of the underlying ciphertext
randomness.

ZK-argument of a shuffle. An important proof related to ciphertexts is a proof of
a correct shuffle of ciphertexts. More precisely, a shuffle of ciphertexts (first ex-
posed in [Cha81]) consists in mixing a set of ciphertexts c1, . . . , cn to obtain a new
set of re-randomized ciphertexts c′1, . . . , c

′
n encrypting the same plaintexts but in

a different order, such that the party that has encrypted the original ciphertexts
can not link the encryptions. The main application of shuffles is mix-nets, that
have real life applications such as e-voting [Gjø12,CEL+19] or anonymization
of messages [Cha81,AKTZ17]. The shuffles we consider use semantically secure
linear homomorphic encryption (as in [FS01,GI08]). The shuffler proceeds as
follows: he chooses a random permutation π of {1, . . . , n} and randomness (ρi)
and sets c′i = Enc(0; ρi)⊗ cπ(i), for i = 1, . . . n, where ⊗ denote the addition over
encrypted data.

For most applications, in particular in the presence of malicious parties, the
shuffling protocol must be verifiable. A formal definition of a verifiable shuffle
is provided in [NSK04]. It requires to add to the shuffle a proof that the new

2

list of ciphertexts is indeed a shuffle of the old one, proof that must be at least
complete and sound. Moreover, the notion of privacy states that an adversary
cannot distinguish between two permutations given the transcript from a shuffle
executed with one of them, even knowing the plaintexts and randomness in the
first set of ciphertexts. This privacy is ensured by the zero-knowledge property of
the proof. These ZK proofs represent the main efficiency bottleneck in protocols
using verifiable shuffle, so a lot of work has been devoted to obtaining the best
possible communication and computation costs.

Proofs of shuffle are mainly based on three approaches: the first one, from
[Nef01], uses the invariance of a polynomial under the permutation of its roots.
The second one uses the unique factorization of integers and was proposed
by [Wik05]. Finally the third one uses a commitment to a permutation ma-
trix, and a proof that the ciphertexts were shuffled according to this matrix,
and was first proposed by [FS01]. In these three papers, the communication
in the protocol is linear in the number of ciphertexts, and concerns the Elga-
mal encryption scheme. The permutation matrix approach was improved suc-
cessively in [Fur04,GL07], and [GI08,BG12]. These last works present the first
zero-knowledge arguments for a shuffle with sublinear communication for Elga-
mal encryption. Later, [HKR19] uses techniques coming from general arithmetic
circuit satisfiability [BCC+16] and bulletproofs [BBB+18] to reduce the com-
munication to logarithmic (at the expense of increasing the computation and
the number of rounds). As for Paillier’s cryptosystem, protocols for verifiable
shuffles were proposed in [NSK04,NSK06], with a communication cost linear in
the number of ciphertexts. Currently, no solution exists for CL encryption.

Application to PSI-sum Among the uses of shuffles, we can cite Private Set
Intersection-sum (PSI-sum) or PSI-cardinality (PSI-CA) protocols. They are
both variants of Private Set Intersection (PSI) protocols that allow two or more
parties, each holding a private set of elements, to determine the intersection of
their sets, without revealing any information about their own sets to the other
parties. On the other hand, PSI-CA only outputs the cardinal of the intersection,
without revealing its elements [HFH99]. In PSI-sum, introduced in [IKN+17], one
of the parties associates a value to each element of its set, and the functionality
outputs the sum of those values for the elements in the intersection, along with
the cardinality, but without revealing anything else. A characteristic example
of an application of PSI-sum is when a server knows statistics about a large
population, and a user wants to compute an average on a subset of the popula-
tion. This kind of scenarios can be found in different fields, from medical data
to social networks or ads conversion rate. The PSI-sum functionality was inves-
tigated in [IKN+17,IKN+20] for an honest adversary, and in [MPR+20], for the
first PSI-sum protocol secure against malicious adversaries. This protocol uses a
shuffle of Elgamal ciphertexts that encrypts the values of the elements of the set,
and the sum is recovered using the homomorphic properties of Elgamal “in the
exponent”, restricting the range of the values, due to a final discrete logarithm
computation.

3

1.1 Our contributions

– We extend the notion of Proof of Plaintext Knowledge from [BDO23] to
a notion of ZK proofs with partial extractability. Such proofs seem more
natural in the context of CL encryption, and the protocols are more efficient.
Moreover, we argue that these proofs, even with partial extractability, are
sufficient for most applications. In this setting, we propose a batch proof for
correctness of CL ciphertexts.

– We give the first verifiable shuffle protocol for CL encryption, with a sub-
linear communication and a variant with logarithmic communication using
bulletproof techniques, techniques that were previously only used in the con-
text of groups of prime order.

– We give an implementation of our new ZK-proofs and arguments that proves
their efficiency.

– To illustrate the usefulness of our techniques, we present an application of
the shuffle proof in a private intersection-sum protocol removing limitations
of [MPR+20].

1.2 Technical overview

In the CL framework, the design of efficient zero-knowledge proofs raises some
technical challenges, due to the unknown order of the underlying group. The first
point worth considering is how to achieve soundness. In a classical sigma protocol
with groups of prime order, soundness relies on the invertibility of x−x′ modulo
the group order, where x and x′ are two different challenges. However, in a group
with unknown composite order like class groups used in CL, the invertibility of
x − x′ is not guaranteed. This means that the classical techniques relying on
special soundness do not apply, and we either have to use smaller spaces of
challenges [CCL+19] – in which case we have to repeat the proof a few times
to ensure a sufficient soundness level – or rely on one or more computational
assumptions (e.g. [CCL+20]). Thanks to the C-rough assumption, introduced in
[BDO23] and precised in [BCD+24], one can use ZK proofs that are only proved
to be sound in C-rough class groups, even when statements are generated using
the CL setup algorithm, that do not produce C-rough class groups in general.
Working with a C-rough group and using challenges x, x′ smaller than C ensures
that x − x′ is invertible modulo the group order and gives unconditionally a
soundness of 1/C.

However, even in this particular case of C-rough groups, special soundness is
still problematic to achieve, as a polynomial time extractor will not be able to
compute a modular inverse even when it exists, given that the order cannot be
computed efficiently.

Furthermore, this unknown and non prime order prevents the use of advanced
techniques to get efficient proofs in the case of statements involving a large
number n of CL ciphertexts: strategies to get compact shuffle proofs in the dis-
crete logarithm setting with groups of prime order q often rely on linear algebra
modulo q. For instance, the compact shuffle proof of [BG12] or the Bulletproof

4

techniques of [BBB+18,HKR19] use challenges of the form (1, x, x2, . . . , xn−1)
where x is sampled and sent by the verifier. This not only reduces the communi-
cation, but is also a cornerstone in showing extractability of witnesses. Indeed,
this makes it possible to use a Vandermonde matrix whose invertibility modulo
q is guaranteed when rewinding the proof with distinct xi’s modulo q.

To overcome all these challenging obstacles, one needs to take a closer look
at CL ciphertexts. One of the peculiarities of the CL scheme is that random-
ness and message do not live in the same subgroups. The CL framework uses a
cyclic subgroup G with a decomposition G ≃ F ×H where F has known prime
order q and H has unknown (composite) order. A CL ciphertext is of the form
(hρ,pkρfm), where h,pk ∈ H and f ∈ F . As a result, the randomness ρ must
be treated as an integer but the plaintext m is defined modulo q and the de-
composition in a direct product of subgroups makes it possible to treat ρ and
m independently. As an integer, ρ prevents us from obtaining extraction using
classical special soundness. Yet it only represents the randomness, which, seman-
tically speaking, has little significance. Indeed, in most applications involving CL
ciphertexts, the ZK proofs aim mainly to guarantee two things: first, that the
ciphertexts are correctly constructed, and in particular can be decrypted; sec-
ond, that the message obtained after decryption has an expected value. As a
result when proving soundness in the case of a group with rough order, we first
show that some exponent exists in H, and independently use techniques from
the known prime order setting to show that some plaintext exists encoded in the
group of known prime order F .

These observations led us to the definition of partial extractability of ZK
proofs, generalizing the proof of plaintext knowledge for CL of [BDO23]. In a
proof of correctness of ciphertexts, partial extractability translates to a proof
ensuring that there exists some randomness ρ and a message m such that
c = EncCL(m; ρ), but only m is extractable from accepting transcripts. The
same techniques can be broken down in a variety of proofs and arguments for
different types of statements over CL ciphertexts. However, this does not solve
all the problems. For instance, we still can not use a challenge set of the form
(1, x, x2, . . . , xn−1). When working over the integers, with large values of n the
size of xi explodes which is not only computationally prohibitive but also gives
proofs with linear communications in n, as the prover sends a response involv-
ing an integer greater than xn−1. Nevertheless, using challenges of the form
(x1, . . . , xn), we show that we can still have efficient (partial) extraction by com-
bining the use of the C-rough assumption and a tailored rewinding procedure.
Note that using such challenges leads to a linear communication cost for the
verifier. To solve this, we can consider that these vectors of challenges are gen-
erated using a PRNG for interactive proofs or consider non interactive versions,
in which challenges are generated using hashing.

1.3 Related works and other applications of our verifiable shuffle

Recent works develop batched proofs for CL statements. In [BC24], Bartoli and
Cascudo use linear secret sharing to build batched proofs that provide special

5

soundness as soon as the underlying secret sharing scheme has 2-reconstruction,
without any computational assumption. However, contrary to our batch proof for
correctness of CL ciphertexts, their communication cost is linear in the number
n of statements. In [BCD+24], Braun et al. also recently propose a batched
proof of correctness of CL ciphertexts. This proof uses challenges of the form
(1, x, x2, . . . , xn−1). As discussed above, this also leads to a communication linear
in n.

Recently, [BGR+24] constructs a protocol for secure computation of differen-
tially private sparse histograms that aggregates the inputs from a large number
of clients. We note that their construction uses similar building blocks that we
use for our application to private intersection-sum protocol: namely using CL
encryption for oblivious evaluation of Dodis-Yampolskiy PRF, and a verifiable
shuffle for CL ciphertexts. This shuffle is used in a black box way and [BGR+24]
gives no protocol to instantiate it: only the works of [BG12] and [HKR19] that de-
scribes verifiable shuffles for Elgamal ciphertexts are cited. However, as we shall
see in Section 4, adapting these techniques for CL ciphertexts is not straightfor-
ward. To sum up, [BGR+24] would benefit from our zero-knowledge arguments
and demonstrates the usefulness of our verifiable shuffle. Our techniques could
also be applied in the work from [SBDG23] that presents an e-voting protocol
that needs a verifiable shuffle for CL ciphertexts.

1.4 Roadmap

In the following, after a section on preliminaries, we give in Section 3 a batch-
ing proof for correctness of CL ciphertexts. This proof is needed to be applied
upstream of a shuffle argument for CL, and although relying of standard batch-
ing techniques for sigma protocols [GLSY04], its exposition is an opportunity
to present in details our techniques sketched above. Section 4 is devoted to the
shuffle argument. We use the same structure as the shuffle argument proposed
by [GI08,BG12], composed of a product argument on commitments and an argu-
ment for a multiexponentiation of ciphertexts. Our techniques allow us to use a
commitment scheme modulo q so we can use directly the same product argument
than [GI08]. The core of our work is thus an argument of multiexponentiation
for CL ciphertexts. We propose two different protocols for this proof. First, our
techniques allow us to derive a sublinear argument for CL from [GI08]. Second,
we adapt techniques from bulletproofs for the first time in a context of groups
of unknown order, and expose a multiexponentiation argument with logarithmic
communication. Then, we implement the proof for correctness of ciphertexts
and both multiexponentiation arguments. We present in Section 5 timings and
communication costs for statements up to 218 ciphertexts, showing that our new
protocols are practical. Finally, in Section 6, we briefly discuss the private set
intersection-sum problem, and the advantages of using our shuffle argument for
CL ciphertexts.

6

2 Preliminaries

2.1 General notations

Throughout the paper, bold lowercase letters will denote vectors while regular
letters will denote a single integer or group element. Matrices will, in general,
be denoted with bold capital letters.

Due to batching of proofs or encryptions in the protocol, the notation for a set
of elements may vary according to the context. For example, a list A = (ai)1≤i≤n

will be referred to as either a vector a = (ai)1≤i≤n or a matrix A = (ai,j) 1≤i≤ℓ
1≤j≤m

with ai,j = (a(i−1)m+j) 1≤i≤ℓ
1≤j≤m

and n = ℓm. In this last case, for any i ∈ J1, ℓK,

ai denotes the i-th row of the matrix, i.e. a vector of length m.
In Subsection 4.4, we use a matricial notation for multiexponentiation over

a group G. Let M be a matrix of group elements (gi,j)1≤i≤m
1≤j≤N

∈ Gm×N , i.e.,

M =

 g1,1 · · · g1,N...
...

gm,1 · · · gm,N

 .

Then for any x = (xj)1≤j≤N ∈ ZN , M .x :=
[∏N

j=1 g
xj

i,j

]
1≤i≤m

∈ Gm.

In this context, the external product of a matrix by a scalar is defined, for µ ∈
Z, by µM :=

[
gµi,j
]
1≤i≤m
1≤j≤N

. Note that matrices and vectors whose coefficients are

group elements are denoted with brackets, while integer matrices are delimited
by parentheses.

To encapsulate CL statements and Pedersen commitments, we generalize
these notations to pseudo-matrices whose elements lie in different groups on the
different rows. Note that in this case, we still need the columns to all have the
same structure. By an abuse of notation, we write Mm×N as the set of such
pseudo matrices, and Vm the set of pseudo vectors of length m (i.e., vectors
whose components potentially lie in different groups).

2.2 CL encryption

We recall the CL encryption as it is presented in [BCIL23]. Let Ĝ be an abelian
finite group with unknown order, that has a cyclic subgroup F = ⟨f⟩ of prime

order q. The order of Ĝ is qŝ, where ŝ is unknown and assumed to be prime to
q. Let h = xq for some random element x ∈ Ĝ. We set g = fh, and let G be
the cyclic subgroup of Ĝ generated by g. Then, if H = {xq, x ∈ G}, we have
by [BCIL23, Proposition 1], that ⟨h⟩ = H and G ≃ F × H. Moreover, there
exists an algorithm SolveDL that computes discrete logarithms of elements of F
in basis f in polynomial time.

Let σ be a statistical distance parameter. We denote by DH a distribution

over the integers such that the distribution {hx, x
$←− DH} is at negligible

7

distance – with respect to σ – from the uniform distribution in H. Assuming the
knowledge of a bound s̃ > ŝ, this distribution can be instantiated efficiently from
a folded uniform distribution (see [Tuc20, Subsection 2.7.1]): in the following, DH

will be the uniform distribution over J0, 2σ−2s̃J, so that the statistical distance
to the uniform is less than 2−σ.

This framework allows to construct an IND-CPA linearly homomorphic en-
cryption scheme. It looks like an Elgamal “in the exponent”, but with a much
more efficient decryption procedure, which makes it possible to use a larger mes-
sage space. We denote SetupCL(1

λ, q, ρ) the setup algorithm that generates such
a group (the size of ŝ depends on λ), where ρ denotes the internal randomness

of the algorithm. Its output is ppCL := (Ĝ, s̃, g, h, f,SolveDL), along with the
information necessary to perform computations in G.

The CL encryption scheme is constructed as follows: a pair of keys is of the

form (CL-sk,CL-pk)
$←− KeyGenCL(Ĝ, s̃, g, h, f), with CL-sk

$←− DH , and CL-pk←
hCL-sk. A message m ∈ Z/qZ is encrypted as a two-component ciphertext

c = EncCL(CL-pk;m; ρ) = (c1, c2) = (hρ,CL-pkρfm),

where ρ
$←− DH . To decrypt such a ciphertext, one computes d = c2.c

−CL-sk
1 = fm

and runs the algorithm SolveDL on d to retrieve m. We denote DecCL(CL-sk; c)
this operation.

One of the parameters (key or randomness) of EncCL or DecCL, when clearly
defined, might be omitted to lighten notations.

Note that a ciphertext is an element of H×G. However, the order of G being
unknown, one can only check if an element is in Ĝ or not, but cannot check
its belonging to G (nor H). This remark must be kept in mind when designing
proofs of knowledge for statements involving CL ciphertexts.

As already mentioned, the CL cryptosystem is linearly homomorphic. Let
c = (c1, c2) and c′ = (c′1, c

′
2) be CL ciphertexts encrypting respectively m and

m′ ∈ Z/qZ, then
c⊗ c′ := (c1 · c′1, c2 · c′2)

is an encryption of m+m′,
ca := (ca1 , c

a
2)

is an encryption of am for any integer a ∈ Z.

Some useful variants of CL encryption. In the two-party context, we can define
a variant of CL encryption with a shared key and two-party decryption. We use
it in particular in Section 6. In that section we also use another variant of CL,
vector CL, based on randomness reuse, that allows to encrypt many messages
at the same time in a more efficient manner. We give more details about those
variants in Appendix A.

2.3 Commitment scheme

Commitments are an essential building block in many multiparty computation
protocols. In the CL framework, despite working with unknown order groups,

8

the fact that the message space is Z/qZ and the partial extractability property
for ZK proof that we define, allows us to use commitments modulo q, instead of
(less efficient) commitments over the integers. In the following, we use Pedersen
commitments defined in a group (G,×) of prime order q (typically a subgroup of
an elliptic curve). Let g and h be two generators such that the discrete logarithm
of g in basis h is unknown. To commit to a value a ∈ Z/qZ, one chooses a random
r ∈ Z/qZ, and computes

C = gahr.

This commitment scheme is perfectly hiding (given C even a powerful adversary
has no information on a), and computationally binding (any PPT algorithm has
negligible probability of finding two different openings for a given C) under the
discrete logarithm assumption in G.

Pedersen commitments can be generalized to commit to m values in a unique
commitment. Given m+ 1 generators of G, (g1, . . . , gm, h), we denote

Com(a; r) := ga1
1 . . . gam

m hr,

the commitment to a = (a1, . . . , am) ∈ (Z/qZ)
m

with randomness r ∈ Z/qZ.
With a same set of m + 1 keys, we can also commit to any vector of length

k < m, by using the k + 1 first keys. We will denote SetupPed a generator for
these public parameters ppPed := (G, q, g1, . . . , gm, h), ppPed ← SetupPed(1

λ,m).

Finally, we can commit to a matrix M of size ℓ × m: for r ∈ (Z/qZ)
ℓ
,

Com(M ; r) denotes the vector of length ℓ whose i-th component is a commit-
ment to the i-th row of M using randomness ri. The commitment scheme on
vectors and matrices remains both perfectly hiding and biding under the discrete
logarithm assumption.

2.4 Computational assumptions

In the class group setting, we use two computational assumptions: the first one is
the HSM assumption ([CLT18]) that ensures that CL is IND-CPA; and the sec-
ond one is the C-rough order assumption introduced in [BDO23], which basically
states that given a randomly sampled class group, it is difficult to determine if
its order is C-rough or not. We here recall this assumption, and explicit how we
will use it in the following sections.

Assumption 1 (C-rough order assumption, [BDO23]) Let λ a security param-
eter, q a prime number, C > 0 an integer and A a PPT algorithm. We denote
DC,rough

CL the uniform distribution over the set{
ρ ∈ {0, 1}λ |(Ĝ, s̃, g, h, f)← SetupCL(1

λ, q; ρ) ∧ ∀ p < C prime , p ∤ ord(Ĝ)
}
.

We say that A solves the C-rough order (ROC) problem if its advantage

AdvROC
A (λ) :=

∣∣∣P [1← A(1λ,U({0, 1}λ))]− P
[
1← A(1λ,DC,rough

CL (λ, q)))
]∣∣∣

is non-negligible with respect to λ. We say that the C-rough assumption holds if
no PPT algorithm solves the ROC problem.

9

Definition 1. Let λ be a security parameter and q a prime number. We denote
by SetupC,roughCL (1λ, q) the output of the CL setup algorithm run with parameters

(1λ, q; ρ), where the internal randomness ρ follows DC,rough
CL (λ, q).

In the following, we note that the soundness of proofs can be unconditionally
proved whenever the order of the underlying group is C-rough. Unfortunately,
such class groups are rare, and, due to the class number problem, there is no
known way to generate, even almost surely, such a group. In particular, the
above setup algorithm cannot be implemented practically. It is defined as an
abstract object and will only be used as a tool to prove security. That is where
the C-rough assumption intervenes. Roughly speaking, this assumption allows
to show that a protocol that is secure against a PPT adversary – to be precised
for each practical case – when the CL encryption is set up using SetupC−rough

CL , is
also secure when the group is generated using SetupCL. In particular, our proofs,
that are sound only in the C-rough order case, can still be used in protocols in
which the CL parameters are generated by SetupCL. Theorem 7 of [BCD+24]
gives a formalization of this fact:

Theorem 1 ([BCD+24]). Consider a PPT adversary A against an efficient
security game GameOA(λ) that generates CL public parameters via a single query
to an oracle ppCL ← O, and let GameOA(λ) = 1 denote that A wins the game.

Define Gamenormal
A (λ) and GameroughA (λ) to be GameOA(λ) respectively when O sam-

ples ppCL ← SetupCL(1
λ, q) and ppCL ← SetupC−rough

CL (1λ, q). Under the C-rough
assumption,

P
[
Gamenormal

A (λ) = 1
]
≤ P

[
GameroughA (λ) = 1

]
+ negl(λ).

In particular, if no adversary wins GameroughA (λ) = 1 with non-negligible proba-

bility, then the same holds for Gamenormal
A (λ) = 1

2.5 Zero-knowledge proofs and arguments

Let R be a relation with domain X ×W. In an interactive proof or argument for
R on a statement x in X , a prover, knowing a witness w ∈ W such that R(x,w),
interacts with a verifier to convince him that the witness exists. In a proof of
knowledge or argument of knowledge for R on a statement x, the prover wants
to convince the verifier that he knows the witness w. More formally, we use the
following definitions.

Definition 2 (Honest Verifier Zero-Knowledge proofs and arguments).
Let λ be a security parameter, σ statistical parameter. An honest verifier

zero-knowledge proof for a relation R is an interactive protocol between a prover
and a verifier that is

(i) Complete: if the prover really knows a witness and both parties act honestly,
then the proof is accepted.

10

(ii) Sound: a prover makes the verifier accept the proof for a false statement x
(i.e., a statement x such that there exists no w such that R(x,w)), only with
negligible probability in λ.

(iii) Honest Verifier ZK (HVZK): there exists a simulator, that, given a statement
x and the verifier’s challenges, produces a transcript of a proof such that
the statistical distance between this simulated transcript and a real accepting
transcript with a honest verifier is negligible in σ.

If the soundness is only computational, i.e., it holds for polynomial-time provers,
the protocol is an HVZK argument for R.

Definition 3 (HVZK proofs of knowledge, [DF02]). An honest verifier
zero-knowledge proof of knowledge for a relation R is an honest verifier zero-
knowledge proof that moreover verifies knowledge soundness: there exist some
functions of the security parameter, κ and ν, respectively the knowledge error
and failure probability, and an algorithm E that, given a statement x and oracle
access to a prover P ∗ making the proof accepted with probability ε ≥ κ(λ) on x,
outputs a witness w such that R(x,w) with probability p ≥ 1− ν(λ). Moreover,
E runs in expected time at most

E[TEP∗] ≤ poly(λ)

ε− κ(λ)
,

where the probability is taken over the random choices made by E.

An argument of knowledge is defined in a similar way as an HVZK argument
that also verifies knowledge soundness.

The 2-special soundness is a stronger notion (it implies knowledge sound-
ness), defined as follows: given two accepting transcripts, for the same statement
and prover’s random coins, but different challenges, there exists an extractor E
that computes a witness for the statement x in polynomial time.

Aside from these classical definitions, we now define a new notion of partial
extractability. The idea behind this is that for relations on CL ciphertexts, it is
challenging to construct an efficient argument that guarantees the extractability
of the randomness, whereas the plaintext can be extracted by usual techniques.
This can be observed in particular in [CCL+19,CCL+20]. However, in many
applications, we do not need to extract the randomness. Instead, we just need
to check that the ciphertext is well-formed and that the plaintext it contains
verifies a particular property. A partially extractable argument is sufficient to
provide these guarantees.

Definition 4 (HVZK Proof with partial extractability). Let R be a re-
lation with witness domain W = W1 × W2. A W1-extractable honest verifier
zero-knowledge proof is an honest verifier zero-knowledge proof for which there
exists an extracting algorithm E as in Definition 3 except that, on input a state-
ment x, E outputs only a partial witness w1 ∈ W1, i.e. w1 such that there exists
w2 ∈ W2 such that R(x, (w1, w2)) holds.

11

An HVZK proof which is W1-extractable for the relation R on the statement x
will be written

HVZK-PwPE {x;wext = w1;w2 | R(x, (w1, w2))} .

We define in a similar way a W1-extractable HVZK argument, and denote such
arguments as HVZK-AwPE {x;wext = w1;w2 | R(x, (w1, w2))}.

This definition extends the definition of a Proof of Plaintext Knowledge
exposed in [BDO23], and can be seen as a particular case of f -extractability
[BCKL08,GKP22], with f here being the projection W1 ×W2 →W1.

3 Batching proofs of correctness of CL ciphertexts

A CL ciphertext is of the form (hρ,CL-pkρfm). It is in particular an element of

H×G ⊂ Ĝ×Ĝ. However, due to the unknown order of Ĝ, one cannot check if the
first component is indeed in H. Moreover, even when c ∈ H ×G, it is not guar-
anteed that it is a valid ciphertext, and that the recipient will be able to decrypt
it. That is why protocols using CL ciphertexts need to ensure that a ciphertext
can be decrypted through a proof of knowledge. Both [CCL+20,BDO23] have
focused on designing proofs that CL ciphertexts are well formed. The former
presents an argument of knowledge with special soundness, that relies on the
strong root assumption and the low order assumption; while the later proposes
a proof of plaintext knowledge, that also allows to extract the plaintext from two
accepting transcripts.

Here, we expose an efficient proof that applies for n ciphertexts. It is, when-
ever Ĝ has C-rough order, a (Z/qZ)n-extractable HVZK proof for the relation

such that for (ci)i∈J1,nK ∈ (Ĝ2)n, there exists (m,ρ) ∈ (Z/qZ)n × Zn and

∀ i ∈ J1, nK, ci = EncCL(mi; ρi).

The protocol is depicted in Fig. 1 and its security is proved in Theorem 2.
We show that we can use the small exponents test of [BGR98] and adapt the
techniques of [BDO23,BCD+24] to get partial extractability for the n plaintexts.
As mentioned in the introduction, the soundness (and thus partial extractability)

holds when the CL parameters are generated by SetupC−rough
CL , i.e. the base group

has rough order. In practice, thanks to Theorem 1, this proof is still usable within
a larger protocol in which the class group is generated by SetupCL.

Theorem 2. Let λ a security parameter, σ a statistical parameter, q a prime
number, an integer 0 < C < q, (Ĝ, s̃, g, h, f,SolveDL) ← SetupC−rough

CL (1λ, q) the

output of the rough CL setup algorithm and let CL-pk ∈ Ĝ. Consider n elements
ci ∈ Ĝ2, for i ∈ J1, nK. The protocol of Figure 1 with challenge space J0, CJn,
and witness domain (Z/qZ)n × Zn is an HVZK proof (Z/qZ)n-extractable for
the relation

HVZK-PwPE
{
(ci)i∈J1,nK;wext = m;ρ | ∀ i ∈ J1, nK, ci = (hρi ,CL-pkρifmi)} ,

where HVZK holds if (ρi)i∈J1,nK ∈ J0, 2σ s̃Kn.

12

Statement: ppCL = (Ĝ, s̃, g, h, f, SolveDL),CL-pk ∈ Ĝ, (ci)i∈J1,nK ∈ (Ĝ2)n

Prover’s input: m ∈ (Z/qZ)n, (ρi)1≤i≤n ∈ Zn

1. The prover samples ρ̃
$←− J0, 22σn Cs̃J and m̃

$←− Z/qZ and sends

c̃ = EncCL(m̃; ρ̃) = (hρ̃,CL-pkρ̃fm̃).

2. The verifier samples a random challenge x = (x1, . . . , xn)
$←− J0, CJn.

3. The prover computes and sends
ρ̂ = ρ̃+

n∑
i=1

ρixi ∈ Z

m̂ = m̃+

n∑
i=1

mixi ∈ Z/qZ

4. The verifier accepts the proof if (ci)i∈J1,nK ∈ (Ĝ2)n and

c̃⊗
n⊗

i=1

cxi
i =

(
hρ̂,CL-pkρ̂fm̂

)
.

Fig. 1. HVZK-PwPE for correctness of CL ciphertexts

Proof. The protocol is complete by elementary inspection.

Soundness. Assume that there exists a prover P ∗ that makes the verifier accept
with probability 4/C + nonnegl(λ). A standard rewinding procedure (described
for completeness in Appendix B, Lemma 3) allows to find in expected polynomial
time n pairs of accepting transcripts: for i ∈ J1, nK,(

c̃(i),x(i,1), (ρ̂(i,1), m̂(i,1))
)

and
(
c̃(i),x(i,2), (ρ̂(i,2), m̂(i,2))

)
such that the challenges x(i,1) and x(i,2) differ only by their i-th coordinate, i.e.,

for all j ̸= i, x
(i,1)
j = x

(i,2)
j and x

(i,1)
i ̸= x

(i,2)
i . For each i ∈ J1, nK, by dividing the

verification equations of the two transcripts we obtain,

c
x
(i,1)
i −x

(i,2)
i

i = EncCL(m̂
(i,1) − m̂(i,2); ρ̂(i,1) − ρ̂(i,2)).

The order qŝ of Ĝ is C-rough, as Ĝ was generated by SetupC−rough
CL . Then x

(i,1)
i −

x
(i,2)
i is invertible modulo qŝ as 0 < |x(i,1)

i − x
(i,2)
i | < C. We denote zi ∈ Z an

inverse modulo qŝ and obtain

ci = c
zi(x

(i,1)
i −x

(i,2)
i)

i = EncCL(zi
(
m̂(i,1) − m̂(i,2)); zi(ρ̂

(i,1) − ρ̂(i,2))
)
,

so that for any i ∈ J1, nK, the ci’s are correct ciphertexts, which proves soundness.

13

Partial extractability. For the partial extractability, assume that there is a prover
that makes the proof for a statement (ci) accepting with probability 1/C +
nonnegl(λ). Rewinding as before, we get n pairs of challenges x(i,1) and x(i,2) for
accepting transcripts so that for every i ∈ J1, nK,

c
x
(i,1)
i −x

(i,2)
i

i = EncCL(m̂
(i,1) − m̂(i,2); ρ̂(i,1) − ρ̂(i,2)).

Moreover, from soundness, with overwhelming probability, there exist m ∈
(Z/qZ)

n
and ρ ∈ Zn such that for i ∈ J1, nK, ci = EncCL(mi; ρi), so that

c
x
(i,1)
i −x

(i,2)
i

i = EncCL((x
(i,1)
i − x

(i,2)
i)mi; (x

(i,1)
i − x

(i,2)
i)ρi).

Now, a same CL ciphertext can only encrypt one value so

(x
(i,1)
i − x

(i,2)
i)mi ≡ m̂(i,1) − m̂(i,2) (mod q),

Finally, we can extract for all i ∈ J1, nK,

mi ≡ (m̂(i,1) − m̂(i,2)) · (x(i,1)
i − x

(i,2)
i)−1 (mod q).

Zero-knowledge. Finally, we show that the protocol is HVZK. Define N =
22σnCs̃. We define the following simulator: given a challenge x ∈ J0, CKn, the
simulator samples uniformly ρ

$←− J0, NJ, m̂ $←− Z/qZ, and computes

c̃ =
(
hρ̂,CL-pkρ̂f m̂

)
⊗

n⊗
i=1

c−xi
i .

The simulated transcript is (c̃,x, (ρ̂, m̂)). We compute the statistical difference
between the simulated and the real ρ̂. Denote them respectively ρ̂S and ρ̂R, and
denote R =

∑n
i=1 xiρi ∈ J0, nC2σ s̃K. Then for any a ∈ Z,

P(ρ̂S = a) =

1

N
if a ∈ J0, NJ

0 otherwise.

On the other hand,

P(ρ̂R = a) = P(ρ̃R = a−R) =

1

N
if R ≤ a ≤ N +R− 1

0 otherwise,

so the statistical distance between ρ̂R and ρ̂S is

1

2

N+R−1∑
a=0

|P(ρ̂R = a)− P(ρ̂S = a)| = 1

2

(
R−1∑
a=0

1

N
+

N+R−1∑
a=N

1

N

)
=

R

N
≤ 2−σ,

and ρ̂R and ρ̂S are statistically indistinguishable.
Moreover, m̂ is uniformly distributed over Z/qZ and independent of ρ̂, both

in the simulation and in an honest instantiation, so that the distribution of the
simulated (hρ̂,CL-pkρ̂f m̂) is indistinguishable from the real one. ⊓⊔

14

Communication cost. In this protocol, the verifier sends n challenges, which
makes the overall communication cost linear. However, one can use a pseudo-
random generator P (as suggested in [CPP17]). That way, the verifier only sends
a seed x that allows the prover to generate (x1, . . . , xn) = P(x). We can also place
ourselves in the non interactive setting, in which challenges are generated by
hashing the statement and the commitment. In both cases, we get a communica-
tion of O(log(n)) bits. In particular, the prover’s response ρ ∈ J0, (2σ+1)n2σCs̃K
if (ρi)i∈J1,nK ∈ J0, 2σ s̃Kn. It is the first batched proof for CL ciphertexts with
such logarithmic communication.

4 Shuffle argument of CL ciphertexts

We now focus on an argument for the shuffle relation. Concretely, the prover
is supposed to have re-encrypted and mixed a set of ciphertexts with a random
permutation, and wants to convince another party that he performed this opera-
tion correctly. The goal of the shuffle is to ensure a form of unlinkability between
the original and the shuffled ciphertexts, so the prover does not want to reveal
any information about the permutation or the re-randomization. Note that the
shuffler usually did not encrypt the initial messages and so has no idea what is
contained in the ciphertexts he shuffles.

Formally, we construct an HVZK argument with partial extractability that
is Sn-extractable for the relation

HVZK-AwPE
{
c, c′;wext = π;ρ | ∀ i ∈ J1, nK, c′i = EncCL(0; ρi)⊗ cπ(i)

}
where Sn denotes the set of permutations of a set with n elements. Once again,
both soundness and partial extractability is proved only when Ĝ has C-rough
order, but the proof can still be used when the class group is generated by
SetupCL thanks to the C-rough assumption.

4.1 Outline of the protocol

To construct our argument, we adapt to the CL framework the protocol presented
in [BG12] for Elgamal. Let us give a simple intuition on how this protocol works:
given a random vector x, the shuffler proves, first that the weighted product
c = cx of original ciphertexts is actually equal to a re-randomization of the
weighted product (c′)y, where y is known by the prover; and second, that the
weights x and y are a permutation of one another. In particular, this means that
there exists a randomness ρ and a permutation π such that

n⊗
i=1

cxi
i = EncCL(0; ρ)⊗

n⊗
i=1

(c′i)
xπ(i) .

Finally, this equation implies, with overwhelming probability over the choice of
x, that c′ is a shuffle of c. Proving the first point corresponds to an argument

15

Statement: ppPed = (G, q, g1, . . . , gm, h), ppCL = (Ĝ, s̃, g, h, f, SolveDL), CL-pk ∈
Ĝ,
c = (ci)i∈J1,nK ciphertexts for CL-pk, c′ = (c′i)i∈J1,nK ∈ (Ĝ2)n with n = ℓm

Prover’s input: π ∈ Sn, ρ ∈ Zn

1. The prover chooses rT
$←− (Z/qZ)ℓ, sets T := (π−1(i))i∈J1,nK, computes and

sends
CT := Com(T ; rT) ∈ Gℓ,

by committing T using Pedersen commitments for m values.

2. The verifier chooses and sends challenges x := (x1, . . . , xn)
$←− J0, CKn.

3. The prover chooses rX
$←− (Z/qZ)ℓ, sets X := (xπ−1(i))i∈J1,nK ∈ Zn, computes

and sends
CX := Com (X; rX) ∈ Gℓ.

4. The verifier chooses and sends challenges y, z
$←− (Z/qZ)×.

5. Define Z := (z, z, . . . , z). Let C−Z := Com(−Z;0) and CA := Cy
T · CX .

Compute A := yT +X,B := A−Z, rB := yrT +rX and θ :=
∑n

i=1 ρixi ∈ Z.
Prover and verifier compute c :=

⊗n
i=1 c

′xi
i and engage in:

– a product argument to prove knowledge of B, rB such that

CA ·C−Z = Com(B; rB) and

n∏
i=1

bi =

n∏
i=1

(yi+ xi − z) ∈ Z/qZ

– a multiexponentiation argument proving partial knowledge of X, rx and
θ such that

c = EncCL(0; θ)⊗
n⊗

i=1

c
x
π−1(i)

i and CX = Com(X; rX).

6. The verifier accepts if both arguments are valid.

Fig. 2. HVZK-AwPE for a shuffle of CL ciphertexts

of knowledge of the exponents in a multiexponentiation, while the second one
is proved thanks to a product argument and the fact that the roots of a poly-
nomial remain the same under permutation of the factors. The efficiency of this
protocol lies in the efficiency of the two subprotocols, and more particularly of
the multiexponentiation argument, that is the communication and computation
bottlenecks in the context of CL ciphertexts.

Our protocol is depicted in Figure 2. It provides partial extractability: the
permutation is extractable while the re-rerandomization is not. The main mod-
ification compared to the shuffle protocol of [BG12] is on the choice of the chal-
lenges in step 2 and on the definition of X. In this step, [BG12] uses challenges
of the form (x, x2, . . . , xn) modulo q, that allows to reduce the communication
cost by just sending x. In our context, we need to define these elements over the
integers as they are used as exponents of ciphertexts which belong to a group

16

of unknown order. In order to keep a sublinear communication cost, we define
the challenge as (x1, . . . , xn) ∈ Z, as in the proof of Fig. 1. Moreover, we define
X to be the permutation of the xi’s. To commit to X, i.e., to commit to the
permutation, one could think of using commitments over the integers. However,
the CL framework, where the plaintext set is Z/qZ, and partial extractability
allow to use a commitment scheme with domain Z/qZ and to commit to X only
modulo q. Like in shuffles for Elgamal, we can thus still use standard Pedersen
commitments (for m values) that can be efficiently instantiated over an ellip-
tic curve subgroup of prime order q. Moreover, as the product argument only
involves commitments and no ciphertexts, using Pedersen commitments allows
to reuse directly known product arguments. However, by modifying the form of
the challenge, we cannot apply anymore extraction techniques based on Vander-
monde matrices like in [BG12]. The situation is more complex than in the proof
of Theorem 2 where we could use standard rewinding techniques for the n chal-
lenges, extracting independently the n plaintexts. Here, doing this to extract the
permutation will result on extracting evaluations of different permutations for
each of the rewindings. We thus need to rewind the n challenges for a common
commitment. Fortunately, we prove in Appendix B, Lemma 4, that this can be
done in expected polynomial time.

Another modification, with respect to [BG12], is that we swapped the roles of
c = (ci)i∈J1,nK and c′ = (c′i)i∈J1,nK. This change, which may seem trivial, is linked
to a technical issue that occurs in the proofs when using CL encryption compared
to Elgamal. The role of those two families of ciphertexts are not equivalent for CL
ciphertexts. We suppose indeed that the first set contains genuine ciphertexts,
that have been proven to be correct when generated, using the protocol of Fig. 1.
After the shuffle, the second one contains elements of (Ĝ)2, that may not be
ciphertexts. Consequently, the shuffle proof in the CL framework has two distinct
goals: it needs to convince the verifier that the two families of ciphertexts encrypt
the same plaintexts, but it also has to ensure that the shuffled ciphertexts c′ are
indeed ciphertexts.

We defer the proof of the overall shuffle argument to Theorem 4 in Subsec-
tion 4.3 as it depends on the extractability properties of the sub-protocols used.
For the product argument, as already said, we can reuse without modification a
known product argument over commitments. However, the multiexponentiation
argument of ciphertexts requires particular attention in the CL setting and is
the subject of the next subsection.

4.2 Sublinear argument for multiexponentiation of CL ciphertexts

Consider n CL ciphertexts (ci)1≤i≤n, n integer exponents (ai)1≤i≤n smaller than
q and Pedersen commitments over Z/qZ of those integers. Our goal is to propose
a ZK argument that proves that some ciphertext c is of the form

c = EncCL(0; ρ)

n∏
i=1

cai
i .

17

Our protocol, depicted in Figure 3, follows the same general structure used in
[GI08] for Elgamal. However, as we shall see, the soundness and the extractability
of this protocol must be carefully analyzed in the CL setting.

Note that [BG12] gives a multiexponentiation argument for Elgamal that
provides better communication costs than [GI08]. Unfortunately, this result does
not transfer well to the CL framework. This protocol uses again in an essential
manner challenges of the form (x, x2, . . . , xn) modulo q, which results in a lot
of challenging technical issues when switching to integer exponents for CL, but,
unfortunately, in a linear communication cost for the responses of the prover.

As in the shuffle proof, we denote by ℓ and m two integers such that n = ℓm.
The n ciphertexts and exponents are organized into two matrices

(ci,j) 1≤i≤ℓ
1≤j≤m

and A = (ai,j) 1≤i≤ℓ
1≤j≤m

.

The argument proves that c = EncCL(0; ρ)
∏ℓ

i=1 c
ai
i , where the vectors ai are

committed with ℓ Pedersen commitments for m values. The choice of m and ℓ
is decisive for the communication and computation costs of the protocol. The
communication cost in particular is O(ℓ2+m). Choosing m ∼ n2/3 and ℓ ∼ n1/3,
we obtain a sublinear protocol, with a communication cost in O(n2/3) even if
some elements sent by the prover are integers.

The overall idea of the protocol of [GI08] is as follows. If the prover sends
all the Ei := cai

i , then the verifier can check that the product has the expected
value. However, he will not be able to check that the Ei were honestly computed
(in particular computed with the same exponents as the ones contained in the
commitment). Instead, the prover sends all the Ei,j = cai

j , and the verifier can

check that c =
∏ℓ

i=1 Ei,i. The prover can now convince him that he computed

honestly the Ei,j by proving his knowledge of the exponents â =
∑ℓ

i=1 xiai in the

ℓ equations
∏ℓ

i=1 E
xi
i,j = câj , where x1, . . . , xℓ are uniformly random challenges.

With overwhelming probability over the choice of those challenges, the prover
cannot convince the verifier without knowing A.

However, in the CL context, the ciphertexts are elements of a group of un-
known order and exponents cannot be fully extracted. By using the partial ex-
tractability techniques exposed in Section 3, we can still prove that these expo-
nents exist as integers and match some committed values modulo q. Moreover,
it is possible to extract these values modulo q. More precisely, we prove in Theo-
rem 3 that we can extract a matrix A′ ∈ (Z/qZ)ℓ×m such that A′ ≡ A (mod q).
This is sufficient for our purpose. Indeed, for CL ciphertexts, the values mod-
ulo q of the exponents encode all the information that affects the underlying
plaintexts. We will thus be able to prove that c is a ciphertext that encrypts
the same plaintext than

∏ℓ
i=1 c

ai
i , but c may have been computed using integer

exponents that only match the ai’s modulo q. This only affects the randomness
of the ciphertext, that may not be known by the prover, which is not a concern
for the application to the shuffle protocol.

Theorem 3. Let λ be a security parameter, σ a statistical parameter, n = ℓm,
ppPed ← SetupPed(λ,m) that defines a group G of prime order q, an integer

18

Statement: ppPed = (G, q, g1, . . . , gm, h), ppCL = (Ĝ, s̃, g, h, f, SolveDL), CL-pk ∈
Ĝ,
c = (ci)i∈J1,nK ciphertexts for CL-pk, c ∈ Ĝ2,CA ∈ Gℓ

Prover’s input: ρ ∈ Z,A ∈ Zℓ×m, rA ∈ (Z/qZ)ℓ

1. The prover samples uniformly at random

a0
$←− J0, 2σℓC2Jm

r0
$←− Z/qZ

(bi,j)0≤i≤ℓ
1≤j≤ℓ

$←− (Z/qZ)(ℓ+1)×ℓ

(si,j)0≤i≤ℓ
1≤j≤ℓ

$←− (Z/qZ)(ℓ+1)×ℓ

(τi,j)1≤i≤ℓ
1≤j≤ℓ

$←− J0, 2σ s̃ Jℓ×ℓ

(τ0,j)1≤j<ℓ
$←− J0, 22σℓCs̃ Jℓ

τ0,ℓ
$←− J0,B′J

and resets bℓ,ℓ ← −
∑ℓ−1

i=1 bi,i, sℓ,ℓ ← −
∑ℓ−1

i=1 si,i, τℓ,ℓ ← ρ−
∑ℓ−1

i=1 τi,i.

He computes and sends to the verifier the following
Ca0 = Com(a0; r0)
∀ i ∈ J0, ℓK, j ∈ J1, ℓK, Cbi,j = Com(bi,j ; si,j)
∀ i ∈ J0, ℓK, j ∈ J1, ℓK, Ei,j = EncCL(bi,j ; τi,j)⊗ cai

j .

2. The verifier checks that Ei,j ∈ Ĝ2 for all i, j and samples x = (x1, . . . , xℓ)
$←−

J0, CJℓ, that he sends to the prover.

3. The prover computes and sends

â = a0 +
∑ℓ

i=1 xiai ∈ Zm

r̂ = r0 +
∑ℓ

i=1 xirA,i ∈ Z/qZ

For 1 ≤ j ≤ ℓ, b̂j = b0,j +
∑ℓ

i=1 xibi,j ∈ Z/qZ

For 1 ≤ j ≤ ℓ, ŝj = s0,j +
∑ℓ

i=1 xisi,j ∈ Z/qZ

For 1 ≤ j ≤ ℓ, τ̂j = τ0,j +
∑ℓ

i=1 xiτi,j ∈ Z.

4. The verifier accepts the proof if the following equations hold:

Ca0C
x
A = Com(â; r̂);

∀ j ∈ J1, ℓK, Cb0,j

ℓ∏
i=1

Cxi
bi,j

= Com(̂bj ; ŝj);

∀ j ∈ J1, ℓK, E0,j ⊗
ℓ⊗

i=1

Exi
i,j = EncCL(̂bj ; τ̂j)⊗ câj ;

ℓ∏
i=1

Cbi,i = Com(0; 0);

ℓ∏
i=1

Ei,i = c.

Fig. 3. Multiexponentiation HVZK-AwPE for CL encryption

19

0 < C < q, (Ĝ, s̃, g, h, f,SolveDL) ← SetupC−rough
CL (1λ, q) and let CL-pk ∈ Ĝ.

Consider n ciphertexts c = (ci)i∈J1,nK for CL-pk, an element c of Ĝ2, and a

vector of Pedersen commitments CA ∈ Gℓ. The protocol exposed in Figure 3, with
challenge space J0, CKℓ and witness domain (Z/qZ)ℓ×m× (Z/qZ)ℓ×Z×Zℓ×m, is
an HVZK argument which is (Z/qZ)ℓ×m × (Z/qZ)ℓ-extractable for the relation

HVZK-AwPE

 (c, c,CA);
wext = (A′, rA);

(ρ,A)

CA = Com(A′; rA)
∧ A ≡ A′ (mod q)

∧ c = EncCL(0; ρ)⊗ cA

 ,

where soundness holds on the discrete logarithm assumption in G and HVZK
holds if the coefficients of A are in J0, CK, ρ ∈ J0,BJ and B′ = 2σC(B+(ℓ−1)2σ s̃).
Remark 1. We here allow the re-rerandomization to be in a larger space than the
usual space of randomnesses as we will use the multiexponentiation argument
in the shuffle with a re-rerandomization θ =

∑n
i=1 xiρi, which gives B = nC2σ s̃,

leading to B′ = 22σCs̃(nC + (ℓ− 1)).

Proof. Completeness and zero-knowledge. The proof of completeness is elemen-
tary computations, and the zero-knowledge property can be proved as in the
proof of Theorem 2.

Soundness. We assume that the prover has a probability 8/C + nonnegl(λ) to
convince the verifier. As in the proof of Theorem 2, we rewind the argument
until finding ℓ pairs of accepting transcripts with challenges x(k,1) and x(k,2)

that differ only by their k-th coordinate. For k ∈ J1, ℓK, i ∈ J1, 2K, we denote

â(k,i), r̂(k,i), b̂
(k,i)

, ŝ(k,i), τ̂ (k,i) the elements sent in the third step of the tran-
scripts associated to challenge x(k,i). For each of these transcripts, the verifica-
tion equations give for every k, j ∈ J1, ℓK,

E0,j ⊗
ℓ⊗

i=1

E
x
(k,1)
i

i,j = EncCL(̂b
(k,1)
j ; τ̂

(k,1)
j)⊗ câ

(k,1)

j

E0,j ⊗
ℓ⊗

i=1

E
x
(k,2)
i

i,j = EncCL(̂b
(k,2)
j ; τ̂

(k,2)
j)⊗ câ

(k,2)

j .

Dividing the first row by the second one, and denoting δk := x
(k,1)
k − x

(k,2)
k ∈ Z,

we obtain

Eδk
k,j = EncCL(b̂j

(k,1)
− b̂j

(k,2)
; τ̂j

(k,1) − τ̂j
(k,2))⊗ câ

(k,1)−â(k,2)

j .

Using that the order qŝ of the group Ĝ is C-rough, and that |x(k,1)
k −x

(k,2)
k | < C,

δk is invertible modulo qŝ. Let us denote γk ∈ Z an (unknown) inverse and
define, as elements of Z:

bk,j := γk

(
b̂j

(k,1)
− b̂j

(k,2)
)

τk,j := γk

(
τ̂j

(k,1) − τ̂j
(k,2)

)
ak := γk

(
â(k,1) − â(k,2)

)
,

(1)

20

which gives

Ek,j = EncCL(bk,j ; τk,j)⊗ cak
j . (2)

The same operations on the commitments equations give for k, j ∈ J1, ℓK,{
Cδk

A,k = Com(â(k,1) − â(k,2); r̂(k,1) − r̂(k,2))

Cδk
bk,j

= Com(b̂j
(k,1)
− b̂j

(k,2)
; ŝj

(k,1) − ŝj
(k,2)).

We define {
rA,k := γk

(
r̂(k,1) − r̂(k,2)

)
(mod q)

sk,j := γk
(
ŝj

(k,1) − ŝj
(k,2)) (mod q)

(3)

As δkγk = 1 mod q, (1) and (3) give{
CA,k = Cγkδk

A,k = Com(ak; rA,k)

Cbk,j
= Com(bk,j ; sk,j).

Denoting A the matrix with rows a1, . . . ,aℓ, the first equation means that CA is
a commitment of the matrix A′ := A (mod q) with randomness rA. Moreover,
from the second equation, we have

ℓ∏
i=1

Cbi,i = Com

(
ℓ∑

i=1

bi,i;

ℓ∑
i=1

si,i

)
= Com(0; 0),

where the last equality holds from the verification round. By the binding property
of the commitment, it means that

∑ℓ
i=1 bi,i =

∑ℓ
i=1 si,i = 0 (mod q). Finally,

using the last check of the verification round and defining ρ :=
∑ℓ

i=1 τi,i, we get
from (2) and the fact that CL is homomorphic modulo q that

c =

ℓ⊗
i=1

Ei,i = EncCL(0; ρ)⊗ cA,

which concludes the soundness.

Partial extractability. We have seen that A′ and rA are an opening of CA.
Moreover there are extractable from (1) and (3) as the value of γk modulo q can
be computed as an inverse of δk modulo q. ⊓⊔

4.3 Proof of the sublinear shuffle argument

We now conclude on the security of the shuffle argument of Fig. 2 using the
properties of our multiexponentiation argument. For the product argument, we
used to protocol of [GI08] for compatibility of the parameters ℓ and m, s.t.
n = ℓm.

21

Theorem 4. Let λ be a security parameter, σ a statistical parameter, n = ℓm,
ppPed ← SetupPed(λ,m) that defines a group G of prime order q, an integer

0 < C < q, (Ĝ, s̃, g, h, f,SolveDL) ← SetupC−rough
CL (1λ, q) and let CL-pk ∈ Ĝ.

Consider n ciphertexts c = (ci)1≤i≤n for CL-pk, and n elements c′ = (c′i)1≤i≤n of

Ĝ2. Using the product argument of [GI08] and the multiexponentiation argument
of Fig. 3, the protocol exposed in Fig. 2, with challenge space J0, CJ and witness
domain Sn × Zn, is an HVZK argument Sn-extractable for the relation

HVZK-AwPE
{
c, c′;wext = π;ρ ∀ i ∈ J1, nK, c′i = EncCL(0; ρi)⊗ cπ(i)

}
,

where soundness holds on the discrete logarithm assumption in G and HVZK
holds if ∀i ∈ J1, nK, 0 ≤ ri ≤ 2σ s̃.

Proof. Completeness and zero-knowledge. The completeness and zero-knowledge
property are proved as in [BG12].

Soundness. Assume the prover makes the verifier accept with probability 8/C+
nonnegl(λ). If the transcript is accepted for given challenges x, y, z, we rewind
from the choice of z until we have n+ 1 accepting transcripts for different chal-
lenges z0, . . . , zn. We note Z(j) := (zj , . . . , zj).We run the extractor on the prod-

uct argument and obtain for j ∈ J0, nK some B(j), r
(j)
B , defined modulo q, such

that

CA ·C−Zj
= Com(B(j); r

(j)
B) and

n∏
i=1

b
(j)
i =

n∏
i=1

(yi+ xi − zj) ∈ Z/qZ.

Let A(j) := B(j) +Z(j), then CA = Com(A(j); r
(j)
B), and as the commitment is

binding, A, rB := A(j), r
(j)
B is constant and does not depend on j. We thus have

for all j,
n∏

i=1

(ai − zj) =

n∏
i=1

(yi+ xi − zj) ∈ Z/qZ.

The two polynomials of degree n,
∏n

i=1(ai−X) and
∏n

i=1(yi+xi−X), coincide
on n + 1 values, so they are equal, and by unicity of the decomposition in a
product of irreducible polynomials, there exists a permutation τ ∈ Sn such that
for any i ∈ J1, nK,

ai = yτ(i) + xτ(i) ∈ Z/qZ.

We denote U , rU and V , rV such that CX = Com(U ; rU) and CT =
Com(V ; rV). All these quantities are independent of y, z, by the binding prop-
erty, as CX ,CT are sent before the choice of y, z. The equation Com(A; rB) =
CA = Cy

T · CX implies, by the binding property, that A = yV + U and
rB = yrV + rU , which gives, for any i ∈ J1, nK,

ai = yvi + ui = yτ(i) + xτ(i) ∈ Z/qZ.

With overwhelming probability over the choice of y, this implies that

vi ≡ τ(i) (mod q) and ui ≡ xτ(i) (mod q). (4)

22

Denoting T := (τ(1), τ(2), . . . , τ(n)), this gives that CT = Com(T ; rV).
Finally, we rewind on the value of x, until we obtain 2n accepting transcripts

for a same commitment CT , with challenges x(i,1) and x(i,2) that differ only by
their i-th coordinate for all i ∈ J1, nK. This specific rewinding for n coordi-
nates fixing the challenge can be done in expected polynomial time as proven in
Lemma 4. For each challenge, we repeat the same operations of rewinding over
z, and we extract a permutation τ , which is committed to in CT , sent before x,
so that τ is independent of the challenge for x. From the partial extractability
of the multiexponentiation argument, we also know that for every i, there exist
matrices of integers U (i,1), U (i,2) and integers ρ(i,1), ρ(i,2) such that

n⊗
j=1

(
c′j
)x(i,1)

j = EncCL(0; ρ
(i,1))⊗

n⊗
j=1

c
u
(i,1)
j

j

n⊗
j=1

(
c′j
)x(i,2)

j = EncCL(0; ρ
(i,2))⊗

n⊗
j=1

c
u
(i,2)
j

j

which implies that

(c′i)
x
(i,1)
i −x

(i,2)
i = EncCL(0; ρ

(i,1) − ρ(i,2))⊗
n⊗

j=1

c
u
(i,1)
j −u

(i,2)
j

j .

The order qŝ is C-rough and |x(i,1)
i − x

(i,2)
i | < C, so x

(i,1)
i − x

(i,2)
i is invertible

mod qŝ. Denote wi its inverse, we now have, for all i ∈ J1, nK,

c′i = EncCL(0;wi(ρ
(i,1) − ρ(i,2)))⊗

n⊗
j=1

c
wi(u

(i,1)
j −u

(i,2)
j)

j . (5)

The partial extractability of the multiexponentiation argument ensures moreover

that U (i,1), U (i,2) match the values committed in C
(i,1)
X , C

(i,2)
X modulo q. As a

result, from (4), we know that for any i, j ∈ J1, nK, and k ∈ J1, 2K, u(i,k)
j ≡ x

(i,k)
τ(j)

(mod q). Using the fact that wi is also the inverse of x
(i,1)
i −x

(i,2)
i modulo q, and

denoting π := τ−1, we get

wi

(
u
(i,1)
π(i) − u

(i,2)
π(i)

)
≡ 1 (mod q),

and for j ̸= π(i),

u
(i,1)
j − u

(i,2)
j ≡ 0 (mod q).

Consequently, there exist integers (µi,j)i,j∈J1,nK such that for all i, j ∈ J1, nK,

wi(u
(i,1)
j − u

(i,2)
j) = δj,π(i) + µi,jq, (6)

where δi,j denotes the Kronecker delta . We know that the (cj)j∈J1,nK are cipher-
texts, implying that for any j ∈ J1, nK, cqj is an encryption of 0. In particular,
there exists sj ∈ Z such that cqj = EncCL(0; sj).

23

Combining this with (6) and injecting into (5), this implies that for any
i ∈ J1, nK,

c′i = EncCL(0;wi(ρ
(i,1) − ρ(i,2)))⊗

n⊗
j=1

c
δj,π(i)+µi,jq

j

= EncCL(0;wi(ρ
(i,1) − ρ(i,2)))⊗

n⊗
j=1

(
cqj
)µi,j ⊗ cπ(i)

= EncCL(0; ri)⊗ cπ(i)

where ri =
∑n

i=1

(
wi(ρi − ρ′i) +

∑n
j=1 µi,jsj

)
, which concludes the proof of

soundness.

Partial extractability. One can extract openings of CA from the product argu-
ment and of CX from the multiexponentiation argument. This allows to com-
pute an opening of CT , which from the soundness proof, gives the permutation
τ = π−1. ⊓⊔

Communication cost. We use the product argument of [GI08] and our multi-
exponentiation argument with m ∼ n2/3 and ℓ ∼ n1/3. As a result, both proto-
cols have communication cost in O(n2/3). The only step of our shuffle argument
of Fig. 2 which is not sublinear in communication, is step 2 where the verifier
sends the challenge x. As for our batched proof for correctness of ciphertexts,
we can consider a generation by a pseudo random generator or a non-interactive
version, which give a total sublinear cost in O(n2/3). As already said, the tech-
niques of [BG12] for the multiexponentiation can not be adapted to the CL
framework to get a cost of O(n1/2).

To improve further the communication cost of the shuffle protocol, we thus
consider in the next subsection a different multiexponentiation argument inspired
by bulletproofs, using techniques introduced in [BCC+16,BBB+18].

4.4 Logarithmic argument for multiexponentiation

In this subsection, we devise a shuffle argument for n CL ciphertexts with loga-
rithmic communication. We still use the protocol of Fig. 2, but with parameters
ℓ = 1 and m = n, i.e, we commit to n elements at once with one element of G. In
[HKR19, Appendix C], a shuffle argument for Elgamal ciphertexts with logarith-
mic communication is given, that also uses Bayer–Groth’s blueprint of [BG12].
We reuse the product argument devised there, that also works for commitments
defined in a cyclic group G of prime order q. We thus focus on devising a multiex-
ponentiation argument for CL ciphertexts with logarithmic communication. As
bulletproofs do for arithmetic circuits and the multiexponentation argument for
Elgamal ciphertexts of [HKR19], we embed the multiexponentiation statement
in a linear matrix preimage statement. These techniques were devised for prime

24

order groups, but we will prove that they can be adapted in the CL context
thanks to partial extraction.

Using ℓ = 1 and m = n, one wants to prove a statement of the form

c = EncCL(0; ρ)⊗ ca ∈ Ĝ2 and Ca = Com(a; ra) ∈ G,

where a ∈ Zn, ra ∈ Z/qZ and ρ ∈ Z. Once again, we underline that semantically,
only the value of a modulo q really matters. Using the matricial notation for
multiexponentiation defined in Subsection 2.1, the previous equation can be
rewritten as

M .ξ = t

with M :=

 g1 . . . gn h1 1G

c
(1)
1 . . . c

(1)
n 1G h

c
(2)
1 . . . c

(2)
n 1G CL-pk

, ξ :=

a
ra
ρ

, and t :=

Ca

c(1)

c(2)

.
We stress that the first row of M and t are composed of elements of G of

order q, while the two others are composed of elements of Ĝ, of unknown order.
To guarantee the soundness of the proof, we want to assume that the matrix M
verifies the hard kernel assumption, i.e., it is hard to find a non trivial kernel
element. It is not a priori obvious that the assumption holds for the previous
matrix, particularly as we have no control over the distribution of the second
and third rows. To overcome this obstacle, as in [HKR19], we first add two
supplementary commitment keys gn+1, h2 ∈ G, and make the prover commit to
ρ modulo q in Cρ = gρn+1h

rρ
2 before starting the argument. Then we add two

rows in M corresponding to Cρ and Cρ · Ca, giving

M :=

g1 . . . gn gn+1 h1 h2
g1 . . . gn 1G h1 1G
1G . . . 1G gn+1 1G h2

c
(1)
1 . . . c

(1)
n h 1G 1G

c
(2)
1 . . . c

(2)
n CL-pk 1G 1G

 , ξ :=

a
ρ
ra
rρ

 , and t :=

Cρ · Ca

Ca

Cρ

c(1)

c(2)

 .

Now, M verifies the hard kernel assumption on the first row . Indeed, finding
an element in the kernel of the first row is equivalent to finding an opening of
Com(0; 0), which is hard as the commitment scheme is binding.

It remains to explicit the argument of knowledge for the linear matrix preim-
age problem. It uses recursively techniques that are similar to those of [BG12]
to shrink the statement and witness, until the proof is elementary. We denote N
the number of columns of M and assume N = kd, with k a small number. While
d > 1, each step reduces the size of the statement by a factor k, and finally prove
the shrunk statement once it reaches size k. In practice, we will choose for k a
small power of 2 (k = 2, 4, 8). Note that keeping k small allows to use challenges
of the form (1, x, . . . , xk−1) even when x is an integer and working with unknown
order groups.

25

Statement: pp, M ∈Mm×N and t ∈ VN
Prover’s input: ξ ∈ ZN

– Base case: Σrec,1, d = 1, N = k
1. The prover sends ξ.
2. The verifier accepts the proof if M .ξ = t.

– General case: Σrec,d, d > 1, N = kd

1. Split M in k submatrices ofMm×kd−1 , and ξ in k subvectors of Vkd−1 :

M =
[
M1| . . . |Mk

]
, and ξ =

ξ1

.

.

.
ξk

 .

For 1 ≤ ℓ ≤ 2k − 1, ℓ ̸= k, the prover computes and sends

uℓ :=
∑

1≤i,j≤k
j−i=ℓ−k

M j .ξi.

2. The verifier picks a challenge x
$←− J0, CJ and sends it to the prover. Set

x := (1, x, . . . , xk−1), y := (xk−1, . . . , x, 1) and z := (x2k−2, . . . , x, 1).

3. Set uk := t. Both parties compute

M̂ :=

k∑
i=1

xiM i and t̂ =

2k−1∑
ℓ=1

zℓuℓ.

The prover computes ξ̂ =
∑k

i=1 yiξi, and both engage in an argument of

knowledge Σrec,d−1 of ξ̂ for the shrunk relation M̂ .ξ̂ = t̂.

Fig. 4. Recursive non ZK interactive argument Σrec

Similarly to [HKR19], we first expose in Fig. 4, a non ZK recursive version of
the protocol. It works for any pseudo-matrix M and vector t such that M and
t’s coefficients are in either G or Ĝ, and all columns have the same structure.
We require moreover that the first row of M and t is composed of elements of
G and that M verifies the hard kernel assumption on the first row. We call such
(M , t) a (Ĝ,G)-admissible statement. Even though the protocol is valid for

any class group Ĝ, soundness and partial extractability are only proved when Ĝ
has C-rough order, e.g. when it is sampled by SetupC−rough

CL . More details on the
use of such an argument are provided in Subsection 2.4.

We assume that the prover and the verifier know M and t and that the
prover additionnally knows a witness ξ ∈ ZN such that M .ξ = t.

When the size of the statement reaches k, the prover simply sends ξ, and the
verifier has to check if the equation holds. The following lemma adapts Lemma

26

3.10 of [HKR19] to the CL setting. In a nutshell, it allows, given a witness of
size kd−1 from the corresponding step of the protocol, to go back up one step,
and either prove that there exists a witness of size kd, or break a computational
assumption. Moreover, using the partial extractability technique, we prove that
the value modulo q of the witness can be computed iteratively.

Lemma 1. Let λ be a security parameter, ppPed ← SetupPed(λ, n + 2) that
defines a group G of prime order q, an integer 0 < C < q, and let ppCL ←
SetupC−rough

CL (1λ, q). Assume we run a step of the recursive protocol of Fig. 4 on

a (Ĝ,G)-admissible statement M , t for Σrec,d, then the following properties hold:

1. Given 2k − 1 inputs (M̂ , t̂) of Σrec,d−1, for which there exist witnesses

ξ̂ ∈ Zkd−1

s.t. for each instance, M̂ .ξ̂ = t̂, then there exists a witness ξ s.t.
M .ξ = t. Moreover, ξ (mod q) can be computed efficiently from ξ̂ (mod q).

2. Given 2k inputs and witnesses for Σrec,d−1, either the witness ξ found in
1. for Σrec,d is consistent, i.e., verifies uℓ =

∑
1≤i,j≤k
j−i=ℓ−k

M j .ξi for all ℓ, or we

find a non trivial element in the kernel of the first row of M .

3. Given a non trivial element in the kernel of the first row of M̂ , one can
efficiently compute a non trivial element in the kernel of the first row of M .

Proof. We only detail the proof of point 1. Points 2 and 3 can be proved as in
[HKR19] using the fact that the first row of the matrices is composed of elements
of G of known prime order q.

Let (M̂
(i)
, t̂

(i)
) be 2k−1 inputs of Σrec,d−1 along with witnesses ξ̂

(i)
. For all

i ∈ J1, 2k − 1K, sets

w(i) :=

ξ̂
(i)

x(i)ξ̂
(i)

...

(x(i))k−1ξ̂
(i)

 ,

so that t̂
(i)

= M̂
(i)
.ξ̂

(i)
=
(∑k

ℓ=1(x
(i))ℓ−1M ℓ

)
.ξ̂

(i)
=
[
M1 . . . Mk

]
.w(i), i.e.,

M .w(i) = t̂
(i)

=

2k−1∑
ℓ=1

z
(i)
ℓ uℓ. We denote W :=

(
w(1) . . . w(2k−1)

)
, and X :=(

z(1) . . . z(2k−1)
)
. Due to the rough order of Ĝ, we know that the differences

x(i) − x(j) are invertible modulo qŝ, so that X is an invertible (transposed)
Vandermonde matrix modulo qŝ. Let V = (vi,j) be a right inverse of X modulo
qŝ. We have, for i ∈ J1, 2k − 1K,

27

(M .W) .

 v1,i
...

v2k−1,i

 =
[
t̂
(1)

. . . t̂
(2k−1)

]
.

 v1,i
...

v2k−1,i

 =

=

2k−1∑
j=1

vj,it̂
(j)

=
∑

1≤ℓ,j≤2k−1

z
(j)
ℓ vj,iuℓ = ui,

so
[
u1 . . . u2k−1

]
= (M .W).V = M .(W .V). In particular, taking for ξ the

k-th column of W .V , we get uk = t = M .ξ. Moreover, while we only know the
existence of the inverse matrix V modulo qŝ and cannot compute it, its value

modulo q is efficiently computable from the values modulo q of ξ̂
(1)

, . . . , ξ̂
(2k−1)

.
⊓⊔

We now add to this non ZK recursive argument the first step of a classical
argument. The complete protocol is exposed in Figure 5. From Lemma 1, we can
prove partial extractability and zero knowledge follows from the first step. This
gives the following theorem.

Statement: ppPed = (G, q, g1, . . . , gn+1, h1, h2), ppCL = (Ĝ, s̃, g, h, f, SolveDL),

CL-pk ∈ Ĝ, c = (ci)i∈J1,nK ciphertexts for CL-pk, c ∈ Ĝ2, Ca ∈ G
Prover’s input: ρ ∈ Z, a ∈ Zn, ra ∈ Z/qZ

1. The prover samples rρ
$←− Z/qZ, and r

$←− J0, 2σC2Jn×J0, 2σBCJ×J0, 2σCqJ2.
He compute and sends Cρ = Com(ρ; rρ) and b = M .r, with

M =

g1 . . . gn gn+1 h1 h2
g1 . . . gn 1G h1 1G
1G . . . 1G gn+1 1G h2

c
(1)
1 . . . c

(1)
n h 1G 1G

c
(2)
1 . . . c

(2)
n CL-pk 1G 1G

 .

We denote t :=

Cρ · Ca

Ca

Cρ

c

 and ξ :=

a
ρ
ra
rρ

.

2. The verifier chooses a challenge e
$←− J0, CJ and sends it to the prover.

3. They both compute u := b + et and engage in Σrec (Fig. 4) for proving
knowledge of ζ := r + eξ such that M .ζ = u.

Fig. 5. Succinct multiexponentiation HVZK-AwPE for CL ciphertexts

28

Theorem 5. Let λ be a security parameter, σ a statistical parameter, ppPed ←
SetupPed(λ, n+2) that defines a group G of prime order q, an integer 0 < C < q,

(Ĝ, s̃, g, h, f,SolveDL) ← SetupC−rough
CL (1λ, q) and let CL-pk ∈ Ĝ. Consider n ci-

phertexts c = (ci)i∈J1,nK for CL-pk, an element c of Ĝ2, and a Pedersen com-
mitment CA ∈ G. The protocol exposed in Figure 5, with challenge space J0, CK
and witness domain (Z/qZ)n ×Z/qZ×Z×Zn, is an HVZK argument which is
(Z/qZ)n × Z/qZ-extractable for the relation

HVZK-AwPE

 (c, c,CA);
wext = (a′, ra);

(ρ,a)

Ca = Com(a′; ra)
∧ a ≡ a′ (mod q)
∧ c = EncCL(0; ρ)⊗ ca

 ,

where soundness holds on the discrete logarithm assumption in G and HVZK
holds if the coefficients of a are in J0, CK, ρ ∈ J0,BJ.

Communication cost. The product argument of [HKR19] and our multiexpo-
nentiation argument of Fig. 5 have communication cost in O(logk(n)). As before,
we can obtain a shuffle argument with O(logk(n)) communications, using both
arguments with our shuffle argument of Fig. 2.

5 Implementation

To demonstrate the practicality of our methods, we have implemented NIZK
variants (using the Fiat Shamir heuristic) of our new zero knowledge proofs and
arguments, namely the proof for correctness of CL ciphertexts of Fig. 1, and
the arguments for multiexponentiation for CL encryption of Fig. 3 and Fig. 5.
Unless stated otherwise, all timings reported are performed on a M1 Macbook
Pro using 8 cores.

At the lowest level, we use the BICYCL library [BCIL23] for the arithmetic
of class groups, the RELIC library [AGM+] for the arithmetic of elliptic curves
and the GMP library [GMP] for the arithmetic over Z.

We use several optimizations to speed-up the implementation, notably the
exponentiation and the multiexponentiation operations which are the most crit-
ical computations in our arguments. For the exponentiation in the elliptic curve,
we use a wNAF method with a window size w = 5, and the core function of
BICYCL for exponentiation in class groups. For multiexponentiations in both
groups, we use the interleaving method with wNAFs of size w = 5 (cf. [HMV03,
Algorithm 3.51]). For multiexponentiations involving a large number n of ele-
ments, we partition the computation in t multiexponentiations of n/t elements
that are done in parallel on t cores.

For fixed base exponentiations, primarily in order to speed up the encryption
of large sets of messages with CL, we make extensive use of pre-computations.
More precisely, we use a variant of the interleaving method. Suppose we want
to compute gk for a fixed g and k of ℓ bits. For a parameter v ⩾ 1, let us

denote d = ⌈ℓ/v⌉ and gj = g2
jd

for j = 0 to v − 1. Then, as sketched in

29

p. 113 of [HMV03], one can use the interleaving method to compute gk with
a multiexponentiation with wNAFs involving the gj ’s and partial exponents kj
obtained from the decomposition in basis 2d of k. As g is fixed, one can use a
precomputation of the g2i+1

j for i = 0 to 2w−2 − 1. However, we have departed
slightly from this approach, that uses a different wNAFs for each kj ’s. Instead,
we compute a wNAF of k which is then partitioned in v sub-segments which are
used to treat each gj in the interleaving algorithm. This results experimentally in
more sparse segments and speeds up the computation. Overall, this method uses
d− 1 squares and ℓ/(w + 1) multiplications, and v2w−2 precomputed elements.

Statement Proof

n Comp. (s) Size (MB) Size (kB) Prover comp. (s) Verifier comp. (s)

29 1.4 1.7 0.634 0.011 0.092

212 2.98 13.7 0.634 0.016 0.563

215 14.95 109.7 0.635 0.049 4.469

218 110.9 877.5 0.635 0.324 36.67

Fig. 6. Timings and sizes for the HVZK-PwPE for correctness of n ciphertexts of Fig. 1

Using v = 87 and w = 11 (so that 44544 elements are precomputed), on a
single core, this gives 1.33 ms to compute a fixed basis exponentiation whereas
the BICYCL fixed basis function takes 6.29 ms (using only 4 precomputed ele-
ments). For instance, as shown in the next table, this enables us to perform 218

CL encryptions in 109.7 s with a precomputation of 1.2 s.

We report the timings and sizes for the HVZK-PwPE for correctness of ci-
phertexts of Fig. 1 in Fig. 6. We use a security level of 128 bits which results
in a 1827-bit fundamental discriminant for CL encryptions, and a 256-bit mes-
sage space. For this argument and the next ones, we use statistical distance and
soundness parameters equal to 2−128.

We now report timings and sizes for the HVZK-AwPE for multiexponentia-
tions of ciphertexts of Fig. 3 in Fig. 7. For this implementation and the next, we
use Pedersen commitments on the NIST elliptic curve P256 and the CL message
space matches the prime order q of the elliptic curve. In the first column, we
give the decomposition of n = m · ℓ.

We finish by reporting timings and sizes for the succinct HVZK-AwPE for
multiexponentiations of ciphertexts of Fig. 5 in Fig. 8. We use k = 2 for the
recursive method of Fig. 4. This shows that for large size of n the bulletproof
method applied to the CL setting becomes more interesting in terms of proof
size, as expected, but also in terms of timings. In particular, for 218 CL cipher-
texts, the non-interactive HVZK argument takes only 0.01% of the data to be
transmitted.

We do not report timings for the whole shuffle proof as we reuse product
arguments from previous works. Moreover, these arguments use only compu-

30

Statement Proof

n = m · ℓ Comp. (s) Size (MB) Size (MB) Prover comp. (s) Verifier comp. (s)

29 = 28 · 21 2.36 1.7 0.119 0.441 0.258

212 = 210 · 22 3.6 13.7 0.456 3.89 1.51

215 = 212 · 23 19.77 109.7 1.8 46.2 11.11

218 = 214 · 24 146.1 877.5 7.1 638.8 86.0

Fig. 7. Timings and sizes for the HVZK-AwPE for multipexponentiations of n cipher-
texts of Fig. 3

Statement Proof

n Comp. (s) Size (MB) Size (kB) Prover comp. (s) Verifier comp. (s)

29 1.53 1.7 54.7 2.26 0.626

212 3.58 13.7 69.9 10.73 3.24

215 21.91 109.7 85.1 76.21 24.39

218 167.43 877.5 100.2 609.67 195.47

Fig. 8. Timings and sizes for the succint HVZK-AwPE for multiexponentiations of n
ciphertexts of Fig. 5

tations on Pedersen commitments and when implemented with elliptic curves,
these computations have smaller cost compared to operations on CL ciphertexts.
As a result, timings and communication costs of Figs. 7 and 8 give a rough idea
of the total cost of the shuffle.

6 Shuffling CL ciphertexts in a PSI-sum protocol

We consider a private intersection-sum (PSI-sum) protocol between two parties
A and B. Each party knows a secret set, respectively X = (xi)1≤i≤nA

and Y =
(yj)1≤j≤nB

, and A moreover holds a set V of integer values that are associated
to each one of the elements of X. We set I := {i ∈ J1, nAK, xi ∈ X ∩ Y }. The aim
of the protocol is for both A and B to compute v =

∑
i∈I vi and |I|, without

revealing anything else about the sets X and Y , nor about their intersection
X ∩ Y . In [MPR+20], Miao et al. give a two-sided protocol for PSI-sum that
is secure against malicious adversaries, using a combination of Elgamal and
Camenisch-Shoup encryption and the verifiable shuffle for Elgamal ciphertexts of
[BG12] in order to apply an oblivious PRF (Dodis-Yampolskyi) on the elements
of X and Y .

In this section, we give an application of our verifiable shuffle protocol for CL
ciphertexts by devising a PSI-sum protocol using CL encryption. We omit the
security proof of the protocol, as PSI is not the core of this paper. Nevertheless,
we mention one detail about this proof, to explicit the way to use the C-rough
assumption. All the ZK proofs and arguments developed in this paper being

31

sound only when the underlying class group has rough order, we first place
ourselves in this case, in which we can use a security proof that is very similar to
the one of [MPR+20]. In this particular case, we thus show that there exists no
PPT adversary able to distinguish a simulated protocol in the ideal world from
the real protocol. In a second time, we consider the real protocol with a class
group generated by SetupCL (thus not necessarily rough), and Theorem 1 allows
to prove that an adversary has no more advantage in distinguishing that it had
in the rough case, which allows to conclude that the protocol is secure against
malicious adversaries even in the non-rough case.

6.1 Sketch of the protocol

A high level description of the protocol for PSI-sum using CL encryption is
outlined in Fig. 9. It follows the idea of [MPR+20], but we introduce the CL
encryption in two places:

– We use CL encryption as the homomorphic encryption scheme used to en-
crypt the values of V , instead of Elgamal in the exponent. This change
improves the capacity of the protocol, as it allows to use a larger message
space, thanks to the efficient decryption process of CL ([MPR+20] needs a
final discrete logarithm computation to retrieve v).

– We also use CL encryption instead of Camenisch-Shoup encryption in the
computation of the distributed oblivious PRF (DOPRF). In this process,
the encryption has to interact with commitments, and using CL encryption
allows to use Pedersen commitments modulo a prime number q instead of
integer commitments. Pedersen commitments are both lighter to compute,
and easier to deal with in zero-knowledge arguments. We note that very
recently [BGR+24] proposes a similar solution.

The protocol can be decomposed in five main steps:

1. Offline setup.
– the class group, public parameters for CL encryption and the generators

for the commitment scheme are generated transparently by one party;
– a pair of vector CL keys (CL-pkP ,CL-skP) (cf. App. A) and Elgamal keys

are produced per party P ;
– a key for a two-party CL encryption is shared between the players (cf.

Appendix A.1);
– Each party proves with an argument of knowledge that CL keys are

well-formed.

2. Commitment to the values. The parties commit to their inputs, and A
encrypts the integer values. They prove they know openings of their com-
mitments, and A proves correctness of the ciphertexts (using Fig. 1).

3. Distributed OPRF. The Dodis-Yampolskyi PRF ([DY05]) is defined as
follows: given an element g of a group G of order q, for a key k ∈ Z/qZ, and
an element x ∈ Z/qZ, Fk(x) := g1/k+x.

32

Party A Party B
Input X = (xi)1≤i≤nA ,

V = (vi)1≤i≤nA

Input Y = (yj)1≤j≤nB

Keys for 2-party CL Keys for 2-party CL
Keys for Elgamal over G Keys for Elgamal over G

Commitment to X: Cx = Com(X) Commitment to Y : Cy = Com(Y)
Commit to a random key share kA,

CA = Com(kA)
Commit a random key share kB ,

CB = Com(kB)
Encryption of (vi) with 2-party CL:
E(V) = (ci)1≤i≤nA = (EncCL(vi))

CkA
,Cx,E(V)

−−−−−−−−−→
CkB

,Cy

←−−−−−−−
Distributed computation of the image S of X by the DOPRF FkA+kB

B obtains S
...←−−−
...−−−→

Distributed computation of the image T of Y by the DOPRF FkA+kB

A obtains T
...−−−→
...←−−−

T = (ti)1≤i≤nB S = (si)1≤i≤nA

Encryption of T with Elgamal over G
E(T) = (EncEG(ti))1≤i≤nB

Encryption of S with Elgamal over G
E(S) = (EncEG(si))1≤i≤nA

Verifiable Shuffle of E(T) with a
random τ ∈ Sn:

Tτ = (t′i) = (tτ(i))1≤i≤nB

Verifiable Shuffle of both E(V) and
E(S) with a random π ∈ Sn:
Eπ = (c′i) = (cπ(i))1≤i≤nA

Sπ = (s′i) = (sπ(i))1≤i≤nA

Tτ ,E(T)−−−−−−−→
Sπ,E(S),Eπ←−−−−−−−−

Identification of elements of Tτ ∩ Sπ: Identification of elements of Tτ ∩ Sπ:
J =

{
j ∈ J1, nK, s′j ∈ Tτ ∩ Sπ

}
J =

{
j ∈ J1, nK, s′j ∈ Tτ ∩ Sπ

}
Computation of c =

⊗
j∈J c′j Computation of c =

⊗
j∈J c′j

Two-party decryption of c
...−−−→
...←−−−

Obtention of v Obtention of v

Fig. 9. Protocol for PSI-sum with CL encryption - Sketch

33

The parties compute the images of their sets by this PRF in a distributed
and oblivious way: A holds a secret key kA and a x ∈ Z/qZ, B holds a secret
key kB , and A and B compute in two party FkA+kB

(x), without revealing
information neither about their secret keys nor the value x. Only B obtains
the output.
The computations require a linearly homomorphic encryption scheme to
guarantee privacy, for which we use CL encryption. Moreover, as A and
B have to compute a large number of PRF values, the computations are
batched using vector CL encryption (cf. Appendix A.2). The process is ex-
plicited in Fig. 10.
We use ZK-arguments Σ1, Σ2, Σ3 ensuring that each step is performed cor-
rectly:

– Σ1 is a HVZK-AoK of opening of the commitments Ca and Cα.
– Σ2 is a HVZK-AwPE that the ciphertexts are correct, Bob knows the

plaintext, and it is coherent with the content of CkB
.

– Σ3 is a HVZK-AwPE that Alice knows ai,j , and αi,j , and performed the
homomorphic operations correctly.

4. Shuffle and identification of the intersection. The DOPRF results and
the encrypted values are shuffled. The parties identify the elements in the
intersection and compute homomorphically an encryption of the sum. A
proof of correctness for the shuffle is made with our protocol for CL and
with [BG12] for Elgamal.

5. Two party decryption and output. After the previous steps, both parties
obtain a ciphertext c = (c1, c2) encrypted with a shared two party key such
that tsk = tskA +tskB . Then A and B respectively compute c′2 = c2 · c−tskA

1

and c′′2 = c2 ·c−tskB
1 , prove correct half decryption and exchange these values.

6.2 Switching from Elgamal in the exponent to CL

As already stated, the use of the CL encryption scheme in the PSI-sum protocol
allows a larger range of messages, and makes the final decryption efficient.

In the protocol of [MPR+20], that uses Elgamal in the exponent, there must
be some upper bound B on the values of V , in order that the sum v is not
too large. We note that in their protocol after encrypting the vi’s, A does not
provide a proof that the resulting ciphertexts encrypts plaintexts < B. As a
result, a malicious A could add a large integer to one of the values, which would
prevent the other party to decrypt in the final step when this element is in
the intersection. In this case, A can still remove this large integer and obtain
the output. Although this does not constitute a proper attack as the malicious
adversary can abort before the ideal functionality gives its output to the honest
party, adding an argument that the ciphertexts are well formed can avoid this
type of denial-of-service behaviour. Note that the proof of security provided
in [MPR+20] did not take this into account. In particular, the simulator for
malicious A is supposed to decrypt the ciphertexts of all the vi to obtain the

34

Public parameters: a public key for vector CL, CL-pk ∈ Ĝm, a key tuple K ∈ Gm
for batched Pedersen commitments, a generator P for the PRF and commitments
Cx to Mx, and CkA , CkB to kA, kB .

Party A Party B
Input X = (xi)1≤i≤n ∈ (Z/qZ)n, Input kB ∈ Z/qZ

written Mx = (xi,j) ∈ (Z/qZ)ℓ×m,
kA ∈ Z/qZ

Secret key CL-sk associated to
CL-pk

A samples Ma
$←− (Z/qZ)ℓ×m,

ra
$←− (Z/qZ)ℓ, rα

$←− (Z/qZ)ℓ, and computes
αi,j = ai,j(kA + xi,j) and

Ca = Com(Ma; ra),Cα = Com(Mα; rα)

Ca,Cα,Σ1−−−−−−−−→

B encrypts kBIdm in
ckB = EncCL(CL-pk; kBIdm; r)

ckB
,Σ2

←−−−−−−

Let Mβ = kBMa +Mα ∈ Z/qZℓ×m.
A computes an encryption cβ of Mβ by
homomorphic operations: for i ∈ J1, ℓK,

cβ,i =

m⊗
j=1

(ckB ,j)
ai,j ⊗ EncCL(CL-pk;αi; rβ,i)

She also computes Gi,j = ai,jP.

G,cβ ,Σ3−−−−−→

B decrypts cβ to obtain Mβ ,
and computes yi,j := β−1

i,j Gi,j .
Output of Bob: (yi,j)i∈J1,ℓK,j∈J1,mK such that yi,j = FkA+kB (xi,j).

Fig. 10. Protocol for batched computations of DOPRF images

35

input that it provides to the functionality. Then it must be able to abort at this
point if one of the ciphertexts can not be decrypted. In particular, in order for
this proof of security to hold, A needs to provide at least an argument that she
knows the associated plaintexts.

Adding an argument that the ciphertexts are well-formed, i.e., that they
encrypt plaintexts < B, would require to use range proofs, that are expensive
processes. For our solution with CL ciphertexts, although there is no bound on
the plaintexts, an argument of well-formedness is needed in order to use our
verifiable shuffle. Such an argument can be efficiently computed, as exposed in
Section 3 and experimentally shown in Fig. 6.

Acknowledgements This research was supported by the French ANR Project
ANR-21-CE39-0006 SANGRIA and the France 2030 ANR Project ANR-22-
PECY-003 SecureCompute. The authors thank Lennart Braun for his feedback
on the C-rough order assumption.

References

AGM+. D. F. Aranha, C. P. L. Gouvêa, T. Markmann, R. S. Wahby, and K. Liao.
RELIC is an Efficient LIbrary for Cryptography. https://github.com/

relic-toolkit/relic.
AKTZ17. Nikolaos Alexopoulos, Aggelos Kiayias, Riivo Talviste, and Thomas

Zacharias. MCMix: Anonymous messaging via secure multiparty compu-
tation. In Engin Kirda and Thomas Ristenpart, editors, USENIX Security
2017: 26th USENIX Security Symposium, pages 1217–1234. USENIX Asso-
ciation, August 2017.

BBB+18. Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Wuille, and Greg Maxwell. Bulletproofs: Short proofs for confidential trans-
actions and more. In 2018 IEEE Symposium on Security and Privacy, pages
315–334. IEEE Computer Society Press, May 2018.

BC24. Claudia Bartoli and Ignacio Cascudo. On sigma-protocols and (packed)
black-box secret sharing schemes. In Qiang Tang and Vanessa Teague,
editors, PKC 2024: 27th International Conference on Theory and Practice
of Public Key Cryptography, Part II, volume 14602 of Lecture Notes in
Computer Science, pages 426–457. Springer, Cham, April 2024.

BCC+16. Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and
Christophe Petit. Efficient zero-knowledge arguments for arithmetic circuits
in the discrete log setting. In Marc Fischlin and Jean-Sébastien Coron, ed-
itors, Advances in Cryptology – EUROCRYPT 2016, Part II, volume 9666
of Lecture Notes in Computer Science, pages 327–357. Springer, Berlin, Hei-
delberg, May 2016.

BCD+24. Lennart Braun, Guilhem Castagnos, Ivan Damg̊ard, Fabien Laguillaumie,
Kelsey Melissaris, Claudio Orlandi, and Ida Tucker. An improved threshold
homomorphic cryptosystem based on class groups. In Clemente Galdi and
Duong Hieu Phan, editors, SCN 24: 14th International Conference on Se-
curity in Communication Networks, Part II, volume 14974 of Lecture Notes
in Computer Science, pages 24–46. Springer, Cham, September 2024.

36

https://github.com/relic-toolkit/relic
https://github.com/relic-toolkit/relic

BCIL23. Cyril Bouvier, Guilhem Castagnos, Laurent Imbert, and Fabien Laguillau-
mie. I want to ride my BICYCL : BICYCL implements CryptographY in
CLass groups. Journal of Cryptology, 36(3):17, July 2023.

BCKL08. Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyanskaya.
P-signatures and noninteractive anonymous credentials. In Ran Canetti,
editor, TCC 2008: 5th Theory of Cryptography Conference, volume 4948 of
Lecture Notes in Computer Science, pages 356–374. Springer, Berlin, Hei-
delberg, March 2008.

BDO23. Lennart Braun, Ivan Damg̊ard, and Claudio Orlandi. Secure multiparty
computation from threshold encryption based on class groups. In He-
lena Handschuh and Anna Lysyanskaya, editors, Advances in Cryptology
– CRYPTO 2023, Part I, volume 14081 of Lecture Notes in Computer Sci-
ence, pages 613–645. Springer, Cham, August 2023.

BG12. Stephanie Bayer and Jens Groth. Efficient zero-knowledge argument for
correctness of a shuffle. In David Pointcheval and Thomas Johansson, edi-
tors, Advances in Cryptology – EUROCRYPT 2012, volume 7237 of Lecture
Notes in Computer Science, pages 263–280. Springer, Berlin, Heidelberg,
April 2012.

BGR98. Mihir Bellare, Juan A. Garay, and Tal Rabin. Fast batch verification for
modular exponentiation and digital signatures. In Kaisa Nyberg, editor, Ad-
vances in Cryptology – EUROCRYPT’98, volume 1403 of Lecture Notes in
Computer Science, pages 236–250. Springer, Berlin, Heidelberg, May / June
1998.

BGR+24. Lennart Braun, Adrià Gascón, Mariana Raykova, Phillipp Schoppmann, and
Karn Seth. Malicious security for sparse private histograms. Cryptology
ePrint Archive, Report 2024/469, 2024.

CCL+19. Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta,
and Ida Tucker. Two-party ECDSA from hash proof systems and efficient
instantiations. In Alexandra Boldyreva and Daniele Micciancio, editors,
Advances in Cryptology – CRYPTO 2019, Part III, volume 11694 of Lecture
Notes in Computer Science, pages 191–221. Springer, Cham, August 2019.

CCL+20. Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta,
and Ida Tucker. Bandwidth-efficient threshold EC-DSA. In Aggelos Kiayias,
Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas, editors, PKC 2020:
23rd International Conference on Theory and Practice of Public Key Cryp-
tography, Part II, volume 12111 of Lecture Notes in Computer Science, pages
266–296. Springer, Cham, May 2020.

CEL+19. Chris Culnane, Aleksander Essex, Sarah Jamie Lewis, Olivier Pereira, and
Vanessa Teague. Knights and knaves run elections: Internet voting and
undetectable electoral fraud. IEEE Security & Privacy, 17(4):62–70, 2019.

Cha81. David L Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 24(2):84–90, 1981.

CL15. Guilhem Castagnos and Fabien Laguillaumie. Linearly homomorphic en-
cryption from DDH. In Kaisa Nyberg, editor, Topics in Cryptology – CT-
RSA 2015, volume 9048 of Lecture Notes in Computer Science, pages 487–
505. Springer, Cham, April 2015.

CLT18. Guilhem Castagnos, Fabien Laguillaumie, and Ida Tucker. Practical fully
secure unrestricted inner product functional encryption modulo p. In
Thomas Peyrin and Steven Galbraith, editors, Advances in Cryptology –
ASIACRYPT 2018, Part II, volume 11273 of Lecture Notes in Computer
Science, pages 733–764. Springer, Cham, December 2018.

37

CPP17. Geoffroy Couteau, Thomas Peters, and David Pointcheval. Removing the
strong RSA assumption from arguments over the integers. In Jean-Sébastien
Coron and Jesper Buus Nielsen, editors, Advances in Cryptology – EURO-
CRYPT 2017, Part II, volume 10211 of Lecture Notes in Computer Science,
pages 321–350. Springer, Cham, April / May 2017.

DF02. Ivan Damg̊ard and Eiichiro Fujisaki. A statistically-hiding integer commit-
ment scheme based on groups with hidden order. In Yuliang Zheng, editor,
Advances in Cryptology – ASIACRYPT 2002, volume 2501 of Lecture Notes
in Computer Science, pages 125–142. Springer, Berlin, Heidelberg, Decem-
ber 2002.

DMZ+21. Yi Deng, Shunli Ma, Xinxuan Zhang, Hailong Wang, Xuyang Song, and Xi-
ang Xie. Promise Σ-protocol: How to construct efficient threshold ECDSA
from encryptions based on class groups. In Mehdi Tibouchi and Huaxiong
Wang, editors, Advances in Cryptology – ASIACRYPT 2021, Part IV, vol-
ume 13093 of Lecture Notes in Computer Science, pages 557–586. Springer,
Cham, December 2021.

DY05. Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function
with short proofs and keys. In Serge Vaudenay, editor, PKC 2005: 8th
International Workshop on Theory and Practice in Public Key Cryptogra-
phy, volume 3386 of Lecture Notes in Computer Science, pages 416–431.
Springer, Berlin, Heidelberg, January 2005.

FS01. Jun Furukawa and Kazue Sako. An efficient scheme for proving a shuffle.
In Joe Kilian, editor, Advances in Cryptology – CRYPTO 2001, volume
2139 of Lecture Notes in Computer Science, pages 368–387. Springer, Berlin,
Heidelberg, August 2001.

Fur04. Jun Furukawa. Efficient, verifiable shuffle decryption and its requirement
of unlinkability. In Feng Bao, Robert Deng, and Jianying Zhou, editors,
PKC 2004: 7th International Workshop on Theory and Practice in Public
Key Cryptography, volume 2947 of Lecture Notes in Computer Science, pages
319–332. Springer, Berlin, Heidelberg, March 2004.

GI08. Jens Groth and Yuval Ishai. Sub-linear zero-knowledge argument for cor-
rectness of a shuffle. In Nigel P. Smart, editor, Advances in Cryptology –
EUROCRYPT 2008, volume 4965 of Lecture Notes in Computer Science,
pages 379–396. Springer, Berlin, Heidelberg, April 2008.

Gjø12. Kristian Gjøsteen. The norwegian internet voting protocol. In Aggelos
Kiayias and Helger Lipmaa, editors, E-Voting and Identity, pages 1–18,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

GKP22. Chaya Ganesh, Hamidreza Khoshakhlagh, and Roberto Parisella. NIWI
and new notions of extraction for algebraic languages. In Clemente Galdi
and Stanislaw Jarecki, editors, SCN 22: 13th International Conference on
Security in Communication Networks, volume 13409 of Lecture Notes in
Computer Science, pages 687–710. Springer, Cham, September 2022.

GL07. Jens Groth and Steve Lu. Verifiable shuffle of large size ciphertexts. In
Tatsuaki Okamoto and Xiaoyun Wang, editors, PKC 2007: 10th Interna-
tional Conference on Theory and Practice of Public Key Cryptography, vol-
ume 4450 of Lecture Notes in Computer Science, pages 377–392. Springer,
Berlin, Heidelberg, April 2007.

GLSY04. Rosario Gennaro, Darren Leigh, R. Sundaram, and William S. Yerazu-
nis. Batching Schnorr identification scheme with applications to privacy-
preserving authorization and low-bandwidth communication devices. In

38

Pil Joong Lee, editor, Advances in Cryptology – ASIACRYPT 2004, vol-
ume 3329 of Lecture Notes in Computer Science, pages 276–292. Springer,
Berlin, Heidelberg, December 2004.

GMP. GMP. The GNU Multiple Precision Arithmetic Library. https://gmplib.
org/.

HFH99. Bernardo A. Huberman, Matt Franklin, and Tad Hogg. Enhancing privacy
and trust in electronic communities. In Proceedings of the 1st ACM Con-
ference on Electronic Commerce, EC ’99, page 78–86, New York, NY, USA,
1999. Association for Computing Machinery.

HKR19. Max Hoffmann, Michael Klooß, and Andy Rupp. Efficient zero-knowledge
arguments in the discrete log setting, revisited. In Lorenzo Cavallaro, Jo-
hannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS
2019: 26th Conference on Computer and Communications Security, pages
2093–2110. ACM Press, November 2019.

HMV03. Darrel Hankerson, Alfred J. Menezes, and Scott Vanstone. Guide to Elliptic
Curve Cryptography. Springer-Verlag, Berlin, Heidelberg, 2003.

IKN+17. Mihaela Ion, Ben Kreuter, Erhan Nergiz, Sarvar Patel, Shobhit Saxena,
Karn Seth, David Shanahan, and Moti Yung. Private intersection-sum pro-
tocol with applications to attributing aggregate ad conversions. Cryptology
ePrint Archive, Report 2017/738, 2017.

IKN+20. Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Shobhit
Saxena, Karn Seth, Mariana Raykova, David Shanahan, and Moti Yung.
On deploying secure computing: Private intersection-sum-with-cardinality.
In IEEE European Symposium on Security and Privacy, EuroS&P 2020,
Genoa, Italy, September 7-11, 2020, pages 370–389. IEEE, 2020.

MPR+20. Peihan Miao, Sarvar Patel, Mariana Raykova, Karn Seth, and Moti Yung.
Two-sided malicious security for private intersection-sum with cardinality.
In Daniele Micciancio and Thomas Ristenpart, editors, Advances in Cryptol-
ogy – CRYPTO 2020, Part III, volume 12172 of Lecture Notes in Computer
Science, pages 3–33. Springer, Cham, August 2020.

Nef01. C. Andrew Neff. A verifiable secret shuffle and its application to e-voting.
In Michael K. Reiter and Pierangela Samarati, editors, ACM CCS 2001:
8th Conference on Computer and Communications Security, pages 116–125.
ACM Press, November 2001.

NSK04. Lan Nguyen, Reihaneh Safavi-Naini, and Kaoru Kurosawa. Verifiable shuf-
fles: A formal model and a Paillier-based efficient construction with prov-
able security. In Markus Jakobsson, Moti Yung, and Jianying Zhou, editors,
ACNS 04: 2nd International Conference on Applied Cryptography and Net-
work Security, volume 3089 of Lecture Notes in Computer Science, pages
61–75. Springer, Berlin, Heidelberg, June 2004.

NSK06. Lan Nguyen, Rei Safavi-Naini, and Kaoru Kurosawa. Verifiable shuffles: a
formal model and a paillier-based three-round construction with provable
security. International Journal of Information Security, 5:241–255, 2006.

SBDG23. Chiara Spadafora, Michele Battagliola, Giuseppe D’Alconzo, and Andrea
Gangemi. Multiparty class group encryption and applications to e-voting.
CIFRIS23, 2023.

Tuc20. Ida Tucker. Functional encryption and distributed signatures based on pro-
jective hash functions, the benefit of class groups. PhD thesis, École Normale
Supérieure de Lyon, 2020.

39

https://gmplib.org/
https://gmplib.org/

Wik05. Douglas Wikström. A sender verifiable mix-net and a new proof of a shuffle.
In Bimal K. Roy, editor, Advances in Cryptology – ASIACRYPT 2005, vol-
ume 3788 of Lecture Notes in Computer Science, pages 273–292. Springer,
Berlin, Heidelberg, December 2005.

YCX21. Tsz Hon Yuen, Handong Cui, and Xiang Xie. Compact zero-knowledge
proofs for threshold ECDSA with trustless setup. In Juan Garay, editor,
PKC 2021: 24th International Conference on Theory and Practice of Pub-
lic Key Cryptography, Part I, volume 12710 of Lecture Notes in Computer
Science, pages 481–511. Springer, Cham, May 2021.

A Variants of CL encryption

A.1 Two-party CL encryption

Given a security parameter λ, a prime number q and (Ĝ, s̃, g, h, f,SolveDL), the
output of SetupCL(1

λ, q), one can construct a two-party encryption scheme as
follows:

– A generates its keys with (CL-skA,CL-pkA)← KeyGenCL(Ĝ, s̃, g, h, f), simi-

larly B generates (CL-skB ,CL-pkB)← KeyGenCL(Ĝ, s̃, g, h, f)
– CL-sk ← CL-skA + CL-skB and CL-pk ← CL-pkA · CL-pkB . The key CL-pk is

public, while CL-sk is unknown to both A and B.
– The encryption is done normally using the public key CL-pk.
– The decryption is done in two party as follows: for a ciphertext c = (c1, c2),

A computes c′2 = c2 · c−CL-skA
1 , and sends it to B. Then B can decrypt

normally, computing first d = c′2·c
−CL-skB
1 , and retrieving the message bym =

SolveDL(d). If both parties want to retrieve the message, these operations are
done symetrically.
In the case in which A can be malicious, B can ask him to prove in a zero-
knowledge argument (or HVZK-AwPE) that he performed the half decryption
honestly.

We use this encryption scheme in the PSI protocol exposed in Figure 9 to encrypt
the values, so that both parties can decrypt together the sum in the last step.

A.2 Vector CL encryption

For efficiency purpose, we can reduce the size of CL ciphertexts for a batch of m
messages by sharing randomness. Instead of using one randomness for each mes-
sage to be encrypted, we only use one for the vector. To allow this, each key (pub-
lic or private) will be a vector of m keys, i.e., if sk = (CL-sk1, . . . ,CL-skm), then
the associated public key is pk = (CL-pk1, . . . ,CL-pkm) = (hCL-sk1 , . . . , hCL-skm).

For a = (a1, . . . , am) a vector in (Z/qZ)m, we denote EncCL(pk;a; r) the

encryption of a under the public key pk, and with randomness r
$←− DH . It

stands for

EncCL(pk;a; r) = (hr,CL-pkr1f
a1 , . . . ,CL-pkrmfam).

40

With this transformation, a ciphertext encrypts m values in m+ 1 components
instead of 2m if we encrypted separately the values.

We denote DecCL(sk; c) the decryption of c under the secret key sk, which
is computed as follows:

DecCL(sk; c0, . . . , cm) =
(
SolveDL

(
c1 · c−CL-sk1

0

)
, . . . ,SolveDL

(
cm · c−CL-skm

0

))
.

In order to simplify the notations, we also define the encryption of a matrix
Ma = (ai)i∈J1,ℓK of size ℓ ×m. If pk is a public key and r = (r1, . . . , rℓ) is a
vector of ℓ randomnesses,

EncCL(pk;Ma; r)

denotes a vector of ℓ ciphertexts, such that for every i ∈ J1, ℓK, the i-th ciphertext
encrypts the i-th row of Ma with randomness ri, ie

EncCL(pk;Ma; r) = (c1, . . . , cℓ),

with for every 1 ≤ i ≤ ℓ,

ci = EncCL(pk;ai; ri).

The encryption of a matrix of size ℓ×m thus contains ℓ(m+ 1) elements of
the class group.

B Rewinding procedures

We consider a ZK protocol in which the challenge sent by the verifier is of the
form x = (x1, . . . , xn) where the xi’s are independent and uniformly random in
J0, CJ and n > 1. Figure 1 is an example of such a protocol. We fix a statement
S and a prover P that has probability ε of making the verifier accept the proof
on the statement S.

We design an algorithm that outputs in expected polynomial time a set of
challenges x1,x

′
1, . . . ,xn,x

′
n such that for any i ∈ J1, nK, the coordinates of xi

and x′
i are the same, except for the i-th coordinate. Moreover, for all i, there

exists a set of random coins Ri such that, if the prover uses Ri as its random
coins, then the proof is accepting for both challenges xi and x′

i.
The next two lemmas essentially follows the rewinding algorithm of [DF02],

slightly adapted to match the case in which the challenge has n independent
components. They are exposed mainly for completeness, and to allow a better
understanding of Lemma 4.

To visualize the situation, we define M the success matrix of P on the state-
ment S. Precisely, M is a matrix in which each row corresponds to a possible
set R of random coins for P, and each of the Cn columns corresponds to a value
of the challenge x = (x1, . . . , xn). The matrix contains a one in the i-th row
and the j-th column if P makes V accept for the i-th set of random coins and

41

the j-th challenge, and a zero otherwise. Therefore, the proportion of ones is ε.
First, we organize the columns of the matrix by blocks:

M = [M1| . . . |MCn−1] ,

where each block corresponds to a fixed value of the n−1 coordinates x2, . . . , xn,
i.e., each block has C columns, each corresponding to a value of x1.

Now finding the first pair x1,x
′
1 is just finding two ones in the same block

and the same row of the matrix. We now specify the rewinding algorithm:

1. Choose a random entry in the matrix M , and repeat until finding a one.
2. Run in parallel two algorithms:

(a) Choose a random entry in the same block and row as the first one found,
and repeat until finding a one.

(b) Flip a coin that has probability ε/w of coming out heads until heads comes
out.

The algorithm ends when either (a) or (b) ends.

Fig. 11. Algorithm TryExtract

Lemma 2. Suppose ε ≥ 4/C. Set w = 13, then the algorithm TryExtract pre-
sented in Figure 11 has an expected running time E[T] ≤ 14/ε and finds two
ones in the same combination of block and row with probability p ≥ 1/8.

Proof. Let us first study the algorithm Algoa of line (a). We consider the event
E: “the one found in step 1 is in a combination block/row with a proportion at
least ε/2 of ones”. In this case, the number of other ones in the same block/row
is at least Cε/2− 1, so each trial to find another one has a probability of success

of at least Cε/2−1
C . Its expected running time is

E(Ta | E) ≤ C
Cε/2− 1

·

As soon as ε ≥ 4/C, one has E[Ta | E] ≤ 4/ε. In particular, by Markov inequality,

P(Ta ≥ 8/ε | E) ≤ 1/2.

Moreover, at least half of the ones are in a row/block with a proportion at least
ε/2 of ones, i.e., P(E) ≥ 1/2.

The algorithm of line (b) is a succession of identical trials with probability of
success ε/13. The probability that the first success happens after the m-th trial
is

P(Tb ≥ m) = (1− ε/13)
m−1

.

42

In particular, one can show that P(Tb ≥ 8/ε) ≥ 1/2. Finally,

P(Algoa ends) ≥ P(Algoa ends ∧ E)
≥ P(Algoa ends | E)/2
≥ P((Ta ≤ 8/ε) ∧ (Tb ≥ 8/ε) | E)/2
≥ P (Ta ≤ 8/ε | E) · P (Tb ≥ 8/ε)/2
≥ 1/8.

Moreover, the expected running time for step 2 is at most the expected running
time of (b), so 13/ε, and the expected running time of step 1 is 1/ε (the time to
find a one in a matrix with proportion ε of ones), so that the expected running
time of the algorithm of Figure 11 is at most 14/ε. ⊓⊔

Lemma 3. If there is a prover P = (P1,P2) with probability ε ≥ 4/C of making
the verifier accept the proof on a statement S, then there exists an algorithm
running in expected time

E[T] ≤ 112n

ε

that outputs n pairs (x1,x
′
1), . . . , (xn,x

′
n) such that for every i ∈ J1, nK, xi and

x′
i differ only by their i-th coordinate.
Moreover, there exist n sets of prover’s random coins R1, . . . ,Rn such that

for all i, (P1(S,Ri),xi,P2(S,Ri,xi)) and (P1(S,Ri),x
′
i,P2(S,Ri,x

′
i)) are two

accepting transcripts.

Proof. We set w = 13 and define the following algorithm: for i ∈ J1, nK, we
define Mi = [Mi,1| . . . |Mi,Cn−1] to be the matrix M in which we reorganized
the columns so that each block Mi,j corresponds to a given value of (xk)k ̸=i.
We repeat the algorithm TryExtract until it finds two ones in the same row of a
same block, which corresponds to a pair xi,x

′
i (and a prover’s randomness Ri).

Given that the probability of success of TryExtract is at least 1/8, the expected
number of repetitions between two successes is 8, and so the expected number
of instances to find all the n pairs is 8n. This algorithm runs in expected time

E[T] ≤ 112n

ε
·

⊓⊔

We underline that in Lemma 3, the prover’s random coins asociated with
the accepted transcripts is different for each couple of challenges. This type of
rewinding is sufficient for extraction whenever the different components of the
challenges do not “interact” in the argument of knowledge. The proof presented
in Fig. 1 is such an example: each ciphertext is associated to only one component
of the challenge, and the relation proved can be proved independently on each
ciphertext.

However, in a case in which the components interact (as in the proof of
Fig. 2), we need a stronger property. We now construct an algorithm that is
able to find in polynomial time n pairs of challenges (x1,x

′
1), . . . , (xn,x

′
n) as

43

before, except that there exists a unique prover’s random coins that make these
challenges accepting.

In the matricial modelization, the first situation corresponds to finding two
ones in a same row and in a same block, and repeating the operation n times;
while the second situation corresponds to finding 2n ones in a same row, that
have to be distributed in a particular way. Concretely, the algorithm first looks
for a one in the matrix which fixes a row, and from this point, restricts its
browsing to only this row, hoping that the chosen row contains enough ones.

Lemma 4. If there is a prover P = (P1,P2) that makes the verifier accept the
proof on a statement S with probability ε ≥ 8/C, then there exists an algorithm
running in expected time

E(T) ≤ 4(1 + 390n log n)

ε

that outputs n pairs of challenges (x1,x
′
1), . . . , (xn,x

′
n) such that for every i, xi

and x′
i differ only by their i-th coordinate.

Moreover, there exists a set of random coins R and 2n answers such that
for all i, (P1(S,R),xi,P2(S,R,xi)) and (P1(S,R),x′

i,P2(S,R,x′
i)) are two

accepting transcripts.

Proof. In Figure 12, we define the algorithm TryExtractRepeat, with integers
parameters w and t.

1. Choose a random entry in M , and repeat until finding a one. Denote L the
row of this one.

2. For i in J1, nK, reorganize the columns of L as Li =
[
ℓi,1| . . . |ℓi,Cn−1

]
, such

that each ℓi,j corresponds to a possible value for (xk)k ̸=i. Repeat t times the
algorithm TryExtract on the row Li to find two ones in a same block ℓi,j .

Fig. 12. Algorithm TryExtractRepeat

We fix w = 24 and

t =

⌈
log (1− exp (− log(2)/n))

log(7/8)

⌉
.

Let E be the following event: “the one found in step 1 is in a row with a
proportion at least ε/2 of ones”. Then E has probability at least 1/2 of happen-
ing. If E happens, then for every i ∈ J1, nK, in step 2, the algorithm TryExtract
is run on a matrix with a proportion at least ε/2 ≥ 4/C of ones. Doing the
same computations as in the proof of Lemma 3, Algoa in TryExtract runs in time
Ta ≤ 16/ε with probability at least 1/2, and Algob has probability

P[Tb ≥ 16/ε] = (1− ε/w)
⌈16/ε⌉−1 ≥ 1/2

44

of exceeding this time. So TryExtract succeeds with probability at least 1/8, and
runs in expected time

E[T1] ≤
2

ε
+

w

ε
=

2 + w

ε
·

Now, if we repeat this t times, the probability that at least one of the instances
of TryExtract succeeds is pi ≥ 1− (7/8)t. We do this for every i ∈ J1, nK, so there
is a probability

p ≥
(
1− (7/8)t

)n
,

that for every i, at least one of the t instances succeeds.
Our choice of t ensures that p ≥ 1/2. This means that knowing that E

happens, the probability that we find a pair xi,x
′
i for every i ∈ J1, nK is at least

one half. So the probability of success of TryExtractRepeat is

P[TryExtractRepeat succeeds] ≥ P[E]× p ≥ 1/4.

Moreover, the expected running time of TryExtractRepeat is

E[T2] ≤
1 + nt(2 + w)

ε
·

Finally, consider the algorithm that repeats TryExtractRepeat until it is suc-
cessful. The expected number of repetitions is 4, and its expected running time
is

E[T] ≤ 4(1 + nt(w + 2))

ε
·

One can show that t ≤ 15 log n, for n > 1, which gives the bound on the expected
running time. ⊓⊔

45

	Efficient Succinct Zero-Knowledge Arguments in the CL Framework

