
©IACR 2025. This is the full version of an article that will be published in the proceedings of PKC 2025.

Kleptographic Attacks against Implicit Rejection
Antoine Joux 1 Julian Loss 1 Benedikt Wagner ∗ 2

February 27, 2025

1 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
{joux,loss}@cispa.de

2 Ethereum Foundation, Berlin, Germany
benedikt.wagner@ethereum.org

Abstract
Given its integral role in modern encryption systems such as CRYSTALS-Kyber, the Fujisaki-

Okamoto (FO) transform will soon be at the center of our secure communications infrastructure. An
enduring debate surrounding the FO transform is whether to use explicit or implicit rejection when
decapsulation fails. Presently, implicit rejection, as implemented in CRYSTALS-Kyber, is supported
by a strong set of arguments. Therefore, understanding its security implications in different attacker
models is essential.

In this work, we study implicit rejection through a novel lens, namely, from the perspective of
kleptography. Concretely, we consider an attacker model in which the attacker can subvert the user’s
code to compromise security while remaining undetectable. In this scenario, we present three attacks
that significantly reduce the security level of the FO transform with implicit rejection.

Keywords: Kleptography, Implicit Rejection, Chosen-Ciphertext Security, Fujisaki-Okamoto
Transform, Kyber

∗This work was done while the author was at CISPA Helmholtz Center for Information Security.

https://orcid.org/0000-0003-2682-6508
https://orcid.org/0000-0002-7979-3810
https://orcid.org/0000-0002-4620-7264
mailto:{\@@par }
mailto:{\@@par }
mailto:{\@@par }
mailto:{\@@par }

Contents
1 Introduction 3

1.1 Our Contribution . 4
1.2 More on Related Work . 5
1.3 Outline . 5

2 Preliminaries 5

3 Kleptographic Model 7

4 Our Attacks 10
4.1 Subverting Decapsulation Only . 11
4.2 Subverting Key Generation Only . 13
4.3 An Attack with Preprocessing . 15

5 Discussion and Countermeasures 20

A Script for Attack Complexity and Advantage 26

2

1 Introduction
In response to the threat posed by large-scale quantum computers, NIST hosted a competition to
standardize quantum-secure cryptography [NIS17], including key encapsulation mechanisms (KEMs) and
digital signatures. The design underlying a large portion of the submitted KEMs follows a two-step
approach:

1. One constructs a public key encryption scheme (PKE) secure against chosen-plaintext attacks
(CPA) [GM84]. Concretely, one-wayness (OW-CPA) is required.

2. CPA security is lifted to obtain a KEM secure against chosen-ciphertext attacks (IND-CCA) [NY90,
RS92]. This is accomplished using a generic transformation in the random oracle model due to
Fujisaki and Okamoto [FO99].

For example, this approach is taken by CRYSTALS-Kyber [SAB+22, ABD+21], a winner of the competi-
tion that has been selected for standardization.
Fujisaki-Okamoto. The Fujisaki-Okamoto (FO) transform [FO99, HHK17] generically transforms
OW-CPA security into IND-CCA security, in the (quantum) random oracle model. Specifically, assuming
a OW-CPA secure PKE, the FO transform yields an IND-CCA secure KEM. In simplified terms, this
KEM is constructed as follows: To encapsulate a key, a random string m is chosen and encrypted via
PKE. Crucially, the encryption coins are deterministically derived from m. The encapsulated key is
then pseudorandomly derived from m and the ciphertext. During decapsulation, the ciphertext is first
decrypted to obtain m, followed by a consistency check through re-encryption. Decapsulation only derives
and outputs K if this consistency check succeeds.

Building on this basic template, several variants of the FO transform have been proposed and analyzed,
e.g., [Den03, HHK17]. Given that the FO transform will soon be the backbone of post-quantum secure
communication, it is essential to have a clear understanding of these variants in different attacker models.
Implicit vs. Explicit Rejection. A key point of discussion in the context of the FO transform is the
behavior of decapsulation when the consistency check fails. Specifically, two approaches are debated: The
FO transformed KEM with explicit rejection outputs a dedicated failure symbol ⊥. Contrary to that, the
implicit rejection variant outputs an implicit rejection key K which is pseudorandomly derived from the
ciphertext and a secret seed s. This seed s is only used for implicit rejection and can be thought of as a
secondary secret key. While explicit rejection seems more intuitive, implicit rejection is widely preferred,
which is evidenced, for instance, by its adoption in Kyber. This preference mostly stems from tighter
security bounds for implicit rejection in the quantum random oracle model (QROM) [BDF+11]: a long
line of work [SXY18, JZC+18, BHH+19, HKSU20, KSS+20] has improved the tightness for the implicit
rejection variant, while progress for explicit rejection has been more recent [DFMS22, HHM22].

The goal of this work is to deepen our understanding of the security implications associated with
implicit and explicit rejection. To this end, we extend the study of rejection to the context of subversion.
Specifically, we want to understand if implicit rejection gives additional leverage to a powerful attacker
who can manipulate a user’s code to attack users.
Kleptography. Kleptography dates back to works by Young and Yung in the 1990s [YY96, YY97a] and
considers the strong attacker model outlined above. In essence, a kleptographic attacker can manipulate
or fully replace a user’s code of a cryptographic system. The primary goal of such an attacker is twofold:
firstly, the attack should be successful. That is, the attacker successfully breaches the security of any
victim utilizing the manipulated cryptosystem, e.g., gaining access to encrypted messages. Secondly, the
attack must remain undetectable. Concretely, the victim should not be able to tell apart the manipulated
code from the benign code when having black-box access. To accomplish this task, the kleptographic
attacker itself utilizes cryptography.

Achieving these objectives renders kleptographic attacks challenging yet exceedingly valuable for
state-level actors or malevolent vendors. Not even expert users carefully check the code they use, and
even if they were inclined to do so, cryptographic code is often obfuscated or stored in secure modules.
Consequently, as long as a kleptographic attack is undetectable as outlined above, users have no chance
to discern malicious code.

One can further strengthen the undetectability requirement by demanding that no other actor B
apart from the kleptographic attacker A can carry out the attack on A’s behalf, even if B can detect

3

Attack Subvert Public Key Memory Time Offline Time Online Advantage
Section 4.1 Decaps ✓ 28 20 22 0.997
Section 4.2 Key Gen ✗ 27 20 2130 0.999
Section 4.3 Key Gen ✗ 2111 2154 2106 0.692

Table 1: Overview of the kleptographic attacks that we introduce against implicit rejection, applied to
Kyber [ABD+21]. We assume that Kyber has spreadness (see Definition 2) γ ≤ 1/1000. The complexities
and advantage are computed using a Python script given in Appendix A.

the presence of A in the victim’s system. To motivate this stronger undetectability notion, consider a
scenario where the attack is deployed widely, targeting a large user base. The kleptographic attacker,
say an intelligence agency A, wants to use this to its advantage over a second agency B. Now, envision
agency B is investing substantial resources to reverse-engineer the compromised code and extract all
embedded information. Ideally, agency A would hope that even with this information, agency B cannot
carry out the attack. We refer to this strong notion of undetectability as public key.

1.1 Our Contribution
In this work, we study implicit rejection in the Fujisaki-Okamoto transform from the perspective of
kleptography. Concretely, we develop three ways to subvert parts of the resulting KEM code that
significantly reduce the security level of the KEM while being undetectable. We discuss potential
countermeasures (and why they fall short) in Section 5. All of our attacks only tamper with code related
to the implicit rejection path:

• Subverting Decapsulation. In our first attack, we subvert the implicit rejection path of the decap-
sulation algorithm by making the implicit rejection key depend on the victim’s secret key. This
attack is public key: even given all the information embedded by the attacker in the subverted
code, one can not distinguish the subverted algorithm from the honest one. Especially, a user who
reverse-engineers the subverted algorithm will not have a significant advantage in breaking the
scheme for other subverted users.

• Subverting Key Generation. Our second attack does not modify the code of decapsulation. Instead,
we show how to modify the code generating the seed s to leak information about the actual secret
key. This attack embeds the attacker’s secret into the subverted algorithm and is undetectable as
long as the code is not reverse-engineered.

• Preprocessing. As a variant of our second attack, we show how to leverage a variant of Hellman
tables [Hel80] to speed up the online phase of the attack.

Our attacks are simple, which should be considered a feature. This is what makes them especially
interesting for an attacker and therefore especially dangerous.

To exemplify the complexity and success probabilities of our attacks, we consider Kyber [ABD+21] as
a running example. We present the results in Table 1. Notably, our first attack results in a complete
break of Kyber, whereas our second and third attacks halve the desired security level of 256 bit against
classical adversaries. A quantum adversary can further speed up the running time of our second attack
using two applications of Grover’s algorithm [Gro96], in which case about 64 bits of quantum security
would remain.

The takeaway from our results is a vulnerability of implicit rejection: if the subverted KEM is used in
certain settings, it can serve as a side channel that is remarkably challenging to identify. Contrary to
popular belief, implicit rejection is not necessarily superior in every aspect.
Limitations. Our attacks have several limitations, in addition to requiring a strong kleptographic
attacker. Our first attack only applies if the attacker has direct access to a decapsulation oracle, which
may not be the case in practice. Our second and third attack, while reducing the security level, still take
a significant amount of time and are therefore not practical. For more discussion, we refer to Section 5.

4

1.2 More on Related Work
Here, we discuss related work, including works on the Fujisaki-Okamoto transform, implicit vs. explicit
rejection, and kleptography.
Fujisaki-Okamoto Transform. The Fujisaki-Okamoto (FO) transform has been introduced originally
by Fujisaki and Okamoto [FO99, FO13] to generically construct chosen-ciphertext secure public key
encryption in the random oracle model. The version that results in a chosen-ciphertext secure key
encapsulation mechanism and is now the standard is due to Dent [Den03]. In his PhD thesis [Per12],
Persichetti is the first to propose implicit rejection for the FO transform. Hofheinz, Hövelmanns, and
Kiltz [HHK17] gave a modular analysis of the FO transform in presence of correctness errors. They analyze
both implicit and explicit rejection in the random oracle model. Additionally, they propose a variant of
the FO transform that they analyze in the quantum random oracle model (QROM) [BDF+11]. Later,
the FO transform with implicit rejection has also been analyzed in the QROM [JZC+18] with a non-tight
security bound. By including public keys as input for the hash functions, Duman et al. [DHK+21] have
improved the security bounds for multi-user security both in the ROM and QROM. Their techniques
work for both explicit and implicit rejection.
Implicit vs. Explicit Rejection. In the work of Hofheinz, Hövelmanns, and Kiltz [HHK17], implicit
rejection (as opposed to explicit rejection) does not require the underlying key encapsulation mechanism
to have spreadness, which can result in more efficient parameters. Since then, a long line of work has
analyzed the FO transform and its variants in the QROM [SXY18, JZC+18, BHH+19, HKSU20, KSS+20].
These works improve the concrete security bound significantly, but most of the techniques only apply to
implicit rejection. The recent work of Hövelmanns, Hülsing, and Majenz [HHM22] improves the QROM
security bound for the explicit rejection variant of the FO transform, thereby decreasing the tightness
gap. Implicit rejection is implemented in Kyber, where it is argued that this has the practical advantage
that “implementations of Kyber’s decapsulation are safe to use even if higher level protocols fail to check
the return value” [ABD+21].
Kleptography. Kleptography has been introduced and first studied by Young and Yung [YY96, YY97a].
Early works [YY96, YY97a, YY97b, YY01] present attacks against RSA, DSA, the Diffie-Hellman key
exchange, and more. All of these works use rather informal definitions to model kleptographic attacks.
With the Snowden revelations, there has been a renewed focus on kleptography under the term algorithm-
substitution attacks [BPR14, DFP15, BJK15]. These works include attacks on symmetric encryption
schemes and a formal model for attacks and what it means to resist a subversion attack. The same has
been done for signature schemes [AMV15]. Armour and Poettering [AP22] have presented a model for
a very general class of algorithm-substitution attacks which also applied to public key encryption. In
contrast, our model is more tailored to the FO transform and highlights that only the implicit rejection
part of the code is subverted. Cryptographic constructions secure against kleptography (what is called the
complete subversion model) have further been studied in [RTYZ16, TY17, RTYZ17]. Examples of partial
subversion of cryptographic systems include randomness subversion [BBN+09, BH15] or subversion of
common reference strings [BFS16, Fuc18].
Kleptography against Post-Quantum KEMs. Ravi et al. present kleptographic attacks against
Kyber [RBC+22]. Their work uses properties specific to lattices to introduce a backdoor in the key
generation algorithm. In contrast to that, our work treats the FO transform generically and we only use
Kyber as a running example.

1.3 Outline
We structure the rest of the paper as follows. First, we recall the Fujisaki-Okamoto transform [FO99,
Den03, HHK17] and other important preliminaries in Section 2. Then, in Section 3, we introduce the
formal model in which we will present and analyze our kleptographic attacks. In Section 4, we present
and analyze our attacks. Finally, in Section 5, we discuss our results and potential countermeasures.

2 Preliminaries
Here, we fix common notation, recall relevant cryptographic primitives, and the Fujisaki-Okamoto
transform [FO99, HHK17].

5

Notation. For a finite set S, we write s $← S when s is sampled uniformly at random from S. For a
probabilistic algorithm Alg, we write y := Alg(x; ρ) to denote the process of running Alg with random
coins ρ on input x and storing the output in y. If ρ is sampled uniformly at random from a randomness
space defined by the algorithm, we write y ← Alg(x). The notation y ∈ Alg(x) means that there are coins
ρ such that Alg(x; ρ) outputs y. We denote the running time of Alg by T(Alg).
Cryptographic Primitives. We recall relevant cryptographic primitives, namely, public key encryption
(PKE) and key encapsulation mechanisms (KEMs). We start with public key encryption.

Definition 1 (Public Key Encryption). A public key encryption scheme with public key space {0, 1}ℓp ,
secret key space {0, 1}ℓs , message space {0, 1}ℓm , randomness space {0, 1}ℓr , and ciphertext space {0, 1}ℓc

is a triple PKE = (Gen, Enc, Dec) of algorithms with the following syntax:

• Gen → (pk, sk) does not take any input and outputs a public key pk ∈ {0, 1}ℓp and a secret key
sk ∈ {0, 1}ℓs .

• Enc(pk, m)→ c takes as input a public key pk ∈ {0, 1}ℓp and a message m ∈ {0, 1}ℓm , and outputs
a ciphertext c ∈ {0, 1}ℓc . We assume it uses randomness ρ ∈ {0, 1}ℓr and write Enc(pk, m; ρ) to
make the randomness explicit.

• Dec(sk, c)→ m is deterministic, takes as input a secret key sk ∈ {0, 1}ℓs and a ciphertext c ∈ {0, 1}ℓc ,
and outputs a message m ∈ {0, 1}ℓm or ⊥.

Further, we say that the scheme has correctness error at most δ ∈ [0, 1], if we have

E
(pk,sk)

[
max

m
Pr
c

[Dec(sk, c) ̸= m]
]
≤ δ,

where (pk, sk)← Gen, m ∈ {0, 1}ℓm , and c← Enc(pk, m).

The next definition, following [FO99, HHK17], introduces spreadness of a public key encryption
scheme. Intuitively, if spreadness is large, then ciphertexts have high min-entropy. We can naturally
assume that schemes have large spreadness, i.e., it is unlikely that a fixed ciphertext is hit when encrypting.
In the context of our attacks, we will sample random ciphertexts and submit them to the decapsulation
oracle. We will need to bound the probability that such a ciphertext is valid, i.e., does not trigger implicit
rejection. Spreadness will be useful for this.

Definition 2 (Spreadness). Let PKE = (Gen, Enc, Dec) be a public key encryption scheme with ran-
domness space {0, 1}ℓr , message space {0, 1}ℓm , and ciphertext space {0, 1}ℓc . We say that PKE has
spreadness at most γ ∈ [0, 1], if

E
(pk,sk)

[
max
m,c

Pr
ρ

[Enc(pk, m; ρ) = c]
]
≤ γ,

where (pk, sk)← Gen, m ∈ {0, 1}ℓm , c ∈ {0, 1}ℓc , and ρ $← {0, 1}ℓr .

As a tool in our first attack, we need a public key encryption for which ciphertexts are indistinguishable
from random strings. There are many natural examples of such schemes, e.g., [ElG84, Reg05].

Definition 3 (IND-CPA-R Security). Let PKE = (Gen, Enc, Dec) be a public key encryption scheme with
message space {0, 1}ℓm and ciphertext space {0, 1}ℓc . Let D be an algorithm. The IND-CPA-R advantage
of PKE is defined to be

AdvIND-CPA-R
D,PKE :=

∣∣∣Pr
[
IND-CPA-RD

PKE,0 ⇒ 1
]
− Pr

[
IND-CPA-RD

PKE,1 ⇒ 1
]∣∣∣ ,

where game IND-CPA-R is given in Figure 1.

Next, we turn to the definition of key encapsulation mechanisms, which are closely related to public
key encryption. Intuitively, we can think of a key encapsulation mechanism as encrypting a random
key. Conversely, we can obtain public key encryption by combining a key encapsulation mechanism with
symmetric encryption.

6

Game IND-CPA-RD
PKE,0

01 (pk, sk)← Gen
02 (m, St)← D(pk)
03 if m /∈ {0, 1}ℓm : return 0
04 c← Enc(pk, m)
05 return b← D(St, c)

Game IND-CPA-RD
PKE,1

06 (pk, sk)← Gen
07 (m, St)← D(pk)
08 if m /∈ {0, 1}ℓm : return 0
09 c $← {0, 1}ℓc

10 return b← D(St, c)

Figure 1: The IND-CPA-R game IND-CPA-R for a distinguisher D and a public key encryption scheme
PKE = (Gen, Enc, Dec) with message space {0, 1}ℓm and ciphertext space {0, 1}ℓc .

Definition 4 (Key Encapsulation Mechanism). A key encapsulation mechanism with public key space
{0, 1}ℓp , secret key space {0, 1}ℓs , randomness space {0, 1}ℓr , ciphertext space {0, 1}ℓc , and key space
{0, 1}ℓk is a triple KEM = (Gen, Encaps, Decaps) of algorithms with the following syntax:

• Gen → (pk, sk) does not take any input and outputs a public key pk ∈ {0, 1}ℓp and a secret key
sk ∈ {0, 1}ℓs .

• Encaps(pk)→ (K, c) takes as input a public key pk ∈ {0, 1}ℓp and outputs a key K ∈ {0, 1}ℓk and
a ciphertext c ∈ {0, 1}ℓc . We assume it uses randomness ρ ∈ {0, 1}ℓr and write Encaps(pk; ρ) to
make the randomness explicit.

• Decaps(sk, c) → K is deterministic, takes as input a secret key sk ∈ {0, 1}ℓs and a ciphertext
c ∈ {0, 1}ℓc , and outputs a key K ∈ {0, 1}ℓk or ⊥.

Further, we say that the scheme has correctness error at most δ ∈ [0, 1], if we have

Pr [Decaps(sk, c) ̸= K | (pk, sk)← Gen, (K, c)← Encaps(pk)] ≤ δ.

Fujisaki-Okamoto. The Fujisaki-Okamoto transform [FO99, Den03, HHK17] turns a public key
encryption scheme into a key encapsulation mechanism. It is used to generically achieve indistinguishability
under chosen-ciphertext attacks. More precisely, let PKE = (Gen, Enc, Dec) be a public key encryption
scheme with public key space {0, 1}ℓp , secret key space {0, 1}ℓs , message space {0, 1}ℓm , randomness
space {0, 1}ℓr , and ciphertext space {0, 1}ℓc . Let λ, ℓk ∈ N be parameters and G : {0, 1}∗ → {0, 1}ℓr and
H : {0, 1}∗ → {0, 1}ℓk be random oracles. Then, the result of the Fujisaki-Okamoto transform is a key
encapsulation mechanism KEM[PKE, H, G] with public key space {0, 1}ℓp , secret key space {0, 1}ℓs+λ,
randomness space {0, 1}ℓm , ciphertext space {0, 1}ℓc , and key space {0, 1}ℓk We present KEM[PKE, H, G]
in Figure 2. Importantly, we focus on the variant with implicit rejection following [HHK17]. That is,
instead of returning ⊥ when an invalid ciphertext is input into the decapsulation algorithm, the algorithm
returns a pseudorandom key H(s, c) based on the ciphertext and a secret seed s ∈ {0, 1}λ.

3 Kleptographic Model
In this section, we precisely define what we call a kleptographic attack against implicit rejection. We
state the syntax of such an attack and which properties it should have. To the best of our knowledge, no
formal model for kleptography in general is known, but our model follows the main intuitions of previous
models, namely, a kleptographic attack has to be successful and undetectable. Throughout the section,
we fix a public key encryption scheme PKE = (Gen, Enc, Dec) with public key space {0, 1}ℓp , secret key
space {0, 1}ℓs , message space {0, 1}ℓm , randomness space {0, 1}ℓr , and ciphertext space {0, 1}ℓc . We also
fix parameters λ, ℓk ∈ N and random oracles G : {0, 1}∗ → {0, 1}ℓr and H : {0, 1}∗ → {0, 1}ℓk as in the
Fujisaki-Okamoto transform, see Section 2.

Let us first explain the syntax of an attack and how it is executed. The attack has four components:
in a first phase, we allow the attack to perform some precomputation. This is modeled by an algorithm
ASetup that outputs the attacker’s public and secret key. In the second phase, the victim would run
a subverted key generation algorithm of the Fujisaki-Okamoto transform, and potentially a subverted

7

Alg Gen
01 (pk′, sk′)← PKE.Gen, s $← {0, 1}λ

02 sk := (sk′, s), pk := pk′

03 return (pk, sk)

Alg Encaps(pk)
04 m $← {0, 1}ℓm , r := G(m)
05 c := Enc(pk, m; r), K := H(m, c)
06 return (K, c)

Alg Decaps(sk, c)
07 parse (sk′, s) := sk
08 m′ := Dec(sk′, c)
09 if m′ = ⊥ ∨ Enc(pk, m′; G(m′)) ̸= c : return K := H(s, c)
10 return K := H(m′, c)

Figure 2: The key encapsulation mechanism KEM[PKE, H, G] = (Gen, Encaps, Decaps) constructed by
applying the Fujisaki-Okamoto transform [FO99, HHK17] to public key encryption scheme PKE =
(PKE.Gen, Enc, Dec) with randomness space {0, 1}ℓr , and random oracles H : {0, 1}∗ → {0, 1}ℓk ,

G : {0, 1}∗ → {0, 1}ℓr .

decapsulation algorithm. Precisely, we allow the attack to manipulate the way the seed s (see Gen in
Figure 2) is derived in key generation, and we allow the attack to manipulate how implicit rejection
keys K are derived (see Decaps in Figure 2). This derivation is modeled by algorithms AGen, ADecaps
and can depend on the attacker’s public key and the secret key sk′. We may think of AGen, ADecaps as
the subverted code that is embedded on the victim’s machine. Notably, we do not allow the attacker to
tamper with the parts of the code that are relevant during a correct execution of a key exchange, which
ensures that the code of the victim remains fully functional. The online phase of the attack is modeled
by an adversary AOnline which gets the attacker’s secret key and has access to a decapsulation oracle.

Definition 5 (Attack Scheme). An attack scheme is defined to be a quadruple AS = (ASetup, AGen,
ADecaps, AOnline) of algorithms with the following syntax:

• ASetup→ (apk, ask) does not take any input and outputs an attacker public key apk and an attacker
secret key ask.

• AGen(apk, sk′) → s takes as input an attacker public key apk and a secret key sk′ ∈ {0, 1}ℓs and
outputs a seed s ∈ {0, 1}λ.

• ADecaps(apk, sk′, s, c)→ K is deterministic, takes as input an attacker public key apk, a secret key
sk′ ∈ {0, 1}ℓs , a seed s ∈ {0, 1}λ, and a ciphertext c ∈ {0, 1}ℓc , and outputs a key K ∈ {0, 1}ℓk .

• AOnlineDec,H,G(pk, ask)→ sk′ takes as input a public key pk ∈ {0, 1}ℓp and an attacker secret key
ask, has oracle access to a decapsulation oracle and random oracles, and outputs a secret key
sk′ ∈ {0, 1}ℓs .

Subsequently, we define the properties that an attack scheme should have. Obviously, we want that
the attack is successful. To define that more precisely, we introduce the advantage of an attack, where
we assume that the attack is run in a key-recovery game with respect to chosen-ciphertext attacks. In
this game, we assume that the victim generates keys as in the Fujisaki-Okamoto transform. To recall,
the secret key is sk = (sk′, s), where s is the seed and sk′ is the secret key for the underlying public key
encryption scheme. Importantly, the victim is assumed to generate these keys using the subverted key
generation algorithm, i.e., using GenAGen(apk,·), where apk is the attacker public key. Then, the attacker
gets access to the victim’s public key pk and a subverted decapsulation oracle. The goal of the attacker is
to find the secret key sk′. Note that if the attacker can accomplish this, then it can decrypt any (honestly
generated) ciphertext and fully break the victim’s security.

Definition 6 (Advantage of Attack Scheme). Let AS = (ASetup, AGen, ADecaps, AOnline) be an attack
scheme. The advantage of AS is defined to be

AdvSUB-KR-CCA
AS,PKE,H,G := Pr

[
SUB-KR-CCAAS

PKE,H,G ⇒ 1
]
,

where game SUB-KR-CCA is specified in Figure 3.

8

Game SUB-KR-CCAAS
PKE,H,G

01 (apk, ask)← ASetup
02 (pk, sk = (sk′, s))← GenAGen(apk,·)

03 sk∗ ← AOnlineDecADecaps(apk,·,·,·),H,G(pk, ask)
04 if (pk, sk′) ∈ PKE.Gen : return 1
05 return 0

Alg GenAGen(apk,·)

06 (pk′, sk′)← PKE.Gen
07 s← AGen(apk, sk′)
08 return (pk := pk′, sk := (sk′, s))

Oracle DecADecaps(apk,·,·,·)(c)
09 parse (sk′, s) := sk
10 m′ := Dec(sk′, c)
11 if m′ = ⊥ ∨ Enc(pk, m′; G(m′)) ̸= c:
12 return K := ADecaps(apk, sk′, s, c)
13 return K := H(m′, c)

Figure 3: The subverted key-recovery game SUB-KR-CCA for an attack scheme AS = (ASetup,

AGen, ADecaps, AOnline). Algorithm GenAGen(apk,·) models a subverted key generation procedure for the
Fujisaki-Okamoto transform presented in Figure 2 and oracle DecADecaps(apk,·,·,·) models a subverted
decapsulation algorithm. The highlighted lines are the only change compared to the benign algorithms in
Figure 2.

In addition to the attack being successful, we also want it to be undetectable. Precisely, we assume that
the victim has black-box access to the potentially subverted key generation algorithm and decapsulation
oracle of the Fujisaki-Okamoto transform. This is a reasonable assumption, as in practice keys are stored
in secure modules and users only make functionality tests without getting direct access to the keys. In
that case, we want that the outputs do not leak whether the algorithm has been subverted or not. There
are different flavors of this property, and we define them next.

Definition 7 (Distinguishing Advantages). Consider an attack scheme AS = (ASetup, AGen, ADecaps,
AOnline) and an algorithm D. Let GenAGen(apk,·) and DecADecaps(apk,·,·,·) be as in Figure 3. We define the
following advantages:

• Key Pair. The key pair distinguishing advantage of D against AS is defined to be

Advdist-kp
D,AS,PKE,H,G :=

∣∣∣∣Pr
[
DH,G(pk, sk) = 1

∣∣ (pk, sk)← KEM[PKE, H, G].Gen
]

−Pr
[
DH,G(pk, sk) = 1

∣∣∣∣ (apk, ask)← ASetup,

(pk, sk)← GenAGen(apk,·)

] ∣∣∣∣.
• Oracle. The oracle distinguishing advantage of D against AS is defined to be

Advdist-o
D,AS,PKE,H,G :=

∣∣∣∣Pr
[
DDecaps(sk,·),H,G(pk, sk′) = 1

∣∣∣∣ (pk, sk)← KEM[PKE, H, G].Gen,
(sk′, s) := sk

]

−Pr

DDecADecaps(apk,·,·,·),H,G(pk, sk′) = 1

∣∣∣∣∣∣
(apk, ask)← ASetup,

(pk, sk)← GenAGen(apk,·),
(sk′, s) := sk

 ∣∣∣∣,
• Attacker Key Oracle. The attacker key oracle distinguishing advantage of D against AS is defined

to be

Advdist-ako
D,AS,PKE,H,G :=

∣∣∣∣Pr

DDecaps(sk,·),H,G(apk, pk, sk′) = 1

∣∣∣∣∣∣
(apk, ask)← ASetup,
(pk, sk)← KEM[PKE, H, G].Gen,
(sk′, s) := sk

−Pr

DDecADecaps(apk,·,·,·),H,G(apk, pk, sk′) = 1

∣∣∣∣∣∣
(apk, ask)← ASetup,

(pk, sk)← GenAGen(apk,·),
(sk′, s) := sk

 ∣∣∣∣,

9

We shall elaborate on the motivation for defining precisely these advantages. Assuming that the
distinguisher does not take decapsulation into account, in the definition of the key pair advantage we
assume that the distinguisher treats the key generation algorithm as a black-box and does not investigate
the decapsulation algorithm at all. In the definition of oracle advantage we additionally allow the
distinguisher to have black-box access to a potentially subverted decapsulation oracle. Here, it may first
seem artificial to give the distinguisher sk′ but not s. However, the following rationale stands behind
this definition: assume the secret key is kept in a secure hardware component and thus the victim only
has black-box access to the decapsulation functionality and sees the public key. In this case, the victim
should not be able to tell that the algorithms have been subverted. We additionally strengthen this by
giving sk′ to the victim. Notably, if we were to give the distinguisher both the full secret key (including
s) and black-box access to the decapsulation oracle, then it would be trivial to detect any subversion
in the decapsulation oracle: the distinguisher would simply submit an invalid ciphertext to the oracle
and compare the result with a local execution of honest decapsulation. The notion of attacker key oracle
advantage additionally gives the distinguisher access to the attacker public key. One can see that if the
subversion is indistinguishable in that model, we get a form of security preservation: even when a user
learns the attacker’s public key apk, e.g., by reverse-engineering the subverted algorithm, this user can
not break the security (e.g., IND-CCA security) of other users who also use the subverted key generation
algorithm. In other words, only the attacker itself can perform the attack. To see this, consider an
IND-CCA game in which an adversary tries to break security of a user with subverted code, while getting
not only the public key, but also the attacker’s public key apk. Then, to argue that this adversary can
not break IND-CCA, we can first use the undetectability notion (as in attacker key oracle) the switch to a
hybrid experiment in which the code is not subverted. By standard IND-CCA security, the adversary can
not win this game.

Remark 1 (Trivial Relations). It is clear that if key generation is not subverted, then the two experiments
in the key pair setting are the same, and hence the advantage of each distinguisher is zero. Similarly, if
decapsulation is not subverted, then the two experiments in the oracle setting are the same, hence the
advantage of each distinguisher is zero. Also, in general, the advantage in the attacker key oracle setting
is an upper bound for the advantage in the oracle setting, as a distinguisher in the attacker key oracle
setting can simply ignore its additional input.

4 Our Attacks
Here, we present our kleptographic attacks against implicit rejection. The attacks follow the model
defined in Section 3. Concretely, we present three attacks. The first attack subverts only the implicit
rejection branch of decapsulation, is very efficient, and is in the public key setting, i.e., reverse-engineering
the subverted algorithm does not help to carry out the attack. The second and third attack subvert key
generation only and do not tamper with decapsulation. They are less efficient and are in the secret key
setting, i.e., the attacker has to embed its secret key in the subverted key generation algorithm. What
distinguishes these two attacks is that the third attack shows a time-space trade-off using preprocessing.
Attack Target. For all attacks, we again fix a scheme as in the Fujisaki-Okamoto transform. That is,
we let PKE = (Gen, Enc, Dec) be a public key encryption scheme with public key space {0, 1}ℓp , secret
key space {0, 1}ℓs , message space {0, 1}ℓm , randomness space {0, 1}ℓr , and ciphertext space {0, 1}ℓc . We
assume parameters λ, ℓk ∈ N and random oracles G : {0, 1}∗ → {0, 1}ℓr and H : {0, 1}∗ → {0, 1}ℓk . Our
attacks target the scheme KEM[PKE, H, G], see Figure 2.
Kyber as a Running Example. To illustrate the concrete efficiency and advantage of our attacks,
we will use Kyber [ABD+21] with parameter set Kyber1024 as a running example. According to the
specification, the relevant parameters are ℓs = λ = ℓk = 32 · 8 = 256 and ℓc = 1568 · 8 = 12544. Note that
we do not assume that the secret key is a short vector, but rather the seed to generate it. Throughout, we
make the assumption that Kyber has spreadness at most γ ≤ 1/1000. This is a reasonable assumption,
as large γ would clearly lead to security issues.

We note that in the Kyber specification, a variant of the Fujisaki-Okamoto transform with implicit
rejection is used, in which the implicit rejection key is K := H(s, H(c)) instead of K := H(s, c). Looking
ahead, our attacks still work with this change.

10

4.1 Subverting Decapsulation Only
In our first attack, we tamper with decapsulation but not with key generation. The main idea is to let
the implicit rejection keys K output by decapsulation on failure be encryptions of the secret key sk′. In
this way, we establish a hidden channel of communication via which the attacker can extract sk′. Making
this idea work comes with subtle challenges we have to overcome. First, we can not just assume that the
key K is large enough to hold an entire encryption of sk′. To solve this, we further split the encryption
into chunks, and address the chunks using the first bits of the ciphertext. Second, we need to ensure
that K is deterministically derived from the ciphertext. A first approach is to use the remaining part of
the ciphertext as the randomness for the encryption. In this case, however, we can not argue that the
input-output behavior of the subverted decapsulation is indistinguishable, as the distinguisher would
have full control over the randomness used for encryption. The solution is to use the seed s to derive
a pseudorandom string from the ciphertext, and then use this string as the randomness for encryption.
Although s is not subverted, it is assumed to have enough entropy and is hidden from the distinguisher.
Attack Description. Let P̂KE = (Ĝen, Ênc, D̂ec) be a public key encryption scheme with public key
space {0, 1}ℓ̂p , secret key space {0, 1}ℓ̂s , message space {0, 1}ℓ̂m , randomness space {0, 1}ℓ̂r , and ciphertext
space {0, 1}ℓ̂c . The only requirement for the relation of these parameters of P̂KE to the parameters of
the target scheme KEM[PKE, H, G] is that ℓ̂m ≥ ℓs, i.e., P̂KE can encrypt sk′. We assume that P̂KE is
perfecly correct, i.e., it has correctness error δ = 0. Further, let Ĥ : {0, 1}∗ → {0, 1}ℓ̂r be a random oracle.
We give a formal presentation of our attack in Figure 4.

Alg ASetup
01 (apk, ask)← Ĝen
02 return (apk, ask)

Alg ADecaps(apk, sk′, s, c)
03 parse (ind, rnd) := c, ind ∈ {0, 1}t

, rnd ∈ {0, 1}ℓc−t

04 K̂ := Ênc(apk, sk′; Ĥ(rnd, s))
05 parse (K̂1, . . . , K̂T) := K̂ ∈ ({0, 1}ℓk)T

06 parse i := ind, i ∈ [T]
07 return K := K̂i

Alg AGen(apk, sk′)
08 return s $← {0, 1}λ

Alg AOnlineDec,H,G(pk, ask)
09 rnd $← {0, 1}ℓc−t

10 for i ∈ [T] :
11 parse ind := i, ind ∈ {0, 1}t

12 ci := (ind, rnd) ∈ {0, 1}ℓc

13 K̂i := Dec(ci)
14 K̂ := (K̂1, . . . , K̂T) ∈ {0, 1}ℓ̂c

15 return sk′ := D̂ec(ask, K̂)

Figure 4: Attack scheme AS = (ASetup, AGen, ADecaps, AOnline) subverting only the decapsulation
algorithm. We have T := ⌈ℓ̂c/ℓk⌉ and t := ⌈log(T)⌉. Further, Ĥ : {0, 1}∗ → {0, 1}ℓ̂r is a random oracle
and we assume ℓ̂m ≥ ℓs.

Attack Analysis. We formally analyze our attack, thereby showing that it is (1) efficient, (2) successful
and (3) undetectable. For (1), efficiency of our attack follows easily by inspection. For (2), we analyze
the advantage of our attack according to Definition 6. For (3), we bound the distinguishing advantages of
the attack according to Definition 7.

Lemma 1 (Online Complexity). Consider the attack scheme AS in Figure 4. Then, algorithm AOnline
issues at most T = ⌈ℓ̂c/ℓk⌉ decapsulation queries, and does not compute any hash evaluation.

Proof. This follows easily by inspection.

Lemma 2 (Advantage). Assume that PKE has spreadness at most γ ∈ [0, 1] and consider the attack
scheme AS in Figure 4 with T = ⌈ℓ̂c/ℓk⌉. Then, we have

AdvSUB-KR-CCA
AS,PKE,H,G ≥ 1− T · γ.

Proof. It is easy to verify that the attack succeeds as long as all queries to the decapsulation oracle trigger
implicit rejection, i.e., if on every query Dec(ci) that AOnlineDec,H,G(pk, ask) issues, Dec internally calls

11

ADecaps(apk, sk′, s, c). In other words, the attack succeeds if the following event does not occur, where
the probability space is defined by random oracle G, the keys (pk, sk′) ← Gen, and the randomness
rnd $← {0, 1}ℓc−t:

• Event Valid: This event occurs, if there is an i ∈ [T] such that for ci = (ind, rnd) ∈ {0, 1}ℓc

where ind ∈ {0, 1}t is the binary representation of i and m′ := Dec(sk′, ci) we have m′ ̸= ⊥ and
Enc(pk, m′; G(m′)) = ci.

To bound the probability of event Valid, we use a union bound over all i ∈ [T]. Denote by Validi the event
that Valid occurs for a specific i ∈ [T]. The probability of Validi is easily bounded by the spreadness γ of
PKE. More formally, if we fix ci, we have

Pr
pk,sk′,G

[Validi] ≤ Pr
pk,sk′,G

[Enc(pk, m′; G(m′)) = ci | m′ ̸= ⊥]

= Pr
pk,sk′,ρ

[Enc(pk, m′; ρ) = ci | m′ ̸= ⊥]

= E
pk,sk′

[
Pr
ρ

[Enc(pk, m′; ρ) = ci | m′ ̸= ⊥]
]

≤ E
pk,sk′

[
max
m,c

Pr
ρ

[Enc(pk, m; ρ) = c]
]
≤ γ.

In combination, we get
AdvSUB-KR-CCA

AS,PKE,H,G ≥ 1− Pr [Valid] ≥ 1− T · γ.

Lemma 3 (Undetectability). Consider the attack scheme AS in Figure 4. Then, for any algorithm
D that makes at most Q queries to the random oracles H, G, Ĥ in total and at most QD queries to its
decapsulation oracle, there is an algorithm D′ with T(D) ≈ T(D′) such that

Advdist-kp
D,AS,PKE,H,G = 0, Advdist-o

D,AS,PKE,H,G ≤ Advdist-ako
D,AS,PKE,H,G ≤

2Q

2λ
+ QD · AdvIND-CPA-R

D′,P̂KE
.

Proof. First, because the attack we consider does not subvert key generation at all, it is clear that

Advdist-kp
D,AS,PKE,H,G = 0.

Further, the inequality Advdist-o
D,AS,PKE,H,G ≤ Advdist-ako

D,AS,PKE,H,G always holds. Therefore, we only need to bound
the advantage of D in the attacker key oracle setting. To do so, we present a sequence of games G0 to G5,
where G0 and G5 correspond to the games that D has to distinguish in the attacker key oracle setting.
We will have

Advdist-ako
D,AS,PKE,H,G = |Pr [G0 ⇒ 1]− Pr [G5 ⇒ 1]| .

Game G0: In G0, D gets as input an attacker public key apk, and the pair (pk, sk′) where (apk, ask)← Ĝen
is the attacker’s key pair and (pk, sk′) ← PKE.Gen(1λ). The game additionally samples the seed
s $← {0, 1}λ which is hidden from D. The distinguisher D also gets access to random oracles H, G, and
Ĥ, which are implemented using standard lazy sampling. Additionally, it gets access to a subverted
decapsulation oracle DecADecaps(apk,·,·,·). In the next games, it will be our goal to replace this subverted
oracle with the honest oracle. To recall the difference, in the honest oracle, an implicit rejection key
for ciphertext c is K := H(s, c), whereas it is computed as in ADecaps(apk, sk′, s, c) (see Figure 4) in the
subverted oracle.
Game G1: In this game, we let the game terminate and output 0 whenever one of the following two
events occurs:

• Event QryA : This event occurs, if D ever directly queries Ĥ(rnd, s) for some rnd ∈ {0, 1}ℓc−t.

• Event QryB : This event occurs, if D ever directly queries H(s, c) for some c.

12

As s is uniform over {0, 1}λ and hidden from D, for each fixed random oracle query, the probability that
QryA or QryB occurs is at most 1/2λ. With a union bound over all queries, we get

|Pr [G0 ⇒ 1]− Pr [G1 ⇒ 1]| ≤ Pr [QryA ∨ QryB] ≤ Q

2λ
.

Game G2: Recall that in G1, when algorithm ADecaps(apk, sk′, s, c) is called during a query to the
decapsulation oracle, then the algorithm computes K̂ := Ênc(apk, sk′; Ĥ(rnd, s)). In G2, we change this
to K̂ := HK[rnd], where HK[·] is a map that lazily implements a random function {0, 1}ℓc−t → {0, 1}ℓ̂c .
As we can assume that QryA does not occur, each K̂ in G1 looks like a ciphertext under P̂KE computed
with uniform random coins. Therefore, we can use the IND-CPA-R security of P̂KE in QD hybrid steps
as follows. We define G1,i, which is as G1, but for the first i strings rnd that are submitted to the
decapsulation oracle (as part of c), ADecaps(apk, sk′, s, c) behaves as in game G2, whereas all remaining
ones are as in G1. Note that this means if a specific rnd is submitted twice and K̂ has to be computed
twice, then the game computes the same K̂ in both invocations. Then, to argue that G1,i and G1,i+1

are indistinguishable we build a reduction D′ which runs in the IND-CPA-R game of P̂KE. It gets as
input apk and simulates the game G1,i for D, except for the i + 1st string rnd that is submitted to the
decapsulation oracle. For this string, if K̂ has to be computed, it submits sk′ to the IND-CPA-R game
and gets K̂ (a ciphertext with respect to P̂KE) back. Finally, it outputs whatever the game outputs.
With this hybrid argument, we get

|Pr [G1 ⇒ 1]− Pr [G2 ⇒ 1]| ≤ QD · AdvIND-CPA-R
D′,P̂KE

.

Game G3: In this game, we change how the chunks K̂i of K̂ are computed. Recall that in G2,
when algorithm ADecaps(apk, sk′, s, c) is called during a query to the decapsulation oracle, then the
algorithm computes K̂ := HK[rnd] and then splits it into T chunks K̂1, . . . , K̂T . In G3, the game no
longer computes K̂ via a HK, but instead computes each chunk K̂i as K̂i := HK′[ind, rnd], where ind
is the binary representation of i ∈ [T] and HK′[·, ·] is a map that lazily implements a random function
{0, 1}t × {0, 1}ℓc−t → {0, 1}ℓk . It is clear that this change is only conceptual, and we have

Pr [G2 ⇒ 1] = Pr [G3 ⇒ 1].

Game G4: In this game, whenever HK′[ind, rnd] has to sampled, the game assembles c = (ind, rnd) and
defines HK′[ind, rnd] := H(s, c). As we assume that QryB does not occur, we have

Pr [G3 ⇒ 1] = Pr [G4 ⇒ 1].

Game G5: In this game, we no longer output 0 if QryA or QryB occurs. With arguments as in G1, we
get

|Pr [G4 ⇒ 1]− Pr [G5 ⇒ 1]| ≤ Pr [QryA ∨ QryB] ≤ Q

2λ
.

Now, one can easily observe that G5 corresponds to the game with the honest decapsulation oracle,
finishing the proof.

Concrete Example: Kyber. To recall, the secret key in Kyber has length ℓs = 256 and encapsulated
keys have length ℓk = 256. This means we can use (hashed) ElGamal [ElG84, ABR98] with SHA-256
to instantiate P̂KE. Instantiating ElGamal over a standard 256-bit group, we obtain ℓ̂c < 3 · ℓk, i.e.,
T = 3 decapsulation queries are sufficient to make the attack work. We get an advantage of at least
1− 3/1000. Regev encryption [Reg05] would be an alternative if the attack has to be undetectable by
quantum computers.

4.2 Subverting Key Generation Only
The attack we present in this section does not tamper with decapsulation. That is, the key K on implicit
rejection is computed as in the Fujisaki-Okamoto transform (see Figure 2) from the ciphertext c and
the seed s. However, instead of sampling s uniformly, we subvert key generation to make s depend on

13

the primary secret key sk′. In this way, the attacker can gain information about sk′ from rejection keys
K. More precisely, let Ĥ : {0, 1}∗ → {0, 1}λ be a random oracle1. The subverted key generation sets
s := Ĥ(apk, σ), where σ are the first h ≤ ℓs bits of sk′ and apk ∈ {0, 1}λ is the random key embedded
by the attacker. Clearly, s remains pseudorandom as long as apk is not leaked. At the same time, the
attacker can make one decapsulation query to get an implicit rejection key K and then do an exhaustive
search to find σ. In a second step, the attacker can do another exhaustive search over the remaining bits
of sk′. Setting h = ℓs/2 yields an attack of complexity roughly 2ℓs/2+1.
Attack Description. We present our attack in Figure 5, where we assume that one can efficiently check
if (pk, sk′) ∈ Gen for given (pk, sk′). This assumption holds for most natural schemes, especially if we
assume pk to be derived from sk′, for example if sk′ is a seed for a pseudorandom generator from which
the actual key pair is derived.

Alg ASetup
01 apk $← {0, 1}λ

02 return (apk, ask := apk)

Alg ADecaps(apk, sk′, s, c)
03 return K := H(s, c)

Alg PrefixSearch(apk)
04 c∗ $← {0, 1}ℓc

05 K∗ := Dec(c∗)
06 for σ ∈ {0, 1}h :
07 s := Ĥ(apk, σ)
08 if K∗ = H(s, c∗) : return σ
09 return ⊥

Alg AGen(apk, sk′)
10 parse (σ, σ′) := sk′, σ ∈ {0, 1}h

11 return s := Ĥ(apk, σ)

Alg FinalSearch(pk, σ)
12 for σ′ ∈ {0, 1}ℓs−h :
13 sk′ := (σ, σ′) ∈ {0, 1}ℓs

14 if (pk, sk′) ∈ Gen : return sk′

15 return ⊥

Alg AOnlineDec,H,G,Ĥ(pk, ask)
16 parse apk := ask
17 σ ← PrefixSearch(apk)
18 return sk′ := FinalSearch(pk, σ)

Figure 5: Attack scheme AS = (ASetup, AGen, ADecaps, AOnline) and helper algorithms PrefixSearch,

FinalSearch subverting only the key generation. Here, Ĥ : {0, 1}∗ → {0, 1}λ is a random oracle. The
attack has a parameter h ≤ ℓs that influences its efficiency.

Attack Analysis. Below, we show that our attack is successful and undetectable, and analyze its
efficiency. That is, we count the number of operations, and analyze the advantage according to Definition 6
and the distinguishing advantages according to Definition 7. Note that the attack is easily detectable
once apk is leaked, and anyone holding apk can perform the attack.

Lemma 4 (Online Complexity). Consider the attack scheme AS in Figure 5. Then, algorithm AOnline
issues at most one decapsulation query, computes at most 2h+1 hash evaluations, and checks (pk, sk′) ∈ Gen
at most 2ℓs−h times.

Proof. The lemma follows easily by inspection: during the online phase, the attack issues one decapsulation
query and computes at most 2h · 2 = 2h+1 hashes in algorithm PrefixSearch. Further, it checks key pairs
in algorithm FinalSearch at most 2ℓs−h times.

Lemma 5 (Advantage). Assume that PKE has spreadness at most γ ∈ [0, 1] and consider the attack
scheme AS in Figure 5. Then, we have

AdvSUB-KR-CCA
AS,PKE,H,G ≥ 1− (γ + 2−λ + 2−ℓk).

Proof. Recall that the attack first runs σ ← PrefixSearch(apk), where PrefixSearch internally samples a
c∗ $← {0, 1}ℓc , queries K∗ := Dec(c∗), and then iterates over all σ ∈ {0, 1}h, computes s := Ĥ(apk, σ)
and outputs σ if K∗ = H(s, c∗). Then, if σ is indeed the h-bit prefix of the secret key sk′, then algorithm
FinalSearch will find sk′ and the attack succeeds. For our analysis, we denote the h-bit prefix of sk′ by σ∗

and define the following events:
1The attack also works if Ĥ is replaced by a pseudorandom function. However, as we are already using random oracles in

this work, we decide to model it as a random oracle.

14

• Event Find: This event occurs, if algorithm PrefixSearch(apk) outputs σ∗.

• Event Valid: This event occurs, if the ciphertext c∗ sampled in algorithm PrefixSearch does not lead
to implicit rejection, i.e., if there is an i ∈ [T] such that for m′ := Dec(sk′, c∗) we have m′ ̸= ⊥ and
Enc(pk, m′; G(m′)) = c∗.

• Event Coll: This event occurs, if there exists σ′ ∈ {0, 1}h \ {σ∗} such that K∗ = H(Ĥ(apk, σ′), c∗).

By our discussion above, it is clear that

AdvSUB-KR-CCA
AS,PKE,H,G ≥ 1− Pr [¬Find].

Now, as in the proof of Lemma 2, we can argue that the probability of event Valid is at most γ. Further,
we can argue that the probability of Coll is at most 1/2λ (for the case that Ĥ(apk, σ) = Ĥ(apk, σ∗)) plus
1/2ℓk (for the case that Ĥ(apk, σ) ̸= Ĥ(apk, σ∗) but K∗ = H(Ĥ(apk, σ′), c∗)). Hence,

Pr [¬Find] ≤ γ + 2−λ + 2−ℓk + Pr [¬Find | ¬Valid ∧ ¬Coll].

Now, observe that if ¬Valid, then when the loop in algorithm PrefixSearch considers σ∗, it will output σ∗.
Hence, conditioned on ¬Valid, the only way that ¬Find can happen is if a different σ′ is output such that
K∗ = H(Ĥ(apk, σ′), c∗), which means that Coll occurs. So, we get

Pr [¬Find | ¬Valid ∧ ¬Coll] = 0.

Lemma 6 (Undetectability). Consider the attack scheme AS in Figure 5. Then, for any algorithm D
that makes at most Q queries to random oracle Ĥ, we have

Advdist-kp
D,AS,PKE,H,G ≤

Q

2λ
, Advdist-o

D,AS,PKE,H,G = 0.

Proof. First, because decapsulation is not subverted, it is clear that the advantage in the oracle setting is
zero. To bound the advantage in the key pair setting, let G denote the game with the honestly generated
key pair and G′ denote the game with the subverted key generation. We define the following event

• Event Qry: This event occurs, if D ever queries Ĥ(apk, σ) for some σ.

The probability that Qry occurs (in G and G′) is at most 1/2λ per random oracle query as apk is hidden
from D. By a union bound over all queries, the probability of Qry is at most Q/2λ. Further, conditioned
on ¬Qry, it is clear that the view of D is the same in both games. Thus, we have∣∣Pr [G⇒ 1]− Pr

[
G′ ⇒ 1

]∣∣ ≤ Pr [Qry] ≤ Q

2λ
.

Concrete Example: Kyber. As we have already mentioned, we would set h = ℓs/2 to balance the
complexity of the two exhaustive searches. For Kyber, this means h = ℓs/2 = 128, leading to a complexity
of 2128+1 + 2256−128 < 2130. The advantage is almost 1.

4.3 An Attack with Preprocessing
We generalize our attack from Section 4.2 by showing a time-memory trade-off. Key generation is
subverted as in the attack in Section 4.2, i.e., we have s = Ĥ(apk, σ), where Ĥ : {0, 1}∗ → {0, 1}λ is a
random oracle, σ are the first h bits of sk′, and apk is a key embedded by the attacker. Decapsulation is
not subverted. Looking back at our attack from Section 4.2, we were setting h = ℓs/2, leading to two
exhaustive searches over ℓs/2 bits. The idea of the attack in this section is to speed up the first search
that finds σ, which will allow us to increase h, thereby reducing the cost of the second search.

15

Preparation: Hellman Tables. We first recall the time-memory trade-off introduced by Hellman [Hel80],
adapted to our setting. Thereby, we also introduce notation that we will then use in our attack description.
In the time-memory trade-off for inverting a function F, we first do a preprocessing where we set up
a table Tab with H rows and W columns. Roughly, each row i consists of a chain of evaluations of
F. Namely, it contains the elements zi, F(zi), F(F(zi)), . . . , FW (zi). The table, however, stores only the
starting point zi and the end point FW (zi) for each row. In the online phase, given y, we search for y
in our list of endpoints FW (z1), . . . , FW (zH) (e.g., using binary search). If we find it, say in row i∗, we
can recompute a preimage of y by computing FW −1(zi∗). If not, we repeat the process for F(y), and so
on. To increase the success probability, multiple independent variations of F have to be created and the
approach has to be repeated using T such tables in parallel. In our situation, we can simply use c to
introduce variations. Namely, we want to invert the function mapping σ ∈ {0, 1}h to K ∈ {0, 1}ℓk , or
more specifically, mapping to the first h bits of K, where we assume2 h ≤ ℓk. Precisely, the function
first maps σ to s = Ĥ(apk, σ) where s ∈ {0, 1}λ, then maps s to K = H(s, c), and then truncates K
to h bits. We can now precompute tables Tab1, . . . , TabT , where each table Tabt is for fresh ciphertext
c = ct

$← {0, 1}ℓc . In Figure 6, we describe algorithms BuildTable and TryInvert for implementing this
approach. Namely, BuildTable takes as input a ciphertext c and creates a table. It will be called T times
in the preprocessing step of our attack. Algorithm TryInvert will be called in the online phase to invert
the function for a given key K and a given table. It returns (potentially more than one) preimage which
can then be tried as a potential (part of the) secret key.

Alg BuildTable(apk, c)
01 for i ∈ [H] :
02 xi,0

$← {0, 1}h

03 for j ∈ [W] : xi,j := F(apk, c, xi,j−1)
04 spi := xi,0, epi := xi,W

05 return Tab := (spi, epi)H
i=1

Alg F(apk, c, x ∈ {0, 1}h)
06 s := Ĥ(apk, x), K := H(s, c)
07 parse (y, y′) := K, y ∈ {0, 1}h

08 return y

Alg TryInvert(apk, c, Tab, K)
09 parse (spi, epi)H

i=1 := Tab
10 parse (y1, y′) := K, y1 ∈ {0, 1}h

11 Pre := ∅
12 for j ∈ [W] :
13 I := {i ∈ [H] | yj = epi}
14 Pre := Pre ∪ {FW −j(spi) | i ∈ I}
15 yj+1 := F(apk, c, yj)
16 return Pre

Figure 6: Algorithms BuildTable, TryInvert used in our attack in Section 4.3. The algorithms implement a
time-memory trade-off for inverting the function mapping σ ∈ {0, 1}h to the first h bits of H(Ĥ(apk, σ), c).
Here, Ĥ : {0, 1}∗ → {0, 1}λ is a random oracle and H, W ∈ N are parameters.

Attack Description. We present our attack in Figure 7. As outlined above, during preprocessing (algo-
rithm ASetup), the attacker samples T distinct ciphertexts c1, . . . , ct and computes tables Tab1, . . . , TabT .
Key generation is subverted as in Section 4.2, i.e., s = Ĥ(apk, σ), and decapsulation is not subverted.
Then, in the online phase (algorithm AOnline), the attacker iterates over all T tables and tries to find
the secret key using each table Tabt as follows: first it obtains Kt by submitting ct to the decap-
sulation oracle. The attacker will assume that Kt is an implicit rejection key, i.e., it has the form
Kt = H(s, ct) = H(Ĥ(apk, σ), ct). Then, the attacker applies algorithm TryInvert on table Tabt. The
algorithm returns a (potentially empty) set of preimages of the first h bits of Kt. Note, however, that
this set contains false positives, in a sense that (1) not all preimages of the first h bits are also preimages
of the full key Kt, and (2) due to collisions in H or Ĥ, there could be valid preimages of Kt which are
not related to sk′ at all. The attacker can easily rule out false positives of category (1) (see set Pre′ in
algorithm AOnline). To rule out false positives of category (2), the attacker has to try to find a valid sk′

by doing an exhaustive search over 2ℓs−h values.
Attack Analysis. Compared to our attack in Section 4.2, only the preprocessing and online phase of
the attack have changed and subversion remained the same. Therefore, the attack is undetectable with
the same arguments as in Section 4.2, but giving an upper bound on the running time and a lower bound
on the success probability requires more care.

2The assumption h ≤ ℓk is indeed natural: we have h ≤ ℓs by definition, and ℓs ≤ ℓk holds naturally if we assume that
sk′ is the seed for a pseudorandom number generator that generates the actual key pair.

16

Alg ASetup
01 apk $← {0, 1}λ

02 for t ∈ [T] :
03 ct

$← {0, 1}ℓc \ {c1, . . . , ct−1}
04 Tabt ← BuildTable(apk, ct)
05 ask := (apk, (ct, Tabt)T

t=1)
06 return (apk, ask)

Alg ADecaps(apk, sk′, s, c)
07 return K := H(s, c)

Alg AGen(apk, sk′)
08 parse (σ, σ′) := sk′, σ ∈ {0, 1}h

09 return s := Ĥ(apk, σ)

Alg FinalSearch(pk, σ)
10 for σ′ ∈ {0, 1}ℓs−h :
11 sk′ := (σ, σ′) ∈ {0, 1}ℓs

12 if (pk, sk′) ∈ Gen : return sk′

13 return ⊥

Alg AOnlineDec,H,G,Ĥ(pk, ask)
14 parse (apk, (ct, Tabt)T

t=1) := ask
15 for t ∈ [T] :
16 Kt := Dec(ct)
17 Pre := TryInvert(apk, ct, Tabt, Kt)
18 Pre′ := {σ ∈ Pre | H(Ĥ(apk, σ), ct) = Kt}
19 for σ ∈ Pre′ :
20 sk′ := FinalSearch(pk, σ)
21 if sk′ ̸= ⊥ : return sk′

22 return ⊥

Figure 7: Attack scheme AS = (ASetup, AGen, ADecaps, AOnline) and helper algorithms PrefixSearch,

FinalSearch subverting only key generation using preprocessing. Here, Ĥ : {0, 1}∗ → {0, 1}λ is a random
oracle. The attack has parameters h ≤ min{ℓs, λ, ℓk} and T ∈ N that influence its efficiency and success
probability.

Lemma 7 (Offline Complexity). Consider the attack scheme AS in Figure 7. Then, algorithm ASetup
computes at most 2HWT hash evaluations. Further, the size of the secret key is λ + T (ℓc + 2Hh) bits.
Proof. This easily follows because ASetup invokes BuildTable T times, and one invocation of BuildTable
evaluates the function F HW times, where one invocation of F consists of two hashes. Further, recall
that the secret key consists of apk ∈ {0, 1}λ and T tables, which each are represented by a ciphertext and
H starting points and endpoints.

Lemma 8 (Online Complexity). Consider the attack scheme AS in Figure 7 and assume h ≤ min{ℓs, λ}
and h < ℓk. Then, algorithm AOnline issues at most T decapsulation queries. Further, in expectation, it
computes at most

2TW + 2−h−1TH

(
W (W − 1) + 1

3(W − 1)W (W + 1)
)

hash evaluations and checks (pk, sk′) ∈ Gen at most 2ℓk/(ℓk − h) · 2ℓs−h times, where the expectation is
taken over the randomness of AS, the random oracles, and the game.
Proof. It is clear that AOnline issues at most T decapsulation queries, namely, one for each table.
Analyzing the expected number of hashes and key checks needs more care. By linearity of expectation,
we can focus on a fixed iteration t ∈ [T] of the main loop in algorithm AOnline, i.e., only focus on table
Tabt, and multiply the result by T . So, fix t ∈ [T] arbitrarily. We first count the expected number of
hashes in iteration t. Recall that this iteration consists of (1) calling the decapsulation oracle, (2) running
algorithm TryInvert, (3) filtering the output Pre of TryInvert to get Pre′, and (4) invoking FinalSearch for
every entry in Pre′. Step (1) and (4) do not require any hash evaluations. Denote random variables
modeling the number of hash evaluations caused by (2) and (3) by HE2, HE3, respectively. To bound the
expectation of HE2, consider running algorithm TryInvert and denote by Prej for j ∈ [W] the set that is
added to Pre during the jth iteration of TryInvert’s main loop. Observe that

E [HE2] ≤
W∑

j=1
(|Prej | · (W − j) · 2 + 2) = 2W + 2

W∑
j=1
|Prej | · (W − j),

where we used that one evaluation of F costs two hashes. To bound the expectation of HE3, note that
filtering costs two hashes per entry in Pre, i.e.,

E [HE3] ≤ 2|Pre| ≤ 2
W∑

j=1
|Prej |.

17

In combination, we get

E [HE2 + HE3] ≤ 2W + 2
W∑

j=1
E [|Prej |] · (W − j + 1).

Next, we fix j ∈ [W] and want to bound the expectation of |Prej |. For that, let y1, . . . , yj be as in
algorithm TryInvert, i.e., y1 denotes the first h bits of Kt, y2 = F(apk, ct, y1), and so on. For ease of
notation, we now omit the first two inputs from F, meaning that we have yj = Fj−1(y1) and epi = FW (spi).
We have E [|Prej |] ≤

∑H
i=1 Pr [yj = epi] and for every i ∈ [H], the probability of event yj = epi is

Pr [yj = epi]
= Pr

[
Fj−1(y1) = FW (spi)

]
≤ Pr

[
y1 = FW −j+1(spi)

]
+

j−2∑
k=0

Pr
[
Fj−1−k(y1) = FW −k(spi) ∧ Fj−1−k−1(y1) ̸= FW −k−1(spi)

]
≤ j2−h,

where we have used the independence of y1 and spi. In combination, we get

E [HE2 + HE3] ≤ 2W + 2
W∑

j=1
jH2−h · (W − j + 1)

= 2

W + 2−hH

W∑
j=1

j · (W − j + 1)

= 2

W + 2−hH
W (W − 1)

2 + 2−hH

W∑
j=1

j · (W − j)

= 2

(
W + 2−hH

W (W − 1)
2 + 2−hH

(W − 1)W (W + 1)
6

)
,

where we have used
∑W

j=1 j · (W − j) = ((W − 1)W (W + 1))/6. Next, we bound the number of key checks,
i.e., the number of times the algorithm checks (pk, sk′) ∈ Gen. Observe that the algorithm does at most
2ℓs−h such checks per entry in Pre′. Therefore, we need to bound the expected size of Pre′. To do so,
we set C := (ℓk + h)/(ℓk − h) and define the following event over the probability space induced by the
random oracles.

• Event Large: This event occurs, if there exists a K ∈ {0, 1}ℓk such that |ΓK | ≥ C, where ΓK :=
{σ ∈ {0, 1}h | H(Ĥ(apk, σ), ct) = K}.

We can bound the probability of Large as follows:

Pr [Large] ≤
∑

K∈{0,1}ℓk

Pr [|ΓK | ≥ C]

≤
∑

K∈{0,1}ℓk

(
2h

C

)
2−ℓk·C ≤ 2ℓk · 2h·C · 2−ℓk·C = 2ℓk+C(h−ℓk).

With that, we can bound the expected size of Pre′:

E
[
|Pre′|

]
= E

[
|Pre′| | Large

]
· Pr [Large] + E

[
|Pre′| | ¬Large

]
· Pr [¬Large]

≤ 2h · 2ℓk+C(h−ℓk) + C.

Using the definition of C, the term above is at most C + 1 = 2ℓk/(ℓk − h), finishing the proof.

18

Lemma 9 (Advantage). Assume that PKE has spreadness at most γ ∈ [0, 1] and consider the attack
scheme AS in Figure 7. Then, we have

AdvSUB-KR-CCA
AS,PKE,H,G ≥ (1− γ)

1− 2−h ·
H∑

i=1

W∑
j=1

(
1− iW

2h

)j
T

≥ (1− γ)
(

1− 2−h ·HW

(
1− HW

2h

)W
)T

.

Proof. Recall that the probability space we consider is defined by the random oracles, the key apk, the
ciphertexts c1, . . . , cT , and the key pair (pk, sk′) for which the attack aims to find sk′. For our analysis,
we denote the first h bits of sk′ by σ∗ and define the following:

• Event Win: This event occurs, if the attack finds sk′.

• Set Covert for each t ∈ [T]: This is the set of elements covered by table t ∈ [T], namely,

Cover :=
{

x
(t)
i,j

∣∣∣ i ∈ [H] ∧ j + 1 ∈ [W]
}

,

where x
(t)
i,j denotes the element in the ith row and jth column of table t.

• Index t∗ ∈ [T] ∪ {⊥}. This index is t∗ = ⊥ if there is no t ∈ [T] with σ∗ ∈ Covert. Otherwise, it is
the minimum such t.

• Event GoodTabt for t ∈ [T]: This event occurs if the ciphertext ct is invalid, i.e., Dec(sk′, ct) = ⊥ or
ct ̸= Enc(pk, Dec(sk′, ct); G(Dec(sk′, ct))).

The goal of our analysis is to give a lower bound on the probability of Win. This is done as follows: we
first observe that if σ∗ is in one of the tables and not an endpoint, and this table is associated with a
ciphertext that triggers implicit rejection, then the attack will find σ∗ and will also find sk′. Namely,

Pr [Win] ≥ Pr [t∗ ̸= ⊥ ∧ GoodTabt∗] = Pr [GoodTabt∗ | t∗ ̸= ⊥] · Pr [t∗ ̸= ⊥].

We will analyze these two terms separately. For analyzing the former term, we will assume that the
randomness is taken only over the keys and G and everything else is fixed, including Ĥ and H. For
analyzing the latter term, we will assume that the randomness is taken only over random oracles Ĥ and
H and everything else, including σ∗, the keys, and G is fixed. It can easily be seen3 that

Pr
pk,sk′,G

[GoodTabt∗ | t∗ ̸= ⊥] ≥ 1− γ.

Hence, we can focus on upper bounding the probability of t∗ = ⊥. We have

Pr
H,G

[t∗ = ⊥] = Pr [∀t ∈ [T] : σ∗ /∈ Covert] =
∏

t∈[T]

Pr [σ∗ /∈ Covert].

For every t ∈ [T], we can bound the respective term via

Pr [σ∗ /∈ Covert] ≤
(
1− 2−h · E [|Covert|]

)
.

Now, we have reduced the proof to lower bounding the expected size4 of Covert for a fixed t ∈ [T].
The reader shall keep in mind that the randomness space is defined only by the random oracles and
everything else is treated as fixed. We first define another class of events:

• Event Newi,j for i ∈ [H] and j ∈ {0, . . . , W − 1}: This event occurs, if the element x
(t)
i,j does not

occur in a previous row or a previous column in row i. More formally, it occurs if there is no pair
(i′, j′) ∈ [H]× {0, . . . , W − 1} with i′ < i and x

(t)
i′,j′ = x

(t)
i,j or with j′ ≤ j and x

(t)
i,j′ = x

(t)
i,j .

3See the proof of Lemma 2 for a detailed proof of a similar statement.
4This part of the analysis is similar to the analysis in [Hel80].

19

It is clear that the probability of Newi,j is at least the probability that all Newi,j′ for j′ ≤ j hold. For
every such event Newi,j′ , the probability that it holds conditioned on that all previous ones hold is at
least 1− iW 2−h, as there are at most iW many of the 2h elements that are already covered. This means
that

Pr [Newi,j] ≥
(

1− iW

2h

)j+1
.

By linearity of expectation, we get

E [|Covert|] =
H∑

i=1

W −1∑
j=0

Pr [Newi,j] ≥
H∑

i=1

W∑
j=1

(
1− iW

2h

)j

.

In combination, we get the desired bound.

Lemma 10 (Undetectability). Consider the attack scheme AS in Figure 7. Then, for any algorithm D
that makes at most Q queries to random oracle Ĥ, we have

Advdist-kp
D,AS,PKE,H,G ≤

Q

2λ
, Advdist-o

D,AS,PKE,H,G = 0.

Proof. Note that the way subversion works is identical to what we have done in Section 4.2. Therefore,
the proof is identical to the proof of Lemma 6.

Concrete Example: Kyber. Setting W = H = T = 2h/3, we can approximate the advantage of the
attack according to Lemma 9 by (1− γ) · (1/e)1/e, which is approximately 0.7 · (1− γ). It remains to find
a good choice for h to minimize the attack complexity. For that, our goal is that the final brute-force
search FinalSearch takes approximately as long as the rest of the attack. This leads to ℓs − h = 2h/3 ,
i.e., h = 3ℓs/5. With ℓs = 256 for Kyber, we get the numbers we have in Table 1.
On Quantum Speed-Ups. Using a quantum computer, we can speed up the two exhaustive searches
in our attack in Section 4.2 using Grover’s algorithm [Gro96], which results in taking a square root of the
complexity. Interestingly, this is more efficient than a similar quantum speed up for the time-memory
trade-off in this section. The reason is that known quantum equivalents to Hellman tables, e.g., [DKRS21],
are only more efficient than Grover if we are interested in inverting one out of many images of a function.
We currently do not see how to leverage this for our attack.

5 Discussion and Countermeasures
In this work, we have studied implicit rejection in the Fujisaki-Okamoto transform from the perspective
of kleptography. Given that the Fujisaki-Okamoto transform is likely to be the basis of our secure
communication in the near future, studying its security in such strong attacker models is of high relevance
for practice. In the following, we comment on design choices in our kleptographic model, and discuss
some potential countermeasures against our attacks.
Subverting Other Components. One might question why we chose to restrict the attacker to subverting
only the implicit rejection path of the Fujisaki-Okamoto transform. In principle, kleptographic attacks
could target other components of the key encapsulation mechanism as well. However, this restriction
offers two key benefits. First, by confining the attack to the implicit rejection path – a small part of the
code that is rarely used in standard operation – the modifications become significantly harder to detect
than if the entire codebase were compromised. Second, our objective was to understand the security of
the implicit rejection variant of the Fujisaki-Okamoto transform, rather than to evaluate the security of
the underlying public key encryption scheme.
Cryptographic Reverse Firewalls. Cryptographic reverse firewalls [MS15, CMY+16, GMV20] serve
as a general mechanism to protect users from unintentionally leaking sensitive information through
compromised or subverted cryptographic code. These firewalls operate as untrusted intermediaries,
positioned between the user’s machine and the external environment, where they may modify outgoing
messages to prevent the exfiltration of secrets. Notably, reverse firewalls can be designed for any
cryptographic protocol [MS15]. Hence, they would in theory be applicable as a countermeasure to our

20

kleptographic attacks. However, we are not aware of any practical implementation or deployment of this
theoretical tool.
Applicability without Access to the KEM Key. In many applications, attackers lack access to a
full decapsulation oracle that outputs the full KEM key. In such scenarios, our attacks do not apply
directly. In particular, without access to a decapsulation oracle, our first attack cannot be applied. Still,
the strategies used in our second and third attack can be applied. Namely, it may still be the case that
an attacker can learn a deterministic function of the key K∗ (for example, decryption). Assuming this
function preserves enough entropy, our second and third attacks still work. The first attack does not
work in this setting.
Hiding the KEM Key. As a countermeasure, one may try to prevent our attacks by hiding the KEM
key through additional measures. As we have explained, this would prevent the first attack, and in some
cases it could prevent the second and third attack. However, we argue that this countermeasure is far
from satisfactory: Basing security of a standardized scheme just on the hope that nothing about the
KEM key is leaked seems dangerous. For instance, there could be application developers deciding to write
the KEM key into badly protected system logs once the process crashes due to the use of the implicit
rejection key. The cryptographic community has agreed over the years that chosen-ciphertext security
with a full decapsulation oracle is imperative for the adoption of a KEM.
Timing Behavior. In our first attack, the subverted decapsulation algorithm is slower than the original
one, which may help the user to detect the subversion. But if no additional countermeasures are taken,
it may be hard for a user to distinguish between a slow subverted implementation of the cryptography
layer and, say, a network delay. Further, a more sophisticated kleptographic attacker may trigger the
kleptographic code only occasionally, which makes it look even more like a different type of delay.Timing
behavior is outside the scope of our kleptographic model.
Attack Detection. In our attacks, the attacker queries the decapsulation oracle with invalid ciphertexts.
Concretely, our attack in Section 4.1 requires only three such queries and the attack in Section 4.2
only one. Conversely, our preprocessing attack demands a more extensive series of queries. Though an
attentive user may potentially detect the attack by observing these invalid ciphertexts, we emphasize
that this makes implicit rejection degenerate to explicit rejection.
Increasing Key Lengths. Our work shows that Kyber, when employing the key length specified,
offers a significantly lower security level than advertised when facing kleptographic attackers. While
increasing key lengths can amplify the complexity of our attacks outlined in Sections 4.2 and 4.3, we
highlight that the attack discussed in Section 4.1 remains unaffected by this measure. Generally, we find
increasing key lengths to be an unsatisfactory solution, as it does not address the fundamental issue of
potential side-channel vulnerabilities. In essence, we advocate for explicit rejection as the most effective
countermeasure against our attacks.

21

References
[ABD+21] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky,

John M Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé. CRYSTALS-Kyber
algorithm specifications and supporting documentation, version 3.02. 2021. (Cited on page 3,
4, 5, 10.)

[ABR98] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. DHIES: An encryption scheme based
on the Diffie-Hellman problem. Contributions to IEEE P1363a, September 1998. (Cited on
page 13.)

[AMV15] Giuseppe Ateniese, Bernardo Magri, and Daniele Venturi. Subversion-resilient signature
schemes. In Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors, ACM CCS 2015,
pages 364–375. ACM Press, October 2015. (Cited on page 5.)

[AP22] Marcel Armour and Bertram Poettering. Algorithm substitution attacks against receivers.
Int. J. Inf. Sec., 21(5):1027–1050, 2022. (Cited on page 5.)

[BBN+09] Mihir Bellare, Zvika Brakerski, Moni Naor, Thomas Ristenpart, Gil Segev, Hovav Shacham,
and Scott Yilek. Hedged public-key encryption: How to protect against bad randomness. In
Mitsuru Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 232–249. Springer,
Heidelberg, December 2009. (Cited on page 5.)

[BDF+11] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner, and Mark
Zhandry. Random oracles in a quantum world. In Dong Hoon Lee and Xiaoyun Wang, editors,
ASIACRYPT 2011, volume 7073 of LNCS, pages 41–69. Springer, Heidelberg, December 2011.
(Cited on page 3, 5.)

[BFS16] Mihir Bellare, Georg Fuchsbauer, and Alessandra Scafuro. NIZKs with an untrusted CRS:
Security in the face of parameter subversion. In Jung Hee Cheon and Tsuyoshi Takagi, editors,
ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages 777–804. Springer, Heidelberg,
December 2016. (Cited on page 5.)

[BH15] Mihir Bellare and Viet Tung Hoang. Resisting randomness subversion: Fast deterministic
and hedged public-key encryption in the standard model. In Elisabeth Oswald and Marc
Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 627–656. Springer,
Heidelberg, April 2015. (Cited on page 5.)

[BHH+19] Nina Bindel, Mike Hamburg, Kathrin Hövelmanns, Andreas Hülsing, and Edoardo Persichetti.
Tighter proofs of CCA security in the quantum random oracle model. In Dennis Hofheinz
and Alon Rosen, editors, TCC 2019, Part II, volume 11892 of LNCS, pages 61–90. Springer,
Heidelberg, December 2019. (Cited on page 3, 5.)

[BJK15] Mihir Bellare, Joseph Jaeger, and Daniel Kane. Mass-surveillance without the state: Strongly
undetectable algorithm-substitution attacks. In Indrajit Ray, Ninghui Li, and Christopher
Kruegel, editors, ACM CCS 2015, pages 1431–1440. ACM Press, October 2015. (Cited on
page 5.)

[BPR14] Mihir Bellare, Kenneth G. Paterson, and Phillip Rogaway. Security of symmetric encryption
against mass surveillance. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014,
Part I, volume 8616 of LNCS, pages 1–19. Springer, Heidelberg, August 2014. (Cited on
page 5.)

[CMY+16] Rongmao Chen, Yi Mu, Guomin Yang, Willy Susilo, Fuchun Guo, and Mingwu Zhang.
Cryptographic reverse firewall via malleable smooth projective hash functions. In Jung Hee
Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part I, volume 10031 of LNCS,
pages 844–876. Springer, Heidelberg, December 2016. (Cited on page 20.)

[Den03] Alexander W. Dent. A designer’s guide to KEMs. In Kenneth G. Paterson, editor, 9th IMA
International Conference on Cryptography and Coding, volume 2898 of LNCS, pages 133–151.
Springer, Heidelberg, December 2003. (Cited on page 3, 5, 7.)

22

[DFMS22] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Online-extractability in
the quantum random-oracle model. In Orr Dunkelman and Stefan Dziembowski, editors,
EUROCRYPT 2022, Part III, volume 13277 of LNCS, pages 677–706. Springer, Heidelberg,
May / June 2022. (Cited on page 3.)

[DFP15] Jean Paul Degabriele, Pooya Farshim, and Bertram Poettering. A more cautious approach
to security against mass surveillance. In Gregor Leander, editor, FSE 2015, volume 9054 of
LNCS, pages 579–598. Springer, Heidelberg, March 2015. (Cited on page 5.)

[DHK+21] Julien Duman, Kathrin Hövelmanns, Eike Kiltz, Vadim Lyubashevsky, and Gregor Seiler.
Faster lattice-based KEMs via a generic fujisaki-okamoto transform using prefix hashing.
In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021, pages 2722–2737. ACM Press,
November 2021. (Cited on page 5.)

[DKRS21] Orr Dunkelman, Nathan Keller, Eyal Ronen, and Adi Shamir. Quantum time/memory/data
tradeoff attacks. Cryptology ePrint Archive, Report 2021/1561, 2021. https://eprint.iacr.
org/2021/1561. (Cited on page 20.)

[ElG84] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. In G. R. Blakley and David Chaum, editors, CRYPTO’84, volume 196 of LNCS,
pages 10–18. Springer, Heidelberg, August 1984. (Cited on page 6, 13.)

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. In Michael J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages
537–554. Springer, Heidelberg, August 1999. (Cited on page 3, 5, 6, 7, 8.)

[FO13] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric and symmetric
encryption schemes. Journal of Cryptology, 26(1):80–101, January 2013. (Cited on page 5.)

[Fuc18] Georg Fuchsbauer. Subversion-zero-knowledge SNARKs. In Michel Abdalla and Ricardo
Dahab, editors, PKC 2018, Part I, volume 10769 of LNCS, pages 315–347. Springer, Heidelberg,
March 2018. (Cited on page 5.)

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer and System
Sciences, 28(2):270–299, 1984. (Cited on page 3.)

[GMV20] Chaya Ganesh, Bernardo Magri, and Daniele Venturi. Cryptographic reverse firewalls for
interactive proof systems. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors,
ICALP 2020, volume 168 of LIPIcs, pages 55:1–55:16. Schloss Dagstuhl, July 2020. (Cited on
page 20.)

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search. In 28th ACM
STOC, pages 212–219. ACM Press, May 1996. (Cited on page 4, 20.)

[Hel80] Martin E. Hellman. A cryptanalytic time-memory trade-off. IEEE Trans. Inf. Theory,
26(4):401–406, 1980. (Cited on page 4, 16, 19.)

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis of the Fujisaki-
Okamoto transformation. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part I, volume
10677 of LNCS, pages 341–371. Springer, Heidelberg, November 2017. (Cited on page 3, 5, 6,
7, 8.)

[HHM22] Kathrin Hövelmanns, Andreas Hülsing, and Christian Majenz. Failing gracefully: Decryption
failures and the fujisaki-okamoto transform. In Shweta Agrawal and Dongdai Lin, editors,
ASIACRYPT 2022, Part IV, volume 13794 of LNCS, pages 414–443. Springer, Heidelberg,
December 2022. (Cited on page 3, 5.)

[HKSU20] Kathrin Hövelmanns, Eike Kiltz, Sven Schäge, and Dominique Unruh. Generic authenticated
key exchange in the quantum random oracle model. In Aggelos Kiayias, Markulf Kohlweiss,
Petros Wallden, and Vassilis Zikas, editors, PKC 2020, Part II, volume 12111 of LNCS, pages
389–422. Springer, Heidelberg, May 2020. (Cited on page 3, 5.)

23

https://eprint.iacr.org/2021/1561
https://eprint.iacr.org/2021/1561

[JZC+18] Haodong Jiang, Zhenfeng Zhang, Long Chen, Hong Wang, and Zhi Ma. IND-CCA-secure key
encapsulation mechanism in the quantum random oracle model, revisited. In Hovav Shacham
and Alexandra Boldyreva, editors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages
96–125. Springer, Heidelberg, August 2018. (Cited on page 3, 5.)

[KSS+20] Veronika Kuchta, Amin Sakzad, Damien Stehlé, Ron Steinfeld, and Shifeng Sun. Measure-
rewind-measure: Tighter quantum random oracle model proofs for one-way to hiding and
CCA security. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part III,
volume 12107 of LNCS, pages 703–728. Springer, Heidelberg, May 2020. (Cited on page 3, 5.)

[MS15] Ilya Mironov and Noah Stephens-Davidowitz. Cryptographic reverse firewalls. In Elisabeth
Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages
657–686. Springer, Heidelberg, April 2015. (Cited on page 20.)

[NIS17] NIST. Post-Quantum Cryptography. https://csrc.nist.gov/projects/
post-quantum-cryptography, 2017. Accessed: 2024-02-07. (Cited on page 3.)

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen ciphertext
attacks. In 22nd ACM STOC, pages 427–437. ACM Press, May 1990. (Cited on page 3.)

[Per12] Edoardo Persichetti. Improving the efficiency of code-based cryptography. PhD thesis, Re-
searchSpace Auckland, 2012. (Cited on page 5.)

[RBC+22] Prasanna Ravi, Shivam Bhasin, Anupam Chattopadhyay, Aikata, and Sujoy Sinha Roy.
Backdooring post-quantum cryptography: Kleptographic attacks on lattice-based KEMs.
Cryptology ePrint Archive, Report 2022/1681, 2022. https://eprint.iacr.org/2022/1681.
(Cited on page 5.)

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In
Harold N. Gabow and Ronald Fagin, editors, 37th ACM STOC, pages 84–93. ACM Press,
May 2005. (Cited on page 6, 13.)

[RS92] Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS,
pages 433–444. Springer, Heidelberg, August 1992. (Cited on page 3.)

[RTYZ16] Alexander Russell, Qiang Tang, Moti Yung, and Hong-Sheng Zhou. Cliptography: Clipping
the power of kleptographic attacks. In Jung Hee Cheon and Tsuyoshi Takagi, editors,
ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages 34–64. Springer, Heidelberg,
December 2016. (Cited on page 5.)

[RTYZ17] Alexander Russell, Qiang Tang, Moti Yung, and Hong-Sheng Zhou. Generic semantic security
against a kleptographic adversary. In Bhavani M. Thuraisingham, David Evans, Tal Malkin,
and Dongyan Xu, editors, ACM CCS 2017, pages 907–922. ACM Press, October / November
2017. (Cited on page 5.)

[SAB+22] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint,
Vadim Lyubashevsky, John M. Schanck, Gregor Seiler, Damien Stehlé, and Jintai Ding.
CRYSTALS-KYBER. Technical report, National Institute of Standards and Technol-
ogy, 2022. available at https://csrc.nist.gov/Projects/post-quantum-cryptography/
selected-algorithms-2022. (Cited on page 3.)

[SXY18] Tsunekazu Saito, Keita Xagawa, and Takashi Yamakawa. Tightly-secure key-encapsulation
mechanism in the quantum random oracle model. In Jesper Buus Nielsen and Vincent Rijmen,
editors, EUROCRYPT 2018, Part III, volume 10822 of LNCS, pages 520–551. Springer,
Heidelberg, April / May 2018. (Cited on page 3, 5.)

[TY17] Qiang Tang and Moti Yung. Cliptography: Post-snowden cryptography. In Bhavani M.
Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages
2615–2616. ACM Press, October / November 2017. (Cited on page 5.)

24

https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://eprint.iacr.org/2022/1681
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

[YY96] Adam Young and Moti Yung. The dark side of “black-box” cryptography, or: Should we
trust capstone? In Neal Koblitz, editor, CRYPTO’96, volume 1109 of LNCS, pages 89–103.
Springer, Heidelberg, August 1996. (Cited on page 3, 5.)

[YY97a] Adam Young and Moti Yung. Kleptography: Using cryptography against cryptography.
In Walter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages 62–74. Springer,
Heidelberg, May 1997. (Cited on page 3, 5.)

[YY97b] Adam Young and Moti Yung. The prevalence of kleptographic attacks on discrete-log based
cryptosystems. In Burton S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of LNCS, pages
264–276. Springer, Heidelberg, August 1997. (Cited on page 5.)

[YY01] Adam Young and Moti Yung. Bandwidth-optimal kleptographic attacks. In Çetin Kaya Koç,
David Naccache, and Christof Paar, editors, CHES 2001, volume 2162 of LNCS, pages 235–250.
Springer, Heidelberg, May 2001. (Cited on page 5.)

25

Appendix

A Script for Attack Complexity and Advantage

Listing 1: Python script to estimate the complexity and advantage of our three attacks for the example
of Kyber, as presented in Table 1.
#!/ usr/bin/env python

import math
import sys
from tabulate import tabulate

--#
KYBER PARAMETERS
--#

lsk: length of secret key , or precisely , the seed to generating it
lsk = 32*8

lseed: length of the seed for implicit rejection
lseed = 32*8

lk: length of KEM session keys
lk = 32*8

lc: length of a kyber ciphertext , precisely , Kyber1024
lc = 1568*8

spread : upper bound on spreadness
spread = 0.001

--#
ATTACKS
--#

an attack is given by
#
name: name of the attack
advantage : lambda for computing the advantage of the attack
memory : lambda for computing the memory complexity of the attack
time_offline : lambda for computing the offline complexity of the attack
time_online : lambda for computing the online complexity of the attack
for running times , we assume all basic operations (hash ,
checking key pairs , etc) take one step
#
all of these lambdas should take as input a kyber configuration

we use hashed ElGamal encryption
in this case , a ciphertext has size < 3 * 256
T = math.ceil (3.0 * 256.0 / lk)
decapsattack = {

"name": " decaps ",
" memory ": 256 ,
" time_offline ": 1,
" time_online ": T,
" advantage ": 1- T * spread ,

}

26

h = lsk /2
secpar = 128
keygenattack = {

"name": "key gen",
" memory ": secpar ,
" time_offline ": 1,
" time_online ": 1 + 2**(h+1) + 2**(lsk -h),
" advantage ": 1.0 - spread - 2**(- secpar) - 2**(- lk),

}

h = int(lsk *3/5.0)
logW = h/3
logH = h/3
logT = h/3
need that for approximation 1/e
assert (2* logW + logH == h)
assert (logW + logH + logT == h)

W = int (2** logW)
H = int (2** logH)
T = int (2** logT)

secpar = 128
preproattack = {

"name": " preprocess ",
" memory ": secpar + T*(lc + 2*H*h),
" time_offline ": 2*H*W*T,
" time_online ": 2*T*W + 2**(-h -1)*T*H*(W*(W -1) +((W -1)*W*(W+1))/3) +

↪→ (2**(lsk - h)*2* lk / (lk -h)),
" advantage ": (1.0 - spread) *((1.0/ math.e)**(1/ math.e))

}
attacks = [decapsattack , keygenattack , preproattack]

--#
TABLE GEN
--#

one row per attack
each row contains : name , memory , time offline , time online , advantage
table = [[" Attack ", " Memory ", "Time (Offline)", "Time (Online)", " Advantage "]]

for a in attacks :
name = a["name"]
mem = math.ceil(math.log2(a[" memory "]))
toff = math.ceil(math.log2(a[" time_offline "]))
ton = math.ceil(math.log2(a[" time_online "]))
adv = a[" advantage "]
row = [name , mem , toff , ton , adv]
table. append (row)

--#
USER OUTPUT
--#
print("")
print("Hint: to print the table in LaTeX code , add the option -l.")
print("Note: except advantage , all numbers are logarithms to base 2.")

27

print("")

opts = [opt for opt in sys.argv [1:] if opt. startswith ("-")]

if "-l" in opts:
print(tabulate (table , headers =’firstrow ’, tablefmt =’latex_raw ’,

↪→ disable_numparse = True))
else:

print(tabulate (table , headers =’firstrow ’, tablefmt =’fancy_grid ’))

28

	Introduction
	Our Contribution
	More on Related Work
	Outline

	Preliminaries
	Kleptographic Model
	Our Attacks
	Subverting Decapsulation Only
	Subverting Key Generation Only
	An Attack with Preprocessing

	Discussion and Countermeasures
	Script for Attack Complexity and Advantage

