
Anonymous Complaint Aggregation
for Secure Messaging

Connor Bell

University of North Carolina at Chapel Hill

connorbe@cs.unc.edu

Saba Eskandarian

University of North Carolina at Chapel Hill

saba@cs.unc.edu

ABSTRACT
Private messaging platforms provide strong protection against plat-

form eavesdropping, butmalicious users can use privacy as cover for

spreading abuse and misinformation. In an attempt to identify the

sources of misinformation on private platforms, researchers have

proposed mechanisms to trace back the source of a user-reported

message (CCS ’19,’21). Unfortunately, the threat model considered

by initial proposals allowed a single user to compromise the pri-

vacy of another user whose legitimate content the reporting user

did not like. More recent work has attempted to mitigate this side

effect by requiring a threshold number of users to report a message

before its origins can be identified (NDSS ’22). However, the state of

the art scheme requires the introduction of new probabilistic data

structures and only achieves a “fuzzy” threshold guarantee. More-

over, false positives, where the source of an unreported message is

identified, are possible.

This paper introduces a new threshold source tracking technique

that allows a private messaging platform, with the cooperation of

a third-party moderator, to operate a threshold reporting scheme

with exact thresholds and no false positives. Unlike prior work, our

techniques require no modification of the message delivery process

for a standard source tracking scheme, affecting only the abuse

reporting procedure, and do not require tuning of probabilistic data

structures.

1 INTRODUCTION
End-to-end encrypted (E2EE) messaging platforms allow users the

opportunity to communicate without possible eavesdropping by the

messaging platform itself. Widely deployed in Signal, WhatsApp,

iMessage, Android Messages, and Messenger Secret Conversations,

E2EE messaging has rapidly become the standard for privacy in

mobile communication.

Unfortunately, the strong privacy protections of end-to-end en-

cryption can also provide cover for malicious users who wish to

propagate hate speech or disinformation without repercussions

from platform moderators. In response to the pressing nature of

this problem, various countries, including India and Brazil, have

sought to introduce policies that compel messaging platforms to

reveal the sources of misinformation messages [5, 37, 43, 44, 46, 47].

The policies proposed by these governments have received condem-

nation from platforms, policymakers, and technologists because

they amount to roundabout ways of circumventing end-to-end

encryption [3, 31].

While a number of works have studied handling abuse reports

in E2EE messaging [8, 16, 20, 22, 28–30, 34, 48] or proactively

scanning encrypted messages for inappropriate content [6, 11, 33],

few works consider the problem of identifying the originators of

user-reported misinformation without violating E2EE guarantees

for non-reported messages. This problem has been studied un-

der the name traceback by Tyagi et al. [49] and source tracking by

Peale et al. [42] (we will refer to this functionality as source tracking

in this paper). In source tracking, clients can verify that a received

message, along with related metadata (e.g. the author), is traceable

back to the original sender, or the direct sender if the message was

not a forwarded message.

Unfortunately, allowing a single user report to reveal the source

of a message can be problematic, as any user who dislikes the

contents of a given forwarded message can reduce the privacy that

the platform provides to the author of that message. For example,

a user who receives widely-forwarded details about the time and

place of a planned protest can cause the platform to learn who sent

the messages planning the protest. This means that source tracking

allows users of a messaging platform to de-anonymize other users

to the platform, even if they have never communicated with each
other directly.

Recently, Liu et al. [35] have introduced FACTS, a scheme for

anonymous tallying of misinformation messages. FACTS allows for

a message to be reported to a platform for source tracking after

it is reported a certain number of times, in hopes of reducing the

risk posed by allowing a single user to deanonymize another. This

does not prevent a malicious user who receives a message from

directly revealing the necessary reporting data to the platform

operator out-of-band, but it provides a way for honest users to

prevent reporting of content whose objectionable status has not

yet been widely confirmed. In the FACTS system, clients update a

probabilistic data structure each time they report a message, and

messages that have received roughly the correct number of reports

are revealed to the platform for source tracking. FACTS is the first

system to support this kind of threshold source tracking.
This paper introduces a new system for threshold source tracking.

Unlike FACTS, our system allows for exact thresholds for reporting

messages, never has false positives, and does not require locking

a global data structure for each report. Moreover, we make no

changes to how message processing or delivery is handled beyond

standard source tracking. The modest overhead introduced by our

scheme occurs only during the reporting process.

Our key technical contribution is a new two server anonymous
tally scheme, a primitive of independent interest. In the context of

source tracking, we split the work of handling anonymous report

tallying between the platform itself and a third-party moderator.

Security critically relies on the non-collusion of these two parties.

Users only interact with the platform during the reporting process,

meaning that the platform necessarily learns which users make

reports, but does not learn anything about the messages being

reported. The platform occasionally passes on report data to the

moderator, allowing the moderator to tally reports for a message.

1

Figure 1: The expected outcomes for sample message reporting be-
havior. - Bob receives𝑎 fromMal and forwards toAlice. Alice receives
𝑏 from Mal. Bob attempts to report 𝑎 twice, and Alice honestly re-
ports 𝑎 and 𝑏. 𝑆1 returns an anonymous receipt of the interactions
back to Alice and Bob. These receipts are encrypted by Bob and Alice
before being batched and shuffled for delivery to 𝑆2 for validation;
Bob’s second report of 𝑎 produces an identical duplication tag to
the first report, so only one report will count, while both of Alice’s
honest reports are accepted for counting.

Only after a message receives sufficient reports is it revealed to the

platform/moderator. Fig. 1 shows how the expected behavior when

the system identifies duplicate reports from the same user while

allowing multiple users to report the same message.

To analyze our proposed scheme, we formalize and prove security

with respect to security definitions that ensure a given user cannot

contribute more than one tally toward revealing a message, that

report contents remain hidden from the platform before a message

is reported a threshold number of times, and that the moderator

learns nothing about who makes each report.

We implement our proposed scheme and find that the additional

overhead of our reporting protocol and report verification algorithm

each take well under 1ms of client or server computation time

to complete. The computational cost of our scheme ranges from

comparable to orders of magnitude lower than the FACTS system,

depending on the choice of threshold and parameter settings used

for FACTS. Our code is open source and publicly available at

https://github.com/connorbelll/anonymous-tally.

Threat Model Limitations.We wish to point out three important

limitations of our work on threshold source tracking, both to clarify

our contributions and to point out promising avenues for future

work.

First and foremost, as mentioned above, threshold source track-

ing (both in this and prior work) does not prevent a malicious user

from colluding with a malicious server and immediately reveal-

ing the source of a message, thereby circumventing any threshold

mechanism. Concretely, this means that if a user produces a piece

of widely forwarded content to which a government or other pow-

erful entity objects, the messaging system can be compelled to

strip that user’s anonymity after seeing only a single report from a

government-controlled device that has received the message.

Second, we note that our scheme introduces the need to split

trust between multiple servers to achieve security. While this is a

widely-used assumption in the anonymousmessaging literature, the

performance, functionality, and security benefits of our approach

need to be weighed against this additional requirement in making

deployment decisions for threshold source tracking. We discuss

this assumption in more detail in Section 3.

Finally, in order for threshold source tracking to be effective, it

must be paired with an effective mechanism for preventing the cre-

ation of fraudulent accounts. While the techniques for preventing

fake accounts are orthogonal to the mechanisms used for source

tracking, we observe that using these two security features together

places additional importance on preventing fake accounts. Whereas

these mechanisms usually function to prevent malicious users from

misbehavior caused by generating harmful content, e.g., bullying or

producing misinformation, our scheme also relies on them to pro-

tect the anonymity of users whose messages are reported. Such a

shift in security properties relying on duplicate account prevention

may also raise the motivation of attackers to circumvent measures

already in place.

In summary, this paper makes the following contributions:

• Introduces the notion of a two-server anonymous tally

scheme and presents the appropriate security definitions.

• Shows how to use anonymous tally schemes to build thresh-

old source tracking.

• Designs an anonymous tally scheme that enables threshold

source tracking with exact thresholds.

• Implements and evaluates our anonymous tally scheme, in-

cluding a comparison to prior work, demonstrating that our

scheme achieves low overheads and is suitable for practical

applications.

2 BACKGROUND: SOURCE TRACKING AND
THRESHOLD SOURCE TRACKING

In a source tracking scheme, the platform augments the message

delivery process with additional information that can be used to

identify the originator of a reported message.When a user wishes to

report a message, it produces a report that consists of the message

and additional cryptographic material that aids the moderator in

verifying that the report was indeed sent through the platform by

the claimed sender. The only property we require of the underlying

source tracking scheme in this work is that the process of reporting

a message to the moderator does not require multiple rounds of

interaction and that the actual data sent to report a message does

not depend on the user sending the report. This property holds

in the “tree-linkable” variant of the Peale et al. source tracking

scheme [42], their more efficient construction, as well as Hecate [30].

Schemes that trace back a message to its source hop by hop [32, 49]

do not satisfy this requirement because the lack of a consistent

cryptographic identifier for the forwarded message works against

the platform’s ability to aggregate reports.

A threshold source tracking scheme augments the source track-

ing process by adding a mechanism where messages are revealed

for source tracking after the servers have received a certain number

2

https://github.com/connorbelll/anonymous-tally

of complaints about a given message. The only known threshold

source tracking scheme is FACTS [35], where clients collaboratively

update a data structure hosted by the server to keep track of ap-
proximately how many times a message has been reported. When

clients detect that a message has been reported enough times, any

reporting client can make a final report to the moderator. The fi-

nal report reveals the information necessary for source tracking

to the moderator. FACTS does not prevent users from submitting

multiple reports for the same message and may additionally leak

honest users’ intended reports to the platform when the platform

becomes aware of the report identifier, both of which we aim to

address in this work. We also track exact, instead of approximate,

report counts. In both FACTS and our work, the focus is on allowing

a moderator to be notified when a message has received enough

reports, not to prevent malicious clients from sharing reports with

malicious moderation servers out of band, as many source track-

ing schemes provide any recipient of a forwarded message with

sufficient information to report the message alone.

Threshold source tracking shares some common goals with elec-

tronic voting; in elections, votes should remain anonymous while

preventing any single voter from voting on the same issue twice. In

this work, we present de-duplication constructions which surface

common identifying strings if a malicious user attempts to report

the same message twice. Similar definitions were established for

unique ring signatures by Franklin and Zhang [25], where malicious

duplicate signatures will result in “a large common component”

between the signatures, which can be used to link the duplicate

signatures together. We include a further discussion in Appendix A

to compare anonymous report aggregation to electronic voting

more broadly and to illustrate why our solution takes a different

approach than common electronic voting tools such as traceable

ring signatures [27].

3 ANONYMOUS TALLIES
This section introduces anonymous tallies and sketches their prop-

erties at a high level. Since anonymous tallies form the core of our

threshold source tracking scheme, we begin by introducing them

before showing how to integrate them with existing messaging

systems to support threshold source tracking.

A two-server anonymous tally scheme allows two servers to

blindly keep a count of user-reported messages. The servers can

learn the number of distinct user reports of a given message, but

they do not learn the messages themselves or the identity of the

user who filed each report.

The design of our scheme has the two servers playing distinct

roles. Users interact with the first server, 𝑆1, to send a report for

tallying. Server 𝑆1 sends batches of anonymized reports to 𝑆2, who

computes the anonymous tallies. For each report sent to the tallying

scheme, the server 𝑆2 can derive a duplication tag dupTag which

will be identical if the same user reports the same message more

than once. The dupTag can be used to detect and discard duplicate

reports. Server 𝑆2 also derives some hidden data hd which it can

send to 𝑆1 to enable recovery of report data rd sent by the client.

Server 𝑆2 can also prove to 𝑆1 that the tally for a given report has

passed a given threshold. This abstraction allows us to easily inte-

grate our anonymous tally scheme syntax with different message

reporting schemes.

We require the following high-level security properties from an

anonymous tally scheme.

• Report confidentiality: a single server behaving mali-

ciously, potentially colluding with malicious users, cannot

learn the contents of honest users’ reports.

• Reporter anonymity: a single server behavingmaliciously,

potentially colluding with malicious users, cannot learn

which honest user sent which report.

• Report uniqueness: if the servers behave honestly, no

malicious user should be able to contribute more than one

report to the tally for a given report.

• Threshold unforgeability: a malicious 𝑆2 cannot mis-

represent a given report as having more than a threshold

number of reports when it really does not.

• Deniability: even if user or server secrets are made public,

reports cannot be verifiably tied back to a given user.

Looking ahead, our scheme will (necessarily) allow server 𝑆1
to learn the identities of all the users who send reports, but hide

which messages those users report. At the same time, server 𝑆2 will

learn the values being counted in the tally, but it will not be able to

connect any given report with a particular user. To further mask the

identities of the reporters, messaging clients can occasionally send

a report with random report data as cover traffic for real reports.

In Section 5, we formalize these properties and discuss various

additional security considerations.

Security from splitting trust. Our scheme relies on splitting

trust between two non-colluding servers to achieve security. In

particular, a deployment must be able to set up two servers, e.g.,

the message platform itself and a third party moderator-run server,

who can be relied upon not to collude to violate the security of

the anonymous tally. Failure to satisfy this assumption in practice

allows the servers to deanonymize the author of any message after

a single report, reverting the scheme to a standard (non-threshold)

source tracking scheme.

While a two-server split trust setup may be difficult to achieve

in many scenarios, recent large-scale deployments of split-trust

systems for private browser telemetry in Mozilla Firefox [4, 21] and

measurement of the effectiveness of the Apple/Google Covid-19

exposure notification system [1, 2] provide reason for optimism

that this is a workable approach. The stakes in these deployments

are, however, considerably lower than those of anonymous mes-

saging, where potential privacy harms are not only the exposure

of consumers’ browsing or health data, but also persecution (and

potentially execution [7]) of dissidents.

Anonymous tally scheme syntax. More formally, a two-server

anonymous tally scheme consists of seven algorithms SKGen1,
SKGen2,UKGen,Verify, Reveal, S2Prove, and S1Verify, and an in-

teractive protocol Report.

• SKGen1(1𝜆, pp) → (pk
1
, sk1, sk𝑠): The server controlled

by themessaging platform, 𝑆1, runs this algorithm at system

initialization. It takes in a security parameter 1
𝜆
and public

parameters 𝑝𝑝 , and it generates 3 keys: public and secret

3

Platform

User
(sk1, pk1), sks, pku (sk2, pk2), skspk1, pk2, (sku, pku)

Report Report

rep

ct Batch and Shuffle Verify

(rep, dupTag, hd) ⊥or

SKGen1: (pk1, sk1, sks)
UKGen: (pku, sku) SKGen2: (pk2, sk2)

1st Party (S1) 3rd Party (S2)

Source Tracking

rd Hash

Revealing message after verification:

hd hd hd …hdReveal

rd

Verification after threshold reached:

S2Prove →𝝅v

1 or 0

S1Verify

Figure 2: System diagram of threshold source tracking showing the ownership of keys and the flow of data. A user begins with the source
tracking data 𝑟𝑑 and computes a report identifier rep to feed the Report and Verify algorithms, resulting in either a) 𝑆2 learning rep, a duplication
tag dupTag, and hidden metadata hd or b) 𝑆2 rejecting the report. When a platform-specified reporting threshold is reached, 𝑆2 proves to 𝑆1 that
the threshold for the report was reached honestly and delivers the associated ℎ𝑑 values for 𝑆1 to Reveal the source tracking information.

keys for interactions with the reporter, as well as a shared

secret key sk𝑠 .
• SKGen2(1𝜆, pp) → (pk

2
, sk2): The server controlled by the

3rd party, 𝑆2 runs this algorithm at system initialization.

It takes in a security parameter 1
𝜆
and public parameters

𝑝𝑝 , and it generates public and secret keys for receiving

encrypted messages.

• UKGen(1𝜆, pp) → (pk𝑢 , sk𝑢): A user runs this algorithm

to participate in the system. It takes in a security parameter

1
𝜆
and public parameters 𝑝𝑝 , and it generates a user key

pair pk𝑢 , sk𝑢 .
• Report:
⟨𝑈 (rep, rd, pk𝑢 , sk𝑢 , pk1, pk2), 𝑆1 (pk1, sk𝑠 , sk1, pk𝑢)⟩ →
ct/⊥: this is a protocol run between a user 𝑈 and the first

server 𝑆1. Each party has access to relevant public and

private keys, and the user𝑈 additionally holds values rep
and rd. The value rd can be, e.g., the contents of a report

in a source tracking scheme. rep is not the contents of a

report in the underlying source tracking scheme, but rather

a value that uniquely identifies the report, e.g., its hash.

To allow for flexibility in use cases, there is no enforced

relationship between rep and rd in the anonymous tally

scheme itself.

• Verify(sk𝑠 , sk2, ct) → (rep, dupTag, hd)/⊥ : this algorithm

is run by server 𝑆2 to validate the contents of a report. The

algorithm takes as inputs the keys sk𝑠 and sk2, as well as a
ciphertext ct. If the ciphertext passes the server’s verifica-
tion process, the algorithm returns the values rep, dupTag,
and hd. dupTag is used for detecting duplicate reports. If

the same user sends the same rep twice, the second report

will result in the same dupTag as the first report.

• S2Prove(rep, pData, thresh) → 𝜋𝑣 : this algorithm allows

𝑆2 to produce a proof 𝜋𝑣 that it has a report rep which

has been reported at least thresh number of times. The

pData input includes scheme-specific data needed by 𝑆2 to

produce this proof.

• S1Verify(rep, vData, dupTags, 𝜋𝑣) → 0/1 : this allows 𝑆1
to verify the output of an execution of S2Prove. The vData
input includes scheme-specific data needed by 𝑆1 to verify

this proof, and dupTags includes values of dupTag held by

𝑆2 for the reports. This allows 𝑆1 to ensure that 𝑆2 only

reveals messages that have exceeded the threshold.

• Reveal(sk1, hd) → rd: this algorithm is run by 𝑆1 to recover

report data rd from hidden data hd provided by 𝑆2.

We define correctness for a two-server anonymous tally scheme

as follows.

Definition 3.1 (Correctness (informal)). A two-server anonymous

tally scheme is correct if when the servers and all users follow

the scheme honestly, all algorithms and protocols fail (output ⊥)
with at most negligible probability, server 2 returns a duplicate

dupTag from Verify upon receiving a duplicate report for the same

message from the same honest user with probability one, and server

2 returns distinct dupTags for distinct user, message pairs with all

but negligible probability. Moreover, proofs produced by S2Prove
when run with a rep value that has thresh or more distinct reports

are accepted by S1Verify. Finally, if an hd value output by Verify
is given to Reveal(sk1, ·), the result will be the corresponding rd
value provided by the reporting client.

4

4 THRESHOLD SOURCE TRACKING VIA
ANONYMOUS TALLIES

A two-server anonymous tally scheme can be integrated into a mes-

saging system that supports source tracking to build a threshold

source tracking scheme with no changes to the underlying mes-

saging system and minimal changes to the message reporting flow.

This process is depicted in Fig. 2.

4.1 From Tallies to Threshold Source Tracking
In our scheme, the messaging platform is composed of the first

party entity running the messaging service, who runs server 𝑆1,

and a third party entity who aids in the moderation process only,

who runs 𝑆2. Users only ever interact directly with the first party 𝑆1.

At system initialization, the servers will run SKGen1 and SKGen2
to set up their respective keys and user devices will run UKGen in

the process of registering to use the messaging platform (on top of

any other registration processes). Then users can send messages

using the underlying messaging scheme with no modifications,

until they want to report messages.

When a user wishes to report a message𝑚, it computes the report

data rd for𝑚 via the source tracking scheme and hashes it with a

hash function 𝐻 to get a hashed report rep← 𝐻 (rd). Throughout
this paper, we will refer to the hashed report rep as the “report”

for the purposes of the tallying scheme. This hashed report rep, in
addition to the source tracking metadata rd itself, serves as user

𝑈 ’s input rep to the anonymous tally scheme’s Report protocol.
The user𝑈 sends the resulting ciphertext ct to 𝑆1 at the end of the

Report protocol.
Periodically (on a system-specified schedule), the server 𝑆1 sends

a shuffled batch of ciphertexts to 𝑆2. Server 𝑆2 runsVerify(𝑠𝑘𝑠 , sk2, ct)
to recover the report rep, a deduplication tag dupTag, and hidden

metadata hd for each ciphertext. Server 𝑆2 keeps a table of dupTags
and reports, and if a dupTag repeats, the report is dropped. Other-
wise, it increments the count for the report rep.

Once the count for a given report rep passes a system-specified

threshold thresh, 𝑆2 will send the hidden metadata hd for the re-

ports to 𝑆1. 𝑆2 also runs S2Prove to provide proof that the message

in question received sufficient reports, while maintaining the pri-

vacy of the reporters by hiding the real set of reports among a list of

masking reports; these proofs are verified by 𝑆1 in S1Verify. 𝑆1 will
then run Reveal and verify that a given revealed metadata entry

rd hashes to rep before proceeding further with processing the

source tracking information. Alternatively, the hidden data hd in

the anonymous tally scheme can be set to ⊥, and the server 𝑆1 can

solicit users to come forward with the corresponding rd to a given

rep once that message reaches the threshold. This latter approach

is roughly the one taken in FACTS, so our scheme strictly increases

flexibility in reporting options.

4.2 Choosing a Source Tracking Scheme
An anonymous tally scheme only affects the abuse reporting process

in an E2EE messaging system, so it is compatible with any source

tracking scheme where message reports consist of a single, reporter-

independent, message sent from a user to the moderator. Thus our

scheme is compatible with source tracking schemes that report

message plaintext, message sender identity, and other platform-

specified metadata, but can also be used with schemes that only

report some subset of this data according to the platform’s desired

moderation policy.

Since we can generically add the anonymous tally step to the

reporting process, we need not concern ourselves with the security

details of the underlying source tracking scheme, which are not

affected by the introduction of an anonymous tally to reporting.

Thus, any threshold source tracking scheme built by adding an

anonymous tally to an existing source tracking scheme inherits

the security properties provided by the underlying scheme for

unreported messages.

Finally, a threshold source tracking scheme built on top of a

standard source tracking scheme inherits the limitations of the

underlying system as well. In particular, source tracking schemes

typically rely on users honestly following the protocol to ensure that

messages can be linked back to the original sender, i.e., indicating

that a message is being forwarded rather than copy/pasting the

same text to forward a message.

4.3 Security for Threshold Source Tracking
Intuitively, splitting trust between 𝑆1 and 𝑆2 ensures that no mali-

cious actor with control of the platform’s (first-party) infrastructure

can learn the contents of reports before they reach the specified

threshold, while the deduplication tags revealed to 𝑆2 allow it to

learn nothing beyond a histogram of reported message frequen-

cies, without knowing the report contents or the identities of the

reporters. 𝑆1 is the sole holder of the Reveal key for the hidden

metadata, which is first delivered to 𝑆2, so both parties must agree

that the threshold is met for the metadata to be revealed.

Wemust allow, however, for the possibility ofmalicious users and

servers colluding to artificially raise a message above the reporting

threshold. We now briefly consider the possible combinations of

malicious users and servers, discussing the possible consequences

for each case.

Non-security of known messages. The security of threshold

source tracking aims to keep a reported message hidden from the

platform until that message receives sufficientlymany reports. How-

ever, as discussed briefly in Section 1, it is possible for a malicious

server 𝑆1 to learn a particular message and its corresponding report

data rd out-of-band and then abuse the source tracking system to

identify the author of that message. This means that a threshold

source tracking system does not strengthen the anonymity of mes-

sage senders compared to a non-threshold source tracking system.

Instead, it mitigates the risk of accidental or spurious abuse of the

source tracking mechanism by individual users.

In Appendix B, we discuss the security ramifications for both our

scheme and prior work in the situation where a malicious server 𝑆1
does know the value rd of a reported message and wants to learn

which other users are reporting the same message. While both our

scheme and FACTS lose some degree of report confidentiality in

this setting, we show that our scheme does provide a degree of

protection not present in prior work.

In the remainder of this section, we consider the setting where

threshold source tracking does provide additional security over

5

conventional source tracking: where users are reporting messages

not yet known to the servers.

Malicious users only. The anonymous tally’s report uniqueness

property ensures that, for a threshold of 𝑡 reports to reveal a mes-

sage, a group of fewer than 𝑡 malicious users do not cause a message

to be revealed. However, if an adversary has control of 𝑡 or more

malicious users (or can create 𝑡 fake users), a message sent to this

malicious group of users can always be revealed to the platform by

having each malicious user report the message.

Our scheme does not handle issues of user authentication and

validation, e.g., protecting against sybil attacks. An adversary who

controls many users can report a message once per user it controls.

We assume an external mechanism for authenticating users and

ensure that, within the protocol, a single user cannot repeatedly

report the same message to artificially increase its tally.

Malicious 𝑆2 (and malicious users). The report anonymity prop-

erty of the anonymous tally scheme, combined with the fact that

𝑆1 shuffles and batches messages, ensures that 𝑆2 cannot learn the

identity of the sender of any given report. In a sense, 𝑆1 acts sim-

ilarly to a server in a mixnet [14], breaking the link between the

report sender and the next server to receive the report.

However, a malicious 𝑆2, potentially colluding with a malicious

user who has a message it wants reported, could attempt to bypass

the threshold mechanism by simply lying to 𝑆1 about when a re-

port has reached the threshold, bypassing the report uniqueness

protections of the tally scheme. This potential attack is blocked by

the verification protocol 𝑆1 runs to protect against a malicious 𝑆2.

Observe that this means that while 𝑆1 can arbitrarily unmask the

identities of senders of known messages, 𝑆2 cannot. This is another

point where protections against fraudulent accounts are critical,

lest a malicious 𝑆2 create new fake accounts to artificially inflate

the count of reports for a given message.

Malicious 𝑆1 (and malicious users). The report confidentiality
property of the anonymous tally ensures that a malicious 𝑆1, po-

tentially colluding with some malicious users, cannot learn the

contents of the report of an honest user, so long as the server does

not already know the contents of the report. See above for the case

where the report contents are already known by the server.

Note that the confidentiality property of the underlying source

tracking scheme implies that the contents of reports have high

entropy, or else an adversary against the underlying source tracking

scheme could simply guess-and-check reports for ciphertexts it

wants to decrypt, breaking any confidentiality in the messaging

system. This means that even guessing message contents given a

ciphertext does not suffice for 𝑆1 to predict the contents of rd.

5 SECURITY FOR ANONYMOUS TALLIES
We now discuss the formal security definitions for a two-server

anonymous tally scheme. This section fully describes and formally

defines our required security properties.

Recall that at a high level, our definitions will allow server 𝑆1
to learn who submits reports and server 𝑆2 to learn derivatives of

the reports themselves, but neither server will learn which user

made which report. At the same time, the servers need assurance

that malicious users cannot take advantage of their strong privacy

protections to fraudulently report a single message multiple times.

5.1 Notation
Before we continue, we formalize our notation. The following no-

tation is used to describe various operations in the definitions and

schemes presented in the rest of this paper.

Let 𝑥 ← 𝐹 (𝑦) denote assignment of the output of 𝐹 (𝑦) to 𝑥 , and
let 𝑥

𝑅←− 𝑆 denote assignment to x of an element sampled uniformly

random from a set 𝑆 . A bolded variable x denotes a vector, with

entries in the vector represented as (non-bolded) 𝑥1, ...𝑥𝑛 . We use

A𝑂
to denote that A has oracle access to some function(s) or can

participate in a given set of interactive protocols, and the adversary

A in our security experiments is allowed to be stateful. A function

negl(𝑥) is negligible if for all 𝑐 > 0, there is a 𝑥0 such that for

all 𝑥 > 𝑥0, negl(𝑥) < 1

𝑥𝑐 . We omit 𝑥 if the parameter is implicit.

Finally, we use ⊥ to indicate an empty message or special character

indicating failure.

We define an interaction between two parties using the notation

⟨𝑃1 (params), 𝑃2 (params)⟩ → out1 .

The first party in the protocol acts according to the protocol defined

by 𝑃1 and the second party acts according to 𝑃2, and 𝑜𝑢𝑡1 represents

the output of the protocol. Only the first party has any output from

interactive protocols in this paper.

Our security definitions use tables to keep track of important

information about adversary queries. Tables are denoted with a

capital 𝑇 and a subscript name, and store key/value pairs. To add

a key/value pair to a table, we use the notation 𝑇 [𝑘𝑒𝑦] ← 𝑣𝑎𝑙𝑢𝑒 .

We use standard set notation to check if a key is included in a table

(𝑘𝑒𝑦 ∈ 𝑇). Sets use the same notation as tables, but only store a set

of values. We use set(x) to convert a vector to a set of its unique

constituent elements. Tables and sets defined in a security experi-

ment are considered globally accessible by the experiment in the

oracles and protocols allowed to the adversary in that experiment.

5.2 Report Confidentiality
Our first security property, report confidentiality requires that a

malicious server 𝑆1 does not learn anything about the reports sent

through the system by honest users. This definition allows an adver-

sary to control 𝑆1 and an arbitrary number of malicious users while

also being allowed to register honest users and compel them to

report messages. At the core of this game is the adversary’s power

to run the Report protocol with a provided user, identified by a user

id uid, and one of two potential messages. The experiment has an

input 𝑏 that determines which report is actually sent.

At any point in the report confidentiality experiment, the adver-

sarymay call a Process oracle, which plays the role of 𝑆2 on a set 𝑆 of
ciphertexts and a reporting threshold provided by the adversary 𝑆1.

The set 𝑆 consists of a subset of the ciphertexts returned by honest

users in the Report protocol, as well as any additional ciphertexts

the adversary chooses to send. The Process oracle verifies each

ciphertext, discards duplicates, and keeps tallies for each report

rep. The oracle returns a table 𝑅 of reported messages and report

frequencies, as well as the 𝑆2 verification proof 𝜋𝑣 if the provided

threshold is exceeded for any message. In order to prevent trivial

6

RCONF[A,Π, 𝜆,𝑏] :

(pk
2
, sk2) ← SKGen2(1𝜆, pp)

(pk
1
, sk1, sk𝑠) ← A(1𝜆, pk2)

𝑈 ← {};𝑇 ← {};𝑆 ← {}

𝑏′ ← A𝑂 (1𝜆)
output 𝑏′

Report(uid, rep
0
, rd0, rep1, rd1) :

if uid ∉ 𝑈 : output ⊥
(sk𝑢 , pk𝑢) ← 𝑈 [uid]
ct← ⟨𝑈 (rep𝑏 , rd𝑏 , pk𝑢 , sk𝑢 , pk1, pk2),A⟩
if ct = ⊥ : output ⊥
𝑇 [ct] ← {uid, rep

0
, rep

1
}

return ct

AddHonUser(uid) :
if uid ∈ 𝑈 : output ⊥

sk𝑢 , pk𝑢 ← UKGen(1𝜆, pp)
𝑈 [uid] ← (sk𝑢 , pk𝑢)
output pk𝑢

Submit(ct) :
𝑆 ← 𝑆 ∪ {ct}

Process(thresh) :
𝑅 ← {};𝑅0 ← {};𝑅1 ← {};𝑃 ← {};
𝐷 ← {};𝐷0 ← {};𝐷1 ← {};
for ct ∈ 𝑆 :

(rep, dupTag, hd) ← Verify(sk𝑠 , sk2, ct)
if (rep, dupTag, hd) = ⊥ : continue

if (rep, dupTag) ∉ 𝐷 :

𝐷 ← 𝐷 ∪ (rep, dupTag)
𝑅 [rep] ← 𝑅 [rep] + 1

if ct ∈ 𝑇 :

(uid, rep
0
, rep

1
) ← 𝑇 [ct]

if (uid, rep
0
) ∉ 𝐷0 :

𝐷0 ← 𝐷0 ∪ { (uid, rep0) }
𝑅0 [rep0] ← 𝑅0 [rep0] + 1

if (uid, rep
1
) ∉ 𝐷1 :

𝐷1 ← 𝐷1 ∪ { (uid, rep1) }
𝑅1 [rep1] ← 𝑅1 [rep1] + 1

if 𝑅0 ≠ 𝑅1 : Abort experiment, return 0

for rep ∈ 𝑅 where 𝑅 [rep] > thresh :

𝑃 ← 𝑃 ∪ S2Prove(rep, pData, thresh)
output 𝑅, 𝑃, dupTags //pData will include dupTags

Figure 3: Report confidentiality experiment RCONF (Definition 5.1).

RANON[A,Π, 𝜆,𝑏] :

(pk
1
, sk1,⊥) ← SKGen1(1𝜆, pp)

(pk
2
, sk2, sk𝑠) ← A(1𝜆, pk1)

𝑈 ← {};𝑅0 ← {};𝑅1 ← {}

𝑏′ ← A𝑂 (1𝜆)

AddHonUser(uid) :
if uid ∈ 𝑈 : output ⊥

pk𝑢 , sk𝑢 ← UKGen(1𝜆, pp)
𝑈 [uid] ← (sk𝑢 , pk𝑢)
output pk𝑢

MalReport(pk𝑢) :
if (·, pk𝑢) ∈ 𝑈 : output ⊥
⟨A, 𝑆1 (pk1, sk𝑠 , sk1, pk𝑢) ⟩

HonReport(uid0, uid1, rep, rd) :
if uid0 ∉ 𝑈 or uid1 ∉ 𝑈 : output ⊥
(sk𝑢 , pk𝑢) ← 𝑈 [uid𝑏]
ct← ⟨𝑈 (rep, rd, pk𝑢 , sk𝑢 , pk1, pk2), 𝑆1 (pk1, sk𝑠 , sk1, pk𝑢) ⟩
if ct = ⊥ : output ⊥
if (uid0, rep) ∈ 𝑅0 or (uid1, rep) ∈ 𝑅1 : output ⊥
𝑅0 ← 𝑅0 ∪ { (uid0, rep) };𝑅1 ← 𝑅1 ∪ { (uid1, rep) }
output ct

Figure 4: Reporter anonymity experiment RANON (Definition 5.2).

wins, the experiment will abort and return 0 if the adversary calls

Process while the tally is in a state where there would be different

numbers of reports from honest users if 𝑏 = 0 vs 𝑏 = 1 in an honest

execution of the protocol.

Note that the adversary in this game is stronger than is needed

in the threshold source tracking setting, where a malicious 𝑆1 (po-

tentially colluding with some users) does not know, and cannot

guess, the contents of honest users’ reports. The check that the

game makes to ensure that an honestly-generated 𝑅 would have

the same state regardless of whether 𝑏 = 0 or 𝑏 = 1 is there to rule

out attacks that would not be possible in threshold source tracking

due to the adversary not actually knowing rd and rep.

Definition 5.1 (Report Confidentiality). We define the report con-

fidentiality experiment RCONF[A,Π, 𝜆,𝑄O , 𝑏] with respect to a

stateful adversary A, a list of numbers 𝑄O setting upper limits on

the number of queries A makes to each of its oracles, a two-server

anonymous tally scheme Π, a security parameter 𝜆, and a bit 𝑏. The

experiment is described in Figure 3. While not explicitly included in

the description, we assume that the experiment retains the relevant

transcript data from 𝑆2 in the Report protocol in order to produce

pData for S2Prove.
We define the confidentiality advantage of A as

CONFAdv(A,Π, 𝜆,𝑄O)
=
��Pr[RCONF[A,Π, 𝜆,𝑄O , 0] = 1]

− Pr[RCONF[A,Π, 𝜆,𝑄O , 1] = 1]
��.

7

We say thatΠ satisfies report confidentiality if for all PPT adversaries

A and security parameters 𝜆 ∈ N, it holds that

CONFAdv(A,Π, 𝜆,𝑄O) ≤ negl(𝜆).

5.3 Reporter Anonymity
Whereas report confidentiality protects against a malicious 𝑆1 learn-

ing which messages are reported, reporter anonymity protects

against a malicious 𝑆2 learning the identities of users reporting

messages. This definition allows an adversary to control 𝑆2 and

an arbitrary number of malicious users, who can interact with an

honest 𝑆1, while also being allowed to register honest users and

compel them to report messages. At the core of this game is the

adversary’s power to have one of two honest users of its choosing

interact with the honest 𝑆1 to submit a report of its choosing. The

HonReport(uid0, uid1, rep, rd) oracle takes in the identifiers for two
honest users and has one of them, determined by an input bit 𝑏,

send a report rep with report data rd to 𝑆1 via the Report protocol.
The resulting ciphertext ct output by the protocol is returned to

the adversary, as this is what 𝑆2 receives from 𝑆1 in our application.

After sending a number of reports of its choosing, the adversary

outputs a distinguishing bit 𝑏′.
To prevent trivial wins, the HonReport oracle outputs ⊥ if the

adversary attempts to have an honest user submit a duplicate report.

Allowing duplicate reports trivially allow an adversary to distin-

guish 𝑏 = 0 from 𝑏 = 1. For example, an adversary who submits

HonReport(uid0, uid1, rep, rd) and HonReport(uid0, uid2, rep, rd),
will identify a duplicate report if 𝑏 = 0 but not if 𝑏 = 1. This

is an acceptable restriction because an honest user does not have

any reason to submit an identical report twice.

Definition 5.2 (Reporter Anonymity). We define the reporter

anonymity experiment RANON[A,Π, 𝜆, 𝑏] with respect to a state-

ful adversary A, two-server anonymous tally scheme Π, security
parameter 𝜆, and a bit 𝑏. The experiment is described in Figure 4.

We define the anonymity advantage of A as

ANONAdv(A,Π, 𝜆)
=
��Pr[RANON[A,Π, 𝜆, 0] = 1]

− Pr[RANON[A,Π, 𝜆, 1] = 1]
��.

We say that a scheme Π satisfies reporter anonymity if for all PPT

adversaries A and security parameters 𝜆 ∈ N, it holds that

ANONAdv(A,Π, 𝜆) ≤ negl(𝜆).

5.4 Report Uniqueness
The report uniqueness property ensures that honest servers 𝑆1
and 𝑆2 can keep accurate tallies, even in the presence of potentially

malicious users. In this experiment the adversary controls malicious

users who can interact with 𝑆1 via a MalReport oracle and compel

other honest users to make reports of its choosing via anHonReport
oracle. The adversary sees the ciphertexts that result from any of

these interactions and can choose the set 𝑆 of ciphertexts that are

eventually sent to 𝑆2. This set could include some subset of the

ciphertexts outputs by oracle queries or new ciphertexts of the

adversary’s choosing. This experiment conservatively models a

group of malicious users with strong control over the network

between 𝑆1 and 𝑆2.

The adversary wins the report uniqueness experiment if, after

reports by honest users are subtracted from the total report tally,

1) there are more total tallies left than the adversary made calls to

MalReport or 2) there is any rep that has more tallies than there

are distinct malicious users, as counted by the number of distinct

public keys used with theMalReport oracle. The former situation

implies that the adversary was able to produce new report tallies

without interacting with 𝑆1, and the latter situation implies that the

adversarywas able to thwart the scheme’s duplicate tally prevention

mechanism.

Our report uniqueness definition implies stronger protection for

message senders than is available in FACTS [35]. FACTS does not

strictly prevent malicious users from submittingmultiple reports for

the same message, relying instead on out-of-protocol throttling on

the number of reports a user can make to ensure that no malicious

users can affect a message’s tally by too much. Report uniqueness

requires that no malicious user can contribute more than one report

to the tally for a given report.

Definition 5.3 (Report Uniqueness). We define the report unique-

ness experiment RUNIQ [A,Π, 𝜆,𝑄O] with respect to a stateful

adversary A, a list of numbers 𝑄O setting upper limits on the

number of queries A makes to each of its oracles, a two-server

anonymous tally scheme Π, and a security parameter 𝜆. The exper-

iment is described in Figure 5.

We define the report uniqueness advantage of A as

RUNIQAdv(A,Π, 𝜆,𝑄O) = Pr
[
RUNIQ [A,Π, 𝜆,𝑄O] = 1

]
and we say that the scheme Π satisfies report uniqueness if for all
efficient adversariesA and security parameters 𝜆 ∈ N, it holds that

RUNIQAdv(A,Π, 𝜆,𝑄O) ≤ negl(𝜆).

5.5 Threshold Unforgeability
Threshold unforgeability prevents a malicious 𝑆2 from fraudulently

convincing 𝑆1 that a threshold number of reports have been re-

ceived. The adversary in this experiment controls a malicious 𝑆2
who can create honest users and compel them to make reports of

messages of its choosing via an HonReport oracle. The adversary
receives all the resulting ciphertexts and can attempt to fool 𝑆1
into accepting an incorrect 𝜋𝑣 proof via a Verify oracle. The ad-

versary wins the experiment if it can cause 𝑆1 to accept a proof

𝜋𝑣 for a report rep where the threshold thresh is larger than the

number of times rep has been reported. The experiment does not

allow the adversary to control malicious users for bookkeeping

reasons: allowing adversary-controlled users to make reports hides

the rep being sent to 𝑆1 and makes it impossible to do the necessary

record keeping to determine whether the adversary has won the

experiment.

Definition 5.4 (Threshold Unforgeability). Wedefine the threshold

unforgeability experiment THFORG[A,Π, 𝜆,𝑄O] with respect to

a stateful adversary A, a list of numbers 𝑄O setting upper limits

on the number of queries A makes to each of its oracles, a two-

server anonymous tally scheme Π, and a security parameter 𝜆. The

experiment is described in Figure 6. While not explicitly included in

8

RUNIQ [A,Π, 𝜆] :

(pk
1
, sk1, sk𝑠) ← SKGen1(1𝜆, pp)

(pk
2
, sk2) ← SKGen2(1𝜆, pp)

𝑈 ← {};𝑇 ← {};𝑆 ← {};𝑀 ← {}
win← 0; count← 0

A𝑂 (1𝜆)
output win

MalReport(pk𝑢) :
if (·, pk𝑢) ∈ 𝑈 : output ⊥
if pk𝑢 ∉ 𝑀 : 𝑀 ← 𝑀 ∪ {pk𝑢 }
⟨A, 𝑆1 (pk1, sk𝑠 , sk1, pk𝑢) ⟩
count← count + 1

Submit(ct) :
𝑆 ← 𝑆 ∪ {ct}

AddHonUser(uid) :
if uid ∈ 𝑈 : output ⊥

pk𝑢 , sk𝑢 ← UKGen(1𝜆, pp)
𝑈 [uid] ← (sk𝑢 , pk𝑢)
output pk𝑢

HonReport(uid, rep, rd) :
if uid ∉ 𝑈 : output ⊥
(sk𝑢 , pk𝑢) ← 𝑈 [uid]
ct← ⟨𝑈 (rep, rd, pk𝑢 , sk𝑢 , pk1, pk2),

𝑆1 (pk1, sk𝑠 , sk1, pk𝑢) ⟩
𝑇 ← 𝑇 ∪ {ct}
output ct

Process() :
𝑅 ← {};HonR← {};𝐷 ← {}
for ct ∈ 𝑆 :

(rep, dupTag, hd) ← Verify(sk𝑠 , sk2, ct)
if (rep, dupTag, hd) = ⊥ : continue

if (rep, dupTag) ∉ 𝐷 :

𝐷 ← 𝐷 ∪ { (rep, dupTag) }
𝑅 [rep] ← 𝑅 [rep] + 1
if ct ∈ 𝑇 :

HonR[rep] ← HonR[rep] + 1
count′ ← 0

for rep ∈ 𝑅 :

diff ← 𝑅 [rep] − HonR[rep]
if diff > |𝑀 | : win← 1

count′ ← count′ + diff
if count′ > count : win← 1

output 𝑅

Figure 5: Report uniqueness experiment RUNIQ (Definition 5.3).

THFORG[A,Π, 𝜆] :

(pk
1
, sk1,⊥) ← SKGen1(1𝜆, pp)

(pk
2
, sk2, sk𝑠) ← A(1𝜆, pk1)

𝑈 ← {};𝑅 ← {}
win← 0

A𝑂 (1𝜆)
output win

AddHonUser(uid) :
if uid ∈ 𝑈 : output ⊥

pk𝑢 , sk𝑢 ← UKGen(1𝜆, pp)
𝑈 [uid] ← (sk𝑢 , pk𝑢)
output pk𝑢

HonReport(uid, rep, rd) :
if uid ∉ 𝑈 : output ⊥
(sk𝑢 , pk𝑢) ← 𝑈 [uid]
ct← ⟨𝑈 (rep, rd, pk𝑢 , sk𝑢 , pk1, pk2),

𝑆1 (pk1, sk𝑠 , sk1, pk𝑢) ⟩
𝑅 [rep] ← 𝑅 [rep] + 1
output ct

Verify(rep, dupTags, 𝜋𝑣) :
//get number of clauses in proof

thresh← |𝜋𝑣 |
ver← S1Verify(rep, vData, dupTags, 𝜋𝑣)
if thresh > R[rep] ∧ ver = 1 :

win← 1

Figure 6: Threshold unforgeability experiment THFORG (Definition 5.4).

the description, we assume that the experiment retains the relevant

transcript data from 𝑆1 in the Report protocol in order to produce

vData for S1Verify.
We define the threshold unforgeability advantage of A as

THFORGAdv(A,Π, 𝜆,𝑄O) = Pr
[
THFORG[A,Π, 𝜆,𝑄O] = 1

]
,

and we say that the scheme Π satisfies threshold unforgeability if

for all efficient adversaries A and security parameters 𝜆 ∈ N, it
holds that

THFORGAdv(A,Π, 𝜆,𝑄O) ≤ negl(𝜆) .

5.6 Deniability
The majority of the deniability needs for threshold source tracking

are handled by the deniability of the underlying source tracking

scheme. That said, deniability can be a valuable property for anony-

mous tallies as well. Deniability in an anonymous tally used for

threshold source tracking means that the individual reports made

toward reaching the source tracking threshold can be denied.

Deniability requires that even if user or server secrets are made

public, reports cannot be verifiably tied back to a given user. Specif-

ically, we will consider two kinds of deniability.

(1) Server compromise deniability: even if all the server secrets

pk
1
, pk

2
, sk1, sk2, sk𝑠 are made public, there should exist a

Forge𝑆𝐶 algorithm that, given a user uid’s public key pk𝑢
and the leaked secrets, generates a report that is indistin-

guishable from a real report made by user uid.
(2) User compromise deniability: even if a user’s secret sk𝑢 is

made public, there should exist a Forge𝑈𝐶 algorithm that,

given a user uid’s public key pk𝑢 and leaked secret key sk𝑢 ,
generates a report ct and decrypted (rep, dupTag) that are
indistinguishable from a real report made by user uid.

We do not formalize these definitions, but we will require them

from our scheme and will discuss how we achieve them.

6 TWO-SERVER ANONYMOUS TALLY
This section describes our main construction of a two-server anony-

mous tally scheme.

6.1 Building Up the Construction

A simple scheme. We begin with a scheme that satisfies our cor-

rectness requirements but fails to achieve our security goals and

9

ignores the report data rd. As explained previously, the Report
procedure begins with rep, which can be a hash of the original

report contents from the source tracking scheme. In the anony-

mous tally scheme, the user samples randomness 𝑟 ←R Z𝑞 and

sends𝑤 ← rep + 𝑟 ∈ Z𝑞 and uid to the server 𝑆1. 𝑆1 computes and

returns a MAC 𝜎 ← MAC.Sign(sk𝑠 , (𝑤, uid)). The user encrypts
ct← PKE.Enc(pk

2
, (rep, 𝜎, 𝑟, uid)) as the output of the Report pro-

tocol. In Verify, 𝑆2 decrypts this message, verifies the MAC tag 𝜎 ,

and sets dupTag← (rep, uid).
This scheme satisfies correctness because each user’s report re-

sults in a distinct dupTag. Unfortunately, while the Report protocol
does not reveal anything about rep to 𝑆1, it fails to satisfy other

security goals. In particular,

(1) A single user can lie about its value of uid, allowing it

to submit the same rep multiple times, breaking report

uniqueness.

(2) It fully reveals the identity of the user uid to 𝑆2, failing to

achieve reporter anonymity.

The solutions to these two problems seem to pull in different

directions, forcing users to always use the same uid to protect report
uniqueness while trying to hide uid for reporter anonymity. We

show to achieve both properties together.

Adding report uniqueness. In order to add report uniqueness,

we need users to always send the same uid and make sure that no

malicious user can use another user’s uid to submit a report. Wewill

accomplish this by having each user select a secret key sk𝑢 ←R Z𝑞
and setting pk𝑢 ← 𝑔sk𝑢 . We will have pk𝑢 be tied to the user id

uid, where 𝑔 is a generator of a prime order group𝐺 , |𝐺 | = 𝑞. Users

now compute 𝑤 as 𝑤 ← 𝐻 (rep)𝑟 (so 𝑟 still masks 𝐻 (rep)), and
instead of sending (𝑤, uid) to 𝑆1, they send (𝑤, 𝑣) where 𝑣 ← 𝑤 sk𝑢

.

Users also sends a proof of knowledge of sk𝑢 to demonstrate that

they know the secret key being used. Verifying this proof gives 𝑆1
confidence that a user is not assuming another user’s identity to

submit duplicate reports.

We can build the proof system needed to prove knowledge of sk𝑢
using a Chaum-Pedersen proof [15] made non-interactive in the ran-

dom oracle model [9, 24]. This proof allows the user to prove that it

knows the secret sk𝑢 such that𝑤 = 𝐻 (rep)𝑟 , pk𝑢 = 𝑔sk𝑢 , 𝑣 = 𝑤 sk𝑢

form a DH tuple [19]. We denote proofs using the notation of Ca-

menisch and Stadler [13], where PoK{(sk𝑢), pk𝑢 = 𝑔sk𝑢 , 𝑣 = 𝑤 sk𝑢 }
represents the Chaum-Pedersen proof, and require the standard

zero knowledge and knowledge extraction properties [12].

The work of 𝑆2 changes very little in this version of the protocol.

The ciphertext output by the user consists of the same plaintext con-

tents (rep, 𝜎, 𝑟, uid), and 𝑆2 only needs to change how it calculates

𝑤 to match the updated scheme.

The addition of a user secret and proof requirement means that a

malicious user cannot lie about its identity to 𝑆2 and will therefore

always have the same dupTag for the samemessage, ensuring report

uniqueness.

Adding reporter anonymity. Next, we add reporter anonymity.

The challenge of reporter anonymity is to replace the tag uid with

a tag 𝑡 unique to each user for each message. This tag must be

user-dependent and deterministic, but must be unlinkable to uid.
To prevent 𝑆2 from identifying which set of reports have come from

the same user, the tag 𝑡 must depend on both the identity of the

user and the content of rep.
Our solution is to have the server compute 𝑡 as a PRF evaluation

of the user’s identity and the report rep. The challenge is to do this

without revealing rep to 𝑆1. Our final scheme has 𝑆1 compute 𝑡 by

evaluating an oblivious PRF (OPRF) [26, 40] evaluation on 𝑣 using

the secret key sk1, resulting in a tag 𝑡 = 𝑣sk1 = 𝑤 sk𝑢sk1
. As before,

the server 𝑆1 learns nothing about rep because 𝐻 (rep) is masked

by 𝑟 . Instead of computing 𝜎 ← MAC.Sign(sk1, (𝑤, uid)), 𝑆1 sets
𝜎 ← MAC.Sign(sk1, (𝑤, 𝑡)). The tag 𝑡 now depends on all three of

rep, sk𝑢 , and sk1. To ensure that the server 𝑆1 does not misbehave, it

also sends a Chaum-Pedersen proof that it has honestly computed 𝑡 .

At the end of the Report protocol, the user sets its output to ct←
PKE.Enc(pk

2
, (rep, 𝑡, 𝜎, 𝑟)) .When runningVerify, 𝑆2 now computes

dupTag as dupTag ← 𝑡1/𝑟 , resulting in 𝑡 being a deterministic

function of rep, sk𝑢 , and sk1:

𝑡1/𝑟 = 𝐻 (rep)𝑟sk𝑢sk1/𝑟 = 𝐻 (rep)sk𝑢sk1 .

As intended, the dupTag now depends on the user and the mes-

sage. Assuming that the DDH problem is hard in𝐺 , 𝐻 (rep)sk𝑢sk1
will appear uniformly randomly distributed in 𝐺 , meaning that the

dupTag reveals nothing about uid to the server 𝑆2. Including the

server key sk1 in the exponent in 𝑡 , while not strictly necessary

for the anonymity property, serves to ensure deniability, as we will

discuss below.

Adding verification of 𝑆2. As specified in Section 4, the platform

itself will host 𝑆1, allowing for internal audits andmonitoring, while

𝑆2 is hosted by a third party. We now briefly describe a protocol

that allows the platform to verify claims from 𝑆2 that a certain rep
has exceeded a given threshold thresh, without revealing which

users’ reports contributed to the threshold.

A naïve and insecure way for 𝑆2 to prove to 𝑆1 that users have

in fact sent thresh distinct instances of a particular report rep is for

𝑆2 to reveal the (rep, 𝑟 , dupTag) tuples for each report. Using this

information, 𝑆1 (who must keep the values𝑤 and 𝑡 that it receives

in the Report protocol) can check if it previously saw values of

𝑤 = 𝐻 (rep)𝑟 and 𝑡 = dupTag𝑟 . Due to the collision-resistance of

𝐻 and the hardness of discrete log in 𝐺 , 𝑆2 will be unable to forge

such reports, and the distinct dupTag values mean that 𝑆2 is sending

reports from distinct users. Unfortunately, directly revealing these

values to 𝑆1 allows linking which user made which report, which

would break report confidentiality.

In order to go from the naïve solution to one that preserves report

confidentiality, we modify the protocol so that 𝑆2 proves to 𝑆1 in

zero knowledge that it knows reports that satisfy the relationships

above, without revealing which reports they are. Instead of directly

revealing rep, 𝑟 , and dupTag for each report, 𝑆2 reveals only rep
and dupTag, neither of which will have previously been seen by 𝑆1.

Then, it proves in zero knowledge that it knows the value 𝑟 such

that 𝐻 (rep)𝑟 = 𝑤 and dupTag𝑟 = 𝑡 for some (𝑤, 𝑡) held by 𝑆1. This

proof is a standard OR-composition of Chaum-Pedersen proofs.

This OR proof is repeated for each of the thresh values of dupTag.
Thus 𝑆2 can convince 𝑆1 that the reports it has sent includes thresh
distinct reports of rep without revealing which clients’ interactions

with 𝑆1 produced those reports.

10

More precisely, for a report rep, threshold thresh and a batch

of reports of size 𝑠 , 𝑆2 holds a vector (𝑟1, ..., 𝑟thresh) and length-𝑠

vectors w, t, and dupTag. We prove the statement

𝜙 = 𝜙1 ∧ ... ∧ 𝜙thresh,
where 𝜙𝑖 is defined as

𝜙𝑖 = {
(
𝐻 (rep)𝑟𝑖 = 𝑤1 ∧ dupTag𝑟𝑖

1
= 𝑡1

)
∨

∨
(
𝐻 (rep)𝑟𝑖 = 𝑤𝑠 ∧ dupTag𝑟𝑖𝑠 = 𝑡𝑠

)
}.

Our verification proof requires time and space𝑂 (𝑠 · thresh). This
scheme allows for a privacy/performance tradeoff where the batch

size 𝑠 is reduced to only subset of reports, thereby reducing the

anonymity set of each user whose report is included, but speeding

up and shrinking the communication required of the verification

process.

Supporting report data. Finally, we complete the scheme by

adding support for including report data rd in a report. This is

achieved by simply having the user making a report encrypt rd
under a public key pk

1rd held by 𝑆1 and include the corresponding

ciphertext hd as part of the plaintext encrypted to produce ct. Thus
𝑆2 does not learn anything from hd when it decrypts ct, but when
𝑆1 runs Reveal, it decrypts hd to recover rd. In our full scheme, the

keys sk1 and pk
1
are split into two parts: sk1rep, pk1rep which are

used for reporting as described thus far, and sk
1rd, pk1rd which are

used for encrypting and decrypting report data. Since each report

comes with its own copy of hd, 𝑆1 should check that any expected

relationship between the decrypted message and the report rep are

satisfied, e.g., it should check that rd = 𝐻 (rep).

6.2 Full Construction
We now formalize the construction described informally above.

Construction 6.1 (Two-server anonymous tally scheme). Our two-
server anonymous tally scheme Π, shown in Figure 7, is defined

with respect to a cyclic group 𝐺 of prime order 𝑞 with generator

𝑔 ∈ 𝐺 where DDH is hard. The scheme uses the following tools:

• ACCA-secure public key encryption scheme PKE = (KGen,
Enc,Dec)

• An existentially unforgeable MAC scheme MAC = (Sign,
Verify)
• A hash function 𝐻 : R → 𝐺 modeled as a random oracle

• A non-interactive zero-knowledge proof of knowledge

(NIZKPoK) scheme for Diffie-Hellman triples

6.3 Security Analysis
We now briefly discuss each security property and state the theo-

rems that we prove in Appendix C.

The correctness of the scheme follows largely from the correct-

ness of the underlying cryptographic tools. There is a possibility of

distinct honest users having duplicate dupTags if either two reps
happen to collide in 𝐻 or if two users happen have the same sk𝑢 .
These events occur with negligible probability in the size of 𝐺 .

Intuitively, report confidentiality follows from the fact that the

value of rep is masked by 𝑟 when sent to 𝑆1 and encrypted when

the adversary sees it and decides whether or not to give it to 𝑆2.

However, we also need tomake sure that 𝑆1 cannot use the output of

the Process oracle to distinguish whichmessages are being reported.

The report confidentiality experiment prevents 𝑆1 from using the

output of Process to achieve trivial wins, but we also need to show

that 𝑆1 cannot cleverly circumvent these measures.

The proof proceeds by a series of hybrids that first extract the

secret sk1rep used by the adversary before carefully converting

everything in the experiment that depends on the choice of 𝑏 into

a random value, simulated proof, or encryption of 0. A probability

argument can then show that an adversary cannot succeed in using

Process in a way that circumvents protections against trivial wins.

Theorem 6.2 (Report confidentiality). Assuming that the encryp-
tion scheme (Enc,Dec) is CCA-secure, that the proof system PoK is a
zero knowledge proof of knowledge, that the DDH problem is hard in
the group 𝐺 , and that the hash function 𝐻 is modeled as a random
oracle, then our two-server anonymous tally scheme (Construction 6.1)
satisfies report confidentiality (Definition 5.1).

Specifically, for every report uniqueness adversary A that attacks
our scheme Π and list 𝑄O specifying the number of queriesA makes
to each of its oracles, there exist adversaries against the tools used to
build the scheme such that for every 𝜆 (omitting adversary names
and security parameters),

RCONFAdv(A,Π, 𝜆,𝑄O)
≤2𝑄Report (PoKAdv(PoK) +𝑄ProcessZKAdv(PoK))
+ 2CCAAdv(PKE) + 6DDHAdv(𝐺) + negl.

Reporter anonymity follows almost immediately from the hard-

ness of DDH in𝐺 . Since the reporter anonymity adversary controls

𝑆2, the only element of the adversary’s view that depends on a re-

porting user’s identity is the value 𝑡 = 𝐻 (rep)𝑟sk𝑢sk1rep , from which

𝑆2 derives dupTag = 𝐻 (rep)sk𝑢sk1rep . Intuitively, the adversary

should not be able to distinguish between (𝐻 (rep), pk𝑢 , dupTag)
and (𝐻 (rep), pk𝑢 , 𝑅) for 𝑅 ←R 𝐺 . The proof formalizes this via a

reduction to DDH. Additionally, the fact that the report data rd
is encrypted under the public key of 𝑆1 means that the adversary

cannot learn anything from hd.

Theorem 6.3 (Reporter anonymity). Assuming that PoK has per-
fect completeness, that the DDH problem is hard in the group 𝐺 , that
the encryption scheme (Enc,Dec) is CPA-secure, and that the hash
function 𝐻 is modeled as a random oracle, then our two-server anony-
mous tally scheme (Construction 6.1) satisfies reporter anonymity
(Definition 5.2).

Specifically, for every reporter anonymity adversaryA that attacks
our scheme Π, there exist DDH and CPA adversaries B and C such
that for every 𝜆,

ANONAdv(A,Π, 𝜆)
≤ 2 · DDHAdv(B,𝐺, 𝜆) + 2 · CPAAdv(C, PKE).

For report uniqueness, we show that an adversary who cannot

break our scheme’s underlying primitives needs to roughly “follow

the rules” in the report uniqueness game, meaning the adversary has

no opportunities to deviate from the protocol and cause incorrect

outcomes. The only degrees of freedom afforded to an adversary

are its choices of reports and randomness 𝑟 for each report. We

show, via the hardness of discrete logarithm in𝐺 , that the adversary

11

SKGen1(1𝜆, pp) :
sk1rep ←R Z𝑞
pk

1rep ← 𝑔sk1rep

(sk
1rd, pk1rd) ← PKE.KGen(1𝜆)

sk𝑠 ←R {0, 1}𝜆

sk1 ← (sk1rep, sk1rd)
pk

1
← (pk

1rep, pk1rd)
output (pk

1
, sk1, sk𝑠)

Verify(sk𝑠 , sk2, ct) :
(rep, 𝑡, 𝜎, 𝑟, hd) ← PKE.Dec(sk2, ct)
𝑤′ ← 𝐻 (rep)𝑟

if MAC.Ver(sk𝑠 , (𝑤′, 𝑡), 𝜎) = 0 :

output ⊥

dupTag← 𝑡1/𝑟

output (rep, dupTag, hd)

Reveal(sk1, hd) :
(sk1rep, sk1rd) ← sk1
rd← PKE.Dec(sk

1rd, hd)
output rd

SKGen2(1𝜆, pp) :

(sk2, pk2) ← PKE.KGen(1𝜆)
output (pk

2
, sk2)

UKGen(1𝜆, pp) :
sk𝑢 ←R Z𝑞
pk𝑢 ← 𝑔sk𝑢

output (pk𝑢 , sk𝑢)

S2Prove(rep, pData, thresh) :
(r, dupTag,w, t) ← pData

𝜋𝑣 ← PoK{ (r), 𝜙 } //𝜙 defined in text

output 𝜋𝑣

S1Verify(rep, vData, dupTags, 𝜋𝑣) :
(w, t) ← vData

if PoK.Ver(𝜋𝑣, (dupTags,w, t)) = 0 :

output 0

if |set(dupTags) | < |dupTags | :
output 0 //duplicate tags

else output 1

Report :

𝑈 (rep, rd, pk𝑢 , sk𝑢 , pk1, pk2)
(pk

1rep, pk1rd) ← pk
1

𝑟 ←R Z𝑞
𝑤 ← 𝐻 (rep)𝑟

𝑣 ← 𝑤sk𝑢

𝜋𝑢 ← PoK{ (sk𝑢),

pk𝑢 = 𝑔sk𝑢 ,

𝑣 = 𝑤sk𝑢 }
𝑤,𝑣,𝜋𝑢−−−−−−−−−−−−−−−−−−−−→

𝑡,𝜎,𝜋𝑠←−−−−−−−−−−−−−−−−−−−−
if PoK.Ver(𝜋𝑠 , (pk1rep, 𝑣, 𝑡)) = 0 :

output ⊥
hd← PKE.Enc(pk

1rd, rd)
ct← PKE.Enc(pk

2
, (rep, 𝑡, 𝜎, 𝑟, hd))

output ct

𝑆1 (pk1, sk𝑠 , sk1, pk𝑢)
(sk1rep, sk1rd) ← sk1
(pk

1rep, pk1rd) ← pk
1

if PoK.Ver(𝜋𝑢 , (pk𝑢 , 𝑤, 𝑣)) = 0 :

output ⊥

𝑡 ← 𝑣sk1rep

𝜋𝑠 ← PoK{ (sk1rep),

pk
1rep = 𝑔sk1rep ,

𝑡 = 𝑣sk1rep }
𝜎 ← MAC.Sign(sk𝑠 , (𝑤, 𝑡))

Figure 7: Our two-server anonymous tally scheme (Construction 6.1).

cannot pick reports and corresponding randomnesses that lead to

colliding values of dupTag for different users.

Theorem 6.4 (Report uniqueness). Assuming thatMAC is an ex-
istentially unforgeable MAC scheme, that the non-interactive proof
system PoK satisfies soundness and zero knowledge, that the encryp-
tion scheme (Enc,Dec) is CCA-secure, that the discrete logarithm
problem is hard in the group𝐺 , and that the hash function 𝐻 is mod-
eled as a random oracle, then our two-server anonymous tally scheme
(Construction 6.1) satisfies report uniqueness (Definition 5.3).

Specifically, for every report uniqueness adversary A that attacks
our scheme Π and list 𝑄O specifying the number of queriesA makes
to each of its oracles, there exist adversaries against the tools used to
build the scheme such that for every 𝜆 (omitting adversary names
and security parameters),

RUNIQAdv(A,Π, 𝜆,𝑄O) ≤ 𝑄MalReport · PoKAdv(PoK)
+ CCAAdv(PKE) +MACAdv(MAC)
+𝑄𝐻 · DLAdv(𝐺) + negl.

Threshold unforgeability follows directly from the extractability

of the zero knowledge proof and the hardness of discrete logarithm

in 𝐺 . If 𝑆2 can produce a false proof that there are more reports of

some rep than have actually been made, it must break a discrete

logarithm to pretend some report was for a different message than

it really was.

Theorem 6.5 (Threshold unforgeability). Assuming that PoK is a
proof of knowledge, that the discrete logarithm problem is hard in
the group 𝐺 , and that the hash function 𝐻 is modeled as a random
oracle, then our two-server anonymous tally scheme (Construction 6.1)
satisfies threshold unforgeability (Definition 5.4).

Specifically, for every threshold unforgeability adversary A that
attacks our scheme Π and list𝑄O specifying the number of queriesA
makes to each of its oracles, there exist adversaries against the tools
used to build the scheme such that for every 𝜆 (omitting adversary
names and security parameters),

THFORGAdv(A,Π, 𝜆,𝑄O)
≤ 𝑄Verify · PoKAdv(PoK) + 2𝑄𝐻 · DLAdv(𝐺) + negl.

Finally, we turn our attention to deniability. Recall that we want

two kinds of deniability: user compromise deniability and server

compromise deniability.

In server compromise deniability, all the server secret keys sk1 =
(sk1rep, sk1rd), sk2, sk𝑠 are made public, and we wish to ensure that

no (rep, dupTag, hd) verifiably ties a report to a particular user uid.
This is accomplished by showing that there exists an algorithm

Forge𝑆𝐶 whose outputs are distributed indistinguishably from a

real (rep, dupTag, hd) for a report from the user uid. Since hd is an

encryption of rd under sk
1rd, we need for the contents of rd to be

deniable via a forgery algorithm Forgerd that outputs a forged string
rd∗. Such an algorithm exists for source tracking schemes discussed

12

in this paper, such as that of Peale et al. [42]. The Forge𝑆𝐶 algorithm

outputs (rep, 𝑅, PKE.Enc(pk
1rd, rd

∗)) for 𝑅 ←R 𝐺 . As we did in the

proof of reporter anonymity, we can show, via a reduction to the

DDH problem in 𝐺 , that the distribution of (𝐻 (rep), pk𝑢 , dupTag)
is indistinguishable from that of (𝐻 (rep), pk𝑢 , 𝑅) as long as sk𝑢
remains secret (which is enforced by the zero-knowledge property

of the proof 𝜋𝑢).

In user compromise deniability, the keys (sk𝑢 , pk𝑢) of a user uid
are made public, and we wish to ensure that no (rep, dupTag, hd)
verifiably ties a report to that user. This is accomplished by show-

ing that there exists an algorithm Forge𝑈𝐶 whose outputs are dis-

tributed indistinguishably from a real (rep, dupTag, hd) for a re-

port from user uid. Similarly to the case of server compromise

deniability, this is easily achieved by an algorithm that outputs

(rep, 𝑅, PKE.Enc(pk1rd, 0)) for 𝑅 ←R 𝐺 . Even if a user’s sk𝑢 is made

public, dupTag = 𝐻 (rep)sk𝑢sk1rep appears random to 𝑆2. This is

because including sk1rep in the exponent means we can show

that dupTag is indistinguishable from random via DDH not only

for a secret sk𝑢 but also a secret sk1rep. This is proved via a re-

duction to DDH in 𝐺 , where we show that the distributions of

(𝐻 (rep), pk
1rep, dupTag) and (𝐻 (rep), pk1rep, 𝑅) are computation-

ally indistinguishable, as long as sk1rep remains secret (which is

enforced by the zero-knowledge property of the proof 𝜋𝑠). Likewise,

since sk
1rd remains secret, the encryption of 0 is indistinguishable

from the encryption of a real rd. This means that as long as both

the user and 𝑆1 are not compromised simultaneously, user reports

are deniable.

Cover traffic. To achieve larger anonymity sets, it may be desirable

to have clients periodically submit valid random reports in the

absence of a user’s request to submit a real report. With support for

a large message hash reporting space, the reports submitted as cover

traffic will look legitimate to 𝑆1, but will not increment the tally for

a legitimate message except with negligible probability. Client cover

traffic would ensure that 𝑆1 could not guess with any confidence

which users reported which message, while also ensuring that 𝑆2
has a sufficiently large anonymity set of messages to cover the

tracks of real reporters during the verification protocol.

7 EVALUATION
We implemented our anonymous tally scheme in Rust. Group oper-

ations are performed using curve25519 via the curve25519 − dalek
library [36]. The Chaum-Pedersen proofs in the protocol were made

non-interactive via Fiat-Shamir [24]. We instantiated our MAC

scheme with HMAC-SHA256 and our encryption scheme with 2048-

bit RSA-OAEP using the rust-openssl implementations [23, 45]. Fi-

nally, we instantiate our hash function 𝐻 with SHA512. Since we

only hash fixed-length messages, SHA512 will be indifferentiable

from a random oracle in this restricted setting [17, 38].

We evaluated the performance of the implementation by run-

ning the protocols with random keys and inputs in at least 1,000

trials, with the Rust Criterion benchmarking library configured

to a 95% confidence interval, on an 11th Gen Intel(R) Core(TM)

i7-11700K @ 3.60GHz processor running Ubuntu Linux 20.04.5 LTS.

The results in Table 3 were obtained with Criterion configured to

a 90% confidence interval with at least 20 runs due to extended

runtime. Comparisons to performance of other schemes are made

by re-running their performance benchmarks, where the source is

available, or comparing to published performance data when not.

Evaluation results. Table 1 shows average runtimes for reporting

messages and verifying reports in our scheme. Reports and report

verification each take well under 1ms to complete. This remains

true even when counting the time to add our scheme on top of a con-

ventional source tracking scheme. Combining our anonymous tally

scheme with the tree-linkable source tracking of Peale et al. [41, 42],

their faster and more practical scheme, only requires an additional

43𝜇𝑠 of computation to produce and hash a report for a 1KBmessage

to derive the rep value used as an input to our scheme.

The communication overhead to report a message, beyond the

size of the message itself, is summarized in Table 2. Reporting a

message via our Report protocol requires less than 1KB of commu-

nication overhead between the user and the servers. The persistent

storage required to hold values of dupTag,𝑤 , or 𝑡 is 32 Bytes each,

and the hd scales based on the length of the original message. Users

may wish to pad the length of reported messages to some constant

size to avoid leaking length information.

To show feasibility for a range of anonymity group sizes, we

present our benchmark of the protocol to verify 𝑆2 in Table 3. Each

row represents the time to prove and verify that 𝑆2 holds knowledge

of a report with a unique dupTag amongst a batch of 𝑠 − 1 other
reports; repeating this process thresh times will convince 𝑆1 that

the threshold has been met. Our implementation is single-threaded,

but proof and verification can be parallelized using a map-reduce

structure, yielding times much faster than our implementation.

Our results suggest that the scheme has sufficiently low over-

heads for deployment. The constant time Report and Verify algo-

rithms and constant 944B of network communication to report a

message appear reasonable, particularly when weighing increased

user privacy, server enforced report uniqueness, and the fact that

overhead for non-reported messages is unaffected in our scheme.

Comparison to FACTS [35]. We compare the performance of our

scheme to FACTS, as it is, to our knowledge, the only previously

known threshold source tracking scheme, although FACTS only

supports approximate threshold source tracking, not exact tallies.

FACTS is not an open source project, so we base our comparisons

on data available in the FACTS paper.

The runtime of FACTS for their interactive Complain algorithm,

used to report messages, is a function of the approximate threshold

when messages are to be revealed. Our anonymous tally scheme

takes constant time, regardless of the reporting threshold. FACTS

operates by having the server and users cooperate to maintain

a cooperative counting Bloom filter (CCBF), a data structure that

requires parameter tuning, predefined epoch intervals, and fixed

server storage per epoch to avoid probabilistic contention between

users trying to report the same message. None of these are nec-

essary for our scheme. As a result, storage can be dynamically

allocated based on demand and report frequency, not on security or

correctness considerations. The FACTS construction also requires

locking the global storage state while waiting for the client to de-

termine how to update the CCBF. Reports in our scheme can be

processed without any locks on global state, so it is possible to

replicate both servers in the scheme to scale to a large user base.

13

Computation Time

Report (User) 360 𝜇s

Report (Server) 327 𝜇s

Verify 760 𝜇s

Table 1: Time to run theReportprotocol
and theVerify algorithm in our scheme.

Communication

Report (User) 176B

Report (Server) 160B

Encrypted Report 608B

Total to Report a Message 944B

Table 2: Communication costs between
user and 𝑆1 during the Report protocol.

𝑠 S2Prove S1Verify

100 14.2 ms 15.7 ms

1,000 142 ms 157 ms

10,000 1.42 s 1.57 s

100,000 14.2 s 15.7 s

Table 3: Time to run the S2Prove and
S1Verify algorithms. Need to run thresh
times to prove the threshold is met.

In the absence of source code and metrics for the runtime of

FACTS, it is difficult to make a direct performance comparison, but

the authors’ analysis shows that a complaint threshold of 1,000

reports leads to an average runtime dominated by the network

latency of the 3 messages passed between the user and server in the

Complain algorithm. Thus it is reasonable to assume that FACTS

performswith very little computational overhead on both the server

and client for large thresholds. The performance cost for lower

thresholds, however, is higher. Running FACTS with a threshold

of 200 results in an average Complain time of over 400ms – 160ms

above the expected network latency. While not quite an apples

to apples comparison due to differences in evaluation setups, the

computation time for running Complain with this threshold, not

including network latency, is over 160× higher than our scheme.

Since our anonymous tally scheme includes an additional server-

only verification protocol, messages which reach the threshold will

pay additional server computation and communication costs to

verify the counts before revealing the message, but our benchmarks

show that these costs are manageable for large anonymity set sizes,

and since the costs are deferred until message reveal time, they are

only paid by messages which reach the threshold.

8 CONCLUSION
We have presented a new two-server anonymous tally scheme that

can be used to build a threshold source tracking system. The re-

sulting system requires no changes to the message processing or

delivery, and only affects the overhead of reporting abusive mes-

sages. Compared to prior work, our scheme removes the possibility

of false positive message reports and allows for exact report thresh-

olds for revealing messages, not approximate ones.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science

Foundation under Grant No. 2234408, as well as gifts from Google

and Cisco. Any opinions, findings, and conclusions or recommenda-

tions expressed in this material are those of the author(s) and do not

necessarily reflect the views of the National Science Foundation.

REFERENCES
[1] 2021. Analytics in Exposure Notifications Express: FAQ. https://github.com/

google/exposure-notifications-android/blob/master/doc/enexpress-analytics-

faq.md. Accessed 5/1/2023.

[2] 2021. Exposure Notification Privacy-preserving Analytics (ENPA) White Pa-

per. https://covid19-static.cdn-apple.com/applications/covid19/current/static/

contact-tracing/pdf/ENPA_White_Paper.pdf. Accessed 5/1/2023.

[3] 2021. What is traceability and why does WhatsApp oppose it?

https://faq.whatsapp.com/general/security-and-privacy/what-is-traceability-

and-why-does-whatsapp-oppose-it/.

[4] Josh Aas and Time Geoghegan. 2020. Introducing ISRG Prio Services for Privacy

Respecting Metrics. https://www.abetterinternet.org/post/introducing-prio-

services/. https://www.abetterinternet.org/post/introducing-prio-services/

[5] Veridiana Alimonti. 2021. Brazil’s Fake News Bill: Congress Must Stand

Firm on Repealing Dangerous and Disproportionate Surveillance Mea-

sures. https://www.eff.org/deeplinks/2021/11/brazils-fake-news-bill-congress-

must-stand-firm-repealing-dangerous-and.

[6] Apple. 2021. CSAM Detection: Technical Summary. https://www.apple.com/

child-safety/pdf/CSAM_Detection_Technical_Summary.pdf.

[7] Aya Batrawy. 2023. Saudi man sentenced to death for tweets in harshest verdict

yet for online critics (NPR). https://www.npr.org/2023/08/31/1196776390/saudi-

arabia-man-death-sentence-tweets. Accessed 3/13/2024.

[8] Mihir Bellare and Viet Tung Hoang. 2022. Efficient Schemes for Committing

Authenticated Encryption. IACR Cryptol. ePrint Arch. (2022).
[9] Mihir Bellare and Phillip Rogaway. 1993. Random Oracles are Practical: A

Paradigm for Designing Efficient Protocols. In CCS.
[10] David Bernhard, Véronique Cortier, David Galindo, Olivier Pereira, and Bogdan

Warinschi. 2015. SoK: A comprehensive analysis of game-based ballot privacy

definitions. In 2015 IEEE Symposium on Security and Privacy. IEEE, 499–516.
[11] Abhishek Bhowmick, Dan Boneh, Steve Myers, Kumal Talwar, and Karl Tarbe.

2021. The Apple PSI System. (2021).

[12] Dan Boneh and Victor Shoup. 2020. A Graduate Course in Applied Cryptography
(version 0.5). https://cryptobook.us.

[13] Jan Camenisch and Markus Stadler. 1997. Efficient Group Signature Schemes

for Large Groups (Extended Abstract). In Advances in Cryptology - CRYPTO ’97,
17th Annual International Cryptology Conference, Santa Barbara, California, USA,
August 17-21, 1997, Proceedings. 410–424.

[14] David Chaum. 1981. Untraceable Electronic Mail, Return Addresses, and Digital

Pseudonyms. Commun. ACM 24, 2 (1981), 84–88.

[15] David Chaum and Torben P. Pedersen. 1992. Wallet Databases with Observers.

In Advances in Cryptology - CRYPTO ’92, 12th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 16-20, 1992, Proceedings. 89–
105.

[16] Long Chen and Qiang Tang. 2018. People Who Live in Glass Houses Should

not Throw Stones: Targeted Opening Message Franking Schemes. IACR Cryptol.
ePrint Arch. 2018 (2018), 994.

[17] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant Puniya.

2005. Merkle-Damgård Revisited: How to Construct a Hash Function. InCRYPTO.
[18] Alex Davidson, Ian Goldberg, Nick Sullivan, George Tankersley, and Filippo

Valsorda. 2018. Privacy Pass: Bypassing Internet Challenges Anonymously. Proc.
Priv. Enhancing Technol. 2018, 3 (2018), 164–180.

[19] Whitfield Diffie and Martin E. Hellman. 1976. New directions in cryptography.

IEEE Trans. Information Theory 22, 6 (1976), 644–654.

[20] Yevgeniy Dodis, Paul Grubbs, Thomas Ristenpart, and Joanne Woodage. 2018.

Fast Message Franking: From Invisible Salamanders to Encryptment. In Advances
in Cryptology - CRYPTO 2018 - 38th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part I (Lecture Notes in
Computer Science, Vol. 10991), Hovav Shacham and Alexandra Boldyreva (Eds.).

Springer, 155–186.

[21] Steve Englehardt. 2019. Next steps in privacy-preserving Telemetry

with Prio. https://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-

preserving-telemetry-with-prio/. https://blog.mozilla.org/security/2019/06/06/

next-steps-in-privacy-preserving-telemetry-with-prio/

[22] Inc. Facebook. 2017. Messenger Secret Conversations Technical Whitepa-

per. https://messengernews.fb.com/wp-content/uploads/2018/09/messenger-

secret-conversations-technical-whitepaper.pdf.

[23] Steven Fackler. 2022. rust-openssl. https://github.com/sfackler/rust-openssl.

[24] Amos Fiat and Adi Shamir. 1986. How to Prove Yourself: Practical Solutions

to Identification and Signature Problems. In Advances in Cryptology - CRYPTO
’86, Santa Barbara, California, USA, 1986, Proceedings (Lecture Notes in Computer
Science, Vol. 263), Andrew M. Odlyzko (Ed.). Springer, 186–194. https://doi.org/

10.1007/3-540-47721-7_12

14

https://github.com/google/exposure-notifications-android/blob/master/doc/enexpress-analytics-faq.md
https://github.com/google/exposure-notifications-android/blob/master/doc/enexpress-analytics-faq.md
https://github.com/google/exposure-notifications-android/blob/master/doc/enexpress-analytics-faq.md
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://faq.whatsapp.com/general/security-and-privacy/what-is-traceability-and-why-does-whatsapp-oppose-it/
https://faq.whatsapp.com/general/security-and-privacy/what-is-traceability-and-why-does-whatsapp-oppose-it/
https://www.abetterinternet.org/post/introducing-prio-services/
https://www.abetterinternet.org/post/introducing-prio-services/
https://www.abetterinternet.org/post/introducing-prio-services/
https://www.eff.org/deeplinks/2021/11/brazils-fake-news-bill-congress-must-stand-firm-repealing-dangerous-and
https://www.eff.org/deeplinks/2021/11/brazils-fake-news-bill-congress-must-stand-firm-repealing-dangerous-and
https://www.apple.com/child-safety/pdf/CSAM_Detection_Technical_Summary.pdf
https://www.apple.com/child-safety/pdf/CSAM_Detection_Technical_Summary.pdf
https://www.npr.org/2023/08/31/1196776390/saudi-arabia-man-death-sentence-tweets
https://www.npr.org/2023/08/31/1196776390/saudi-arabia-man-death-sentence-tweets
https://cryptobook.us
https://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-preserving-telemetry-with-prio/
https://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-preserving-telemetry-with-prio/
https://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-preserving-telemetry-with-prio/
https://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-preserving-telemetry-with-prio/
https://messengernews.fb.com/wp-content/uploads/2018/09/messenger-secret-conversations-technical-whitepaper.pdf
https://messengernews.fb.com/wp-content/uploads/2018/09/messenger-secret-conversations-technical-whitepaper.pdf
https://github.com/sfackler/rust-openssl
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12

[25] Matthew Franklin and Haibin Zhang. 2013. Unique ring signatures: A practical

construction. In Financial Cryptography and Data Security: 17th International
Conference, FC 2013, Okinawa, Japan, April 1-5, 2013, Revised Selected Papers 17.
Springer, 162–170.

[26] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. 2005. Key-

word Search and Oblivious Pseudorandom Functions. In Theory of Cryptography,
Second Theory of Cryptography Conference, TCC 2005, Cambridge, MA, USA,
February 10-12, 2005, Proceedings. 303–324.

[27] Eiichiro Fujisaki and Koutarou Suzuki. 2007. Traceable ring signature. In Inter-
national Workshop on Public Key Cryptography. Springer, 181–200.

[28] Paul Grubbs, Jiahui Lu, and Thomas Ristenpart. 2017. Message Franking via

Committing Authenticated Encryption. In Advances in Cryptology - CRYPTO 2017
- 37th Annual International Cryptology Conference, Santa Barbara, CA, USA, August
20-24, 2017, Proceedings, Part III (Lecture Notes in Computer Science, Vol. 10403),
Jonathan Katz and Hovav Shacham (Eds.). Springer, 66–97.

[29] Loïs Huguenin-Dumittan and Iraklis Leontiadis. 2018. A Message Franking

Channel. IACR Cryptol. ePrint Arch. 2018 (2018), 920.
[30] Rawane Issa, Nicolas Alhaddad, and Mayank Varia. 2022. Hecate: Abuse Report-

ing in Secure Messengers with Sealed Sender. In 31st USENIX Security Symposium,
USENIX Security 2022, Boston, MA, USA, August 10-12, 2022, Kevin R. B. Butler

and Kurt Thomas (Eds.). USENIX Association, 2335–2352.

[31] Seny Kamara, Mallory Knodel, Emma Llansó, Greg Nojeim, Lucy

Qin, Dhanaraj Thakur, and Caitlin Vogus. 2021. Outside looking

in: Approaches to content moderation in end-to-end encrypted sys-

tems. https://cdt.org/insights/outside-looking-in-approaches-to-content-

moderation-in-end-to-end-encrypted-systems/

[32] Erin Kenney, Qiang Tang, and Chase Wu. 2022. Anonymous Traceback for End-

to-End Encryption. In European Symposium on Research in Computer Security.
Springer, 42–62.

[33] Anunay Kulshrestha and Jonathan Mayer. 2021. Identifying Harmful Media in

End-to-End Encrypted Communication: Efficient Private Membership Computa-

tion. In USENIX Security. USENIX, Virtual Event.
[34] Iraklis Leontiadis and Serge Vaudenay. 2018. Private Message Franking with

After Opening Privacy. IACR Cryptol. ePrint Arch. 2018 (2018), 938.
[35] Linsheng Liu, Daniel S. Roche, Austin Theriault, and Arkady Yerukhimovich.

2021. Fighting Fake News in Encrypted Messaging with the Fuzzy Anonymous

Complaint Tally System (FACTS). IACR Cryptol. ePrint Arch. (2021).
[36] IA Lovecruft and Henry de Valence. 2021. curve25519-dalek: A pure-rust imple-

mentation of group operations on ristretto and curve25519. https://github.com/

dalek-cryptography/curve25519-dalek.

[37] Namrata Maheshwari. 2020. Traceability Under Brazil’s Proposed Fake

News Law Would Undermine Users’ Privacy and Freedom of Expres-

sion. https://cdt.org/insights/traceability-under-brazils-proposed-fake-news-

law-would-undermine-users-privacy-and-freedom-of-expression/

[38] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. 2004. Indifferentiability,

Impossibility Results on Reductions, and Applications to the Random Oracle

Methodology. In TCC.
[39] Silvio Micali, Michael Rabin, and Salil Vadhan. 1999. Verifiable random functions.

In 40th annual symposium on foundations of computer science (cat. No. 99CB37039).
IEEE, 120–130.

[40] Moni Naor and Omer Reingold. 2004. Number-theoretic constructions of efficient

pseudo-random functions. J. ACM 51, 2 (2004), 231–262.

[41] Charlotte Peale. 2021. srctracking. https://github.com/cpeale/srctracking.

[42] Charlotte Peale, Saba Eskandarian, and Dan Boneh. 2021. Secure Source-Tracking

for Encrypted Messaging. In Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security, CCS. ACM.

[43] Katitza Rodriguez. 2021. Why Indian Courts Should Reject Traceability Obliga-

tions. https://www.eff.org/deeplinks/2021/06/why-indian-courts-should-reject-

traceability-obligations.

[44] Prasanto K Roy. 2019. Why India wants to track WhatsApp messages. https:

//www.bbc.com/news/world-asia-india-50167569.

[45] RustCrypto. 2022. RustCrypto/MACs. https://github.com/RustCrypto/MACs.

[46] Manish Singh. 2020. India likely to force Facebook, WhatsApp to identify the

originator of messages. https://techcrunch.com/2020/01/21/india-likely-to-force-

facebook-whatsapp-to-identify-the-originator-of-messages/.

[47] Udbhav Tiwari and Jochai Ben-Avie. 2020. Mozilla’s analysis:

Brazil’s fake news law harms privacy, security, and free expression.

https://blog.mozilla.org/netpolicy/2020/06/29/brazils-fake-news-law-harms-

privacy-security-and-free-expression/.

[48] Nirvan Tyagi, Paul Grubbs, Julia Len, Ian Miers, and Thomas Ristenpart. 2019.

Asymmetric Message Franking: Content Moderation for Metadata-Private End-

to-End Encryption. In Advances in Cryptology - CRYPTO 2019 - 39th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 18-22, 2019,
Proceedings, Part III (Lecture Notes in Computer Science, Vol. 11694), Alexandra
Boldyreva and Daniele Micciancio (Eds.). Springer, 222–250.

[49] Nirvan Tyagi, Ian Miers, and Thomas Ristenpart. 2019. Traceback for End-to-End

Encrypted Messaging. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2019, London, UK, November 11-15,

2019, Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz

(Eds.). ACM, 413–430.

A ADDITIONAL RELATEDWORK
Electronic Voting: Electronic voting as a problem space has many

parallels to message report aggregation; a set of users wish to con-

tribute towards a common tally without revealing their identity

while preventing repeated voting or “ballot-box stuffing". Tools

such as traceable ring signatures work well in the electronic vot-

ing setting, providing anonymity for a voter within a pool as long

as they do not attempt to vote twice for the same “issue ID” [27].

There is also significant overlap in the basic goals for the systems,

including similar notions of honest voter privacy, such that “an

attacker should not notice if the votes of two voters are swapped”,

as well as tally uniqueness, which “ensures that two different tallies

for the same [election] cannot be accepted by the verification algo-

rithm, even if all the [voters] in the system are malicious” [10]. It is

worth highlighting a few assumptions that can be accommodated

in electronic voting that prevent these tools from being applied to

solve anonymous report aggregation.

• Traceable ring signatures often require a consistent group

of public keys to ensure that votes were authenticated by

one of the corresponding private keys and that no signature

was used to vote twice on the same issue. In elections,

voters can be registered before the election, allowing for

consistent signing groups of voters for a given election; the

votes are also submitted during a fixed period of time. In

an encrypted messaging platform, users can sign up and

report forwarded messages at any time, making it difficult

to ensure a consistent user group across the aggregated

reports of a message.

• Traceable ring signatures provide a Trace procedure that
returns whether two signatures are duplicates. To ensure

a set of 𝑛 signatures contains no duplicates, this requires

O(𝑛2) invocations of Trace. The dupTags in our scheme al-

low for O(𝑛) de-duplication within 𝑆2, while 𝑆2 can prove

correctness of the tally to 𝑆1 in O(𝑘 ∗𝑛), with an anonymity

group of size 𝑘 for any given report. In practice, this gives

the system more flexibility; it does not limit the anonymity

group of users who registered at a similar time, but instead,

to any report across the lifetime of the system, while also

scaling the anonymity group independently from the re-

porting threshold.

While this is by no means an exhaustive review of electronic

voting literature, we believe it illustrates some key differences in as-

sumptions that can be made when compared to designing a system

for report aggregation in encrypted messaging.

Privacy Pass: Our usage of an oblivious PRF, along with a

MAC of the output at a specific point, can be viewed as a verifiable
random function, where a single evaluation can be verified without

taking away the randomness of other evaluations [39]. These are

used in many other settings, including Privacy Pass, which uses

oblivious PRFs to batch generate anonymous tokens for honest

users to bypass CAPTCHAs when using Tor or other anonymous

traffic systems [18]. Similar to our goals of avoiding the end server

learning which user reported the message, their system serves

15

https://cdt.org/insights/outside-looking-in-approaches-to-content-moderation-in-end-to-end-encrypted-systems/
https://cdt.org/insights/outside-looking-in-approaches-to-content-moderation-in-end-to-end-encrypted-systems/
https://github.com/dalek-cryptography/curve25519-dalek
https://github.com/dalek-cryptography/curve25519-dalek
https://cdt.org/insights/traceability-under-brazils-proposed-fake-news-law-would-undermine-users-privacy-and-freedom-of-expression/
https://cdt.org/insights/traceability-under-brazils-proposed-fake-news-law-would-undermine-users-privacy-and-freedom-of-expression/
https://github.com/cpeale/srctracking
https://www.eff.org/deeplinks/2021/06/why-indian-courts-should-reject-traceability-obligations
https://www.eff.org/deeplinks/2021/06/why-indian-courts-should-reject-traceability-obligations
https://www.bbc.com/news/world-asia-india-50167569
https://www.bbc.com/news/world-asia-india-50167569
https://github.com/RustCrypto/MACs
https://techcrunch.com/2020/01/21/india-likely-to-force-facebook-whatsapp-to-identify-the-originator-of-messages/
https://techcrunch.com/2020/01/21/india-likely-to-force-facebook-whatsapp-to-identify-the-originator-of-messages/
https://blog.mozilla.org/netpolicy/2020/06/29/brazils-fake-news-law-harms-privacy-security-and-free-expression/
https://blog.mozilla.org/netpolicy/2020/06/29/brazils-fake-news-law-harms-privacy-security-and-free-expression/

to prevent the end server from learning which user accessed the

resource while providing some assurance that the user is not a bot.

B REPORT CONFIDENTIALITY FOR KNOWN
REPORT DATA

This appendix considers the impact on the confidentiality of reports

in the case where a malicious server already knows an honest user’s

report data rd, a setting not fully covered by our formal security

definitions. We briefly consider the consequences of this for FACTS

and for our scheme. Note that the focus here is on the confidentiality

of the users reporting the message, not on the sender of the message.

We discuss consequences for the sender of the message in Section 1

and Section 4.3.

Consequences for FACTS. The FACTS scheme relies on a “Col-

laborative Counting Bloom Filter” data structure of multiple over-

lapping Bloom filters that clients update in the clear. Since each

client is only allowed to flip one bit at a time, several clients must

report a message before a given message is included in the filter, at

which point any client who wishes to report the message knows to

tell the server the report data rd when making its report.

A malicious server who learns rd can simply set all the bits

for that message, causing any user who wishes to report rd to

immediately reveal themself to the server. This is a full break of

confidentiality by the server.

Consequences for our scheme.Amalicious server 𝑆1 who knows

rd in our scheme can still attack report confidentiality, albeit less

directly. The combination of masking and zero-knowledge proofs

used in the Report protocol ensures that this protocol reveals noth-
ing to a malicious 𝑆1, regardless of whether or not 𝑆1 knows rd.
However, the scheme has no check that a given value of 𝑡 in the

encrypted output of Report corresponds to a real user. Thus a mali-

cious server who knows rd can produce many fake reports for the

same rd without needing to control multiple malicious users. This

can be used to produce a targeted attack on report confidentiality.

Suppose a malicious server receives a report from an honest

user𝑈 and wishes to check if the report data was some particular

rd that the server knows. The server creates 𝑡 − 1 additional fake
reports for rd and includes all 𝑡 reports (the honest report from 𝑈

and 𝑡 − 1 fake reports) in a batch of report ciphertexts sent to 𝑆2. If

𝑆2 reveals rd to 𝑆1 as having 𝑡 reports, 𝑆1 knows that it correctly

guessed the report data for user 𝑈 . Otherwise it can try again with

a different candidate report until it guesses correctly. The report

confidentiality rules out this attack by checking that the adversary

has not sent reports that cause the output of 𝑆2 to differ if 𝑏 = 0 or

𝑏 = 1, as this kind of attack is only possible when the adversary

does know rd in advance.

Our scheme requires 𝑆2 to learn the report data rd for each

report, but it has no way of tying this information to a given user.

Nonetheless, it’s important for 𝑆1 to provide some kind of account

verification process to prevent 𝑆2 from producing many fake users

and using them to get rd over the threshold. This is yet another

way that the security of the scheme is broken if both servers are

compromised.

Observe that there is a difference in the kind of compromise

that occurs if a server learns rd in our scheme versus in FACTS. In

FACTS, this event leads to a complete break in which the adversary

can always bypass the threshold and learn every user’s report

immediately. In our scheme, 𝑆1 can launch a targeted attack on a

particular user to guess and check the contents of their reports.

However, as long as 𝑆2 doesn’t allow for “re-reporting” of messages

past the threshold, this attack cannot be scaled to attack every

user at once. Thus switching to a two server model in our scheme

provides for a more gradual degradation of security properties

when the adversary knows rd in advance of receiving reports.

C DEFERRED PROOFS
Proof of Theorem 6.2 (report confidentiality).

Proof. The proof proceeds by a series of indistinguishable hy-

brids.

• Hyb
0
: This hybrid is the security experimentRCONF[A,Π, 𝜆,𝑄O , 0].

• Hyb
1
: In this hybrid, the experiment runs the extractor guar-

anteed to exist by the proof of knowledge property of PoK to

recover the value sk1rep for each proof 𝜋𝑠 presented in Report.
The experiment outputs ⊥ should any extractor fail.

This hybrid is indistinguishable from the preceding one by the

proof of knowledge property of the proof system PoK. In par-

ticular, the experiment aborts with probability PoKAdv(PoK),
the probability of the extractor failing, for each invocation of

the Report oracle. Thus the overall additional failure probabil-
ity introduced by this change is 𝑄Report · PoKAdv(PoK), which
remains negligible so long as PoKAdv(PoK) is negligible.
Note that the extracted value sk1rep will always be the same

output because there is a unique sk1rep satisfying the statement

being proved with respect to pk
1rep.

• Hyb
2
: In this hybrid, the experiment replaces the proofs 𝜋𝑣 , gen-

erated by S2Prove and sent to the adversary during interactions

with the Process oracle, with simulated proofs.

This hybrid is indistinguishable from the preceding one by the

zero knowledge property of the proof system PoK. The hybrid
consists of at most 𝑄Process · 𝑄Report subhybrids (𝑄Report is an

upper bound on the number of proofs produced in each call to

the Process oracle), where the 𝑖th hybrid replaces the 𝑖th proof

𝜋𝑣 with a simulated proof. The adversary’s advantage in distin-

guishing between adjacent hybrids is at most ZKAdv(PoK), so
the adversary’s advantage in distinguishing between all real ver-

sus all simulated proofs is at most𝑄Process ·𝑄Report ·ZKAdv(PoK),
which remains negligible so long as ZKAdv(PoK) is negligible.
We omit the standard reduction that formalizes this indistin-

guishability argument.

• Hyb
3
: In this hybrid, the experiment replaces the proofs 𝜋𝑢 sent

to the adversary during interactions with the Report oracle with
simulated proofs.

This hybrid is indistinguishable from the preceding one by the

zero knowledge property of the proof system PoK. The hybrid
consists of𝑄Report subhybrids, where the 𝑖th hybrid replaces the

𝑖th proof 𝜋𝑢 with a simulated proof. The adversary’s advantage in

distinguishing between adjacent hybrids is at most ZKAdv(PoK),
so the adversary’s advantage in distinguishing between all real

versus all simulated proofs is at most 𝑄Report · ZKAdv(PoK),
which remains negligible so long as ZKAdv(PoK) is negligible.

16

We omit the standard reduction that formalizes this indistin-

guishability argument.

• Hyb
4
: This hybrid is identical to the preceding one, except the

experiment keeps track of queries made to the random oracle 𝐻

and aborts if there are ever queries rep, rep′ made to the oracle

such that rep ≠ rep′ but 𝐻 (rep) = 𝐻 (rep′).
This event occurs with negligible probability because the proba-

bility of two queries to the random oracle having the same output

is negligible in the length of the output.

• Hyb
5
: This hybrid is identical to the preceding one except we

replace calls to PKE.Enc(pk, ·) in Report with calls to encrypt a

string of zeros of the same length. The experiment keeps a table

𝑇Enc indexed by ciphertexts that keeps the intended plaintext

contents of those ciphertexts. This table is used to look up plain-

texts when calls are made to PKE.Dec for ciphertexts ct ∈ 𝑇Enc
in Verify.
In lemma C.1, we prove that this hybrid is indistinguishable from

the preceding one by the CCA security of the encryption scheme.

• Hyb
6
: This hybrid is identical to the preceding experiment, except

we add an additional abort condition. The experiment will abort

and output 0 if there are two different ct, ct′ ∈ 𝑇 where, after

looking up their user identifiers uid, uid′ in𝑇 and running Verify,
it holds that uid ≠ uid′ but dupTag = dupTag′.
This hybrid is statistically indistinguishable from the preceding

one. Observe that dupTag = 𝐻 (rep)sk𝑢sk1rep . Since the experi-

ment already aborts if there are rep, rep′ that have the same hash,

the only remaining way for dupTags to collide is if (1) sk𝑢 = sk′𝑢
for two users 𝑢,𝑢′ ∈ 𝑈 or (2) 𝐻 (rep)sk𝑢sk1rep = 𝐻 (rep′)sk′𝑢sk1rep
where rep ≠ rep′. But event (1) happens with probability 1/𝑞 for

each pair of users, or 𝑄2

AddHonUser/𝑞 overall. Since outputs of 𝐻

and sk𝑢 , sk′𝑢 are chosen uniformly at random, there is a 1/𝑞 prob-

ability that any two dupTags collide, or a 𝑄2

Report/𝑞 probability

of event (2) overall. Since both these probabilities are negligible,

the hybrid is indistinguishable from the preceding one.

• Hyb
7
: In this hybrid, instead of calculating 𝑣 ← 𝑤 sk𝑢

in the

Report protocol, the experiment samples 𝑣 ←R 𝐺. The experiment

keeps a table 𝑇𝑡 of the 𝑡 values returned by A, along with the

values of rep, 𝑟 , and sk𝑢 which would have been used to calculate

𝑣 , i.e., 𝑇𝑡 [𝑡] ← (rep, 𝑟 , sk𝑢) . The experiment uses these values,

along with the extracted sk1rep, to calculate values of dupTag for
ct ∈ 𝑇 as if it had not changed the calculation of 𝑣 . That is, it

computes

(rep, 𝑟 , sk𝑢) ← 𝑇𝑡 [𝑡]

dupTag← 𝐻 (rep)𝑟sk𝑢sk1rep/𝑟 = 𝑤 sk𝑢sk1rep/𝑟 .

In Lemma C.2, we prove that this hybrid is indistinguishable

from the preceding one by the hardness of DDH in 𝐺 .

• Hyb
8
: In this hybrid, instead of calculating𝑤 ← 𝐻 (rep)𝑟 in the

Report protocol, the experiment samples 𝑤 ←R 𝐺 . The experi-

ment continues to use the values in the table𝑇𝑡 to calculate values

of dupTag for ct ∈ 𝑇 as if it had not changed the calculation of𝑤 .

In Lemma C.3, we prove that this hybrid is indistinguishable

from the preceding one by the hardness of DDH in 𝐺 .

• Hyb
9
: In this hybrid, the experiment samples dupTag ←R 𝐺

when running Verify for ct ∈ 𝑇 .

In Lemma C.4, we prove that this hybrid is indistinguishable

from the preceding one by the hardness of DDH in 𝐺 .

• Hyb
10

: This hybrid is identical to the preceding one, except we

add an additional abort condition. The experiment will abort

and output 0 if the Verify function, when run on a ciphertext

ct ∉ 𝑇 , returns a (rep, dupTag) tuple where the dupTag matches

the dupTag that would have been produced by an honest user

𝑢 ∈ 𝑈 for the same rep, but where (𝑢, rep) does not appear in 𝐷0

or 𝐷1.

This hybrid is statistically indistinguishable from the preceding

one because the abort condition can only be met with negligible

probability. This is the case because the values of dupTag for ct ∈
𝑇 are selected uniformly at random in𝐺 , and if (𝑢, rep) does not
appear in 𝐷0 or 𝐷1, they are never shown to the adversary. Thus

the probability that an adversary produces a matching dupTag is
the probability that one of the ct ∉ 𝑇 that the adversary sends

to the Submit oracle matches with a random ct ∈ 𝑇 . Since |𝑇 | is
upper bounded by the number of calls to Report, this probability
is at most 𝑄Report ·𝑄Submit/𝑞, which is negligible.

• Hyb
11
: This hybrid is identical to the preceding one, except we

switch the experiment’s input 𝑏 from 𝑏 = 0 to 𝑏 = 1.

The view of the adversary in this hybrid is identical to its view

in the preceding one because nothing in the adversary’s view

depends on 𝑏. Observe that all the values sent by the experiment

to the challenger in the Report protocol are either random group

elements (𝑤, 𝑣), simulated proofs (𝜋𝑢), or encryptions of zeroes

(ct). Moreover, the output of Process is identical when 𝑏 = 0 or

𝑏 = 1 because the experiment aborts in any situation where a

difference would arise due to the choice of 𝑏.

In particular, whenever the experiment does not abort, each

(uid, rep) pair input to Report results in a distinct dupTag for

dupTag values corresponding to honest users. This means that

no ct ∉ 𝑇 will result in a dupTag that collides with one in a

ciphertext ct ∈ 𝑇 for a different user. Let 𝑅Hon be the value of

𝑅 restricted to its contents due to calling Verify on ciphertexts

ct ∈ 𝑇 . Then we have that 𝑅Hon = 𝑅0 when 𝑏 = 0 and 𝑅Hon = 𝑅1
when 𝑏 = 1 (since the abort criteria ensure that no ct ∉ 𝑇 can

affect 𝑅Hon, 𝑅0, 𝑅1). In both cases, the experiment outputs 0 if

𝑅0 ≠ 𝑅1, so the value of 𝑅Hon is the same regardless of 𝑏. This

means that 𝑅 is also the same regardless of 𝑏 because ciphertexts

ct ∉ 𝑇 do not depend on 𝑏.

• Hyb
12

: This hybrid is identical to the preceding one, except we

remove the abort criterion introduced inHyb
10
. This hybrid is in-

distinguishable from the preceding hybrid via the same statistical

argument made in Hyb
10
.

• Hyb
13

: This hybrid is identical to the preceding one, except

we return to always calculating dupTag as specified in Hyb
7
.

This undoes the change made in Hyb
9
and is indistinguishable

from the preceding hybrid via the same argument, relying on the

hardness of DDH in 𝐺 .

• Hyb
14

: This hybrid is identical to the preceding one, except

we return to always calculating 𝑤 as specified in the protocol.

This undoes the change made in Hyb
8
and is indistinguishable

from the preceding hybrid via the same argument, relying on the

hardness of DDH in 𝐺 .

• Hyb
15

: This hybrid is identical to the preceding one, except we

return to always calculating 𝑣 and dupTag as specified in the

17

protocol. This undoes the change made in Hyb
7
and is indis-

tinguishable from the preceding hybrid via the same argument,

relying on the hardness of DDH in 𝐺 .

• Hyb
16

: This hybrid is identical to the preceding one, except we

drop the additional abort criteria specified in Hyb
6
. This undoes

the change made in that hybrid, and is indistinguishable from

the preceding hybrid via the same argument.

• Hyb
17
: This hybrid is identical to the preceding one, except en-

cryption is done as specified in the protocol, rather than always

encrypting zeros and looking up plaintexts in 𝑇Enc to decrypt.

This undoes the change made in Hyb
5
.

This hybrid is indistinguishable from the preceding one by the

CCA security of the encryption scheme PKE, by an argument

analogous to the one made there.

• Hyb
18
: This hybrid is identical to the preceding one, except the

experiment no longer aborts in the case of two queries rep,
rep′ made to the random oracle 𝐻 such that rep ≠ rep′ but
𝐻 (rep) = 𝐻 (rep′). This undoes the change made in Hyb

4
, and

is indistinguishable from the preceding hybrid via the same ar-

gument.

• Hyb
19

: This hybrid is identical to the preceding one, except

the experiment no longer simulates the proofs 𝜋𝑢 and uses real

proofs instead. This undoes the changes made in Hyb
3
, and is

indistinguishable from the preceding hybrid via the same argu-

ment.

• Hyb
20

: This hybrid is identical to the preceding one, except

the experiment no longer simulates the proofs 𝜋𝑣 and uses real

proofs instead. This undoes the changes made in Hyb
2
, and is

indistinguishable from the preceding hybrid via the same argu-

ment.

• Hyb
21
: This hybrid is identical to the preceding one, except the

experiment no longer runs the extractors to recover sk1rep from

each proof 𝜋𝑠 provided by the adversary in Report. This undoes
the change made in Hyb

1
, and is indistinguishable from the

preceding hybrid via the same argument used there.

Note that this hybrid is identical to RCONF[A,Π, 𝜆,𝑄O , 1] .
The proof of the theorem follows from the indistinguishability

of adjacent pairs of hybrids and the triangle inequality.

Lemma C.1. Suppose that for any adversary B attacking the CCA
security of PKE, the advantage of B in winning the CCA security
experiment is at most CCAAdv(B, PKE). Then, we have that��Pr[Hyb

4
() = 1] − Pr[Hyb

5
() = 1]

�� ≤ CCAAdv(B, PKE).

Proof. We show that if there exists an adversaryA who distin-

guishes between the two hybrids, then we can build an adversary

B who breaks the CPA security of PKE.Enc. B plays the role of the

challenger to A and the adversary in the CPA security game. It

simulatesHyb
5
exactly, except for two changes. It sets pk

2
to be the

public key provided by the CPA security challenger, and whenever

Report makes a call to PKE.Enc, it submits two plaintexts to the

CPA security challenger: the plaintexts that are encrypted in Hyb
4

and Hyb
5
. Since B keeps a table𝑇Enc as described in Hyb

5
, correct-

ness decryption and the outcomes of Process are identical in both

cases. Thus if the CPA challenger has input 𝑏 = 0, the adversary

B perfectly simulates Hyb
4
to A, and if the CPA challenger has

𝑏 = 1, B perfectly simulates Hyb
5
. Thus B distinguishes 𝑏 = 0 vs

𝑏 = 1 in the CPA security game with the same advantage that A
distinguishes between Hyb

4
and Hyb

5
. □

Lemma C.2. Suppose that for any adversary B attacking DDH in
𝐺 , the advantage of B in winning the DDH experiment is at most
DDHAdv(B,𝐺). Then, modeling 𝐻 as a random oracle, we have that��Pr[Hyb

6
() = 1] − Pr[Hyb

7
() = 1]

�� ≤ DDHAdv(B,𝐺) .

Proof. We show how to build an adversary B who breaks DDH

using an adversary A who distinguishes between the two hybrids.

The adversary B begins by receiving the DDH challenge tuple

𝑋,𝑌, 𝑍 . It responds to random oracle queries by sampling a random

𝛼𝑖 ←R Z𝑞 and setting 𝐻 (rep𝑖) ← 𝑔𝛼𝑖 . In the AddHonUser oracle,
it samples 𝛽𝑢 ←R Z𝑞 and sets pk𝑢 ← 𝑌 𝛽𝑢

. In the Report protocol,
it samples 𝛾𝑖 ←R Z𝑞 and sets 𝑤 ← 𝑋𝛼𝑖𝛾𝑖

, where 𝛼𝑖 is chosen by

querying the random oracle at rep. Moreover, it sets 𝑣 ← 𝑍𝛼𝑖𝛾𝑖𝛽𝑢 .

Instead of recording 𝑟 when producing ct, the adversary B records

𝛾𝑖 . Finally, when running the Verify oracle for ct ∈ 𝑇, The adversary
B computes dupTag as 𝑌𝛼𝑖𝛽𝑢sk1rep

(straightforward bookkeeping

can allow B to recover the correct choices of 𝛼𝑖 , 𝛽𝑢). At the end of

the experiment, B passes on A’s output as its own.

Observe that if the DDH challenger has sent B a real DDH triple,

i.e., 𝑋 = 𝑔𝑥 , 𝑌 = 𝑔𝑦, 𝑍 = 𝑔𝑥𝑦, 𝑥,𝑦, 𝑧 ∈ Z𝑞 , then B is providing

A with a perfect simulation of Hyb
6
. This is because we have

implicitly set sk𝑢 = 𝑦𝛽𝑢 and 𝑟 = 𝑥𝛾𝑖 , and all the group elements

that make up the adversary’s view (𝑤, 𝑣, dupTag) are consistent
with this assignment of variables.

𝑤 ← 𝑋𝛼𝑖𝛾𝑖 = 𝑔𝑥𝛼𝑖𝛾𝑖 = 𝐻 (rep𝑖)𝑥𝛾𝑖 = 𝐻 (rep𝑖)𝑟

𝑣 ← 𝑍𝛼𝑖𝛾𝑖𝛽𝑢 = 𝑔𝑥𝑦𝛼𝑖𝛾𝑖𝛽𝑢 = 𝐻 (rep𝑖)𝑥𝛾𝑖𝑦𝛽𝑢 = 𝑤 sk𝑢

dupTag← 𝑌𝛼𝑖𝛽𝑢sk1rep = 𝑔𝑦𝛼𝑖𝛽𝑢sk1rep = 𝐻 (rep𝑖)sk𝑢sk1rep = 𝑡1/𝑟

On the other hand, if 𝑍 is a random group element, then we have

that 𝑣 is a random group element as well, but the other aspects of

the adversary’s view remain the same. This is a perfect simulation

of Hyb
7
. Thus the adversary B distinguishes a DDH triple from a

random one with the same advantage thatA distinguishes between

the two hybrids. □

Lemma C.3. Suppose that for any adversary B attacking DDH in
𝐺 , the advantage of B in winning the DDH experiment is at most
DDHAdv(B,𝐺). Then, modeling 𝐻 as a random oracle, we have that��Pr[Hyb

7
() = 1] − Pr[Hyb

8
() = 1]

�� ≤ DDHAdv(B,𝐺) .

Proof. We show how to build an adversary B who breaks DDH

using an adversary A who distinguishes between the two hybrids.

The adversary B begins by receiving the DDH challenge tuple

𝑋,𝑌, 𝑍 . It responds to random oracle queries by sampling a random

𝛼𝑖 ←R Z𝑞 and setting 𝐻 (rep𝑖) ← 𝑋𝛼𝑖
. In the Report protocol,

it samples 𝛽𝑖 ←R Z𝑞 and sets 𝑤 ← 𝑍𝛼𝑖𝛽𝑖
, where 𝛼𝑖 is chosen

by querying the random oracle at rep. When running the Verify
oracle for ct ∈ 𝑇, the adversary B computes dupTag as 𝑋𝛼𝑖 sk𝑢sk1rep

(straightforward bookkeeping can allow B to recover the correct

choices of 𝛼𝑖). At the end of the experiment,B passes onA’s output

as its own.

Observe that if the DDH challenger has sent B a real DDH triple,

i.e., 𝑋 = 𝑔𝑥 , 𝑌 = 𝑔𝑦, 𝑍 = 𝑔𝑥𝑦, 𝑥,𝑦, 𝑧 ∈ Z𝑞 , then B is providing

18

A with a perfect simulation of Hyb
7
. This is because we have

implicitly set 𝑟 = 𝑦𝛽𝑖 and explicitly set 𝐻 (rep) = 𝑔𝑥𝛼𝑖 , and all the

group elements that make up the adversary’s view (𝑤, 𝑣, dupTag)
are consistent with this assignment of variables.

𝑤 ← 𝑍𝛼𝑖𝛽𝑖 = 𝑔𝑥𝑦𝛼𝑖𝛽𝑖 = 𝐻 (rep)𝑦𝛽𝑖 = 𝐻 (rep)𝑟

𝑣 ←R 𝐺

dupTag← 𝑋𝛼𝑖 sk𝑢sk1rep = 𝑔𝑥𝛼𝑖 sk𝑢sk1rep = 𝐻 (rep)sk𝑢sk1rep

On the other hand, if 𝑍 is a random group element, then we have

that𝑤 is a random group element as well, but the other aspects of

the adversary’s view remain the same. This is a perfect simulation

of Hyb
8
. Thus the adversary B distinguishes a DDH triple from a

random one with the same advantage thatA distinguishes between

the two hybrids. □

Lemma C.4. Suppose that for any adversary B attacking DDH in
𝐺 , the advantage of B in winning the DDH experiment is at most
DDHAdv(B,𝐺). Then, modeling 𝐻 as a random oracle, we have that��Pr[Hyb

8
() = 1] − Pr[Hyb

9
() = 1]

�� ≤ DDHAdv(B,𝐺).

Proof. We show how to build an adversary B who breaks DDH

using an adversary A who distinguishes between the two hybrids.

The adversary B begins by receiving the DDH challenge tuple

𝑋,𝑌, 𝑍 . It responds to random oracle queries by sampling a random

𝛼𝑖 ←R Z𝑞 and setting 𝐻 (rep𝑖) ← 𝑋𝛼𝑖
. In the AddHonUser oracle, it

samples 𝛽𝑢 ←R Z𝑞 and sets pk𝑢 ← 𝑌 𝛽𝑢
. When running the Verify

oracle for ct ∈ 𝑇, the adversary B computes dupTag as 𝑍𝛼𝑖𝛽𝑢sk1rep

(straightforward bookkeeping can allow B to recover the correct

choices of 𝛼𝑖 , 𝛽𝑢). At the end of the experiment, B passes on A’s

output as its own.

Observe that if the DDH challenger has sent B a real DDH triple,

i.e., 𝑋 = 𝑔𝑥 , 𝑌 = 𝑔𝑦, 𝑍 = 𝑔𝑥𝑦, 𝑥,𝑦, 𝑧 ∈ Z𝑞 , then B is providing A
with a perfect simulation ofHyb

8
. This is becausewe have implicitly

set sk𝑢 = 𝑦𝛽𝑢 and explicitly set 𝐻 (rep) = 𝑔𝑥𝛼𝑖 , and all the group

elements that make up the adversary’s view (𝑤, 𝑣, dupTag) are
consistent with this assignment of variables.

𝑤 ←R 𝐺

𝑣 ←R 𝐺

dupTag← 𝑍𝛼𝑖𝛽𝑢sk1rep = 𝑔𝑥𝑦𝛼𝑖𝛽𝑢sk1rep = 𝐻 (rep)sk𝑢sk1rep

On the other hand, if 𝑍 is a random group element, then we have

that dupTag is a random group element as well, but the other aspects

of the adversary’s view remain the same. This is a perfect simulation

of Hyb
9
. Thus the adversary B distinguishes a DDH triple from a

random one with the same advantage thatA distinguishes between

the two hybrids. □

□

Proof of Theorem 6.3 (reporter anonymity).

Proof. The proof proceeds by a series of indistinguishable hy-

brids.

• Hyb
0
: This hybrid is the security experimentRANON[A,Π, 𝜆, 𝑏 =

0] .

• Hyb
1
: This hybrid is identical to the preceding hybrid, except in

calls to the HonReport oracle, the experiment omits producing

or verifying the proofs 𝜋𝑢 and 𝜋𝑠 .

This change does not affect the view of the adversary in the

experiment because the adversary never sees the transcript of

interactions inHonReport, and the proofs have perfect complete-

ness, meaning omitting them will not change the probability that

the Report protocol outputs ⊥.
• Hyb

2
: This hybrid is identical to the preceding one, except instead

of encrypting hd← PKE.Enc(pk
1rd, rd) in theHonReport oracle,

we replace rd with a string of zeros of the appopriate length.

This hybrid is indistinguishable from the preceding one by the

CPA security of the encryption scheme. This can be proven via a

standard reduction, which we omit.

• Hyb
3
: This hybrid is identical to the preceding one, except in-

stead of computing 𝑣 ← 𝑤 sk𝑢
in the HonReport oracle, we com-

pute 𝑣 ←R 𝐺 .

In Lemma C.5, we prove that this hybrid is indistinguishable

from the preceding one by the hardness of DDH in 𝐺 and the

fact that 𝐻 is modeled as a random oracle.

• Hyb
4
: This hybrid is identical to the preceding one except we

switch the experiment’s input 𝑏 from 𝑏 = 0 to 𝑏 = 1.

Observe that nothing in the adversary’s view in Hyb
3
depends

on 𝑏, so this hybrid is identical to the preceding one.

• Hyb
5
: In this hybrid, instead of computing 𝑣 ←R 𝐺 in HonReport,

we compute 𝑣 ← 𝑤 sk𝑢
. This undoes the change made in Hyb

3
.

As in Hyb
3
, this hybrid is indistinguishable from the preceding

one by the hardness of DDH in𝐺 and the fact that 𝐻 is modeled

as a random oracle. The proof is analogous to that of Lemma C.5.

• Hyb
6
: In this hybrid, the experiment resumes using rd as the

plaintext that gets encrypted to produce hd. This undoes the
change made in Hyb

2
.

As in Hyb
2
, this hybrid is indistinguishable from the preceding

one by the CPA security of PKE.
• Hyb

7
: In this hybrid, the experiment resumes computing and

verifying the proofs 𝜋𝑢 and 𝜋𝑠 in the HonReport oracle. This
undoes the change made in Hyb

1
.

As in Hyb
1
, this change does not affect the view of the adver-

sary in the experiment. Note that this hybrid is identical to

RANON[A,Π, 𝜆, 𝑏 = 1] .
The proof of the theorem follows from the indistinguishability

of adjacent pairs of hybrids and the triangle inequality.

Lemma C.5. Suppose that for any adversary B attacking DDH in
𝐺 , the advantage of B in winning the DDH experiment is at most
DDHAdv(B,𝐺). Then, modeling the hash function 𝐻 as a random
oracle, we have that��Pr[Hyb

2
() = 1] − Pr[Hyb

3
() = 1]

�� ≤ DDHAdv(B,𝐺) .

Proof. We show that if there exists an adversary A who dis-

tinguishes between the two hybrids, then we can build an adver-

sary B who breaks DDH in 𝐺 . B plays the role of the adversary

in the DDH security game and the role of the challenger in the

reporter anonymity game with A. Given the DDH challenge tu-

ple (𝑋 = 𝑔𝑥 , 𝑌 = 𝑔𝑦, 𝑍 = 𝑔𝑧) where 𝑧 = 𝑥𝑦 or 𝑧 ←R Z𝑞 , algo-
rithm B programs the random oracle 𝐻 so that for each query

19

rep, 𝐻 (rep) ← 𝑋𝛼
where 𝛼 ←R Z𝑞 . Moreover, it sets the pub-

lic key of each honest user to pk𝑢 ← 𝑌 𝛽
for 𝛽 ←R Z𝑞 . Finally,

when computing 𝑣 in the HonReport oracle, instead of computing

𝑣 ← 𝐻 (rep)𝑟sk𝑢 , it sets 𝑣 ← 𝑍𝑟𝛼𝛽
where 𝛼 and 𝛽 are selected based

on the message being hashed and the user doing the reporting. B
passes on A’s distinguishing bit 𝑏′ as its own output.

Observe that if 𝑧 = 𝑥𝑦, then B has set 𝑣 = 𝑔𝑟𝑥𝑦𝛼𝛽 = (𝑔𝑥𝛼)𝑟𝑦𝛽 =

𝐻 (rep)𝑟sk𝑢 , whereas if 𝑧 is random, B has set 𝑣 = 𝑔𝑟𝑧 , which is

distributed uniformly at random in 𝐺 . The former is exactly the

view of the adversary in Hyb
2
, whereas the latter is exactly the

view of the adversary in Hyb
3
. Thus B distinguishes between the

two hybrids with the exact same advantage as A. □

□

Proof of Theorem 6.4 (report uniqueness).

Proof. The proof proceeds through a series of hybrid experi-

ments, each of which increases the adversary’s advantage by at

most a negligible probability.

• Hyb
0
: This hybrid is the security experiment RUNIQ [A,Π, 𝜆,𝑄].

• Hyb
1
: In this hybrid, the experiment keeps a table 𝑇MAC of mes-

sages MACed by 𝑆1, indexed by the MAC tags 𝜎 , i.e., 𝑇 [𝜎] =
(𝑤, 𝑡). The experiment aborts and outputs 0 if it ever calls the

Verify function ever receives a MAC tag 𝜎 ∉ 𝑇MAC but does not

output ⊥.
This hybrid is indistinguishable from the preceding one by the

existential unforgeability of the MAC scheme. We omit the proof

of indistinguishability for this hybrid because it is a standard

reduction to the existential unforgeability of the MAC scheme.

• Hyb
2
: This hybrid is identical to the preceding one, except the

experiment keeps track of queries made to the random oracle 𝐻

and aborts if there are ever queries rep, rep′ made to the oracle

such that rep ≠ rep′ but 𝐻 (rep) = 𝐻 (rep′).
This event occurs with negligible probability because the proba-

bility of two queries to the random oracle having the same output

is negligible in the length of the output.

• Hyb
3
: In this hybrid, the experiment runs the extractor guaran-

teed to exist by the proof of knowledge property of PoK to recover

the value sk𝑢 for each proof 𝜋𝑢 presented in MalReport(pk𝑢).
The experiment outputs ⊥ should any extractor fail. The exper-

iment also modifies its bookkepping to replace each element

pk𝑢 ∈ 𝑀 with the tuple (sk𝑢 , pk𝑢) .
This hybrid is indistinguishable from the preceding one by the

proof of knowledge property of the proof system PoK. In partic-

ular, the experiment aborts with probability PoKAdv(PoK), the
probability of the extractor failing, for each invocation of the

MalReport oracle. Thus the overall additional failure probability
introduced by this change is 𝑄MalReport · PoKAdv(PoK), which
remains negligible so long as PoKAdv(PoK) is negligible.

• Hyb
4
: In this hybrid, the experiment keeps a table 𝑇ct and each

time theHonReport oracle computes a ciphertext, the experiment

sets 𝑇ct ← (rep, 𝑡, 𝜎, 𝑟, hd). The experiment also replaces any

ciphertext computed in HonReport with an encryption of all

zeroes of the same length, using 𝑇ct to recover the plaintext

whenever it encounters a ciphertext ct ∈ 𝑇ct.

In Lemma C.6, we show that the advantage of an adversary in

this hybrid is at most CCAAdv(B, PKE.Enc) greater than in the

previous one. This quantity is negligible by the CCA-security of

PKE.
• Hyb

5
: In this hybrid, the experiment aborts and outputs 0 if,

during a call to the Process oracle, there is ever a ct ∉ 𝑇ct but for
which PKE.Dec(pk, ct) = (rep, 𝑡, ·, 𝑟 , ·) ∈ 𝑇ct .
This event occurs with negligible probability because the view

of the adversary is independent of values of 𝑟 (and therefore 𝑡)

produced in the HonReport oracle. Thus the abort criterion can

only be triggered if the adversary guesses the random choice

of 𝑟 used in one of the calls to HonReport and includes it in a

ciphertext ct passed to the Submit oracle.
• Hyb

6
: In this hybrid, the experiment aborts if there exists ct, ct′ ∈

𝑆 where, when the ciphertexts are decrypted in Verify and Verify
does not output⊥, they yield (rep, 𝑟), (rep′, 𝑟 ′) such that (rep, 𝑟) ≠
(rep′, 𝑟 ′), but 𝐻 (rep)𝑟 = 𝐻 (rep′)𝑟 ′ .
In Lemma C.7, we show that the advantage of an adversary in this

hybrid is at most𝑄𝐻 ·DLAdv(B,𝐺) greater than in the previous

one, where 𝑄𝐻 denotes the number of queries the adversary

makes to the random oracle. This quantity is negligible by the

hardness of discrete log in 𝐺 .

We now prove that the advantage of any adversary in Hyb
6
is 0.

First, let 𝑇Dec be a table that maps those ciphertexts ct ∈ 𝑆 for

which Verify(sk𝑠 , sk2, ct) ≠ ⊥ to their decryptions (rep, 𝑡, 𝜎, 𝑟, hd).
Note that for a ciphertext to be included in 𝑇Dec, its decrypted con-

tents must pass MAC verification, which means that (𝐻 (rep)𝑟 , 𝑡) ∈
𝑇MAC . This means that only those (𝑤, 𝑡) values that come from

a successful interaction with HonReport or MalReport (the only
times an experiment MACs a message) can be included in 𝑇Dec.

Note that for a ct to increase the count in 𝑅, it must at least be

included in 𝑇Dec. Moreover, for a ct to be included in the difference

between 𝑅 and HonR – call the table of differences 𝑅′ – its corre-

sponding (𝑤, 𝑡) value must have been MACed in the MalReport
oracle, or else the experiment would abort for violating the cri-

terion specified in Hyb
5
. We will refer to the subset of 𝑇Dec that

includes ciphertexts ct ∉ 𝑇 as𝑇 ′Dec. Since only ciphertexts ct ∈ 𝑇
′
Dec

can contribute to count′, this means that count′ is upper bounded
by the number of calls toMalReport. Since each successful call to

MalReport increases count by 1, this means that, count′ ≤ count′ .
Next, observe that for any ct ∈ 𝑇 ′Dec, the decrypted values of

𝐻 (rep)𝑟 = 𝑤 and 𝑡 must have the relationship 𝑡 = 𝑤 sk1rep ·sk∗𝑢 by

construction, where sk∗𝑢 ∈ 𝑀 . But since there are no colliding

𝐻 (rep) values in the experiment, and no colliding 𝑤 = 𝐻 (rep)𝑟
values either, this means that for each rep ∈ 𝑇 ′Dec, it must hold for

all entries (rep, 𝑡, 𝜎, 𝑟, hd) ∈ 𝑇 ′Dec that 𝑡
1/𝑟 = 𝐻 (rep)𝑟sk1rep∗sk∗𝑢/𝑟 =

𝐻 (rep)sk1repsk∗𝑢 . Since there are at most |𝑀 | possible choices of sk∗𝑢 ,
there cannot be more than |𝑀 | entries in 𝑅′ for each unique rep,
which means the adversary can never win with diff > |𝑀 |.

We have now ruled out both ways for the experiment to set

win ← 1, meaning the adversary has advantage 0 in Hyb
6
, and

completing the proof.

Lemma C.6. Suppose that for any adversary B attacking the CCA
security of public key encryption scheme PKE, the advantage of B in
winning the CCA security experiment is at most CCAAdv(B, PKE).

20

Then, we have that��Pr[Hyb
3
() = 1] − Pr[Hyb

4
() = 1]

�� ≤ CCAAdv(B, PKE).

Proof. We show that for any adversary A who distinguishes

between Hyb
3
and Hyb

4
, we can build an adversary B who uses

A to break the CCA security of PKE.
The adversary B performs the role of the challenger in the Hyb

4

experiment with a few changes. The public key pk
2
is set to be

the public key provided by the CCA challenger. Whenever the

HonReport oracle requires the honest user to encrypt a message,

B encrypts messages by sending the two plaintexts (rep, 𝑡, 𝜎, 𝑟, hd)
and all zeroes to the CCA security challenger. All decryptions of ci-

phertexts returned by the CCA challenger are decrypted via lookup

table, and decryptions of other ciphertexts are handled via the CCA

decryption oracle.

Observe that if the CCA challenger has input bit 𝑏 = 0, then

B provides the adversary A with a perfect simulation of Hyb
3
,

whereas if 𝑏 = 1, then B provides a perfect simulation of Hyb
4
.

Thus B wins the CCA security game with the same advantage that

A distinguishes between the two hybrids. □

Lemma C.7. Suppose that for any adversary B attacking discrete
logarithm in𝐺 , the advantage of B in computing a discrete logarithm
is at most DLAdv(B,𝐺). Then, for an adversary who makes at most
𝑄𝐻 queries to the random oracle 𝐻 , we have that��Pr[Hyb

5
() = 1] − Pr[Hyb

6
() = 1]

�� ≤ 𝑄𝐻 · DLAdv(B,𝐺).

Proof. We show that for any adversary A who triggers the

abort condition introduced in Hyb
6
, we can build an adversary

B who uses A to solve discrete logarithms in 𝐺 with probability

1/𝑄𝐻 . Since the abort condition is the only difference between

Hyb
5
and Hyb

6
, this proves that the advantage of an adversary

against Hyb
6
is at most 𝑄𝐻 · DLAdv(B,𝐺) greater than that of an

adversary against Hyb
5
. The proof proceeds by programming the

random oracle and using a guessing argument to solve discrete

logarithms.

Given a discrete log challenge (𝑔, ℎ), the adversary B begins by

sampling a random 𝑖∗ ←R {1, ..., 𝑄𝐻 }. Then, during the experiment,

for the 𝑖th query rep𝑖 to𝐻 , 𝑖 ≠ 𝑖∗, B responds by sampling 𝛼𝑖 ←R Z𝑞
and setting 𝐻 (rep𝑖) ← 𝑔𝛼

𝑖
. For 𝑖 = 𝑖∗, B sets 𝐻 (rep𝑖∗) ← ℎ. The

experiment keeps a table of 𝑇𝐻 of (rep𝑖 , 𝛼𝑖) pairs.
We now show that whenever the abort criterion introduced

in Hyb
6
occurs, B solves the discrete logarithm challenge with

probability 2/𝑄𝐻 . Consider the values (rep, 𝑟), (rep′, 𝑟 ′) such that

𝐻 (rep)𝑟 = 𝐻 (rep′)𝑟 ′ triggers the abort condition. The adversary
B aborts if rep = rep𝑖∗ and rep′ ≠ rep𝑖∗ , or vice versa. Since 𝑖

∗
is

chosen uniformly at random, the probability that B does not abort

is at least 2/𝑄𝐻 .

Suppose without loss of generality that rep = rep𝑖∗ . Then we

have that 𝐻 (rep) = ℎ and 𝐻 (rep′) = 𝑔𝛼 , where 𝛼 = 𝛼𝑖 for some

𝑖 ≠ 𝑖∗. Thus we have that

𝐻 (rep)𝑟 = 𝐻 (rep′)𝑟
′

ℎ𝑟 = (𝑔𝛼)𝑟
′
= 𝑔𝛼𝑟

′

ℎ = 𝑔𝛼𝑟
′/𝑟 .

Since B knows 𝛼 , 𝑟 ′, and 𝑟 , it outputs 𝛼𝑟 ′/𝑟 to the discrete log

challenger, and wins the discrete log security experiment.

□

□

Proof of Theorem 6.5 (threshold unforgeability). We only

provide a sketch of this proof, as the arguments are very similar to

those made in the other theorems.

Proof (sketch). First, we run the extractor for each call to the

Verify oracle to recover the values (rep, 𝑟 ,𝑤, duptag, 𝑡) used in each

clause of each call to Verify. These values are deduplicated and

stored in a table 𝑇 of size at most 𝑄HonReport < 𝑄𝐻 (because the

Report protocol includes a call to 𝐻).

Next, we invoke the fact that the random oracle behaves as a

collision-resistant hash function to rule out the possibility of colli-

sions in 𝐻 (rep), except with negligible probability. We also invoke

the hardness of discrete log in 𝐺 to rule out the possibility of col-

liding (rep, 𝑟) and (rep′, 𝑟 ′) where 𝐻 (rep)𝑟 = 𝐻 (rep′)𝑟 ′ , similarly

to the argument made in the proof of report uniqueness.

Observe that since each (𝑤, 𝑡) held by the verifier is associated

with a single extracted value 𝑟 , that𝐻 (rep)𝑟 = 𝑤 , and that there are

no colliding values of 𝐻 (rep)𝑟 , we can conclude that each (𝑟,𝑤, 𝑡)
uniquely determines rep, which in turn uniquely determines the

dupTag such that dupTag𝑟 = 𝑡 .

From here, the proof is a reduction to discrete logarithm. Given a

discrete logarithm challenge ℎ = 𝑔𝑥 , we pick a random query rep∗

to the random oracle and program it to be

𝑟∗ ←R Z𝑞 ;𝐻 (rep∗) ← ℎ𝑟
∗
.

We call rep the special query. All other queries to the random oracle

are programmed as

𝑟rep ←R Z𝑞 ;𝐻 (rep) ← 𝑔𝑟rep .

Now, whenever the adversary wins the security experiment,

there must be some (𝑤, 𝑡) ∈ 𝑇 for which the extracted values

(rep′, 𝑟 ′) differ from the (rep, 𝑟) initially produced by the exper-

iment during HonReport. Since we chose rep∗ at random from

among queries to 𝐻 , there is at least a 1/𝑄𝐻 probability that rep =

rep∗ in this case. But then, because the proof 𝜋𝑣 verified, we have

that

𝑤 = 𝐻 (rep′)𝑟
′
= 𝑔𝑟rep′𝑟

′
= ℎ𝑟

∗𝑟 = 𝐻 (rep∗)𝑟 .

This implies that ℎ = 𝑔
𝑟rep′ 𝑟

′

𝑟∗𝑟 , so we can recover the discrete loga-

rithm 𝑥 =
𝑟rep′𝑟

′

𝑟 ∗𝑟 . □

21

	Abstract
	1 Introduction
	2 Background: Source Tracking and Threshold Source Tracking
	3 Anonymous Tallies
	4 Threshold Source Tracking via Anonymous Tallies
	4.1 From Tallies to Threshold Source Tracking
	4.2 Choosing a Source Tracking Scheme
	4.3 Security for Threshold Source Tracking

	5 Security for Anonymous Tallies
	5.1 Notation
	5.2 Report Confidentiality
	5.3 Reporter Anonymity
	5.4 Report Uniqueness
	5.5 Threshold Unforgeability
	5.6 Deniability

	6 Two-Server Anonymous Tally
	6.1 Building Up the Construction
	6.2 Full Construction
	6.3 Security Analysis

	7 Evaluation
	8 Conclusion
	Acknowledgments
	References
	A Additional Related Work
	B Report Confidentiality for Known Report Data
	C Deferred Proofs

