
Folding-based zkLLM

Wilbert Wu

Abstract

This paper introduces a new approach to construct zero-knowledge
large language models (zkLLM) based on the Folding technique. We first
review the concept of Incrementally Verifiable Computation (IVC) and
compare the IVC constructions based on SNARK and Folding. Then
we discuss the necessity of Non-uniform IVC (NIVC) and present several
Folding schemes that support more expressive circuits, such as SuperNova,
Sangria, Origami, HyperNova, and Protostar. Based on these techniques,
we propose a zkLLM design that uses a RAM machine architecture with
a set of opcodes. We define corresponding constraint circuits for each
opcode and describe the workflows of the prover and verifier. Finally,
we provide examples of opcodes to demonstrate the circuit construction
methods. Our zkLLM design achieves high efficiency and expressiveness,
showing great potential for practical applications.

1 IVC

IVC (Incrementally Verifiable Computation) is a new primitive in Folding ZK.
Based on Folding, IVC can be constructed more efficiently, where the prover
proves the correctness of incremental computation y = F (n)(x).

1.1 IVC from SNARK

Previously, IVC was constructed based on SNARK, and the recursive circuit
included computation logic and SNARK verification logic.

Since SNARK verification logic needs to be expressed in the circuit, and
SNARK verification logic often involves some circuit-unfriendly operations, such
as pairing and non-native operations, the SNARK-based IVC construction has
a large recursive overhead.

1.2 IVC from Folding

The IVC construction based on Folding replaces the SNARK verifier circuit with
the Folding verifier circuit, greatly reducing the recursive overhead. In Nova,
the prover only needs to perform 2 MSM operations of O(C) scale and a small
amount of hashing for each step, without requiring FFT. Practice shows that
Nova’s recursive overhead is around 10,000 constraints.

1



Figure 1: IVC from SNARK

2 NIVC

IVC requires the computation logic of each iteration to be the same, which
has a gap with practical applications. For example, a CPU executes arbitrary
instructions from the instruction set in each iteration. This requires the use of
NIVC. NIVC (Non-uniform IVC) allows the computation function executed in
each iteration to vary within the function set.

To construct NIVC, a naive method is to ”use a universal circuit to express
multiple step functions”, which is the commonly used Selector scheme nowadays:
laying out all instruction circuits and then activating one of the step instruction
circuits through a Selector. This approach has a major drawback: the scale
of the universal circuit will expand to the sum of all instruction circuits. In a
VM or LLM, an instruction circuit represents a supported instruction. In this
case, if the supported instruction set contains a large number of instructions,
the final universal circuit will have a large expansion. This path is not ideal, so
we need to find an alternative: is there a Folding scheme that supports multiple
step functions??

2.1 SuperNova

The answer is SuperNova[2], an extension of Nova[1]. Its outstanding feature is
that the cost of each step of the prover is only proportional to the size of the
instruction circuit invoked by the program, which is extremely advantageous
when the instruction set is complex.

2



Figure 2: IVC from Folding

2.2 Folding More

SuperNova supports only R1CS. In practical applications, circuits with richer
expressiveness may be needed, such as custom gates and lookups. There are
many existing schemes exploring how to fold circuits with richer expressiveness,
such as Sangria[4], Origami[3], HyperNova[6], and Protostar[5].

3 zkLLM

3.1 Design

We construct a RAM machine that supports an instruction set IS = Fi∈[ℓ] of
size ℓ. This RAM machine has 3 control registers ts, pc, flag for flow control; 1
general-purpose register [gpr] for recording the commitment of a general-purpose
register of length k; 1 stack pointer register and 1 stack register sp, [sm] for
recording the commitment of a stack pointer and stack memory of length m,
respectively. in and out are used to record the input and output, and [p] is used
to record the input program.

ts pc flag [gpr] sp [sm] in out [p]

Table 1: Registers for flow control, numerical calculations, and input and output

The design distinguishes between general-purpose registers and stack mem-
ory, referring to the design of registers and memory in typical computer archi-
tectures. When operating only on registers, the overhead is smaller because the
length of registers is limited and the cost of opening their commitments is small.

3



For each opcode, a corresponding augmented circuit is defined:
F

′

j∈[ℓ](vk,Ui, ui, (tsi, pci, ipi, flagi, spi, [sm]i, in0, outi, [gpr]i, [p]0), T̄ )→ x:

1. Update tsi+1 ← tsi + 1

2. Calculate the instruction [ip]i+1 ∈ Z∗
ℓ+1 ← φ(pci, [p]0) to be executed in

the current step based on the pci input from the previous step

3. If tsi == 0 (for INIT):

(a) Initialize the running instance list Ui+1 ← uℓ⊥
(b) Check that in0 is correctly uploaded to gpr, which is an index-lookup

check, as shown in Figure 3

(c) Verify [sm]i = [0m], pc = 0, flag = 0 and sp = 0 to ensure correct
initialization

4. Otherwise:

(a) Verify ui.x = hash(vk,Ui, tsi, pci, ipi, flagi, spi, [sm]i, in0, outi, [gpr]i, [p]0)
to ensure the output of the previous step is the input of the current
step

(b) Verify j = ipi+1 to ensure the correct instruction circuit is constrained

(c) Verify (ui.Ē, ui.u) = (0, 1) to ensure the augmented circuit strictly
holds

(d) Update the running instance list Ui+1[ipi]← NIFS.V(vk[ipi],Ui[ipi], ui, T̄ ),
folding the augmented circuit

5. Update the register state according to the opcode

(pci+1, flagi+1, [gpr]i+1, spi+1, [sm]i+1)← Fj(pci, flagi, [gpr]i, spi, [sm]i)

6. Output

x← hash(vk,Ui+1, tsi+1, pci+1, ipi+1, flagi+1, spi+1, [sm]i+1, in0, outi+1, [gpr]i+1, [p]0)

Notes:

1. [p], [gpr], [sm] represent the commitment of the input vector (general-
purpose register), input code, and stack memory

2. p represents the input code, which is a table consisting of (pc, ip, oprand),
as shown in Figure 4

3. The φ(·) in step 2 is a decoder that takes the program p and program
counter pc as input and calculates the instruction and operands to be
executed in the current step, which is essentially an index-lookup, as shown
in Figure 5

4. The opcode updates some registers and outputs, such as MUL and ADD
modifying the pc, ip, and [gpr] registers; JMP and JMPC modifying the pc
and ip registers; and S MUL modifying the sp and [sm] registers

4



Figure 3: lookup the input in the gpr table

Figure 4: input program table

The prover updates the proof Π using the trace at each step, P(pk,Πi) →
Πi+1:

1. Parse the proof Πi of step i as

((Ui,Wi), (ui,wi), (tsi, pci, ipi, flagi, spi, [sm]i, in0, outi, [gpr]i, [p]0))

2. If tsi == 0:

(a) Initialize ((Ui+1,Wi+1), T̄ )← (uℓ⊥,w
ℓ
⊥, u⊥.Ē)

(b) Initialize [sm]i = [0m], pc = 0, flag = 0, sp = 0, [gpr]

3. Otherwise:

(a) Update the corresponding running instance according to the instruc-
tion pointer

(Ui+1[ipi],Wi+1[ipi], T̄ )← NIFS.P(pk[ipi], (Ui[ipi],Wi[ipi]), (ui,wi))

(b) Calculate the instruction [ip]i+1 ∈ Z∗
ℓ+1 ← φ(pci, [p]0) to be executed

in the current step

5



Figure 5: lookup the triple in the program table

(c) Calculate the trace of the current step’s augmented circuit

(ui+1,wi+1)← trace(F
′

ipi+1
, vk,Ui, ui, tsi, pci, ipi, flagi, spi, [sm]i, in0, outi, [gpr]i, [p]0, T̄ )

(d) Update the proof Πi+ 1← ((ui,wi), ipi+1)

The verifier obtains the proof Πi from the last folding V(vk,Πi)→ {0, 1}:

1. If tsi == 0:

(a) Verify that in0 is correctly uploaded to gpr

(b) Verify [sm]i = [0m], pc = 0, flag = 0, sp = 0 to ensure correct initial
values

2. Otherwise:

(a) Parse the proof Πi as

((Ui,Wi), (ui,wi), (tsi, pci, ipi, flagi, spi, [sm]i, in0, outi, [gpr]i, [p]0))

(b) Verify ui.x = hash(vk,Ui, tsi, pci, ipi, flagi, spi, [sm]i, in0, outi, [gpr]i, [p]0)

(c) φ(pci, [p]0) = endvar

(d) Verify (ui.Ē, ui.u) = (0, 1)

(e) For F
′

ipi
, verify the (ui,wi) of the last iteration

(f) For all F
′
, verify all (Ui[j],Wj)j∈[ℓ]

3.2 Opcode Examples

3.2.1 INIT

INIT is used to upload the initial input in0 agreed upon by both parties (in-
cluding the consensus of private input) to the predetermined addresses of gpr.
The INIT circuit needs to constrain:

6



1. tsi = 0, [sm]i = [0m], pc = 0, flag = 0, sp = 0

2. The values at the predetermined positions of gpr are equal to the input,
in0 = OPEN(gpri, addr), where OPEN can be implemented as the index
lookup constraint shown in Figure 3

3. Update pci+1 = pci + 1, and the rest of the register states remain un-
changed

Note: The maximum length of the initial input is specified as d, and less
than that is padded with 0. For example, if the maximum initial length is d = 4,
and the initial input is in0 = [1, 2, 0, 0], then 2 zeros are padded. The initial
register state satisfying the constraints should be:

Figure 6: INIT legal state

3.2.2 ADD1 4

ADD1 4 addr0 addr1 addr2 is used for the addition of two 1*4 tensors at specified
addresses, and the result is stored at the specified address. The update requires
constraints:

1. The computation at the specified addresses of gpr is correct: left ←
OPEN([gpr]i, addr0), right← OPEN([gpr]i, addr1), output← OPEN([gpr]i+1, addr2),
output = left+ right

2. Update pci+1 = pci + 1, [gpr]i+1 = UPDATE([gpr]i, addr2)

Note: ← represents generating an intermediate variable and constraining it.
The UPDATE constraint is [gpr]i+1 = [gpr]i +

∑
addr2([gpr]

addr2
i+1 − [gpr]addr2i ) ·

[Laddr2(X)], and its complexity is related to the number of modified addresses.
For example, ADD1 4 0 4 8 adds [1, 2, 0, 0] at address 0 and [1, 2, 3, 4] at

address 4, and places the result at address 8.

7



Figure 7: ADD1 4 legal state (ignoring the unchanged stack memory and output)

3.2.3 LE1 4

LE1 4 addr0 addr1 is used to compare two 1*4 tensors at specified addresses,
and the flag is updated based on the comparison result. The circuit needs to
constrain:

1. If a ≥ b: flagi+1 = 1

2. Update pci+1 = pci + 1

For example, LE1 4 0 4 compares [1, 2, 0, 0] at address 0 with [1, 2, 3, 4] at
address 4.

Figure 8: LE14 legal state (ignoring the unchanged registers, stack memory, and
output)

8



3.2.4 JMPC

JMPC addr0 addr1 is used to jump based on flag. The circuit needs to constrain:

1. If flagi+1 holds, update pci+1 = addr0, otherwise update pci+1 = addr1

For example, JMPC 1 4 sets pc to 1.

Figure 9: JMPC legal state (ignoring the unchanged registers, stack memory,
and output)

3.2.5 RETURN

RETURN addr is used to download the data at the specified address in addr to
out. The circuit needs to constrain:

1. Update outi+1 = OPEN([gpr]i, addr)

2. Update pci+1 = pcend

The maximum length d of the output out is specified. For example, RETURN 8
outputs [2, 4, 3, 4] at address 8 to out.

3.2.6 END

END is used to indicate the end of the program execution. The circuit needs to
constrain:

1. All states remain unchanged

9



Figure 10: RETURN legal state (ignoring the unchanged stack memory)

References

[1] Benedikt Bünz, Yuncong Hu, and Shin’ichiro Matsuo. Nova: Recursive
zero-knowledge arguments from folding schemes. Cryptology ePrint Archive,
Paper 2021/370, 2021. https://eprint.iacr.org/2021/370.

[2] Benedikt Bünz, Yuncong Hu, and Shin’ichiro Matsuo. Supernova: Snarks
for nivc with linear complexity overhead. Cryptology ePrint Archive, Paper
2022/1758, 2022. https://eprint.iacr.org/2022/1758.

[3] Geometry Labs. Origami, 2023.

[4] Geometry Labs. Sangria: A folding scheme for plonk, 2023.

[5] Chuanjiang Li and Hongzhao Chen. Protostar: Folding starks with linear
complexity. Cryptology ePrint Archive, Paper 2023/620, 2023. https://

eprint.iacr.org/2023/620.

[6] Thomas Sirvent, Yuncong Hu, and Geoffroy Couteau. Hypernova: Folding
hyperplonk. Cryptology ePrint Archive, Paper 2023/573, 2023. https:

//eprint.iacr.org/2023/573.

10

https://eprint.iacr.org/2021/370
https://eprint.iacr.org/2022/1758
https://eprint.iacr.org/2023/620
https://eprint.iacr.org/2023/620
https://eprint.iacr.org/2023/573
https://eprint.iacr.org/2023/573

	IVC
	IVC from SNARK
	IVC from Folding

	NIVC
	SuperNova
	Folding More

	zkLLM
	Design
	Opcode Examples
	INIT
	ADD1_4
	LE1_4
	JMPC
	RETURN
	END



