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Abstract

Our work minimizes interaction in secure computation, addressing the high cost of communication
rounds, especially with many clients. We introduce One-shot Private Aggregation OPA, enabling clients to
communicate only once per aggregation evaluation in a single-server setting. This simplifies dropout man-
agement and dynamic participation, contrasting with multi-round protocols like Bonawitz et al. (CCS’17)
(and subsequent works) and avoiding complex committee selection akin to YOSO. OPA’s communication
behavior closely mimics learning-in-the-clear where each client party speaks only once.

OPA, built on LWR, LWE, class groups, and DCR, ensures single-round communication for all clients
while also achieving sub-linear overhead in the number of clients, making it asymptotically efficient and
practical. We achieve malicious security with abort and input validation to defend against poisoning
attacks, which are particularly relevant in Federated Learning, where adversaries attempt to manipulate
the gradients to degrade model performance or introduce biases.

We build two flavors of OPA (1) from (threshold) key homomorphic PRF and (2) from seed homomor-
phic PRG and secret sharing. The threshold Key homomorphic PRF addresses shortcomings observed
in previous works that relied on DDH and LWR in the work of Boneh et al.(CRYPTO, 2013), marking
it as an independent contribution to our work. Our other contributions include new constructions of
(threshold) key-homomorphic PRFs and seed-homomorphic PRGs that are secure under the LWE, DCR
Assumption, and other Class Groups of Unknown Order.

∗Early versions of this paper have appeared in [KP24, KP25].
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1 Introduction

Minimizing interaction in Multiparty Computation (MPC) is a highly sought-after objective in secure com-
putation. This is primarily because each communication round is costly, and ensuring the liveness of par-
ticipants, particularly in scenarios involving a large number of parties, poses significant challenges. Unlike
throughput, latency is now primarily constrained by physical limitations, making it exceedingly difficult to
reduce the time required for a communication round substantially. Furthermore, non-interactive primitives
offer increased versatility and are better suited as foundational building blocks. However, any non-interactive
protocol, which operates with a single communication round, becomes susceptible to a vulnerability referred
to as the “residual attack” [HLP11] where the server can collude with some clients and evaluate the function
on as many inputs as they wish revealing the inputs of the honest parties.

We explore a natural “hybrid” model between the 2-round and 1-round settings. Our model allows for
private aggregation, aided by an ephemeral committee of members, where the clients and committee members
only speak once. This approach brings us closer to achieving non-interactive protocols while preserving
traditional security guarantees. Our specific focus is within the domain of secure aggregation protocols,
where a group of n clients Pi for i ∈ [n] hold a private value xi, wish to learn the sum

∑
i xi without

leaking any information about the individual xi. Furthermore, we support multiple sessions or iterations
of the secure aggregation, where a different random set of clients is selected in each session, each with a
different input. In this model, per aggregation session clients release encoded versions of their confidential
inputs xi to a designated committee of ephemeral members and they go offline, they only speak once. Later,
any subset of the ephemeral members can compute these encodings by transmitting a single public message
to an unchanging, stateless evaluator or server. This message conveys solely the outcome of the secure
aggregation and nothing else. The ephemeral members are stateless, speak only once, and can change (or
not) per aggregation session. With that in mind, the committee members can be regarded as another subset
of clients who abstain from contributing input when selected to serve on the committee during a current
aggregation session. Each client/committee member communicates once per aggregation, eliminating the
complexity of handling dropouts commonly encountered in multi-round secure aggregation protocols. The
security guarantee ensures that adversaries corrupting some clients and committee members learn only the
sum of honest clients’ outputs, with no additional information. We provide a standard simulation-based
proof against malicious adversaries with abort.

It is crucial to highlight the distinction between our single-server setting and multi-server protocols [GI14,
CB17, AGJ+22, RSWP23a, ZZW24]. In the multi-server model, clients securely distribute their inputs across
a committee of multiple servers, which then engage in interactive protocols to achieve secure aggregation.
However, these servers must be stateful, retaining data across aggregation iterations, and require significant
computational resources. In contrast, our approach leverages ephemeral committee members who are stateless
and operate with lightweight computation, eliminating the need for persistent data storage or extensive
computation A key design goal of our model is to ensure that committee members remain computationally
light, making it feasible even for resource-constrained client devices to be committee members.

Our main application is Federated Learning (FL) in which a server trains a model using data from multiple
clients. This process unfolds in iterations where a randomly chosen subset of clients (or a set of clients based
on the history of their availability) receives the model’s current weights. These clients update the model using
their local data and return the updated weights. The server then computes the “average” of these weights
(in the naive setting this is known as FedAvg [MMR+17] where the global model is simply the average of the
client model weights), repeating this cycle until model convergence is achieved. Intuitively, this was supposed
to guarantee the privacy of the client-held data as the server only sees the final weights. Unfortunately, prior
works, such as [SSSS17], have shown that the final weights can be successfully used to recover client-held
data. This motivates the need for a secure aggregation tool. Unlike previous multi-round secure aggregation
schemes with or without an offline setup [BIK+17, BBG+20, GPS+22, LLPT23, MWA+23], we introduce
the first protocol that minimizes client involvement, ensuring that both clients and committee members can
be computationally lightweight devices while speaking only once per aggregation iteration. Furthermore,
our protocol does not require offline setup and guarantees completion, even if selected clients or committee
members drop out and remain silent.
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2 Our Contributions

We introduce OPA designed to achieve maximal flexibility by granting parties the choice to speak once or re-
main silent, fostering dynamic participation from one aggregation to the next. We present the communication
model in Figure 1a. This diverges from prior approaches [BIK+17, BBG+20, LLPT23, MWA+23, GPS+24],
which necessitate multiple interaction rounds and the management of dropout parties to handle communica-
tion delays or lost connections in FL. At its core, every iteration of OPA employs a random committee of size
m as intermediate helper parties. We build OPA from new leakage-resilient, seed-homomorphic PRGs with
simulatable leakage.1 OPA relies on a mechanism such as PKI or authenticated channels.
Cryptographic Assumptions: We construct OPA protocols providing a suite of six distinct versions based
on a diverse spectrum of assumptions:

• Learning With Rounding (LWR) Assumption.

• Learning with Errors (LWE) Assumption.

• Hidden Subgroup Membership (HSMM) assumption where M is a prime integer.

• HSMM assumption where M = pk for some prime p and integer k.

• HSMM assumption where M = 2k.

• HSMM assumption where M = N where N is an RSA modulus (i.e., the DCR assumption).

OPA does not require any trusted setup for keys, and for M being either a prime or an exponent of prime,
or the LWR assumption, we do not require any trusted setup of parameters either. The contributions are
summarized in Figure 1b.
Threat Model: We assume a static, malicious adversary that can corrupt up to an η < N fraction of
them, where N is the number of clients in the universe of clients. For the committee of size m, the adversary
can corrupt up to an ηC fraction. Additionally, up to a δ fraction of input-providing clients and a δC
fraction of committee members may drop out per iteration. For OPA to function, we require δC + ηC <
1/3 per iteration. In each iteration, a malicious adversary only learns the sum of the inputs of at least
(1− δ−η)|C| where C is the number of online clients in that iteration. We ensure security against a malicious
adversary, achieving overall malicious security with abort, a feature not present in prior works such as
[BIK+17, BBG+20, MWA+23, GPS+24, LLPT23]. Specifically, when all parties adhere to the protocol, the
server successfully computes the sum of the online clients’ contributions for a given iteration, provided a
sufficient number of parties remain active during that iteration. Notably, we introduce a novel alternative
approach instead of relying on signatures, as done in prior work to secure against a malicious server.
Other contributions beyond Secure Aggregation :

• New Key Homomorphic PRF Constructions: We develop the first Key Homomorphic PRF based on
the HSMM assumption and based on the LWE assumption.

• New Threshold Key Homomorphic PRF Constructions: We extend the HSMM construction to a dis-
tributed key homomorphic setting using a modified Shamir’s Secret Sharing scheme over integers. We
also extend the almost Key Homomorphic PRF based on the LWR assumption [BLMR13, EK21] using
Shamir Secret Sharing over prime-order fields. In doing so, we fix gaps in the prior Distributed Key
Homomorphic PRF based on LWR, as proposed by Boneh et al. [BLMR13].

• Packed Secret Sharing over Integers: We also extend Shamir Secret Sharing over Integers to a packed
version, which enables packing more secrets in one succinct representation.

• New Seed Homomorphic PRG Construction: Of independent interest, we also build a seed homomorphic
PRG from the HSMM assumption.2

1We can also build it from a (length-extended) key-homomorphic pseudorandom function (KHPRF) in the random oracle
model with the same asymptotic performance. See Section C for the instantiations.

2It is important to note that one cannot build OPA from this seed-homomorphic PRG. The main reason is that the seed
space is in a group of an unknown order. Therefore, one requires an integer secret-sharing scheme. Unfortunately, because the
server reconstructs an integer value, one cannot prove that this construction is leakage resilient, where the leakage is defined as
sd+ r. This is not indistinguishable from sd′, where they are all integers.
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(b) Our Cryptographic Assumptions. Here, n
is the number of clients, and L is the length
of the input vector. Finally, “LR” refers to
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where M is a prime integer, M = pk for some
prime p and integer k, M = 2k, and M = N
where N is an RSA modulus (i.e., the DCR as-
sumption).

Figure 1: OPA communication model and summarized contributions.

Applications in Federated Learning: Our motivating application is Federated Learning (FL). The
dynamic participation feature of OPA, crucial for federated learning, facilitates secure federated learning,
where participants speak only once, streamlining the process significantly. In contrast, prior works[BIK+17,
BBG+20] involve eight rounds, and the work of [MWA+23] requires seven rounds, including the setup. Our
advantages extend beyond just round complexity. See Section 2.1 and Tables 1 and 1 for a detailed compar-
ison of asymptotics. We introduce another variant, OPA′, derived from a threshold key-homomorphic PRF,
eliminating simulatable leakage. In OPA′, the committee’s workload scales with the length of the input vector
L. Given its linear performance scaling with L, this remains a theoretical result aimed at achieving secure
aggregation from the HSMM assumption and for small L. In Section G, we show how to achieve security of
honest user’s inputs in OPA′ against a corrupt committee (but an honest server), for OPA′ instantiated with
HSMM assumption (called OPACL).
Implementation and Benchmarks: We implement OPA as a secure aggregation protocol and benchmark
with several state-of-the-art solutions [BIK+17, BBG+20, GPS+24, MWA+23]. We benchmark OPALWR, based
on the LWR-based seed homomorphic PRG, offering competitive performance over prior works. Concretely, at
1000 clients, OPALWR has a server computation time of 0.31s, orders of magnitude smaller than other protocols.
Similar orders of magnitude improvement are observed in client performance over other protocols’ running
time.

To further demonstrate the feasibility of our protocol, we train a binary classification model using logistic
regression in a federated manner for two datasets. Our protocol carefully handles floating point values (using
two different methods of quantization - multiplying by a global multiplier vs representing floating point
numbers as a vector of integer values), and the resulting model is shown to offer performance close to simply
learning in the clear. We also trained a neural network-based MLP classifier over popular machine learning
datasets, including MNIST, CIFAR-10, and CIFAR-100. More details can be found in Section 8.
Resilience against Data Heterogeneity and Malicious Clients. While OPA is a tool that achieves
properties expected of standard secure aggregation, we show how to combine OPA with existing solutions
from the machine learning community to handle the heterogeneity of data distribution, i.e., when the clients;
datasets are non-iid distributed and when there are poisoning attacks from the clients to their contributed
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inputs. This is detailed in Section F, where we are the first to work on secure aggregation to replace FedAvg
with FedOPT [RCZ+21], which performs better accuracy and convergence when data is non-iid. We also
show how to combine OPA with Byzantine Robust Stochastic Aggregation [LXC+19], which is secure against
poisoning attacks of clients. Meanwhile, we also describe how to use lattice-based zero-knowledge proofs to
ensure that a client can prove their honest behavior. This is illustrated in Section 7.

2.1 Detailed Contributions in Federated Learning

Next, we compare our protocol with all efficient summation protocols in terms of high-level features listed
in Table 2, focusing on those that accommodate dynamic participation, a key feature shared by all fed-
erated learning methodologies. Regarding performance in Table 1, we list the communication complexity,
computational complexity, and round complexity per participant. Notably, our protocols are setup-free, elim-
inating any need for elaborate initialization procedures. Furthermore, they are characterized by a streamlined
communication process, demanding just a single round of interaction from the participants.

Asymptotic Comparison. More concretely, based on Table 1, our approach stands out by significantly
reducing the round complexity, ensuring that each participant’s involvement is limited to a single communica-
tion round, i.e., each participant speaks only once. That is, users speak once and committee members speak
once too. On the contrary, previous works[BIK+17, BBG+20]3 require 8 rounds and the work of [MWA+23]
requires 7 rounds in total, including the setup. This reduction in round complexity serves as a significant
efficiency advantage.

Despite our advantage in the round complexity, our advantages extend beyond just round complexity
(see Table 1). Notably, our protocol excels in computational complexity as the number of participants (n)
grows. While previous solutions exhibit complexities that are quadratic [BIK+17, LCY+22] or linearith-
mic [MWA+23] in n, our approach maintains a logarithmic complexity for the users, which is noteworthy
when considering our protocol’s concurrent reduction in the number of communication rounds. Furthermore,
our committee framework demonstrates a sublinear relationship with n for the committee members, a notable
improvement compared to the linearithmic complexity and setup requirement in the case of [MWA+23] which
considers a stateful set of decryptors (committee), as opposed to our stateless committee.4

When it comes to user communication and message sizes, previous solutions entail user complexities that
either scale linearly [BIK+17, LCY+22] or linearithmically [MWA+23] with the number of participants (n)
according to Table 1. However, in our case, user communication complexity is reduced to a logarithmic level
(m ≈ log n). Furthermore, as the number of users n increases, the communication load placed on the server
is also effectively reduced compared to other existing protocols. That said, the above advantages underline
the scalability and efficiency of our protocols in the federated learning context, which typically requires a
very large number of n and L where L is the input length per client. It is important to stress that the
number of committee members a client speaks to (m) purely depends on η, the fraction of malicious clients
in the entire population of size N . We discuss sampling these clients in Section 6.2. Jumping ahead, we
sample m log n clients for the committee and ensure that we assign clients to committee members, such that
each client speaks with at most m clients while each committee member receives communication from at
most log n clients (via the server). This reduces the computation and the communication for the committee
member to be O(log n).

The works of [BIK+17, BBG+20, MWA+23] address a malicious adversary that can provide false infor-
mation regarding which users are online on behalf of the server by requiring users to verify the signatures of
the claimed online set. This approach introduces an additional two rounds into each protocol, resulting in 10
rounds in [BIK+17, BBG+20] and 5 rounds in [MWA+23] with 10 rounds of setup. The setup communication
complexity of [MWA+23] also increases to O(k log2 n). In our work, we solve this issue without signatures.
Prior work often required a two-thirds honest majority for the malicious setting. One can leverage this to
introduce a gap between the reconstruction threshold, r, and the corruption threshold, t. Specifically, if

3[BBG+20] offer a weaker security definition from the other works: for some parameter α between [0, 1], honest inputs are
guaranteed to be aggregated at most once with at least α fraction of other inputs from honest users.

4Flamingo [MWA+23] employed decryptors, a random subset of clients the server chose to interact with it to remove masks
from masked data sent by the more extensive set of clients. LERNA[LLPT23] also requires a fixed, stateful committee (like
Flamingo) to secret share client keys, whereas we support dynamic, stateless committees that can change in every round.
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Table 1: Total asymptotic computation and communication costs for all rounds per aggregation with semi-
honest security. n denotes the total number of users per iteration, with committee size m and L is the length
of the input vector. k is the security parameter, and ℓ is the bit length of each element. The “Rounds”
column indicates the number of rounds in the setup phase (on the left, if applicable) and each aggregation
iteration (on the right). A “round of communication” refers to a discrete step within a protocol during which
a participant or a group of participants send messages to another participant or group of participants, and
participants from the latter group must receive these messages before they can send their own messages in
a subsequent round. “fwd” means that the server only forwards the messages from the users. The second
column in the User Aggregation phase refers to the cost of the committee members.

Protocol
Rounds

Computation Cost Communication Cost

Server User Server User

Setup Agg. Setup Agg. Setup Agg. Setup Agg. Setup Agg.

BIK+17[BIK+17] - 8 - O(n2L) - O(n2 + nL) - O(nLℓ+ n2k) - O(Lℓ+ nk)

BBG+20[BBG+20] - 8 - O(n log2 n+ nL logn) - O(log2 n+ L logn) - O(nLℓ+ nk logn) - O(Lℓ+ k logn)

Flamingo[MWA+23] 4 3 fwd O(nL+ n log2 n) O(log2 n) O(L+ n logn) O(m2 + n) O(k logn) O(nLℓ+ nk log2 n) O(k logn) O(Lℓ+ nk logn) O(m2 + n logn)

LERNA [LLPT23] 1 1 1 fwd O((κ+ n)L+ κ2) O(κ2) O(L) O(L+ n) - O(Lnk +m2 · k) O(κ2k) O(κL+ L logn+ k) O(Lκ+ L logn+ k)

SASH[LCY+22] - 10 - O(L+ n2) - O(L+ n2) - O(nLℓ+ κ2k) - O(Lℓ+ nk)

OPA - 1 1 - O(nL+m logm) - O(L+m) O(n) - O(Ln+m) - O(kL+m) O(n)

OPA′ - 1 1 - O(nL+ L(m logm)) - O(L+mL) O(nL) - O(kL(n+m)) - O(k(L+mL)) O(k(nL+ L))

r > (m + t)/2, then a malicious server can only reconstruct for a unique set, and any other information is
purely random and unhelpful to the server. This is the added communication and computation cost:

• Client: It sends an additional O(m) elements and incurs a computation cost of O(m) to perform one
additional secret-sharing.

• Committee: Each committee member receives an additional o(n) elements from the clients, via the
server. It decrypts and forwards them, as is, to the server. There is no additional computation cost.

• Server: The server receives an additional o(n) communication from each of the m committee members
and incurs a computation cost of O(nm logm).

To guarantee security against malicious clients, we propose zero-knowledge proofs based on the work of
Lyubashevksy et al. [LNP22] and is described in Section 7. Critically, our proofs are designed such that the
server performs the bulk of the verification with the committee only checking if the share it decrypts is a
valid opening to the commitment for the underlying commit-and-prove proof system.

Comparison with Willow [BCGL+24]. The concurrent work, Willow, employs a static, stateful commit-
tee of members, with non-committee members (clients) communicating only once, offering improvements over
previous approaches like LERNA. While Willow supports client-to-committee communication that remains
independent of committee size—compared to LERNA and OPA —this advantage comes with trade-offs:

1. Each committee member undergoes a one-round setup procedure at the start of each training iteration,
as secret key shares are revealed to account for dropout committee members.

2. Each committee member participates in two rounds of communication during the decryption phase:
(a) to threshold-decrypt the aggregated ciphertext and (b) to provide secret key shares for dropout
committee members. That said, in Willow and LERNA, committee members communicate more than
once.

3. Willow incurs additional costs to achieve malicious security by introducing verifiers—a separate set of
parties—to certify that the server cannot perform residual attacks. Each client must send information
to these verifiers, which is then used to validate the result.

In contrast, OPA employs stateless committee members that can dynamically change across iterations.
All client parties, including committee members, communicate only once per aggregation round, eliminating
the need for a setup procedure. Furthermore, OPA requires no additional verifier committee. Last but not
least, unlike Willow, OPA offers input validation and malicious client security with abort.
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2.2 Related Work

First, we compare with other communication models that bear similarities with OPA in Section 2.5. Second,
we give an overview and compare OPA with other tools employed for aggregation, with privacy, under various
models in Section 2.4, while summarizing our comparison in Table 2.

2.3 OPA vs Other Communication/Computation Models

Shuffle Model. Note that our model bears similarities to the shuffle model, in which clients dispatch input
encodings to a shuffler or a committee of servers responsible for securely shuffling before the data reaches the
server for aggregation, as in the recent work of Halevi et al. [HIKR23]. Nonetheless, it is important to note
that such protocols typically entail multiple rounds among the committee servers to facilitate an efficient and
secure shuffle protocol.

Multi-Server Secure Aggregation Protocols. It’s worth emphasizing that multi-server protocols, as
documented in [GI14, CB17, AGJ+22, RSWP23a, ZZW24], have progressed to a point where their potential
standardization by the IETF, as mentioned in [PBS22], is indeed noteworthy. In the multi-server scenario,
parties can share their inputs securely among a set of servers, which then collaborate to achieve secure aggre-
gation. Some of the works in this domain include two-server solutions Elsa [RSWP23b] and SuperFL [ZZW24]
or the generic multi-server solution Flag [BSHV23]. Unfortunately, in the case of federated learning, which
involves handling exceptionally long inputs, the secret-sharing approach becomes impractical due to the in-
creased communication complexity associated with each input. Furthermore, these servers must have heavy
computation power and be stateful (retaining data/state from iteration to iteration). In our protocol, the
ephemeral parties are neither stateful nor require heavy computation. Finally, there must be non-collusion
among a majority of the servers. Ensuring this constraint is logistically complicated to maintain.

Commmittee-Based MPC Committee-based MPC is widely used for handling scenarios involving a large
number of parties. However, it faces a security vulnerability known as adaptive security, where an adversary
can corrupt parties after committee selection. The YOSO model, introduced by Gentry et al. [GHK+21],
proposes a model that offers adaptive security. In YOSO, committees speak once and are dynamically
changed in each communication round, preventing adversaries from corrupting parties effectively. The key
feature of YOSO is that the identity of the next committee is known only to its members, who communicate
only once and then become obsolete to adversaries. YOSO runs generic secure computation calculations, and
aggregation can be one of them. However, its efficiency is prohibitive for secure aggregation. In particular,
the communication complexity of YOSO in the computational setting scales quadratic with the number of
parties n (or linear in n if the cost is amortized over n gates for large circuits). Additionally, an expensive
role assignment protocol is applied to select the committees. Like LERNA, in YOSO, specific committee
sizes need to be fulfilled to run a protocol execution. Lastly, our protocol does not rely on any secure role
assignment protocol to choose the committees since even if all committee members are corrupted, privacy is
still preserved. Fluid MPC [CGG+21, BEP23] also considers committee-based general secure computation.
However, like YOSO, it is not practical. Unlike YOSO, it lacks support for adaptive security.

Moreover, SCALES [AHKP22] considers ephemeral servers a la YOSO responsible for generic MPC com-
putations where the clients only provide their inputs. This approach is of theoretical interest as it is based on
heavy machinery such as garbling and oblivious transfer if they were to be considered for secure aggregation.
Moreover, SCALES needs to make extra effort to hide the identities of the servers, which we do not require.

2.4 OPA vs Other Secure Aggregation Algorithms

Multi-Round Private Summation. We begin by revisiting the concept outlined in [HLP11]. The first
multi-round secure aggregation protocol, designed to enable a single server to learn the sum of inputs
x1, . . . , xn while hiding each input xi, is based on the following idea. Each user i adds a mask ri to their
private input xi. This mask remains hidden from both the server and all other users it exhibits the property
of canceling out when combined with all the other masks, i.e.,

∑
i∈[n] ri = 0. Subsequently, each user forwards

Xi = xi + ri to the server. By aggregating all the Xi values, the server can then determine the sum of all xi.
More specifically, to generate these masks, a common key kij = kji = PRG(gsisj ) is established by every pair
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of clients i, j. Here, gsi is an ephemeral “public key” associated with each client i ∈ [n]. This public key is
shared with all other clients during an initial round and facilitated through the server. Importantly, the value
si remains secret by each client i. Then, each client i ∈ [n] computes the mask ri =

∑
j<i kij −

∑
j>i kij and

due to the cancellation property the server outputs
∑

i Xi =
∑

i xi. In this protocol, users must engage in
multiple rounds of communication, where each user communicates more than once. Moreover, the protocol
prevents users from dropping out from an aggregation iteration.

Non-Interactive Private Summation with trusted setup. If we were to require users to communicate
only once in a protocol iteration, we would encounter the challenge of mitigating residual attacks. In a prior
study conducted by [SCR+11], a solution based on DDH was proposed to mitigate residual attacks by involv-
ing a trusted setup that assumes the generation of the common keys kij = kji into the protocol. However,
it is essential to highlight that this setup lacked the necessary mechanisms to accommodate dropouts and
facilitate dynamic participation for multiple aggregation iterations. Furthermore, to ensure that the server
cannot recover the masking key given a client’s masked inputs, the work relies on the DDH Assumption. An
unfortunate consequence is that the server has to compute the discrete logarithm to recover the aggregate,
a computationally expensive operation, particularly when dealing with large exponents. Numerous other
works within this framework have emerged, each relying on distinct assumptions, effectively sidestepping the
requirement for laborious discrete logarithm calculations. These include works based on the DCR assump-
tion [JL13, BJL16], and lattice-based cryptography [BGZ18, EK21, TKGJ20, TCKJ22, WMSA21, OK24].

Multi-Round Private Summation without Trusted Setup. Another research direction focuses on
removing the need for a trusted setup by developing multi-round decentralized reusable setups that gener-
ate masks while ensuring the essential cancellation property. However, akin to the previously mentioned
approaches, these protocols come with a caveat—they do not accommodate scenarios involving dropouts or
dynamic user participation across multiple iterations. Dipsauce [BG23] is the first to formally introduce a
definition for a distributed setup PSA with a security model based on k-regular graph, non-interactive key
exchange protocols, and a distributed randomness beacon [CMB23, Dra, RG22] to build their distributed
setup PSA. Meanwhile, the work of Nguyen et al. [NPP23], assuming a PKI (or a bulletin board where all
the public keys are listed), computed the required Diffie-Hellman keys on the fly to then build a one-time
decentralized sum protocol which allowed the server to sum up the inputs one-time, with their construction
relying on class group-based cryptography. To facilitate multiple iterations of such an aggregation, they com-
bined their one-time decentralized sum protocol with Multi-client Functional Encryption (MCFE) to build
a privacy-preservation summation protocol that can work over multiple rounds without requiring a trusted
setup and merely requiring a PKI. Unfortunately, per iteration, the clients need to be informed of the set of
users participating in that round, and unfortunately, they cannot drop out once they are chosen.

Non-Interactive Private Summation with a collector. To circumvent the need for a trusted setup and
multi-round decentralized arrangements, an approach is presented in the work of [LEM14], which introduces
an additional server known as the “collector”. The fundamental premise here is to ensure that the collector
and the evaluation server do not collude, thus effectively mitigating the risks associated with residual attacks.
This protocol does allow dynamic participation and dropouts per iteration.

Multi-Round Private Summation with Dynamic Participation (aka Secure Aggregation). Se-
cure aggregation of users’ private data with the aid of a server has been well-studied in the context of
federated learning. Given the iterative nature of federated learning, dynamic participation is crucial. It
enables seamless integration of new parties and those chosen to participate in various learning iterations
while also addressing the challenge of accommodating parties that may drop out during the aggregation
phase due to communication failures or delays. Furthermore, an important problem in federated learn-
ing with user-constrained computation and wireless network resources is the computation and communica-
tion overhead, which wastes bandwidth, increases training time, and can even impact the model accuracy
if many users drop out. Seminal contributions by Bonawitz et al. [BIK+17] and Bell et al. [BBG+20]
have successfully proposed secure aggregation protocols designed to cater to a large number of users while
addressing the dropout challenge in a federated learning setting. However, it’s important to note that
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these protocols have a notable drawback—substantial round complexity and overhead are incurred dur-
ing each training iteration. Even in the extensive corpus of research based on more complex crypto-
graphic machinery (see [KMA+21] for a plethora of previous works) such as threshold additive homo-
morphic encryption etc., these persistent drawbacks continue to pose challenges. Notably, all follow up
works [BBG+20, LLPT23, GPS+24, MWA+23, BGL+23, LCY+22, LBV+23] of [BIK+17] require multiple
rounds of interaction based on distributed setups. With their adaptable nature, secure aggregation protocols
hold relevance across a wide array of domains. They are applicable in various scenarios, including ensuring
the security of voting processes, safeguarding privacy in browser telemetry as illustrated in [Cor20], and
facilitating data analytics for digital contact tracing, as seen in [AG21] besides enabling secure federated
learning.

It is also important to note that some of these works - ACORN [BGL+23] and RoFL [LBV+23] build
on top of the works of [BIK+17, BBG+20] to tackle the problem of “input validation” using efficient zero-
knowledge proof systems. The goal is for the clients to prove that encrypted inputs are “well-formed”
to prevent poisoning attacks.RoFL allows for detection when a malicious client misbehaves, while ACORN
presents a non-constant round protocol to identify and remove misbehaving clients. We leave it as a direction
for future research on augmenting our protocol and supporting input validation. The above discussion is also
summarized in Table 2, by looking at four properties (a) whether the aggregate can be efficiently recovered,
(b) whether it allows dynamic participation, (c) whether it requires trusted setup or multi-round distributed
setup, and (d) the security assumptions.

Comparison with LERNA [LLPT23]. LERNA requires a fixed, stateful committee (like Flamingo) to
secret share client keys, whereas we support smaller, dynamic, stateless committees that can change in every
round. Concretely, LERNA works by having each client (in the entire universe of clients, not just for that
iteration) secret-share the keys with the committee. Consequently, LERNA’s committee needs to be much
larger (214 members for κ = 40 due to the number of shares they receive) and tolerate fewer dropouts than
our approach. Furthermore, LERNA’s benchmarks assume 20K+ clients, while real-world deployments have
50-5000 clients per iteration. When the client count is low, the committee has to do significantly more work
to handle and store the required large number of shares. That said, LERNA is not suitable for traditional FL
applications. In the table, we use the same notations, as LERNA refers to committee size by utilizing κ in
the committee calculations. LERNA could work for less than 16K parties, but the computation of committee
members increases significantly as the number of parties decreases. Let us look at the concrete costs for
the non-committee clients in both LERNA and OPALWR. Assuming 20K clients and L = 50, 000, LERNA
requires approximately 2GB of data followed by 0.91 MB per iteration. Meanwhile, OPALWR requires each
client to send 2.36 MB per iteration. As a result, LERNA only becomes cost-effective after more than 1300
iterations, requiring a fixed, stateful, and large committee to stay alive. The communication cost difference
becomes starker for the committee clients between LERNA and OPALWR as LERNA requires every client, in
the universe of clients, to communicate with the committee clients at setup; meanwhile, OPALWR only requires
the chosen clients (<< 20K) to speak in every iteration, and there is no setup.

2.5 OPA vs Other Communication/Computation Models

Shuffle Model. Note that our model bears similarities to the shuffle model, in which clients dispatch input
encodings to a shuffler or a committee of servers responsible for securely shuffling before the data reaches the
server for aggregation, as in the recent work of Halevi et al. [HIKR23]. Nonetheless, it is important to note
that such protocols typically entail multiple rounds among the committee servers to facilitate an efficient and
secure shuffle protocol.

Multi-Server Secure Aggregation Protocols. It’s worth emphasizing that multi-server protocols, as
documented in [GI14, CB17, AGJ+22, RSWP23a, ZZW24], have progressed to a point where their potential
standardization by the IETF, as mentioned in [PBS22], is indeed noteworthy. In the multi-server scenario,
parties can directly share their inputs securely among a set of servers, which then collaborate to achieve
secure aggregation. Some of the works in this domain include two-server solutions Elsa [RSWP23b] and
SuperFL [ZZW24] or the generic multi-server solution Flag [BSHV23]. Unfortunately, in the case of federated
learning, which involves handling exceptionally long inputs, the secret-sharing approach becomes impractical
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Table 2: Comparison of Various Private Summation Protocols. TD stands for trusted dealer/trusted setup,
DS stands for multi-round distributed setup. Note that DS implies several rounds of interaction. Here,
efficient aggregate recovery refers to whether the server can recover the aggregate efficiently. For example,
[SCR+11, BJL16, GPS+24] require restrictions on input sizes to recover the aggregate due to the discrete
logarithm computation.

Efficient Aggregate
Dynamic
Participation

TD

vs
DS

Assumptions

[SCR+11] ✗ ✗ TD DDH

[JL13] ✓ ✗ TD DCR

[BJL16] ✗/✓ ✗ TD DDH/DCR

[BGZ18] ✓ ✗ TD LWE/R-LWE

[TKGJ23] ✓ ✗ TD R-LWE

[WMSA21] ✓ ✗ TD AES

[TCKJ22] ✓ ✗ TD RLWE

[LEM14] ✗ ✓ TD DCR

[EK21] ✓ ✗ TD LWR

[BG23] ✗ ✗ DS LWR

[BIK+17, BBG+20] ✓ ✓ DS∗ DDH

[GPS+24] ✓ ✓ DS DDH

[MWA+23] ✓ ✓ DS DDH

[LLPT23] ✓ ✓ DS DDH

Our Work ✓ ✓ NA HSM, LWR, (R)LWE

due to the increased communication complexity associated with each input. Furthermore, these servers must
have heavy computation power and be stateful (retaining data/state from iteration to iteration). In our
protocol, the ephemeral parties are neither stateful nor require heavy computation.

Commmittee-Based MPC. Committee-based MPC is widely used for handling scenarios involving a
large number of parties. However, it faces a vulnerability known as adaptive security, where an adversary can
corrupt parties after committee selection. The YOSO model, introduced by Gentry et al. [CHK+21] proposes
a model that offers adaptive security. In YOSO, committees speak once and are dynamically changed in each
communication round, preventing adversaries from corrupting parties effectively. The key feature of YOSO is
that the identity of the next committee is known only to its members, who communicate only once and then
become obsolete to adversaries. YOSO runs generic secure computation calculations, and aggregation can be
one of them. However, its efficiency is prohibitive for secure aggregation. In particular, the communication
complexity of YOSO in the computational setting scales quadratic with the number of parties n (or linear in
n if the cost is amortized over n gates for large circuits). Additionally, an expensive role assignment protocol
is applied to select the committees. Like LERNA, in YOSO, specific committee sizes need to be fulfilled
to run a protocol execution. Lastly, our protocol does not rely on any secure role assignment protocol to
choose the committees since privacy is still preserved even if all committee members are corrupted. Fluid
MPC [CGG+21, BEP23] also considers committee-based general secure computation. However, like YOSO,
it is not practical. Unlike YOSO, it lacks support for adaptive security.

Moreover, SCALES [AHKP22] considers ephemeral servers a la YOSO responsible for generic MPC com-
putations where the clients only provide their inputs. This approach is of theoretical interest as it is based
on heavy machinery such as garbling and oblivious transfer if they were to be considered for the task of
secure aggregation. Moreover, SCALES needs extra effort to hide the identities of the servers which we do
not require.
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3 Technical Overview

In this work, we focus on building a primitive, One-shot Private Aggregation (OPA), that enables privacy-
preserving aggregation of multiple inputs across several aggregation iterations whereby a client only speaks
once on his will per iteration.

Seed-Homomorphic PRG (SHPRG) Recall that a pseudorandom generator PRG PRG takes as in-
put a random seed and outputs pseudorandom values. PRG PRG : K → Y is seed-homomorphic if
PRG(s1 ⊕ s2) = PRG(s1)⊗ PRG(s2) where (⊕,K) and (⊗,Y) are groups. While using the known LWR-based
construction [BLMR13], we introduce the first LWE-based SHPRG. Both are almost seed-homomorphic, with
induced error handled via input encoding/decoding. For the LWR construction (Construction 1): given random
A←$ ZL×n

q , PRG
LWR,A(s) = ⌊As⌋p where p < q, with error

PRG
LWR,A(s1 + s2) = PRG

LWR,A(s1) + PRG
LWR,A(s2) + e for e ∈ {0, 1}L. Algorithm PRG.Expand computes

the PRG output on input seed sd. It is important to note that the LWE based SHPRG requires careful
consideration of seed and error spaces and accounting for ensuing error in homomorphism while secret-sharing
over appropriate seed spaces. We also provide the first construction of SHPRG based on HSMM assumption
as an independent result, which does not have any error in the homomorphism.

Secret Sharing over Finite Fields. In standard Shamir secret sharing [Sha79], a secret s is shared via

polynomial f(X) =
∑r−1

i=0 aiX
i where a0 = s and a1, . . . , ar−1 are random field elements. For m parties, party

i ∈ [m] receives share f(i), allowing any r parties to reconstruct s while any r − 1 shares remain uniformly
random. The corruption threshold can be lowered from r − 1 to t for additional properties. Packed secret
sharing [FY92] enables hiding multiple secrets in a single polynomial. A secret sharing scheme SS consists of

sharing algorithm {sd(j)}j∈[m]←$ SS.Share(sd, t, r,m) taking secret sd, thresholds t, r, party count m as input

and outputting share sd(j) for each party j, and reconstruction algorithm sd←$ SS.Reconstruct({sd(j)}j∈S)

taking shares {sd(j)}j∈S as input and returning secret sd when |S| ≥ r. Finally, Shamir’s Secret Sharing is

linearly homomorphic, which we leverage. Specifically, given two secrets sd1, sd2 with j-th share sd
(j)
1 and

sd
(j)
2 , then sd

(j)
1 + sd

(j)
2 is a valid share of sd1 + sd2. Note that since our corruption threshold t < m/3, we

can use reconstruction techniques with error correction to guarantee that a malicious share holder does not
thwart the reconstruction.

3.1 OPA based on seed-homomorphic PRG

Every client needs to ensure the privacy of their input. Therefore, a client has to mask their input. In
iteration ℓ, if client i has input xi,ℓ, it chooses a mask of the same length to “add” to the inputs. Let the
mask be maski,ℓ and the ciphertext is defined as cti,ℓ = xi,ℓ +maski,ℓ. To ensure privacy, we need the mask
chosen uniformly randomly from a large distribution. Furthermore, by performing the addition with respect
to a modulus M, we get the property that for a random maski,ℓ, cti,ℓ is identically distributed to a random
element from ZM. The client i sends cti,ℓ to the server. This is Message 1a in Figure 1a.

The server, upon receiving the ciphertexts, can add up the ciphertexts. This leaves it with
∑

i cti,ℓ =∑
i xi,ℓ +

∑
i maski,ℓ. The goal of the server is to recover

∑
i xi,ℓ. Therefore, it requires

∑
i maski,ℓ to

complete the computation. In works on Private Stream Aggregation [SCR+11, BJL16, JL13, EK21], the
assumption made is that

∑
i maski,ℓ = 0. However, this requires all the clients to participate, which is

a difficult requirement in federated learning. Instead, our approach follows the prior works in federated
learning [BIK+17, BBG+20, MWA+23, LLPT23, GPS+24, BCGL+24]5 to enlist the help of some intermediate
parties to provide the server with

∑
i maski,ℓ, for only the participating clients. However, most previous works

[BIK+17, BBG+20] mandate that the masks must sum to zero, requiring mask reconstruction if a party
drops out. This approach, often dependent on secret-sharing of the masks, results in multiple interaction
rounds. Another recent line of works [GPS+24, LLPT23, MWA+23] necessitate an expensive setup for mask
generation but still demands Shamir reconstruction by stateful committee members to handle dropout. Our

5[BIK+17] had all the clients be the intermediate parties. In contrast, [BBG+20] created neighborhoods of clients where the
intermediate parties were only the neighbors. [MWA+23, LLPT23, BCGL+24] explicitly defined a committee of chosen clients,
who may or may not be participating in that round.
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approach is the first to break away from these paradigms, removing the need for zero-sum masks and setup,
thereby significantly streamlining the process while working with ephemeral committee. In OPA, following
Flamingo [MWA+23, Figure 1, Lines 2-7], m committee members are ephemerally chosen using randomness
beacon [Dra]. More details can be found in Section 6.2.1. The list of committee members can be included in
the opening message from server to client, to begin the iteration.

Working with the Committee- First Attempt. Each client i, therefore, has to communicate informa-
tion about its respective maski,ℓ to the committee members. We refer to this as “Aux info”, and we route
it through the server to the committee member. The information is encrypted under the public key of the
respective committee member. This is Message 1b in Figure 1a. This ensures that the server cannot recover
the auxiliary information. Eventually, each committee member “combines” the aux info it has received to
the server (Message 2 in Figure 1a), with the guarantee that this is sufficient to reconstruct

∑
i maski,ℓ. We

rely on Shamir’s secret-sharing [Sha79] to distribute a secret s to a committee of m such that as long as r
number of them participate, the server can learn the secret s. The security of the secret is guaranteed even if
the server colludes with t committee members. We require r > (m+ t)/2. We also rely on the homomorphism
property, which ensures that if a committee member receives shares of two secrets s1, s2. Then, adding up
these shares will help reconstruct the secret s1+s2. While prior works relied on committees, our contribution
is in (a) ensuring that the committee’s computation and communication cost is minimal and (b) ensuring
that the client and committee speak once per iteration.

Optimizing Committee Performance The solution laid out above requires the clients to “secret-share”
maski,ℓ. However, note that maski,ℓ is as long as xi,ℓ. Therefore, each committee member will receive
communication O(L) where n is the number of clients, and L is the length of the vector. It must also
perform computations proportional to O(nL). We can further reduce the complexity to O(log n · L) by
sampling a much larger committee such that each committee member receives communication from log n
clients while each each client speaks with m committee members. OPA reduces the burden of the committee
by introducing a succinct communication independent of L to the committee. We rely on a structured
pseudorandom generator (PRG) called a “seed-homomorphic PRG”. A seed-homomorphic PRG ensures that
PRG(sd1 + sd2) = PRG(sd1)+PRG(sd2). Now, each client i secret-shares their respective seeds sdi,ℓ (and not
maski,ℓ), while setting maski,ℓ = PRG(sdi,ℓ). By the homomorphism of the secret-sharing scheme, the server
can reconstruct

∑
i sdi,ℓ, and then expand it as PRG(

∑
i sdi,ℓ). By seed-homomorphism, this is also equal to∑

i PRG(sdi,ℓ) =
∑

i maski,ℓ.
Three key challenges arise: (1) server learns

∑n
i=1 sdi,ℓ, requiring leakage-resilient SHPRG (satisfied by

our LWR/LWE constructions), (2) almost-homomorphic LWR/LWE PRGs need careful encoding/decoding, and
(3) active security simulation requires valid ciphertext simulation for honest clients before finalizing dropout
set. For (3), we resolve this in programmable random oracle model: each client adds a mask from hashing

seed digi,ℓ, shares {dig
(j)
i,ℓ }j∈[m]←$ SS.Share(digi,ℓ, t, r,m), which committee decrypts and forwards for server

reconstruction. Notably, committee information remains vector-length independent.
Though the underpinning idea of OPA combines seed-homomorphic PRG and an appropriate secret-

sharing scheme, there are technical issues with presenting a generic construction. We begin by presenting the
construction based on the Learning with Rounding Assumption. We present constructions from both LWR

and LWE assumptions in Section 6.2.1 and Section 6.2.2, respectively.

Malicious Client Behavior and Heterogeneity. In applications of secure aggregation to Federated
Learning, it is important for the model updates to be tolerant to any heterogeneity in data distribution.
In Section F.1, we show how to extend FedOpt [RCZ+21] to the setting involving secure aggregation. This
two pronged approach of first securely aggregating the updates and then using an optimization technique to
update the model weights, as a function of the aggregated updated, helps bring prior research on FedOpt
to the secure aggregation setting. Additionally, we also detail how to combine OPA with Byzantine-Robust
Stochastic Aggregation (bRSA). The latter was conceived to handle both heterogeneity in data and client’s
malicious behavior when it came to providing inputs. Finally, we also present a protocol where a server
can abort when malicious behavior is encountered. Specifically, when a client sends inconsistent information
to the server and the committee members. We eschew the computation heavy Feldman’s Verifiable Secret
Sharing (VSS) and instead rely on SCRAPE [CD17], along with other zero-knowledge proof techniques based
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on lattices [LNP22]. Critically our proofs ensure that the bulk of the verification is done by the server with
only constant work done by a client. We refer readers to Section 7 for more details.

3.2 OPA′ based on Threshold, Key-Homomorphic PRF

We present an alternative approach to building OPA′ based on a threshold, key-homomorphic PRF. We
present this alternative approach that is suitable for small L.

CL Framework. We use the generalized version of the framework, as presented by Bouvier et al. [BCIL23].

Broadly, there exists a group Ĝ whose order is M · ŝ where gcd(M, ŝ) = 1 and ŝ is unknown while M is a

parameter of the scheme. Then, Ĝ admits a cyclic group F, generated by f whose order is M. Consider the
cyclic subgroup H, generated by h = xM, for a random x ∈ Ĝ. Then, one can consider the cyclic subgroup
G generated by g = f · h with G factoring as F ·H. The order of G is also unknown. The HSMM assumption
states that an adversary cannot distinguish between an element in G and H, while a discrete logarithm is
easy in F, s̄, an upper bound for ŝ is provided as input. Note that for M = N where N is an RSA modulus,
the HSMM assumption reduces to the DCR assumption. Therefore, the HSMM assumption can be viewed as a
generalization of the DCR assumption.

Secret Sharing over Integers. Braun et al. [BDO23] was the first to identify how to suitably modify
Shamir’s secret sharing protocol to ensure that the operations can work over a group of unknown order, such
as the ones we use on the CL framework. This stems from two reasons. The first is leakage in that a share
f(i) corresponding to some sharing polynomial f always leaks information about the secret s, modi when
the operation is over the set of integers. Meanwhile, the standard approach to reconstructing the polynomial
requires the computation of the Lagrange coefficients, which involves dividing by an integer, which again
needs to be “reinterpreted” to work over the set of integers. The solution to these problems is multiplying
with an offset ∆ = m! where m is the total number of shares.

(Almost) Key Homomorphic Pseudorandom Functions Naor et al. [NPR99] introduced the concept
of key homomorphic PRFs (KH-PRFs), demonstrating that H(x)k is a secure KH-PRF under the DDH as-
sumption in the Random Oracle Model, whereH is a hash function, k is the key, and x is the input. [BLMR13]
later constructed an almost KH-PRF under the Learning with Rounding assumption [BPR12], which was
formally proven secure by [EK21]. Our work leverages almost KH-PRF constructions from both LWR and LWE

assumptions in the Random Oracle Model. Additionally, we present a novel KH-PRF construction in the
CL framework, yielding new constructions under the HSM assumption (including DCR-based constructions).
We adapt the DDH-based construction to the CL framework and prove that F (k, x) = H(x)k, where k←$K
and H : {0, 1}∗ → H is modeled as a random oracle, is a secure KH-PRF under the HSM assumption. This
adaptation requires careful consideration of appropriate groups, input spaces, and key spaces.

Distributed Key Homomorphic Pseudorandom Functions (KHPRF) [BLMR13] presented generic
constructions of Distributed PRFs from any KH-PRF using secret sharing techniques. However, the CL
framework’s use of groups with unknown order necessitates working over integer spaces. While Linear Integer
Secret Sharing [DT06] exists, it can be computationally expensive. Instead, we utilize Shamir Secret Sharing
over Integer Space as described by [BDO23], refining it with appropriate offsets to construct Distributed
PRFs from our HSM-based construction. In other words, rather than reconstructing the secret, the solution
reconstructs a deterministic function of the secret, which is accounted for in the PRF evaluation. This induces
complications in reducing the security of our distributed key homomorphic PRF to that of the HSM-based
KH-PRF. Finally, we demonstrate that our construction maintains the key homomorphism property, allowing
combinations of partial evaluations of secret key shares to match the evaluation of the sum of keys at the
same input point.

Constructions of almost Distributed KHPRFs. [BLMR13] introduced a generic construction of dis-
tributed KHPRFs from almost key homomorphic PRFs. They proposed FLWR(k, x) := ⌊⟨H(x),k⟩⌋p as an
almost key homomorphic PRF, where q > p are primes, k←$ Zρ

q , and H is a suitably defined hash function.
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Their reduction to build a distributed PRF utilizes standard Shamir’s Secret Sharing over fields, simplifying
the process compared to integer secret sharing due to the prime nature of q and p. However, their proposed
construction contained shortcomings affecting both correctness and security proofs. We will now provide
a brief overview of these issues. An almost KH-PRF satisfies F (k1 + k2, x) = F (k1, x) + F (k2, x) − e for
some error e. For the LWR construction, e ∈ 0, 1. However, this implies F (T · k, x) = T · F (k, x) − eT
where eT ∈ 0, . . . , T − 1 for any integer T , leading to error growth and affecting Lagrange interpolation.
The authors proposed multiplying by an offset ∆ = m! to bound the error and use rounding to mitigate
its impact by ensuring that the error terms are “eaten” up. However, their security reduction works by
reducing the security of the Distributed KHPRF (DKHPRF) to the underlying KHPRF. For a particular
i∗, the adversary uses its oracle access to the KHPRF security game to obtain partial evaluations. In other
words, the key of the KHPRF is implicitly set as the share of the key corresponding to some i∗. However,
to use the KHPRF Challenger’s response to construct the actual evaluation of the DKHPRF (via Lagrange
interpolation), one has to rely on the “clearing out the denominator” technique by multiplying with some
offset ∆. Unfortunately, this induces additional errors when dealing with an almost KH-PRF such as the
one based on the LWR assumption. Thus, their definition of partial evaluation function needs to be updated
to be consistent with what is simulatable. We identified further issues in their rounding choices. Specifically,
partial evaluations should be rounded down to u where ⌊p/u⌋ > (∆ + 1) · r · ∆ (r being the reconstruction
threshold). Moreover, their framework only addressed single-key PRFs, not vector-key cases like LWR-based
construction. We address these issues in constructing a distributed, almost key homomorphic PRF based
on LWR. We formally prove that FLWR(k, x) =

⌊
∆
⌊
∆ ⌊⟨H(x),k⟩p⌋u

⌋⌋
v
for appropriate choices of u and v is a

secure, distributed, almost key homomorphic, PRF.

One-shot Private Aggregation without Leakage Simulation. The construction of OPA′ is similar to
the earlier ones based on seed-homomorphic PRG. There exist the following differences:

• A client i has to sample L different keys. Each key in is used to evaluate the PRF at a point ℓ and is

used to mask the input x
(in)
i .

• It then secret shares each of the L keys by running the DPRF.Share, the algorithm to generate the
shares of the DPRF key.

• Each share for committee member j is evaluated at ℓ. This evaluation is sent to the committee member.

• Finally, the server runs DPRF.Combine to combine the information from the committee members to get
the PRF evaluation at ℓ under the sum of the keys for each index in. Combine is the algorithm that
helps reconstruct the evaluation from partial evaluations.

Stronger Security Definitions and Construction. We also present a stronger security guarantee, which
was not provided by the committees of Lerna and Flamingo, whereby the committee members can all collude
and observe all encrypted ciphertexts and all auxiliary information and cannot mount an IND-CPA-style
attack. Unfortunately, our current construction, where the inputs are solely blinded by the PRF evaluation,
which is also provided to the committee members in shares, can be unblinded by the committee leaking infor-
mation about the inputs. Instead, we will have the server choose its key material k0, and the corresponding
key for that iteration communicated with the “initiate transaction” message. The client can then compute
an “ephemeral” Diffie-Hellman key on the fly and use this to mask the input. Since the adversary does not
receive k0, it intuitively provides a sufficient mask for the inputs and the actual key ki of the honest client.
Note that the adversary only receives the honest client’s “iteration” public key. The actual construction is
presented in Section G.1.

4 Preliminaries and Cryptographic Building Blocks

Notations. For a distribution X, we use x←$ X to denote that x is a random sample drawn from the
distribution X. We denote by u a vector and by A a matrix. For a set S we use x←$ S to denote that x
is chosen uniformly at random from the set S. By [n] for some integer n, we denote the set {1, . . . , n}. For
x ∈ R, ⌊x⌋ (resp. ⌈x⌉) refers to y ∈ Z such that y ≤ x < y + 1 (resp. y − 1 < x ≤ y).
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Definition 1 (Hypergeometric Distribution). A Hypergeometric Distribution HyperGeom(N, η,m) is a dis-
crete probability distribution that describes the probability of successes in m draws, without replacement from
a finite population of size N that contains η fraction with that feature. We use the following tail bounds for
X ∼ HyperGeom(N, η,m) ∀d > 0, Pr[X ≤ (η − d)m] ≤ e−2d2·m and Pr[X ≥ (η + d) ·m] ≤ e−2d2·m

4.1 Cryptographic Preliminaries

We begin by discussing lattice-based assumptions in Section 4.2. Later, in Section 4.3, we introduce the syntax
and security of a seed-homomorphic pseudorandom generator and present our lattice-based constructions.

Due to space constraints, we defer discussion on the syntax of secret-sharing schemes and constructions
over fields and integers in Section A.1. This is followed by an exposition of various pseudorandom functions’
syntax and security definitions through Sections A.2 and A.3. Finally, we introduce the CL Framework in
Section A.4.

4.2 Lattice-Based Assumptions

This section will look at constructions based on three different lattice-based assumptions.

4.2.1 Learning with Rounding Assumption

We will begin by defining the learning with rounding (LWR) assumption, which can be viewed as a deterministic
version of the learning with errors (LWE) assumption [Reg09]. LWR was introduced by Banerjee et al. [BPR12].

Definition 2 (Learning with Rounding). Let λ, q, p←$ LWRGen(1ρ) be functions of the security parameter
ρ, with L, λ, q, p ∈ N such that q > p. Then, the Learning with Rounding assumption (LWRλ,L,q,p) states that
for all PPT adversaries A, there exists a negligible function negl such that:

Pr

b = b′
s←$ Zλ

q ,A←$ Zλ×L
q ,

u0 :=
⌊
A⊤ · s

⌋
p
,u1←$ ZL

p

b←$ {0, 1}, b′←$A(A,ub)

 =
1

2
+ negl(ρ)

where ⌊x⌋p := ⌊x · p/q⌋.

4.2.2 Learning with Errors Assumption

Definition 3 (Learning with Errors Assumption (LWE)). Consider integers λ, L, q ∈ N that are functions
of the security parameter ρ, and a probability distribution χ on Zq, typically taken to be a normal distribution
that has been discretized. Then, the LWEλ,L,q,χ assumption states that for all PPT adversaries A, there exists
a negligible function negl such that:

Pr

b = b′
A←$ ZL×λ

q ,x←$ Zλ
q , e←$ χL

y0 := Ax+ e
y1←$ ZL

q , b←$ {0, 1}, b′←$A(A,yb)

 =
1

2
+ negl(ρ)

Definition 4 (Hint-LWE [CKK+21, DKL+23]). Consider integers λ, L, q and a probability distribution χ on
Zq, typically taken to be a normal distribution that has been discretized. Then, the Hint-LWE assumption6

states that for all PPT adversaries A, there exists a negligible function negl such that:

Pr

b = b′

A←$ ZL×λ
q ,k←$ Zλ

q , e←$ χ′L

r←$ Zλ
q , f←$ χ′L

y0 := Ak+ e,y1←$ ZL
q , b←$ {0, 1}

b′←$A(A, (yb,k+ r, e+ f))

 =
1

2
+ negl(ρ)

6Kim et al. [KLSS23] demonstrates that the Hint-LWE assumption is computationally equivalent to the standard LWE
assumption. This assumption posits that y0 maintains its pseudorandom properties from an adversary’s perspective, even when
provided with certain randomized information about the secret and error vectors. Consider a secure LWE instance defined
by parameters (λ,m, q, χ), where χ represents a discrete Gaussian distribution with standard deviation σ. The corresponding
Hint-LWE instance, characterized by (λ,m, q, χ′), where χ′ denotes a discrete Gaussian distribution with standard deviation σ′,
remains secure under the condition σ′ = σ/

√
2. As a result, we can decompose any e ∈ χ into the sum e1 + e2, where both e1

and e2 are drawn from χ′.
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Where ρ is the security parameter.

4.3 Seed Homomorphic PRG

Definition 5 (Seed Homomorphic PRG (SHPRG)). Consider an efficiently computable function PRG : K →
Y, parametrized by PRG = (PRG.Gen,PRG.Expand) where (K,⊕), (Y,⊗) are groups. Then (PRG,⊕,⊗) is
said to be a secure seed homomorphic pseudorandom generator (SHPRG) if:

• PRG is a secure pseudorandom generator (PRG), i.e., for all PPT adversaries A, there exists a negligible
function negl such that:

Pr

b = b′
ppPRG←$ PRG.Gen, b←$ {0, 1} , sd←$K
Y0 = PRG.Expand(ppPRG, sd), Y1←$ cY

b′←$A(Yb)

 ≤ 1

2
+ negl(κ)

• For every sd1, sd2 ∈ K, we have that PRG.Expand(sd1)⊗ PRG.Expand(sd2) = PRG.Expand(sd1 ⊕ sd2)

We abuse notation and drop ppPRG from the input of Expand.

5 Constructions of SHPRG

In this section, we first recap the construction of SHPRG based on LWR assumption as presented by Boneh et
al. [BLMR13]. We then show that it is leakage-resilient. Later, we present the first construction based on
LWE assumption and then prove that it is indeed leakage resilient under Hint-LWE assumption.

5.1 Construction from LWR Assumption

Construction 1 (SHPRG from LWR Assumption). Let ppPRG := A←$ Zλ×L
q be the output of PRG.Gen, then

consider the following: PRGLWR : Zλ
q → ZL

p where L > λ is defined as PRG.Expand(sd = s) = ⌊A⊤ · s⌋p where
q > p with ⌈x⌋p = ⌊x · p/q⌋ for x ∈ Zq.

It is easy to see that Construction 1 is a secure PRG under the LWR assumption, which gives us the
following theorem

Theorem 1 (PRG Security of Construction 1). If LWRλ,L,q,p assumption holds, then PRGLWR is a secure PRG.

This is almost seed homomorphic in that: PRG.Expand(s1 + s2) = PRG.Expand(s1) +PRG.Expand(s2) + e

where e ∈ {0, 1}L.

Theorem 2 (Leakage Resilience of Construction 1). Let PRGLWR be the PRG defined in Construction 1.
Then, it is leakage resilient in the following sense:{

PRG.Expand(sd) mod p sd←$ Zλ
q

sd+ sd′ mod q sd′←$ Zλ
q

}
≈c

{
y sd, sd′←$ Zλ

q

sd+ sd′ mod q y←$ ZL
p

}
Proof. The proof proceeds through a sequence of hybrids.

Hybrid0(κ): The left distribution is provided to the adversary. In other words, the adversary gets:{
PRGLWR(sd) mod p, sd+ sd′ mod q : sd, sd′←$ Zλ

q

}
Hybrid1(κ): In this hybrid, we replace sd+ sd′ mod q with a uniformly random value sd′′←$ Zλ

q .{
PRGLWR(sd) mod p, sd′′ : sd, sd′′←$ Zλ

q

}
Note that (sd+ sd′) mod q and sd′′ are identically distributed. Let us assume that there exists a leakage
function oracle L that can be queried with an input sd, for which it either outputs sd+ sd′ mod q for a
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randomly sampled sd′←$ Zλ
q or outputs s′←$ Zλ

q . Then, an adversary A that can distinguish between
Hybrid0 ad Hybrid1 can be used by an adversary B to break the leakage function as follows: B samples
sd. It sends this value to the leakage function. Meanwhile, it also computes PRGLWR(sd) and appends the
outputs of the leakage function. Note that if the leakage output was sd+ sd′, the Hybrid0 is simulated
by B, and if it was sd′′ then Hybrid1 is simulated by B. However, the output of the leakage function is
an identical distribution. Therefore, Hybrid0,Hybrid1 are also identically distributed.

Hybrid2(κ): In this hybrid, we will replace the PRG computation with a random value from the range.{
y, sd′′ : y←$ ZL

p , sd
′′←$ Zλ

q

}
Under the security of the PRG, we get that Hybrid1,Hybrid2 are computationally indistinguishable.

Hybrid3(κ): We replace sd′′ with (sd+ sd′) mod q.{
y, (sd+ sd′) mod q : y←$ ZL

p , sd, sd
′′←$ Zλ

q

}
As argued before Hybrid2,Hybrid3 are identically distributed.

Note that Hybrid3 is the right distribution from the theorem statement. This completes the proof.

5.2 Construction from LWE Assumption

Construction 2 (SHPRG from LWE Assumption). LetA←$ ZL×λ
q be the output of PRG.Gen. Then, consider

the following seed homomorphic PRG PRGLWE : Zλ
q × χL → ZL

q is defined as:PRG.Expand((s, e)) = As+ e

The proof of security directly applies the LWE Assumption. However, we now prove the (almost) seed
homomorphic property.

PRG.Expand(s1, e1) = As1 + e1;PRG.Expand(s2, e2) = As2 + e2

PRG.Expand(s1, e1) + PRG.Expand(s2, e2) = A(s1 + s2) + (e1 + e2)

= PRG.Expand(s1 + s2) + e

where e ≤ e1 + e2 + 1.
Looking ahead, when we use this PRG to mask the inputs, we will do the following: PRG.Expand(si, ei) =

Asi + ei + ⌊q/p⌋ · xi where xi ∈ Zm
p . Upon adding n such ciphertexts (modq), we get:

A

n∑
i=1

si + e+ ⌊q/p⌋ ·
n∑

i=1

xi

where e ≤ 1 +
∑n

i=1 ei. Therefore, to eventually recover
∑n

i=1 xi mod p from just the value of
∑n

i=1 si, we
will require ||e||∞ < q

2p . Looking ahead, we will rely on the Hint-LWE Assumption 4 to show that it is
leakage resilient when we use it to build our aggregation tool.

Remark 1 (Construction based on Ring-LWE). The above LWE construction can be extended to the Ring-
LWE [LPR10] setting.

Recall the R-LWE Assumption. Let N be a power of two and m > 0 be an integer. Let R be a cyclotomic
ring of degree N , and let Rq be its residue ring modulo q > 0. Then, the following holds:{

(a,a · k + e) : a←$ Rm
q , k←$ Rq, e←$ χm

}
≈c

{
(a,u) : a←$ Rm

q ,u←$ Rm
q

}
This gives us the following construction: PRGR-LWE((k, e)) : ak + e

6 One-shot Private Aggregation

In this section, we construct One-shot Private Aggregation (OPA). Broadly speaking, the goal of this primitive
is to support a server (aka aggregator) to sum up the clients’ inputs encrypted to a particular label (which
can be a tag, timestamp, etc.), without it learning any information about the inputs beyond just the sum.
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6.1 Simulation-Based Privacy

Our proof approach is based on the standard simulation-based framework [Gol04, Lin17] where we demon-
strate that any attacker against our protocol can be simulated by an attacker Sim in an ideal world where a
trusted party T computes a function F on the clients’ inputs X. In our case, this function is that of vector
summation. We consider an attacker A that controls at most η ·n clients and possibly the server. Further, ηC
will be the proportion of corrupt clients controlled by the adversary and those belonging to the committee.
The ideal world consists of the following steps, which are adapted to the more straightforward setting where
only one party, i.e., the server, has the output:

(a) The honest clients provide the inputs to the trusted party T .

(b) Sim chooses which corrupted clients send the input and which abort.

(c) If the server is corrupted, then Sim can either choose to abort the protocol or continue.

(d) If the protocol is not aborted, then T computes the function F (X) and sends to the server.

(e) Finally, if the server is not corrupted, it outputs what it has received from T .

Our function F is parametrized by the following: (a) the set of inputs X = {xi,ℓ}i∈[n], (b) the set of client

dropouts D ⊆ [n], and (c) δ ∈ [0, 1) which is the maximum fraction of dropouts permitted. In addition, we
also parametrize it by the iteration ID ℓ. Then,

F ℓ
D,δ =

{∑
i∈[n]\D xi,ℓ if |D| ≤ δn

⊥ otherwise
(1)

6.2 Our Construction of One-shot Private Aggregation Scheme

6.2.1 Construction of OPALWR

We now present OPALWR and prove its correctness and security. We rely on the seed-homomorphic PRG
(Construction 1) PRG with seed space PRG.K := Zλ

q and combine it with Shamir’s Secret Sharing Scheme
over Fq (Construction 6). We will also employ a public key encryption scheme Enc, which clients use to
encrypt the shares to the committee. To facilitate, we assume a PKI or any other mechanism, such as
authenticated channels, to ensure that every client knows a public key pkj to encrypt to committee member
j.

For ease of presentation, we will abuse notation and drop the packing factor ρ (of the secret-sharing
scheme) and the consequent vector slicing needed for the seed. We chunk the vector of length λ into smaller
vectors, each of length ρ, before secret-sharing each smaller vector.

Construction 3. We present our construction in Figure 2.

Correctness. First, recall that Construction 1 is only almost seed homomorphic. In other words,

PRG(sd1 + sd2) = PRG(sd1) + PRG(sd2) + e

where e ∈ {0, 1}.
For ease of presentation, our correctness proof is for L = 1, but it extends to any arbitrary L. Therefore,

while the correctness of Shamir’s Secret Sharing scheme guarantees that sdℓ, computed by the server, is
indeed

∑n
i=1 sdi mod q, there is an error growth in AUXℓ. Specifically, we get that:

AUXℓ := PRG.Expand

(
sdℓ =

n∑
i=1

sdi,ℓ

)
=

n∑
i=1

PRG.Expand(sdi,ℓ) + e′

Or,

n∑
i=1

Expand(sdi,ℓ) = AUXℓ − e′ (2)
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Protocol Construction of OPALWR

One-Time System Parameters Generation

Run pp←$ SS.Setup(1κ, 1t, 1r, 1m)
Run ppPRG ← PRG.Gen(1κ)
Set pp = (ppPRG, t, r,m)
return Committee of size m and pp.

Data Encryption Phase by Client i in iteration ℓ

Sample sdi,ℓ←$ PRG.K, digi,ℓ←$ {0, 1}log q

Compute (x1, . . . , xL)← Encode(xi)
Compute maski,ℓ = PRG.Expand(sdi,ℓ),mask′i,ℓ := H(digi,ℓ)

Compute cti,ℓ = (x1, . . . xL) +maski,ℓ +mask′i,ℓ

(sd
(j)
i )j∈[m]←$ SS.Share(sdi,ℓ, t, r,m)

(dig
(j)
i,ℓ )j∈[m]←$ SS.Share(digi,ℓ, t, r,m)

for j = 1, . . . ,m do
aux

(j)
i,ℓ ← sd

(j)
i , dig

(j)
i,ℓ

Send cti,ℓ to the Server

Send c
(j)
i,ℓ = E .Encpkj (ℓ, i, aux

(j)
i,ℓ ) to committee member j for each j ∈ [m], via server.

Set Intersection Phase by Server in iteration ℓ

For j ∈ [m], let C(j) :=
{
i : c

(j)
i,ℓwas received by server

}
Let C(0) := {i : cti,ℓwas received by the server}
Compute C := ∩j∈S∪{0}C(j) // This is bit-wise AND operation of the r + 1 bit strings.
assert |C| ≥ (1− δ)n

Send C,
{
c
(j)
i,ℓ

}
i∈C

for every j in [m]

Data Combination Phase by Committee Member j in iteration ℓ

Decrypt (i, ℓ,
{
aux

(j)
i,ℓ = (sd

(j)
i,ℓ , dig

(j)
i,ℓ )
}
) from

{
c
(j)
i,ℓ

}
i∈C

using skj

Verify i ∈ C and ℓ is the current iteration, else abort.
Compute AUX(j) ←

∑
i∈C sd

(j)
i,ℓ

Send AUX(j),
{
dig

(j)
i,ℓ

}
i∈C

to server

Data Aggregation Phase by Server in iteration ℓ

Let
{
AUX

(j)
ℓ

}
j∈S

, {cti,ℓ}i∈C be the inputs received by the server with |S| ≥ r.

Run sdℓ ← SS.Reconstruct(
{
AUX

(j)
ℓ

}
j∈S

)

AUXℓ = PRG.Expand(sdℓ)
for i ∈ C do

digi,ℓ ← SS.Reconstruct(
{
dig

(j)
i,ℓ

}
j∈S

)

Compute CTℓ ←
∑

i∈C cti,ℓ
Compute (X1, . . . , XL) = CTℓ − AUXℓ−

∑
i∈C H(digi,ℓ)

Compute Xℓ ← Decode(pp, (X1, . . . , XL))
return Xℓ

Figure 2: Our Construction of OPA built from PRG = (PRG.Gen,PRG.Expand) with key space K = Zλ
q

(Construction 1) and the (t, r,m)-secret sharing scheme SS = (SS.Share,SS.Reconstruct) (Construction 6).
Here, Encode(xi,ℓ) := n · xi,ℓ + 1 and Decode(Xi) := ⌈Xi/n⌉ − 1 and δ is the protocol’s dropout parameter.
The lines are for security against an active server. The second mask mask′i,ℓ, as the output of a H is for
simulation proof, for an active server. We will model H as a programmable random oracle.

where e′ ∈ {0, . . . , n− 1}. We know that Encode(xi,ℓ) := n · xi,ℓ + 1 which gets:

n∑
i=1

cti,ℓ =

(
n∑

i=1

(xi,ℓ · n+ 1) + Expand (sdi,ℓ)

)
mod p
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= n ·
n∑

i=1

xi,ℓ + n+

n∑
i=1

Expand(sdi,ℓ) mod p

= n ·
n∑

i=1

xi,ℓ + n+ AUXℓ − e′ mod p

n∑
i=1

cti,ℓ − AUXℓ = n ·
n∑

i=1

xi,ℓ + n− e′ mod p

X̄ℓ = n ·
n∑

i=1

xi,ℓ + n− e′

The jump from the second to the third step follows from Equation 2, and to make the last jump in the proof,
we require:

0 ≤ n ·
n∑

i=1

xi,ℓ + n− e′ < p

First, e′ ≤ n − 1. This guarantees that: 0 ≤ n ·
∑n

i=1 xi,ℓ + n − e′. Now, if
∑n

i=1 xi,ℓ < (p − n)/n then we
also get:

n ·
n∑

i=1

xi,ℓ + n− e′ < p

Now, we show the correctness of Decode algorithm to recover
∑n

i=1 xi,ℓ from X̄ℓ.

• X̄ℓ/n =
∑

xi,ℓ + (n− e′)/n

• 0 ≤ e′ ≤ n− 1⇒ 1/n ≤ (n− e′)/n ≤ 1

• Therefore, ⌈X̄ℓ/n⌉ =
∑

xi,ℓ + 1

Theorem 3. Let δ, η be the dropout and corruption fraction among the universe of clients and let δC , ηC be
the dropout and corruption fraction among the clients in committee. Let κ be the security parameter. Let N
be the total universe of clients and n be the number of clients chosen for summation in each iteration while
m be the number of committee clients chosen to help in each iteration. Let L be the length of the vector.

Let PRG = (PRG.Gen,PRG.Expand) be the leakage-resilient, seed-homomorphic PRG defined in Construc-
tion 1 and SS = (SS.Share,SS.Reconstruct) be the (t, r,m)-secret sharing scheme such that r > (m + t)/2)
defined in Construction 6. Further, assuming a PKI (or authenticated channels) where each client knows a
public key pkj for a committee member j, associated with an IND-CPA secure public key encryption scheme

E. Then, if δC + ηC < 1/3, OPALWR securely realizes the functionality F ℓ
D,δ(X) (defined in Equation 1) with

server malicious security with abort where X = {xi,ℓ}i∈[n]−\K and K ⊂ [N ] and |K| ∩ [n] ≤ ηn, under the LWR

assumption.

The proof is deferred to Section E.7 Achieving malicious security with abort is outlined in Section 7.

Sampling the Committee. Let C be a committee of size m. Specifically, to ensure ηC + δC < 1/3, we
need ηC < 1/3− δC . While the server controls δC , ηC is a random variable. Given the universe of N clients
where η fraction of them are malicious, randomly sample m clients from them. Then, the number of malicious
clients X in the committee should follow the tail bound of hypergeometric distribution (Definition 1).

Pr[X ≥ (η + (1/3− δC − η))m] ≤ e−2·m(1/3−δC−η)2 ≤ 2−γ

7Recent work by Pasquini et al. [PFA22] describes an attack where the server can send different models to different client
updates with the goal that the model sent to a particular client can negate the training done by other clients on different models.
In our case, this attack can be easily remedied with no overhead. Rather than evaluating the PRG with just the public matrix A,
one can first compute a hash H(iteration,model) and multiply it with A. If H was preimage-resistant, then the adversary cannot
find a suitable model to force computation. As a result, the client’s computation is tied to the model update sent. If different
clients use different A, the seed homomorphism fails. This would make it difficult for a malicious server to send different models
to different clients to ensure that a particular client’s contributions are not aggregated and, therefore, can be recovered. We can
also switch to the key-homomorphic PRF constructions described in Section C.
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for some γ. Observe that X/m = ηC . Assuming η = δC = 0.01, and committee of size 50, we get that
Pr[ηC ≥ 1/3 − δC ] ≤ 5 · 10−5. Extending it to the setting where we have a much larger pool of committee
members, say M · m, corresponding with M groups each of size m. Call the smaller groups C1, . . . , CM .
We want to upper bound the probability that ∪Mi=1 Pr[δCi

+ ηCi
> 1/3]. Using Union Bound, we get that

∪Mi=1 Pr[δCi
+ ηCi

> 1/3] ≤M · 2−γ . Let M = log n, then
⋃M

i=1 Pr[δCi
+ ηCi

> 1/3] ≤ 2log logn−γ .

6.2.2 Construction of OPALWE

Construction 4. As alluded to before, OPALWE is largely similar to OPALWR with the following differences:

• While the seed of PRGLWE is (sd, e), we will only secret share sd. We will argue below that the correctness
still holds for a suitable definition of χ.

• The plaintext space for OPALWE, like the one for OPALWR, is Zp. Meanwhile the seed space for both
OPALWE and OPALWR will be Zq. Let ∆ := ⌊q/p⌋.

• We will use Shamir’s Secret Sharing over q, as before, which is the seed space.

• There is a change in the server’s last phase. To compute AUXℓ, the server uses the reconstructed seed
sdℓ, and additionally sets the error component of the PRG seed to be 0.

• Encode(xi,ℓ) := ∆ · xi,ℓ

• Decode(Xi) := ⌈Xi/∆⌉ − 1

Due to the similarities, we do not present the construction entirely. Meanwhile, we present the proof of
correctness and proof of security.

Correctness. First, observe that Construction 1 is only almost seed-homomorphic, i.e.

PRG((sd1 + sd2, e), ℓ) = PRG((sd1, e1), ℓ) + PRG((sd2, e2), ℓ) + e′

for some error e′. Indeed, assuming the correctness of Shamir’s Secret Sharing, we get that the server
computes:

AUXℓ := PRG.Expand

((
n∑

i=1

sdi, 0

)
, ℓ

)
:= A ·

n∑
i=1

sdi

Meanwhile,

n∑
i=1

cti,ℓ =
n∑

i=1

(Asdi + ei +∆ · xi,ℓ)

= A

n∑
i=1

sdi +
n∑

i=1

ei +

n∑
i=1

∆ · xi,ℓ

Let Xℓ :=

n∑
i=1

cti,ℓ − AUXℓ =

n∑
i=1

ei +

n∑
i=1

∆ · xi,ℓ

Xℓ

∆
=

∑n
i=1 ei

∆
+

n∑
i=1

xi,ℓ

If
∑n

i=1 ei <
∆
2 , then ⌈

Xℓ

∆ ⌉ =
∑n

i=1 xi,ℓ + 1. This shows the correctness of our algorithm.
We get a similar theorem statement and proof as for the LWR construction and is deferred to Section E

Proof. The proof proceeds similar to that of Theorem 3, through a sequence of hybrids. However, there are
a few differences. Construction 2 has the error vector e←$ χ. However, we will replace e = e′ + f′ where
e′, f′←$ χ′, the distribution present in Hint-LWE Assumption (see Definition 4). The hybrid descriptions are
similar, so we only specify the differences:
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• In Hybrid2 we will set:

ctn,ℓ = A · sdℓ −
∑

i∈(C∩H)\{n}

cti + eℓ +∆xℓ

• We will argue that Hybrid2,Hybrid3 are indistinguishable under Hint-LWE Assumption. We will sketch
the reduction now.

– Recall that, from the Hint-LWE Challenge, we get (A,u∗, s∗ := s+ r, e∗ := e′ + f′).

– As done for the LWR construction, we will set the s1 + sn = s∗, the leakage on key.

– For generating ct1,ℓ we will use u∗, while also sampling a separate f1←$ χ′. This gives us: ct1,ℓ =
u∗ + f′n,ℓ +∆ · x1,ℓ

– We will set ctn,ℓ := A · sdℓ −
∑

i∈(C∩H)\{n} cti + e∗ +
∑

i∈(C∩H)\{1}(e
′
i,ℓ + f′i,ℓ) + ∆ · xℓ

– When u∗ is the real sample, then ct1,ℓ satisfies Hybrid2’s definition. Meanwhile, the ctn,ℓ is also
correctly simulated. Similarly, the case when it a random sample.

The proof of security against malicious servers also follows the previous theorem.

6.3 One-shot Private Aggregation without Leakage Simulation

OPA requires generating a new key in every iteration. We will now present a construction OPA′ such that:
(a) a client’s keys can be reused across multiple iterations, and (b) the server does not get the sum of the
keys but rather a function of pseudorandom values, which can be argued as itself being pseudorandom. Our
core technique in this work is a distributed, key-homomorphic PRF. We formally present constructions from
the CL framework in Section B. Specifically, we defer OPACL to the appendix in Section B.2. Similarly, we
present LWR based construction in Section D. Next, we broadly describe the intuition behind our construction.
It is important to emphasize that this is a purely theoretical construction as the committee’s performance
depends on L. However, we document this alternative approach for completeness.

A distributed-key-homomorphic PRF has three specific algorithms: Eval, which allows the evaluation of

the PRF with key ki at a point, P-Eval allows the PRF to be evaluated at a share of the key k
(j)
i to get

a partial evaluation, and Combine allows for the combination of partial evaluations to recover the actual
evaluation. Key Homomorphism implies that both partial and actual evaluations are key homomorphic.
Therefore, in our construction, the clients mask a vector of inputs xi,ℓ by computing a pseudorandom evalua-
tion of DPRF.Eval(ki,1, ℓ, . . . ,DPRF.Eval(ki,L, ℓ). Meanwhile, the auxiliary information send to the committee

member will be P-Eval(k
(j)
i,k , ℓ) for k = 1, . . . , L and j ∈ [m]. Then, the committee members combine the aux-

iliary information. The server then reconstructs on its end using Combine. Correctness follows from the key
homomorphism. Note that the server only computes DPRF.Eval(

∑n
i=1 ki,k, ℓ) for k = 1, . . . , L. This is a PRF

evaluation; therefore, the leakage is pseudorandom and can be easily simulated, replacing it with random.
Finally, we also strengthen the security of OPA′, instantiated with the HSMM=p based construction (dubbed

OPACL), by offering the privacy of honest user’s inputs when all the committee are corrupt with each other
while the server is honest. This is covered in Section G.

7 Malicious Security with Abort

We detail how to provide security against clients who behave maliciously. We detail how:

(a) a client proves that it has shared its key correctly. This is done so using SCRAPE Test [CD17] which
minimizes the computation on the part of the client (unlike traditional verifiable secret sharing),

(b) a client proves that it has computed the masking correctly,

(c) a client combines the previous two properties into one relation that is linear over Zq, and

(d) a client proves that its masked input satisfies some particular constraints.

We present instantiations of the above using the proof system from Lyubashevsky et al. [LNP22]. Importantly,
OPA with bRSA (described in Section F.2) implies that the client’s input is a binary vector. This shall simplify
the zero-knowledge proof needed for input validation.
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Proof of Correct Sharing. At its core, OPA (both the LWR and LWE based version) involves the use of
a sdi,ℓ that is secret-shared using Shamir’s Secret Sharing. For simplicity, we will focus on the unpacked
version where only one secret is shared. However, the proof extends to the packed setting as it only tests
the existence of a polynomial. A standard approach to catch clients sending inconsistent shares would be
for the client to rely on a verifiable secret sharing which would empower each committee member to verify if
the share received by the committee member is consistent with the commitments to the polynomial that was
sent by the client. However, this requires each committee client to perform n · r exponentiations which can
be expensive where r is the reconstruction threshold. Instead, we take an alternative approach to verifying
that the secret and the shares lie on the same polynomial, while ensuring that the bulk of the verification is
done by the powerful server.

Our public verifiability will rely on a modification of SCRAPE [CD17]. SCRAPE test is done to check if

(sd
(1)
i,ℓ , . . . , sd

(m)
i,ℓ ) is a Shamir sharing over Zq of degree d = r−1 (namely there exists a polynomial p of degree

≤ d such that p(i) = si for i = 1, . . . , n), one can sample w(1), . . . , w(m) uniformly from the dual code to the

Reed-Solomon code formed by the evaluations of polynomials of degree ≤ d, and check if
∑m

i=1 w
(i) · sd(i)i,ℓ = 0

in Zq. If the test passes, then sd
(1)
i,ℓ , . . . , sd

(m)
i,ℓ are Shamir Shares, except with probability 1/|Zq|. Recall that

q is a prime number.

Lemma 4 (SCRAPE Test [CD24]). Let Zq be a finite field and let d = r − 1,m be parameters of the

Shamir’s Secret Sharing scheme such that 0 ≤ d ≤ m − 2, and inputs sd
(1)
i,ℓ , . . . , sd

(m)
i,ℓ ∈ Zq. Define vi :=∏

j∈[m]\{i}(i− j)−1 and let m∗(X) :=
∑m−d−2

i=0 mi ·Xi ←$ Zq[X]≤m−d−2 (i.e., a random polynomial over the

field of degree at most m − d − 2). Now, let w := (v1 · m∗(1), . . . , vn · m∗(m)) and s := (sd
(1)
i,ℓ , . . . , sd

(m)
i,ℓ ).

Then,

• If there exists p ∈ Zq[X]≤d such that sd
(i)
i,ℓ ,= p(i) for all i ∈ [n], then ⟨w, s⟩ = 0.

• Otherwise, Pr[⟨w, s⟩ = 0] = 1/|Zq|.

Typically, we compute the polynomial m∗(X) by using the Fiat-Shamir transform over public values.
Then, the vector w is a public vector. One simply has to hide the vector s. As a result, we have proved that
the shares do lie on the same polynomial. Note that in standard Shamir’s Secret Sharing, we set p(0) = sdi,ℓ,
i.e., the secret. Therefore, we will have to perform inner product over a vector of length m+ 1.

Thus, we get the following relation for the proof of correct-sharing:

RSharing :=
{

(w; s) ⟨w, s⟩ = 0,w ∈ Zm+1
q , s ∈ Zm+1

q

}
While we will employ a commit-and-prove paradigm, observe that the server can only verify if the commitment
satisfies the required proof. A malicious client can send a completely arbitrary share to the committee
member, under the hood of decryption. To solve this problem, the server will forward the commitment to the
share it has received. This will allow the committee member to receive if the share (and necessary opening
information) received by the committee member opens the commitment forwarded by the server. If it fails,
the committee member complains and the protocol aborts. This guarantees malicious security with abort.

Proof of Correct Masking. RSharing guarantees that the shares are consistent. In contrast, the commit-
ment opening by the committee member guarantees that the share received matches the share committed
to; it is important to ensure that the correct seed is used in the computation of the seed-homomorphic PRG.
For example, in OPALWR (for L = 1), client i computes

cti,ℓ = A · sdi,ℓ + ei,ℓ +∆ · xi,ℓ

Here, A is public while sdi,ℓ←$ Zλ
q , e←$ χL are secret along with xi,ℓ ∈ ZL

p . Therefore, we get:

RMasking :=

{
(cti,ℓA; sdi,ℓ, ei,ℓ, xi,ℓ) cti,ℓ = A · sdi,ℓ + ei,ℓ +∆ · xi,ℓ,

cti,ℓ ∈ ZL
q , sdi,ℓ ∈ Zλ

q , e ∈ χL, xi,ℓ ∈ ZL
p

}
Note that e ∈ χL is typically proved by showing that its L2 (or L∞) norm is bounded.
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Proof of Linear Relations over Zq. It is critical to observe that the relations RSharing and RMasking are
both linear relations over Zq (except showing that e is “small”, i.e., ∥e∥2 ≤ βe for some parameter β. We
will combine to get the following relation:

ROPA :=


cti,ℓ = A · sdi,ℓ + ei,ℓ +∆ · xi,ℓ(

w,A, cti,ℓ; sdi,ℓ,
{
sd

(j)
i,ℓ

}
, ei,ℓ, xi,ℓ

) 〈
w,

(
sdi,ℓ, sd

(1)
i,ℓ , . . . , sd

(m)
i,ℓ

)
= 0

〉
∥ei,ℓ∥2 ≤ βe,A ∈ ZL×λ

q , sdi,ℓ ∈ Zλ
q ,

cti,ℓ ∈ ZL
p


One can employ the techniques of Lyubashevsky et al. [LNP22, Figure 5] to prove the linear relations
between the various secrets. An alternative approach for RSharing is described in Figure 11. Then, one can
use Lyubashevsky et al. [LNP22, §4] to prove the L2 norm on e.

Input Validation. A malicious client can provide incorrect or malicious inputs under encryption. There-
fore, adding a validation restriction on the input is also essential. Typically, this is done by proving that
the L2, L∞ norm is bounded. Therefore, it is clear that one can do techniques similar to bounding e, to
prove that ∥xi,ℓ∥ also satisfies some prior bounds. However, looking ahead, in Section F, we describe how to
combine bRSA with OPA, where each client’s input to server is a vector of 0s and 1s. This proof technique is
much simpler. Specifically, when combining OPA with bRSA [LXC+19] as described in Section F, we require
clients only to prove that their input is a binary vector.

7.1 Heterogeneity and Poisoning Attacks

In Section F, we present two approaches, FedOpt [RCZ+21] and Byzantine-Robust Stochastic Aggrega-
tion [LXC+19]. The former is designed to handle heterogeneity in data distribution, while the latter is
designed to handle poisoning attacks where some clients behave arbitrarily. We further describe how to
combine OPA with these two approaches, bringing these techniques to the much-needed privacy-preserving
alternatives.

8 Experiments

In this section, we benchmark OPALWR, the construction based on leakage resilient seed-homomorphic PRG,
combined with a secret-sharing scheme. This includes benchmarking the computation time of various proto-
cols (Figure 4), the performance of multiple protocols for L = 1000 (Figure 5), and OPA′ instantiated with
the HSMM=p called OPACL (Table 3). We run our experiments on an Apple M1 Pro CPU with 16 GB of
unified memory without multi-threading or related parallelization. We use the ABIDES simulation [BHB20]
to simulate real-world network connections. ABIDES supports a latency model, represented as a base delay
and jitter, which controls the number of messages arriving within a specified time. Our base delay is set with
the range from 21 microseconds to 100 microseconds), and we use the default parameters for the jitter. This
delay is set to correspond to devices locally situated. This framework was used to measure the performance of
other prior work, including [MWA+23, GPS+24]. More details on the framework can be found in [GPS+24,
§G].

Parameter Choices for OPALWR. OPALWR is parametrized by λ, q, p (See Definition 2). Our parameter
choices are based on the LWE Estimator [APS15], following similar choices made by [EK21], where the value
of 1/p is the error rate α in an LWE instance. Using the LWE estimator, we set λ := 1024. We set q to
match the field used for Shamir’s Secret Sharing, which is a 128-bit prime and set p = 285. The hardness
estimated is 2129, i.e., we get the security of 129 bits.

We use Packed Secret Sharing to benchmark the server and client computation cost. One can pack ρ
secrets into a single polynomial using packed secret sharing. However, an implicit trade-off exists as the total
number of parties m ≥ 3/2·ρ. An increase in ρ implies an increase in m. Here, we set ρ = 16, corresponding to
requiring λ/16 polynomials, i.e., each committee member receives 64 shares. Consequently, anm = 50 satisfies
the requirement. We then set the reconstruction threshold r = 34, while Packed Secret Sharing guarantees a
tolerance for a corruption threshold of m−ρ. However, we need to ensure this among the committee members,
even in the face of dropouts. Specifically, if δC , ηC are dropout and corruption rates among the committee
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Figure 3: We plot the total client and server running time as a function of client count across various protocols.
Our running time includes both computation and communication time. Here, δ indicates the offline rate and
m is used to parametrize the number of parties each client has to communicate with (i.e., number of neighbors
or committee size). In all our experiments on MicroSecAgg [GPS+24], the clients’ maximum input is 104.
The running time of the committee members are added to the Client’s running time in OPALWR.

members, we need to compute the Pr[δC + ηC > 1/3]. Using Hypergeometric Distribution (Definition 1) and
setting δ = 0.01, we get that m = 50 ensures Pr[δC + ηC > 1/3] ≤ 5 · 10−5. Note that this construction
achieves committee performance independent of the vector length and is preferred. This also satisfies the
constraint for reconstruction with error correction which requires that 2m · ηC < (1− δC)m− ρ+ 1.

Microbenchmarking Secure Aggregation. Our first series of experiments is to run OPALWR to build a
secure aggregation protocol for L = 1. We also compare with existing work, including [BIK+17, BBG+20,
GPS+24, MWA+23]8. We vary the offline rates (δ) and the ability to group clients (m), along with increasing
the number of clients to study the performance of related work. It is important to note that OPA’s one-
shot communication (client and committee member) implies that as δ increases, the client’s performance
remains the same while the server and the committee’s performance improves as fewer clients participate in
the aggregation. The results are plotted in Figure 3.

Performance of OPALWR. The running time performance of OPALWR is notably superior to all other protocols
tested across server and client computation times.

• Server Total Time: At 1000 clients, OPALWR shows the most significant improvement, with a server
computation time of just 0.31 seconds, drastically outperforming other protocols. For example, [BIK+17]
with δ = 0 takes approximately 71.3 seconds, while [BBG+20] with δ = 0 and m = 50 reaches 10.1
seconds. Even protocols from [GPS+24] with various settings, such as δ = 0 and δ = 0.1, take between
16 and 19 seconds. These results make OPALWR an outstanding choice for minimizing server computation
time.

• Client Total Time: Similarly, for client computation time at 1000 clients, OPALWR again stands out
with only 38.8 milliseconds, which is significantly faster than the other protocols. For instance, the

8We do not benchmark LERNA [LLPT23] given that it is not suitable for the FL setting as discussed in Section 2.4.
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Figure 4: Client and Server Computation Time as a function of client count across different algorithms.

protocol in [BIK+17] with δ = 0 reaches over 5700 milliseconds, while [BBG+20] with δ = 0,m = 50
results in 146.2 milliseconds. In contrast, [GPS+24], even at lower offline rates (δ = 0 and δ = 0.1),
shows client computation times exceeding 2000 milliseconds, making OPALWR’s performance at 1000
clients a clear advantage.

The remarkable speed of OPALWR in server and client performance, especially as client count grows, emphasizes
its efficiency and scalability in real-world applications. It significantly reduces the computational burden
and communication overhead compared to existing protocols, making it an attractive solution for privacy-
preserving aggregation tasks.

Communication Cost of OPALWR. Let k be the number of elements being shared. With naive secret
sharing, this would be 1024. Instead, when we pack into 64 different polynomials, we get k = 64. Thus,
OPALWR has a communication cost, in terms of field elements, as follows:

• Total Sent/Received per Client: L+ k ·m field elements

• Total Sent/Received by Server: nL+mk field elements

• Total Sent/Received per Committee Member: n · k + k field elements,

8.1 Computation Time

We also micro-benchmark in the same environment and setting as before to measure the cost of server and
client computation alone. This is shown in Figure 4. This does not account for the time of communication.
As can be seen, OPALWR still significantly outperforms prior work.

8.2 Running Time vs length of vector L

We also benchmark the performance of the protocols, with dropout rate δ = 0 for L = 1000. This is covered
in Figure 5. The server performance of OPALWR significantly outperforms existing protocol. Meanwhile, we
observe that Flamingo has a better client performance for smaller choices of client count, while OPALWR begins
performing better for a larger number of clients. It is noted that OPALWR’s unique one-shot design implies
that the client performance is independent of the number of clients. Owing to the number of exponentiation
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Figure 5: We plot the total client and server running time as a function of client count across various
protocols. Our running time includes both computation and communication time. Here, δ = 0 indicates the
offline rate and m is used to parametrize the number of parties each client has to communicate with (i.e.,
number of neighbors or committee size) and L = 1000. In all our experiments on MicroSecAgg [GPS+24],
the clients’ maximum input is 104. The running time of the committee members are added to the Client’s
running time in OPALWR.

Table 3: Comparison of Computation Times for Server and Client between OPACL and OPALWR for L = 1.

Clients Server Computation (s) Client Computation (s)

OPALWR OPACL OPALWR OPACL

100 0.0262 1.9347 0.0276 1.6579
200 0.0268 1.9052 0.0286 1.6622
300 0.0260 1.9036 0.0273 1.6526
400 0.0266 1.9067 0.0273 1.6333
500 0.0267 1.9201 0.0273 1.6420
1000 0.0292 1.9310 0.0280 1.6350

that is proportional to L, MicroSecAgg [GPS+24] performs degrades with L, and our benchmarks indicated
that the performance bounds were outside the range of this graph and are omitted from our plot.

8.3 Performance of OPACL

OPA′ is an alternate framework for instantiating One-shot Private Aggregation from threshold key-homomorphic
PRF unlocking constructions based on additional assumptions, including class groups. While these contribu-
tions are practically more expensive, we include benchmarks for completeness. We use the Threshold PRF
based on Class Groups (See Section 11). We rely on the BICYCL library [BCIL23] and use pybind to convert
the C++ code to Python. Our implementation will assume that the plaintext space is Zp for a prime p. Our
experiments will take that m = 50.

It is to be noted that the client’s performance scales significantly, owing to 50 group exponentiations. How-
ever, the server performance is less than 2 seconds, outperforming several existing protocols’ computations.
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Figure 6: MLP Accuracy for different datasets: MNIST and CIFAR-10. We use n = 100 clients in this
training, and m = 50.

8.4 Performance in Federated Learning Use-case

We discuss the accuracy experiments conducted on various classifiers and datasets and plot the performance
of OPALWR with respect to learning in the clear (i.e., without cryptographic protections) in Figures 7,6. Our
results show that the accuracy of OPALWR is statistically indistinguishable from that of the classifier when
learning in the clear.

• Adult Census Dataset: We first run experiments on the adult census income dataset from [BMPB22,
JWEG18] to predict if an individual earns over $50,000 per year. The preprocessed dataset has 105
features and 45,222 records with a 25% positive class. We randomly split into training and testing, with
further splitting by the clients. First, we train in the clear with weights sent to the server to aggregate.
With 100 clients and 50 iterations, we achieve 82.85% accuracy and 0.51 MCC. We repeat with OPALWR

with 100 clients and 50 committee members. With 10 iterations, we achieve 82.38% accuracy and 0.48
MCC. With 20 iterations, we achieve 82% accuracy and 0.51 MCC. Our quantization technique divides
weights into integer and decimal parts (2 integer and 8 decimal values per weight). Training with 50
clients takes under 1 minute per client per iteration with no accuracy loss. This quantization yields a
vector size of 1050 (10 per feature).

• We use the Kaggle Credit Card Fraud dataset [PCJB15], comprising 26 transformed principal compo-
nents and amount and time features. We omit time and use the raw amount, adding an intercept. The
goal is to predict if a transaction was indeed fraudulent or not. There are 30 features and 284,807 rows,
with <0.2% fraudulent. Weights are multiplied by 10,000 and rounded to an integer, accounted for
in aggregation. Figure 7 shows OPALWR’s MCC versus clear learning for varying clients and iterations.
With the accuracy multiplier, OPALWR’s MCC is close to clear learning and sometimes outperforms. The
highly unbalanced dataset demonstrates OPALWR can achieve substantial performance even in challenging
real-world scenarios.

• We then train a vanilla multi-layer perceptron (MLP) classifier on three datasets: MNIST, CIFAR-10,
and CIFAR-100. We quantize the weights by multiplying with 216. The MLP accuracy, as a function
of the iteration count, is plotted in Figures 6,7. Our experiments demonstrate that OPALWR preserves
accuracy while ensuring the privacy of client data. Note that vanilla MLP classifiers do not typically
offer good performance for CIFAR datasets, but note that our experiments aimed to show that OPALWR

does not impact accuracy.
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Figure 7: MLP Accuracy for CIFAR-100. We use n = 100 clients in this training, and m = 50. In the last
figure, we have the MCC score as a function of the number of iterations for the credit card fraud dataset.

9 Future Work

OPA provides malicious security with abort, but achieving guaranteed output delivery (GoD)/robustness
while ensuring clients speak only once remains an open challenge. The only work addressing GoD is [BGL+23],
which, however, requires multiple interaction rounds, scaling logarithmically with the number of clients in
the worst case, with minimum being 6 rounds.

While we present lattice-based instantiations to achieve security in the face of malicious clients, we leave
it as future work to implement and optimize the performance of these constructions. Another direction
of research is to balance lattice-based zero-knowledge proofs with techniques from Bulletproof to achieve
optimized performance.
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Department of J.P. Morgan. J.P. Morgan makes no representation and warranty whatsoever and disclaims
all liability, for the completeness, accuracy or reliability of the information contained herein. This document
is not intended as investment research or investment advice, or a recommendation, offer or solicitation for
the purchase or sale of any security, financial instrument, financial product or service, or to be used in any
way for evaluating the merits of participating in any transaction, and shall not constitute a solicitation under
any jurisdiction or to any person, if such solicitation under such jurisdiction or to such person would be
unlawful.
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A Preliminaries

For completeness, we discuss secret sharing in Section A.1. We discuss pseudorandom functions in Section A.2.
We then introduce lattice-based cryptographic assumptions in Section 4.2.

A.1 Secret Sharing

A key component of threshold cryptography is the ability to compute distributed exponentiation by sharing
a secret. More formally, the standard approach is to compute gs for some g ∈ G where G is a finite group
and s is a secret exponent that has been secret-shared among multiple parties. This problem is much simpler
when you assume that the group order is a publicly known prime p which then requires you to share the
secret over the field Zp. This was the observation of Shamir [Sha79] whereby a secret s can be written as a
linear combination of

∑
i∈S αisi mod p where S is a set of servers that is sufficiently large and holds shares

of the secret si and αi is only a function of the indices in S. It follows that if each server provides gi = gsi ,
then one can compute gs = g

∑
i∈S αi·si =

∏
i∈S gαi

i . Formally, this is defined below.

Construction 5 (Shamir’s Secret Sharing over Fq). Consider the following (t, r,m) Secret Sharing Scheme
where m is the total number of parties, t is the corruption threshold, r is the threshold for reconstruction.
Then, we have the following scheme:

• Share(s, t, r,m): Sample a random polynomial f(X) ∈ Fq[X] of degree r − 1 such that f(0) = s. Then,
return

{
s(j) := f(j)

}
j∈[m]

• Coeff(S): On input of a set S = {i1, . . . , ir, . . .} ⊆ [m] of at least r indices, compute λij =
∏

ζ∈[r]\{j}
iζ

iζ−ij
.

Then, return
{
λij

}
ij∈{i1,...,ir}

• Reconstruct(
{
s(j)
}
j∈S : If |S| ≥ r, then output

∑
j∈S λj · s(j) where {λj} ← Coeff(S).

The correctness of the scheme guarantees that the secret s is correctly reconstructed.

Construction 6 (Packed Secret Sharing over Fq). Consider the following (t, r,m) Secret Sharing Scheme
where m is the total number of parties, t is the corruption threshold, r is the threshold for reconstruction.
Further, let ρ be the number of secrets being packed which are to be embedded at points pos1, . . . , posρ where
posi = m+ i. Here, t := r − ρ. Then, we have the following scheme:

Share(s = (s1, . . . , sρ), t, r,m)

(r0, . . . , rr−ρ−1)←$ Fq

q(X) :=

r−ρ−1∑
i=0

Xi · ri

posi = m+ i for i = 1, . . . , ρ

for i ∈ [ρ] do

Li(X) :=
∏

j∈[ρ]\i

X − posj
posi − posj

·∆

f(X) := q(X)

ρ∏
i=1

(X − posi) +

ρ∑
i=1

si · Li(X)

return
{
s(i)
}

i∈[m]

Reconstruct(
{
s(i)
}
i∈S)

if |S| < r return ⊥
Parse S := {i1, . . . , it, . . .}
for k ∈ [ρ]

for j ∈ [t]

Λij (X) :=
∏

ζ∈[t]\j

iζ −X

iζ − ij

s′k :=
∑
j∈[t]

Λij (m+ k) · s(j)

return s′ := (s′1, . . . , s
′
ρ)

Parameters.

• For reconstruction, we require r < m(1− δC) where δC is the dropout rate within the committee.
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• For security, we require that (r − ρ) > m · ηC where ηC is the corruption rate.

Combining, we get m > ρ/(1− δC − ηC). Recall that we need δC + ηC < 1/3, for byzantine fault tolerance.
In other words, setting m ≥ 3ρ/2 is sufficient.

Remark 2 (Optimizations for Packed Secret Sharing). Observe that the polynomial Li(X) is only dependent
on points posi, which are the points where the secrets are embedded. This can be pre-processed, and indeed,
can be a part of the setup algorithm which distributes it to all the clients. Furthermore, rather than naively
reconstructing the Lagrange polynomial, one can also rely on FFT techniques to achieve speed up.

Unfortunately, the above protocols do not extend to settings where the order of the group is not prime, not
publicly known, or even possibly unknown to everyone. In this setting, the work of Damg̊ard and Thorbek
presents a construction to build Linear Integer Secret Sharing (LISS) schemes. In this work, we rely on
the simpler scheme that extends Shamir’s secret sharing into the integer setting from the work of Braun et
al. [BDO23]. We also extend the Packed Secret Sharing scheme to this integer setting in Construction 8.

Definition 6 (Secret Sharing over Z). A (t, r,m) Linear Integer Secret Sharing Scheme LISS is a tuple of
PPT algorithms LISS := (Share,GetCoeff,Reconstruct), with the following public parameters: the statistical
security parameter κs, the number of parties m, the corruption threshold t, and reconstruction threshold r of
secrets needed for reconstruction, the randomness bit length ℓr, the bit length of the secret ℓs and the offset
by which the secret is multiplied, denoted by ∆ = m!, and the following syntax:

• (s1, . . . , sm)←$ Share(s,m, r, t): On input of the secret s, the number of parties m, and the threshold t,
the share algorithm outputs shares s1, . . . , sm such that party i receives si.

• {λi}i∈S ← GetCoeff(S): On input of a set S of at least r indices, the GetCoeff algorithm outputs the
set of coefficients for polynomial reconstruction.

• s′ ← Reconstruct({si}i∈S): On input of a set of secrets of at least r shares, the reconstruction algorithm
outputs the secret s′.

We further require the following security properties.

• Correctness: For any m, κs, t, r, ℓs, ℓr ∈ Z with t < r ≤ m, and any set S ⊆ [m] with |S| ≥ r, for any
s ∈ Z such that s ∈ [0, 2ℓs) the following holds:

Pr

[
s′ = f(s)

(s1, . . . , sm)←$ Share(s,m, r, t)
s′ ← Reconstruct({si}i∈S)

]
where f is some publicly computable function, usually f(s) = ∆2 · s.

• Statistical Privacy [DT06]: We say that a (t, r,m) linear integer secret sharing scheme LISS is statisti-
cally private if for any set of corrupted parties C ⊂ [m] with |C| ≤ t, and any two secrets s, s′ ∈ [0, 2ℓs)
and for independent random coins ρ, ρ′ such that {si}i∈[m] ←$ Share(s; ρ), {si}′i∈[m] ←$ Share(s′; ρ′) we

have that the statistical distance between: {si|i ∈ C} and {s′i|i ∈ C} is negligible in the statistical security
parameter κs.

Construction 7 (Shamir’s Secret Sharing over Z). Consider the following (t, r,m) Integer Secret Sharing
scheme where m is the number of parties, t is the corruption threshold, and r is the threshold for reconstruc-
tion. Further, let κs be a statistical security parameter. Let ℓs be the bit length of the secret and let ℓr be
the bit length of the randomness. Then, we have the following scheme:

Share(s, t, r,m)

∆ := m!, s̃ := s ·∆

(r1, . . . , rr−1)←$ [0, 2ℓr+κs)

f(X) := s̃+
r−1∑
i=1

ri ·Xi

return
{
s(i) = f(i)

}
i∈[m]

GetCoeff(S)
if |S| ≥ r

for i ∈ S do

Λi :=
∏

j∈S\{i}

xj

xj − xi
·∆

return {Λi}i∈S

Reconstruct(
{
s(i)
}
i∈S)

if |S| ≥ r

{Λi}i∈S ← GetCoeff(S)

s′ :=
∑
i∈S

Λi · s(i)

return s′
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We omit the proof of correctness as it is similar to the original Shamir’s Secret Sharing scheme. However,
we highlight the critical differences:

• Unlike Shamir’s Secret Sharing over fields, the secret here is already multiplied by the offset ∆. There-
fore, any attempt to reconstruct can only yield s ·∆

• However, note that the inverse of xj − xi which was defined over the field Zq might not exist or be
efficiently computable in a field of unknown order. Instead, we multiply the Lagrange coefficients by
∆. Consequently, the reconstruction yields ∆ · s̃ which equals s ·∆2.

Theorem 5 ([BDO23]). Construction 7 is statistically private provided ℓr ≥ ℓs + ⌈log2(hmax · (t − 1))⌉ + 1
where hmax is an upper bound on the coefficients of the sweeping polynomial.

We refer the readers to the proof in [BDO23, §B.1]. The key idea behind the proof is first to show that
there exists a “sweeping polynomial” such that at each of the points that the adversary has a share of, the
polynomial evaluates to 0 while at the point where the secret exists, it contains the offset ∆. Implicitly,
one can add the sweeping polynomial to the original polynomial whereby the sweeping polynomial ”sweeps”
away the secret information that the adversary has gained knowledge of. Meanwhile, in the later section,
we present the proof for the generic construction that uses Shamir’s Packed Secret Sharing over the integer
space. This again uses the idea of a sweeping polynomial.

Construction 8 (Shamir’s Packed Secret Sharing over Z). Let m be the number of parties and ρ be the
number of secrets that are packed in one sharing. Further, let t denote the threshold for reconstruction
(implies that corruption threshold is t − ρ). Then, consider the following (m, t, ρ) Integer Secret Sharing
Scheme with system parameters κs as the statistical security parameter, ℓs is the bit length of the a secret,
and let ℓr be the bit length of the randomness. Then, we have the following scheme:

PackedShare(s = (s1, . . . , sρ), t,m)

∆ := m!, s̃ := s ·∆

(r0, . . . , rt−ρ−1)←$ [0, 2ℓr+κs)

q(X) :=

t−ρ−1∑
i=0

Xi · ri

posi = m+ i for i = 1, . . . , ρ

for i ∈ [ρ] do

Li(X) :=
∏

j∈[ρ]\i

X − posj
posi − posj

·∆

f(X) := q(X)

ρ∏
i=1

(X − posi) +

ρ∑
i=1

s̃i · Li(X)

return
{
s(i)
}

i∈[m]

Reconstruct(
{
s(i)
}
i∈S)

if |S| < t return ⊥
Parse S := {i1, . . . , it, . . .}
for k ∈ [ρ]

for j ∈ [t]

Λij (X) :=
∏

ζ∈[t]\j

iζ −X

iζ − ij
· (∆)

s′k :=
∑
j∈[t]

Λij (m+ k) · s(j)

return s′ := (s′1, . . . , s
′
ρ)

Correctness. Observe that for all i = 1, . . . , ρ, we have the following:

• Li(posi) = ∆

• Lj(posi) = ∆ for all j ∈ [ρ], j ̸= i

• f(posi) = s̃i ·∆ = si ·∆2

Meanwhile, for λij (X) :=
∏

ζ∈[t]\[j]
iζ−X
iζ−ij

, the polynomial we will be able to compute the polynomial f(x) =∑
j∈[t] λij ·s(j) by correctness of Lagrange Interpolation. Consequently, f(posi) would return si ·∆2. However,

we compute Λij instead, by multiplying with ∆ to remove need for division. Consequently, the resulting
polynomial has ∆ multiplied throughout yielding a ∆3 as the total offset.
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Definition 7 (Vector of Sweeping Polynomials). Let C ⊂ [m] such that |C| = t−ρ. Then, we have a vector of
sweeping polynomials, denoted by spC(X) = (sp1,C , . . . , spρ,C) where spi,C(X) :=

∑t−ρ
j=0 spi,j ·Xj ∈ Z[X]≤t−1

is the unique polynomial whose degree is at most t − 1 such that spi,C(m + i) = ∆2, spi,C(m + j) = 0 for
j ∈ [ρ], j ̸= i, and spi,C(j) = 0 for all j ∈ C. Further, one can define spmax as the upper bound for the

coefficients for the sweeping polynomials, i.e., spmax :=
{
spi,j |i ∈ {1, . . . , ρ} , j ∈ {0, . . . , t− 1}

}
Lemma 6 (Existence of Sweeping Polynomial). For any C ⊂ [m] with |C| = t − ρ, there exists spC ∈
(Z[X]≤t−ρ)

ρ satisfying Definition 7.

Proof. For any i = 1, . . . , ρ, we have that spi,C(m+ i) = ∆2 and spi,C(j) = 0 for j ∈ C. Let C := (i1, . . . , it−ρ).
In other words, we can use these evaluations to construct a polynomial as follows:

spi,C(X) := ∆2 ·
t−ρ∏
j=1

(X − ij)

(m+ i)− ij
·
∏

j∈[ρ]\{i}

(X − (m+ j))

(i− j)

Note that i1, . . . , ij ∈ [m] and are distinct. Therefore,
∏t−ρ

j=1(m + i) − ij perfectly divides ∆ and so does∏
j∈[ρ]\{i}(i− j), which implies that the coefficients are all integers. Further, the degree of this polynomial is

at most t− 1. Thus, spi,C(X) ∈ Z[X]t−1. This defines the resulting vector of sweeping polynomials spC .

Theorem 7. Construction 8 is statistically private provided

ℓr ≥ ℓs + ⌈log2(spmax · (t− 1) · ρ)⌉+ 1

Proof. Let s, s′ ∈ [0, 2ℓs)ρ be two vectors of secrets. Then, s̃ := s · ∆ and s̃′ := s′ · ∆. Let C denote an
arbitrary subset of corrupted parties of size |C| = t − ρ. Further, let us assume that s̃ is shared using the
polynomial f(X) as defined below:

f(X) := q(X) ·
ρ∏

k=1

(X − posi) +

ρ∑
k=1

s̃i · Lk(X)

where Lk(X) :=
∏

j∈[ρ]\{k}
X−posj

posk−posj
·∆. and q(X) is a random polynomial of degree t− ρ− 1.

Now observe that the adversary see |C| = t − ρ shares corresponding to f(ij) for ij ∈ C. By Lagrange
interpolation, this induces a one-to-one map from possible secrets to corresponding sharing polynomials.
Specifically, we can use the vector of sweeping polynomials, as defined in Definition 7 to explicitly map any
secret vector s∗ to its sharing polynomial defined by f(X) + ⟨s∗ − s, spC(X)⟩

In other words, the sharing polynomial to share s∗ is defined by

f∗(X) = f(X) +

ρ∑
k=1

(s∗k − sk) · spk,C(X)

One can verify the correctness. For example, to secret share s∗1, at position m+ 1, we get:

f∗(m+ 1) = f(m+ 1) +

ρ∑
k=1

(s∗k − sk) · spk,C(X)

Now, observe that f(m+ 1) = s1 · (∆2). Meanwhile, sp1,C(m+ 1) = ∆2 while spj,C(m+ 1) = 0 for 1 < j ≤ ρ.
This simplifies to: f∗(m+1) = s1 ·∆2+(s∗1− s1) ·∆2 = s∗1 ·∆2. However, while we have an efficient mapping,
note that f∗(X) could have coefficients that are not of the prescribed form, i.e., coefficients do not lie in the
range [0, 2ℓr+κs). We will call the event good if the coefficients lie in the range and bad even if one of the
coefficients does not lie in the range.

Let us apply the above mapping to the secret s′ and we have the resulting polynomial:

f ′(X) = f(X) +

ρ∑
k=1

(s′k − sk) · spk,C(X)
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Now, observe that if f ′(X) was a good polynomial, then f ′(j) = f(j) for every j ∈ C. It follows that if f ′

was good, then an adversary cannot distinguish whether the secret vector was s or s′.
We will now upper bound the probability that f ′ was bad in at least one of the coefficients. We know

that |s′k − sk| ∈ [0, 2ℓs) for k = 1, . . . , ρ. Further all coefficients of spk,C(X) are upper bounded by spmax.

Therefore, to any coefficient of f(X), the maximum perturbation in value is: 2ℓs · spmax · ρ. Therefore, one
requires that the original coefficients of f be sampled such that they lie in [2ℓs ·spmax ·ρ, 2ℓr+κs−2ℓs ·spmax ·ρ].
In other words, the probability that one coefficient of f ′ is bad is:

2 · 2ℓs · spmax · ρ
2ℓr+κs

There are t − 1 such coefficients. This gives us that the probability is ≤ 2−κs assuming that ℓr ≥ ℓs +
⌈log2(spmax · (t− 1) · ρ)⌉+ 1

A.2 Pseudorandom Functions

Definition 8 (Pseudorandom Function (PRF)). A pseudorandom function family is defined by a tuple of
PPT algorithms PRF = (Gen,Eval) with the following definitions:

• ppPRF←$ Gen(1κ): On input of the security parameter κ, the generation algorithm outputs the system
parameters required to evaluate the function F : K × X → Y where K is the key space, X is the input
space, and Y is the output space.

• y ← Eval(k, x): On input of x ∈ X and a randomly chosen key k←$K, the algorithm outputs y ∈ Y
corresponding to the evaluation of F (k, x).

We further require the following security property that: for all PPT adversaries A, there exists a negligible
function negl such that:

Pr

b = b′
b←$ {0, 1} , k←$K

O0(·) := F (k, ·),O1(·) := U(Y)
b′←$AOb(·)

 ≤ 1

2
+ negl(κ)

where U(Y) outputs a randomly sampled element from Y.

Definition 9 ((γ)-Key Homomorphic PRF). Let PRF be a pseudorandom function that realizes an efficiently
computable function F : K ×X → Y such that (K,⊕) is a group. Then, we say that it is

• key homomorphic if: (Y,⊗) is also a group and for every k1, k2 ∈ K and every x ∈ X we get:
Eval(k1, x)× Eval(k2, x) = Eval(k1 ⊕ k2, x).

• γ = 1-almost key homomorphic if: Y = Zp if for every k1, k2 ∈ K and every x ∈ X , there exists an
error e ∈ {0, 1} we get: Eval(k1, x)× Eval(k2, x) = Eval(k1 ⊕ k2, x) + e.

A.3 Distributed Key Homomorphic PRF

Definition 10 (Distributed Key Homomorphic PRF (DPRF)). A (t,m)-Distributed PRF is a tuple of PPT
algorithms DPRF := (Gen,Share,Eval,P-Eval,Combine) with the following syntax:

• ppPRF←$ Gen(1κ, 1t, 1m): On input of the threshold t and number of parties m, and security parameter
κ, the Gen algorithm produces the system parameter ppPRF which is impliclty consumed by all the other
algorithms.

• k(1), . . . , k(m)←$ Share(k, t, r,m): On input of the number of parties m, corruption threshold t, recon-
struction threshold r, and a key k←$K, the share algorithm produces the key share for each party.

• Y ← Eval(k, x): On input of the PRF key k and input x, the algorithm outputs y corresponding to some
pseudorandom function F : K ×X → Y.
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• yi←$ P-Eval(k(i), x): On input of the PRF key share k(i), the partial evaluation algorithm outputs a
partial evaluation yi on input x ∈ X .

• Y ′←$ Combine({yi}i∈S): On input of partial evaluations yi corresponding to some subset of shares S
such that |S| ≥ t, the algorithm outputs Y ′.

We further require the following properties:

• Correctness: We require that the following holds for any m, t, r, κ ∈ Z with t < r ≤ m and any set
S ⊆ [m] with |S| ≥ r, any input x ∈ X :

Pr

Y = Y ′
ppPRF←$ Gen(1κ, 1t, 1r, 1m), k←$K{

k(i)
}
i∈[m]

←$ Share(k),
{
yi ← P-Eval(k(i), x)

}
i∈S

Y ′ ← Combine({yi}i∈S), Y = Eval(k, x)

 = 1

• Pseudorandomness with Static Corruptions: We require that for any integers t, r,m with t < r ≤ m,
and for all PPT adversary A, there exists a negligible function negl such that:

Pr



b = b′ ppPRF←$ Gen(1κ, 1t, 1r, 1m), k←$K
|K ∪ {j : (j, x∗) ∈ E} | ≤ t (st,K)←$A(ppPRF){

k(i)
}
i∈[m]

←$ Share(k, t, r,m, )

(st, x∗)←$AOEval(
{
k(i)
}
i∈K)

b←$ {0, 1}, Y0←$ Eval(k, x∗)
Y1←$ U(Y), b′←$AOEval(st, Yb)

 = 1

where:

OEval(i, x)

E := E ∪ {(i, x)}

return P-Eval(k(i), x)

• Key Homomorphic: We require that if (K,⊕), (Y,⊗) are groups such that:

– ∀ x ∈ X ,∀ k1, k2 ∈ K,Eval(k1, x)⊗ Eval(k2, x) = Eval(k1 ⊕ k2, x), and

– ∀ x ∈ X , ∀ k1, k2 ∈ K,
{
k
(j)
b ←$ Share(kb)

}
j∈[m],b∈{1,2}

,

∀ j ∈ [m], y
(j)
1,2 :=

(
P-Eval(k

(j)
1 , x)⊗ P-Eval(k

(j)
2 , x)

)
, and ∀S ⊆ [m] with |S| ≥ r, Combine({

y
(j)
1,2

}
j∈S

)
= Eval(k1 ⊕ k2, x)

A.4 Class Groups Framework

Class group-based cryptography is a cryptographic technique that originated in the late 1980s, with the idea
that the class group of ideals of maximal orders of imaginary quadratic fields may be more secure than the
multiplicative group of finite fields [BW88, MCC89]. The CL framework was first introduced by the work of
Castagnos and Laguillaumie [CL15]. This framework operates on a group where there exists a subgroup with
support for efficient discrete logarithm construction. Subsequent works [CLT18, CCL+19, CCL+20, Tuc20,
BDO23] have refined the original framework. The framework has been used in various applications over the
years [CLT18, CCL+19, CCL+20, YCX21, DMZ+21, GMM+22, TCLM21, BDO23, KMM+23]. Meanwhile,
class group cryptography itself has been employed in numerous applications [Wes19, Wes20, Lip12, BBF19,
CIL17, CC18, LM19, BFS20, AGL+23, ADOS22, CKLR21, CGKR22, ACC+22].

Broadly, the framework is defined by two functions - CLGen,CLSolve with the former outputting a tuple
of public parameters. The elements of this framework are the following:
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• Input Parameters: κc is the computational security parameter, κs is a statistical security parameter,
a prime p such that p > 2κc , and uniform randomness ρ that is used by the CLGen algorithm and is
made public.

• Groups: Ĝ is a finite multiplicative abelian group, G is a cyclic subgroup of Ĝ, F is a subgroup of G,
H = {xp, x ∈ G}

• Orders: F has order p, Ĝ has order p · ŝ, G has order p · s such that s divides ŝ and gcd(p, ŝ) =
1, gcd(p, s) = 1, H has order s and therefore G = F×H.

• Generators: f is the generator of F, g is the generator of G, and h is the generator of H with the
property that g = f · h

• Upper Bound : Only an upper bound s̄ of ŝ (and s) is provided.

• Additional Properties: Only encodings of Ĝ can be recognized as valid encodings and s, ŝ are unknown.

• Distributions: D (resp. Dp) be a distribution over the set of integers such that the distribution {gx :
x←$D} (resp. {gxp : x←$Dp}) is at most distance 2−κs from the uniform distribution over G (resp.
H).

• Additional Group and its properties: Ĝp =
{
xp, x ∈ Ĝ

}
, Ĝ factors as Ĝp × F.9 Let ω be the group

exponent of Ĝp. Then, the order of any x ∈ Ĝp divides ω.10

Remark 3. The motivations behind these additional distributions are as follows. One can efficiently recog-
nize valid encodings of elements in Ĝ but not G. Therefore, a malicious adversary A can run our constructions
by inputting elements belonging to Ĝp (rather than in H). Unfortunately, this malicious behavior cannot
be detected which allows A to obtain information on the sampled exponents modulo ω (the group exponent

of Ĝp). By requiring the statistical closeness of the induced distribution to uniform in the aforementioned
groups allows flexibility in proofs. Note that the assumptions do not depend on the choice of these two distri-
butions. Further, the order s of H and group exponent ω of Ĝp are unknown and the upper bound s̄ is used
to instantiate the aforementioned distribution. Specifically, looking ahead we will set DH to be the uniform
distribution over the set of integers [B] where B = 2κs · s̄. Using Lemma 8, we get that the distribution is
less than 2−κs away from uniform distribution in H. In our constructions we will set κs = 40. We will make
this sampling more efficient for our later constructions. We refer the readers to Tucker [Tuc20, §3.1.3, §3.7]
for more discussions about this instantiation. Finally, as stated we will also set D̂ = D and D̂H = DH .

We also have the following lemma from Castagnos, Imbert, and Laguillaumie [CIL17] which defines how
to sample from a discrete Gaussian distribution.

Lemma 8. Let G be a cyclic group of order n, generated by g. Consider the random variable X sampled
uniformly from G; as such it satisfies Pr[X = h] = 1

n for all h ∈ G. Now consider the random variable Y

with values in G as follows: draw y from the discrete Gaussian distribution DZ,σ with σ ≥ n
√

ln(2(1+1/ϵ))
π

and set Y := gy. Then, it holds that:
∆(X,Y ) ≤ 2ϵ

Remark 4. By definition, the distribution {gx : x←$D} is statistically indistinguishable from {gy :
y←$ {0, . . . , p ·s−1}}. Therefore, it follows that {x mod p ·s : x←$D} is statistically indistinguishable from
{x : x←$ {0, . . . , p · s− 1}}. Similarly, {x mod s : x←$Dp} is statistically indistinguishable from {x : x←$

{0, . . . , s − 1}}. Furthermore, sampling a value x corresponding to D is statistically indistinguishable from
the uniform distribution in {0, . . . , s− 1} because s divides p · s.

Definition 11 (Class Group Framework). The framework is defined by two algorithms (CLGen,CLSolve)
such that:

9Recall that p and ŝ are co-prime.
10This follows from the property that the exponent of a finite Abelian group is the least common multiple of its elements.
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• ppCL = (p, κc, κs, s̄, f, h, Ĝ,F.D,DH , D̂, D̂H , ρ)←$ CLGen(1κc , 1κs , p; ρ)

• The DL problem is easy in F, i.e., there exists a deterministic polynomial algorithm CLSolve that solves
the discrete logarithm problem in F:

Pr

x = x′
ppCL = ←$ CLGen(1κc , 1κs , p; ρ)
x←$ Z/pZ, X = fx;
x′ ← CLSolve(ppCL, X)

 = 1

Definition 12 (Hard Subgroup Membership Assumption (HSMM) Assumption [CLT18]). Let κ be a the
security parameter with prime p such that |p| ≥ κ. Let (CLGen,CLSolve) be the group generator algorithms
as defined in Definition 11, then the HSMM assumption requires that that HSMM problem be hard in G even
with access to the Solve algorithm. More formally, let D (resp. Dp) be a distribution over the set of integers
such that the distribution {gx : x←$D} (resp. {gxp : x←$Dp}) is at most distance 2−κ from the uniform
distribution over G (resp. H). Then, we say that the HSMM problem is hard if for all PPT adversaries A,
there exists a negligible function negl(κ) such that:

Pr

b = b′

ppCL←$ CLGen(1κc , 1κs , p; ρ)
x←$D, x′←$Dp

b←$ {0, 1};Z0 = gx;Z1 = gx
′

p

b′←$ASolve(ppCL,·)(ppCL, Zb)

 ≤ 1

2
+ negl(κ)

When dealing with groups of known order, one can sample elements in a group G easily by merely
sampling exponents modulo the group order and then raising the generator of the group to that exponent.
Unfortunately, note that here neither the order of G (i.e., ps) nor that of H (i.e. s) is known. Therefore, we
instead use the knowledge of the upper-bound s̄ of s to instantiate the distributions D and Dp respectively.
This choice of choosing from the distributions D and Dp respectively allows for flexibility of various proofs.

B Constructions in CL Framework

Construction 9 (PRF in CL Framework). Let (CLGen,CLSolve) be the class group framework as defined in
Definition 11. Then, let ppCL←$ CLGen(1κc , 1κs). Further, let H : X → H be a hash function. Then, consider
the following definition of K = DH ,X = {0, 1}∗,Y = H, FCL(k, x) = H(x)k.

Theorem 9. Construction 9 is a secure PRF where H is modeled as a random oracle under the HSMM
assumption.

The proof is deferred to Section E.2

B.1 Distributed PRF in CL Framework

We build our construction of Distributed PRF from the Linear Secret Sharing Scheme LISS := (Share,
GetCoeff,Reconstruct) with ppSS denoting the public parameters of the LISS scheme. We specifically employ
the Shamir Secret Sharing scheme over the Integers, as defined in [BDO23].

Construction 10 (Distributed PRF in CL Framework). A (r,m)-Distributed PRF is a tuple of PPT algo-
rithms DPRF := (Gen,Share,Eval,P-Eval,Combine) with the algorithms as defined in Figure 8. For simplicity,
in the construction below we will set the corruption threshold t = r− 1. Though, the construction also holds
for a lower t.

Theorem 10. In the Random Oracle Model, if Construction 9 is a secure pseudorandom function if Integer
Secret Sharing is statistically private, then Construction 10 is pseudorandom in the static corruptions setting.

The proof of security and correctness can be found in Section E.3.
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Protocol Distributed PRF

Gen(1κ, 1r, 1m)

Parse κ = (κs, κc)
Run ppCL←$ CLGen(1κc , 1κs)
Set ℓs := |M|
Sample H : X → H
return ppPRF := (ppCL, LISS.ppSS, H)

Share(k, r,m)

Run k(1), . . . , k(m)←$ LISS.Share(k, r,m)
return k(1), . . . , k(m)

Eval(k, x)

Compute Y = H(x)∆
3·k

return Y

P-Eval(k(i), x)

Compute yi = H(x)∆·k(i)

return yi

Combine({yi}i∈S)

Run Λi∈S = LISS.GetCoeff(S)
Compute Y ′ =

∏
i∈S yΛi

i

return Y ′

Figure 8: Construction of Distributed PRF based on the LISS := (Share,GetCoeff,Reconstruct) scheme of
[BDO23], with ppSS denoting the public parameters of the LISS scheme. Recall that the offset ∆ := m! where
m is the number of shares generated.

B.2 Construction of One-shot Private Aggregation without Leakage Simulation
in CL Framework

Construction 11. We present the construction of One-shot Private Aggregation without Leakage Simula-
tion, in the CL Framework in Figure 9.

C Constructions of Leakage Resilient Key-Homomorphic Pseudo-
random Functions

C.1 Construction from LWR Assumption

We also have the construction from Boneh et al. [BLMR13] of an almost Key Homomorphic PRF from LWR
in the Random Oracle model which was later formally proved secure by Ernst and Koch [EK21] with γ = 1.

Construction 12 (Key Homomorphic PRF from LWR). Let H : X → Zλ
q . Then, define the efficiently

computable function FLWR : Zλ
q × X → Zp as ⌊⟨H(x),k⟩⌋p. FLWR is an almost key homomorphic PRF with

γ = 1.

Construction 13 (Length Extended Key-Homomorphic from LWR). Let FLWR be the function as defined in
Construction 12. Then, consider FL

LWR := (FLWR(k, (x, 1)), . . . FLWR(k, (x, L))).

It is easy to see that Construction 13 is a secure pseudorandom function. An adversary that can break
the security of Construction 13 can be used to break the security of Construction 12.

Theorem 11 (Leakage Resilience of Construction 13). Let PRF be the PRF defined in Construction 13.
Recall that PRF.K = Zλ

q . Then, it is leakage resilient in the following sense:

{PRF(k, x), (k+ r) mod q : k, r←$K} ≈c {Y, (k+ r) mod q : Y ←$ Y, k, r←$K}

Proof. The proof proceeds through a sequence of hybrids.

Hybrid0(κ): The left distribution is provided to the adversary. In other words, the adversary gets:

{PRF(k, x), (k+ r) mod q : k, r←$K}

Hybrid1(κ): In this hybrid, we replace (k+ r) mod q with a uniformly random value k′←$K.

{PRF(k, x), k′ : k, k′←$K}

45



Protocol OPA′

System Parameters Generation

Run pp←$ CL.Gen(1κ, 1t, 1r, 1m)

Server Initiating Iteration ℓ

Select n clients Cℓ.
Select m = ⌊log2 n⌋-sized committee
Broadcast to n clients the committee.

Data Encryption Phase by Client i in iteration ℓ

Input: xi,ℓ = (x
(1)
i,ℓ , . . . , x

(L)
i,ℓ )

Sample ki,1, . . . , ki,L←$ DPRF.K
for in = 1, . . . , L do

h
(in)
i,ℓ = DPRF.Eval(ki,in, ℓ)

Compute ct
(in)
i,ℓ = f

x
(in)
i,ℓ · h(in)

i,ℓ

Compute
{
k
(j)
i,in

}
j∈[m]

←$ DPRF.Share(ki,in, t, r,m)

For j ∈ [m], set
{
aux

(j,in)
i,ℓ

}
= DPRF.P-Eval(k

(j)
i,in, ℓ

Send ct
(1)
i,ℓ , . . . , ct

(L)
i,ℓ to the Server

Send aux
(j,1)
i,ℓ , . . . , aux

(j,L)
i,ℓ to committee member j ∀j ∈ [m], via Server appropriately encrypted

Server Forwards in iteration ℓ

Let C be the clients who sent the prescribed messages.
Send encrypted aux

(j)
i,ℓ to committee member j ∀j ∈ [m], i ∈ C

Data Combination Phase by Committee Member j in iteration ℓ

Input:
{
aux

(j,1)
i,ℓ , . . . , aux

(j,L)
i,ℓ

}
i∈C

for in = 1, . . . , L do
(AUX(j,in))← ⊗i∈C(aux

(j,in)
i,ℓ )

Send AUX(j,1), . . . ,AUX(j,L) to Server

Data Aggregation Phase by Server in iteration ℓ

Input:

{{
AUX

(j,in)
ℓ

}
j∈S

,
{
ct

(in)
i,ℓ

}
i∈C

}
in∈[L]

, |S| ≥ t.

for in = 1, . . . , L do

Run AUX
(in)
ℓ ← DPRF.Combine(

{
AUX

(j,in)
ℓ

}
j∈S

)

Run X
(in)
ℓ ← CLSolve(pp, (AUX

(in)
ℓ )−1 ·

∏
i∈C ct

(in)
i,ℓ )

return
{
X

(in)
ℓ

}
in∈[L]

Figure 9: In this figure, we present the modified steps for OPA′. For simplicity, we present only the semi-
honest construction. For malicious security, we augment similarly with a second mask.

Note that (k+r) mod q and k′ are identically distributed. Therefore, the Hybrid0,Hybrid1 are identically
distributed.

Hybrid2(κ): In this hybrid, we will replace the PRF computation with a random value from the range.

{Y , k′ : Y ←$ Y, k′←$K}

Under the security of the PRF, we get that Hybrid1,Hybrid2 are computationally indistinguishable.

Hybrid3(κ): We replace k′ with (k+ r) mod q.

{Y, (k+ r) mod q : Y ←$ Y, k, r←$K}

As argued before Hybrid2,Hybrid3 are identically distributed.

Note that Hybrid3 is the right distribution from the theorem statement. This completes the proof.
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C.2 Learning with Errors Assumption

Construction 14 (Key Homomorphic PRF from LWE). Let HA : X → ZL×λ
q . Then, define the efficiently

computable function FLWE : (Zλ
q × χL) × X → ZL

q as FLWE((k, e), x) := HA(x)k + e. FLWE is an almost key
homomorphic PRF.

Remark 5. We note that it has been shown that one can also sample x from the same distribution as e. This
is known as the short-secret LWE assumption and was employed in the encryption scheme of Lyubashevsky et
al. [LPR10]. An immediate consequence of this assumption is that one can set A’s dimension m to be much
smaller than what is required for the LWE assumption.

Similar to the LWR construction, we need to show that the PRF based on LWE assumption is also leakage
resilient. Unfortunately, a similar proof technique does not work because the construction also suffers from
leakage on the error vector which are usually Gaussian secrets. Instead, we rely on the Hint-LWE Assumption
(Definition 4, as before.

D Construction from LWR

D.1 Distributed PRF from LWR

Let us revisit Construction 12. First, observe that the key space is from Zρ
q which implies that the order of

K is known. Further, the computation occurs over a group whose structure and order is known. This is a
departure from the construction based on the HSMM assumption. Consequently, by assuming that both p and
q are primes, one can avoid integer secret sharing but instead rely on traditional Shamir’s Secret Sharing
over a field, which we defined earlier (see Construction 5).

We saw earlier that Construction 12 was only almost key homomorphic, i.e.:

F (k1 + k2, x) = F (k1, x) + F (k2, x) + e

where e ∈ {0, 1}. It also follows that:

T · F (k1, x) = F (T · k0, x)− eT

where eT ∈ 0, . . . , T . This becomes a cause for concern as, in the threshold construction using the Shamir
Secret Sharing over the field as shown in Construction 5, one often recombines by multiplying with a Lagrange
coefficient λij . Unfortunately, multiplying the result by λij implies that the error term eλij

∈ {0, . . . , ij}.
The requirement is that this error term should not become “too large”. However, interpreting Lagrange
coefficients as elements in Zp results in the error term failing to be low-norm leading to error propagation. To
mitigate this, we use techniques quite similar to Construction 7 by essentially clearing the denominator by
multiplying with ∆ := m!. This is a technique made popular by the work of Shoup [Sho00] and later used in
several other works including in the context of lattice-based cryptography by Agrawal et al. [ABV+12] and
later to construct a distributed key homomorphic PRF from any almost key homomorphic PRF by Boneh et
al. [BLMR13]. 11 Then, the combine algorithm will simply multiply all partial evaluations with ∆ as well.

Construction 15 (Distributed Almost Key Homomorphic PRF from LWR). A (t,m)-Distributed PRF is
a tuple of PPT algorithms DPRF := (Gen,Share,Eval,P-Eval,Combine) with the algorithms as defined in
Figure 10.

Issues with the Construction from Boneh et al. [BLMR13, §7.1.1]. As remarked earlier, their
generic construction suffers from issues stemming from their security reduction. Specifically, their security
reduction proceeds similarly to the proof of Theorem 10 and requires B to answer honest evaluation queries
for key indices for which it does not know the actual key share. Their explanation suggests that we again
use the “clearing out the denominator” trick by multiplying with ∆. However, the issue is that the resulting
response will be of the form ∆ · F (ki∗ , x) for i

∗, unknown to B. Consequently, one has to change the partial

11However, their generic construction is incorrect, owing to issues in their security proof which is not entirely sketched out.
We fix the issues in our construction.
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Protocol Distributed PRF from Learning with Rounding Assumption

Gen(1κ, 1t, 1m)

Parse κ = (ρ)
Run ppLWR = (ρ, q, p)←$ LWRGen(1ρ)
Set ℓs := |q|
Set u such that ⌊p/u⌋ > (∆ + 1)t∆
Set v such that ⌊u/v⌋ > ∆t
Sample H : X → Zρ

q

return ppPRF := (ppLWR, ppSS, H, u)

Share(k ∈ Zρ
q , t,m)

for i = 1, . . . , ρ do
k
(1)
i , . . . , k

(m)
i ←$ SS.SecretShare(ki, t,m)

return
{
k(j) = (k

(j)
1 , . . . , k

(j)
ρ

}
j∈[m]

Eval(k, x)

Compute Y =
⌊
∆
⌊
∆ ⌊⟨H(x),k⟩⌋p

⌋
u

⌋
v

return Y

P-Eval(k(i), x)

Compute yi =

⌊
∆
⌊
⟨H(x),k(i)⟩

⌋
p

⌋
u

return yi

Combine({yi}i∈S)

Run λi∈S = SS.CoefF(S)
Compute Y ′ =

⌊∑
i∈S ∆λi · yi

⌋
v

return Y ′

Figure 10: Construction of Distributed PRF based on the Secret Sharing scheme of Construction 5 where
SS = (SecretShare,Coeff) with ppSS denoting the public parameters of the secret sharing scheme.

evaluation response to also include this offset to ensure the correctness of reduction. This would imply that
the Combine algorithm will multiply with ∆ again, which would thus result in the actual Eval algorithm
having an offset of ∆2. Furthermore, the partial evaluation algorithm should also have to round down to the
elements in [0, u− 1] for the same reason that the Combine algorithm required this fix.

Correctness. ⌊
∆ ⌊⟨H(x),k)⟩⌋p

⌋
u
=

∆⌊
ρ∑

z=1

H(x, z) · kz

⌋
p


u

=

∆
 ρ∑
z=1

H(x, z)
∑

ij∈{i1,...,it}
λij s

(ij)
z


p


u

=

∆
 ∑
ij∈{i1,...,it}

ρ∑
z=1

H(x, z) · λij · s(ij)z


p


u

=

∆
 ∑
ij∈{i1,...,it}

⟨H(x), λijk
(ij)⟩


p


u

=

∆
et +

∑
ij∈{i1,...,it}

⌊
λij ⟨H(x),k

(ij)⟩
⌋
p


u

=

∆
et +

∑
ij∈{i1,...,it}

eλij
+ λij

⌊
⟨H(x),k(ij)⟩

⌋
p


u

=

∆
et +

∑
ij∈{i1,...,it}

eλij

+
∑

ij∈{i1,...,it}
∆ · λij

⌊
⟨H(x),k(ij)⟩

⌋
p


u

=

 ∑
ij∈{i1,...,it}

∆ · λij

⌊
⟨H(x),k(ij)⟩

⌋
p


u

The last step follows provided the error term is small. Recall that et ∈ {0, . . . , t} and eλij
∈
{
0, . . . , λij

}
.

Now observe that we multiply with ∆ and λij has a maximum value ∆. Therefore, ∆ · eλij < ∆2. Therefore,
the size of the error term is ≤ t ·∆+ t ·∆2. Therefore, provided u is chosen such that ⌊p/u⌋ > (∆+1) · t ·∆,
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then the last step is correct. Now, we have:

⌊
∆ ⌊⟨H(x),k)⟩⌋p

⌋
u
=

 ∑
ij∈{i1,...,it}

∆ · λij

⌊
⟨H(x),k(ij)⟩

⌋
p


u

⌊
∆
⌊
∆ ⌊⟨H(x),k)⟩⌋p

⌋
u

⌋
v
=

∆
 ∑

ij∈{i1,...,it}

∆ · λij

⌊
⟨H(x),k(ij)⟩

⌋
p


u


v

=

∆
et +

∑
ij∈{i1,...,it}

λij

⌊
∆ ·
⌊
⟨H(x),k(ij)⟩

⌋
p

⌋
u


v

=

∆
et +

∑
ij∈{i1,...,it}

λijP-Eval(k
ij , x)


v

=

 ∑
ij∈{i1,...,it}

λij ·∆ · P-Eval(k
(ij), x)


v

= Combine(
{
P-Eval(k(ij), x)ij∈{i1,...,it}

}
)

provided ⌊u/v⌋ > t∆.

Pseudorandomness. The proof of pseudorandomness follows the outline of the proof of Theorem 10 but
with some important differences. First, we do not rely on integer secret sharing but rather plain secret
sharing over the field. Therefore, the Lagrange coefficients correspond to λij . Or more formally, to respond
to a partial evaluation query at point xj with target key index i∗, the adversary B does the following:

• Use its oracle to get partial evaluation on xj at it, which we call as hj,t.

• Then, use Lagrange coefficients but with suitably multiplying with ∆ to compute the correct distribution
by rounding down to u. The choice of u guarantees that the response is correct.

For challenge query, it simply does two rounding down, first to u and then to v.

Verification of Almost Key Homomorphism. Let k1,k2 be two keys that are shared. Now, let the

key shares received by some party ij be k
(ij)
1 and k

(ij)
2 . Then,

P-Eval(k
(ij)

1 , x) + P-Eval(k
(ij)

2 , x) =

⌊
∆

⌊
⟨H(x),k

(ij)

1 ⟩
⌋
p

⌋
u

+

⌊
∆

⌊
⟨H(x),k

(ij)

2 ⟩
⌋
p

⌋
u

=

⌊
∆

⌊
⟨H(x),k

(ij)

1 ⟩
⌋
p
+∆

⌊
⟨H(x),k

(ij)

2 ⟩
⌋
p

⌋
u

− e1

=

⌊
∆

⌊
⟨H(x),k

(ij)

1 ⟩+ ⟨H(x),k
(ij)

2 ⟩
⌋
p

⌋
u

− 2e1

= P-Eval(k
(ij)

1 + k
(ij)

2 , x)− 2e1

It follows that for n such keys:

n∑
i=1

P-Eval(k
(ij)
i , x) = P-Eval(

n∑
i=1

k
(ij)
i , x)− n · e1
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This shows that the P-Eval is almost key-homomorphic. Consequently, one can verify that the whole Eval
procedure is almost key homomorphic for the appropriate error function. To do this, recall that from the
correctness of our algorithm:

Share(k,m, t) =
{
k(i)
}

i∈[m]
,Combine(

{
Eval(k(ij), x)

}
i∈{i1,...,it}

= Eval(k, x)

In other words, for k1,k2 ∈ K, Share(k1,m, t) =
{
k
(i)
1

}
i∈[m]

and Share(k2,m, t) =
{
k
(i)
2

}
i∈[m]

, we will have

for i ∈ [m], Eval(k
(i)
1 , x),Eval(k

(i)
2 , x) = Eval(k

(i)
1 + k

(i)
2 , x)− 2 · e1.

D.2 OPA′ Construction based on LWR Assumption

We build OPA based on the LWR Assumption, building it based on the Key Homomorphic, Distributed PRF
as presented in Construction 12. However, our construction is largely different from the template followed
to build OPA from the HSMM assumption. This is primarily because of the growth in error when combining

partial evaluations. Specifically, will get that P-Eval(
∑n

i=1 k
(j)
i , x) =

∑n
i=1 P-Eval(k

(j
i , x) + e where e ∈

{0, . . . , n− 1} where n is the number of clients participating for that label. This would require us to round
down to a new value u′ such that ⌊u/u′⌋ > n− 1. Therefore, while we still employ the underlying functions
of the distributed, key-homomorphic PRF based on LWR, we have to open up the generic reduction. For
simplicity, we detail the construction for L = 1. Then, these are the differences:

• As done fore Construction 3, the input is encoded as xi · n+ 1.

• Specifically, the client’s share to the committee will only be the first level of the evaluation, i.e., rounded
down to p.

• Then, committee member j will then add the shares up, multiply with the offset, and then round down

to u. We will show that provided ⌊p/u⌋ > ∆ · n, this is consistent with P-Eval(
∑n

i=1 k
(j)
i , x).

• The decoding algorithm is also similar to the one from Construction 3.

Recall that DPRF correctness requires that ⌊p/u⌋ > t ·∆+ t ·∆2, and so one just needs ⌊p/u⌋ > max(t ·∆+
t ·∆2, n ·∆). Then, one can rely on the correctness of DPRF as shown below to argue that when the server
runs DPRF.Combine, the output is Eval(

∑n
i=1 ki, x).

Correctness. We showed how the output of the server’s invocation of DPRF.Combine is Eval(
∑n

i=1 ki, x).
Now, let us look at the remaining steps:

Xℓ =
n∑

i=1

cti,ℓ − AUXℓ

=
n∑

i=1

(xi,ℓ ∗ n+ 1) + Eval(ki, ℓ)− Eval(
n∑

i=1

ki, ℓ) mod v

= n ·
n∑

i=1

xi,ℓ + n+
n∑

i=1

Eval(ki, ℓ)− Eval(
n∑

i=1

ki, ℓ) mod v

= n ·
n∑

i=1

xi,ℓ + n+ Eval(
n∑

i=1

ki, ℓ)− Eval(
n∑

i=1

ki, ℓ)− en−1 mod v

= n ·
n∑

i=1

xi,ℓ + n− en−1 mod v

= n ·
n∑

i=1

xi,ℓ + n− en−1

For the last step to hold, we need that

0 ≤ n ·
n∑

i=1

xi,ℓ + n− en−1 < v
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en−1 the small value is 0 and the largest value is n− 1 which requires that
∑n

i=1 xi,ℓ < (v− n)/n. Note that
we already require ⌊p/u⌋ > n∆, ⌊u/v⌋ > t∆ =⇒ ⌊p/v⌋ > nt∆2. In other words,

∑
xi <

p
n2t∆2 . Finally,

X ′
ℓ = n ·

∑n
i=1 xi,ℓ + n and that completes the remaining steps.

E Deferred Proofs

E.1 Simulation-Based Proofs of Security

Theorem 3. Let δ, η be the dropout and corruption fraction among the universe of clients and let δC , ηC be
the dropout and corruption fraction among the clients in committee. Let κ be the security parameter. Let N
be the total universe of clients and n be the number of clients chosen for summation in each iteration while
m be the number of committee clients chosen to help in each iteration. Let L be the length of the vector.

Let PRG = (PRG.Gen,PRG.Expand) be the leakage-resilient, seed-homomorphic PRG defined in Construc-
tion 1 and SS = (SS.Share,SS.Reconstruct) be the (t, r,m)-secret sharing scheme such that r > (m + t)/2)
defined in Construction 6. Further, assuming a PKI (or authenticated channels) where each client knows a
public key pkj for a committee member j, associated with an IND-CPA secure public key encryption scheme

E. Then, if δC + ηC < 1/3, OPALWR securely realizes the functionality F ℓ
D,δ(X) (defined in Equation 1) with

server malicious security with abort where X = {xi,ℓ}i∈[n]−\K and K ⊂ [N ] and |K| ∩ [n] ≤ ηn, under the LWR

assumption.

Proof. We will prove the theorem statement by defining a simulator Sim, through a sequence of hybrids such
that the view of the adversary A between any two subsequent hybrids are computationally indistinguishable.
Let H = [n] \ K, which are the set of honest clients. Further, let C = [n] \D where D is the set of dropout
clients.

It is important to note that the server is semi-honest. Therefore, it is expected to compute the set
intersection of online clients C, as expected. In other words, all committee members (and specifically the
honest committee members) receive the same C. This is an important contrast from active adversaries as a
corrupt and active server could deviate from expected behavior and send different C(j), for different committee
members. This could help it glean some information about the honest clients.

We now sketch the proof below:

Hybrid0(κ): This is the real execution of the protocol where the adversary A interacts with the honest parties.

Hybrid1(κ): In this hybrid, we will rely on the security of the secret sharing scheme to do two things:

• On the one-hand, all corrupt committee members receive a random share from the honest client’s
seed. Note that there can be only a maximum of t corrupt committee members. By appropriately
choosing m, conditioned on η, we can guarantee that this holds with overwhelming probability.

Then, for an honest client i, these are the shares denoted by
{
sd

(j)
i

}
j∈[m]∩K

and are generated

randomly.

• On the other hand, all the honest committee members receive a valid share of the honest client’s
seeds. However, each honest client i need to generate this from a polynomial p(X) that satisfies

p(0) = sdi, while also ensuring p(j) = sd
(j)
i for j ∈ [m] ∩ K. Note that this is a polynomial

time operation and is similar to the way packed secret sharing is done where multiple secrets
are embedded at distinct points of the polynomial. See Construction 6 for how to build such a
polynomial.

It is clear that by relying on the privacy of the secret sharing scheme, Hybrid0,Hybrid1 are indistinguish-
able from the adversary. Specifically, we guarantee that under the IND-CPA security of the public key
encryption scheme, the adversary only receives an insufficient number of shares, thereby ensuring the
privacy of the secret.

Hybrid2(κ): In this hybrid, we change the definition of the last honest party’s ciphertext. WLOG, let n be
the last honest party in C. Then, we will set ctn := PRG.Expand(sdℓ) + xτ −

∑
i∈C∩H cti. Here, xτ is

the sum of the honest clients inputs. We are still in the hybrid where Sim knows all the inputs.
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It is clear that Hybrid1,Hybrid2 are identically distributed, by the almost seed-homomorphism property
of PRG, provided Sim chooses the inputs for the honest parties such that they sum up to the value in
xτ .

Hybrid3(κ): Again, without loss of generality, let client 1 be the first honest client in C ∩H. We will modify
the way ct1,ℓ is generated. We will set it as ct1,ℓ := x1,ℓ + u where u←$ PRG.Y.
Hybrid2,Hybrid3 are indistinguishable, provided Theorem 2 holds. In the reduction, we will implicitly
set sd1 + sdn to be the leakage obtained from the Theorem 2’s challenger. In this hybrid, Sim still
continues to know all the inputs. If it was a real PRG output, then we can simulate Hybrid2, while
simulating Hybrid3 in the random case.

Hybrid4(κ): In this hybrid, we will replace ct1,τ := u′ for u′←$ PRG.Y. It is clear that Hybrid3,Hybrid4 are
identically distributed.

At this point, observe that we have successfully replace the first honest client’s ciphertext, with a uniformly
random value that is independent of its input. Sim will continue to do this modification for every non-dropout
honest client i ∈ C∩H. This leaves the clients with all-but-the-last honest clients’ ciphertext to be independent
of the input, while leaving the last honest client’s ciphertext to be only a function of the sum of the inputs,
which can be obtained by Sim’s query to the functionality. Sim beings its interaction with the functionality.
After all the honest clients have provided inputs to the trusted party T , in Step (b), Sim does not instruct
any corrupted client to abort but rather set their inputs to be 0. Then in Step (c), Sim does not abort the
server. Therefore, in Step (d), Sim will learn the sum of the honest parties inputs. Denote it as xℓ, which is
also the sum of the inputs of the honest, surviving clients. With this information, Sim uses the last hybrid
to interact with the adversary A, who’s expecting the real world interaction. This will enable Sim to run
A internally. This is crucial to ensure that Sim can get the output of A, in the real world, which might
depend on its view (including the output) of the server. This view will, in turn, depend on the the honest
clients’ inputs. Since Sim sets the honest inputs, in this internal execution, to match the sum of inputs in
the real world, we can guarantee that the output of A in the internal simulation is indistinguishable from
A’s interaction in the real world by the aforementioned hybrid arguments.

Proof of Security against Active Server. Our constructions so far have relied on providing security
against a semi-honest server. Note that, as shown in the proof of security for Theorems 3, we can use the
functionality query to obtain the sum of all the honest non-drop out clients, as before.

In the semi-honest setting, it is easy to see that the set C, with respect to which aggregation is performed,
includes all the honest, non-dropout clients’ inputs. Therefore, querying the functionality, Sim does indeed
get the sum of all the honest clients’ inputs that are also included in the summation in the real world. This
is imperative to ensure that Sim, when internally invoking A, can get the output of A which should be
indistinguishable from A’s output in the real world. Specifically, this output of A (in either the internal
invocation or the actual execution) will depend on the view which consists of the output of the server.
Therefore, if the output of the server in the real world does not include any of these honest clients’ inputs,
then the output produced by the internal invocation of A can be different from that in the real world.

Let us look at the case when the server is corrupted. Such a server can mount an attack whereby the
real-world execution of the protocol may exclude inputs of some of those honest parties but actually included
in the output of the ideal functionality. The proof of malicious security is tricky in this setting. Specifically,
a malicious server can drop clients after seeing the honest input. This is an issue in the simulation as the
simulator has to generate the masked inputs for the honest clients without knowing which of them would be
dropped later.

Prior works, beginning with that of Bonawitz et al. [BIK+17] have relied on using signatures to ensure
that a malicious server does not compromise the privacy of an honest user. Fortunately, for OPA, we can
rely on the one-shot nature of communication flow to secure messages and avoid using signatures.

As before, let K denote the corrupted clients. Then, HCli := [n]\K is the set of honest clients, HCom := [m]\K
is the set of honest committee members. Let KCli := [n]∩K denote the corrupted clients and KCom := [m]∩K
denotes the corrupted committee members.

Note that we do not rely on signatures. To achieve a protocol with signatures, there needs to be an
additional round of communication between the committee members and the server. First, the server forwards
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the message to the committee members. Then, the committee members responds with their set C(j), which
is also duly signed. Then, the server performs the intersection and contacts the committee member with this
intersection along with signatures. A committee member then only aggregates if there are (m + t)/2 valid
signatures.

Our focus is to ensure that the committee members only speaks once. In other words, our construction
currently has the server identify C(j), for each j ∈ [m], based on the information it has received from the client.
Then, the server forwards the message to the committee member along with its computed intersection. This
setting allows the server to selectively forward shares to committee member and also choose different sets for
different committee members. We will show that if r > (m+t)/2 where r is the reconstruction threshold in the
committee and t is the corruption threshold, then the server doing so will receive meaningless information.
Formally, we will show that there does not exist two sets of users C ̸= C′ such that the server can reconstruct
the shares over these two sets.

Observe that the server controls t committee members. We require each honest committee member to
participate once, per iteration. This is easily enforced as the share from the honest client encrypts, along with
the share for the honest committee member, also the identity of the honest client and the iteration count.
Therefore, a server cannot replay the same share, in another iteration. With this guarantee, a malicious
server, in order to reconstruct the shares of two distinct sets C, C′, will require the cooperation of at least
r − t honest users, while there are r − t honest users present. We will therefore need 2(r − t) > m − t. Or,
r > (m + t)/2. This ensures that the server can only effectively reconstruct with respect to a unique set C
and H∗ is the set of honest users in this set. Note that the above inequality holds for r = 2 ∗m/3, t < m/3.
Indeed, prior works such as Bonawitz et al. [BIK+17] and most recently LERNA [LLPT23] also tolerated
only upto a m/3 corruption threshold.

While we have shown that there is a unique set H∗ of honest users, H∗ is only revealed after all the honest
clients have sent their inputs. Therefore, the simulator, during its internal execution of A, needs to be able to
generate the masked inputs for the honest users and it only knows the sum of all the honest clients that have
not dropped out. This set may be distinct from H∗. Therefore, we need a way for the simulator to generate
masked inputs, independent of the sum of the inputs, and then ensure that the correct sum is computed
during reconstruction.

The simulator does the following:

• For every honest client that hasn’t dropped out, i.e., for all i ∈ HCli, the simulator does the following:

– Samples digi,ℓ←$ {0, 1}log q

– Samples sdi,ℓ←$ PRG.K
– It computes mask′i,ℓ := H(digi,ℓ

– Computes maski,ℓ = PRG.Expand(sdi,ℓ)

– Sets cti,ℓ := maski,ℓ +mask′i,ℓ

– Like shown in proof of Theorem 3, the shares of sd
(j)
i,ℓ , dig

(j)
i,ℓ for corrupt committee members

j ∈ KCom are chosen at random. Meanwhile, the shares for the honest committee members are
to be sampled in the second phase, with a specific purpose. However, the server still expects
an encryption of shares from honest client to honest committee members. Therefore, it simply
encrypts some random shares for the honest committee members too and sends it to the server.

– It sends to A, cti,ℓ and sd
(j)
i,ℓ and dig

(j)
i,ℓ for j ∈ [m], which is encrypted appropriately.

• This concludes the client phase of the operation. Then, comes the interaction with the committee.
Note that the simulator is also required to simulate the honest committee member j.

• The simulator, which has received C(j) for each honest committee member j does the check to make
sure that there exists at least r− t such committee members with the same C(j). We will call this client
set as C, while calling the set of these committee members to be Cgood. Meanwhile, it records those
committee members with a different C(j). We will call this as some set Cbad. Looking ahead, for those
honest committee members in Cbad, the shares of the honest clients that are to be added up is going to
be random values. Note that |Cbad| ≤ m− r.
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• The simulator now operates in two phases for honest committee member j ∈ HCom. First is the share
generation phase for honest clients i. It does the following:

– If j ∈ Cbad, then for honest client i ∈ C(j) ∩ HCli, set sd
(j)
i,ℓ , dig

(j)
i,ℓ to be random values.

– Now, the simulator computes the shares for all honest clients i to j ∈ Cgood. These are valid shares
of sdi,ℓ, digi,ℓ subject to the constraint that random values were fixed for those j ∈ Cbad where

i ∈ C(j), and for those j ∈ KCom.

– The honest committee member j receives from A, sd(j)i,ℓ and dig
(j)
i,ℓ for i ∈ C(j). Note that the

maximum number of prefixed values is m − r + t, and by our constraint r > m − r + t which
guarantees that these prefixed values cannot uniquely determine a polynomial of degree r.

• The second phase, is the combination phase. It responds, as expected, subject to the set C(j) that it
receives.

• Sim now queries the functionality. First, it provides [n] \ C as the set of dropped out clients. Then, it
sends for those corrupted clients K ∩ C, input as 0 to the functionality. In response, it gets

∑
C∩H xi,ℓ.

Call this xH .

• Sim now picks i∗ ∈ H∗. It programs the random oracle by setting H(digi∗,ℓ) = xH −mask′i∗,ℓ.

• Sim continues to respond, on behalf of the honest committee member, as expected.

• Finally, A (which controls the server) will make queries to random oracle and it answers as expected.
Sim outputs whatever A outputs at the end.

We will now need to show that the above simulation is indistinguishable from the real world execution that
A expects when it is internally run. The hybrids proceeds as follows:

Hybrid0(κ): This is the real world execution.

Hybrid1(κ): In this execution, we replace the shares sent by the honest client i to honest committee member
j, which are encrypted under pkj with a random value. Under the semantic security of this encryption
scheme, we can guarantee that this is indistinguishable from the previous hybrid. Meanwhile, these
honest committee members (which the simulator controls) will receive the shares directly from the
simulator. The view of A, in this hybrid, is indistinguishable from the real world execution, under the
semantic security of the encryption scheme.

Hybrid2(κ): We will rely on the security of the secret sharing scheme to sample the shares for the honest
clients, similar to Hybrid1 of semi-honest security. For those j ∈ KCom, the shares are randomly chosen.
Furthermore, for those j ∈ Cbad also the shares are randomly chosen. Finally, for those j ∈ Cgood it
gets a valid share subject to those previously chosen random values. This is similar to Hybrid1 in the
proof of semi-honest security.

Hybrid3(κ): In this hybrid, for all those honest clients i that are not in C, we will set cti,ℓ = maski,ℓ+mask′i,ℓ,
effectively setting the input to be 0. Observe that the view of A remains unchanged as these honest
clients inputs were never incorporated in the final sum anyway. Furthermore, if any of these i ∈ C(j)
for j ∈ Cbad, the shares from these honest clients i to these j are completely random and independent
of maski,ℓ and mask′i,ℓ.

Hybrid4(κ): In this hybrid, we pick an honest surviving client i∗ ∈ H∗. It sets the inputs for all i ̸= i∗ ∈ H∗

to be 0. Then sets xi∗,ℓ to be the sum of all the i ∈ H∗. Call this sum as xH . Observe that the values
are still correlated and pseudorandom.

Hybrid5(κ): In this hybrid, we will program H(digi∗,ℓ) = xH − mask′i∗,ℓ, while setting cti∗,ℓ = maski∗,lab +

mask′i∗,ℓ. Note that because digi∗,ℓ is chosen uniformly at random from q values where q is a large
prime. The probability of collision is negligible. There is only negligible difference in the view of A.
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Hybrid6(κ): In this hybrid, we will set cti,ℓ for i ̸= i∗ to be some random term in the ciphertext space. Then,
we will set cti∗,ℓ = H(digi∗,ℓ)−

∑
i ̸=i∗ cti,ℓ.

Note that under the leakage resilience property of the seed-homomorphic PRG, we can conclude that
the two hybrids are computationally indistinguishable.

Hybrid7(κ): In this hybrid, we will replace cti,ℓ = maski,ℓ +mask′i,ℓ for i ̸= i∗.

Observe that this last hybrid is exactly what the simulator produces. This concludes the proof.

E.2 Proof of Theorem 9

Theorem 9. Construction 9 is a secure PRF where H is modeled as a random oracle under the HSMM
assumption.

Proof. We denote the challenger by B. Let Sj be the event that the adversary wins in Hybridj for each
j ∈ {0, . . . , 2}. Let qe (resp. qh) denote the number of evaluation queries (resp. hash oracle queries) that the
adversary makes. We use an analysis similar to the technique by Coron [Cor00].

Hybrid0(κ): Corresponds to the security game as defined for security of PRF. It follows that the advantage
of the adversary is

Adv0 = 2 · |Pr[S0]− 1/2] = AdvPRFA

Hybrid1(κ): This game is identical to Hybrid1 with the following difference. The challenger tosses biased
coin δt for each random oracle query H(t). The biasing of the coin is as follows: takes a value 1 with
probability 1

qe+1 and 0 with probability qe
qe+1 . Then, one can consider the following event E: that the

adversary makes a query to the random oracle with xi as an input where xi was one of the evaluation
inputs and for this choice we have that δt was flipped to 0.

If E happens, the challenger halts and declares failure. Then, we have that:

Pr[¬E] =

(
qe

qe + 1

)qe

≥ 1

e(qe + 1)

where e is the Napier’s constant. Finally, we get that:

Pr[S1] = Pr[S0] · Pr[¬E] ≥ Pr[S0]

e(qe + 1)

Hybrid2(κ): This game is similar to Hybrid1 with the following difference: we modify the random oracle
outputs.

• If δt = 0, the challenger samples wt←$DH and sets H(t) = hwt

• If δt = 1, the challenger samples wt←$DH , ut←$ Z/MZ and sets H(t) = hwt · fut

Note that, under the HSM assumption, an adversary cannot distinguish between the two hybrids.
Therefore, we get:

|Pr[S2]− Pr[S1]| ≤ ϵHSMM

where ϵHSMM is the advantage that an adversary has in the HSMM game. Note that Hybrid2 corresponds to
the case where the outputs are all random elements in G. Therefore, the inputs are sufficiently masked
and leak no information about the key. Therefore, Pr[S2] = 0 Then,

AdvPRFA ≤ (e · (qe + 1) · ϵHSMM

Remark 6. Note that the above scheme is simply an adaptation of the famous DDH-based construction of
a key-homomorphic PRF that was shown to be secure by Naor et al. [NPR99]. It is easy to verify that our
construction is also key homomorphic as H(x)(k1+k2) = H(x)k1 ·H(x)k2 .
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E.3 Distributed Pseudorandom Function

Construction 10 (Distributed PRF in CL Framework). A (r,m)-Distributed PRF is a tuple of PPT algo-
rithms DPRF := (Gen,Share,Eval,P-Eval,Combine) with the algorithms as defined in Figure 8. For simplicity,
in the construction below we will set the corruption threshold t = r− 1. Though, the construction also holds
for a lower t.

Correctness. For a polynomial f ∈ Z[X], every f(i) leaks information about the secret s mod i leading to
a choice of polynomial f such that f(0) = ∆ · s. For our use case, the secret is the PRF key k. Let us consider
a set S = {i1, . . . , it} of indices and corresponding evaluations of the polynomial f at i1, . . . , it giving us key
shares: k(i1), . . . , k(it). To begin with, one can compute the Lagrange coefficients corresponding to the set S as:
∀ i ∈ S, λi(X) :=

∏
j∈S\{i}

xj−X
xj−xi

. This implies that the resulting polynomial is f(X) :=
∑t

j=1 λij (X) · k(ij).
However, λi(X) requires one to perform a division xj − xi which is undefined as H hashes to G whose

order is unknown. To avoid this issue, a standard technique is to instead compute coefficient Λi(X) :=
∆ · λi(x). Thereby, the resulting polynomial that is reconstructed if f ′(X) = ∆ · f(X) =

∑t
j=1 Λij (X) · k(ij).

Consequently,

H(x)∆
3·k = H(x)∆·f ′(0) = H(x)∆·

∑t
j=1 Λij

(0)·k(ij)

=

t∏
j=1

(
H(x)∆·k(ij)

)Λij
(0)

=

t∏
j=1

(
P-Eval(k(ij), x)

)Λij
(0)

Thus, our protocol is correct.

Pseudrandomness. Next, we consider the pseudorandomness property of our construction.

Theorem 10. In the Random Oracle Model, if Construction 9 is a secure pseudorandom function if Integer
Secret Sharing is statistically private, then Construction 10 is pseudorandom in the static corruptions setting.

Boneh et al. [BLMR13] showed that from any Key Homomorphic PRF (which Construction 9), one can
build a Distributed PRF. The proof of the following theorem follows the template of this scheme with certain
important adaptations as our secret sharing scheme is over integers. The proof technique is to show that if
there exists an adversary A that can break the DPRF security, one can then use it to build an adversary B to
break the pseudorandomness of our original PRF, as defined in Construction 9. The idea behind the proof
is for B, upon receiving choice of t − 1 corruptions as indices i1, . . . , it−1, to then choose a random index it
and implicitly set k(it) to be the PRF key chosen by its challenger. Therefore, the B now has knowledge of t
indices, with which it can sample the Lagrange coefficients as before:

for j = 1, . . . , t do

Λij (X) :=
∏t

ζ∈{1,...,t}\j
iζ−X
iζ−ij

· (∆)

Now, B with knowledge of the keys for indices i1, . . . , it−1 along with access to Oracle needs to simulate valid
responses to P-Eval queries for an unknown index. Call this index i∗. Then, we have:

P-Eval(k(i
∗), x) : = H(x)∆·k(i

∗)

= H(x)
∑t

j=1 Λij
(i∗)·k(ij)

= H(x)
∑t−1

i=1 Λij
(i∗)·k(ij) ·

(
H(x)k

(it)
)Λit (i

∗)

The last term is simulated using B’s own oracle access.
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Proof. Let A be a PPT attacker against the pseudorandomness property of DPRF, having advantage ϵ.
A first chooses t− 1 indices K = {i1, . . . , it−1} where each index is a subset of {1, . . . ,m}. A receives the

shares of the keys k(i1) = f(i1), . . . , k
(it−1) = f(it−1) (for unknown polynomial f of degree t such that f(0) =

k ·∆ with ∆ := ∆. Further, A has access to OEval(i, x) receiving P-Eval(ki, x) ins response. Additionally, A
expects to have oracle access to the random oracle H.

Using this attacker A, we now define a PPT attacker B which will break the pseudorandomness property
of Construction 9. Note that B is given access to the oracle that either outputs the real evaluation of the
PRF on key k∗ or a random value. Additionally, B expects to have oracle access to the random oracle H.

• Setup: B does the following during Setup.

– Receive set S = {i1, . . . , it−1} from A.
– Next B generates the key shares and public key as follows:

∗ Sample k(i1), . . . , k(it−1) ∈ Z.
∗ B picks an index it at random and implicitly sets the PRF key chosen by its challenger as
k(it).

∗ Immediately, given the t indices, one can construct the secret sharing polynomial f ∈ Z[X] as
described earlier, but instead recreating the polynomial f ′(X) using the coefficients Λij (X)

for j = 1, . . . , t with k(it) being unknown to B and using its challenger to simulate a response.

∗ B gives k(i1), . . . , k(it−1) to A.

• Queries to H: B merely responds to all queries from A to H by using its oracle access to H.

• Queries to Partial Evaluation: B receives as query input, some choice of key index specified by i∗

and input xj for i = 1, . . . , Q. In response B does the following:

– Forward xj to its challenger. In response it implicitly receives P-Eval(k(it), xj), but off by a factor
of ∆ in the exponent. Call this hj,t.

– Compute: hj,i∗ = H(xj)
∑t−1

i=1 Λij
(i∗)·k(ij) · (hj,t)

Λit (i
∗) where B uses its own access to hash oracle to

get H(xj).

– It returns hj,i∗ to A.

• Challenge Query: On receiving the challenge input x∗, B does the following:

– Ensure that it is a valid input, i.e., there is no partial evaluation queries on x∗ at any unknown
index point.

– If not, B forwards to its challenger x∗. In response it implicitly receives P-Eval(k(it), x∗), but off
by a factor of ∆ in the exponent. Call this h∗.

– It also uses its oracle access to H to receive h = H(x∗).

– It finally computes y = H(xj)
∆2·

∑t−1
i=1 Λij

(0)·k(ij) · (h∗)∆
2·Λit (0) and outputs y to A

• Finish: It forwards A’s guess as its own guess.

Analysis of the Reduction. Note that for the case when b = 0, A expects to receive H(x∗)∆
3·k where k

is defined at the point 0. So, we get:

H(x∗)∆
3·k(0) = H(x∗)∆

2·f ′(0) = H(x)∆
2 ∑t

j=1 Λij
(0)·k(ij)

= H(x)∆
2 ∑t−1

i=1 Λij
(0)·k(ij) ·

(
H(x)k

(it)
)∆2Λit (0)

This shows that the returned value y is consistent when b = 0. Meanwhile, when b = 1, h∗ is a random element
in the group and then y is a truly random value which means that B has produced a valid random output for
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A. Similarly, when b = 0, every response to partial evaluation is also done consistently by correctness of the
underlying secret sharing scheme. Meanwhile, when b = 1, we can rely on the statistical privacy preserving
guarantee of the underlying secret sharing scheme to argue that the difference that the adversary can notice
is statistically negligible. This concludes the proof where B can only succeed with advantage ϵ.

F Heterogeneity and Poisoning Attacks

Secure Aggregation was a useful tool to realize FedAvg [MMR+17]. However, research [RCZ+21] has shown
that FedAvg does not yield good accuracy or model convergence when confronted with non-i.i.d client dataset
distribution. Prior works such as DReS-FL [SSLZ22] often require expensive cryptographic techniques to be
resilient to heterogeneous datasets. For example, DReS-FL requires that each client secretly share its datasets
with other clients before having each client train. In this section, we show how to combine secure aggregation
with FedOpt algorithm [RCZ+21], extending existing secure aggregation techniques to privacy-preserving
federated learning that can handle heterogeneity in the dataset.

F.1 FedOpt

FedOpt [RCZ+21] is a family of algorithms that abstracts (and generalizes FedAvg). It allows for a choice
of optimizer other than Stochastic Gradient Descent (SGD) on the client side and a more resilient update
rule on the server side. Indeed, the work of Reddi et al. [RCZ+21], also presents instantiations of various
server-side update rules. See Algorithm 1 for pseudocode where the text is in black. Here T is the number
of iterations, and xt is the global model at t. At the start of every iteration, each client i sets its model
xt
i,0 to be xt. Meanwhile, K is the number of local iterations the client performs, with k being the iterating

variable. ClientOpt is the algorithm employed by the client based on its local learning rate ηi to update the
model xt

i,k to xt
i,k+1 (line 8). ∆t

i is the update between the global model at iteration t ad the local model

at the end of K local iterations, at iteration t. The former is denoted by xt while the latter is xt
i,K (line 9).

Finally, line 13 shows the server side optimization ServerOpt to update the current global model xt based on
the computed aggregate of clients ∆t along with global learning rate η.

FedOpt and OPA. Observe that the input to ServerOpt is independent of the individual client updates
and instead only takes as parameter ∆t (the average of client updates ∆t

i), the current model xt, learning
parameter η, and iteration count t (line 11). Therefore, with Secure Aggregation, the server can compute ∆t,
while preserving the honest client’s updates ∆t

i, and later rely on a suitable ServerOpt that is more resilient
to heterogeneity. We concretely formalize the pseudocode in Algorithm 1, with the additional steps needed
marked in blue.

F.2 Byzantine-Robust Stochastic Aggregation (bRSA)

bRSA [LXC+19] is a class of stochastic sub-gradient methods for distributed learning resilient to Byzantine
workers (i.e., clients sending arbitrary inputs). It mitigates the effects of incorrect messages due to poisoning
behaviors, communication failures, or uneven data distribution by incorporating a regularization term in the
objective function. At each iteration t, clients compute parameter updates based on local data, prior local
models, and global parameters.

At each iteration k, client i computes parameter updates based on local data (ξki ), prior local models
(xk

i ), and global parameters (wk). The client and server updates are:

Client: xk+1
i = xk

i − ηk
(
∇F (xk

i , ξ
k
i ) + λsign(xk

i − wk)
)

Server: wk+1 = wk − ηk

∇f0(wk) + λ
∑
i∈[n]

sign(wk − xk
i )


where η is the learning rate, ξ is a local dataset sample, F (·, ·) is the loss function, fℓ2(·) is the robust
regularization term, λ weights the robustness term, sign is element-wise, and [n] is the client set.
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Algorithm 1 FedOpt and OPA

1: Input: x0,ClientOpt,ServerOpt
2: for t = 0 to T − 1 do
3: Sample a subset S of clients and subset C of committee clients // We can use the approach of Flamingo

to generate C, independent of server.
4: xt

i,0 = xt

5: for each client i ∈ S in parallel do
6: for k = 0 to K − 1 do
7: Compute an unbiased estimate gti,k of ∇Fi(x

t
i,k)

8: xt
i,k+1 = ClientOpt(xt

i,k, g
t
i,k, ηi, t)

9: ∆t
i = xt

i,K − xt

10:
Use OPALWR to send masked ∆t

i to server and route, via encryption, the share of seed to C.
11:

Reconstruct the sum of the seed. Sum up the masked updates.
12:

Recover ∆t =
1
|S|
∑

i∈S ∆t
i

13: xt+1 = ServerOpt(xt,−∆t, η, t)

However, unlike FedOpt, this approach aggregates not the model gradient but rather a function of the
current worldwide model and the gradient update sent by the client. Specifically, the server computes
sign(wk, xk

i ), which can be viewed as a function of how far away the client’s gradient (xk
i ) is from the current

global model (wk). These are then added before proceeding with additional server-side optimization.

bRSA and OPA. As pointed out by Franzese et al. [FDCC+23], the only information needed by the server
to aggregate is sign(∆t

i − xt). The clients, rather than providing ∆t
i, computes locally sign(∆t

i − xt) and
provides this as an input to the server. Note that this is simply a vector with elements in {−1, 1}. Let this

be vector ui ∈ {−1, 1}L where L is the size of the model.
We can optimize further by sending a binary vector instead (say vi) with the property that vi[j] = 0 iff

ui[j] = 0 for j = 1, . . . , L. Then, while the server requires
∑

ui, this is equivalent to 2 ·
∑n

i=1 vi−n. Sending
vi lends itself to efficient zero-knowledge proof to show that a masked input is a binary vector.

G Stronger Security Definition

Hitherto, we have only considered the indistinguishability of information from the perspective of the server.
However, one can consider the requirement to hold for even corrupt committee members. Specifically, the
client’s input remains hidden if their entire committee collude (or at least t of them). It is easy to observe that
Figure 9 does not satisfy the stronger security definition. If we had a single committee member, the auxiliary
information (available to the committee member) masks the input and, therefore, can be unmasked. Thus, to
accommodate security against collusion of all committee members, we modify OPA syntax and construction
to include a key from the server to keep client privacy. Informally, we do the following:

• First, the server or the aggregator also has a secret key, denoted by k0.

• Second, for each label ℓ, the server first publishes a “public key”, as a function of the following algorithm
aux0,ℓ ← PublicKeyGen(k0, ℓ)

• Third, the encrypt procedure takes into account this auxiliary information, i.e.,(
cti,ℓ,

{
aux

(j)
i,ℓ

}
j∈[m]

)
←$ Enc(pp, ki, xi, aux0,ℓ, t,m, ℓ). In other words, the server publishes the public

key, and then the client can encrypt it to a label.

• Fourth, the decrypt procedure takes k0 as input too.

The committee indistinguishability game proceeds in phases.
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Protocol Malicious Security with Abort

Setup: Let H : {0, 1}∗ → Fm−d−2 where d = r − 1 be a hash function modeled as a random oracle. Let
H′ : {0, 1}∗ → F be the hash function used to generate the challenge. Let G be a group generated by g
where the Discrete Logarithm and DDH problems are hard, and G is of prime order q, the same as the
order of the field used for Shamir Secret Sharing.

Client i: Performs the following steps:

1. Commit to sd
(0)
i,ℓ = sdi,ℓ, sd

(1)
i,ℓ , . . . , sd

(m)
i,ℓ as C

(j)
i := g

sd
(j)
i,ℓ .

2. Generate the coefficients of the polynomial of degree m − d − 2 using the Fiat-Shamir transform:
m0, . . . ,mm−d−2 ← H(C(0)

i , . . . , C
(m)
i ).

3. Compute v0, . . . , vm as vi :=
∏

j∈{0,...,m}\i(i− j)−1.

4. Compute w := (v0 ·m∗(0), . . . , vm ·m∗(m)).

5. Generate t := (t0, . . . , tm)←$ F.

6. Commit to t0, . . . , tm as C
(j)
t := gtj .

7. Compute r := ⟨t,w⟩.

8. Compute c := H′(C
(0)
i , . . . , C

(m)
i , C

(0)
t , . . . , C

(m)
t ,w, r).

9. Compute z0, . . . , zm where zi := ti + c · sd(i)i,ℓ .

10. Set πi :=
({

C
(j)
i

}
, r, z = (z0, . . . , zm), c

)
.

Server: Upon receiving πi from client i, performs the following:

1. Parse πi := (
{
C

(j)
i

}
, r, z = (z0, . . . , zm), c).

2. Compute w (as done by the client) and check if ⟨w, z⟩ = r.

3. For each j = 0, . . . ,m, compute C
(j)
t = gzj ·

(
C

(j)
i

)−c

.

4. Compute c′ = H′(C
(0)
i , . . . , C

(m)
i , C

(0)
t , . . . , C

(m)
t ,w, r).

5. Accept input from client i if c == c′, else client i is dropped.

6. Send C
(j)
i and the encrypted shares for committee member j to committee member j.

Committee Member j: Upon receiving data from the server:

1. Decrypt and recover the share sd
(j)
i,ℓ .

2. Verify that the recovered share matches the commitment forwarded by the server.

3. If verification fails, complain to the server.

Server: 1. If any complaint is received, protocol is aborted.

2. Server checks if
∏

i∈C C
(0)
i

?
= g

∑
i∈C sdi,ℓ where

∑
i∈C sdi,ℓ is obtained by reconstruction from the

shares.

Figure 11: Malicious Security with Abort

• Setup Phase: The challenger begins by running the setup algorithm to generate the system parameters.
The adversary is then provided with the system parameters pp and is asked to output an adversarial
choice of n, which is the number of users that will be registered. In response, the challenger runs the
KeyGen algorithm n + 1 times, each for the n users and once for the server’s secret key. This phase
ends with the adversary being provided with the server’s secret key denoted by k0.

• Learning Phase: The adversary issues queries to the various oracles defined by OCorr,OEnc to learn any
information it could. OCorr proceeds where the adversary can corrupt any user and receive its key.
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These corruptions are tracked. Meanwhile, OEnc allows the adversary to issue any arbitrary encryption
queries on behalf of any of the users, with the restriction that it can only do so once per user per label.
In response, it receives both the ciphertext encrypting the input and all the auxiliary information.

This phase ends with the adversary committing to a target label τ .

• Challenge Phase: In this phase, the challenger begins by identifying eligible users U who are honest,
which is defined by [n] \ K. Without loss of generality, we assume there have been no queries to OEnc

with τ as the label. Should there be such queries, those users i such that (i, τ, ·) ∈ E are also removed
from the set U , and these inputs are later used to compute the challenge. Upon receiving U , the
adversary commits to two sets: H ⊆ U is the set of honest users that the adversary is targeting, and

S that is the set of committee members for whom the adversary receives
{
aux

(j)
i,τ

}
i∈H,j∈S

provided

|S| ≤ t− 1. Further, the adversary also provides inputs two choices of inputs for user in H denoted by
{xi,0, xi,1}i∈H and inputs {xi}i∈[n]\H for the remaining users.

• Finally, the adversary is provided with individual encryptions and auxiliary information for all com-
mittee members.

• Guessing Phase: The adversary outputs a guess b′ and wins if b′ = b, provided trivial attacks do not
happen.

Definition 13 (C-IND-CPA Security). We say that a (t,m,M) One-shot Private Aggregation Scheme OPA
with label space L is Server-Indistinguishable under Chosen Plaintext Attack (S-IND-CPA) if for any PPT
adversary A, there exists a negligible function negl such that:
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pp←$ Setup(1κ); b←$ {0, 1}
(st, n)←$A(pp), {ki←$ KeyGen()}i∈[n]∪{0}

b = b′ (st, τ)←$AOCorr,OEnc(st, k0),U := [n] \ K
(H,S, {xi,0, xi,1}i∈H , {xi}i∈[n]\H)←$A(st,U){
cti,τ ,

{
aux

(j)
i,τ

}
j∈[m]

←$ Enc(pp, ri, xi,b)

}
i∈H{

cti,τ ,
{
aux

(j)
i,τ

}
j∈[m]

←$ Enc(pp, ri, xi)

}
i∈[n]\H

b′←$A(st,
{
cti,τ , aux

(j)
i,τ

}
i∈[n],j∈[m]

)


≤ 1

2
+ negl(κ)

G.1 Updated Committee Indistinguishable Construction

These are the changes to OPA construction based on the HSMM assumption to adapt it to the stronger security
definition:

• PublicKeyGen(k0, ℓ)

Compute pk0,ℓ ← DPRF.Eval(k0, ℓ)
return pk0,ℓ

• Modify the encryption procedure as follows:

Enc(pp, ki, xi, pk0,ℓ, t,m, ℓ)

Parse ki = ki
Compute hi,ℓ = DPRF.Eval(ki, ℓ)

Compute cti,ℓ = fxi · pkki0,ℓ
Compute (k

(j)
i )j∈[m]←$ DPRF.Share(ki, t,m)

for j = 1, . . . ,m do

aux
(j)
i,ℓ = DPRF.Eval(k

(j)
i , ℓ)

return cti,ℓ,
{
aux

(j)
i,ℓ

}
j∈[m]
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In other words, aux
(j)
i,ℓ can be viewed as the j-th partial evaluation of the key (ki) where ki was key

shared using Secret Sharing scheme, while cti,ℓ was masked by the DPRF evaluation on the key ki · k0

Now, the committee member multiplies all the auxiliary information. As a result, AUX
(j)
ℓ is simply a partial

evaluation of the following key share
∑n

i=1 k
(j)
i ). Therefore, the server computes DPRF.Eval(·(

∑n
i=1 ki). Now,

let us look at the decryption procedure:

Aggregate(AUXℓ, k0 {cti,ℓ}i∈C)

Compute M = AUX−k0
ℓ · (

∏
i∈C cti,ℓ)

Compute Xℓ ← CLSolve(pp,M)
return Xℓ mod M

The security of this construction follows from the intuition that the adversary gets all of the auxiliary
information, from which it can only construct a Diffie-Hellman key on the fly, from which it cannot compute
any masking information to unmask the inputs.
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