zkSNARKSs in the ROM with Unconditional UC-Security

Alessandro Chiesa Giacomo Fenzi
alessandro.chiesa@epfl.ch giacomo.fenzi@epfl.ch
EPFL EPFL

September 4, 2024

Abstract

The universal composability (UC) framework is a “gold standard” for security in cryptography. UC-
secure protocols achieve strong security guarantees against powerful adaptive adversaries, and retain these
guarantees when used as part of larger protocols. Zero knowledge succinct non-interactive arguments of
knowledge (zkSNARKS) are a popular cryptographic primitive that are often used within larger protocols
deployed in dynamic environments, and so UC-security is a highly desirable, if not necessary, goal.

In this paper we prove that there exist zkSNARKSs in the random oracle model (ROM) that uncondi-
tionally achieve UC-security. Here, “unconditionally” means that security holds against adversaries that
make a bounded number of queries to the random oracle, but are otherwise computationally unbounded.

Prior work studying UC-security for zkSNARKSs obtains transformations that rely on computational
assumptions and, in many cases, lose most of the succinctness property of the zkSNARK. Moreover, these
transformations make the resulting zZkSNARK more expensive and complicated.

In contrast, we prove that widely used zkSNARKSs in the ROM are UC-secure without modifications.
We prove that the Micali construction, which is the canonical construction of a zkSNARK, is UC-secure.
Moreover, we prove that the BCS construction, which many zkSNARKSs deployed in practice are based on,
is UC-secure. Our results confirm the intuition that these natural zZkSNARKSs do not need to be augmented
to achieve UC-security, and give confidence that their use in larger real-world systems is secure.

Keywords: succinct arguments; random oracle model; universal composability

Contents

1 Introduction
L1 Ourresults. oo e e e e e e
1.2 Related work e
2 Techniques
2.1 Unconditional UC-security o i it e e e e e e
2.2 UC-riendly properties o v v i i e e e e e e e e e e
2.3 The Merkle commitment scheme is UC-friendly
2.4 The Micali construction is UC-secure v i i ittt
2.5 The BCS construction is UC-secure v v v vt i et e i e e e
2.6 Adaptive corruptions and strong UC-friendly properties
3 Preliminaries
3.1 NOtatioN o v o e e e e e e e e e e e e e e
3.2 UC-security with unbounded adversaries Lo
3.3 Globalrandomoracle L e e
4 UC-security for non-interactive arguments in the ROM
4.1 Ideal functionality L e e e
4.2 Protocol e e
S UC-friendly security notions for non-interactive arguments
5.1 UC-friendly completeness o i i e e e e e e
5.2 UC-friendly zero knowledge L
5.3 UC-friendly knowledge soundness
6 UC-secure zkSNARKS from UC-friendly security notions
6.1 Proof of Theorem 6.1 e
6.2 Definitions 5.3, 5.10 and 5.16 are Necessaryo i e e e e e e e e
7 Merkle commitments and UC-security
7.1 Merkle commitment schemes L L e
7.2 UC-friendly completeness
7.3 UC-riendly hiding o e e
7.4 UC-riendly extraction e e e e e e
8 The Micali construction is UC-secure
8.1 Probabilistically checkable proofs
8.2 TheMicali CONSIUCHIONt i ittt e e e e e
8.3 UC-friendly completeness e e e e e e e
8.4 UC-friendly zero knowledge
8.5 UC-friendly knowledge soundness e
8.6 UC-secure zkSNARKSs from Micali e
9 The BCS construction is UC-secure
9.1 Interactive oracle proofs L
9.2 The BCS consStruction 0 e e e e e e e e e
9.3 UC-friendly completeness e e e e e e e
9.4 UC-friendly zero knowledge L
9.5 UC-friendly knowledge soundness
9.6 UC-secure zZkSNARKSs from BCS
A An analysis of [IW14]
Acknowledgments
References

1 Introduction

The universal composability (UC) framework [CanO1] is a “gold standard” for security in cryptography.
UC-secure protocols achieve strong security guarantees in the presence of powerful adaptive adversaries, and
retain their security when used as part of larger protocols, thereby enabling a modular analysis of these larger
protocols. Informally, security in the UC framework is shown by arguing that an adversary (the environment)
cannot distinguish between a real execution of the protocol and an “ideal” execution, where the protocol
is replaced by an ideal functionality. In a larger protocol then one can argue, via a result known as the
composition theorem, that instances of the former protocol can be replaced by this ideal functionality.

Zero knowledge succinct non-interactive arguments of knowledge (zkSNARKSs) are a powerful cryp-
tographic primitive that has seen widespread adoption. zZkSNARKSs are often used within larger protocols
deployed in dynamic environments, and so UC-security is a highly desirable (if not necessary) goal.

Achieving UC-security for a zZkSNARK is challenging. Security of a zZkSNARK is often established via
techniques that are problematic, and at times impossible, to use in the UC framework. These techniques
include non-black-box extraction and black-box rewinding extraction. In contrast, UC-security prescribes a
black-box security proof in a game consisting of polynomially-many interactions with the adversary, and such
security proofs are almost exclusively achieved through the use of straightline (non-rewinding) extractors.

UC-security has been studied in the zZkSNARK literature, via transformations that “lift” a given zkSNARK
into a UC-secure non-interactive argument. In most cases the transformation increases the argument size to
linear in the witness (of the proved nondeterministic computation) [KZM+15; ARS20; BS21; AGRS24];
the result is a non-interactive argument that is not succinct in the usual desirable sense (the argument size
is succinct in the circuit size but not the witness size). One exception is [GKOPTT23], which achieves
UC-secure zkSNARKSs by combining a simulation-extractable zkSNARK and a straightline-extractable
polynomial commitment scheme. A downside is that this transformation incurs computational overheads,
and the resulting zZkSNARKSs do not reflect ones used in practice. We elaborate further on prior work in
Section 1.2. Overall, the takeaway is that the desirable goal of UC-secure zZkSNARKSs has been notably
elusive and the known results come with considerable limitations or caveats.

UC-security with random oracles. The focus of this paper is ZkSNARKSs constructed in the “pure” random
oracle model (ROM), where (honest and malicious) parties have query access to a random function and where
security holds unconditionally against adversaries that query the random function a bounded number of times.

The ROM is notable for multiple reasons. The elegant Micali construction [Mic00], the “canonical”
construction of a zZkSNARK, is realized in the ROM. Moreover, many zkSNARKSs used in practice follow
the BCS construction [BCS16], which is also realized in the ROM.! Both constructions are secure in the
quantum ROM [CMS19]; in fact, the ROM supports the most efficient post-quantum zkSNARKSs to date. Yet,
the UC-security of these seminal zkSNARK constructions has, surprisingly, not been investigated so far.

In the context of UC-security, several basic questions arise.

Do zkSNARKSs that are (unconditionally) UC-secure in the ROM exist?
Is the Micali construction UC-secure? What about the BCS construction?
More generally, when does a given zkSNARK in the ROM achieve UC-security?

In this paper we investigate these questions. This requires specifying what is meant by “UC-secure in
the ROM”. Briefly, this involves specifying an ideal functionality GRO that models a global random
oracle model (GROM). There are several flavors of GROM [CDGLN18]; the most relevant to our setting

'In practice the random oracle is heuristically instantiated via a suitable cryptographic hash function. This leads to zkSNARKSs
that are lightweight (no public-key cryptography is used) and easy to deploy (users only need to agree on which hash function to use).

is the GROM that is observable and (restricted) programmable. Establishing UC-security then demands
arguing, in a hybrid model in which every party has access to GRO, that an adversary cannot distinguish
between two cases: (i) a real execution of the given zkSNARK protocol; and (ii) an ideal functionality
Farc for zero knowledge non-interactive arguments of knowledge (which equals the ideal functionality in
[LR22b], therein called NIZKPoK ideal functionality). Using techniques from UC with Global Subroutines
(UCGS) [BCHTZ20] we then lift the hybrid-model analysis to achieve security in the plain UC framework.

1.1 Our results

We prove that there exist zkSNARKS that unconditionally achieve UC-security in the GROM, positively
answering a basic question about the feasibility of UC-secure zZkSNARKSs in the information-theoretic setting
of random oracles. In fact, we prove something stronger (and far more useful), namely, we prove that two
seminal constructions of zkSNARKSs with random oracles are UC-secure: the Micali construction and the
BCS construction. (In particular, we do not construct new zkSNARKSs or modify existing ones.) This provides
formal evidence that supports the intuition that these seminal constructions of zkSNARKS satisfy far stronger
security properties than previously shown, and are suitable for secure use within larger protocols.

Definition 1.1 (informal). Let F g be the non-interactive argument ideal functionality in [LR22D] (therein
called NIZKPoK ideal functionality), and let GRO be the ideal functionality for the (observable and restricted
programmable) GROM in [CDGLN18]. A zkSNARK unconditionally achieves UC-security in the GROM
if the zZkSNARK unconditionally UC-realizes Farg in the GRO-hybrid model. (“Unconditionally” means that
security holds against adversaries that are computationally unbounded and that make a bounded number of
queries to the ideal functionality GRO.)

Theorem 1.2 (informal). There exists a zkSNARK that unconditionally achieves UC-security in the GROM.

The above result follows from the following theorem. Recall that the Micali construction compiles a given
PCP (probabilistically checkable proof) with suitable properties into a zkSNARK, and the BCS construction
compiles a given public-coin IOP (interactive oracle proof) with suitable properties into a zZkSNARK.

Theorem 1.3 (informal).

* The Micali construction unconditionally achieves UC-security in the GROM, provided that the underlying
PCP is honest-verifier zero knowledge and knowledge sound.

* The BCS construction unconditionally achieves UC-security in the GROM, provided that the underlying
IOP is honest-verifier zero knowledge and (state-restoration) knowledge sound with a straightline extractor.

The properties required of the underlying PCP and IOP for UC-security in Theorem 1.3 are essentially
the same as those typically used in the Micali and BCS constructions.” We only additionally require the
extractor of the IOP to be straightline, a property satisfied by most IOPs in the literature.

As we elaborate further in Section 2, our results are achieved by showing that the given non-interactive
argument satisfies certain “UC-friendly” notions of completeness, zero knowledge, and knowledge soundness
in the ROM, which in turn we show imply UC-security in the GROM.

Achieving UC-security is a notoriously challenging goal, even for simple cryptographic protocols. As we
outline in Section 2, establishing UC-security of the Micali construction is distinctly more involved compared

2State-restoration knowledge soundness is a natural strengthening of knowledge soundness that is required for the security of the
BCS transformation. See [BCS16; CY24] for more details.

to merely establishing its standalone knowledge soundness or zero knowledge (as done in prior work). Even
more involved is establishing the UC-security of the BCS construction, which is used in practice.

Adaptive security. Our results also cover the adaptive flavor of UC-security, where the adversary can
corrupt parties in the protocol at any time (rather than only at the start of the protocol). This stronger, and
more realistic, flavor of UC-security demands additional work both in terms of definitions and analyses.

Concrete security bounds. Throughout our work we provide concrete security bounds, parametrized on
security parameters and the capabilities of the adversary (e.g., queries to the global random oracle). This
ultimately leads to explicit expressions for the UC-security error of the ZkSNARKSs that we study. Similarly
to the ROM, the GROM can be (heuristically) instantiated via a suitable cryptographic hash function, and
these expressions enable practitioners to set parameters for the desired security level for UC-security.

1.2 Related work

We provide references for the model of global random oracle that we use. Then we summarize prior work
studying UC-security for non-interactive arguments that are not succinct and for those that are succinct.

Global random oracle. The random oracle model is widely used to analyze the security of cryptographic
protocols. The generalized UC (GUC) framework in [CDPW07] extends the basic UC framework in [Can0O1]
to allow for globally shared ideal functionalities, such as a global random oracle. Subsequently, [BCHTZ20]
identifies a subtle inconsistency in the GUC formulation, and shows a mechanism to model and prove the
security of protocols interacting with shared functionalities in the plain UC model; this is the framework of
UC with Global Subroutines (UCGS) that we use to accommodate for a random oracle functionality. There
are multiple flavors of a global random oracle model (GROM) in the UC framework: [CJS14] propose a
GROM where queries can be observed, but not programmed, by the adversary; and [CDGLN18] introduce
a GROM where queries can be observed as well as programmed by the adversary (with some restrictions).
We use the latter flavor in this paper (see Section 3.3), since it is usually appropriate for constructions in the
“pure” ROM (with no cryptography). For example, the simple commitment scheme f((m,r)), where m is a
message and 7 a random salt, can be shown to be UC-secure in the latter GROM flavor, but not in the former.

Non-Succinct ZkNARKSs. Several works study UC-security for zero knowledge non-interactive arguments
of knowledge (zkNARKS) that are not succinct (the size of the argument string is at least the size of the
witness for the proved nondeterministic computation).

* From game-based simulation-secure knowledge soundness. [Gro06] achieves UC-secure zero-knowledge
proofs in the CRS model (assuming cryptographic hardness assumptions), using the observation that
straightline knowledge extraction that is secure in the presence of a simulation oracle is crucial for UC-
security. The proof size in [Gro06] is linear in the circuit size. In this work we also rely on game-based
notions of simulation-secure straightline knowledge soundness (in the ROM setting).

* Encrypt the witness. A standard approach to achieve UC-security is to have the argument string include
an encryption of the witness and a zero knowledge proof that the encrypted message is a valid witness
[DDOPSO01]. This approach is adopted in various works studying UC-security in the ZkSNARK community,
including the C)C) framework [KZM+15], LAMASSU [ARS20], TIRAMISU [BS21], and [AGRS24].
All non-interactive arguments following this approach are not succinct since the argument string contains
the encryption of a witness. (The argument size can be smaller than the proved circuit but not the witness.)

* Compile a Y-protocol. Other works study UC-security for non-interactive arguments obtained from
J-protocols: [LR22b] shows that a randomized variant of the Fischlin construction [Fis05; Ks22] applied

to a X-protocol yields a zkNARK that achieves UC-security in the observable programmable GROM, and
with a global reference string the construction can be modified to rely only on an observable GROM; then
[LR22a] shows how to extend these results to achieve security against adaptive corruptions, assuming a
minor property of the X'-protocol.

While the constructions studied in [LR22b; LR22a] and in this paper are different (non-interactive arguments
obtained from Y -protocols versus from probabilistic proofs), our work is inspired by the ideas in [LR22b;
LR22a]. Specifically, we use “UC-friendly” definitions of completeness, zero knowledge, and knowledge
soundness in the ROM that suffice (and are necessary) for UC-security in the GROM, which reduces the goal
of UC-security to proving that the relevant zkSNARK constructions satisfy these simpler properties. The
definitions that we use (which can be found in Section 5) are variants of those in [LR22b; LR22a], adapted to
our pure ROM setting and to facilitate concrete security bounds.

Succinct ZkNARKSs. [GKOPTT23] construct zZkSNARKS that are computationally UC-secure in a model that
provides a global reference string and a global random oracle (that is observable but not programmable). Their
approach is a compiler that combines any simulation-extractable ZkSNARK and a polynomial commitment
scheme with certain properties (each comes with its own reference string), leveraging the random oracle to
achieve straightline extraction via proof-of-work ideas inspired by [Fis05].> Our work is complementary
in that we study a setting without any computational assumptions: we achieve unconditional UC-security
for well-known zkSNARKSs (without modifications) via a global random oracle (that is observable and
programmable). Moreover, the zkSNARKSs that we consider are not susceptible to quantum attacks whereas
the compiler in [GKOPTT23] uses a polynomial commitment scheme that is insecure against quantum attacks
(and whether there is a suitable post-quantum replacement is an open question).

3Informally, the argument prover, instead of providing an encryption of the witness as in [DDOPS01] (which makes argument
strings non-succinct), uses a polynomial commitment scheme to commit to a polynomial whose coefficients are the witness; to
achieve straightline extraction, the argument prover also provides a Fischlin-style proof-of-work that requires querying the random
oracle on many evaluations of the committed polynomial. The extractor can then use polynomial interpolation to reconstruct the
witness from the query-answer trace of a malicious argument prover.

2 Techniques

We outline the main ideas behind our results.

* In Section 2.1 we describe how to adapt the UC-security framework to our setting of unconditional security
in the ROM (and with the additional goal of achieving concrete security bounds).

* In Section 2.2 we describe how we reduce UC-security in the GROM to three simpler properties in the
ROM: UC-friendly completeness; UC-friendly zero knowledge; and UC-friendly knowledge soundness.

* In Section 2.3 we discuss the Merkle commitment scheme in the ROM (a component of the zZkSNARKSs
that we study), for which we prove several “UC-friendly” properties that we introduce and rely on.

* In Section 2.4 we discuss UC-security of the Micali construction, and then in Section 2.5 we discuss
UC-security of the BCS construction. In both cases we do so by showing the above UC-friendly properties.

* In Section 2.6 we discuss how we achieve UC-security against adaptive corruptions.

2.1 Unconditional UC-security

We consider UC-security for protocols in the “pure” ROM, where parties have query access to a random
function and where security holds unconditionally against adversaries that query the random function a
bounded number of times. This setting is not considered in prior work studying UC-security for zkSNARKSs
and, more generally, there is no off-the-shelf model of UC-security for this setting. Below we explain how we
adapt the UC framework [Can01; Can20] to our needs, and how our goals can be expressed in this adaptation.

UC-security against unbounded adversaries. We consider adversaries that are computationally unbounded,
and are limited only in their access to certain resources, such as queries to a random oracle, queries to a prover
oracle, and others. As discussed in detail in Section 3.2, we model this setting by modifying the mechanism
of import and time budget described in [Can20, Sec 3.2] to work with a generalized notion of budget. We
endow the environment (and the protocol) with a budget represented as a numeric vector. Each message sent
specifies how much budget is deducted from the sender budget and added to the receiver budget, and the
budget can be spent on a certain set of actions. With this, we can define the notion of budget-emulation.

Definition 2.1 (informal). Ler B be a tuple of non-negative integers. An environment is B-budget if its
starting budget is B. A protocol w B-emulates a protocol @ with simulation error o if 1 UC-emulates o with
simulation error o in the presence of any environment that is B-budget.

GROM and shared functionalities. The analogue of the ROM in our setting is a shared global subroutine:
the observable and (restricted) programmable GROM introduced in [CDGLN18]. The GROM interface
allows four types of queries: (i) random oracle; (ii) programming; (iii) observation; (iv) and is-programmed.
The random oracle query interface is familiar: each query is consistently answered with a random answer.
The programming interface enables setting the answer to arbitrary queries, while the is-programmed interface
enables parties in the session to detect whether a point has been programmed.* Finally, the observation
interface allows queriers to receive a list of illegitimate queries made to the oracle thus far (queries with prefix
sid made by the adversary or parties outside the session sid). The programming interface is used to argue
zero knowledge, while the observable and is-programmed interfaces are used to argue knowledge soundness.

We use the approach of UC with Global Subroutines [BCHTZ20] to argue that UC-security in the presence
of a global shared functionality implies standard UC-security. Informally, if the shared functionality and the

“Here “in the session” refers to the fact that the environment cannot directly ask is-programmed queries to the GROM, but only
through the adversary or a corrupted party. This enables the UC simulator to intercept these queries and choose their answers.

protocols satisfy some mild requirements, then showing UC-emulation in the hybrid model suffices to show
(standard) UC-security. See Section 3.2 for more details.

The ARG functionality. We study UC-security for (succinct) non-interactive arguments. The ideal
functionality that we use is the ARG ideal functionality F,rc from [LR22b] (therein called NIZKPoK ideal
functionality), given in Section 4.1.°> Briefly, Fr¢ has a proving interface that produces simulated proofs (to
capture zero knowledge) and a verification interface that extracts a witness (to capture knowledge soundness).

Any non-interactive argument ARG in the ROM directly induces a corresponding protocol II[ARG]| in
the GROM that matches the proving and verification interface of F,r. The protocol II[ARG]|, which is
described in Section 4.2, consists of two parties, a prover party Mp and a verifier party My, .

* The prover party Mp, on input an instance-witness pair, runs II[ARG]|’s proving interface, which runs
ARG’s prover using the GROM, and outputs the resulting argument string.

* The verifier party My, on input an instance-proof pair, runs II[ARG]’s verification interface, which runs
ARG’s verifier using the GROM and checks that none of the verifier queries involves programmed points,
and outputs the resulting decision bit (or simply rejects if one of the verifier queries was programmed).®

We use the generalized budget mechanism to keep track of the resources used by the environment. Since
we consider non-interactive arguments in the ROM, security will depend on the number of queries that the
environment makes to the GROM; in our setting, these queries include both random oracle queries and
programming queries.” Moreover, the environment may query the proving and verification interfaces, which
can aid an attack; hence we keep track of such queries as well. Overall, a (t,, t,, £,, ¢,)-budget environment is
an environment that can make: (1) ¢, random oracle queries to the GROM; (2) ¢, programming queries to the
GROM,; (3) 4, prover queries; and (4) 4, verifier queries.

The above enables us to state our first result in slightly more detail.

Theorem 2.2 (restatement of Theorem 1.2). There exists a non-interactive argument ARG in the ROM for
which the protocol I1|[ARG] (t,, t,, £y,) -emulates the ideal functionality Farc with simulation error
poly (g, tp, €5, £,)
(A tg, by, by,) = q2; ;

We show that natural constructions of zkSNARKSs in the ROM suffice for the above theorem: ARG
can be the Micali construction or the BCS construction (instantiated over appropriate probabilistic proofs).
Moreover, for these constructions we derive explicit expressions for the simulation error o (A, t,, t,, £,, £,),
which in particular enables setting parameters to achieve concrete UC-security bounds.

Next we describe how we prove such results.

2.2 UC-friendly properties

We informally describe three properties about a non-interactive argument ARG that are sufficient and necessary
for (unconditional) UC-security in the GROM:

3One could extend the ideal functionality Farc to one that models preprocessing non-interactive arguments. Our belief is that all
results in this paper straightforwardly extend to this case (we believe that the preprocessing variants of the Micali construction and
BCS construction, when based on suitable holographic probabilistic proofs, are unconditionally UC-secure in the GROM).

%An honest party does not program the GROM. In contrast, an adversary might instead attempt to produce an argument string
accepted by the verification interface by running the zero knowledge simulator of the non-interactive argument (and programming
the GROM accordingly). Rejecting argument strings whose verification involves programmed points disallows this.

"Observation and is-programmed queries do not affect security bounds. The environment knows its own queries to the random
oracle and the points that it has programmed, so it does not need to obtain this information from the GROM. Moreover, observation
and is-programmed queries do not change the state of the GROM, and thus do not affect other parties in the execution.

e UC-friendly completeness (sketched in Section 2.2.1);

* UC-friendly zero knowledge (sketched in Section 2.2.2); and

¢ UC-friendly knowledge soundness (sketched in Section 2.2.3).

These properties are described in detail in Section 5. Intuitively, each property protects against a natural class

of attacks against the UC-security of the protocol II[ARG], which we outline in the corresponding section.
This approach is analogous to the approach taken in [LR22b; LR22a], where the authors rely on somewhat

dissimilar security definitions that are sufficient and necessary for UC-security in their setting (NIZKPoKs

obtained from X-protocols).® In particular, the above properties can be viewed as adaptations of their three

properties: overwhelming completeness; non-interactive multiple special honest-verifier zero knowledge; and

non-interactive special simulation soundness. The main differences in our definitions include: (a) we target

unconditional security, while the previous definitions target computational security; and (b) we allow the

adversary to additionally program the random oracle (which is necessary in our “pure” ROM setting). The

second difference has important ramifications that we discuss further below.

2.2.1 UC-friendly completeness

The ideal functionality JF,r that we consider has a verification interface that, to model completeness, accepts
any proof that was generated by its proving interface. This might not be the case for the protocol II[ARG]: one
attack against UC-security is, for the environment, to invoke the proving interface on inputs that maximize the
probability that the resulting proofs are not accepted by the verification interface, which would distinguish the
real-world and the ideal-world. UC-friendly completeness bounds the success probability of such an attack.

Definition 2.3 (informal). ARG has UC-friendly completeness with error ¢, if every adversary that

* queries the random oracle t, times,

* programs the random oracle t, times,

* requests ¢, proofs for instances of length at most n, and

* requests U, verifications for instance-proof pairs with instances of length at most n

causes the verification interface to reject a instance-proof pair generated by the honest prover with probability
at most €xpc (A, My g, to,y Loy by).

One may guess that perfect completeness of the given non-interactive argument ARG implies UC-friendly
completeness with zero error. However this is not the case because the verification interface rejects proofs
whose verification causes the argument verifier to query points programmed by the adversary. Hence if
there are queries by the argument verifier that the adversary can predict (and program in advance) then the
adversary can induce a rejection despite the perfect completeness of ARG.

Nevertheless we show that the two natural notions below suffice, together with perfect completeness of
the non-interactive argument, to achieve UC-friendly completeness with small error.

Definition 2.4 (informal). ARG has:

* monotone proofs if the argument verifier, on input an honestly produced proof, queries the random oracle
only at points that have been queried by the honest argument prover that produced that proof; and

* unpredictable queries with error ey if every adversary that queries the random oracle t, times and
programs the random oracle t, times cannot produce an instance-witness pair (with instance length at
most n) that causes the honest argument prover to query one of the points previously programmed by the
adversary with probability more than ep (X, n, ty, t,).

8More precisely, [LR22b; LR22a] discuss properties of a compiler for X-protocols, but those properties can be straightforwardly
defined for the non-interactive argument output by the compiler.

Lemma 2.5 (informal). A non-interactive argument with perfect completeness, monotone proofs, and
unpredictable queries with error ep has UC-friendly completeness with error (roughly) €xrc = ¢, - €p.

2.2.2 UC-friendly zero knowledge

Definition 2.6 (informal). ARG has UC-friendly zero knowledge with error . if every adversary that
* queries the random oracle t, times,

* programs the random oracle t, times, and

* requests ¢, proofs for instances of length at most n

* requests U, verifications for instance-proof pairs with instances of length at most n

cannot distinguish between the game in which the returned proofs are generated by the honest argument
prover and the game in which they are generated by the zero knowledge simulator (which can also program
the random oracle) with an advantage better than Carc(\, n, tq, by, Ly, 0,).

Informally, UC-friendly zero knowledge is a version of adaptive multi-instance zero knowledge wherein
the adversary can adaptively program the random oracle.’ Indeed, every party can program the GROM, so
we need a zero knowledge property that accounts for this capability. In the real-world the protocol generates
proofs using the honest argument prover and in the ideal-world the ideal functionality generates proofs using
a simulator, so UC-friendly zero knowledge bounds the probability that an adversary distinguishes between
these two worlds based on this difference.

First, since the adversary can query the random oracle, we show that queries to the verifier do not help
the adversary, and thus show that UC-friendly zero knowledge is implied by a simplified notion where this
oracle is not present. Next, since the adversary can generate simulated proofs (and thus simulate the proof
oracle), we can use a hybrid argument to reduce the case of multiple simulated proofs to the case of a single
simulated proof. We rely on these simplifications to more conveniently establish UC-friendly zero knowledge
for the Micali construction and the BCS construction.

Lemma 2.7 (informal). If ARG has UC-friendly zero knowledge with error (,re against adversaries that
request a single proof and no verifications, then ARG has UC-friendly zero knowledge with error (roughly)
?, - Carc against adversaries that request {, proofs and make {, verifier queries.

2.2.3 UC-friendly knowledge soundness

Definition 2.8 (informal). ARG has UC-friendly knowledge soundness with error « ,r if there exists a
deterministic polynomial-time straightline extractor such that every adversary that

* queries the random oracle t, times,

* programs the random oracle t, times,

* requests ¢, simulated proofs for instances of length at most n, and

* outputs £, instance-proofs pairs with instances of length at most n

wins with probability at most karc (A, n, ty, t,, 4y, £,). Here “winning” means that one of the instance-proof
pairs that the adversary output (a) was for an instance not queried to the simulation oracle, (b) convinces
the argument verifier (without querying programmed points), and (c) causes the extractor to fail to extract a
valid witness for the instance.

°As shown in Section 5.2, UC-friendly zero knowledge is strictly stronger: there are non-interactive arguments that are adaptive
multi-instance zero knowledge but not UC-friendly zero knowledge.

10

UC-friendly knowledge soundness can be viewed as a variant of simulation extractability wherein the
adversary can adaptively program the random oracle, as allowed by the GROM. Since the difference between
the ideal-world verification interface and the real-world counterpart is the additional attempt at extraction
on proofs that successfully verify, UC-friendly knowledge soundness upper bounds the probability that
an adversary is able to distinguish between the two worlds by outputting proofs on which extraction fails.
The protocol (and ideal functionality) rejects proofs whose verification involves points programmed by the
environment. This is to disallow the environment from submitting proofs generated using the zero knowledge
simulator (and programming accordingly), from which it would be (likely) impossible to extract.

Moreover, while not shown in the above informal definition, UC-friendly knowledge soundness mandates
that the extractor be straightline: the extractor receives as input the instance, argument string, query-answer
trace of the adversary with the oracle (as well as the query-answer trace of the simulator with the oracle),'”
but not the adversary itself; in particular, the extractor cannot rewind the adversary. Straightline extraction is
required by the UC-security experiment (in which the ideal functionality also performs straightline extraction).

Similarly to the case of UC-friendly zero knowledge, we generically reduce UC-friendly knowledge
soundness to a simpler property, in which the adversary outputs only a single instance-proof pair.

2.2.4 UC-secure zZkSNARKSs from UC-friendly properties

Lemma 2.9 (informal). If a non-interactive argument ARG satisfies

» UC-friendly completeness with error € rg,

* UC-friendly zero knowledge with error (sra, and

» UC-friendly knowledge soundness with error k srg

then the protocol II[ARG] (¢, t,, ¢,, £,)-emulates the ideal functionality F arc with simulation error (roughly)

€arc T CARG + Karc -

The proof of Lemma 2.9 is given in Section 6, and follows a game-hopping approach in a GRO-hybrid
model. We rely on an observation of [CDGLN18] that, in the setting of the restricted programmable GROM,
the simulator can program points undetectably. We can then perform three game hops, one for each of our
UC-friendly notions. Finally, we lift the result in the GRO-hybrid model to full UC-security by using the UC
with Global Subroutines theorem [BCHTZ20].

UC-friendliness is necessary. We show that the UC-friendly properties that we describe are necessary for a
non-interactive argument ARG in the ROM to unconditionally achieve UC-security. This gives confidence
that the UC-friendly properties that we describe are the “right ones” for UC-security in our setting. Moreover,
we learn that the upper bound in Lemma 2.9 is almost tight. Specifically, while the upper bound can
plausibly be improved in certain cases (e.g., in the Micali and BCS constructions, establishing UC-friendly
completeness and UC-friendly zero knowledge involves separately upper bounding overlapping “bad events”),
the improvement is limited. Indeed, the necessity of the UC-friendly properties implies that the simulation
error of a non-interactive argument ARG is at least max{€xrc, Cara, Karc } > % - (€arc + Carc + Karca), at
most a factor of 3 (i.e., less than 2 bits of security) away from the upper bound in Lemma 2.9.

On tightness. We make an effort, throughout this paper, to obtain concrete security bounds that are relatively
tight (e.g., as noted for Lemma 2.9 in the paragraph above). Nevertheless, modest improvements are possible.
For example, Lemma 2.7 reduces UC-friendly zero knowledge to a simpler property (where the adversary
requests a single proof and no verifications) at a minor but noticeable cost; this cost can be reduced by

"More accurately, matching the ideal functionality, the extractor receives a query-answer trace that includes queries performed by
the adversary and the simulator but not including queries whose answer was previously programmed by the adversary.

11

directly establishing UC-friendly zero knowledge for the Micali and BCS constructions, avoiding the use
of Lemma 2.7. Similarly for UC-friendly knowledge soundness. These choices reflect striking a balance
between aiming for good concrete security bounds, and a modular presentation.

2.3 The Merkle commitment scheme is UC-friendly

The Merkle commitment scheme is a key ingredient in the Micali and BCS constructions (the zkSNARKSs
that we study), where it acts as unconditionally secure vector commitment scheme. In order to show that said
constructions satisfy the UC-friendly security notions sketched in Section 2.2, we establish corresponding
properties for Merkle commitments. Below we denote by MT := MTIA, |, ry;| the Merkle commitment
scheme for messages of length | (a power of 2) with salt size ryr, for a random oracle with output size .

2.3.1 Completeness

We formulate notions of monotone proofs and unpredictable queries for vector commitments schemes (in
analogy to the notions in Definition 2.4 for ARG), and show that the Merkle commitment scheme satisfies
them. This facilitates proving that the Micali and BCS constructions satisfy UC-friendly completeness.

Lemma 2.10. MT has monotone proofs, and unpredictable queries with error eyr =1, - | - (2,% + 2%)

2.3.2 Hiding

We formulate a notion of UC-friendly hiding for vector commitment schemes, and show that the Merkle
commitment scheme satisfies this property. This contributes towards proving UC-friendly zero knowledge
for the Micali and BCS constructions.

Definition 2.11 (informal). MT has UC-friendly hiding with error (. if every adversary that

* queries the random oracle t, times,

* programs the random oracle t, times, and

* requests {, commitments for messages of size at most | and corresponding openings for sets of size at most q
cannot distinguish between the game in which the returned commitments and openings are real and the game
in which they are generated by a simulator (that can also program the random oracle) with an advantage
better than Cur(\, 1, q,tq, to, £p)-

Lemma 2.12 (informal). MT has UC-friendly hiding with error (roughly) Cur =€, - q -1 - tatlp

2TMT

The proof of Lemma 2.12 is similar to the hiding proof for the Merkle commitment scheme in the ROM,
but adapted to reflect the additional programming capabilities of the adversary.

2.3.3 Extraction

The Merkle commitment scheme in the ROM is known to satisfy strong notions of extraction [BCS16; CY24].
Any adversary that outputs a Merkle commitment and subsequently outputs a valid opening proof must have
“known” the opening at commitment time; moreover, this holds even when the adversary outputs multiple
commitments and openings at different times. In the definition below we extend extraction to be UC-friendly,
considering adversaries that can program the random oracle. We prove that the Merkle commitment scheme
satisfies this stronger property.

Definition 2.13 (informal). MT has UC-friendly extraction with error x if every adversary that

12

* queries the random oracle t, times,

* programs the random oracle t, times,

* requests £, simulated commitments for messages of size at most | and corresponding simulated openings
for sets of size at most q,

e submits n commitments, and

* finally outputs k opening proofs for submitted commitments.

wins with probability at most kyr(\, 1, q,tq, t, by, n, k). Here “winning” means to: (i) submit a list of

commitments such that the extractor outputs different messages for duplicate elements in the list; or (ii) output

opening proofs that verify successfully on whose commitment the extractor outputs inconsistent messages.

3 (tq+26,1)2 | 2k(d+1)-(tq+26,1)
9" ox + X .

Lemma 2.14. MT has UC-friendly extraction with error (roughly) kur = 5 5

We do not prove Lemma 2.14; it straightforwardly follows from the extraction property shown in [CY24].
Instead, we prove that the Merkle commitment scheme satisfies an even stronger extraction property (i.e.,
which implies Lemma 2.14) that we use to achieve adaptive security and we discuss later in Section 2.6.3.

Definition 2.13 already incorporates some notions on non-malleability that will be crucial for establishing
UC-friendly knowledge soundness of the Micali and BCS constructions. UC-friendly extraction allows the
adversary to submit simulated commitments (as those obtained from the simulation oracle), and guarantees
that the Merkle commitment scheme extractor outputs consistent messages on those simulated commitments.

2.4 The Micali construction is UC-secure

We show that the Micali construction unconditionally achieves UC-security in the GROM, when instantiated
with suitable ingredients. By Lemma 2.9, it suffices to show that the Micali construction satisfies UC-friendly
completeness, zero knowledge, and knowledge soundness, which we now discuss in turn. After that, we
explain how this leads to a proof of Theorem 1.2.

Review of the Micali construction. A probabilistically checkable proof (PCP) is a proof system in which
the prover sends a (long) proof string, which the verifier checks by probabilistically reading a few locations
of it. The Micali construction compiles a (suitable) PCP into a zZkSNARK, by using the Merkle commitment
scheme in the ROM and the Fiat—Shamir transformation with salt size r. We denote this construction as
Micali[PCP, r], and sketch it next.

* The argument prover runs the PCP prover, and commits to the resulting PCP string using the Merkle
commitment scheme. Then the argument prover queries the random oracle with the instance, the Merkle
commitment, and a random r-bit salt, to obtain PCP randomness. Finally, the argument prover emulates the
PCP verifier on the obtained PCP randomness, which induces queries to the PCP string. The argument
string output by the argument prover consists of the Merkle commitment, the salt, the queries, their answers,
and an opening proof for the queries and answers.

» The argument verifier checks the opening proof, derives PCP randomness like the argument prover did, and
checks that the PCP verifier accepts when run with that randomness on the given queries and answers.

24.1 UC-friendly completeness

We use Lemma 2.10 to show that the Micali construction has monotone proofs and unpredictable queries.
Then by Lemma 2.5 we deduce that the Micali construction satisfies UC-friendly completeness.

13

Lemma 2.15 (informal). Micali[PCP, r| has monotone proofs and unpredictable queries with error eyt + %
(€t is from Lemma 2.10). By Lemma 2.5, Micali[PCP, r| has UC-friendly completeness with error (roughly)
€ARG = gp : (GMT + %)

2.4.2 UC-friendly zero knowledge

We show that the Micali construction satisfies UC-friendly zero knowledge.

Lemma 2.16 (informal). Let PCP be an honest-verifier zero knowledge PCP with error (pcp. Let (yur be the
UC-friendly hiding error in Lemma 2.12. Then Micali[PCP, r| has UC-friendly zero knowledge with error

(roughly) Carc = £, - (tq;—rtp + Cpep + Qur)-

The proof of this statement uses Lemma 2.7 to reduce UC-friendly zero knowledge to a game in which
the adversary makes only a single query to the prover oracle. Then we use a sequence of game hops, relying
among other things on the UC-friendly hiding property of the Merkle commitment scheme (Lemma 2.12).

2.4.3 UC-friendly knowledge soundness

We show that the Micali construction satisfies UC-friendly knowledge soundness.

Lemma 2.17 (informal). Let PCP be a knowledge sound PCP with error kpcp. Let kyr be the UC-friendly
extraction error in Lemma 2.14. Then Micali[PCP, r] has UC-friendly knowledge soundness with error
(roughly) Kare =4, - ((tq + 1) - Kpcp + Kur)-

Note that Lemma 2.17 imposes no additional requirements on the PCP compared to what is usually
required for regular knowledge soundness of Micali[PCP, r]. Yet we achieve the UC-friendly strengthening.

The proof of Lemma 2.17 informally works as follows. We reduce to the state-restoration knowledge
soundness of the PCP (a notion implied by the PCP’s knowledge soundness) and to the UC-friendly extraction
property of the Merkle commitment scheme. This is similar to prior work [BCS16; CY24] except that in our
setting the adversary has access to a simulation oracle, so part of the work in our analysis is showing that
simulated proofs do not help the adversary.

In the reduction to the PCP’s state-restoration knowledge soundness, the adversary’s queries to the
Fiat-Shamir oracle are translated to moves in the state-restoration game. The simulator has an advantage
over the adversary in its ability to undetectably program the Fiat—Shamir query (the point used to derive the
PCP randomness used for PCP verification). In order for the reduction to succeed, we must argue that this
additional capability does not help the adversary. This is because points programmed by the simulator are
domain-separated by instance, and the adversary wins the UC-friendly knowledge soundness game only by
outputting “fresh” instance-proof pairs (the instance was not previously submitted to the simulator oracle).
Thus, the instance-proof pair that the adversary outputs must not have been produced by the simulator oracle.

Having made this observation, the state-restoration knowledge soundness adversary runs the UC-friendly
knowledge soundness adversary, simulating the simulator oracle and extracting (in a straightline fashion)
PCP strings from instance-root-salt triples submitted to the Fiat—Shamir oracle using the Merkle commitment
extractor guaranteed by UC-friendly extraction (Definition 2.13). The analysis of the reduction follows then
similarly to that of state-restoration knowledge soundness in the ROM.

14

2.4.4 Conclusion

Lemma 2.15, Lemma 2.16, and Lemma 2.17 together show that the Micali construction satisfies UC-friendly
completeness, UC-friendly zero knowledge, and UC-friendly knowledge soundness, provided that the
underlying PCP is honest-verifier zero knowledge and knowledge sound. In turn, Lemma 2.9 implies that,
under these conditions, the Micali construction is unconditionally UC-secure. Both steps provide concrete
security bounds, leading to an overall concrete security bound for the UC-security of the Micali construction.

2.5 The BCS construction is UC-secure

We follow a similar approach to show that the BCS construction is unconditionally UC-secure: we prove that
the BCS construction satisfies UC-friendly completeness, zero knowledge, and knowledge soundness. Recall
that the BCS construction underlies many zkSNARKSs that are concretely efficient (and widely deployed).
We achieve concrete UC-security bounds for this notable class of zkSNARKSs.

Review of the BCS construction. The BCS construction extends the Micali construction to work with
interactive oracle proofs (IOPs), a multi-round generalization of PCPs. It compiles a (suitable) public-coin
IOP into a zkSNARK, by using Merkle commitment schemes in the ROM, and the (multi-round) Fiat-Shamir
transformation with salt size r. We denote this construction as BCS[IOP, r], and sketch it next.

* The argument prover runs the IOP prover, using the random oracle to simulate an interaction with the
(public-coin) IOP verifier. For each round, the argument prover computes the round’s IOP string, commits
to it using the Merkle commitment scheme, and derives the next IOP verifier message using the random
oracle (in a certain way that depends on the Merkle commitment and a salt, and either the instance or
the previous Merkle commitment). Once the interaction is complete, the argument prover deduces the
queries to the IOP strings and corresponding answers, and outputs an argument string containing the Merkle
commitments, the salts, the query-answer pairs, and opening proofs of the commitments for those queries.

» The argument verifier checks the opening proofs, re-derives the IOP verifier randomness, and checks that
the IOP verifier accepts when run with that randomness on the given queries and answers.

Remark 2.18 (BCS variant). We consider a minor simplification of the BCS construction where the IOP
verifier messages are derived by querying the random oracle at a point consisting of the instance and all
Merkle commitment and salts so far. This simplifies the knowledge soundness analysis compared to the more
common approach of querying at a point consisting of the last computed IOP verifier message, and the current
Merkle commitment and salt. All results that we present directly extend to this more common approach.

2.5.1 UC-friendly completeness

We show that the BCS construction has monotone proofs and unpredictable queries, by building on
Lemma 2.10 (which states that the Merkle commitment scheme has monotone proofs and unpredictable
queries). Then by Lemma 2.5 we conclude that the BCS construction satisfies UC-friendly completeness.

Lemma 2.19 (informal). BCS[IOP, r] has monotone proofs and unpredictable queries with error k- (€yr + %)
(ewr is from Lemma 2.10). By Lemma 2.5, BCS[IOP, r] has UC-friendly completeness with error (roughly)
€ARG — Ep k- (€MT + %)

15

2.5.2 UC-friendly zero knowledge

We prove that the BCS construction satisfies UC-friendly zero knowledge, using a strategy similar to the case
of the Micali construction (which is captured in Lemma 2.16). The proof of the lemma is similar, with the
main difference being that we need the UC-friendly hiding property of the Merkle commitment scheme to
hold for k commitment-openings pairs rather than a single one.

Lemma 2.20 (informal). Let |OP be a k-round public-coin IOP that has honest-verifier zero knowledge with

error Ciop. Let Cur be the UC-friendly hiding error in Lemma 2.12. Then BCS[IOP, r| has UC-friendly zero

knowledge with error (roughly) (arc =4, - (tq;,tp + Ciop + Cur)-

2.5.3 UC-friendly knowledge soundness

The BCS construction, when instantiated with an IOP that is state-restoration knowledge sound (with a
straightline extractor), satisfies straightline knowledge soundness in the ROM [BCS16; CY24]. We prove a
much stronger statement: the BCS construction satisfies UC-friendly knowledge soundness.

Lemma 2.21 (informal). Let IOP be an IOP with straightline state-restoration knowledge soundness with
error kK. Let kyr be the UC-friendly extraction error in Lemma 2.14. Then BCS[IOP, r| has UC-friendly
knowledge soundness with error (roughly) karc = 0, - (Ko + Kwt)-

We prove Lemma 2.21 similarly to Lemma 2.17, making use of the fact that in that analysis we can reduce
to the state-restoration knowledge soundness of the underlying PCP. In the case of the BCS construction,
we reduce to the IOP version of state-restoration knowledge soundness. We again have to ensure that the
adversary cannot use the simulation oracle in order to obtain an advantage, and an argument similar to that in
Lemma 2.17 readily establishes that.

2.5.4 Conclusion

Lemma 2.19, Lemma 2.20, and Lemma 2.21 together show that the BCS construction satisfies UC-friendly
completeness, UC-friendly zero knowledge, and UC-friendly knowledge soundness, provided that the
underlying IOP is honest-verifier zero knowledge and (straightline) state-restoration knowledge sound. In
turn, Lemma 2.9 implies that, under these conditions, the BCS construction is unconditionally UC-secure.
Both steps provide concrete security bounds, leading to an overall concrete security bound for the UC-security
of the BCS construction. This directly shows that existing zZkSNARKSs constructed from (state-restoration)
knowledge sound and honest-verifier zero knowledge 10Ps (e.g. [BCRSVW19; BBHR19] and similar
constructions) are unconditionally UC-secure.

2.6 Adaptive corruptions and strong UC-friendly properties

The previous sections consider UC-security against non-adaptive corruptions. Here we outline how we
additionally achieve UC-security against adaptive corruptions.

In the setting of UC-security against adaptive corruptions, the environment (through the adversary)
may corrupt parties at any time during the protocol execution. When a party becomes corrupted, it reveals
to the environment its private randomness (i.e., its private state). In the real-world the corrupted party
directly reveals its own private randomness, while in the ideal-world the UC simulator must somehow sample
randomness that “explains” a posteriori the past behavior of the party (possibly up to some error). Specifically,

16

the challenge is that this randomness must be consistent with the input-output behavior of the party until this
point of the execution. (The environment can send inputs to any party and receive corresponding outputs.)

Depending on the role of the corrupted party, simulating such randomness presents different challenges.
If the corrupted party is the verifier, simulating its private randomness is easy, since it is the same in both
the real-world and ideal-world. In contrast, if the corrupted party is the prover party then simulating its
private randomness is more challenging. Indeed, the prover party invokes the proving interface, which is
different in the two worlds: (i) in the real-world the proving interface runs the honest argument prover; and
(ii) in the ideal-world the proving interface forwards its input to the ideal functionality, which in turn runs the
zero knowledge simulator. In the ideal-world then, if the prover party is corrupted, the UC simulator must
be able to produce, a posteriori, argument prover randomness that is consistent with all argument strings
produced by the proving interface so far. More explicitly, the UC simulator must output randomness that the
honest argument prover would have used to produce the argument strings that were output by the prover party
thus far, despite those argument strings being sampled by the zero knowledge simulator. These additional
capabilities must be explicitly accounted for in the UC-friendly properties.

Therefore, inspired by [LR22a], we consider “strong” variants of the UC-friendly properties in Section 2.2,
which we obtain by adding a corruption oracle that returns the (possibly reconstructed) prover randomness
used by the proving oracle of the game. Once the corruption oracle has been queried, we forbid further
queries to the corruption oracle (and to the proving oracle), modeling how in the UC-security experiment
control of a newly corrupted party (in this case the prover party) is relinquished to the environment.

By using these strong properties, Lemma 2.9 can be extended to provide emulation in the setting of
adaptive corruptions.

Lemma 2.22 (informal). If the non-interactive argument ARG in Lemma 2.9 satisfies strong UC-friendly com-
pleteness, strong UC-friendly zero knowledge, and strong UC-friendly knowledge soundness, the conclusion
of Lemma 2.9 holds even in the setting of adaptive corruptions (with the same error bound).

The challenge is to show that the additional capability conferred to the adversary (by the new corruption
oracles) in these strong UC-friendly experiments is not a problem. We focus on the steps required to satisfy
these properties for the Micali construction; the strategy for the BCS construction is similar.

2.6.1 Strong UC-friendly completeness

Strong UC-friendly completeness is, conveniently, already implied by the three properties of perfect com-
pleteness, monotone proofs, and unpredictable queries, with the same error bounds. In other words, the
Micali construction has strong UC-friendly completeness for free.

Lemma 2.23 (informal). Micali[PCP, | has strong UC-friendly completeness with the same error as in
Lemma 2.15.
2.6.2 Strong UC-friendly zero knowledge

Establishing strong UC-friendly zero knowledge for the Micali construction is more involved. We show that
if the PCP underlying the Micali construction satisfies a natural notion that we call strong honest-verifier zero
knowledge, the Micali construction satisfies strong UC-friendly zero knowledge.

Lemma 2.24 (informal). Let PCP be a strong honest-verifier zero knowledge PCP with error (pcp. Then
Micali[PCP, r| has strong UC-friendly zero knowledge with the same error as in Lemma 2.16.

17

The strong UC-friendly zero knowledge simulator is required to sample randomness that “explains” a
simulated Micali argument string. This randomness has three components: (i) the PCP prover randomness;
(i1) the Merkle commitment randomness; and (iii) the Fiat—-Shamir randomness.

The strong honest-verifier zero knowledge property of the PCP is used to reconstruct the first piece of
randomness. Roughly, strong honest-verifier zero knowledge PCPs are honest-verifier zero knowledge PCPs
where the simulator additionally can, a posteriori, sample randomness that “explains” the sampled PCP local
view. (Later, in Section 2.6.4, we show PCPs that satisfy this notion.) In order to reconstruct the Merkle
commitment randomness, we show that Merkle commitment schemes satisfy a notion of strong UC-friendly
hiding (briefly, this property extends Definition 2.11 with a corruption oracle). Finally, the Fiat—Shamir
randomness is included in the Micali argument string, and thus the simulator has no need to reconstruct it.
The combination of these three observations yields Lemma 2.24.

2.6.3 Strong UC-friendly knowledge soundness

Showing strong UC-friendly knowledge soundness for the Micali construction also requires some additional
work. We strengthen the UC-friendly extraction property for the Merkle commitment scheme by adding a
corruption oracle, and prove that the Merkle commitment scheme satisfies this stronger property.

Lemma 2.25. MT has strong UC-friendly extraction with error (roughly) kyr = % (ta +22f Jk + 2k(d+1)2'(;q+%"l) .

Lemma 2.25 directly implies Lemma 2.14. Our proof of Lemma 2.25 closely follows the proof of multi-
extraction for the Merkle commitment scheme in [CY?24], adapted to reflect the additional programming
capabilities of the adversary and the presence of simulation and corruption oracles.

We adapt the proof of Lemma 2.17 to rely on strong UC-friendly extraction, and directly show that the
Micali construction satisfies strong UC-friendly knowledge soundness. (Without any additional requirements
on the underlying PCP.)

Lemma 2.26 (informal). Let PCP be a knowledge sound PCP with error kpcp. Then Micali[PCP, r] has
strong UC-friendly knowledge sound with the same error as in Lemma 2.17.

2.6.4 Conclusion

UC-secure zZkSNARKS from PCPs. The properties required of the underlying PCP are the ones that one
would naturally expect to need for the adaptive UC-security of the Micali construction. Yet to our knowledge
the PCP literature does not explicitly provide an off-the-shelf PCP with these properties.

We address this gap, by revisiting a transformation in [[W14] that combines a PCP and a zero knowledge
PCP of proximity (PCPP) to obtain a zero knowledge PCP. We show that: (a) if the given PCP is knowledge
sound then the resulting PCP is also knowledge sound; and (b) if the PCPP is strong honest-verifier zero
knowledge then the resulting PCP is also strong honest-verifier zero knowledge. Then we construct a strong
honest-verifier zero knowledge PCPP, and apply the transformation to any knowledge sound PCP (e.g.,
[BFLS91]) and this PCPP, concluding the proof of Theorem 1.2.

UC-secure zZkSNARKS from IOPs. As mentioned before, we can prove analogues of Lemmas 2.24 and 2.26
for the BCS construction.

Lemma 2.27 (informal). Let IOP be an IOP.
* IfIOP is strong honest-verifier zero knowledge IOP with error (iop, then BCS[IOP, r] is strong UC-friendly
zero knowledge with the same error as in Lemma 2.20.

18

* IfIOP is a state-restoration knowledge sound IOP with error k;op, then BCS[IOP,] is strong UC-friendly
knowledge sound with the same error as in Lemma 2.21.

By inspection, we see that many IOPs used in practice satisfy these properties, and thus lead to UC-secure
zkSNARKSs. We sketch how the masked univariate sumcheck protocol [BCRSVW19; BCFGRS17], a core
building block of many honest-verifier zero knowledge IOPs is strong honest-verifier zero knowledge. Let p
be a polynomial, which the verifier has oracle access to, and H C FF be a domain. The unmasked univariate
sumcheck protocol allows the verifier to check that), _;; p(h) = B for some claimed value 3. In the
masked version, to achieve zero knowledge, the prover sends (as an oracle) a masking polynomial ¢ and the
value 3" = 3, c iy G(h), the verifier samples a challenge c and then both parties run a unmasked univariate
sumcheck to check the claim), i (c-p + G)(h) = ¢ - 3 + (', which ultimately requires the verifier to
query p, ¢ at a single location. The strong honest verifier zero knowledge simulator can reconstruct the prover
randomness by sampling § uniformly at random, conditioned on the sum equaling 5" and on the value of
the query to ¢ as determined during the honest verifier zero knowledge simulation phase. (The conditioning
consists of linear constraints on the coefficients, so this sampling can be done efficiently.)

19

3 Preliminaries
3.1 Notation

List operations. For i € [n] and a list x € X", we denote by z[i] the i-th entry of z. For a set S C [n],
x[S]: S — ¥ is the function that maps i € S to z[i]. We write = o y for the concatenation of two lists, and
(slightly abusing notation) x N y for their intersection as sets.

Sampling. We write x <— D to denote that = is sampled from the distribution D. For a set .S, we write
x < S to denote that x is sampled from the uniform distribution on S.

Oracles. We denote by 2 <— A/1+/% the execution of an (oracle) algorithm 4, with a uniformly sampled
random tape, and access to oracles f1, ..., fx. We denote by 2/()\) the set of functions f: {0,1}* — {0,1}*.
A function f < U(\) is called a random oracle. We can derive from a random oracle f <« U()\)
another random oracle with smaller output size by truncation. An oracle can be domain-separated into
independent oracles, by prefixing queries to the original oracle with a unique string for each (new) oracle. For
Oy .o b, < X\ wewrite fi, ..., fr < ULy, ..., L) for the oracles obtained from f <— /() by domain
separating and modifying the output size so that f; : {0,1}* — {0,1}%.

Next, we introduce notions and notation for programming random oracles. A query-answer trace is a
list tr = ((qid;, zi,¥:))ic[y)» where gid; € {query, prog} specifies if the query obtains an answer or programs
an answer, x; is the query, y; is the answer. We say that tr is invalid if there exists 4, j € [t such that z; = x;
and y; # y;. For a function f € U(\), the function f]tr] is defined as follows:

ui if tr is invalid
fltr](z) = < y; elseif dis.t. x; =x
f(z) otherwise

For f € U()) and a trace tr’ we define the (stateful) programmable oracle [f, tr'] as follows.

If,tr']:
1. Initialize a list tr := tr’.
2. On a random oracle query x, set y := f[tr](x), append (query, x,y) to tr, and return y.
3. On a programming query trace,:
(a) If there exist (x,y) € trace,,, and (qid;, z;,v;) € tr with x; = z, return 0.
(b) Else append ((prog, z,Y)) z,y)ctracepo L0 tT and return 1.

We write [f] := [f, 0], and write y & AL7'T for the output of A when running with oracle [f,tr'] and
with final trace tr (note that in this case tr denotes the list maintained by the oracle, so it does not include
failed programming queries). If tr’ is invalid, so is tr; conversely, if tr’ is valid so is tr. We denote by
ro(tr) := ((qid, z,y) € tr : qid = query) and prog(tr) := ((qid, z,y) € tr : gid = prog) the (deduplicated,
ordered) lists of query-answer pairs made, respectively, to the random and programming oracle. We also
write y & AS to denote that running A with the (non-programmable) random oracle f has output y and
query-answer trace tr (and, in this case, qid; = query for i € [¢]). We naturally extend the notions above for
multiple random oracle, in which case the query-answer trace is augmented with an entry oid specifying to
which oracle the query in question was made.

An adversary A that has access to a programmable random oracle is (%, t,)-query if it makes at most
t, random oracle queries and ¢, programming queries (where a programming query with input trace,, is
counted as |trace,,,| queries). For any algorithm A,

20

* gqa(z1,...,xk) is an upper bound on the number of random oracle queries made by A (zy,...,xx);

* pa(z1,..., k) is an upper bound on the number of programming queries made by A (z1,...,xg).

We also define qa (n1, - - ., ng) = max|y,|<p, 9A (21, - - -, Tx) and pa (n1, . . ., Ng) = Max|, |<p, PA(T1, - -
Relation. A relation R is a set of tuples (x, w), where x is an instance and w is a witness. We associate a
language L(R), which is the set of instances x such that there exists a witness w such that (x, w) € R.

Statistical distance. Let Gy, G} be two algorithms with outputs in D. The statistical distance (i.e., total
variation distance) between (Go, G1 on input z is defined as

A:(Go,Gr) = 3 3 [Pr[Golx) = o] ~ Pr[Ga(x) = o]

aceD

If D = {0,1} then A, (Go,G1) = |Pr[Go(z) = 1] — Pr[G1(z) = 1]|. We write Gy = G if, for every z,
Ay (Go,Gp) = 0.

3.2 UC-security with unbounded adversaries

Universally composable (UC) security [CanO1; Can20] provides a general framework for establishing the
security of cryptographic protocols. The security guarantees hold under a general composition operation,
which enables modular analysis. In this work, we use a global random oracle [CJS14; CDGLN18], which is a
shared global entity every party in the security experiment can access. The plain UC model does not provide
a composability theorem for protocols interacting with such a shared global functionality, which was later
rectified by the generalized universally composable (GUC) framework [CDPWO07]. However, [BCHTZ20,
Appendix A] noted that the GUC framework is subtly inconsistent, and provide a blueprint for proving

security of protocols with global setup in the plain UC model, which we sketch next, and follow in this work.

In this section, we provide an informal description of the model for UC-security, and refer the reader
to [Can20] for more details. Furthermore, we describe the (minor) modifications to said model that we
undertake in order to capture security against computationally unbounded adversaries.

The model of computation in the UC model is interactive Turing machines (ITMs [Can20, Sec 3.1.1,
Def 4]), a generalization of Turing machines that can communicate with each other. An ITM is uniquely
identified by its identity tape, which contains an identity (consisting of a party-id and a session-id) and a
description of the code of the ITM. This information, together with the content of its tapes, is referred to
as an ITM instance ([Can20, Sec 3.1.1, Def 5]). Execution of a system of ITMs is defined in [Can20, Sec
3.1.2]. A system of ITMs is specified by an initial ITM I and a control function C. The execution starts by
running the initial ITM, and terminates when that same I'TM halts, outputting the content of its tape. ITMs in
the system can run external-write instructions, which can be used to send messages, spawn new I'TMs, and
more. Once an external-write instruction is issued, the control function decides whether it is allowed, and
possibly modifies the instruction written.!! A parametrized system of ITM:s is a list of systems of ITMs
((Ix, Cy)) parametrized by a security parameter A € N, which, abusing notation, we write (I, C') leaving A
implicit. A protocol is an ITM, which in this work we assume to be subroutine exposing [Can20, Def. 21].

Definition 3.1 ([Can20, Sec 3.1.2]). For a system of ITMs (I,C'), UCOut ¢ (2) is the random variable
denoting the output of the execution under the control function C when the initial ITM 1 is started with input
z, where the randomness is taken over the random tapes of the ITMs in the system. For a parametrized system

of ITMs (I,C'), we define UCOut), 1 ¢ (z) := UCOut;, ¢, (2).

"More precisely, this is an extended system of ITMs in the terminology of [Can20]; we use the system terminology for simplicity.

21

,.Tk).

The control function is parametrized by an adversary A and a protocol 7, and determines what is allowed
for the main security experiment. We use a control function Cg “ to model UC-security in the presence of a
global ITM G. Our control function builds upon the standard UC-security control function, which is formally
described in [Can20, Fig 6]. In the control function Cg A,

* The adversary is not allowed to pass or receive input from I'TMs in the executions, it is only allowed to
interact with those machines via designated backdoor tapes.

* The environment can communicate with the adversary, and is only allowed to spawn ITM instances of the
protocol 7 with the same session-id.

* Additionally we allow the adversary to pass and receive output to and from a single specified ITM G.

By setting G to be a “dummy” ITM, we recover the standard control function.

Unconditional security. Unlike previous works, we consider a setting in which the environment is
computationally unbounded, and whose capabilities are only limited by the number of times it is allowed to
access some shared resources, such as a random oracle. To model this setting, we revisit the mechanism of
import and time budget introduced in [Can20, Sec 3.2], to introduce a generalized budget. First, we review
import and time budget, as a modeling of efficient computation. [Can20] mandates that each external-write
must contain a numeric field called an import. Each ITM has a starting time budget, which is incremented by
the import of received messages, and decremented by the import of sent messages. A protocol is T-bounded
if, at any point in the execution, the number of steps it took is at most 7'(n), where n is the current time
budget. A protocol is efficient is it is p-bounded for some polynomial p.

We extend this mechanism, and we assume that each ITM has a starting budget vector, containing a
non-negative integer for each resource whose access we wish to limit. We mandate the following requirements.

* Each external-write instruction requires specifying a budget vector.

* At any point in time, the current budget of an ITM is the sum (componentwise) of the starting budget and
the budget of all incoming messages, minus (componentwise) the budget of all outgoing messages.

* If at any point in time the budget vector of an ITM has a negative entry, the execution halts.

For the main security experiment, we assume that the environment starts with some budget vector, and the
adversary starts with the zero budget vector. The protocol has its own budget (separate from the environment)
that it can use, which we leave unspecified (and assume large enough at all times). A protocol is B-budget if
its starting budget is 5. We also still use the original import mechanism to ensure that honest protocols are
efficient, and in a parametrized system of ITMs we assume that each protocol does not start execution until it
received import at least \.

With this new budget mechanism, we can define notation for the main security experiment. The output
of the main security experiment, when started with (i) protocol ; (ii) environment &; (iii) adversary A;
(iv) global functionality G; (v) security parameter A; and (vi) input z, is the output of the execution of the
system of ITMs with parameter A, initial ITM &, and the control function C’g ”4, on the input z.

Definition 3.2. Let w,E, A, G be ITMs. Define EXEC%Ag(/\, z) = UCOutA’&Cg,A(z).

Next, our aim is to give a description of the composition theorem [Can20, Thm. 22] that is amenable to
our unconditional security setting. We start by defining UC-emulation [Can20, Sec 4.2, Def 9]. Informally, a
protocol m UC-emulates a protocol ¢ if the output of the environment £ in the main security experiment,
when run with protocol 7 and an adversary A, is statistically close to that while running with protocol ¢ and
some simulator S (which may depend on .4 but not on &).

22

Definition 3.3. Let G, w, ¢ be protocols. We say that m B-UC-emulates ¢ in the G-hybrid model with
simulation error o and simulation overhead B' if for every A there exists an efficient B'-budget simulator S
such that for every B-budget £

AA(EXEcg,A,g, EXEcg,S’g) <o) .

Remark 3.4. Using [Can20, Sec 4.3.1] we can replace .4 with a “dummy adversary” A, which yields an
equivalent definition that is significantly easier to work with.

An ideal-functionality F is an ITM instance, and induces a protocol IDEAL r [Can20, Sec 5.3]. In
IDEAL f there is a single instance of F, and multiple dummy parties that simply forward their inputs to F
and then return the outputs of F to their callers.

.ps e .
Definition 3.5. Let 7 a protocol, F an ideal functionality, and G a global functionality. Let IDEAL Fse =

EXEClgDE ALy.sc Wesay that m B-UC-realizes F in the G-hybrid model if 7 5-UC-emulates IDEAL £ in
the G-hybrid model.

Specializing Definitions 3.2, 3.3 and 3.5 to the case where G is a dummy functionality recovers the
standard notion of UC emulation and ideal functionalities.

Definition 3.6. Let D be a dummy ITM, which passes no output to its caller. Let G, , p be protocols. We say
that m B-UC-emulates ¢ if m B-UC-emulates in the D-hybrid model. We further say that m B-UC-realizes
F if m B-UC-realizes F in the D-hybrid model.

For protocols p, 7, ¢, the UC operator p™ 7% := UC(p, 7, ¢) is defined in [Can20, Sec 6.1]. Intuitively, it
replaces invocations of 7 in p with invocations of (. The composition theorem formalizes the intuitive notion
that if m UC-emulates ¢ then this transformation yields a protocol that emulates p.

Theorem 3.7 ([Can20, Thm. 22]). Let p, 7, @ be protocols, and let t(p,) be a bound on the number of
instances of T that p spawns when started with parameter \. Suppose that:

o pis (m,)-compliant [Can20, Sec 6.1];

* T, are subroutine respecting [Can20, Def 19]; and

o 7 B-UC-emulates o with simulation error o and simulation overhead B'.

Then p™ % B-UC-emulates p with simulation error t(p, \) - o and simulation overhead t(p,\) - B'.

The UC theorem has some technical preconditions. Compliance is a requirement on the calling protocol,
and thus it is out of scope for this work. Subroutine respecting protocols are protocols whose subprotocols
(and subprotocols of those protocols) communicate only with parties outside their session through the main
protocol. This precondition is what prevents the UC theorem from being applied in presence of a global
functionality, as said functionality is outside the main session and will be queried by the emulator and the
emulated protocol. In order to allow global shared functionalities G, [BCHTZ20, Def 3.2] introduce G-
subroutine respecting protocols, which informally are subroutine respecting protocols whose subprotocols
(including themeselves) are allowed to pass and receive output from G. They also introduce a new “manager”
transformation M [BCHTZ20, Appendix B] that can be used to formulate a composition theorem for UC with
global subroutines. Roughly, for “nice” protocols 7, ¢ and a global protocol G, the UCGS theorem shows
that if M[m, G] UC-emulates M|, G] then the composition theorem can be applied. For the UC with Global
Subroutines theorem, we require G to be w-regular, which disallows G from spawning new ITMs and from
using 7 as a subroutine.

23

Theorem 3.8 ([BCHTZ20, Thm. 3.5]). Let p, m, v, G be protocols. Suppose that:
* pis (m, p)-compliant and (7, M[(, G])-compliant for (€ {m, ¢ };

* G is subroutine respecting and mw-regular [BCHTZ20, Def 3.3];

* m,p are G-subroutine respecting [BCHTZ20, Def 3.2];

* M, G] B-UC-emulates M|, G| with simulation error o and simulation overhead 3.

Then p™ % B-UC-emulates p with simulation error t(p, \) - o and simulation overhead t(p,\) - B'.

Modeling corruptions. Corruptions are not explicitly modeled in the UC framework, but instead are
modeled as additional interfaces exposed by protocols. The corruption models that we study in this work are
static corruptions and adaptive corruptions. In the case of static corruptions, the adversary can corrupt a
party at the start of the execution, and assumes complete control of it for the rest of the execution. In the
case of adaptive corruptions, the adversary can dynamically assume control of a party, and when it does so it
forces said party to reveal the randomness used thus far. Our result will hold in both settings, and we will use
blue to detail the modifications required for the case of adaptive corruptions. In accordance to the budget
mechanism that we introduced, we additionally extend the traditional corruption mechanism to set the budget
of corrupted parties to 0. This ensures that the environment/adversary cannot access additional resources
using corruptions.

Remark 3.9. The mechanism of budget that we have introduced to model unconditional security is not a
standard UC notion, and is not considered in previous works. In principle, it could invalidate some of the
results that we later rely on such as Theorem 3.7 and Theorem 3.8. We have verified that the proofs of these
results can be adapted, with minor bookkeeping modifications, to hold in our model. We suggest that future
work that aims for UC-results in this unconditional setting employs the mechanism we introduced. We also
considered alternative mechanisms to give unconditional security bounds, which we briefly mention.

* Modifying the global functionalities to stop answering queries after a certain number of queries have been
made. While this is a conceptually simple modification to make, it enables a simple distinguishing attack.
Consider for example a global random oracle that only allows ¢, queries, and suppose that the real and
ideal protocol make a distinct and known number of queries to the GROM. Then, an environment could run
the protocol, and query the GROM until it stops answering to deduce the number of queries the protocol
made, and, consequently, deduce if it is run in the real-world or ideal-world. While we could still achieve
UC-security in this context with tweaks to the UC-simulator, this adds additional complexity to disallow an
attack that anyways does not reflect real-world attacks.

* Giving theorems for quantified environments. This would imply giving results of the form “for every
environment £ that makes at most ¢, oracle queries...”. In fact, the environment can make queries to
restricted functionalities through the adversary and corrupted parties, which would make the quantification
even more unwieldy than in this example. We prefer to introduce budgets within the UC-framework, in
order to give more compact and precise theorems.

3.3 Global random oracle

Our results hold in the global restricted programmable observable random oracle [CDGLN18]. In this
model all parties have access to an oracle that can be queried and programmed. Every party can also check
whether a point has been programmed. The simulator has an advantage over the environment in that it can
program points undetectably. This model was designed to prove the security of particularly efficient protocols,
such as the folklore commitment scheme cm = f((m,r)) (where m is a message and r a random salt).

24

We refer the reader to [CDGLN18] for a discussion of the features of this model, compared to other global
random oracle models. Our definition slightly differs from prior ones, as we allow parties to atomically
program many query-answer pairs at once (if any of the pairs was previously programmed the entire request
fails and the oracle’s state remains unchanged). An atomic programming request requires the calling party to
expend budget equivalent to repeatedly calling the programming functionality for each query-answer pair.
In the language of Section 3.2, in this paper we establish that certain GRO-subroutine-respecting protocols
UC-realize a desired ideal functionality, where the global functionality GRO is defined next.

Functionality 3.1. The GRO functionality [CDGLN18] is defined as follows:
Parameters: security parameter \
State: underlying random oracle f < U/(\), initially empty lists tr, {IllegitimateTrace g }sid
Functionality:
* GRO.Query(x) from M = (pid,,, sid,,) or the adversary:
1. Sety = f[tr](x) and append (query, z, y) to tr.
2. Parse z as (sid, 2’) for sid a session ID.
3. If the query came from the adversary or sid # sid,,, append (z’, y) to lllegitimateTraceg,.
4. Output (Query, y) to the caller.
* GRO.Observe(sid) from M = (pid,,, sid,,) or the adversary:
1. Output (Observe, lllegitimateTracegy).
* GRO.Program(trace,,.;) from M = (pid,,, sid,,) or the adversary:
1. If there exist (z,y) € trace,., and (query, z;,y;) € tr with z; = x, output (Program, 0).
2. Else append ((prog, Z,Y)) (x,y)ctracepo, O -
3. Output (Program, 1).
* GRO.IsProgrammed(z) from M = (pid,,, sid,,) or the adversary:
1. Parse x as (sid, ') for sid a session ID.
2. If the query was made by the adversary or sid # sid,,, return L.
3. If there exists y such that (prog, x,y) € tr, return (IsProgrammed, 1); else return (IsProgrammed, 0).

We introduce notation for less verbose queries to the global random oracle.
Definition 3.10. We write GROgiq for the domain separated oracle GROgjq4(z) := GRO.Query((sid, x)).

Note that GRO is 7-regular for every protocol 7, as it does not invoke subprotocols nor passes output
to any ITM that did not query it. Moreover, GRO is subroutine respecting. Hence GRO satisfies the
preconditions of Theorem 3.8.

25

4 UC-security for non-interactive arguments in the ROM

We describe the notion of security that we establish for non-interactive arguments in the ROM. First we
recall the relevant syntax. Let f be sampled from ¢/(\). A non-interactive argument in the ROM is a tuple
ARG = (P, V) that works as follows.

» The argument prover P, given query access to f, receives as input an instance x and a witness w, and
outputs an argument string .

» The argument verifier V, given query access to f, receives as input an instance x and an argument string 7,
and outputs a decision bit.

In this work we study UC-security for non-interactive arguments, so we do not state the usual notions of
completeness and soundness. Instead, in Section 4.1 we provide an ideal functionality F, sr¢ that captures
these notions, as well as zero knowledge and knowledge soundness. Then in Section 4.2 we construct, starting
from a non-interactive argument ARG in the ROM, a protocol II,[ARG]| in the GROM. In later sections
we show that if ARG satisfies certain “UC-friendly” properties then II,[ARG] UC-emulates F, src in the
GRO-hybrid model. (Recall that these UC-friendly properties and the UC-emulation are unconditional.)

4.1 Ideal functionality

In Functionality 4.1 we provide the ARG ideal functionality ., , ¢ introduced in [LR22b] (called NIZKPoK
functionality there), and later extended in [LR22a] to include adaptive corruptions. We outline how F,src
captures the usual desiderata of a non-interactive argument.

» Syntax. The ideal functionality has a prover interface F, rc.Prove and a verifier interface F, s g . Verify,
matching the prover and verifier of a non-interactive argument. Additionally, the ideal functionality exposes
the interface F,src-Setup and the interface F,,rg.Corrupt. The simulator uses F, rq-Setup to pass to
the functionality the tuple of algorithms to be used for proving and verification. F, sgc.Corrupt is called by
the simulator in the event of a corruption, and returns information used to simulate the random tape of the
party being corrupted. If the party is the verifier, this is the randomness used thus far in the verification; if
the corrupted party is the prover, this information is the randomness simulated in the proving.

* Non interactivity. The ideal functionality interacts with the simulator only in F, srq.Setup. This implies
that only non-interactive argument systems can realize the functionality.

» Completeness. F, ,rc.Verify accepts all argument strings generated by F, ,rg.Prove.

* Knowledge soundness. F, . Verify attempts to extract a witness for instances not previously queried to
the proving oracle accompanied by valid proofs, and outputs an error if extraction fails.

» Zero knowledge. F, ,r.Prove outputs simulated proofs generated without the witness.

For simplicity, we give the definition of F, ¢ for a specific session id sid.

Functionality 4.1. The 7, functionality for a session sid is defined as follows.
Parameters: A relation R, an instance bound n.

Participants: A (dummy) prover party Mp and a (dummy) verifier party My .

State: A tuple of algorithms algTuple, initially equal to L. Several lists (initially empty):
* Instancelist, list of proved instances;

* Proved, list of proved statements;

* hProgrammed, list of (honestly) programmed points;

* extTrace, list of queries of the adversary and the simulator to the GROM,;

26

* Randomy, list of prover randomness strings;
* Randomy,, list of verifier randomness strings;
* Corrupted, list of corrupted parties.
Functionality:
o Foarc-Setup() from M = (pid,,, sid,):
1. If this interface was previously called, sid # sid,,, or or M € Corrupted, return L.
2. Pass (Setup, sid) to the simulator S and receive a tuple of algorithms (V, S, E).
3. SetalgTuple := (V,S,E).
* F.anc-Prove(x, w) from M = (pid,,,sid,,):
1. If sid # sid,, or algTuple = L or |x| > n or M € Corrupted, return L.
. If (x,w) ¢ R, return L.
. Obtain lllegitimateTrace,y from GRO.Observe(sid).
. Append to extTrace the query-answer pairs in lllegitimateTracey not already present.

2
3
4
5. Compute (7, tr, z;) {75 gOROss (x).
6
7
8

. Compute (pp, tr') <=2 SOROs (v, 2).
. Set extTrace := extTrace o trgotry.
. Call GRO.Program(((sid,), %) (z,y)etrotr’)» OUtputting Fail if the call returns (Program, 0).
9. Set hProgrammed := hProgrammed o trotr’.
10. Append x to InstanceList.
11. Append (x, 7) to Proved.
12. Append pp to Randomy.
13. Return (Proof,sid, x, 7).
o Faanc-Verify(x, m) from M = (pid,,,sid,,):
1. If sid # sid,, or algTuple = L or |x| > n or M € Corrupted, return L.
2. Sample py, < {0,1}"V and append it to Randomy,.
3. Compute b ¢ VRO (xc 11 p,,).
4. If (x,) € Proved, return (Verification,sid,x, , 1).
5. If b = O return (Verification,sid, x, 7, 0).
6. If there exists (z,y) € try \ hProgrammed such that GRO.IsProgrammed((sid, #)) = (IsProgrammed, 1),
return (Verification,sid, x, 7, 0).
7. If x ¢ InstanceList:
(a) Obtain lllegitimateTracegy from GRO.Observe(sid).
(b) Append to extTrace the query-answer pairs in lllegitimateTrace,y not already present.
(c) SetextTrace' := ((x,y) € extTrace : GRO.IsProgrammed((sid, z)) = (IsProgrammed, 0)).
(d) Compute w « E(x, 7, extTrace’).
(e) If (x,w) ¢ R, return Fail.
8. Return (Verification,sid,x,7,1).
* Fuarc-Corrupt(P) from S:
1. Append P to Corrupted.
2. If P = Mp, return Randoms.
3. If P = My, return Randomy,.

The ideal functionality F,,rc has an instance bound n as one of its parameters, which later on will
facilitate giving concrete security bounds. Moreover, F, sr¢ is GRO-subroutine respecting, as it only interacts
with GRO and with parties in the same session. Finally, in the verification procedure, F, r¢ invokes a
straightline extractor E that receives as input a query-answer trace consisting of the ordered query-answer
pairs resulting from queries to the GROM by the environment and the simulator, filtered to exclude queries
whose answers were previously programmed by the environment. (In particular, the extractor E may receive
queries to the random oracle that were previously programmed by the simulator.)

27

4.2 Protocol

A non-interactive argument ARG = (P, V) in the ROM implies a corresponding protocol II,[ARG] in the
GRO-hybrid UC framework, described below. II,[ARG] is a thin wrapper around ARG that uses the global
random oracle with domain separation (using the GROg;q notation from Definition 3.10) to run the argument
prover P and the argument verifier V of ARG. To disallow trivial breaks of knowledge soundness (such as
those that the simulator for zero knowledge would allow), the verification algorithm checks whether any of
the points queried are programmed.

Protocol 4.1. The protocol II, [ARG] for a session sid is defined as follows.
Parameters: A non-interactive argument ARG = (P, V), an instance bound n.
Participants: A designated prover M p and a designated verifier My, .
* II,[ARG].Setup() from M = (pid,,, sid,,): Do nothing.
* II,[ARG].Prove(x, w) from M = (pid,,,sidy,):
1. Prover Mp
(a) Ifsid # sid,, or x| > n, return L.
(b) If (x,w) ¢ R, return L.
(c) Compute 7 < POROsd(x, w).
(d) Return (Proof,sid,x, 7).
¢ II,[ARG].Verify(x, 7) from M = (pid,,,sid,):
1. Verifier My,
(a) If sid # sid,, or |x| > n, return L.
(b) Getb 2 VRO (x¢),
(c) If for some (x,y) € try GRO.IsProgrammed((sid, z)) = (IsProgrammed, 1), then set b := 0.
(d) Return (Verification,sid,x,,b).
* II,[ARG].Corrupt(M) from the adversary .A:

. If M ¢ { Mp, My } return L.
2. Return all the randomness of M, and relinquish control to the adversary.

I1,[ARG] is GRO-subroutine respecting, because it interacts only with protocols in the same session and
with GRO.

28

S UC-friendly security notions for non-interactive arguments

We describe three security notions for a non-interactive argument ARG := (P, V): a “UC-friendly” notion of
completeness in Section 5.1; a “UC-friendly” notion of zero knowledge in Section 5.2; and a “UC-friendly”
notion of knowledge soundness in Section 5.3. Later on in Section 6 we show that if a non-interactive
argument ARG satisfies each of these security notions then II,[ARG] (Protocol 4.1) UC-realizes F,arc
(Functionality 4.1) in the GRO-hybrid model; in fact, we show that these notions are necessary to achieve
such goal. The latter two security notions are variants of those in [LR22b; LR22a], adapted to provide
concrete security bounds and simplified when allowed by our setting.

Below we consider adversaries that can make multiple types of oracle queries: (1) random oracle queries;
(2) programming queries; (3) prover queries; (4) verifier queries; and (5) corruption queries.

Definition 5.1. An adversary is (t,, t,, {,)-query if it makes at most t, random oracle queries, t, programming
queries, [, prover queries, a single prover corruption query, and a single verifier corruption query. An
adversary is (t,,1,,¢,, {,)-query if it makes at most t, random oracle queries, t, programming queries, {,
prover queries, £, verifier queries, a single prover corruption query, and a single verifier corruption query.

Remark 5.2. As for the GRO, here and throughout the paper we allow the adversary to program the random
oracle in “batches”. Accordingly, we count a single query with batch tr as |tr| individual queries.

5.1 UC-friendly completeness

We introduce the notion of UC-friendly completeness. It models the capability of the adversary to induce the
proving interface to generate proofs that do not verify successfully.

Definition 5.3. For ARG = (P, V), we define the UC-friendly completeness experiment as follows:

sUCCompleteness’ (n, A):
1. Initialize empty lists tr, ProofList, Randomp, Randomy,.
2. Set advWin := (.
3. Run A answering its queries as follows:
On a random oracle query x, set y = f[tr|(x), append (query, x,y) to tr, and return y.
On a programming query trace,.,:
(a) If there exists (x,y) € trace,., and (qid;, z;,y;) € tr with z; = x, return 0.
(b) Else append ((prog, =, y)) (xy)ctracepog 10 tT and return 1.
— On a prover query (x,w) € R with |x| < n:
(a) Sample argument prover randomness pp < {0, 1}"® and append it to Randomsp.

(b) Compute the argument string ™ &P p /] (x, w; pp).

(c) Set tr := tr o trp.

(d) Append (x,) to ProofList.

(e) Return .

On a verifier query (x,):

(a) Sample argument verifier randomness py < {0,1}"V and append it to Randomy,.
(b) Compute the decision bit b BV £l (x, 3 pv).

(¢) Setb:=b A (try N prog(tr) = ().

(d) If (x,m) € ProoflList A b = 0, set advWin := 1.

(e) Set tr := tr o try.

29

(f) Return b.
— On a prover corruption query, return Randomp (and do not answer further prover corruption and
prover queries).
— On a verifier corruption query, return Randomy, (and do not answer further verifier corruption and
verifier queries).
4. Return advWin.

ARG has weak (resp. strong) UC-friendly completeness with error e, if, for every (t,,t,, {y, £,)-query
adversary A, instance bound n, security parameter \,

feUuR)

Pr [adva =1 advWin « sUCCompleteness’ (n, A)

:| S 6A1’iC§.(>‘7 ’I’l, tq? tpu gpv Ev) .
We show that strong UC-friendly completeness is implied by natural notions that are typically satisfied
by non-interactive arguments. We begin by recalling the definition of perfect completeness.

Definition 5.4. ARG = (P, V) has perfect completeness if, for every instance-witness pair (x,w) € R,

f U)}:1_

f =
Pr [V (x,m) =1 e P (x,w

A counterexample shows that perfect completeness is insufficient to achieve UC-friendly completeness.

Lemma 5.5. Let n, A\ € N. There exists a non-interactive argument ARG = (P, V) with perfect completeness
and UC-friendly completeness error € \ra(A,n,0,1,1,1) = 1.

Proof. Let R be a relation and consider the non-interactive argument ARG = (P, V) for R defined as
follows:

» P/(x,w): return 0.

» V/(x,7): query f(0), return 1.

ARG clearly satisfies perfect completeness. Next, consider the adversary against UC-friendly completeness
that requests a proof from the prover oracle, programs the oracle f at 0, and request verification of the

received proof. This adversary wins the UC-friendly completeness game with probability 1, using only one
query to the programming oracle, one to the proving oracle, and one to the verification oracle. O

The previous counterexample is rather artificial, as typically non-interactive arguments do not have
verifiers that perform spurious queries to the random oracle. In fact, non-interactive arguments typically satisfy
the property of monotone proofs, which we define next, and which disallows the previous counterexample.
Informally, the property states that while verifying a proof the verifier queries the random oracle only at
points that were previously queried by the prover.

Definition 5.6. ARG = (P, V) has monotone proofs if, for every (x,w) € R and adversary A,
feu

s P/ (x, w)
J_ (i Aﬂfztrpﬂ

b &Y vl (x,m)

Pr |try C trp =1,

where the inclusion try, C trp interprets the lists as sets.

30

Perfect completeness and monotone proofs are still not sufficient, as the following counterexample shows.

Lemma 5.7. Letn, \ € N. There exists a non-interactive argument ARG = (P, V') with perfect completeness,
monotone proofs, and UC-friendly completeness error € gc(A,n,0,1,1,1) = 1.

Proof. Let R be a relation and consider the non-interactive argument ARG = (P, V) for R defined as
follows:

« P/(x,w): query f(0), return 0.
« V/(x,m): query f(0), return 1.

ARG clearly satisfies perfect completeness, and has monotone proofs. Next, consider the adversary against
UC-friendly completeness that programs the oracle f at 0, requests a proof from the prover oracle, and
request verification of the received proof. Again, this adversary wins the UC-friendly completeness game with
probability 1, using only one query to the programming oracle, one to the prover, and one to the verifier. [

The above counterexample shows that if the adversary can predict which points the prover will query
when generating a proof then there is an attack on UC-friendly completeness. This in particular shows that
any (non-trivial) non-interactive argument with a deterministic prover is not UC-friendly complete. However,
typical (zero knowledge) non-interactive arguments can be shown to satisfy a property that disallows such
attacks. We dub this property unpredictable queries, defined next.

Definition 5.8. ARG = (P, V) has unpredictable queries with error cp if, and every (t,,t,)-query
adversary A, security parameter A, and instance bound n.:

x| <n feUu)
Pr| A(x,w)€eR (x, w) & AL <ep(A,n,tg,t,) .

A prog(tr) Ntre # 0 | 7 MP pritd (5 w)
Perfect completeness, monotone proofs, and unpredictable queries all imply UC-friendly completeness.

Lemma 5.9. If ARG = (P, V) has perfect completeness (Definition 5.4), monotone proofs (Definition 5.6),
and unpredictable queries with error ep (Definition 5.8), then ARG has strong UC-friendly completeness
(Definition 5.3) with error

earnc(Ay tg, to, oy b)) =Ly - ep(Nty + 4, - qp(n) + 4, - qv(n), t,) .

Proof. Let A be an adversary against the strong UC-friendly completeness security game. We construct an
adversary against the unpredictable queries game.

B A):
1. Initialize empty lists advProg, Randomp, Randomy,.
2. Sample i < [£,].
3. Run A, answering its queries as follows:

— Forward random oracle queries to the random oracle.

— Forward programming queries to the programming oracle, appending the queries to advProg if the

programming succeeds.
— On the i-th prover query (x;, w;) € R with |x;| < n:
(a) If i = i: output (x;, w;) and terminate.

31

(b) Sample pp < {0,1}® and add it to Randomp.
(c) Compute 7; < P7(x;, wy; pp).
(d) Return ;.
— On a verifier query (x, m) with |x| < n:
(a) Sample py < {0,1}"V and append it to Random,.
(b) Run b <& V/ (x,m; pv). If any of the points queried by V are in advProg, return 0 to A, else
return b.
— On a prover corruption query, return Randomp and stop answering further prover or prover corruption
queries.
— On a verifier corruption query, return Randoms, and stop answering further verifier or verifier
corruption queries.

Whenever A wins the UC-friendly completeness game, advWin is set. This implies that there is at least
a proof (x;,m;) € ProoflList did not verify successfully. This can happen if either the argument verifier
rejects (which cannot occur by perfect completeness) or if the verification interface queries a point that was
previously programmed. Since ARG has monotone proofs, this implies that the proving algorithm must
have queried some programmed points. By a standard hybrid argument, we learn that e,z < ¢, - €p. The
adversary B performs the same number of queries to the random oracle as A, if not for the costs of simulating
the proof and verification oracle, which are ¢, - gp and ¢, - gy queries respectively. O

5.2 UC-friendly zero knowledge

We describe a “UC-friendly” notion of zero knowledge for a non-interactive argument. The definition is a
natural extension of adaptive zero knowledge in the ROM, in which the adversary can additionally program
the oracle. We additionally consider a stronger version, in which the adversary can ask (once only) for the
randomness that the argument prover used to construct argument strings so far.

Definition 5.10. Let ARG = (P, V) be a non-interactive argument, and let S be an (oracle) algorithm. We
define two security games sUCZeroKnowledge, and sUCZeroKnowIedge?.

sUCZeroKnowledge, (A, n, A):

1. Sample f < U(N).

2. Initialize empty lists tr, ProofList, Randomp, Randomy,.

3. Run A, answering each query as follows.

On a random oracle query x, set y = f[tr](z), append (query, x,y) to tr, and return y.
On a programming query trace,g:

(a) If there exists (x,y) € trace,., and (qid;, z;,v;) € tr with x; = x, return 0.

(b) Else append ((prog, T,Y)) (xy)ctracen 10 tT and return 1.

On a prover query (x,w) € R with |x| < n:

(a) Sample argument prover randomness pp < {0, 1}"™® and append it to Randomp.

(b) Compute the argument string 7 &P pfiu] (x, W; pp).

(c) Settr = trotrp.

(d) Append (x,) to ProofList.

(e) Return .

On a verifier query (x,m) € R with |x| < n:

(a) Sample argument verifier randomness py < {0,1}"V and append it to Randomy,.
(b) Compute the decision bit b AR VHL) (x, 5 pv)-

32

(c) Settr = trotry.

(d) If (x,m) € ProofList, return 1.

(e) Returnb A (try N prog(tr) = 0).

On a prover corruption query, return Randomp. (Refuse further prover or prover corruption queries.)
On a verifier corruption query, return Randomy,. (Refuse further verifier or verifier corruption
queries.)

4. Output A’s output.

sUCZeroKnowledge$ (A, n, A):

Sample f < U(N).

Initialize empty lists tr, advProg, Randomp, Randomy,.
Run A, answering each query as follows:

1.
2.
3.

4.

On a random oracle query x, set y = f[tr](z), append (query, x,y) to tr, and return y.
On a programming query trace,,:

(a) If there exists (x,y) € trace,., and (qid;, z;,v;) € tr with x; = x, return 0.

(b) Else append ((prog, x, y))(x,y)etracepmg to tr and advProg and return 1.

On a prover query (x,w) € R with |x| < n:

(a) Compute (m,t1’, z) &s gfltr] (x).

(b) Compute (pp,tr") &5 S/ltrotrs] (wy, 2,).
(c) If tr o trgotry o tr'otr” is invalid, return L.
(d) Set tr := tr o trgotry o tr'otr”.
(e) Append pp to Randomp.
(f) Return .
On a verifier query (x,m) € R with |x| < n:
(a) Sample argument verifier randomness py < {0,1}"V and append it to Randomy,.
(b) Compute the decision bit b BV £l (x, 75 pv)-
(c) Settr = trotry.
(d) If (x,m) € ProofList, return 1.
(e) Returnb A (try N advProg = 0).
On a prover corruption query, return Randomy. (Do not answer further prover or prover corruption
queries.)
On a verifier corruption query, return Randomy,. (Do not answer further verifier or verifier corruption
queries.)

Output A’s output.

ARG has weak (resp. strong) UC-friendly zero knowledge with error (,r if there exists a proba-

bilistic polynomial-time algorithm S such that for every security parameter), instance bound n, and every
(tqs tos oy L,)-query adversary A

A(xn.4) (sUCZeroKnowledge,, sUCZeroKnowledge?) < Cana(A, 1, tq, by, £y, 6) -

We define a simplified notion of zero knowledge, which suffices to imply UC-friendly zero knowledge.

Definition 5.11. Let sUCZeroKnowledgeSimplej, sUCZeroKnowledgeSimple, be identical to sUCZeroKnowledge,
sUCZeroKnowledge,, with the verification and verification corruption oracle removed. ARG has weak (resp.
strong) simplified UC-friendly zero knowledge with error (... if there exists a probabilistic polynomial-
time algorithm S such that for every security parameter A, instance bound n and every (t,,t,,(,)-query

33

adversary A
An,A) (sUCZeroKnowledgeSimple,, sUCZeroKnowledgeSimpled) < Cample (A, 1, Ty E0y 4y)

Lemma 5.12. Suppose that ARG has weak (resp. strong) simplified UC-friendly zero knowledge with error
Cample- Then ARG has weak (resp. strong) UC-friendly zero knowledge with error

CARG()‘> T'L, tqa tp7 Ep) Ev) = simple()\7 na tq + Ev : qV(n)7 tpv gp) .

Proof. Let A be an adversary against simple UC-friendly zero knowledge. We construct an adversary against
UC-friendly zero-knowledge.

B(A):

1. Initialize empty lists advProg, ProofList and Randomy,.
2. Run A, answering queries as follows:
Forward random oracle and prover corruption queries to the corresponding oracles.
Forward prover queries to the corresponding oracle, appending the resulting instance-proof pair to
ProofList.
Forward programming queries to the corresponding oracle, and, if the programming succeeds, add
the queries to advProg.
On a verifier query (x, 7) with |x| < n:

(a) Sample py, < {0,1}"V and append it to Random,.

(b) Compute b v V(x,m; py).

(c) If (x,m) € ProofList, answer 1.

(d) Return b A (try N advProg = ().
3. Output whatever .4 outputs.

Note that B perfectly simulates the view of A in the UC-friendly zero knowledge game, and only performs
an additional ¢, - gy queries. OJ

We reduce simple UC-friendly zero knowledge to a definition in which the adversary makes a single
prover query.

Lemma 5.13. Suppose that ARG satisfies a version of Definition 5.11 in which the adversary is allowed only
a single query to the prover, with error s(iia,le()\, Ny tqy oy ly)-
Then ARG satisfies Definition 5.11 against £, prover queries, with error

Gampe A 1Ty s £5) = - Ghie A 1 + 50 (1, £,), 1, + 50V (n, £,)
Above, sogl)(n, ¢,) =¥, -max(qp(n),2qs(n)) and sogl)(n,ﬂp) =20, - ps(n).

Proof. Consider a sequence of hybrid games Go,...,Gy,. In game G;, the first ¢ oracle calls to the

prover are answered with the oracle of sUCZeroKnowIedgeSimpIe? while the remaining calls are an-
swered with the oracle of sUCZeroKnowledgeSimple,. Note that Gg = sUCZeroKnowledgeSimple, and
Gy, = sUCZeroKnowIedgeSimpIe?. We show that

AA(Gi, Gir1) < ¢ Ay ty + 500 (1, 6,), , + 50D (n, 4,)) .

The lemma readily follows since A 4(Go, Gg,) < ngl AA(Gy, Giy1).
Let A be an adversary that aims to distinguish between G; and G; .
We construct an adversary I3 against the single prover query game as follows.

34

B(A):
1. Run the adversary A, answering oracle queries as follows.
— Forward queries to the random and programming oracles to the corresponding oracles provided by
the game.
— For prover queries:
+ For the first ¢ — 1 queries, simulate the oracle as in sU CZeroKnowIedgeSimpIe? using the random
and programming oracle of the game.
* For the i-th query, use the prover oracle of the game.
« For the remaining queries, simulate the oracle as in sUCZeroKnowledgeSimple, using the random
oracle of the game.
— For the corruption oracle query:
For the first ¢ — 1 queries, output the simulated randomness as in sU CZeroKnowIedgeSimpIe?.
For the i-th query, use the randomness oracle of the challenger.
% For the remaining queries, simulate the oracle as in sUCZeroKnowledgeSimple, (which just
involves revealing the randomness used).
2. Output A’s output.

We tally the simulation costs that B incurs. Each of A’s queries to the random and programming
oracles translates to a single query to the corresponding game oracles, resulting in at most ¢, random and ¢,
programming queries. In each of the first (¢ — 1) queries of A to the prover, B has to simulate the oracle in
sU CZeroKnowIedgeSimpIe?, which involves 2qg random oracle queries and 2ps queries to the programming
oracle. The i-th query is answered using a single query to the prover of the game. Each of the remaining
¢, — i+ 1 prover queries instead involve simulating the oracle in sUCZeroKnowledgeSimple, which requires
gp random oracle queries. Finally, simulating the corruption oracle requires no further oracle queries.

Therefore B perfectly simulates the view of A, making at most t, +2(i — 1) -qs + ({, —i+ 1) - qp
queries to the random oracle, ¢, + 2(i — 1) - ps queries to the programming oracle, 1 query to the prover, and
querying only instances of size at most n. Hence,

A,
AA(G: Gig1) < Gl |t +2(i = 1) -0+ (6, — i + 1) - qp,
to+2(i — 1) ps
Noting that 2(i — 1) - qs + (¢, —i+ 1) - qp < ¢, - max (qp, 2qs) and 2(i — 1) - ps < 2/, - ps concludes the
proof. O

Comparison with adaptive ZK. By considering weak UC-friendly zero knowledge, and restricting the
adversary to not make any programming queries, we recover the standard notion of multi-instance adaptive
zero knowledge in the (explicitly programmable) ROM. Below we show that UC-friendly zero knowledge is,
in fact, strictly stronger.

Lemma 5.14. Let k € N. There exist a relation Ry, and a non-interactive argument for Ry, that:
* has multi-instance adaptive zero knowledge with error (sge (A, n, ty, 0,) = 2%
* has UC-friendly zero knowledge error (src(A,1,0,1,1,0) > 1 — 2%

Proof. Consider the (rather uninteresting) relation

me i 3250)

Here is an adaptive zero knowledge proof system for R with perfect completeness and perfect soundness:

35

P/ (x,w): if £(0) = 0%, output w; else output 0.
V/(x,7): check if xx = 0.

Perfect completeness and soundness are clear. It is straightforward to see that (P, V) is also adaptive
zero knowledge: consider the simulator that outputs 0; conditioned on f(0) # 0*, this simulator perfectly
simulates proofs, thus (P, V') has adaptive zero knowledge with error (src (A, n, tq, £,) = 2% Next, consider
the following adversary A against UC-friendly zero knowledge:

A:

1. Sample w «+ {0, 1}*.

2. Query the programming oracle with trace,,., == ((0,0%)).
3. Query the prover with (0, w) to obtain 7.

4. Output 1 if w = 7, 0 otherwise.

For every simulator S,

Axn,A) (sUCZeroKnowIedgeO, sUCZeroKnowIedge?)

= |Pr[sUCZeroKnowledgey(A) = 1] — Pr[sUCZeroKnowledge$ (A) = 1]
feUQR)

w « {0,1}*

tr := (prog, 0,0*)

m,tr’ « STl(0)

=1—-Prin=w

1
>1-— o
The last line follows from the fact that w is hidden from S. Thus, for every A, the UC-friendly zero knowledge
error is (arc (A, 1,0,1,1,0) > 1 — . O

Remark 5.15. Lemma 5.14 uses a trivial relation, without relying on any computational assumptions. The
ideas in the proof can be modified to show that adaptive zero knowledge is strictly weaker than UC-friendly
zero knowledge for any hard relation, yielding a separation for “interesting” relations as well.

5.3 UC-friendly knowledge soundness

We introduce a notion of UC-friendly straightline knowledge soundness, which is a strengthening of simulation
knowledge soundness (extraction in the presence of a simulation oracle) where the adversary can additionally
program the random oracle.

Definition 5.16. Let ARG = (P, V) be a non-interactive argument. We define the UC-friendly knowledge
soundness game with respect to a simulator S and an extractor E as follows.

sUCKnowIedgeSoundnessé g(n,A):
1. Initialize empty lists InsténceList, ProofList, tr, ext Trace, advProg, Randomp, Random,.
2. Set advWin := (.
3. Run A, answering its queries as follows:
— On a random oracle query x, set y = f[tr](x), append (query, z,y) to tr,extTrace, and return y.
— On a programming query trace,,.:
(a) If there exists (x,y) € trace,., and (qid;, x;,y;) € tr with z; = x, return 0.

36

(b) Else append ((prog, T,Y)) (x,y)ctracenog 10 tT and advProg and return 1.
— On a prover query (x,w) € R with |x| < n:

(a) Compute (m tr', z;) &8 gfltr] (x).

(b) Compute (pp,tr'") I8 S/ltrotrs] (2.
(c) If tr o trgotry o tr'otr” is invalid, return L.
(d) Set tr := tr o trgotry o tr'otr”.
(e) Set extTrace := extTrace o trgotry.
(f) Append x to Instancelist.
(g) Append (x,) to ProofList.
(h) Append pp to Randomsp.
(i) Return .
— On a verifier query (x,) with |x| < n:
(a) Sample argument verifier randomness py, < {0,1}"V and append it to Randomy,.
(b) Compute the decision bit b IV Sl (x, 75 pv)-
(c) Set tr := tr o try.
(d) If (x,m) € ProofList return 1.
(¢) Setb:=b A (try N prog(advProg) = 0).
(f) Compute w < E(x, 7, extTrace \ advProg).
(g) Ifb=1Ax ¢ Instancelist A (x,w) ¢ R, set advWin = 1.
(h) Return b.
— On a prover corruption query, return Randomp. (Do not answer further prover or prover corruption
queries.)
— On a verifier corruption query, return Randoms,. (Do not answer further verifier or verifier corruption
queries.)
4. Return advWin.

ARG has weak (resp. strong) UC-friendly knowledge soundness with respect to a simulator S with
error Karc If there exists a probabilistic polynomial-time extractor E such that, for every (t4,t,,¢,, ¢,)-query
adversary A,

feUd)

< .
advWin <+ sUCKnowIedgeSoundnessé g(n,A) | — Fana(A sty b, £y,)

Pr [advWin =1

We define a single-instance version of the above game, with slightly different notation for convenience.
In particular, we allow the adversary a single query to the verification oracle, and additionally refactor the
conditions for the adversary’s win to be outside of the game’s main body.

Definition 5.17. Let ARG = (P, V) be a non-interactive argument. We define the single-instance UC-
friendly knowledge soundness game with respect to a simulator S as follows.

sUCKnowIedgeSoundnesslé (n, A):

1. Initialize empty lists Instancelist, tr, ext Trace, advProg, Randomp.

2. Set advWin = 0.

3. Run A, answering its queries as follows:
— On a random oracle query x, set y = f[tr](x), append (query, z,y) to tr,extTrace, and return y.
— On a programming query trace,.,:

37

(a) If there exists (x,y) € trace,., and (qid;, x;,y;) € tr with x; = x, return 0.
(b) Else append ((prog, T, y)) (z,y)ctracepog 0 tt and advProg and return 1.

— On a prover query (x,w) € R with |x| < n:
(a) Compute (m, tr', z;) s gfiu] (x).

(b) Compute (pp,tr') Is S/ltrotrs] (wy, 2,).
(c) If tr o trgotrl o tr’otr” is invalid, return ..
(d) Set tr := tr o trgotry o tr’otr”.

(e) Set extTrace := extTrace o trgotry.

(f) Append x to Instancelist.

(g) Append pp to Randomp.

(h) Return .

— On a corruption query, return Randomp. (Do not answer further prover or corruption queries.)
4. A outputs (x,).
5. Return (x, m, InstanceList, extTrace, advProg).

ARG has weak (resp. strong) single-instance UC-friendly knowledge soundness with respect to a simulator

S with error /igleG if there exists a probabilistic polynomial-time extractor E such that, for every (t,,t,, 4,)-

query adversary A,
[feUR)
(x,w) ¢ R e
X, W :
Ab=1 Instancel ist, & sUCKnowIedgeSoundnesslé(n, A)
Pr A tre (1 advPro 0 extTrace,
T =
A x\;é Instancefist trvavarog
b VIl (x,)
i w < E(x, 7, extTrace \ advProg)

the error growing by a multiplicative factor of /.

Sm)

(1
ARG

(A, ty, t,,0,)

A hybrid argument shows that UC-friendly knowledge soundness is implied by this weaker notion with

Lemma 5.18. If ARG = (P, V) has weak (resp. strong) single-instance UC-friendly knowledge soundness

(Definition 5.17) with error ﬁglli@, then ARG has weak (resp. strong) UC-friendly knowledge soundness
(Definition 5.16) with error

HARG()\a n, tqv tp? epa gv) S év) HSP)LG()‘? n, tq + ev : qV(n)a tpa gp) .

Proof. Let A be an adversary against “multi” UC-friendly knowledge soundness. We construct a new
adversary B against (single) UC-friendly knowledge soundness.

B(A):

1. Initialize empty lists ProofList, advProg, Randomy,.
2. Sample i < [{,].

3.

4. On a programming query, use the programming oracle of the game, appending the query to advProg if

On a random oracle query, use the random oracle of the game.

it succeeds.

On a prover query, use the challenger’s prover oracle, appending the resulting instance-proof pair to

ProofList.

38

6. On a verifier query (x, 7) with |x| < n:
(a) If this is the i-th query to the verification oracle, output (x,) and terminate.
(b) Sample py < {0,1}"V and append it to Randomy,.
(c) Compute b &V £l (x, m; pv) (using the random oracle of the game).
(d) If (x,) € ProofList answer 1.
(e) Return b A (try N advProg = 0).
7. On a prover corruption query, use the challenger’s corruption oracle.
8. On a verifier corruption query return Randoms,. (Do not answer further verifier or verifier corruption
queries.)

The new adversary B makes a single query to the verifier oracle, ¢, + ¢, - gy random oracle queries, ¢,
programming queries, and ¢, prover queries. The view of A, until the i verifier query is performed, is as in the
multi-instance version of the game. To see this, note that the random, programming, prover, prover corruption
queries are directly forwarded to the single-instance game oracles, and are identical to the multi-instance
game. For the first ¢ verifier queries, the reduction faithfully simulates the verifier and verifier corruption
oracle. Furthermore, whenever A wins, there exists at least one index i where the advWin flag is set. Since i
is chosen uniformly at random, the results follows. O

39

6 UC-secure zZKSNARKSs from UC-friendly security notions

We prove that if a non-interactive argument ARG satisfies the UC-friendly security notions of Section 5 then
the corresponding protocol I, [ARG] (Protocol 4.1) UC-realizes the ideal functionality F,,rs (Functional-
ity 4.1) in the GRO-hybrid model.

As discussed in Section 3.2, we use budgets to account for the capabilities of the environment. We keep
track of a budget tuple (¢, t,, {,, £,) representing respectively:
* t,: query budget that can be spent on GRO.Query queries;
* t,: programming budget that can be spent on GRO.Program queries;
* (,: prover budget that can be spent on IT,[ARG].Prove (resp. F,src-Prove) queries;
* (,: verifier budget that can be spent on II,[ARG].Verify (resp. F.arc.Verify) queries.

Theorem 6.1. Let ARG = (P, V) be a non-interactive argument with the following properties:

* weak (resp. strong) UC-friendly completeness (Definition 5.3) with error € ra;
* weak (resp. strong) UC-friendly zero knowledge (Definition 5.10) with error (srq and simulator S;
* weak (resp. strong) UC-friendly knowledge soundness (Definition 5.16) with respect to S with error K rg.

Then (when all protocols are instantiated with security parameter \ and instance size n) I1,[ARG] (t, t,, £,, 4,)-
UC-realizes Foarc in the GRO-hybrid model with no simulation overhead and error

ZUC(GARGv CARG) HARGv A7 na tq) tp? epa gv)

where
EARG()\a n, tqu tpv gp? EV)

ZUC(EARGa CARGa KARG»)‘a TL, tqa tp? gpa fv) = + <ARG(>‘7 n, tq’ tpa va gv)
+ F':ARG(/\v ’I’L, tqv tpa epa ‘ev)

As mentioned in the relevant sections, GRO is subroutine respecting and II,[ARG]-regular, and II,[ARG]
is GRO-subroutine respecting. Thus, we can apply [BCHTZ20, Prop 3.4] to conclude that the transcript estab-
lished by the ITM instances in the execution of M[IT,[ARG]|, GRO] is identical to that in an execution in the
GRO-hybrid model. Thus, Theorem 6.1 implies that M{II,[ARG], GRO] UC-emulates M[IDEAL £, , ..., GRO]
(with the same simulation error and overhead). Therefore, all preconditions of Theorem 3.8 are satisfied, and
Corollary 6.2 readily follows.

Corollary 6.2. Let:

* M be the manager protocol introduced in Theorem 3.8;

* ARG be a non-interactive argument as in Theorem 6.1;

* pbe (I1,[ARG], P)-compliant protocol for P € {IDEALf, , .., M[IL,[ARG], GRO], M[IDEAL£, , ;... GRO]};
» p:=UC(p,II,[ARG], IDEAL £, where UC is the UC operator.

(ARG)

Then, p (tq,t,, Ly, £,)-UC-emulates p with no simulation overhead and simulation error

tﬂ'(pa)\) : ZUC(GARGv CARG: RARG»)‘7 n, tqu tp7 Epa gv) .

In the above:

* 2uc, €aras Cara, Karc are defined as in Theorem 6.1; and

* tz(p, \) bounds the number of instances of 11,[ARG| that p spawns when parametrized with security
parameter .

40

6.1 Proof of Theorem 6.1

Let E be the extractor guaranteed by Definition 5.16, and let M p, My, denote, respectively, the prover and
verifier party in the UC-security experiment. The UC simulator S is defined as follows.

S:
1. Initialize an empty list advProg.
2. When F, rc-Setup asks for a tuple of algorithms by sending (Setup, sid), send algTuple := (V, S, E).
3. When any corrupted party issues a GRO.Program query, forward the query to GRO, and, if successful,
append the list of programmed query-answer pairs to advProg.
4. When any corrupted party issues a GRO.IsProgrammed query, if the point is in advProg, answer
(IsProgrammed, 1), otherwise answer with (IsProgrammed, 0).
5. When the adversary asks to corrupt Mp:
(a) Call F, rc.Corrupt(Mp) which returns a list of randomness Randomsp.
(b) Return Randomp to the adversary, and relinquish control of Mp.
6. When the adversary asks to corrupt My :

(a) Call F,srq.Corrupt(My) which returns a list of randomnesses Randomy,.
(b) Return Randomy; to the adversary, and relinquish control of My, .

The simulator S can be implemented efficiently, and does not use any budget. We show security via a

sequence of games (listed below); each game is played against an environment £. We recall that in each game
the environment has access to (i) a prover interface that outputs an argument string; (ii) a verifier interface
that verifies arguments; (iii) two corruption interfaces (one for the prover party and one for the verifier party);
and (iv) the global random oracle .

EXPA(E) = EXEC%’:[%RG} Ap.e(A): The “real-world” security game in the GRO-hybrid model as in
Definition 3.2.

EXPB(E): Same as previous but answer false to GRO.IsProgrammed queries on any point not programmed
by corrupted parties.

EXPC(E): Modify the proving interface to maintain a list Proved of instance-proof pairs that it generated.
Modify the verifier interface to accept proofs in that list by default. This is a relaxation of the verifier
interface, as in the previous game honestly generated proofs can be rejected.

EXPD(E):

1. Modify the prover interface to match that of the ideal functionality.

(a) Instead of generating proofs using P, simulate proofs using S, programming the GROM accordingly
(outputting Fail if any such programming attempt fails). Further, use S to reconstruct prover
randomness as in the ideal functionality.

(b) Keep track of the points programmed by S in hProgrammed.

2. Relax the check in Item 1c of the verifier interface to match that of the ideal functionality in Item 6 (if a
proof verifies successfully and the only programmed points it queries are in hProgrammed, accept).

EXPE(E): Modify the verifier interface by appending the extraction procedure of the ideal functionality.

1. After Item 6, if the check passes, obtain the list of illegitimate queries lllegitimateTracey.

2. Run E to obtain a witness w, and output Fail if the witness is not valid for the instance.

EXPF(E) = IDEALSRO s ¢(\): The “ideal-world” security game in the GRO-hybrid model as in Defini-

tion 3.5.

We study each game hop separately. In each game hop (apart from the first), we define an adversary B(&)

41

against some UC-friendly property described in Section 5. The adversary will be the same in each hop, so we
describe it here to avoid duplication.

B(E):
1. Run the environment £, answering its requests as follows.

— For GRO queries (random oracle or programming) that do not have prefix sid, B (lazily) simulates a
random oracle. In the rest of the description we assume that queries have prefix sid.

— On a GRO query (sid, x), query x to the random oracle of the game to obtain y, then return (Query, y)
to the environment.

— On a GRO programming trace,, set trace/ _:= ((z, Y)) ((sid,x),y)Etracepos AN quUery trace/ . to the
programming oracle of the game to obtain a bit b. Return (IsProgrammed, b) to the environment.

— When the environment queries the prover interface with (x, w) € R, forward the query to the prover
of the game to obtain a proof 7 or a failure symbol L. If the result is L, return Fail, else return
(Proof,sid, x, 7) to the environment.

— When the environment queries the verifier interface with (x, 7), forward the query to the verifier of
the game to obtain a bit b. Return (Verification,sid, x, 7, b) to the environment.

— When the environment asks to corrupt the prover, query the prover corruption oracle of the game and
forward the result to the environment.

— When the environment asks to corrupt the verifier, query the verifier corruption oracle of the game
and forward the result to the environment.

2. Output whatever £ outputs.

Note that B has the same query complexity of £.
REAL is EXPB. We show that:

EXECER ARG).Ap.c(A) = EXPA = EXPB .

The argument is as in [CDGLN18]. Only parties in the session can ask GRO.IsProgrammed queries, and in the
“real-world” experiment no honest party makes programming queries. Thus, in both games, no programming
(other than that the corrupted parties engage on) will occur, and all the queries to GRO.IsProgrammed on
those points would return false. Therefore, modifying the experiment to answer false to GRO.IsProgrammed
queries on any point not programmed by corrupted parties does not change the view of the environment.

EXPB is close to EXPC. We rely on UC-friendly completeness (Definition 5.3) to argue that:
Ag(EXPB, EXPC) < €arc(A, ty, ty, £y, by) .

The two games are identical, if not for the fact that in EXPC all (honestly) generated proofs are accepted,
while in EXPB they might not be. B simulates perfectly the view of £ in EXPB (as long as the advWin flag
is not set) and in EXPC. Hence any distinguishing advantage of £ translates directly into B winning the
UC-friendly completeness game.

EXPC is close to EXPD. We rely on UC-friendly zero knowledge (Definition 5.10) to argue that:
Ag(EXPC,EXPD) < (arc(A, m, ty, ty, £y, 0y) .

When B is in sUCZeroKnowledge, the view of £ is as in EXPB. Instead, when B is in sUCZeroKnowledge?
the view of £ is as in EXPC. Hence whenever £ distinguishes between EXPB and EXPC, B distinguishes
between the real-world and ideal-world in the UC-friendly zero knowledge experiment.

42

EXPD is close to EXPE. We rely on UC-friendly knowledge soundness (Definition 5.16) to argue that:
Ag(EXPD,EXPE) < Kara(A,n,tg, ty, £, 0y) .

The only (detectable) difference between the two experiments is that in EXPE the verifier interface can
output Fail if extraction fails, while this does not happen in EXPD. This is because in EXPE the verification
interface attempts to extract a valid witness, and outputs Fail if this extraction fails, and apart from this
difference the two games are identical. In light of the above, the experiments are identical until Fail is output,
and since Fail is output exactly when advWin = 1 in the UC-friendly knowledge soundness game, any
distinguishing advantage of £ directly translates to B winning the UC-friendly knowledge soundness game.
Note in particular that in both the verification interface of the ideal functionality and the verifier oracle of the
UC-friendly knowledge soundness game, the extractor has access to a trace consisting of both the adversary
random oracle query and the queries the proving interface made to the random oracle, both filtered to exclude
adversarially programmed queries.

EXPE is IDEAL. Since the two games are syntactically equal, we have that:

EXPE = EXPF = IDEALF®_ 5 ¢())

6.2 Definitions 5.3, 5.10 and 5.16 are necessary

We show that the UC-friendly security notions in Section 5 are necessary for the UC-security of IT,[ARG] in
the GROM. In Lemmas 6.3 to 6.5 below, we lift an adversary A against the UC-friendly security notion to an
environment £ (A) against the UC-security of IT,[ARG] in the GROM. The environment for each lemma can
be described starting from the same basic template, which we present next.

50 (./4) .
1. Spawn a single instance of the protocol (say with session ID sid).
2. Run A4, answering queries as follows.
— On a random oracle query x, query GRO.Query((sid, x)) to obtain (Query, y) and return the answer
yto A.

— On a programming query trace,, set trace;, .. := (((sid,), Y)) (2, ctracepog» queTy GRO.Program(trace;

obtaining (IsProgrammed, b). Return b to A.

— On a prover query (x, w) € R, make a query to the prover interface of the protocol. If the result is
Fail, return L to A. If instead it is a message (Proof, sid, x, 7), return 7 to .A.

— On a verifier query (x,7), make a query to the verifier interface. If the result is a message
(Verification,sid,x,m,b), return b to A. If instead it is Fail, return 1 to A.

— On a prover corruption query, corrupt the prover party in the session, and return the received
randomness to A.

— On a verifier corruption query, corrupt the verifier party in the session, and return the received
randomness to A.

Note that the environment &, on a verifier query, returns 1 to the adversary if the verifier returns Fail. This
is because the only instance in which this occurs is when (in the ideal UC-security experiment) the ideal
functionality successfully verifies a proof from which it is unable to extract a valid witness. In both the
UC-friendly completeness and UC-friendly zero knowledge game this extraction is not part of the security
experiment, while the successful verification is, so returning 1 is the intended behavior.

Further, & inherits the query complexity of A.

43

Lemma 6.3. /If ARG does not satisfy Definition 5.3 with error e rq, for every simulator S there exists a
(tqs to, Lo, L,)-budget environment & such that

A, (EXEC RO RGlAp.¢- IDEALS ARGss) > eana (0 to, b, 0, 0,)

Proof. For every adversary A against the weak (resp. strong) UC-friendly completeness game, we construct
an environment £ by modifying the template environment & as follows.

E(A):
1. Initialize an empty list Proved.
2. Run &y(A), additionally performing the following:
— On a prover query, append the returned (x,) pair to Proved.
— On a verifier query, check if (x,7) € Proved and verification does not succeed. In that case, output 0
and terminate.
3. When & halts, output 1.

By definition of the ideal functionality, in the ideal-world proofs that are returned by the prover interface are
always accepted, so £ always outputs 1.

In the real-world, A wins the UC-friendly completeness experiment exactly when it manages to set the
advWin flag, which implies that it submitted an instance-proof pair (x, w) € ProofList to the verification
oracle, but verification of said proof did not succeed. When this occurs, £ will output 0.

Thus, if we assume that A has advantage > €,ra (A, 1, tq, ¢y, £, £,) against the UC-friendly completeness
game, the statistical distance of the two games is at least €. OJ

Lemma 6.4. If ARG does not satisfy Definition 5.10 with error (sra, for every simulator S there exists a
(tqs to, Ly, £,)-budget environment € such that

Ay (EXECE?&RG}’AD’& IDEAL%?SRG’S’g) > CanaO b, b, 0, 0,)
Proof. For every adversary A against the weak (resp. strong) UC-friendly zero knowledge game, we construct
an environment £ by modifying the template environment &y as follows.
E(A): Simulate £)(A) outputting whatever .4 outputs when it halts.

Let S be any simulator for the UC-security experiment, and let S be the simulator that it passes to F, sre-Setup.
By assumption, for this simulator S, there exist an adversary A that makes at most ¢, queries to its random
oracle, ¢, queries to the programming oracle, ¢, queries to its prover oracle, /, to its verifier oracle, a single
query to either corruption oracle, and queries instances of size at most n such that

An,A) (sUCZeroKnowIedgeO,sUCZeroKnowIedge?) > Cara (A, n, g, 0, 05, 0,)

In the “real-world” security experiment the view of the .A when simulated by £(.A) is that in sUCZeroKnowledge,,
while in the “ideal-world” game it is as in sU CZeroKnowIedgel The resulting environment inherits the
number of queries of the adversary. O

Lemma 6.5. Let S be an algorithm. If ARG does not satisfy Definition 5.16 with respect to S with error
Kara, for every simulator S (that chooses S as simulation algorithm) there exists a (t,,t,, ¢, {,)-budget
environment € such that

Ay (EXEC RO RGlAp ¢+ IDEALS ARGSg) > KanaO 1ty by, £, 0,)

44

Proof. For every adversary A against the weak (resp. strong) UC-friendly knowledge soundness game, we
construct an environment £ by modifying the template environment & as follows.

E(A):
1. Run &)(.A), additionally performing the following:

— On a verifier query (x,), if the verifier interface returns Fail output 1 and terminate.
2. When A halts, output 0.

By definition of the protocol, in the real-world proofs Fail is never returned, and so in that experiment £
always outputs 1.

In the ideal-world, .4 wins the UC-friendly knowledge soundness experiment exactly when it manages to
set the advWin flag, which implies that it submitted an instance-proof pair (x, w) to the verification oracle
on which (1) verification succeeds; (ii) extraction fails; and (iii) which is fresh in the sense that the instance
was not previously queried to the proving interface. In this case, the verification interface will return Fail,
and & will output 0.

Thus, if we assume that A has advantage > Karc (A, n, g, t,, £, £,) against the UC-friendly knowledge
soundness game, the statistical distance of the two games is at least K rg- L]

45

7 Merkle commitments and UC-security

The constructions of zkSNARKSs that we study in this paper rely on Merkle commitment schemes [Mer89]
in the ROM. We describe Merkle commitment schemes in Section 7.1 and then prove several UC-friendly
properties that we rely on: in Section 7.2 we prove UC-friendly completeness; in Section 7.3 we prove
UC-friendly hiding; and in Section 7.4 we prove UC-friendly extraction.

7.1 Merkle commitment schemes

We introduce some notation for binary trees with | leaves (assumed to be a power of 2).

The depth of the tree is d := log .

Vertices are identified with pairs (j,7) € [d] x [2/]. Odd nodes have i odd and even ones have i even.
The root of the tree is (0, 1).

The path from a node (d, 4) to the root is denoted as path(i) and we let p(j,4) € {j} x [2/] be the node in
the j-th layer of path(7).

The copath from a node (d, i) to the root is denoted as copath(i), and we let p(j,4) € {j} x [27] be the
node in the j-th layer of copath(i).

The span of a node (j,) is denoted as span(7, i) and is the list of leaves at the subtree rooted at (j,).

The Merkle commitment scheme MT := MT[A, ¥, |, ryr] over an alphabet ¥ C {0, 1}* is defined as

fOllOWS Let I'MT.Commit = | vt

MT.Commitf(m € b pur € {0, 1} Commit)

1. Parse pyr as (p1,...,p) with p; € {0,1}™T,

For i € [I], set c(q3) = f(mq, pi).

For j =d —1,...,0 (in this order) and i € [27]: set Cljg) = f(C(j+172¢_1), C(j+1,2i))-
Set rt :== ¢(o,1)-

Settd := (m, (Pi)z‘e[l]a (C(j,i))je[o,d],ie[zj]).

Output (rt, td).

AR e

MT.Open(td, I C l])
1. Fori € I, setauth; := (p;, (cp(ji)) jeld))-
2. Output pf := (auth;);e;.

MT.Check/ (rt, I C [I],a € X7, pf)
1. Fori e I:
(a) Setcyq,) = f(ali], pi).
(b) Forj=d—1,...,0:
i. Ifp(j+1,7)isodd, setcy, == p(j + 1,i) and cg :== p(j + 1,1)
ii. If p(j+1,i)iseven,setcg :==p(j+1,i) and ¢, == p(j + 1,14)
iii. Set cp(j) = fl(er,cr)).
(c) Check that ¢(g 1) = rt.

We obtain the following query complexity bounds:

* The MT.Commit algorithm performs qur.commi () = 2| queries,
* The MT.Open algorithm performs 0 queries,
* The MT.Check algorithm performs qur.chee(l; ¢) < ¢ - log | queries.

46

7.2 UC-friendly completeness

We show that the Merkle commitment scheme satisfies notions of completeness that makes it compatible
with UC-friendly completeness for non-interactive arguments (Definition 5.3).
First, the Merkle commitment scheme is well known to have perfect completeness.

Lemma 7.1. Let MT := MT[\, &, |, ryr]. For every message m € X' and query set I C |I]

feU)
Pr |MT.Check? (rt, I, m[I], pf) = 1| (rt,td) < MT.Commitf(m) | =1 .
pf := MT.Open(td, I)

Second, the checking algorithm of the Merkle commitment scheme is compatible with our notion of
monotone proofs (Definition 5.6).

Lemma 7.2. Let MT := MT[\, %, |, ryr]. For every message m € X' and query set I C [l],

[feUR)]
(rt,td) Lcommit MT.Commit/ (m)

Pr trcheck g trcommit pf = MTOpen(td7 I) == 1 .
1 <£ A[[fvtrcommitﬂ

b <X MT Check/l"(rt, I, m[I], pf) |

Finally, the Merkle commitment scheme also satisfies a notion of unpredictable queries, making it
compatible with Definition 5.8.

Lemma 7.3. Let MT := MT[\, X, |, rur]. For every (t,,t,)-query adversary A and security parameter \:
feUd)

m&Aﬂfﬂ SﬁMT()\alvtcntp) .
(rt, td) Leommit M T Commit /] (m)

me Y
A prog(tr) N tTeomme 7 0

In the above, eur(\, 1, tq, t,) =1+ (ty +t,) - (g + 2%)

Sketch. The proof is very similar to that in Lemma 7.6. The adversary wins exactly if it it is able to program
a point before it is queried. Since leaf queries contain a uniformly random string sampled from {0, 1}™T, the
probability that any of them is predicted is at most tg,mp. Conditioned on these points not being queried, their
answers are strings sampled uniformly at random from {0, 1}*, so each one of them can be predicted with
probability at most % Continuing layer-by-layer yields the claimed bound. (We remark that the above
bound is most likely not tight, and we suspect a tighter bound would not depend on ¢,. We leave tightening

the bound for future work.)]

7.3 UC-friendly hiding
We describe a notion of UC-friendly hiding, and prove that Merkle commitment scheme satisfy it.

Definition 7.4. Let MT = MT[A, X, |, ryr]. We define two security experiments sUCMerkleHiding, and
sUCMerkleHiding;.

47

sUCMerkleHiding(A):
1. Sample f < U(N).
2. Initialize empty lists tr, Randomyyr.
3. Run the adversary A, answering each query as follows:
(a) On a random oracle query x, sety = f[tr](x), append (query, x,y) to tr, and return y.
(b) On a programming query trace,,:
i. Ifthere exists (x,y) € trace,,, and (qid;, x;,y;) € tr with x; = x, return 0.
ii. Else append ((prog,,Y)) (z,y)ctracepog 10 tT and return 1.
(¢) On a prover query (m, I) with | m| < land |I| < g:
i. Sample pyr < {0, 1}™T-Commit,
i. Compute (rt, td) Hcommit MT.Commit! ™) (m; pyr).
iii. Compute pf := MT.Open(td, I).
iv. Set tr := tr o treommit-
v. Append pyr to Randomyyr.
vi. Answer (rt, pf) .
(d) On a corruption query, return Randomyr. (Refuse further prover or corruption queries.)
4. Output A’s output.

~D o~

sUCMerkleHiding)'T-5™(A):
1. Sample f < U(N).
2. Initialize empty lists tr, Randomyr.
3. Run the adversary A, answering each query as follows:
(a) On a random oracle query x, set y = f[tr|(x), append (query, x,y) to tr, and return y.
(b) On a programming query trace, .
i. Ifthere exists (x,y) € trace,,, and (qid;, x;, y;) € tr with x; = x, return 0.
ii. Else append ((prog,,y)) (x.y)ctracepog 10 tT and return 1.
(¢) On a prover query (m, I) with | m| < land |I| < q:
i. Compute (rt,pf, zz) Hsim. MT.Sim/I (m[1], I).

ii. Compute (pyr,tr') M MT.Sim/ltrotsiml(m 2).
iii. Iftr o trg, o tr, o tr’ is invalid, return L.
iv. Settr = tr o try,otr), o tr'.
v. Append pyr to Randomyr.
vi. Answer with (rt, pf).
(d) On a corruption query, return Randomyr. (Refuse further prover or corruption queries.)

4. Output A’s output.

MT has weak (resp. strong) UC-friendly hiding with error (. if there exists a probabilistic polynomial
time (oracle) algorithm MT.Sim such that for every (t,, t,, {,)-adversary A, security parameter \, message
length bound |, opening size bound q,

A (sUCMerkIeHidingO,sUCMerkIeHiding'f/'T'Sim> < GurO L gt b0, 6)

Similarly to UC-friendly zero knowledge for non-interactive arguments in Section 5.2, Definition 7.4
reduces to a simpler definition in which the adversary is only allowed a single prover query.

48

Lemma 7.5. Suppose that MT := MT\, X, |, ryr| satisfies a version of Definition 7.4 in which the adversary
is allowed only a single query to the prover oracle, with error C,\(AIT).
Then MT satisfies Definition 7.4 against ¢, prover queries, with error

CMT()H |7 Q7 tqa tp? gp) = gp . CI\(/I%I')(Aa |7 q7 tq + Sogl)(L Q7 gp)? tp + SOF()l)(l, q7 ep)) .
In the above:
* 505”('7 q,0,) = £, - max {qur.commit (1), 2qur.sim(, 7) },
° Sogl)(la Q7€p) = gp : pMT,Sim(Iv q)
Proof. The proof is identical to that of Lemma 5.13, and leads to slightly different costs of simulating the

oracles. OJ

We show that Merkle commitment schemes satisfy this strong one-shot version of Definition 7.4 in the
sequel.

Lemma 7.6. MT := MT[\, X, |, ryr] has (one-shot) strong UC-friendly hiding with error

1
l\(/IT) ()\7 la qa rMTa tq7 tp)

where the error bound Ch(,llT) is given in Lemma 7.12. In particular, for the simulator therein Qur sim(l, q) < 2I
and pyr.sim(l,q) < 2q - 1.

Proof. Let A be an arbitrary (t,, t,)-adversary against the strong one-shot version of sUCMerkleHiding. We
assume, without loss of generality, that the adversary makes exactly one query to the prover oracle and one
to the corruption oracle. Further, again without loss of generality, we assume that the call to the corruption
oracle occurs immediately after the call to prover oracle. For a given simulator MT.Sim, the simulation error
then corresponds exactly to the statistical distance of following two distributions:

feUn \
N (mGE',IG(E))ﬁAm

D otreommi

Di(A) = ALF et c°mm't]](rta pf, pur) pur < {0, 1}™T.Commit

(rt,td) Lcommit MT.Commitf[tr(l)](m; Put)
pf := MT.Open(td, I)

and
feU)
| tr(D)
(m ex Ie ([))) o Al
rt, pf, 2mT) Lsim. MT.Simf[tr(l)](I,m[I])

(/
(T

pur, tr) 2 MT.SimflerVotrsmd (1 27)

rWotrgotr’: otr
Dy(A) = q AL etmimotrinottl (ry pf 1)

In Construction 7.11 we construct a simulator MT.Sim, and in Lemma 7.12 we show that, for that simulator,
A (D1, D) < Ch(,,lT) , which implies the lemma statement. O

To prove Lemma 7.12, we proceed in three steps: (i) in Section 7.3.1 we prove a UC-friendly hiding
property of the basic commitment scheme (a building block); (ii) in Section 7.3.2 we prove a UC-friendly
hiding property of a Merkle commitment (the root hash); and (iii) in Section 7.3.3 we prove the UC-friendly
hiding property of Merkle commitment schemes described above.

49

7.3.1 UC-friendly hiding of the basic commitment scheme
The basic commitment scheme CM is defined as follows.
CM.Commit/ (m € ¥; p € {0,1}"): Output cm == f((m, p)).

In Construction 7.7 we give a simulator CM.Sim for CM and then in Lemma 7.8 we prove that CM satisfies a
notion of UC-friendly hiding.

Construction 7.7. Let CM.Sim be the following (pair of) algorithms.

CM.Sim: Sample and output cm < {0, 1}*.

CM.Sim(m, cm):

1. Sample p < {0,1}".

2. Set tr := ((prog, (m, p),cm)).
3. Output (p, tr).

Lemma 7.8. Consider the two distributions

f<U)
tr(D)
— If,trMotrem] m e— A[[fﬂ
B b emo)l e 013

cm & CM.Commitf[tr(l)](m; p)
and
(feUd)

[[ft(l) t]] mﬂAﬂfﬂ
Dy(A) = § Aol (e,
2(A) (cm. p) cm < CM.Sim

(p, tr) « CM.Sim T (1, cm)

For every (t,,t,)-query adversary A,

to+1t,
or

AA(D1>D2) < CCI\/I()\a I’,tq,tp) =

Proof. Define the event E that (m, p) € tr"). Since p is chosen uniformly at random in {0,1}", and
[tr(M)] < t, + t, we have that Pr [E;] < tq;tp. Conditioned on E not occurring, cm is a uniformly random
string in {0, 1}* in both games, p is uniformly distributed in both games and f is valid. Thus, the distributions

are identical, and we are done. O

7.3.2 UC-friendly hiding of the root of Merkle commitment schemes

We show that a Merkle commitment (the root hash) satisfies a UC-friendly hiding property: in Construction 7.9
we give a simulator MT.RootSim and then in Lemma 7.10 we prove the property. This builds on the basic
commitment scheme CM in Section 7.3.1.

Construction 7.9. Let MT.RootSim be the following (pair of) algorithms.
MT.RootSim/:

50

1. Forevery i € [l], sample cm; <— CM.Sim.

2. Compute rt by constructing the (unsalted) Merkle commitment with leaves cmy, ..., cm;.
3. Set z¢ == (cmy,...,cmy).

4. Output (rt, zyt).

MT.RootSim/ (m, z):

1. For every i € [I], sample (p;, tr;) <= CM.Sim(m;, cm;).
2. Setp = (p1,...,p) and tr := o;tr;.

3. Return (p, tr).

Lemma 7.10. Consider the two distributions
f<U)

oD AL
D A = A[[fvtr(l)otrcommitﬂ t7 m<—— A
1() (r pMT) pMT(—{O,l}rMT'Commit
(rt,td) Lcommit MT.Commitf[tr(l>](m; Pur)
and

(feUd)
m & Al
(rt, zvt) &smMT.RootSim/ 1]

trl,
(pur, tr) @ MT.RootSimﬁtr(Umsm] (m, 2yt)

DQ(.A) — .A[[f’tr(I)OtrSimOtr;imOtrﬂ(rt,pMT)

For every (t,,t,)-query adversary A,
to+t,+21—1

2rmMT

AA(D17D2) < Crt()\a |7 rMTatqvtp) =

Proof. We proceed via a sequence of hybrid games. For i € [l], in the i-th game the first 7 leaves are simulated
using CM.Sim, while the remaining | — ¢ leaves are computed using CM.Commit. Let G; be the i-th such
game, so that D; = Gg and Dy = G,. The i-th reduction adversary B; that argues closeness between G; and
G;_1 makes | oracle queries to compute the Merkle commitment over the leaves, | — ¢ queries to compute the
leaves that are not simulated, and ¢ — 1 programming queries to compute the randomness of the simulated
leaves. Hence, A 4(G;, Git1) < Cem(A, rur, tq + 21 — i, ¢, + i — 1). We deduce that

AA(Dl, Dg) < Z Ccm()\, rmr, tq + 21 — 1, t, +1— 1)
i€[0,1—1]
_ ¥ to+t,+20—1
2rmMT
1€[0,1—1]
ot t+2-1

2rmMT

7.3.3 UC-friendly hiding of Merkle commitment schemes

Finally, we show that authentication paths as well do not leak any information about the (other) leaves of the
Merkle commitment scheme.

51

Construction 7.11. Let MT.Sim be the following (pair of) algorithms:

MTSImf(I, (mi)ig):

1. For i € I, sample a random p; < {0, 1}™T, set ¢(q 4y = f(mi, pi)-

2. Fori ¢ I,seteci,y = L.

3. Forj=d—1,...,0andi € [2/]

(@) Ifegirio1) = cyy1,2i-1) = Lysetegy) = L

(b) Otherwise:

i If ejpr0i-1) = L, set ¢(j1,2i-1), 2rt) = MT.RootSim/.

ii. If ¢(jy1,2) = L, set (¢(j1,2i), 2rt) = MT.RootSim/.
iii. Setc(j ;) = f(c(j+172i_1),c(j+172i)),z,(t“) = Zn.

Set rt == €(0,1)-

Fori € I, set auth; == (p;, (Cp(i5)) je(a)) and pf := (auth;)er.

Set zmt = {1, rt, pf, (pi)ier, (25571))j,i’ }

Return (rt, pf).

N s

MT.Sim(m, zmT):
1. Fori € I,setcig) == T.
2. Fori ¢ I,setcyy) = L. .
3. Forj=d—1,...,0andi € [2/]
(a) If C(j+1,2i—1) = C(j+1,2i—1) = 1, set Clji) = 1.
(b) Otherwise:
i. If e(jq1,2i—1) = L, compute pspan(jﬂ,gi,l),tr(j’i) — MT.Sim/ (m[span(j