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Abstract

With the rise of quantum computing, the security of traditional cryptographic
systems, especially those vulnerable to quantum attacks, is under threat. While pub-
lic key cryptography has been widely studied in post-quantum security, symmetric-
key cryptography has received less attention. This paper explores using the Ajtai-
Micciancio hash function, based on the Short Integer Solution (SIS) problem, as
a pseudorandom function in the Luby-Rackoff cipher. Since lattice-based prob-
lems like SIS are believed to resist quantum algorithms, this approach provides the
potential for a quantum-resistant block cipher. We also propose a novel statisti-
cal method based on the Generalized Extreme Value distribution to evaluate the
number of secure rounds and resistance to differential cryptanalysis.

Keywords: Luby-Rackoff cipher; Short integer solution problem; Differential
cryptanalysis.

1 Introduction

Advances in quantum computing threaten conventional cryptographic systems, prompt-
ing active research into post-quantum cryptography designed to resist quantum attacks.
Although public key cryptography has been studied extensively, symmetric-key cryp-
tography has yet to receive much attention. This lack of focus is especially significant
as symmetric-key cryptography is essential in lightweight, resource-efficient systems.
Quantum attacks on symmetric-key algorithms [1][2] highlight the urgent need to secure
these widely implemented systems.

In this context, Luby and Rackoff showed that the Feistel cipher is secure against
chosen plaintext attacks (CPA) with three rounds and secure against chosen ciphertext
attacks (CCA) with four rounds[3]. This security is achieved when the Feistel cipher
is constructed using an ideal pseudorandom function (PRF). This result highlights
the critical role of PRFs in ensuring the security of symmetric-key cryptography,
particularly in Feistel structures. The performance and security of Feistel ciphers
heavily depend on the design of the*F function,” which is directly linked to the quality
of the underlying PRF.
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PRFs are crucial not only for Feistel structures but also for symmetric-key cryp-
tosystems. The Goldreich-Goldwasser-Micali (GGM) method [4] and the synthesizer
technique [5] are well-known for constructing secure PRFs. While the GGM method
offers strong theoretical security, the synthesizer technique supports efficient paral-
lelization. Additionally, extensions to these methods have been proposed, including the
use of lattice-based primitives, as seen in the synthesizer approach[6].

Based on hard lattice problems, Lattice cryptography is a leading candidate for post-
quantum cryptography. It originated with Ajtai’s seminal work[7], which showed that
hard lattice problems in the worst case can be used to construct a one-way function with
average computational hardness. This result is based on the Short Integer Solution (SIS)
problem, a foundational lattice-based problem. Micciancio extended this to develop a
collision-resistant hash function[8].

Learning with Errors (LWE) and SIS are known as the main lattice problems that
form the basis of lattice cryptography. LWE and SIS have a duality[9]. If the solution
vector in the SIS is identified with the error vector in the LWE, the two are reduced to
the Closest Vector Problems (CVP) of the same class[10].

SIS is used for hash function construction[11] and digital signatures[12], and LWE
is used for public key and homomorphic encryption[13][14]. A configuration using
LWE has been cited as an example of applying the lattice problem to symmetric-key
cryptography, and many configurations using LWE have been considered in existing
research. On the other hand, studies on SIS have received little attention. However,
SIS does not require a precise design of the error distribution in LWE and is simple to
implement, making it suitable for theoretical analysis.

A variant of the synthesizer that incorporates the LWE through Learning with
Rounding (LWR) as a primitive has been proposed [15], which, despite its benefits,
faces challenges related to the synchronous execution of parallel processes and increased
communication overhead. As an extension of this research, a further refined version
of the synthesizer has been proposed [16], which enhances efficiency but requires
substantially larger key sizes. While these are essential theoretical results, constructing
symmetric-key cryptosystems based on SIS without these trivial constructions remains
an open problem.

A key question arises: If the Ajtai-Micciancio hash function were adopted as
the PRF, would the Luby-Rackoff cipher retain its resistance against chosen plaintext
attacks? The cryptographic significance of exploring this approach is as follows: By
employing the Ajtai-Micciancio hash function, a block cipher rooted in the SIS problem
is introduced. Given that lattice-based problems like SIS are believed to be resistant to
quantum algorithms, the Luby-Rackoff cipher may offer the potential to function as a
quantum-resistant block cipher. Studies have demonstrated quantum attacks on Feistel
structures, making this an important and timely problem[17]. To verify the security
of the Luby-Rackoff cipher under quantum threats, it is crucial to evaluate its security
against CPA. One of the most fundamental attack methods for CPA is differential
cryptanalysis, which analyzes the differential characteristics of the cipher. However,
directly performing a precise mathematical evaluation of differential characteristics is
generally difficult. To address this, we propose a statistical approach.

This paper presents a method for evaluating the differential cryptanalysis resistance
using a combination of Nyberg’s results and the Generalized Extreme Value (GEV)



distribution. By leveraging these statistical tools, we estimate the number of secure
rounds required to resist differential attacks. This approach provides a novel and
effective way to assess the differential characteristics, a critical factor in determining
the CPA security of the cipher. To the best of our knowledge, no prior work has
combined these methods for such an analysis, making this a valuable contribution to
the field.

2 Preliminaries

2.1 Lattice problems

A lattice is a set of all integer linear combinations of » linearly independent column
vectors by, by, -+, b,. The lattice £(B) generated by these vectors can be represented
as L(B) = {Bx | x € Z"} by matrix B = (by b> --- b,), where x denotes
a column vector. In the following, vectors are assumed to be column vectors, and
Z4 = Z/qZ denotes the integers modulo g. The successive minima of the lattice are
defined as follows.

Definition 1. (Successive Minima) The successive minima Ay, ...,A, of the rank n
lattice L are defined as follows: The i-th minimum A;( L) is

Ai(£) = inf{r | dim(span(L N B(r))) = i}. (1
Here, we denote the closed ball of centered at the origin and radius r as B(r).

Lattice problems can be used in cryptography to discuss computational hardness
and security. For example, the CVP, which finds a vector in £(B) closest to a given
target vector ¢ ¢ £ (B), and the Shortest Vector Problem (SVP), which finds the shortest
nonzero vector in £(B). The Shortest Independent Vectors Problem (SIVP) is another
example of a lattice problem, with its computational hardness stemming from the
difficulty of identifying a set of linearly independent vectors.

The lattice problems serve as the foundation for constructing strong ciphers. By
using the technique of reducing worst case to average case hardness, we can build a
cipher that exhibits strong resistance to attacks on average. SIS and LWE are exemplary
problems that demonstrate such average resilience. The following provides a formal
description of lattice problems relevant to this paper.

Definition 2. (SIS) Given a uniformly random matrix A € ngm and a real number
B = 1, find a nonzero integer vector x € Z™ such that Ax = 0 € Zj and ||x|| < B.

Definition 3. (SVP) Given a lattice L(A), find the shortest nonzero vector v in L(A).
The parameter vy in the “y-approximate SVP”(SVP,, for short) refers to the approxima-
tion factor, where the algorithm finds a vector v such that ||v|| < yA,, where A; is the
norm of the shortest nonzero vector in L(A).

y in SVP, is a function of rank n of the lattice matrix. y = v/n is called the Minkowski’s
bound, and SVP is known to have a nonzero solution. The LLL lattice reduction
algorithm[18] can solve SVP,, where y = 2(n=1/4 in polynomial time. If there is no



algorithm to solve the SVP in probabilistic polynomial time, the SIS cannot be solved
in probabilistic polynomial time either[7].

Definition 4. (SIVP,) Given a lattice .L of rank n, find n linearly independent vectors
v1,...,0, such that max; ||v;|| < yA,(L).

2.2 Collision-resistant hash function family

Ajtai proposed a hash function family based on a computationally hard problem on a
random lattice.

Definition 5. (Ajitai’s hash function family[7]) For m > nlog, q, Ajtai’s hash function
family f is defined as
f(x) = Ax mod ¢, 2)

where A € 2™ is uniformly selected at random and x € {0, 1}™.

This function has the parameters n,m,q € Z*, where m and g are defined as
functions of n. By considering the appropriate parameters and lattice problems, we
can evaluate the computational hardness of this hash function. Ajtai demonstrated
that this function can be a one-way hash function. These results indicate that the
various computational hardness aspects of this function can be reduced to the average
computational hardness of SIS. The average case hardness in lattice problems refers
to the difficulty in solving these problems when the input is randomly sampled. The
worst case hardness addresses the difficulty of solving the most challenging instances
of lattice problems. There are many results regarding the selection of parameters and
problems. The worst case hardness can be reduced within factor O(B8+/n) to the average
hardness of the SIS with 8 for ¢ < Bw(+/nlogn)[19],[20], where h(n) = w(g(n))
implies that for any constant ¢ > 0, h(n) will eventually exceed c - g(n) as n increases.

Micciancio demonstrated that taking advantage of the computational hardness of
SIS makes it possible to construct a family of collision-resistant hash functions.

Theorem 1. (Collision-resistant hash function family[8]) For any sufficiently large
polynomial q, if there exists no polynomial time algorithm for solving SIVP,, with
v = O(n), which is almost linear in the rank of the lattice, then the hash function family
defined in (2) is collision-resistant.

Here, a large polynomial can be, for instance, chosen as n* or 2"*. For a more detailed
discussion, please refer to [21].

The worst case computational hardness of SIVP, with ¥y = O(n) is reduced to
SIS average computational hardness with ¢ = Q(n?), 8 = O(\m), m ~ nlog g where
h(n) = Q(g(n)) if there are constants ¢ > 0 and ng such that 0 < ¢ - g(n) < h(n) for all
n > ng. This indicates that g(n) is a lower bound on A(n).

The fact that f(x) is a collision-resistant hash function implies that the probability
p(m) for finding a pair x,x’(x # x”) such that Ax = Ax’ can be proven to be negligible
with respect to m using a probabilistic polynomial time algorithm. In this context,
negligible implies that p(m) is satisfied p(m) < 1/poly(m) for sufficiently large m and
any positive polynomial poly(-). To construct a concrete hash function, it is necessary
to specify ¢, m, and n, and following reference [8], we choose ¢ = 2" and m = 2n? as
reasonable values.



2.3 Luby-Rackoff cipher

A Luby-Rackoff cipher is a global structure for building block ciphers, like DES[3],
and is based on a Feistel network. First, the input data is divided into halves Ly and
Ry, and L is scrambled by F, which is a nonlinear function of the input half data and
round key K| and EXORed with R(. The ciphertext is generated by executing the same
round operation N times with round keys K, K>, --- , Ky

The F function determines the strength of the cipher. Using the Luby-Rackoff
construction with a PRF family, a class of block ciphers secure against chosen plain-
text attacks can be constructed using PRFs. It is known that a family of PRFs can
be constructed using a hash function with a one-way property[22]. One-wayness and
collision-resistance are different concepts in computational complexity theory. How-
ever, the requirements for relaxed collision-resistance are known to be harder than
the one-wayness[23]. Therefore, a secure Feistel cipher can be constructed using a
collision-resistant hash function.

2.4 Differential cryptanalysis

Differential cryptanalysis is a chosen plaintext attack, a practical attack method against
block ciphers[24]. Differential cryptanalysis uses the input plaintext pair X, X’ and
their difference AX = X & X’ # 0. When the attacker can control the pairs, the round
key is extracted by observing the bias of the difference AY =Y & Y’ of the output pair
Y,Y'.

The number of plaintext and ciphertext pairs required for a successful differential
cryptanalysis attack is proportional to the reciprocal probability of AY for the input
difference AX. Therefore, the higher the probability of AY is, the easier the attack
will be successful, and the more uniformly distributed the probability of AY, the more
difficult the attack will be. In other words, the security of a block cipher against
differential cryptanalysis is evaluated by the maximum value of the probability of AY,
and the plaintext input difference AX in N rounds. The maximum value Py of the
probability of the ciphertext output difference AY is defined by

Py = max P(AY|AX), 3)
AX#0,AY
where P(AY|AX) denotes the conditional probability of event AY occurring for a given
AX. (3) is called the maximum differential probability.

2.5 Extreme value distributions

Extreme value distributions describe the limiting distributions for the minimum or max-
imum independent random variables from the same distribution. Xi,...,X,,...bea
sequence of independent and identically distributed random variables with a cumulative
distribution function F(x) and let M,, = max{Xj,..., X,,} denote the maximum. The
distribution of the maximum is given by P(M,, < x) = P(X; < x)---P(X,, < x) =
F(x)". We do not see the distribution of M,, for an unknown F, but as n — oo, we can



find its limit distribution. The limit cumulative distribution function G (x) of the extreme
distribution is described by the generalized extreme value (GEV) distribution[25]:

G(x):exp{—[1+§(x?7'u)]_é}, “4)

defined on {x : 1 +&(x — u)/o > 0}, where u € R, 0 > 0 and £ € R. This
distribution has three parameters: u represents location, o~ scale, and ¢ shape. Among
these, depending on the value of shape parameter &, it can be divided into the three
distributions corresponding to Gumbel at ¢ = 0, Fréchet at ¢ > 0, and Weibull at ¢ < 0.

Theorem 2. (The extreme value trinity theorem) There exist sequences of constants
an > 0and b,, € R such that for M}, = (M, — by)/an, P(M}, < x) — G(x) asn — oo.

We will represent the distribution of the maximum differential probability of the output
of S-boxes in GEV.

3 Lattice-based Feistel cipher

A method using GGM[4] or a synthesizer[5] is known to construct a function family
with pseudorandomness from a family of hash functions with one-wayness. However,
these methods require processing delays due to circuit depth and repetitive processing
in implementation; therefore, another approach is desirable. In this study, we propose a
strategy based on Feistel construction. Since the Feistel cipher can always decrypt any
F function, it is possible to construct a block cipher using a family of hash functions
that is as good as the F' function. This study presents the construction of a lattice-based
Feistel cipher (LBF) using a family of hash functions as the F function. Fig. 1 shows
the structure of the LBF round function. After m-bits input, the plaintext X is divided
into m/2-bits Ly and Ry and input to the first-round function. This process repeats N
rounds to generate the ciphertext Y.

The F function in the round function consists of an expansion permutation £, EXOR
with the round key K;, and the S-box. The extended permutation E concatenates the
bit strings represented by ||, corresponding to the expansion permutation in DES[24].
Here, E has a simple structure, and while it may appear overly simplistic compared to
DES, there is no need to complicate E because A is random in LBF.

The hash function family f(x) composed of (2), is used for the S-box (Fig. 2). For
the inputx € {0, 1} to the S-box, the output § € Zj of f(x), and by encoding 7; € Z,
of 7 into a binary expression for each of i = 1,2, ..., n and concatenating it, the S-box
output y € {0,1}7 is obtained. The selection of round keys is arbitrary as long as the
period is long enough to assume that they are uniformly distributed.

While PRFs can be constructed from one-way functions, collision-resistant func-
tions are employed in the LBF. This is due to the fact that even one-way functions might
lead to the leakage of round key information if a collision occurs. Consider when a pair
of inputs to an S-box, x and x” (where x # x’), results in Ax = Ax’. Let the input to
the round function be L = L ||L; and let the input pair of L be L’. In this case, for the
i-th bit of the vectors z and w, the EXOR operation satisfies z; ® w; = z; + w; — z;w;.



L;, K; R, 4

7
F~ function
Xr-———----- ' e y
| 1| Binary ||
i— i— L mm—— ==
S-box

Figure 1: Round function of LBF

Zy*™ x {0,1}" — Zy zr— {0,1} % y
@€ Y
&y
. . Binary
: Encoding
Tm gn

Figure 2: S-box and binary encoding of LBF

Here, we obtain the followings for the input pairx = K@ L and x’ = K @ L’, therefore
Ax-x")=0.
Thus, for the i-th bit of x — x’, we derive
xi—x; = kieBLl-—kiGBL; 5)
(Li = L)(1—k;) =0. (6)

If L; - L; # 0, we can determine k; = 1. Therefore, a secure Feistel cipher can be
constructed by using a collision-resistant hash function.

When the hash function family used in the S-box is collision-resistant, the probability
of finding a pair of inputs such that Ax = Ax’ is negligible. There are various ways
to determine A; here, we consider a family where A is chosen randomly for each
encryption but remains fixed across rounds. With the LBF constructed in this manner,
the hash function that is difficult to invert is used as a large S-box, making differential
cryptanalysis challenging. Moreover, this design allows flexible construction of ciphers
with different block sizes in a single structure.

4 Differential cryptanalysis of LBF

In this section, we evaluate LBF’s security against differential cryptanalysis. The
maximum differential probability in Feistel ciphers determines the system’s security,
even with two or more rounds. While brute-force search can find this probability for
small block sizes or few rounds, it is impractical for large block sizes and many rounds
in real systems. Therefore, theoretical analysis is needed, and the following Theorem 3
from [26] provides the basis for estimating differential probabilities.



Theorem 3. In Feistel cipher, when the round keys are uniformly and independently
selected, an upper bound of the maximum differential probability Py when N > 4 is
given by the following using the maximum differential probability Pmax of one round:

Py <2P%... (7

(7) means that the security against differential cryptanalysis can be evaluated using the
maximum differential probability of the round function, a result based on the property
that the key selection is uniform and independent.

Below, we evaluate the maximum differential probability Py of the round function
of the LBF. Regarding the input X € {0, 1}" and output¥ € {0, 1} of around function,
if X = X||Xg and Y = Y ||Yg are blocks divided into m/2-bits, the following holds
between the input difference AX and the output difference AY of the round function:

AY = AY||AYR ZAyGBAXRHAXL, (8)

where Ay € {0, 1} 7% is the output difference of the S-box (see Fig.2). Since AYg = AXy.
and the attacker can control the input difference, maximizing the probability of AYy
maximizes the probability of AY. Note that since the maximum probability of AYy is
independent of AXg, the maximum probability of AY is determined by Ay. If the
round key K; € {0, 1} can be regarded as a uniform random, the S-box input x can
also be regarded as a uniform one. Therefore, the maximum probability of AY, is
determined by the input difference Ax of the S-box and output difference Ay of the
S-box. Furthermore, if the binary encoding of the S-box output 7 is a bijection, that is,
the parameter is chosen such that m = 2nlog, g holds, then y and § correspond one-to-
one. In this case, Py can be represented using the maximum differential probability
of the S-box as follows:

Prax = max yP(AyIAx, A), )
where P(Ay|Ax, A) denotes the conditional probability of event Ay occurring for given
Ax and A.

In the following, the maximum differential probability of the S-box output of the
LBF is theoretically derived. It is well known that the sum of uniformly distributed
variables tends to a normal distribution. However, an exact distribution of the sum of
discrete uniform distributions, when folded by modulo-¢g, cannot be directly derived.
First, we present the following lemma for the uniform random variable used to construct
the hash function to derive the S-box output difference distribution.

Lemmad. Leta; fori =1,2,...,n beindependent and identically distributed random
variables that obey a discrete uniform distribution over Z,. Then, the value of s4, as
defined by the following, obeys a discrete uniform distribution over Z,.

n
5q = Zai mod ¢. (10)
i=1



Proof. Consider n-tuple a = (ay,as,--- ,a,) of independent uniform random vari-
ables a; € Z4(i = 1,2,---,n). Since a is uniformly distributed over ZZ, to find
P(sq = k), it is sufficient to find the number of @ such that

n
s:=Za;=l+iq, (11)
i=1
where [ =0,1,---, LWJ. Therefore we have
n—1
Zai=k+lq—an. (12)
i=1
The left-hand side of (12) takes the value of {0,1,---,(n — 1)(g — 1)}, and the value
of a, is uniquely determined for (n — 1)-tuple (ay, as,- - ,a,—1), which (12) holds.
Subsequently, a for which (12) holds exists as g"~! for given &, g, so that P(sq =
k) = q;;l = O

Lemma 4 leads to the following theorem regarding the distribution of the S-box
output pairs.

Theorem 5. Fora given Ax € {0, 1}, let the input pairs be x, x’ € {0, 1}, and let the
output pairs of the S-box be, y, y’ € {0, 1} . If A obeys a discrete uniform distribution
over ngm and m is equal to 2nlog, g, then the probability that themoutputpalZ Y,y is
obtained from a given Ax obeys a uniform distribution over {0,1}2 x {0,1}~.

Proof. For a given input pair (x,x’) € {0, 1} x {0,1}", let Ax =x & x’ € {0, 1}"".
Letting the i-th row of the row vectorai,a», - ,a, of Abea; = (ail ap - aim),
the output pair (§;, J;) € Zq X Z4 of f(x) corresponding to a; can be represented as
follows:

Ji = a;x modgqg (13)
J7A a;(x ® Ax) mod gq. (14)

Here, the k-th bit of Ax is represented as Ax; and the set of indices where the bit is 0
or 1 is defined as follows:

Aly = {k|Ax=0(k=12--,m)} (15)
A = {k|Ax=1(k=1,2--,m)}. (16)

Using the set of indices Ally, Al} and the k-th bit x; of x, §; and §! can be represented
as follows:

Gio= ), awxc+ ) ajxe modg a7
Kehl KeAl,

g o= Z aiXi + Z aix(xx ®1) mod gq. (18)
kEA]I() kEA]Il



Since the elements of a; are random variables that obey the uniform distribution over
Zg, the first terms of (17) and (18) can be represented as random variables u that obey
a discrete uniform distribution over Z, from Lemma 4. Also, the second term in (17) is
the sum of a;; for k such that x; = 1, and the second term of (18) is the sum of a;; for
k such that x; = 0, and since a;¢ in (1) and (2) do not overlap, their sums are mutually
independent.

From Lemma 4, each sum is an independent random variable v, w that obey uniform
distribution over Z,. J;, §; can be represented in the following form using independent
random variables u, v, and w that obey discrete uniform distribution over Z,; as follows:

Ji = u+v modg (19)
i = u+w modgq. (20)

Since v, w, and u are independent, j;, j; are independent and uniformly distributed
random variables over Z, .

As each row of the matrix A is independent, each row of the outputs § and §’
of the S-box are also independent. Therefore, the random variables (7, §’) obey
uniform distribution over Z; X Z;. Considering that the binary encoding Z; X Z; —
{0,1}% x {0,1}7% is a bijection for m = 2n log, g, the S-box output pair (7, §”) is also
a random variable that obeys a uniform distribution over {0, 1} x {0,1}7. O

Therefore, if the binary encoding of the LBF is a bijection, the difference of output
Ay = y ® y’ obeys the uniform distribution over {0, 1} %, then Ppay = 1/27 .

This result and Theorem 5 lead to the estimate of N round maximum differential
probability Py given by

1
Py <2P2 = ——. 1)

max = 5m—|

S Statistical analysis of differential cryptanalysis on LBF
instances

In the evaluating cryptography, it is important to analyze a family of functions, but it is
also necessary to examine specific instances for practical applications. In this study, we
evaluate the typical security of LBF instances against differential cryptanalysis, where
typical security refers to the security expected on average when focusing on individual
instances in the family. We examine the specific instances and analyze the average
properties within the LBF family. In addition, we use extreme value theory by GEV for
the approximate model of the S-box to theoretically estimate the maximum differential
characteristic probability and the practically secure number of rounds.

5.1 Differential cryptanalysis works well against LBF with small
block sizes

We conducted simulations to examine whether LBF is vulnerable to attacks by differ-
ential cryptanalysis, focusing on cases with short block sizes. First, to eliminate the
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uncertainty caused by the random selection and examine the characteristics, we perform
a computer simulation of differential cryptanalysis for the block size for which the can-
didate keys can be brute-force searched. When differential cryptanalysis is attempted
on a Feistel cipher, the input difference AX of the plaintexts is controlled, and the round
key is estimated based on the output difference AY of the ciphertexts. For example, if
the number of rounds is N = 1, the key can be obtained by the following procedure[27].

1. For the selected AX, select a pair of plaintext input pairs X, X’ = X & AX and
find AY.

2. Select a pair of input pairs x, x” to the S-box such that the input difference of the
the plaintext is AX, and determine AY.

3. For the pairs X, X’, AY obtained in 1) and the pairs x,x’, AY obtained in 2),
where AY is identical, the candidate key K; is derived from the relations x =
Ly || Lo® K, and X = Ly || Ry, and add it to the list of candidate keys.

The above procedure is repeated for multiple AX to narrow down the keys. If the
candidate keys can be searched for every Xand x, the candidate keys can be narrowed
down by taking the intersection of the candidate keys for each AX. If the number of
rounds is N = 3, the candidate keys can be estimated using the same procedure by
modifying the relation between the input and output differences to be used. If the input
block size m is large, searching for all the candidates becomes difficult. Therefore,
it is necessary to modify the candidate keys to estimate them from several randomly
selected input pairs.

In the simulation, one instance on ZZX’” that is a full rank matrix is chosen at random
as A of the S-box, and a round key is searched for an instance of LBF for the selected
A according to the differential cryptanalysis procedure described above. For the LBF
with parameters (n,m, q) = (2, 8,4) and (4, 32, 16), we searched for candidate keys by
differential cryptanalysis. We found that the correct round key can be identified in a
few hours in both cases where the number of rounds N = 1 and 3.

Table 1 shows the results of how the number of key candidates decreases for each
instance of randomly generated A with m = 32 and N = 3 as the number of input
differences increases from 1 to 3. The table shows the minimum, maximum, mean,
and median number of key candidates for 100 instances. With only one difference,
approximately one million possible keys can be found. However, with two differences,
the number of possible keys decreases significantly to around a few hundred. With
three differences, most instances are able to identify the correct key.

The results show that a linear regression was performed with the equation y = c+dx,
where y is the base-2 logarithm of the number of key candidates, and x is the number
of input differences. The estimated intercept, c, is 29.35747 (standard error: 0.16927,
t-value: 173.4, Pr(> |t|) : <2e-16), and the slope, d, is -9.89946 (standard error:
0.07836, t-value: -126.3, Pr(> |t|) : < 2e-16). The R? is 0.9817, indicating a good fit
of the regression equation to the results. With each additional difference, the number
of candidates decreases to approximately 1/2¢ ~ 1/1000, corresponding to 9.9-bits.

These results show that when the block size m and the number of rounds N are small,
the round key of the LBF can be identified using only a few input and output difference
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Table 1: Statistical Results of the number of key candidates per number of difference
used

# of difference Minimum Maximum Mean Median
1 587880 8388608  1203716.30 1051008
2 126 4132 397.61 274
3 1 5 1.33 1

pairs by using differential analysis. As observed here, differential cryptanalysis is
practical when the block size and number of rounds are small. Therefore, it is necessary
to determine block sizes and the number of rounds that differential cryptanalysis cannot
solve.

5.2 Number of secure rounds

Itis crucial to select a sufficiently large block size and number of rounds when designing
block ciphers to ensure the required level of security. In this study, we analyze differ-
ential characteristics for randomly selected instances of A and statistically evaluate the
number of secure rounds.

In Feistel ciphers, differential cryptanalysis becomes harder with more rounds, but
processing time also increases, making it important to study the security-performance
trade-off. While tracking active S-boxes enables efficient attacks on Feistel ciphers with
many small S-boxes, this method does not apply to LBF due to its single S-box.

Another approach to the security evaluation of block ciphers with many rounds is
differential characteristic probability, which estimates the differential probability of N
rounds using the product of the differential probabilities for each round[24].

Definition 6. Let AX;_1 and AX be the input and output differences in the j-th round,
respectively, and P(AX j|AX;_1) be the conditional probability of the output difference
given the input difference. The differential characteristic probability P. n for N rounds
is defined as

P.n= P(AX;|AX; 1), (22)

N
j=1
with AXy = AX # 0 at the start.

For each round, the combination of realized values of the input difference AX;_; is
called a path, and the differential characteristic probability is obtained by searching for
the path that maximizes P, y.

When the differential characteristic probability satisfies P,y < 27", the cipher is
considered to be “practically secure” against differential cryptanalysis[28]. The smallest
such N is the number of rounds the cipher secures against differential cryptanalysis. For
block ciphers satisfying P. 5 < 27", an attacker needs plaintext greater than or equal
to all possible plaintext patterns to decrypt the cipher with differential cryptanalysis.
The practically secure lower bound of N(A) = min{N | P,y < 27} is determined
only by A. We find the distribution of N(A) by computing the differential characteristic
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probability for uniformly random A. For an LBF with the parameter (n, m, ¢) = (2, 8,4)
and fixed round keys, we generate 1000 instances of A of full rank and determine N (A).
For small n, like n = 2, certain output differences can appear frequently and even
become fixed; however, as n increases, such cases become rare, and in our simulations,
no such instances occurred for n > 4, with their frequency expected to decrease further
with larger n. Thus, these rare cases are unlikely to affect the overall analysis when n is
sufficiently large.

Fig. 3 depicts the distribution of N(A) obtained by the Monte Carlo simulation.
The minimum value of N(A) is 8, the maximum value is 46, and the average is 17.08.
The results confirm that the number of secure rounds varies, corresponding to each
instance.

5.3 Average properties on S-box output differential

Based on the previous discussion, this section studies the average characteristics of
LBF instances. In an ideal S-box, the distribution of the output pairs obeys a uniform
distribution. An ideal maximum difference characteristic is that the maximum output
difference is small, and the probability of the output difference asymptotically obeys a
uniform distribution.

It is difficult to demonstrate directly that the distribution of the maximum differen-
tial probability of the LBF approaches a uniform distribution. Using a method based
on the generalized extreme value distribution, we propose that the distribution of max-
imum differential probability of the LBF asymptotically approaches that of an ideal
distribution.

We approximate the distribution of the output pairs of the LBF S-box by a folded
two-dimensional normal distribution and show that the average output characteristics
of the LBF approach the ideal uniform distribution using a generalized extreme value
distribution. When selecting an instance of A, each row a; € Zg/(i = 1,2,--- ,n) is
independent, so the distribution of S-box output differences is a joint distribution of the
distributions for each row.

First, for the S-box input pair x, x” and .4 = {0,1,--- ,m(q — 1)}, define the
S-box output pair (§;, 7i") = (aix, a;ix’) € Jug X Tm.q-

Fig. 4 shows the empirical distribution of output pairs (§;, §;) for randomly gener-
ated instances of a; by the Monte Carlo simulation. Note that the empirical distribution
depends on the input difference. However, since the components of a; are selected
independently, we only need to consider the Hamming weight #,, of the input differ-
ence to obtain the empirical distribution. In Fig. 4, the top, middle, and bottom rows

13
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Figure 4: Emprical distribution of (§;, J)

correspond to n = 2, 4, and 8, respectively. From left to right across the columns, the
figures correspond to the Hamming weights s, = 1, m/2, and m (where m is the block
size).

For the cases where n = 2, 4, and 8, the empirical distribution was obtained
for 100000 instances under each condition, and the frequency was averaged for each
instance. In this simulation, the empirical distribution of input x was created using all
inputs for n = 2. In the case n = 4 and 8, the empirical distribution was obtained using
1000000 inputs selected uniformly at random with a fixed input difference Ax and a
pair of inputs x’ = x @ Ax.

Since components of a; are independent and obey a discrete uniform distribution, the
output, which is the sum of them, is close to a normal distribution. As n increases from
2 to 8, the distribution is close to the two-dimensional normal distribution, especially
when h, = m/2. Moreover, as the parameter n increases, the number of random
variables that obey the uniform distribution increases, so we expect that the distribution
is approximately close to the normal distribution.

As n increases, the range of values for (7, ;") grows exponentially, while the con-
centration ellipse decreases in size, and regions far from the ellipse become rare events.
Consequently, the data becomes zero-inflated categorical data. Such data can destabi-
lize the y? value in chi-square tests, making the uniformity test difficult[29]. Therefore,
in the following, the joint distribution of the output pairs (§;, §;) is approximated by a
two-dimensional normal distribution. This method is a standard approach for represent-
ing bivariate distributions with correlations. Using a folded two-dimensional normal
distribution by modulo-¢g and the GEV, we demonstrate that the maximum differential
probability asymptotically approaches an ideal S-box.
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First, the distribution of the vector § = (#;, §;) representing the output pair is
modeled as a two-dimensional normal distribution as follows:

1 1
p(§) = —GXP(——(Q—M)TE'(Q—M)) (23)
VaryiEl o\ 2
p = (F@-1, Z@-1) (24)
2 2
o= (0'20-—A O—O'ZA) 25)
» _ m(g-1) (2g-1 m*(g-1D(m-1)
Tz 4 ( 3 F 16 ) (26)
A = 55(2q-1)(g - Dh(Ax), @

where p is the mean vector, X is the covariance matrix, and A, (Ax) is the Hamming
weight of the input difference. The derivation is obtained directly.

Next, we obtain the distribution folded by modulo-g, which models the distribution
of S-box output pairs. By evaluating the maximum probability of this distribution, that
is, the frequency of the mode, we can estimate the bias in the differential probability.
When a one-dimensional normal distribution is folded by modulo-g, it asymptotically
becomes a uniform distribution with a sufficiently small partition width[30]. This result
can be applied to a multivariate normal distribution if each dimension is independent.
However, it is not easy to extend this result directly because the variables in our
approximate model are correlated.

In the following, we use Monte Carlo simulation to obtain the empirical distribution
of the random variables (;, /), which are the output pairs (7;, §;) folded by modulo-g.
Observing the frequency of the mode of this empirical distribution, we determine the
empirical frequency distribution of the mode. By fitting the GEV to the empirical
frequency distribution of the mode, we can estimate the maximum density of the S-box
output pair.

N random output pairs that obey (23) are generated in the simulation. These
random variable values are folded by modulo-g to obtain the empirical distribution of
(7i» 7). and its frequency of the mode. This process is repeated N, times to obtain
the empirical frequency distribution. The parameters of the GEV were obtained by
maximum likelihood estimation. We employed the ismev package of R to estimate the
parameters[31]. Additionally, since the ideal S-box output pairs (#;, §;) obey a uniform
distribution over Z, X Z,, we compare its distribution with that of the output given by
(23) using Monte Carlo simulation.

In Fig. 5, the top, middle, and bottom rows correspond to n = 2, 4, and 8,
respectively. The sample size of the output pair is Ny = 1000000, the sample size
of the frequency is N, = 100000, and the Hamming weights of input differences are
hy = 1,m/2, and m. Fig. 5 shows the probability density function of the GEV with the
estimated parameters, and Table 2—4 shows the estimated parameters. From the results,
for n = 2, only the distribution for 4, = 1 (dash-dotted line) deviates from the others
(hy = 4, 8) and the uniform case. For n = 4, the distribution for A,, = 1 is slightly offset
from the others. For n = 8, all the distributions are almost identical, confirming that the
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Figure 5: Estimated frequency distribution of mode

deviation decreases as n increases. We also confirmed that the distribution of n = 2 and
hy = 1 differs from other distributions. However, this discrepancy becomes smaller
for larger n = 4, §, and the larger n, the closer the distribution estimated by the normal
distribution approximation becomes to that estimated by the uniform distribution.

Tables 2—4 show the estimated GEV parameters, location y, scale o, shape &, and
their standard errors (SE,,, SE &, SE £) obtained by the maximum likelihood estimation.
These estimated parameters show that the larger » is, the more asymptotic the normal
distribution approximation result is to the uniform distribution characteristic, which is
an ideal S-box. Considering the obtained standard error, if one examines the one-sided
95% confidence interval, the shape parameter is sufficiently less than zero, suggesting
that the distribution of the output pair (§;, 7/) of the S-box modeled by the normal
distribution approximation obeys the Weibull distribution.

From the mode of the probability distribution of the S-box output pairs (7, ;)
obtained in this way, we can estimate the maximum differential probability of the
LBF in the N round. Let c(g, §’) be the number of occurrences of the output pair
(.9') € Zy x Zy of the S-box. The maximum differential probability Pmax of the
S-box is as follows:

Prax = max P(Aj) = max Z M,
Ag AG 4 m
(7.§")s.1.§g05'=0g

where Aj is a formal notation representing the EXOR of § and §’ after binary encoding,
which represented as Aj = § @ §’. From the independence of each row in A, this can
be rewritten in the following form:

o n
c(Fi» ;)

= (28)

Imax— max
Agi 4
i (5i,0.)s-1.05: @7, =AY;

where c(7;, 7;) is the number of occurrences of the output pair (;, §;), and §; ® §; = Ag;
represents the EXOR after binary encoding. Then, there are g output pairs (7, §;) whose
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Table 2: Estimated parameter (n = 2)

Normal Normal Normal
(hw =m) (hw =m/2) (hw=1)

7 62889.9804 62891.2570 62891.1632 64044.1023
SE, 0.366293 0.368066 0.371648 0.518169
o 104.3645 105.4014 106.7196 155.1743
SE, 0.258920 0.263640 0.270961 0.353453

3 -0.086671 -0.092448 -0.094775 -0.167586
SEs 0.002037 0.002018 0.002064 0.000806

Table 3: Estimated parameter (n = 4)

Uniform

Normal Normal Normal

Unlform (hy=1) (hy = m/2) (hy = m)

u 4073.5561 4073.4771 4073.4372  4077.5444
SE, 0.073623  0.073703  0.073359  0.075155
o 21.039072  21.061516  20.952711 21.469652
SE, 0.052006 0.051980  0.051752  0.053072
3 -0.077223  -0.078088  -0.078389  -0.078177
SEs 0.001978  0.001971 0.001984  0.001981

Table 4: Estimated parameter (n = 8)

Normal Normal Normal
(hy =1) (hy =m/[2) (hy = m)
U 34.0361 34.0343 34.0496 34.0439
SE,, 0.004282  0.004259  0.004283  0.004301
o 1.222491 1.214973  1.220174  1.226664
SE, 0.003036  0.003020 0.003043  0.003054
& -0.049566 -0.051149 -0.047329 -0.046985
SE; 0.001993  0.002010  0.002040  0.002016

Uniform

output differences are Aj;, and it is found that the upper bound of (28) can be evaluated
using the frequency of the mode N, for the number of occurrences c(§;, ;) and Nj:

n
(i, ;) Ng\"
Prax = (HAlg"X } 6]2 < CIFS .

(Gi»§;)s-t-Ji ®F,=AGi

The upper bound of the maximum differential characteristic probability of N rounds can
be obtained as the power of N, and the number of rounds N satisfying the practically
secure criterion can be estimated by determining the smallest N satisfying the following:

N nN
(%) <2 (29)
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For Ny > gN,, the following can be derived

N> (30)

log, ql\;_,/

According to the estimation of the number of rounds by (30), N required is maxi-
mized by the largest N,;. Since (—oo, u — %] is supported on the negative axis for the
GEV shape parameter £ < 0, we consider N, = u — %, which has the largest mode, to
estimate the upper bound on the number of rounds required. For n = 2, a large value
of Ny results in Ny < gNy4, making it impossible to evaluate the number of rounds.
However, for n = 4, N = 16, and for n = 8, N = 6, the upper bound of the required
number of rounds can be estimated. To the best of the authors’ knowledge, no examples
of theoretical evaluation of secure rounds focusing on their probability distribution have
been found. As a result, the fact that this approach yields a specific number of secure
rounds is particularly noteworthy.

6 Conclusion

This paper evaluates the security of the Luby-Rackoff cipher when a hash function
based on the computational hardness of the SIS problem is used as its pseudorandom
generator. We derived an upper bound on the maximum differential probability to
assess resistance to differential cryptanalysis and identified the required secure rounds
for each block size m. Using the GEV distribution, our statistical analysis of S-box
output bias shows that secure rounds for block sizes 32 and 128 are 16 and 6, respectively,
demonstrating LBF’s robustness against differential cryptanalysis. However, extending
our method beyond n = 8 is challenging due to increased sample and computational
demands. Further research is needed to explore alternative approaches and extend the
analysis to linear cryptanalysis.
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