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Abstract

With the rise of quantum computing, the security of traditional cryptographic

systems, especially those vulnerable to quantum attacks, is under threat. While pub-

lic key cryptography has been widely studied in post-quantum security, symmetric-

key cryptography has received less attention. This paper explores using the Ajtai-

Micciancio hash function, based on the Short Integer Solution (SIS) problem, as

a pseudorandom function in the Luby-Rackoff cipher. Since lattice-based prob-

lems like SIS are believed to resist quantum algorithms, this approach provides the

potential for a quantum-resistant block cipher. We also propose a novel statisti-

cal method based on the Generalized Extreme Value distribution to evaluate the

number of secure rounds and resistance to differential cryptanalysis.

Keywords: Luby-Rackoff cipher; Short integer solution problem; Differential

cryptanalysis.

1 Introduction

Advances in quantum computing threaten conventional cryptographic systems, prompt-

ing active research into post-quantum cryptography designed to resist quantum attacks.

Although public key cryptography has been studied extensively, symmetric-key cryp-

tography has yet to receive much attention. This lack of focus is especially significant

as symmetric-key cryptography is essential in lightweight, resource-efficient systems.

Quantum attacks on symmetric-key algorithms [1][2] highlight the urgent need to secure

these widely implemented systems.

In this context, Luby and Rackoff showed that the Feistel cipher is secure against

chosen plaintext attacks (CPA) with three rounds and secure against chosen ciphertext

attacks (CCA) with four rounds[3]. This security is achieved when the Feistel cipher

is constructed using an ideal pseudorandom function (PRF). This result highlights

the critical role of PRFs in ensuring the security of symmetric-key cryptography,

particularly in Feistel structures. The performance and security of Feistel ciphers

heavily depend on the design of the“� function,” which is directly linked to the quality

of the underlying PRF.
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PRFs are crucial not only for Feistel structures but also for symmetric-key cryp-

tosystems. The Goldreich-Goldwasser-Micali (GGM) method [4] and the synthesizer

technique [5] are well-known for constructing secure PRFs. While the GGM method

offers strong theoretical security, the synthesizer technique supports efficient paral-

lelization. Additionally, extensions to these methods have been proposed, including the

use of lattice-based primitives, as seen in the synthesizer approach[6].

Based on hard lattice problems, Lattice cryptography is a leading candidate for post-

quantum cryptography. It originated with Ajtai’s seminal work[7], which showed that

hard lattice problems in the worst case can be used to construct a one-way function with

average computational hardness. This result is based on the Short Integer Solution (SIS)

problem, a foundational lattice-based problem. Micciancio extended this to develop a

collision-resistant hash function[8].

Learning with Errors (LWE) and SIS are known as the main lattice problems that

form the basis of lattice cryptography. LWE and SIS have a duality[9]. If the solution

vector in the SIS is identified with the error vector in the LWE, the two are reduced to

the Closest Vector Problems (CVP) of the same class[10].

SIS is used for hash function construction[11] and digital signatures[12], and LWE

is used for public key and homomorphic encryption[13][14]. A configuration using

LWE has been cited as an example of applying the lattice problem to symmetric-key

cryptography, and many configurations using LWE have been considered in existing

research. On the other hand, studies on SIS have received little attention. However,

SIS does not require a precise design of the error distribution in LWE and is simple to

implement, making it suitable for theoretical analysis.

A variant of the synthesizer that incorporates the LWE through Learning with

Rounding (LWR) as a primitive has been proposed [15], which, despite its benefits,

faces challenges related to the synchronous execution of parallel processes and increased

communication overhead. As an extension of this research, a further refined version

of the synthesizer has been proposed [16], which enhances efficiency but requires

substantially larger key sizes. While these are essential theoretical results, constructing

symmetric-key cryptosystems based on SIS without these trivial constructions remains

an open problem.

A key question arises: If the Ajtai-Micciancio hash function were adopted as

the PRF, would the Luby-Rackoff cipher retain its resistance against chosen plaintext

attacks? The cryptographic significance of exploring this approach is as follows: By

employing the Ajtai-Micciancio hash function, a block cipher rooted in the SIS problem

is introduced. Given that lattice-based problems like SIS are believed to be resistant to

quantum algorithms, the Luby-Rackoff cipher may offer the potential to function as a

quantum-resistant block cipher. Studies have demonstrated quantum attacks on Feistel

structures, making this an important and timely problem[17]. To verify the security

of the Luby-Rackoff cipher under quantum threats, it is crucial to evaluate its security

against CPA. One of the most fundamental attack methods for CPA is differential

cryptanalysis, which analyzes the differential characteristics of the cipher. However,

directly performing a precise mathematical evaluation of differential characteristics is

generally difficult. To address this, we propose a statistical approach.

This paper presents a method for evaluating the differential cryptanalysis resistance

using a combination of Nyberg’s results and the Generalized Extreme Value (GEV)
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distribution. By leveraging these statistical tools, we estimate the number of secure

rounds required to resist differential attacks. This approach provides a novel and

effective way to assess the differential characteristics, a critical factor in determining

the CPA security of the cipher. To the best of our knowledge, no prior work has

combined these methods for such an analysis, making this a valuable contribution to

the field.

2 Preliminaries

2.1 Lattice problems

A lattice is a set of all integer linear combinations of = linearly independent column

vectors b1, b2, · · · , b=. The lattice L(B) generated by these vectors can be represented

as L(B) = {Bx | x ∈ Z
=} by matrix B =

(
b1 b2 · · · b=

)
, where x denotes

a column vector. In the following, vectors are assumed to be column vectors, and

Z@ = Z/@Z denotes the integers modulo @. The successive minima of the lattice are

defined as follows.

Definition 1. (Successive Minima) The successive minima _1, . . . , _= of the rank =

lattice L are defined as follows: The 8-th minimum _8 (L) is

_8 (L) = inf{A | dim(span(L ∩ �(A))) ≥ 8}. (1)

Here, we denote the closed ball of centered at the origin and radius A as �(A).

Lattice problems can be used in cryptography to discuss computational hardness

and security. For example, the CVP, which finds a vector in L(B) closest to a given

target vector t ∉ L(B), and the Shortest Vector Problem (SVP), which finds the shortest

nonzero vector in L(B). The Shortest Independent Vectors Problem (SIVP) is another

example of a lattice problem, with its computational hardness stemming from the

difficulty of identifying a set of linearly independent vectors.

The lattice problems serve as the foundation for constructing strong ciphers. By

using the technique of reducing worst case to average case hardness, we can build a

cipher that exhibits strong resistance to attacks on average. SIS and LWE are exemplary

problems that demonstrate such average resilience. The following provides a formal

description of lattice problems relevant to this paper.

Definition 2. (SIS) Given a uniformly random matrix A ∈ Z
=×<
@ and a real number

V ≥ 1, find a nonzero integer vector x ∈ Z
< such that Ax = 0 ∈ Z

=
@ and ‖G‖ ≤ V.

Definition 3. (SVP) Given a lattice L(A), find the shortest nonzero vector { in L(A).
The parameter W in the “W-approximate SVP”(SVPW for short) refers to the approxima-

tion factor, where the algorithm finds a vector { such that ‖{‖ ≤ W_1, where _1 is the

norm of the shortest nonzero vector in L(A).

W in SVPW is a function of rank = of the lattice matrix. W =
√
= is called the Minkowski’s

bound, and SVP is known to have a nonzero solution. The LLL lattice reduction

algorithm[18] can solve SVPW where W = 2(=−1)/4 in polynomial time. If there is no
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algorithm to solve the SVP in probabilistic polynomial time, the SIS cannot be solved

in probabilistic polynomial time either[7].

Definition 4. (SIVPW) Given a lattice L of rank =, find = linearly independent vectors

{1, . . . , {= such that max8 ‖{8 ‖ ≤ W_= (L).

2.2 Collision-resistant hash function family

Ajtai proposed a hash function family based on a computationally hard problem on a

random lattice.

Definition 5. (Ajitai’s hash function family[7]) For < > = log2 @, Ajtai’s hash function

family 5 is defined as

5 (x) = Ax mod @, (2)

where A ∈ Z
=×<
@ is uniformly selected at random and x ∈ {0, 1}<.

This function has the parameters =, <, @ ∈ Z
+, where < and @ are defined as

functions of =. By considering the appropriate parameters and lattice problems, we

can evaluate the computational hardness of this hash function. Ajtai demonstrated

that this function can be a one-way hash function. These results indicate that the

various computational hardness aspects of this function can be reduced to the average

computational hardness of SIS. The average case hardness in lattice problems refers

to the difficulty in solving these problems when the input is randomly sampled. The

worst case hardness addresses the difficulty of solving the most challenging instances

of lattice problems. There are many results regarding the selection of parameters and

problems. The worst case hardness can be reduced within factor O(V
√
=) to the average

hardness of the SIS with V for @ ≤ Vl(
√
= log =)[19],[20], where ℎ(=) = l(�(=))

implies that for any constant 2 > 0, ℎ(=) will eventually exceed 2 · �(=) as = increases.

Micciancio demonstrated that taking advantage of the computational hardness of

SIS makes it possible to construct a family of collision-resistant hash functions.

Theorem 1. (Collision-resistant hash function family[8]) For any sufficiently large

polynomial @, if there exists no polynomial time algorithm for solving SIVPW with

W = O(=), which is almost linear in the rank of the lattice, then the hash function family

defined in (2) is collision-resistant.

Here, a large polynomial can be, for instance, chosen as =3 or 2=. For a more detailed

discussion, please refer to [21].

The worst case computational hardness of SIVPW with W = O(=) is reduced to

SIS average computational hardness with @ = Ω(=2), V = O(
√
<), < ≈ = log @ where

ℎ(=) = Ω(�(=)) if there are constants 2 > 0 and =0 such that 0 ≤ 2 · �(=) ≤ ℎ(=) for all

= ≥ =0. This indicates that �(=) is a lower bound on ℎ(=).
The fact that 5 (x) is a collision-resistant hash function implies that the probability

?(<) for finding a pair x, x′ (x ≠ x′) such that Ax = Ax′ can be proven to be negligible

with respect to < using a probabilistic polynomial time algorithm. In this context,

negligible implies that ?(<) is satisfied ?(<) ≤ 1/poly(<) for sufficiently large < and

any positive polynomial poly(·). To construct a concrete hash function, it is necessary

to specify @, <, and =, and following reference [8], we choose @ = 2= and < = 2=2 as

reasonable values.
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2.3 Luby-Rackoff cipher

A Luby-Rackoff cipher is a global structure for building block ciphers, like DES[3],

and is based on a Feistel network. First, the input data is divided into halves R0 and

X0, and R0 is scrambled by �, which is a nonlinear function of the input half data and

round key Q1 and EXORed with X0. The ciphertext is generated by executing the same

round operation # times with round keys Q1, Q2, · · · , Q# .

The � function determines the strength of the cipher. Using the Luby-Rackoff

construction with a PRF family, a class of block ciphers secure against chosen plain-

text attacks can be constructed using PRFs. It is known that a family of PRFs can

be constructed using a hash function with a one-way property[22]. One-wayness and

collision-resistance are different concepts in computational complexity theory. How-

ever, the requirements for relaxed collision-resistance are known to be harder than

the one-wayness[23]. Therefore, a secure Feistel cipher can be constructed using a

collision-resistant hash function.

2.4 Differential cryptanalysis

Differential cryptanalysis is a chosen plaintext attack, a practical attack method against

block ciphers[24]. Differential cryptanalysis uses the input plaintext pair ^, ^′ and

their difference Δ^ = ^ ⊕ ^′ ≠ 0. When the attacker can control the pairs, the round

key is extracted by observing the bias of the difference Δ_ = _ ⊕ _ ′ of the output pair

_ ,_ ′.
The number of plaintext and ciphertext pairs required for a successful differential

cryptanalysis attack is proportional to the reciprocal probability of Δ_ for the input

difference Δ^. Therefore, the higher the probability of Δ_ is, the easier the attack

will be successful, and the more uniformly distributed the probability of Δ_ , the more

difficult the attack will be. In other words, the security of a block cipher against

differential cryptanalysis is evaluated by the maximum value of the probability of Δ_ ,

and the plaintext input difference Δ^ in # rounds. The maximum value %# of the

probability of the ciphertext output difference Δ_ is defined by

%# = max
Δ^≠0,Δ_

%(Δ_ |Δ^), (3)

where %(Δ_ |Δ^) denotes the conditional probability of event Δ_ occurring for a given

Δ^. (3) is called the maximum differential probability.

2.5 Extreme value distributions

Extreme value distributions describe the limiting distributions for the minimum or max-

imum independent random variables from the same distribution. -1, . . . , -=, . . . be a

sequence of independent and identically distributed random variables with a cumulative

distribution function � (G) and let "= = max{-1, . . . , -=} denote the maximum. The

distribution of the maximum is given by %("= ≤ G) = %(-1 ≤ G) · · · %(-= ≤ G) =

� (G)=. We do not see the distribution of "= for an unknown �, but as = → ∞, we can
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find its limit distribution. The limit cumulative distribution function� (G) of the extreme

distribution is described by the generalized extreme value (GEV) distribution[25]:

� (G) = exp

{
−
[
1 + b

( G − `

f

)]− 1
b

}
, (4)

defined on {G : 1 + b (G − `)/f > 0}, where ` ∈ R, f > 0 and b ∈ R. This

distribution has three parameters: ` represents location, f scale, and b shape. Among

these, depending on the value of shape parameter b, it can be divided into the three

distributions corresponding to Gumbel at b = 0, Fréchet at b > 0, and Weibull at b < 0.

Theorem 2. (The extreme value trinity theorem) There exist sequences of constants

0= > 0 and 1= ∈ R such that for "∗
= = ("= − 1=)/0=, %("∗

= ≤ G) → � (G) as = → ∞.

We will represent the distribution of the maximum differential probability of the output

of S-boxes in GEV.

3 Lattice-based Feistel cipher

A method using GGM[4] or a synthesizer[5] is known to construct a function family

with pseudorandomness from a family of hash functions with one-wayness. However,

these methods require processing delays due to circuit depth and repetitive processing

in implementation; therefore, another approach is desirable. In this study, we propose a

strategy based on Feistel construction. Since the Feistel cipher can always decrypt any

� function, it is possible to construct a block cipher using a family of hash functions

that is as good as the � function. This study presents the construction of a lattice-based

Feistel cipher (LBF) using a family of hash functions as the � function. Fig. 1 shows

the structure of the LBF round function. After <-bits input, the plaintext ^ is divided

into </2-bits R0 and X0 and input to the first-round function. This process repeats #

rounds to generate the ciphertext _ .

The � function in the round function consists of an expansion permutation � , EXOR

with the round key Q8 , and the S-box. The extended permutation � concatenates the

bit strings represented by | |, corresponding to the expansion permutation in DES[24].

Here, � has a simple structure, and while it may appear overly simplistic compared to

DES, there is no need to complicate � because A is random in LBF.

The hash function family 5 (x) composed of (2), is used for the S-box (Fig. 2). For

the input x ∈ {0, 1}< to the S-box, the output ~̃ ∈ Z
=
@ of 5 (x), and by encoding ~̃8 ∈ Z@

of ~̃ into a binary expression for each of 8 = 1, 2, . . . , = and concatenating it, the S-box

output ~ ∈ {0, 1}<
2 is obtained. The selection of round keys is arbitrary as long as the

period is long enough to assume that they are uniformly distributed.

While PRFs can be constructed from one-way functions, collision-resistant func-

tions are employed in the LBF. This is due to the fact that even one-way functions might

lead to the leakage of round key information if a collision occurs. Consider when a pair

of inputs to an S-box, x and x′ (where x ≠ x′), results in Ax = Ax′. Let the input to

the round function be R = R 9 | |R 9 and let the input pair of R be R′. In this case, for the

8-th bit of the vectors z and |, the EXOR operation satisfies I8 ⊕ |8 = I8 + |8 − I8|8 .
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Figure 1: Round function of LBF
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Figure 2: S-box and binary encoding of LBF

Here, we obtain the followings for the input pair x = Q ⊕ R and x′ = Q ⊕ R′, therefore

A(x − x′) = 0.

Thus, for the 8-th bit of x − x′, we derive

G8 − G′8 = :8 ⊕ !8 − :8 ⊕ !′
8 (5)

= (!8 − !′
8)(1 − :8) = 0. (6)

If !8 − !′
8 ≠ 0, we can determine :8 = 1. Therefore, a secure Feistel cipher can be

constructed by using a collision-resistant hash function.

When the hash function family used in the S-box is collision-resistant, the probability

of finding a pair of inputs such that Ax = Ax′ is negligible. There are various ways

to determine A; here, we consider a family where A is chosen randomly for each

encryption but remains fixed across rounds. With the LBF constructed in this manner,

the hash function that is difficult to invert is used as a large S-box, making differential

cryptanalysis challenging. Moreover, this design allows flexible construction of ciphers

with different block sizes in a single structure.

4 Differential cryptanalysis of LBF

In this section, we evaluate LBF’s security against differential cryptanalysis. The

maximum differential probability in Feistel ciphers determines the system’s security,

even with two or more rounds. While brute-force search can find this probability for

small block sizes or few rounds, it is impractical for large block sizes and many rounds

in real systems. Therefore, theoretical analysis is needed, and the following Theorem 3

from [26] provides the basis for estimating differential probabilities.
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Theorem 3. In Feistel cipher, when the round keys are uniformly and independently

selected, an upper bound of the maximum differential probability %# when # ≥ 4 is

given by the following using the maximum differential probability %max of one round:

%# ≤ 2%2
max. (7)

(7) means that the security against differential cryptanalysis can be evaluated using the

maximum differential probability of the round function, a result based on the property

that the key selection is uniform and independent.

Below, we evaluate the maximum differential probability %max of the round function

of the LBF. Regarding the input ^ ∈ {0, 1}< and output_ ∈ {0, 1}< of a round function,

if ^ = ^! | |^' and _ = _! | |_' are blocks divided into </2-bits, the following holds

between the input difference Δ^ and the output difference Δ_ of the round function:

Δ_ = Δ_! | |Δ_' = Δ~ ⊕ Δ^' | |Δ^! , (8)

whereΔ~ ∈ {0, 1}<
2 is the output difference of the S-box (see Fig.2). SinceΔ_' = Δ^!

and the attacker can control the input difference, maximizing the probability of Δ_!

maximizes the probability of Δ_ . Note that since the maximum probability of Δ_! is

independent of Δ^', the maximum probability of Δ_! is determined by Δ~. If the

round key Q8 ∈ {0, 1}< can be regarded as a uniform random, the S-box input x can

also be regarded as a uniform one. Therefore, the maximum probability of Δ_! is

determined by the input difference Δx of the S-box and output difference Δ~ of the

S-box. Furthermore, if the binary encoding of the S-box output ~̃ is a bijection, that is,

the parameter is chosen such that < = 2= log2 @ holds, then ~ and ~̃ correspond one-to-

one. In this case, %max can be represented using the maximum differential probability

of the S-box as follows:

%max = max
Δx≠0,Δ~

%(Δ~ |Δx,A), (9)

where %(Δ~ |Δx,A) denotes the conditional probability of event Δ~ occurring for given

Δx and A.

In the following, the maximum differential probability of the S-box output of the

LBF is theoretically derived. It is well known that the sum of uniformly distributed

variables tends to a normal distribution. However, an exact distribution of the sum of

discrete uniform distributions, when folded by modulo-@, cannot be directly derived.

First, we present the following lemma for the uniform random variable used to construct

the hash function to derive the S-box output difference distribution.

Lemma 4. Let 08 for 8 = 1, 2, . . . , = be independent and identically distributed random

variables that obey a discrete uniform distribution over Z@ . Then, the value of B@ , as

defined by the following, obeys a discrete uniform distribution over Z@ .

B@ =

=∑
8=1

08 mod @. (10)
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Proof. Consider =-tuple a = (01, 02, · · · , 0=) of independent uniform random vari-

ables 08 ∈ Z@ (8 = 1, 2, · · · , =). Since a is uniformly distributed over Z
=
@ , to find

%(B@ = :), it is sufficient to find the number of a such that

B :=

=∑
8=1

08 = ; + 8@, (11)

where ; = 0, 1, · · · , ⌊ =(@−1)−:
@

⌋. Therefore we have

=−1∑
8=1

08 = : + ;@ − 0=. (12)

The left-hand side of (12) takes the value of {0, 1, · · · , (= − 1)(@ − 1)}, and the value

of 0= is uniquely determined for (= − 1)-tuple (01, 02, · · · , 0=−1), which (12) holds.

Subsequently, a for which (12) holds exists as @=−1 for given : , @, so that %(B@ =

:) = @=−1

@= =
1
@

. �

Lemma 4 leads to the following theorem regarding the distribution of the S-box

output pairs.

Theorem 5. For a given Δx ∈ {0, 1}<, let the input pairs be x, x′ ∈ {0, 1}<, and let the

output pairs of the S-box be, ~, ~′ ∈ {0, 1}<
2 . If A obeys a discrete uniform distribution

over Z=×<
@ and < is equal to 2= log2 @, then the probability that the output pair ~, ~′ is

obtained from a given Δx obeys a uniform distribution over {0, 1}<
2 × {0, 1}<

2 .

Proof. For a given input pair (x, x′) ∈ {0, 1}< × {0, 1}<, let Δx = x ⊕ x′ ∈ {0, 1}<.

Letting the 8-th row of the row vector a1, a2, · · · , a= of A be a8 =
(
081 082 · · · 08<

)
,

the output pair (~̃8 , ~̃′8 ) ∈ Z@ × Z@ of 5 (x) corresponding to a8 can be represented as

follows:

~̃8 = a8x mod @ (13)

~̃′8 = a8 (x ⊕ Δx) mod @. (14)

Here, the :-th bit of Δx is represented as ΔG: and the set of indices where the bit is 0

or 1 is defined as follows:

ΔI0 = {: | ΔG: = 0 (: = 1, 2, · · · , <)} (15)

ΔI1 = {: | ΔG: = 1 (: = 1, 2, · · · , <)}. (16)

Using the set of indices ΔI0, ΔI1 and the :-th bit G: of x, ~̃8 and ~̃′8 can be represented

as follows:

~̃8 =

∑
:∈ΔI0

08:G: +
∑
:∈ΔI1

08:G: mod @ (17)

~̃′8 =

∑
:∈ΔI0

08:G: +
∑
:∈ΔI1

08: (G: ⊕ 1) mod @. (18)
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Since the elements of a8 are random variables that obey the uniform distribution over

Z@ , the first terms of (17) and (18) can be represented as random variables D that obey

a discrete uniform distribution over Z@ from Lemma 4. Also, the second term in (17) is

the sum of 08: for : such that G: = 1, and the second term of (18) is the sum of 08: for

: such that G: = 0, and since 08: in (1) and (2) do not overlap, their sums are mutually

independent.

From Lemma 4, each sum is an independent random variable {, | that obey uniform

distribution over Z@ . ~̃8 , ~̃
′
8 can be represented in the following form using independent

random variables D, {, and | that obey discrete uniform distribution over Z@ as follows:

~̃8 = D + { mod @ (19)

~̃′8 = D + | mod @. (20)

Since {, |, and D are independent, ~̃8 , ~̃
′
8 are independent and uniformly distributed

random variables over Z@ .

As each row of the matrix A is independent, each row of the outputs ~̃ and ~̃′

of the S-box are also independent. Therefore, the random variables ( ~̃, ~̃′) obey

uniform distribution over Z=
@ × Z

=
@ . Considering that the binary encoding Z

=
@ × Z

=
@ →

{0, 1}<
2 × {0, 1}<

2 is a bijection for < = 2= log2 @, the S-box output pair (~̃, ~̃′) is also

a random variable that obeys a uniform distribution over {0, 1}<
2 × {0, 1}<

2 . �

Therefore, if the binary encoding of the LBF is a bijection, the difference of output

Δ~ = ~ ⊕ ~′ obeys the uniform distribution over {0, 1}<
2 , then %max = 1/2<

2 .

This result and Theorem 5 lead to the estimate of # round maximum differential

probability %# given by

%# ≤ 2%2
max =

1

2<−1
. (21)

5 Statistical analysis of differential cryptanalysis on LBF

instances

In the evaluating cryptography, it is important to analyze a family of functions, but it is

also necessary to examine specific instances for practical applications. In this study, we

evaluate the typical security of LBF instances against differential cryptanalysis, where

typical security refers to the security expected on average when focusing on individual

instances in the family. We examine the specific instances and analyze the average

properties within the LBF family. In addition, we use extreme value theory by GEV for

the approximate model of the S-box to theoretically estimate the maximum differential

characteristic probability and the practically secure number of rounds.

5.1 Differential cryptanalysis works well against LBF with small

block sizes

We conducted simulations to examine whether LBF is vulnerable to attacks by differ-

ential cryptanalysis, focusing on cases with short block sizes. First, to eliminate the
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uncertainty caused by the random selection and examine the characteristics, we perform

a computer simulation of differential cryptanalysis for the block size for which the can-

didate keys can be brute-force searched. When differential cryptanalysis is attempted

on a Feistel cipher, the input difference Δ^ of the plaintexts is controlled, and the round

key is estimated based on the output difference Δ_ of the ciphertexts. For example, if

the number of rounds is # = 1, the key can be obtained by the following procedure[27].

1. For the selected Δ^, select a pair of plaintext input pairs ^, ^′ = ^ ⊕ Δ^ and

find Δ_ .

2. Select a pair of input pairs x, x′ to the S-box such that the input difference of the

the plaintext is Δ^, and determine Δ_ .

3. For the pairs ^, ^′,Δ_ obtained in 1) and the pairs x, x′,Δ_ obtained in 2),

where Δ_ is identical, the candidate key Q̂1 is derived from the relations x =

R0 ‖ R0 ⊕ Q1 and ^ = R0 ‖ X0, and add it to the list of candidate keys.

The above procedure is repeated for multiple Δ^ to narrow down the keys. If the

candidate keys can be searched for every ^and x, the candidate keys can be narrowed

down by taking the intersection of the candidate keys for each Δ^. If the number of

rounds is # = 3, the candidate keys can be estimated using the same procedure by

modifying the relation between the input and output differences to be used. If the input

block size < is large, searching for all the candidates becomes difficult. Therefore,

it is necessary to modify the candidate keys to estimate them from several randomly

selected input pairs.

In the simulation, one instance onZ=×<
@ that is a full rank matrix is chosen at random

as A of the S-box, and a round key is searched for an instance of LBF for the selected

A according to the differential cryptanalysis procedure described above. For the LBF

with parameters (=, <, @) = (2, 8, 4) and (4, 32, 16), we searched for candidate keys by

differential cryptanalysis. We found that the correct round key can be identified in a

few hours in both cases where the number of rounds # = 1 and 3.

Table 1 shows the results of how the number of key candidates decreases for each

instance of randomly generated A with < = 32 and # = 3 as the number of input

differences increases from 1 to 3. The table shows the minimum, maximum, mean,

and median number of key candidates for 100 instances. With only one difference,

approximately one million possible keys can be found. However, with two differences,

the number of possible keys decreases significantly to around a few hundred. With

three differences, most instances are able to identify the correct key.

The results show that a linear regression was performed with the equation ~ = 2+3G,

where ~ is the base-2 logarithm of the number of key candidates, and G is the number

of input differences. The estimated intercept, 2, is 29.35747 (standard error: 0.16927,

C-value: 173.4, %A (> |C |) : <2e-16), and the slope, 3, is -9.89946 (standard error:

0.07836, C-value: -126.3, %A (> |C |) : < 2e-16). The '2 is 0.9817, indicating a good fit

of the regression equation to the results. With each additional difference, the number

of candidates decreases to approximately 1/23 ≈ 1/1000, corresponding to 9.9-bits.

These results show that when the block size< and the number of rounds # are small,

the round key of the LBF can be identified using only a few input and output difference
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Table 1: Statistical Results of the number of key candidates per number of difference

used

# of difference Minimum Maximum Mean Median

1 587880 8388608 1203716.30 1051008

2 126 4132 397.61 274

3 1 5 1.33 1

pairs by using differential analysis. As observed here, differential cryptanalysis is

practical when the block size and number of rounds are small. Therefore, it is necessary

to determine block sizes and the number of rounds that differential cryptanalysis cannot

solve.

5.2 Number of secure rounds

It is crucial to select a sufficiently large block size and number of rounds when designing

block ciphers to ensure the required level of security. In this study, we analyze differ-

ential characteristics for randomly selected instances of A and statistically evaluate the

number of secure rounds.

In Feistel ciphers, differential cryptanalysis becomes harder with more rounds, but

processing time also increases, making it important to study the security-performance

trade-off. While tracking active S-boxes enables efficient attacks on Feistel ciphers with

many small S-boxes, this method does not apply to LBF due to its single S-box.

Another approach to the security evaluation of block ciphers with many rounds is

differential characteristic probability, which estimates the differential probability of #

rounds using the product of the differential probabilities for each round[24].

Definition 6. Let Δ^ 9−1 and Δ^ 9 be the input and output differences in the 9-th round,

respectively, and %(Δ^ 9 |Δ^ 9−1) be the conditional probability of the output difference

given the input difference. The differential characteristic probability %2,# for # rounds

is defined as

%2,# =

#∏
9=1

%(Δ^ 9 |Δ^ 9−1), (22)

with Δ^0 = Δ^ ≠ 0 at the start.

For each round, the combination of realized values of the input difference Δ^ 9−1 is

called a path, and the differential characteristic probability is obtained by searching for

the path that maximizes %2,# .

When the differential characteristic probability satisfies %2,# ≤ 2−<, the cipher is

considered to be “practically secure” against differential cryptanalysis[28]. The smallest

such # is the number of rounds the cipher secures against differential cryptanalysis. For

block ciphers satisfying %2,# ≤ 2−<, an attacker needs plaintext greater than or equal

to all possible plaintext patterns to decrypt the cipher with differential cryptanalysis.

The practically secure lower bound of # (A) = min{# | %2,# ≤ 2−<} is determined

only by A. We find the distribution of # (A) by computing the differential characteristic

12



Figure 3: Number of rounds to achieve %2,# ≤ 2−<

probability for uniformly random A. For an LBF with the parameter (=, <, @) = (2, 8, 4)
and fixed round keys, we generate 1000 instances of A of full rank and determine # (A).
For small =, like = = 2, certain output differences can appear frequently and even

become fixed; however, as = increases, such cases become rare, and in our simulations,

no such instances occurred for = ≥ 4, with their frequency expected to decrease further

with larger =. Thus, these rare cases are unlikely to affect the overall analysis when = is

sufficiently large.

Fig. 3 depicts the distribution of # (A) obtained by the Monte Carlo simulation.

The minimum value of # (A) is 8, the maximum value is 46, and the average is 17.08.

The results confirm that the number of secure rounds varies, corresponding to each

instance.

5.3 Average properties on S-box output differential

Based on the previous discussion, this section studies the average characteristics of

LBF instances. In an ideal S-box, the distribution of the output pairs obeys a uniform

distribution. An ideal maximum difference characteristic is that the maximum output

difference is small, and the probability of the output difference asymptotically obeys a

uniform distribution.

It is difficult to demonstrate directly that the distribution of the maximum differen-

tial probability of the LBF approaches a uniform distribution. Using a method based

on the generalized extreme value distribution, we propose that the distribution of max-

imum differential probability of the LBF asymptotically approaches that of an ideal

distribution.

We approximate the distribution of the output pairs of the LBF S-box by a folded

two-dimensional normal distribution and show that the average output characteristics

of the LBF approach the ideal uniform distribution using a generalized extreme value

distribution. When selecting an instance of A, each row a8 ∈ Z
<
@ (8 = 1, 2, · · · , =) is

independent, so the distribution of S-box output differences is a joint distribution of the

distributions for each row.

First, for the S-box input pair x, x′ and J<,@ = {0, 1, · · · , <(@ − 1)}, define the

S-box output pair (~̂8 , ~̂8 ′) = (a8x, a8x′) ∈ J<,@ × J<,@ .

Fig. 4 shows the empirical distribution of output pairs (~̂8 , ~̂′8 ) for randomly gener-

ated instances of a8 by the Monte Carlo simulation. Note that the empirical distribution

depends on the input difference. However, since the components of a8 are selected

independently, we only need to consider the Hamming weight ℎ| of the input differ-

ence to obtain the empirical distribution. In Fig. 4, the top, middle, and bottom rows

13



Figure 4: Emprical distribution of (~̂8 , ~̂′8 )

correspond to = = 2, 4, and 8, respectively. From left to right across the columns, the

figures correspond to the Hamming weights ℎ| = 1, </2, and < (where < is the block

size).

For the cases where = = 2, 4, and 8, the empirical distribution was obtained

for 100000 instances under each condition, and the frequency was averaged for each

instance. In this simulation, the empirical distribution of input x was created using all

inputs for = = 2. In the case = = 4 and 8, the empirical distribution was obtained using

1000000 inputs selected uniformly at random with a fixed input difference Δx and a

pair of inputs x′ = x ⊕ Δx.

Since components of a8 are independent and obey a discrete uniform distribution, the

output, which is the sum of them, is close to a normal distribution. As = increases from

2 to 8, the distribution is close to the two-dimensional normal distribution, especially

when ℎ| = </2. Moreover, as the parameter = increases, the number of random

variables that obey the uniform distribution increases, so we expect that the distribution

is approximately close to the normal distribution.

As = increases, the range of values for (~̂8 , ~̂8 ′) grows exponentially, while the con-

centration ellipse decreases in size, and regions far from the ellipse become rare events.

Consequently, the data becomes zero-inflated categorical data. Such data can destabi-

lize the j2 value in chi-square tests, making the uniformity test difficult[29]. Therefore,

in the following, the joint distribution of the output pairs (~̂8 , ~̂′8 ) is approximated by a

two-dimensional normal distribution. This method is a standard approach for represent-

ing bivariate distributions with correlations. Using a folded two-dimensional normal

distribution by modulo-@ and the GEV, we demonstrate that the maximum differential

probability asymptotically approaches an ideal S-box.
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First, the distribution of the vector ~̂ = (~̂8 , ~̂′8 ) representing the output pair is

modeled as a two-dimensional normal distribution as follows:

?( ~̂) =
1

√
2c

2√|� |
exp

(
−1

2
( ~̂ − -)⊤�−1 ( ~̂ − -)

)
(23)

- =
(
<
4
(@ − 1), <

4
(@ − 1)

)
(24)

� =

(
f2 f2 − Δ

f2 − Δ f2

)
(25)

f2
=

<(@ − 1)
4

(
2@ − 1

3
+ <2(@ − 1)(< − 1)

16

)
(26)

Δ =
1

12
(2@ − 1)(@ − 1)ℎ|(Δx), (27)

where - is the mean vector, � is the covariance matrix, and ℎ|(Δx) is the Hamming

weight of the input difference. The derivation is obtained directly.

Next, we obtain the distribution folded by modulo-@, which models the distribution

of S-box output pairs. By evaluating the maximum probability of this distribution, that

is, the frequency of the mode, we can estimate the bias in the differential probability.

When a one-dimensional normal distribution is folded by modulo-@, it asymptotically

becomes a uniform distribution with a sufficiently small partition width[30]. This result

can be applied to a multivariate normal distribution if each dimension is independent.

However, it is not easy to extend this result directly because the variables in our

approximate model are correlated.

In the following, we use Monte Carlo simulation to obtain the empirical distribution

of the random variables (~̃8 , ~̃′8 ), which are the output pairs (~̂8 , ~̂′8 ) folded by modulo-@.

Observing the frequency of the mode of this empirical distribution, we determine the

empirical frequency distribution of the mode. By fitting the GEV to the empirical

frequency distribution of the mode, we can estimate the maximum density of the S-box

output pair.

#B random output pairs that obey (23) are generated in the simulation. These

random variable values are folded by modulo-@ to obtain the empirical distribution of

(~̃8 , ~̃′8 ), and its frequency of the mode. This process is repeated #< times to obtain

the empirical frequency distribution. The parameters of the GEV were obtained by

maximum likelihood estimation. We employed the ismev package of R to estimate the

parameters[31]. Additionally, since the ideal S-box output pairs (~̃8 , ~̃′8 ) obey a uniform

distribution over Z@ × Z@ , we compare its distribution with that of the output given by

(23) using Monte Carlo simulation.

In Fig. 5, the top, middle, and bottom rows correspond to = = 2, 4, and 8,

respectively. The sample size of the output pair is #B = 1000000, the sample size

of the frequency is #< = 100000, and the Hamming weights of input differences are

ℎ| = 1, </2, and <. Fig. 5 shows the probability density function of the GEV with the

estimated parameters, and Table 2–4 shows the estimated parameters. From the results,

for = = 2, only the distribution for ℎ| = 1 (dash-dotted line) deviates from the others

(ℎ| = 4, 8) and the uniform case. For = = 4, the distribution for ℎ| = 1 is slightly offset

from the others. For = = 8, all the distributions are almost identical, confirming that the
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Figure 5: Estimated frequency distribution of mode

deviation decreases as = increases. We also confirmed that the distribution of = = 2 and

ℎ| = 1 differs from other distributions. However, this discrepancy becomes smaller

for larger = = 4, 8, and the larger =, the closer the distribution estimated by the normal

distribution approximation becomes to that estimated by the uniform distribution.

Tables 2–4 show the estimated GEV parameters, location `, scale f, shape b, and

their standard errors ((�`, (�f , (� b ) obtained by the maximum likelihood estimation.

These estimated parameters show that the larger = is, the more asymptotic the normal

distribution approximation result is to the uniform distribution characteristic, which is

an ideal S-box. Considering the obtained standard error, if one examines the one-sided

95% confidence interval, the shape parameter is sufficiently less than zero, suggesting

that the distribution of the output pair (~̃8 , ~̃′8 ) of the S-box modeled by the normal

distribution approximation obeys the Weibull distribution.

From the mode of the probability distribution of the S-box output pairs (~̃8 , ~̃′8 )
obtained in this way, we can estimate the maximum differential probability of the

LBF in the # round. Let 2( ~̃, ~̃′) be the number of occurrences of the output pair

( ~̃, ~̃′) ∈ Z
=
@ × Z

=
@ of the S-box. The maximum differential probability %max of the

S-box is as follows:

%max = max
Δ~̃

%(Δ~̃) = max
Δ~̃

∑
( ~̃, ~̃′ )B.C .~̃⊕ ~̃′=Δ~̃

2( ~̃, ~̃′)
2<

,

whereΔ~̃ is a formal notation representing the EXOR of ~̃ and ~̃′ after binary encoding,

which represented as Δ~̃ = ~̃ ⊕ ~̃′. From the independence of each row in A, this can

be rewritten in the following form:

%max =
©
«
max
Δ~̃8

∑
( ~̃8 , ~̃′8 )B.C .~̃8⊕ ~̃′8=Δ~̃8

2(~̃8 , ~̃′8 )
@2

ª®
¬
=

, (28)

where 2(~̃8 , ~̃′8 ) is the number of occurrences of the output pair (~̃8 , ~̃′8 ), and ~̃8 ⊕ ~̃′8 = Δ~̃8
represents the EXOR after binary encoding. Then, there are @ output pairs (~̃8 , ~̃′8 ) whose
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Table 2: Estimated parameter (= = 2)

Uniform
Normal

(ℎ| = <)

Normal

(ℎ| = </2)

Normal

(ℎ| = 1)

` 62889.9804 62891.2570 62891.1632 64044.1023

(�` 0.366293 0.368066 0.371648 0.518169

f 104.3645 105.4014 106.7196 155.1743

(�f 0.258920 0.263640 0.270961 0.353453

b -0.086671 -0.092448 -0.094775 -0.167586

(� b 0.002037 0.002018 0.002064 0.000806

Table 3: Estimated parameter (= = 4)

Uniform
Normal

(ℎ| = 1)

Normal

(ℎ| = </2)

Normal

(ℎ| = <)

` 4073.5561 4073.4771 4073.4372 4077.5444

(�` 0.073623 0.073703 0.073359 0.075155

f 21.039072 21.061516 20.952711 21.469652

(�f 0.052006 0.051980 0.051752 0.053072

b -0.077223 -0.078088 -0.078389 -0.078177

(� b 0.001978 0.001971 0.001984 0.001981

Table 4: Estimated parameter (= = 8)

Uniform
Normal

(ℎ| = 1)

Normal

(ℎ| = </2)

Normal

(ℎ| = <)

` 34.0361 34.0343 34.0496 34.0439

(�` 0.004282 0.004259 0.004283 0.004301

f 1.222491 1.214973 1.220174 1.226664

(�f 0.003036 0.003020 0.003043 0.003054

b -0.049566 -0.051149 -0.047329 -0.046985

(� b 0.001993 0.002010 0.002040 0.002016

output differences are Δ~̃8 , and it is found that the upper bound of (28) can be evaluated

using the frequency of the mode #� for the number of occurrences 2(~̃8 , ~̃′8 ) and #B:

%max =
©«
max
Δ~̃8

∑
( ~̃8 , ~̃′8 )B.C .~̃8⊕ ~̃′8=Δ~̃8

2(~̃8 , ~̃′8 )
@2

ª®¬
=

≤
(
@
#�

#B

)=
.

The upper bound of the maximum differential characteristic probability of # rounds can

be obtained as the power of # , and the number of rounds # satisfying the practically

secure criterion can be estimated by determining the smallest # satisfying the following:

(
@#�

#B

)=#
≤ 2−<. (29)
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For #B > @#�, the following can be derived

# ≥ <

log2
#B

@#�

. (30)

According to the estimation of the number of rounds by (30), # required is maxi-

mized by the largest #�. Since (−∞, ` − f
b
] is supported on the negative axis for the

GEV shape parameter b < 0, we consider #� = ` − f
b

, which has the largest mode, to

estimate the upper bound on the number of rounds required. For = = 2, a large value

of #� results in #B < @#�, making it impossible to evaluate the number of rounds.

However, for = = 4, # = 16, and for = = 8, # = 6, the upper bound of the required

number of rounds can be estimated. To the best of the authors’ knowledge, no examples

of theoretical evaluation of secure rounds focusing on their probability distribution have

been found. As a result, the fact that this approach yields a specific number of secure

rounds is particularly noteworthy.

6 Conclusion

This paper evaluates the security of the Luby-Rackoff cipher when a hash function

based on the computational hardness of the SIS problem is used as its pseudorandom

generator. We derived an upper bound on the maximum differential probability to

assess resistance to differential cryptanalysis and identified the required secure rounds

for each block size <. Using the GEV distribution, our statistical analysis of S-box

output bias shows that secure rounds for block sizes 32 and 128 are 16 and 6, respectively,

demonstrating LBF’s robustness against differential cryptanalysis. However, extending

our method beyond = = 8 is challenging due to increased sample and computational

demands. Further research is needed to explore alternative approaches and extend the

analysis to linear cryptanalysis.
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