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Abstract

This work resolves the open problem of whether verifiable delay functions (VDFs) can be constructed
in the random oracle model. A VDF is a cryptographic primitive that requires a long time to compute
(even with parallelization), but produces a unique output that is efficiently and publicly verifiable.

We prove that VDFs with imperfect completeness and computational uniqueness do not exist in the
random oracle model. This also rules out black-box constructions of VDFs from other cryptographic
primitives, such as one-way permutations and collision-resistant hash functions.

Prior to our work, Mahmoody, Smith and Wu (ICALP 2020) prove that VDFs satisfying both
perfect completeness and perfect uniqueness do not exist in the random oracle model; on the other hand,
Ephraim, Freitag, Komargodski, and Pass (Eurocrypt 2020) construct VDFs with perfect completeness
and computational uniqueness in the random oracle model assuming the hardness of repeated squaring.
Our result is optimal – we bridge the current gap between previously known impossibility results and
existing constructions.
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1 Introduction

A verifiable delay function (VDF) [BBBF18] is a cryptographic primitive that requires a long sequential time
to compute, while the output is efficiently verifiable. More specifically, a VDF is defined by two algorithms:
Eval and Verify. On input x, Eval computes an output y and a proof π in time tEval, and Verify decides whether
to accept (y, π) in time tVerify, where tVerify ≪ tEval. The main security requirements for VDFs are completeness,
computational uniqueness and sequentiality. Completeness says that the solution output by Eval is accepted
by Verify with high probability. Computational uniqueness says that given an input x, no adversary running in
time poly(tEval) can find a y′ ̸= Eval(x) and a proof π′ such that (y′, π′) convinces the verifier. Sequentiality
says that no adversary running in time smaller than tEval (with parallel processors) can compute y = Eval(x).

VDFs are useful in scenarios where a delay in the computation is needed to ensure that certain operations
cannot be performed too quickly. It has applications in areas such as auction protocols, proof-of-work
systems, cryptographic timestamping, secure multiparty computation, and building randomness beacons
([BBBF18; BBF18; Pie19; Wes19; FMPS19; EFKP20; Sta20; HHKK23]).

Another line of work using VDFs as building blocks is proving hardness of TFNP classes. Establishing
the hardness of the TFNP class PPAD [Pap94], in which finding the Nash equilibrium of a non-cooperative
game is the complete problem, is a long-standing open question. [BPR15; HY17; LV20; Bit+22] discuss the
similarities between constructions of hard instances in PPAD and and constructions of VDFs.

A natural question to study is whether black-box constructions of VDFs are possible from unstructured
primitives, like hash functions or other symmetric primitives. The starting point would be to consider
constructions in the random oracle model (ROM). [EFKP20] constructs VDFs in the ROM based on hardness
of repeated squaring [RSW96]. [DGMV20] shows that tight VDFs, a variant whose evaluation time is
very close to the sequentiality requirement, do not exist in the ROM. However, it is unclear whether the
impossibility on tight VDFs extend to general VDFs. [MSW20] proves that VDFs satisfying perfect
uniqueness (a strengthening of the computational uniqueness saying that no adversary can find a different
solution) cannot be constructed in the ROM; they raise whether it is possible to rule out VDFs with
computational uniqueness in the ROM as an open question.

We resolve the open question in [MSW20] and close the gap between existing constructions and known
lower bounds by showing that:

Verifiable delay functions do not exist in the random oracle model.

1.1 Our results

In this paper, we focus on VDFs in the random oracle model. We measure the number of queries made by
Eval and Verify to the random oracle instead of their running time. Specifically, on input x, Eval computes
an output y and a proof π with query complexity at most qEval, and Verify decides whether to accept (y, π)
with query complexity at most qVerify, where qVerify ≪ qEval. The uniqueness and sequentiality requirements are
adapted accordingly.

We propose an equivalent reformulation for VDFs in the ROM in terms of decision tree algorithms. In
particular, a VDF can be viewed as a set of search problems {Sx ⊆ F × Y}x such that for every input x,
(f, y) ∈ Sx if V(x)

y (f) := Verifyf (x, y) accepts. (We omit the proof π output by Eval here for simplicity.)
We say that {V(x)

y }y∈Y determines Sx. This reformulation enables us to use techniques in query complexity
to show impossibility results regarding VDFs.
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Theorem 1 (Informal). Let S ⊆ F×Y be a search problem determined by a family of verifiers {Vy : F→
{0, 1}}y∈Y of query complexity t. Let D : F → Y be a T -query algorithm (with arbitrarily many rounds)
that computes S correctly with high probability. Then, one of the following holds:

• there exists an O(t)-round O(t · T )-query adversary A that correctly computes S with non-negligible
probability; or

• there exists an O(t · T )-query adversary B who outputs y′ ̸= D(f) such that V(f, y′) = 1 with
non-negligible probability.

Using Theorem 1, we can conclude that VDFs do not exist in the random oracle model.

Corollary 1 (Informal). Suppose VDF = (Eval,Verify) is a VDF in the ROM. It cannot satisfy computational
uniqueness and sequentiality simultaneously.

More specifically, one can construct adversaries for VDFs from the adversaries A and B in Theorem 1. Given
VDF = (Eval,Verify), one of the following holds:

• there exists an O(qVerify)-round O(qVerify · qEval)-query adversary that computes Eval correctly with
non-negligible probability (a sequentiality breaker); or

• there exists an O(qVerify · qEval)-query adversary who outputs y′ ̸= Eval(x) that convinces the VDF
verifier with non-negligible probability (a uniqueness breaker).

We emphasize that both the uniqueness breaker and the sequentiality breaker described above run in time
poly(tVerify · tEval), where tEval and tVerify represent the running time of Eval and Verify, respectively. This implies
that our adversaries are optimal in the ROM – [EFKP20] constructs a VDF that satisfies both computational
uniqueness and sequentiality in the ROM assuming the hardness of repeated squaring (the RSW assumption
[RSW96]). We give a detailed explanation in Section 5.3.

Corollary 1 implies that VDFs with stronger uniqueness guarantee (e.g., perfect uniqueness) do not exist
in the ROM. However, we are able to prove a quantitatively better result regarding those VDFs:

Theorem 2. Let S ⊆ F×Y be a search problem determined by a family of verifiers {Vy : F→ {0, 1}}y∈Y
of query complexity t such that for a negligible fraction of f ∈ F , there exists more than one y ∈ Y where
(f, y) ∈ S. Then, there exists an O(t)-round O(t2)-query adversary A that computes S with non-negligible
probability.

Notice that the adversary A in Theorem 2 only makes O(t2) queries, while the adversary A in Theorem 1
uses O(t · T ) queries. The main open question remaining is to determine whether it’s possible to improve
Theorem 1 quantitatively.

Open Problem 1. Let S ⊆ F × Y be a search problem defined by a verifier V : F × Y → {0, 1} with
query complexity t. Let D : F→ Y be a T -query algorithm (with arbitrarily many rounds) that computes S
correctly with high probability. Assume that for uniformly sampled f ∈ F, it is computationally hard to find
y′ ̸= D(f) where V (f, y′) = 1. Is it possible to construct a poly(t)-query adversary that computes S with
non-negligible probability?

1.2 Related works

VDF and related cryptographic primitives have been studied extensively in prior works. We summarize the
works that are most relevant to our results.

Verifiable delay functions. [MSW20] shows that VDFs with perfect completeness (Eval outputs an accepting
solution with probability 1) and adaptive perfect uniqueness cannot exist in the ROM. Our impossibility
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result on VDFs with imperfect completeness and non-adaptive computational uniqueness in the ROM is more
general (see Definition 3.4 and Remark 3.5). In fact, we also show a stronger claim regarding VDFs with
perfect uniqueness. We postpone a detailed comparison to Section 2.2. [DGMV20] presents an in-depth
study of tight VDFs, a variant that requires the evaluation algorithm Eval to run in time almost the same as
the sequentiality requirement, and proves a negative result in the ROM. Specifically, they show that there
is no VDF construction that cannot be evaluated using T rounds of queries, but can be evaluated using
T + O(T δ) (for every constant 0 < δ < 1) rounds of queries. Note that this does not rule out VDFs that
cannot be evaluated using T rounds of queries but can be evaluated using T + Ω(T ) rounds of queries.
[RSS20] shows that VDFs cannot be constructed in cyclic groups of known orders. In fact, their result
works for generic-group delay functions, a generalization of VDFs. [EFKP20] constructs VDFs with perfect
completeness and computational uniqueness in the ROM assuming the hardness of repeated squaring. We
summarize the comparison between the above-mentioned works and our results in Table 1.

Perfect Completeness Imperfect Completeness

Perfect
Uniqueness

[MSW20]: ✗ (ROM)
Theorem 1, Theorem 2: ✗ (ROM)

Theorem 1, Theorem 2: ✗ (ROM)

Computational
Uniqueness

[DGMV20]: ✗ (ROM + tight VDF)
[RSS20]:✗ (cyclic groups of known orders)
[EFKP20]: ✓ (ROM + repeated squaring)
Theorem 1: ✗ (ROM)

Theorem 1: ✗ (ROM)

Table 1: Comparison between prior works and our results. We use the red cross mark (✗) to indicate impossibility
results and the blue check mark (✓) to indicate constructions. We specify the underlying assumption for each
result in parenthesis.

Proof of sequential works. VDFs are closely related to proof of sequential works (PoSWs) [MMV13;
CP18; AKKPW19; DLM19; AFGK22; AC23; Abu23]. The key difference is PoSWs do not have guarantee
on the uniqueness. Our results rule out the possibilities to construct VDFs with various uniqueness guarantees
in the ROM; however, it is known that PoSWs can be constructed in the ROM ([MMV13; CP18; DLM19]).

Time-lock puzzles. Time-lock puzzles ([RSW96]) are similar to VDFs as they also have the uniqueness and
sequentiality guarantee. In a time-lock puzzle, a generator outputs a puzzle x and a corresponding solution y
efficiently. However, computing y from x still requires large sequential time. The main difference is that
time-lock puzzles require the verifier to have knowledge of a secret key to achieve efficient verification, while
VDFs are publicly verifiable. [MMV11] rules out time-lock puzzles in the ROM.

Incrementally verifiable computations. Incrementally verifiable computation (IVC) [Val08] is a crypto-
graphic primitive that enables efficient verification for multi-step computation. It is believed, though only
partially proven [HN23; BCG24], that IVC does not exist in the ROM. [BBBF18] shows there is a black-box
construction of VDFs from tight IVC (where IVC prover does not have too much overhead) for iterated
sequential functions. Consequently, our results rule out tight IVC for iterated sequential functions in the ROM.
However, since all hard sequential functions constructions use either the random oracle or cryptographic
assumptions, our results imply that tight relativized IVC (tight IVC for which the target computation itself
involves calls to the oracle) cannot be constructed in the ROM. In fact, [BCG24] proves a stronger claim:
relativized IVC does not exist in the ROM, even when security holds against time-bounded (instead of just
query-bounded) adversaries. We leave as an open question whether our techniques can be used to prove the
impossibility of standard, non-relativized IVC in the ROM.
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2 Techniques

We overview the main ideas underlying our results. In Section 2.1, we discuss our reformulation of VDFs into
search problems that enables us to apply techniques developed for decision tree algorithms. In Section 2.2,
we provide a simpler proof for the impossibility of VDFs with perfect uniqueness in the ROM as a warm-up.
In Section 2.3, we explain how to generalize the approach in Section 2.2 to prove Theorem 2. In Section 2.4,
we start with an alternative proof for the impossibility of VDFs with statistical uniqueness in the ROM and
explain how to adapt it to show Theorem 1.

2.1 From VDFs to search problems

Review: VDF. A VDF in the ROM is a tuple of algorithms VDF = (Eval,Verify) that works as follows:
for every security parameter λ ∈ N, let the random oracle O(λ) be the uniform distribution over the set of all
functions with output length λ ({f : {0, 1}∗ → {0, 1}λ}):

• The evaluation function Eval gets oracle access to a random oracle function f , receives an input x ∈ X
and deterministically produces an output y ∈ Y . (Note that Eval should also output a proof π, we
omit it in this section for simplicity. Our formal proofs use the standard VDF definition as stated in
Definition 3.2.) Eval makes at most qEval queries to f .

• The verifier Verify gets oracle access to a random oracle function f , receives input (x, y) ∈ X × Y
and deterministically decides whether to accept or reject. Verify makes at most qVerify queries to f .

VDF is complete if the solution computed by Eval is accepted by Verify with high probability. For ease of
discussion, we consider VDFs with perfect completeness in this section (imperfect completeness is handled
carefully in Sections 4 and 5). VDF satisfies sequentiality if no rAdv-round qAdv-query (rAdv ≪ qEval and
qAdv = O(qEval)) algorithm can correctly compute Eval with non-negligible probability. Moreover, we say
that VDF has perfect uniqueness if for every input x, Verify only accepts the output y := Evalf (x); VDF has
statistical uniqueness if for every input x, Verify accepts an alternative output y′ ̸= Evalf (x) with negligible
probability; VDF has computational uniqueness if for every input x and every poly(qEval)-query adversary
Adv, Verify accepts Advf (x) ̸= Evalf (x) with negligible probability. Note that the above probabilities are
with respect to the choice of the random oracle function f .

Review: search problems. A search problem S ⊆ F× Y is defined by a family of verifiers {Vy : F →
{0, 1}}y∈Y, where (f, y) ∈ S if and only if Vy(f) = 1. We say an algorithm D : F→ Y computes S if for
every f ∈ F, (f,D(f)) ∈ S.

Reformulation of VDFs. Recall that every query algorithm can be viewed as a decision tree: the internal
nodes of the tree represent the queries, the leaves represent the solutions, and the branching is based on the
answers from the oracle to the queries.

In the ROM, the efficiency of the algorithms is measured by the number of queries they make to the
random oracle. Thus, the execution of every sequential algorithm can be viewed as a decision tree. The same
holds for parallel algorithms except that the internal nodes are now labeled by the set of queries instead of a
single query.

Formally, fix a security parameter λ ∈ N, for every x ∈ X , we define a search problem Sx ⊆ F × Y,
where F := {f : {0, 1}∗ → {0, 1}λ} and Y := Y , by a family of verifiers {V(x)

y : F→ {0, 1}}y∈Y where for
every y ∈ Y,

V(x)
y (f) = Verifyf (x, y).

4



Moreover, we define D(x) : F→ Y, which computes Sx, such that for every f ∈ F,

D(x)(f) := Evalf (x).

The convention in query complexity is that the domain of the relations is finite, whereas the domain
F = {f : {0, 1}∗ → {0, 1}λ} is infinite. We observe that it is sufficient to define Sx ⊆ [2λ]n × Y since
there is some large constant n such that VDF depends on at most n positions of the random oracle. The total
number of search problems we define is |X |. For each search problem, we have at most |Y| verifiers of query
complexity qVerify, so each of them depends on at most 2λqVerify+1 positions in {0, 1}∗. Moreover, Eval has
query complexity qEval, so it depends on at most 2λqEval+1 points in the domain of f . Thus we can bound n by
n ≤ |X |

(
2λqVerify+1|Y|+ 2λqEval+1

)
.

Hence, V(x)
y has query complexity (with respect to the input string) t := qVerify and D(x) has query

complexity T := qEval. These search problems preserve many properties of the original VDF:
• Algorithms computing these search problems can be transformed into algorithms computing the original

VDF with roughly the same complexity and success probability.
• VDFs with certain sequentiality and uniqueness properties correspond to search problems with similar

properties.

2.2 Warm-up: VDFs with perfect uniqueness in the ROM

As a warm-up, we present a new proof for the impossibility of VDFs with perfect uniqueness in the ROM.
Our proof is inspired by the classical algorithm witnessing that decision tree complexity is at most the square
of certificate complexity for total boolean functions ([AB09]).

Since VDFs have perfect completeness and perfect uniqueness, we know that for every x ∈ X and
f ∈ [2λ]n, there is a unique y ∈ Y such that (f, y) ∈ Sx. Hence, according to the search problem
reformulation outlined in Section 2.1, it suffices to prove the following lemma.

Lemma 1. Let Sx ⊆ [2λ]n ×Y be a search problem determined by a family of verifiers {V(x)
y }y∈Y of query

complexity t such that for every f ∈ [2λ]n, |{y ∈ Y : (f, y) ∈ Sx}| = 1. Then there exists an O(t)-round
O(t2)-query adversary A(x) : [2λ]n → Y that computes Sx.

For a fixed input x ∈ X , let’s consider the set of all accepting leaves {ℓi}i of the verifiers {V(x)
y }y∈Y.

Note that each leaf ℓi is an element in ([2λ]∪ {⋆})n such that for every f ∈ [2λ]n that agrees with ℓi we have
V(x)
y (f) = 1 for some y ∈ Y. For ease of notation, we define the domain dom(ℓ) for each ℓ ∈ ([2λ] ∪ {⋆})n

as the set of positions that are determined:

dom(ℓ) := {i ∈ [n] : ℓ[i] ̸= ⋆}.

For each ℓ ∈ ([2λ] ∪ {⋆})n, we define its corresponding cube Cube(ℓ) as follows:

Cube(ℓ) := {f ∈ [2λ]n : for all q ∈ dom(ℓ), f [q] = ℓ[q]}.

Since every f ∈ [2λ]n has a unique solution y, Cube(ℓi)’s are disjoint. Hence, for every ℓi ̸= ℓj , there is
some q ∈ dom(ℓi) ∩ dom(ℓj) such that ℓi[q] ̸= ℓj [q]. In other words, if we pick an arbitrary ℓi and query
the given random oracle function f at all positions in dom(ℓi), we “learn” at least one position for every
leaf {ℓi}i. Since V(x)

y makes at most qVerify queries, each leaf contains at most qVerify non-⋆ positions. Thus,
repeating the above process for qVerify times suffices for an adversary to “learn” everything to determine the
solution y. Hence, we can design an adversary that always outputs the correct solution y as follows:
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1. Let L be the set of all accepting leaves {ℓi}i of the verifiers {V(x)
y }y∈Y.

2. Initialize p∗ := ⋆n.
3. For i ∈ [qVerify]: Choose an arbitrary leaf ℓ in L. Query the given oracle function f at all positions in

dom(ℓ). Update p∗ to record the answers of f and remove from L every leaf inconsistent with p∗.
4. Output y where V(x)

y (ℓ) = 1 for every ℓ ∈ Cube(p∗).

Observe that the adversary makes at most t2 queries in t rounds. However, it is not computationally efficient
since it needs to go over all accepting leaves, contrary to the adversaries we designed in the proof of Theorem 1
(see Section 5.3 for a detailed discussion).

Remark 1. [MSW20] proves VDFs with perfect completeness and perfect uniqueness do not exist in the
ROM by constructing a sequentiality adversary that makes (2qVerify + 1) · qEval queries in 2qVerify + 1 rounds.
Qualitatively they show a similar result as Lemma 1. However, we construct a sequentiality adversary using
only qVerify rounds and q2Verify queries. Moreover, our construction works even when VDFs have imperfect
completeness (see Section 4).

2.3 VDFs with statistical uniqueness in the ROM

In this section we explain the idea behind Theorem 2. Observe that in Section 2.2 we have proved the
following claim.

Claim 1 (Folklore, see e.g. [AB09]). For a given collection of certificates ℓ1, . . . , ℓN ∈ ([2λ] ∪ {⋆})n such
that Cube(ℓi) are disjoint there exists a decision tree of depth O((maxi∈[n] |dom(ℓi)|)2) that finds the unique
certificate ℓi that agrees with the given f ∈ [2λ].

The only difference between the statement of Lemma 1 and Claim 1 is that instead of certificates we have
a collection of verifiers. It is easy to see that they are equivalent: a certificate can be checked by a verifier and
a verifier can be replaced with a collection of certificates corresponding to its accepting leaves.

Theorem 2 can be seen as an approximate analogue of Claim 1.
The question of whether one can prove an approximate version of Claim 1 was first asked by Rudich in

[Rud88], who derived from this (then) conjecture that one-way permutations do not exist in the random oracle
model. Rudich’s conjecture was resolved by Kahn, Saks, and Smyth [KSS11] using Berg-Kesten-Reimer
(BKR) inequality, which was conjectured in [BK85] and proved in [Rei00].

[KSS11] taken together with [Rud88] implies that given a collection of certificates ℓ1, . . . , ℓN , if a random
point in [2λ]n belongs to exactly one Cube(ℓi) with large enough constant probability, Claim 1 still applies,
hence Theorem 2 holds. There is, however, an important technical caveat that prevents this simple logic to go
through.
Ambiguity of a proof. As we have remarked, the definition that we use in this section is simplified: in
the standard definition Evalf (x) outputs a pair (y, π) where π is a proof that can be used by Verify. 1 In the
language of certificates it means that V(x)

y corresponds to a collection of potentially non-disjoint certificates,
as opposed to certificates corresponding to accepting leaves of a single decision tree that are by definition
disjoint. The uniqueness property of VDF then guarantees only that certificates corresponding to different
values y have low total intersection, hence the result of [KSS11] does not apply.

Fortunately, following up to [KSS11], Smyth [Smy02] proved that for two certificate collections
ℓ1, . . . , ℓN and τ1, . . . , τL such that a random point belongs to exactly one of

⋃
i∈[N ] Cube(ℓi) and

⋃
i∈[L] Cube(τi),

1We emphasize that although this simplification needs to be taken care of separately in this case, it does not affect the proof of
Theorem 1 (see Sections 2.4 and 5).
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there exists a decision tree of depth O(t2) finding a certificate agreeing with the given f ∈ [2λ]n, where t
is the largest domain size among ℓ1, . . . , ℓN , τ1, . . . , τN . This would be exactly equivalent to Theorem 2 if
|Y| = 2.

In order to prove Theorem 2 in Section 4 we generalize Smyth’s result to arbitrary many certificate (cube)
families. The proof follows the original one pretty closely. However, a black-box reduction to the case of two
families seems elusive: a naı̈ve attempt to partition the families in two groups, apply Smyth’s theorem and
continue with a smaller group introduces an error multiplier logarithmic in the number of families, which is
unacceptable in our case since the initial error is constant. Moreover, it is not even clear how to give any
bound on |Y| in terms of t.

2.4 VDFs with computational uniqueness in the ROM

We explain how to prove Theorem 1. In order to tackle VDFs with computational uniqueness, we start with a
different approach to rule out VDFs with statistical uniqueness. In fact, our proof has two steps:

• Step 1: We construct an adversary that computes Eval with small sequential time if the given VDF
admits statistical uniqueness;

• Step 2: We show that a modified adversary works well even when VDF only has computational
uniqueness.

2.4.1 Adversary for VDFs with statistical uniqueness in the ROM

We present a proof ruling out VDFs with statistical uniqueness in the ROM. We emphasize that this proof
does not give the parameter specified in Theorem 2; we present it only as an intermediate step for proving
Theorem 1.

Similar to Section 2.1 we use our reformulation for a given VDF = (Eval,Verify). Note that now VDF
only satisfies statistical uniqueness, we don’t expect our sequentiality adversary A(x) to perfectly compute Sx

anymore. Rather, we show that there exists some constant C such that for every x ∈ X , there is a O(t)-round
O(t ·T )-query adversary A(x) that computes Sx with success probability at least 1−C · ϵ, where ϵ = negl(λ)
is the uniqueness error of VDF.

Our proof is inspired by [MSW20, Algorithm 1], which they use to show that VDFs with perfect
uniqueness cannot be constructed in the ROM. We first explain their idea and then present how we modify it
to work in our setting. ([MSW20] presents their proof in terms of VDF, we rephrase it to fit into our decision
tree framework.) For each input x ∈ X , [MSW20] constructs an adversary A(x) that proceeds in 2t + 1
rounds to compute Sx. This adversary is described in Algorithm 1.

[MSW20] observes that in each iteration, if A(x)(f) chooses a leaf that leads to some solution other than
y := D(x)(f), it queries at least one “new” position that has also been queried by V(x)

y (f) in this iteration.
Formally, let ℓV,f be the unique accepting leaf of V(x)

y that contains f . Let p∗i be the value of p∗ at the
beginning of iteration i. Since VDF satisfies perfect uniqueness, which means that for every chosen leaf ℓi
such that D(x)(ℓi) ̸= D(x)(f), the following holds:

Cube(p∗i ∪ ℓi) ∩ Cube(p∗i ∪ ℓV,f ) = ∅.

In other words, every time A(x)(f) records a wrong solution, it makes progress in learning the verifier’s view
of f . Since V(x)

y has query complexity at most t, at most t of the recorded solutions do not equal to y, which
implies that the majority of recorded solutions gives y = D(x)(f).
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Algorithm 1 Adversary A(x) from [MSW20].
Input: f ∈ [2λ]n

Output: y ∈ Y ∪ {⊥}

1: Let L1 := {ℓi}i be the set of leaves of D(x).
2: Initialize p∗ := ⋆n.
3: Initialize W := [ ].
4: for i ∈ [2qVerify + 1] do
5: Choose an arbitrary leaf ℓi from Li.
6: Append D(x)(ℓi) to W .
7: For every q ∈ dom(ℓi), query f at q and set p∗[q] := f [q].
8: Let Li+1 ⊆ Li be the set of all leaves in Li that are consistent with p∗.
9: return y if W contains some y that wins the majority vote; ⊥ otherwise.

However, the above adversary cannot be directly applied in the statistical uniqueness setting: the adversary
might not make progress when it records a wrong solution.

To be more specific, if the VDF does not have perfect uniqueness, when A(x)(f) chooses a leaf ℓi that
leads to some solution y′ ̸= D(x)(f) in round i, it is possible that the following happens:

Cube(p∗i ∪ ℓi) ∩ Cube(p∗i ∪ ℓV,f ) ̸= ∅.

Hence, we can neither record the correct solution nor learn the verifier’s view of f in this case.
The above issue can be addressed by the following two modifications to the adversary A(x):

• In each iteration, instead of choosing an arbitrary leaf ℓi from Li, we need to carefully choose a leaf that
“breaks less perfect uniqueness”. More specifically, we choose leaf ℓi such that Cube(ℓi) ∩ Cube(p∗i )
contains fewer functions f ∈ [2λ]n that have non-unique solutions in Sx than that in Cube(p∗i ) (such
leaf ℓi exists by an averaging argument).

• Our new adversary runs in (2 + δ)qVerify rounds for some constant δ > 0 instead of merely 2qVerify + 1
rounds.

As before, we know that there are at most t rounds i such that

D(x)(ℓi) ̸= D(x)(f) and Cube(p∗i ∪ ℓi) ∩ Cube(p∗i ∪ ℓV,f ) = ∅.

Moreover, from statistical uniqueness, there are at most ϵ-fraction of f ∈ [2λ]n such that there exists some
y′ ∈ Y where y′ ̸= D(x) and V(x)

y′ = 1. By our specific choice of leaves in each round, in expectation, there
are (2 + δ)qVerify · ϵ rounds i such that

D(x)(ℓi) ̸= D(x)(f) and Cube(p∗i ∪ ℓi) ∩ Cube(p∗i ∪ ℓV,f ) ̸= ∅.

Hence, by Markov’s inequality, A(x) records the true solution in the majority of rounds with high probability.

2.4.2 Does computational uniqueness undermine the adversary?

We briefly discuss how the above adversary A(x) would still succeed even when VDF satisfies only com-
putational uniqueness. (We do need to modify A(x) further in the formal proof, but the version outlined in
Section 2.4.1 is good enough for an intuitive explanation.) The rigorous proof can be found in Section 5.
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In order to better understand which part of the analysis outlined in Section 2.4.1 fails after relaxing
the uniqueness guarantee, we first recall the difference in the definitions of statistical uniqueness and
computational uniqueness:

• Statistical uniqueness: For a uniformly chosen x ∈ X , there are at most ϵ-fraction of f ∈ [2λ]n such
that there exists some y′ ∈ Y where y′ ̸= D(x) and V(x)

y′ = 1.
• Computational uniqueness: For a uniformly chosen x ∈ X and every computationally-bounded

adversary B(x), there are at most ϵ-fraction of f ∈ [2λ]n such that B can find some y′ ∈ Y where
y′ ̸= D(x) and V(x)

y′ = 1.

According to the above definitions, for a VDF that satisfies computational uniqueness, it is possible that more
than ϵ-fraction of f ∈ [2λ]n admits multiple solutions. Hence, the previous analysis in Section 2.4.1 fails to
work as we cannot directly bound the number of rounds such that D(x)(ℓi) ̸= D(x)(f) and Cube(p∗i ∪ ℓi) ∩
Cube(p∗i ∪ ℓV,f ) ̸= ∅ anymore.

Our key observation is that from such iterations we can extract non-canonical solutions for points in
the intersection of Cube(p∗i ∪ ℓi) and Cube(p∗i ∪ ℓV,f ): by the choice of ℓi, the value of D(x) for all these
points is D(x)(ℓi); and by definition of ℓV,f , the value D(x)(f) is accepted by the verifier. In order to
exploit this observation we devise a uniqueness adversary B(x) “coupled” with the sequentiality adversary
A(x) in Section 2.4.1, in such a way that if there are too many rounds i where D(x)(ℓi) ̸= D(x)(f) and
Cube(p∗i ∪ ℓi)∩Cube(p∗i ∪ ℓV,f ) ̸= ∅, B(x) breaks computational uniqueness. Since B(x) needs to work with
non-negligible probability for a uniformly random function f ∈ [2λ]n, we have to modify the sequentiality
adversary A(x) such that the non-uniqueness witnesses are distributed uniformly.

We carefully explain how one can modify the construction of A(x) and construct an effective uniqueness
adversary B(x) to rule out VDFs with computational uniqueness in Section 5.
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3 Preliminaries

3.1 VDFs in the ROM

Definition 3.1 (The random oracle model (ROM)). For every λ ∈ N, the random oracle O(λ) is the uniform
distribution over the set of all functions f : {0, 1}∗ → {0, 1}λ.

Definition 3.2 (Verifiable delay function (VDF) [BBBF18] in the ROM). A verifiable delay function VDF
in the ROM is a tuple of oracle-aided algorithms VDF = (Setup,Eval,Verify) such that for every λ ∈ N
and f ∈ O(λ), the following hold:

• Setupf (1λ, qEval)→ pp: On input the security parameter λ and the query bound qEval, the deterministic
setup algorithm Setup outputs the public parameters pp, where pp determines a (uniformly) samplable
input space X and an output space Y .

• Evalf (pp, x) → (y, π): On input the public parameter pp and an element x ∈ X , the evaluation
algorithm Eval outputs y and a proof π, where y is generated deterministically while π can be
generated in a randomized way. We sometimes ignore the output proof π and write Evalf (pp, x)→ y
for simplicity.

• Verifyf (pp, x, y, π)→ {0, 1}: On input the public parameter pp, and element x ∈ X , a value y ∈ Y ,
and a proof π, the deterministic verification algorithm Verify outputs a bit indicating whether it
accepts or rejects.

We require that Setup, Eval and Verify make at most qSetup, qEval and qVerify queries, respectively, to the
random oracle, where qSetup = qSetup(λ, qEval) and qVerify = qVerify(λ, qEval). In practice, we want to have VDFs
where qSetup ≪ qEval and qVerify ≪ qEval.

Definition 3.3 (Completeness of VDF). VDF = (Setup,Eval,Verify) has completeness error α if for every
λ ∈ N and qEval ∈ N,

Pr

Verifyf (pp, x, y, π) = 1

∣∣∣∣∣∣∣∣
f ← O(λ)

pp← Setupf (1λ, qEval)
x← X

(y, π)← Evalf (pp, x)

 ≥ 1− α(λ).

When α = 0, we say the VDF has perfect completeness.

Definition 3.4 (Non-adaptive (qAdv, ϵ)-uniqueness of VDF). For every qAdv and ϵ, VDF = (Setup,Eval,Verify)
satisfies (qAdv, ϵ)-uniqueness if for every λ ∈ N, qEval ∈ N, and qAdv-query adversary Adv,

Pr

 y ̸= Evalf (pp, x)

∧Verifyf (pp, x, y, π) = 1

∣∣∣∣∣∣∣∣
f ← O(λ)

pp← Setupf (1λ, qEval)
x← X

(y, π)← Advf (pp, x)

 ≤ ϵ(λ).

We say that VDF satisfies perfect uniqueness if qAdv is unbounded and ϵ(λ) = 0. We say that VDF satisfies
statistical uniqueness if qAdv is unbounded and ϵ(λ) = negl(λ). We say that VDF satisfies computational
uniqueness if qAdv = poly(λ, qEval) and ϵ(λ) = negl(λ).
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Remark 3.5. Note that in previous works (e.g. [BBBF18; MSW20; DGMV20]), uniqueness is defined
adaptively. In other words, instead of sampling an input x uniformly at random and giving to the adversary
Adv as input, they allow Adv to choose the input themselves. The adaptive uniqueness is a stronger security
notion than our non-adaptive uniqueness. However, since our focus in this paper is on impossibility results, we
work with non-adaptive uniqueness, which implies stronger impossibility results compared to their adaptive
analogues. We sometimes write “uniqueness” instead of “non-adaptive uniqueness” for simplicity; however,
we always write “adaptive uniqueness” explicitly.

Definition 3.6 ((rAdv, qAdv, γ)-sequentiality of VDF). For every rAdv, qAdv, and γ, VDF = (Setup,Eval,Verify)
is (rAdv, qAdv, γ)-sequential if for every λ ∈ N, rAdv ∈ N, qEval ∈ N, and rAdv-round qAdv-query adversary Adv,

Pr

y = Evalf (pp, x)

∣∣∣∣∣∣∣∣
f ← O(λ)

pp← Setupf (1λ, qEval)
x← X

y ← Advf (pp, x)

 ≤ γ(λ).

Remark 3.7. Note that we allow the adversary in the sequentiality definition to be parallel algorithms: it
can ask multiple queries in the same round, as long as the total number of queries across rounds is upper
bounded by qAdv. Moreover, canonical VDF definitions (e.g. [BBBF18]) require γ to be negligible in λ, here
we consider the more general definition that considers various γ.

3.2 Search problems

Definition 3.8. A search problem is defined by a relation S ⊆ F×Y. We say S is determined by a family
of nondeterministic verifiers {Vy,π}y∈Y,π∈Π if for every f ∈ F, y ∈ Y, (f, y) ∈ S if and only if there exists
some π ∈ Π such that Vy,π(f) = 1. We say a search problem is total if, for every f ∈ F, there is at least one
solution y s.t. (f, y) ∈ S.

We focus on search problems with product input space F = [M ]m for M,m ∈ N. Given f ∈ [M ]m, I ⊆
[m], p ∈ [M ]I , we define fI→p ∈ [M ]m as follows:

fI→p[i] :=

{
p[i] i ∈ I
f [i] i /∈ I

.

Definition 3.9 (Subcube). Fix M,m ∈ N. Let F = [M ]m. We say F′ ⊆ F is a (sub)cube if F′ = F′1×· · ·×F′n
for some F′1, . . . ,F

′
m ⊆ [M ], where |F′i| ∈ {1,M} for each i ∈ [m].

Every query algorithm can be viewed as a decision tree: the internal nodes of the tree represent the
queries, the leaves represent the solutions, and the branching is based on the answers from the oracle to the
queries.

A partial assignment p ∈ ([M ] ∪ {⋆})m is a length-m string, where each entry is either fixed to be some
value in [M ], or “undetermined” (denoted by ⋆). The domain of p is defined as dom(p) := {i : pi ̸= ⋆}.

For ease of notation, we also identify each node p in a decision tree with a partial assignment p ∈
([M ] ∪ {⋆})m that records the query outcomes leading to the node p, if a position i is not queried, we set
pi := ⋆.

We say an input f ∈ [M ]m is consistent with a partial assignment p if they agree on the domain of p, i.e.
f [i] = p[i] for all i ∈ dom(p). We denote by Cube(p) := {f ∈ [M ]m : ∀ i ∈ dom(p), f [i] = p[i]} the set of
all inputs consistent with p.
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We say that partial assignments p and q are consistent with each other if they agree on every position
in the intersection of their domains, i.e. for every i ∈ dom(p) ∩ dom(q) we have p[i] = q[i]. Equivalently,
Cube(p) ∩ Cube(q) ̸= ∅. We use p ∪ q to denote the partial assignment with domain dom(p) ∪ dom(q) that
is consistent with both p and q. Note that Cube(p) ∩ Cube(q) = Cube(p ∪ q).

Given a distribution µ over some space F, for each F′ ⊆ F, we define µ(F′) :=
∑

x∈F′ µ(x) as the
probability of a random element sampled from µ is in F′. We use UF to denote the uniform distribution over
F.

For any two partial assignments p, q ∈ ([M ] ∪ {⋆})m, we say p and q are independent, denoted p ≁d q,
if dom(p) ∩ dom(q) = ∅. Otherwise, we say that p and q are dependent, denoted p ∼d q.

Theorem 3.10 (BKR inequality). [BK85; Rei00] Let P,Q be two collections of partial assignments over
[M ]m. Then for every product distribution µ over [M ]m,

µ⊗2

 ⋃
p∈P,q∈Q
p≁dq

Cube(p)× Cube(q)

 ≤ µ

⋃
p∈P
q∈Q

Cube(p) ∩ Cube(q)

 .

3.3 VDFs to search problems

Consider VDF = (Setup,Eval,Verify) with completeness error α. We present the formal reformulation of
VDF in terms of search problems as described in Section 2.1.

Fix λ ∈ N and a large enough constant n that depends on qSetup, qEval and qVerify. The search problems are
defined below:

For every leaf ℓ ∈ ([2λ] ∪ {⋆})n of the decision tree representation of Setup:
(a) Let pp denote the label of ℓ. Deduce X and Y from pp.
(b) For every x ∈ X , define the search problem Sℓ,x ⊆ Cube(ℓ)×Y where Y := Y as follows:

i. Sℓ,x is determined by verifiers Vy,π : Cube(ℓ) → {0, 1} of query complexity qVerify which
satisfy that Vy,π(f) = Verifyf (pp, x, y, π).

ii. There is an algorithm D : Cube(ℓ)→ Y ×Π of query complexity qEval which satisfies that
D(f) = Evalf (pp, x) and Prf←[M ]m [VD(f)(f) = 1] ≥ 1− αℓ,x for some αℓ,x ∈ [0, 1].

Moreover, for every f , let ℓS,f denote the leaf of the decision tree representation of Setup such that
f ∈ Cube(ℓS,f). It follows from Definition 3.3 that

E

αℓS,f ,x

∣∣∣∣∣∣
f ← O(λ)

pp← Setupf (1λ, qEval)
x← X

 ≤ α.
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4 VDFs with statistical uniqueness

Theorem 4.1. Suppose VDF = (Setup,Verify,Eval) is a VDF in the ROM with completeness error α that
satisfies statistical uniqueness with error ϵ. Fix λ ∈ N. Let qSetup and qVerify denote the query complexity of
Setup and Verify, respectively. Then for every non-zero constant δ such that α+ ϵ ≤ δ ≤ 10−3, VDF does
not satisfy (qSetup + qVerify/δ), qSetup + q2Verify/δ), 1− 6

√
δ)-sequentiality.

According to Section 3.3, it suffices to prove the theorem below.

Theorem 4.2 (Formal version of Theorem 2). Let S ⊆ [M ]m × Y be a search problem determined by a
family of nondeterministic verifiers {Vy,π}y∈Y,π∈Π of query complexity t. Let δ ≥ 0 be a parameter such
that

Pr
f←[M ]m

[|{y ∈ Y | (f , y) ∈ S}| ≠ 1] ≤ δ

Then for δ ≤ 10−3, there exists a t/δ-round and t2/δ-query adversary A : [M ]m → Y such that

Pr
f←[M ]m

[(f ,A(f)) ∈ S] ≥ 1− 6
√
δ.

Proof of Theorem 4.1 by Theorem 4.2. Observe that δ in Theorem 4.2 bounds from above the sum of the
uniqueness and completeness errors, i.e., α+ ϵ ≤ δ. Let A be the adversary in Theorem 4.2. We construct
a VDF sequentiality adversary Adv that gets oracle access to f , runs Setup to locate the leaf ℓf , samples
x← X , and executes the adversary A corresponding to the search problem Sℓf ,x. If follows that Adv is a
(qSetup + qVerify/δ)-round (qSetup + q2Verify/δ)-query algorithm that correctly computes Eval with probability at
least 1− 6

√
δ.

4.1 Proof of Theorem 4.2

Given a set F′ ⊆ [M ]m, we define Uniq(F′) := {f ∈ F′ : |{y ∈ Y | (f, y) ∈ S}| = 1} as the set of inputs in
F′ which have a unique solution w.r.t. S. We describe the adversary A in Algorithm 2. The general structure
of the algorithm follows the one described in Section 2.2. For several rounds we pick a leaf of a verifier that
is consistent with the current assignment and query the input in the positions corresponding to that leaf. The
crucial part of the algorithm is to choose that leaf correctly.

Algorithm 2 Sequentiality-breaking adversary A for statistical uniqueness.

Input: f ∈ [M ]m

Output: y ∈ Y ∪ {⊥}

1: Initialize p∗ := ⋆n, y0 := ⊥.
2: for i ∈ [t/δ + 1] do
3: for y ∈ Y do
4: if UCube(p∗)({f ′ ∈ Cube(p∗) : (f ′, y) ∈ S}) ≥ 1− 3

√
δ then return y.

5: if UCube(p∗)(Uniq(Cube(p∗))) < 1−
√
δ/2 then return ⊥.

6: if i = t/δ + 1 then return ⊥.
7: Set ℓi := FINDBESTLEAF(p∗), where FINDBESTLEAF is constructed in Algorithm 3.
8: For every q ∈ dom(ℓi), query f at q and set p∗[q] := f [q].

There are three cases where A outputs an invalid solution:
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1. Algorithm 2 halts at Line 4 but returns a solution y such that (f, y) /∈ S.
2. Algorithm 2 halts at Line 5 and returns ⊥.
3. Algorithm 2 halts at Line 6 and returns ⊥.

We denote the above three events by E1, E2, E3 respectively. We prove that each of them happens with low
probability (over random f ← [M ]m).

First we bound the probability of E1 and E2. They do not depend on the definition of FINDBESTLEAF.
Let LA denote the set of leaves of the decision tree representation of A. Observe that for each fixed leaf
ℓ ∈ LA, A behaves identically for all f ∈ Cube(ℓ).

Claim 4.3. Prf←[M ]m [E1] ≤ 3
√
δ.

Proof. For each leaf ℓ ∈ LA such that A terminates on Line 4, let y(ℓ) denote the solution that A outputs.
We have Prf∼Cube(ℓ)[E1] = Prf∼Cube(ℓ)[(f , y(ℓ)) /∈ S] ≤ 3

√
δ, where the inequality follows from the if

condition on Line 4. By averaging over all the leaves in LA, we obtain the desired claim.

Claim 4.4. Prf←[M ]m [E2] ≤ 2
√
δ.

Proof. Let L(2)
A ⊆ LA denote the set of leaves that lead to E2. Observe that

δ ≥ 1− U[M ]m(Uniq([M ]m))

≥
∑

ℓ∈L(2)
A

U[M ]m(Cube(ℓ) \ Uniq(Cube(ℓ)))

≥
√
δ

2
·
∑

ℓ∈L(2)
A

U[M ]m(Cube(ℓ)),

where the last inequality follows from the if condition on Line 5. As a consequence,

Pr
f←[M ]m

[E2] =
∑

ℓ∈L(2)
A

U[M ]m(Cube(ℓ)) ≤ 2
√
δ.

Claim 4.5. Prf←[M ]m [E3] ≤
√
δ.

Given Claim 4.5 we can conclude that A makes t2/δ queries in t/δ rounds and succeeds with probability
at least 1− 6

√
δ.

4.2 Finding the best leaf: proof of Claim 4.5

Event E3 can be described as “A fails to terminate in t/δ iterations”. Observe that A must halt in Algorithm 2
if Cube(p∗) is contained within Cube(ℓ) where ℓ is an assignment corresponding to any leaf of a verifier
Vy,π. We introduce a potential function to measure how far we are from this situation. Let

L := {ℓ ∈ ([M ] ∪ {⋆})m : ℓ is a leaf of Vy,π for some y ∈ Y, π ∈ Π}.

Let Lp∗ := {ℓ ∈ L : ℓ agrees with p∗}. For i ∈ [t/δ] the potential function wi is defined as

wi(f) :=

{
minℓ∈Lp∗ :f∈Cube(ℓ) |dom(ℓ) \ dom(p∗)| f ∈ Uniq(Cube(p∗))

0 f /∈ Uniq(Cube(p∗))
,
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where p∗ is the value of this variable in A(f) at the i-th iteration. For all f such that A(f) halts before
invoking FINDBESTLEAF in the i-th iteration, we define wi(f) := 0. The routine for FINDBESTLEAF we
describe in Algorithm 3 can be informally summarized as: find ℓ such that the potential function decreases
for as many values of f ∈ Cube(p∗) as possible.

Algorithm 3 Subroutine FINDBESTLEAF in Algorithm 2

Input: p∗ ∈ ([M ] ∪ {⋆})m
Output: ℓ ∈ Lp∗

1: for f ′ ∈
⋃

ℓ∈Lp∗
Cube(ℓ ∪ p∗) do

2: Set min ℓ(f ′) := argminℓ∈Lp∗ :f ′∈Cube(ℓ∪p∗) |dom(ℓ) \ dom(p∗)|.

3: for ℓ ∈ L do
4: Set Cℓ := {f ∈ Cube(ℓ ∪ p∗) : min ℓ(f) = ℓ}.
5: return argmaxℓ∈Lp∗

|
⋃

ℓ′∈Lp∗ :ℓ′∼dℓCℓ′ |.

For each i ∈ [t/δ], let Pi denote the set of all possible query outcomes p∗ that are passed to FIND-
BESTLEAF in the i-th iteration. Fix any p∗ ∈ Pi. For ease of notation, we abbreviate UCube(p∗) as U in the
rest of the proof.

For each ℓ ∈ Lp∗ , define
Fp∗(ℓ) :=

⋃
ℓ′∈Lp∗

ℓ′∼dℓ

Cℓ′ ,

where Cℓ′ is defined at Line 4 in Algorithm 3. We prove that

Claim 4.6. There exists some ℓ̂ ∈ Lp∗ such that U(Fp∗(ℓ̂)) ≥ (3/2)
√
δ.

We defer the proof of Claim 4.6 to Section 4.3. By Claim 4.6 we have U(Fp∗(ℓi)) ≥ (3/2)
√
δ since

ℓ = ℓi maximizes U(Fp∗(ℓ)) by our choice of ℓi (Line 5).
Let G(p∗) := Fp∗(ℓi)∩Uniq(Cube(p∗)). Observe that for all f ∈ G(p∗), we have wi+1(f) ≤ wi(f)− 1

since dom(ℓi) \ dom(p∗) has intersection with dom(min ℓ(f)) \ dom(p∗). Moreover,

U(G(p∗)) ≥ U(Fp∗(ℓi))− (1− U(Uniq(Cube(p∗)))) ≥ (3/2)
√
δ −
√
δ/2 ≥

√
δ.

Define Hi := Ef←[M ]m [wi(f)]. Let ηi :=
∑

p∗∈Pi
U[M ]m(Cube(p

∗)) denote the fraction of inputs that
survive after the i-th iteration. Then

Hi+1 −Hi ≥
∑
p∗∈Pi

U[M ]m(Cube(p
∗)) · UCube(p∗)(G(p∗))

≥
√
δ
∑
p∗∈Pi

U[M ]m(Cube(p))

=
√
δηi.

Observe that η1 ≥ . . . ≥ ηt/δ ≥ Prf←[M ]m [E3]. Moreover, H1 ≤ t,Ht/δ+1 ≥ 0. Thus

Pr
f←[M ]m

[E3] ≤ ηt/δ ≤ δ/t
∑

i∈[t/δ]

ηi ≤
(1/
√
δ) · (Ht/δ+1 −H1)

t/δ
≤
√
δ.
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4.3 Proof of Claim 4.6

Algorithm 2 in A guarantees that U({f ∈ Cube(p∗) : (f, y) ∈ S}) < 1− 3
√
δ for all y ∈ Y. We can find a

partition Y = YP ⊔YQ such that

max

U
 ⋃

p∈LP
p∗

Cube(p ∪ p∗)

 ,U

 ⋃
q∈LQ

p∗

Cube(q ∪ p∗)


 ≤ 1− 3

√
δ,

where LP
p∗ := {ℓ ∈ Lp∗ : ∃y ∈ YP ,Cube(ℓ ∪ p∗) × {y} ⊆ S} and LQ

p∗ is defined analogously. Denote
Γ := LP

p∗ × LQ
p∗ . Algorithm 2 in A guarantees that U(Uniq(Cube(p∗))) ≥ 1−

√
δ/2. We can then conclude

that

U⊗2
 ⋃

(p,q)∈Γ

Cube(p ∪ p∗)× Cube(q ∪ p∗)

 ≥ U
 ⋃

p∈LP
p∗

Cube(p ∪ p∗)

 · U
 ⋃

q∈LQ
p∗

Cube(q ∪ p∗)


≥ (1− 3

√
δ) · (5/2)

√
δ,

where the last inequality holds since the sum of the multipliers on the left-hand side is U(Uniq(Cube(p∗))) ≥
1−
√
δ/2 and the larger one of them is at most 1− 3

√
δ. By applying Theorem 3.10, we have

U⊗2
 ⋃

(p,q)∈Γ; p≁dq

Cp × Cq

 ≤ U⊗2
 ⋃

(p,q)∈Γ; p≁dq

Cube(p ∪ p∗)× Cube(q ∪ p∗)


(by Theorem 3.10) ≤ U

 ⋃
(p,q)∈Γ; p≁dq

Cube(p ∪ p∗) ∩ Cube(q ∪ p∗)


≤ 1− U (Uniq(Cube(p∗)))

≤
√
δ/2.

With α := U⊗2
(⋃

(p,q)∈Γ; p∼dq Cp × Cq

)
we then have

α = U⊗2
 ⋃

(p,q)∈Γ

Cube(p ∪ p∗)× Cube(q ∪ p∗)

− U⊗2
 ⋃

(p,q)∈Γ; p≁dq

Cp × Cq


≥ 5/2(1− 3

√
δ)
√
δ −
√
δ/2 = 2

√
δ − 7.5δ ≥ (3/2)

√
δ,

where the last inequality requires δ ≤ 1/225 which we have by the assumption. Equivalently,

α =
∑

p∈LP
p∗

U(Cp) · U

 ⋃
q∈LQ

p∗ ; q∼
dp

Cq

 =
∑

p∈LP
p∗

U(Cp)Fp∗(p) ≥
3

2

√
δ.

Since
∑

p∈LP
p∗
U(Cp) ≤ 1, by averaging argument, there exists ℓ̂ ∈ LP

p∗ such that

U(Fp∗(ℓ̂)) ≥
3

2

√
δ.
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5 VDFs with computational uniqueness

We discuss VDFs with computational uniqueness in the ROM.

Theorem 5.1. Suppose VDF = (Setup,Verify,Eval) is a VDF in the ROM with completeness error α. Fix
λ ∈ N. Let qSetup, qEval and qVerify denote the query complexity of Setup, Eval and Verify, respectively. Then, for
every rAdv > 2qVerify, there exists ϵ ≥ 0 such that VDF does not satisfy either (qSetup+ rAdv, qSetup+ rAdv ·qEval, γ)-
sequentiality for every γ < 1− 2rAdv

rAdv−2qVerify · ϵ− α or (qAdv, ϵ)-uniqueness for qAdv = O(qVerify · qEval).

We show in Appendix A that Theorem 5.1 is tight by constructing a VDF in the ROM with statistical
uniqueness and weaker sequentiality.

According to Section 3.3, it suffices to prove the following theorem:

Theorem 5.2 (Formal version of Theorem 1). Let S ⊆ [M ]m × Y be a search problem, determined by
nondeterministic verifiers V of query complexity at most t. Let D : [M ]m → Y × Π be an algorithm of
query complexity T such that Prf←[M ]m [VD(f)(f) = 1] ≥ 1 − α. Then for every t′ > 2t there is some
ϵ = ϵ(t′) ≥ 0 such that either

1. there exists a t′-round adversary A : [M ]m → Y of query complexity t′T such that

Pr
f←[M ]m

[A(f) = DY(f)] ≥ 1− 2t′

t′ − 2t
ϵ− α; or

2. there exists an adversary B : [M ]m → Y ×Π of query complexity O(t′T ) such that

Pr
f←[M ]m

[BY(f) ̸= DY(f) ∧ VB(f)(f) = 1] ≥ ϵ,

where DY(f) (resp. BY(f)) is the Y-component of D(f) (resp. B(f)).

Proof of Theorem 5.1 by Theorem 5.2. We devise two adversaries: one for breaking sequentiality, and the
other for breaking computational uniqueness as follows: First, both adversaries run Setup to locate the leaf ℓf
and sample x← X . Then each adversary executes the corresponding algorithm described in Theorem 5.2 for
the search problem Sℓf ,x. It follows that for every rAdv > 2qVerify, there is some ϵ = ϵ(rAdv) ≥ 0 (by averaging
over all the search problems’ individual ϵ) and either

1. there exists a (qSetup + rAdv)-round (rAdv · qEval + qSetup)-query adversary Adv such that

Pr

y = Evalf (pp, x)

∣∣∣∣∣∣∣∣
f ← O(λ)

pp← Setupf (1λ, qEval)
x← X

y ← Advf (pp, x)

 ≥ 1− 2rAdv
rAdv − 2qVerify

· ϵ− α; or (1)

2. there exists an adversary Adv of query complexity O(rAdv · qEval + qSetup) such that

Pr

 y ̸= Evalf (pp, x)

∧Verifyf (pp, x, y, π) = 1

∣∣∣∣∣∣∣∣
f ← O(λ)

pp← Setupf (1λ, qEval)
x← X

(y, π)← Advf (pp, x)

 ≥ ϵ. (2)

Taking for example rAdv = 3qVerify, whatever ϵ is, either (1) is non-negligible, or (2) is non-negligible.
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5.1 The sequentiality breaker

We construct the adversary A below.

Algorithm 4 Adversary A, the sequentiality breaker.
Input: f ∈ [M ]m

Output: y ∈ Y ∪ {⊥}

1: p∗ := ⋆m.
2: K := ∅.
3: for r ∈ [t′] do
4: Uniformly sample f∗ ∈ [M ]m consistent with p∗.
5: Let ℓ be the unique leaf of D such that Cube(ℓ) contains f∗.
6: K := K ⊎ {the solution associated with ℓ}.
7: For every j ∈ dom(ℓ) such that p∗[j] = ⋆, query f at j and update p∗[j] to be the query outcome.
8: return the majority of solutions in K if it exists; ⊥ otherwise.

Each iteration of A is a single round of queries, so A has t′ rounds and makes at most T queries in each
round, thus making at most t′T queries in total.

To prove the correctness, we will first go through the execution of A and introduce some useful notations.
Let F := {f : VD(f)(f) = 1} denote the set of functions computed correctly by D. Recall that in each

iteration, we choose some leaf ℓ of D according to some distribution conditioned on the current partial
assignment p∗. Let y denote the solution associated with ℓ. For any input f ∈ F, let ℓV,f denote the unique
leaf of VD(f) such that Cube(ℓV,f ) contains f . We classify the iterations into three types according to f, p∗, ℓ:

1. DY(f) ̸= y and Cube(p∗ ∪ ℓ) ∩ Cube(p∗ ∪ ℓV,f ) = ∅.
2. DY(f) ̸= y and Cube(p∗ ∪ ℓ) ∩ Cube(p∗ ∪ ℓV,f ) ̸= ∅.
3. DY(f) = y.

Let S(1)
r,f (resp. S(2)

r,f ) be random indicator variables, which equals 1 if and only if the r-th iteration is the
first type (resp. second type) for input f .

Intuitively, if both the first and the second type of iteration occur with low probability then we can
prove A(f) = DY(f) with high probability by simple Markov’s inequality. Now assume that Prf ,r[f ∈
F∧S(2)

r,f = 1] is negligible where r is uniformly sampled from [t′]. We will prove Prr[S
(1)
r,f = 1] is bounded

for every f ∈ F, which in turn implies A succeeds in simulating D with high probability. In Section 5.2 we
show that there exists an adversary breaking the computational uniqueness condition if this assumption is
false.

Lemma 5.3. Let ϵ := Prf ,r[f ∈ F ∧ S
(2)
r,f = 1]. Then Prf [A(f) ̸= DY(f)] ≤ 2t′

t′−2tϵ+ α.

Proof. We first prove that
∑t′

r=1 S
(1)
r,f ≤ t with probability 1 for every f ∈ F. Consider the r-th iteration, if

S
(1)
r,f = 1, that is, Cube(p∗ ∪ ℓ)∩Cube(p∗ ∪ ℓV,f ) = ∅, then there exists some index i ∈ dom(ℓ)∩dom(ℓV,f )

such that ℓ[i] ̸= ℓV,f [i]. The algorithm then queries f [i] in this iteration. Thus, i will not be the inconsistent
index in the later iterations. Since |dom(ℓV,f )| ≤ t, we deduce that for every f , there can be at most t
iterations such that Cube(p ∪ ℓ) ∩ Cube(p ∪ ℓV,f ) = ∅. Hence

∑
1≤r≤t′ S

(1)
r,f ≤ t with probability 1.
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Now let us combine the bound for
∑t′

r=1 S
(1)
r,f with the assumption that Prf ,r[f ∈ F ∧ S

(2)
r,f = 1] is

small. Let ϵ′ := 2t′

t′−2tϵ. By Markov’s inequality, for all but on average (over the internal randomness of A)

(ϵ′+α)-fraction of f ∈ [M ]m (recall α = 1−U[M ]m(F)), we have f ∈ F and
∑t′

r=1 S
(2)
r,f < tϵ/ϵ′ = t′/2− t.

For those f ,
∑t′

r=1 S
(1)
r,f + S

(2)
r,f < t′/2. Thus the majority of recorded solutions are exactly DY(f). We

conclude that the algorithm succeeds with probability at least 1− ϵ′ − α.

5.2 The uniqueness breaker

Lemma 5.4. Let S(2)
r,f be defined as in the last subsection and ϵ := Prf ,r[f ∈ F ∧ S

(2)
r,f = 1]. Then there

exists an adversary B : [M ]m → (Y ×Π) ∪ {⊥} making O(t′T ) queries such that

Pr
f←[M ]m

[BY(f) ̸= DY(f) ∧ VB(f)(f) = 1] ≥ ϵ.

Proof. We construct the adversary B in Algorithm 5.

Algorithm 5 Adversary B, the uniqueness breaker.
Input: f ∈ [M ]m

Output: z ∈ (Y ×Π) ∪ {⊥}

1: Run D(f), let I be the set of indices queried during the execution.
2: p∗ := ⋆m.
3: for r ∈ [t′] do
4: Uniformly sample p′ ← [M ]I\dom(p∗).
5: f ′ := f(I\dom(p∗))→p′ .
6: (y, π) := D(f ′).
7: if y ̸= DY(f) ∧ Vy,π(f

′) = 1 then return (y, π).
8: Uniformly sample f∗ ∈ [M ]m consistent with p∗.
9: Let ℓ be the unique leaf of D such that Cube(ℓ) contains f∗.

10: For every j ∈ dom(ℓ) such that p∗[j] = ⋆, query f at j and update p∗[j] to be the query outcome.
11: return ⊥

Through the execution of B, we can define DB as the following joint distribution of (r ∈ [t′],p∗ ∈
([M ] ∪ {⋆})m,f ∈ [M ]m,f ′ ∈ [M ]m): Sample f ← [M ]m, r ← [t′] uniformly at random. Randomly
simulate the for-loop in B on f = f for r − 1 iterations. Let p∗ denote the partial assignment at the start of
the r-th iteration and f ′ denote the random function f ′ sampled in the r-th iteration of B (Line 5). See Fig. 1
for visualization.

To prove the lemma, it suffices to show

Pr
(r,p∗,f ,f ′)←DB

[DY(f ′) ̸= DY(f) ∧ VD(f ′)(f) = 1] ≥ ϵ. (3)

To this end, we give an alternative view of DB based on the execution of A.
First, we sample f ′ ← [M ]m, r ← [t′] uniformly at random. Then randomly simulate the for-loop in A

on f = f ′ for r−1 iterations and let p∗ denote the partial assignment p∗ at the start of r-th iteration. Recall in
the r-th iteration, we randomly choose some leaf ℓ of D conditioned on p∗, and denote the solution associated
with ℓ by y. Let f denote the projection of f = f ′ on Cube(p∗ ∪ ℓ). Formally, let J := dom(ℓ) \ dom(p∗)
denote the set of indices fixed by ℓ but not by p∗ and we can define f := fJ→ℓJ .
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Cube(ℓ)

Cube(ℓV,f ′)

[M ]I

[M ][m]\I

Cube(p∗)
f

f ′

Figure 1: Distribution DB.

Now observe that if f ′ ∈ F and S
(2)
r,f ′ = 1, then Cube(p∗ ∪ ℓ) ∩ Cube(p∗ ∪ ℓV,f ′) ̸= ∅. Since

f ∈ Cube(ℓ ∪ p∗), f is consistent with ℓV,f ′ on I . Moreover, f equals f ′ on [m] \ I , and Cube(ℓV,f ′)
includes f ′, hence f is consistent with ℓV,f ′ on [m] \ I . We can deduce that f ∈ Cube(ℓV,f ′), which
immediately implies VD(f ′)(f) = 1. Note that we also have DY(f ′) = y ̸= DY(f) by the definition of

S
(2)
r,f ′ = 1.

Finally, let DA denote the distribution of (r,p∗,f ,f ′) according to the above sampling process. Since
f ′ ∈ F ∧ S

(2)
r,f ′ = 1 implies that DY(f ′) ̸= DY(f) ∧ VD(f ′)(f) = 1, we can deduce that

Pr
(r,p∗,f ,f ′)←DA

[DY(f ′) ̸= DY(f) ∧ VD(f ′)(f) = 1] ≥ Pr
r,f ′

[f ′ ∈ F ∧ S
(2)
r,f ′ = 1] = ϵ.

Thus to prove (3), it suffices to show DB ≡ DA, that is, for every r ∈ [t′], p∗ ∈ ([M ] ∪ {⋆})m, f, f ′ ∈
[M ]m,

Pr
DA

[r = r,p∗ = p∗,f = f,f ′ = f ′] = Pr
DB

[r = r,p∗ = p∗,f = f,f ′ = f ′].

Lemma 5.5. DA ≡ DB.

Proof. We need the following four statements.

Claim 5.6. For every r ∈ [t′], PrDA [r = r] = PrDB [r = r].

Proof. Trivial since the marginal distributions of r are both uniform under A and B.

Claim 5.7. For every r ∈ [t′] and p∗ ∈ ([M ] ∪ {⋆})m, PrDA [p
∗ = p∗ | r = r] = PrDB [p

∗ = p∗ | r = r].

Proof. In both A and B, p∗ is the transcript of the query outcomes the following random process repeated
for r − 1 times: Sample a uniformly random f∗ consistent with the query outcome so far. Simulate D on f∗

and query all the variables on the corresponding root-to-leaf path.

Claim 5.8. For every r ∈ [t′], p∗ ∈ ([M ] ∪ {⋆})m such that PrDA [p
∗ = p∗ | r = r] > 0, and every

f ∈ [M ]m, PrDA [f = f | r = r,p∗ = p∗] = PrDB [f = f | r = r,p∗ = p∗].
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Proof. Conditioned on r = r,p∗ = p∗, it is easy to see that f ′ is uniformly distributed over Cube(p∗) under
DA and f is uniformly distributed over Cube(p∗) under DB by Bayes’ rule. It suffices to show that f is also
uniformly distributed over Cube(p∗) under DA.

Recall in the r-th round of A, we choose some leaf ℓ of D, and ℓ is chosen with probability |Cube(p∗ ∪
ℓ)|/|Cube(p∗)|. Note that f ∈ Cube(p∗ ∪ ℓ), we only need to prove f is uniformly distributed over
Cube(p∗ ∪ ℓ) conditioned on ℓ is chosen. This is obvious since f ′ is uniformly distributed over Cube(p∗),
and by definition, f is the projection of f ′ on Cube(p∗ ∪ ℓ).

To conclude, PrDA [f = f | r = r,p∗ = p∗] = |Cube(p∗∪ℓ)|
|Cube(p∗)| ·

1
|Cube(p∗∪ℓ) =

1
|Cube(p∗)| .

Claim 5.9. For every r ∈ [t′], p∗ ∈ ([M ] ∪ {⋆})m such that PrDA [p
∗ = p∗ | r = r] > 0, and every

f ∈ Cube(p∗), PrDA [f
′ = f ′ | r = r′,p∗ = p∗,f = f ] = PrDB [f

′ = f ′ | r = r′,p∗ = p∗,f = f ].

Proof. Without loss of generality, we assume that f ′ ∈ Cube(p∗), as otherwise, PrDA [f
′ = f ′ | r = r′,p∗ =

p∗,f = f ] = PrDB [f
′ = f ′ | r = r′,p∗ = p∗,f = f ] = 0.

By Bayes’ rule,

Pr
DA

[f ′ = f ′ | r = r′,p∗ = p∗,f = f ]

=
PrDA [f

′ = f ′ | r = r′,p∗ = p∗] · PrDA [f = f | r = r′,p∗ = p∗,f ′ = f ′]

PrDA [f = f | r = r′,p∗ = p∗]

= Pr
DA

[f = f | r = r′,p∗ = p∗,f ′ = f ′].

where the second equality follows since PrDA [f = f | r = r′,p∗ = p∗] = PrDA [f
′ = f ′ | r = r′,p∗ =

p∗] = 1
|Cube(p∗)| . Let ℓ denote the unique leaf of D such that f ′ ∈ Cube(ℓ) and I = dom(ℓ) \ dom(p∗). Now

observe that

Pr
DA

[f = f | r = r′,p∗ = p∗,f ′ = f ′] =

{
|Cube(p∗ ∪ ℓ)|/|Cube(p∗)| f[m]\I = f ′[m]\I

0 otherwise
.

On the other hand, for DB, given r = r,p∗ = p∗,f = f , f ′ uniformly from {f ′ : f ′[m]\I = f[m]\I}. Thus
PrDB [f

′ = f ′ | r = r′,p∗ = p∗,f = f ] = PrDA [f = f | r = r′,p∗ = p∗,f ′ = f ′] = PrDA [f
′ = f ′ |

r = r′,p∗ = p∗,f = f ], as desired.

Finally, by combining the above four claims and applying the chain rule, we deduce that DA ≡ DB.

To summarize, our uniqueness breaker B satisfies that

Pr
f←[M ]m

[BY(f) ̸= DY(f) ∧ VB(f)(f) = 1] = Pr
(r,p∗,f ,f ′)←DB

[DY(f ′) ̸= DY(f) ∧ VD(f ′)(f) = 1]

= Pr
(r,p∗,f ,f ′)←DA

[DY(f ′) ̸= DY(f) ∧ VD(f ′)(f) = 1]

≥ Pr
r,f ′

[f ′ ∈ F ∧ S
(2)
r,f ′ = 1]

= ϵ.
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5.3 Computational efficiency of the breakers

In this section we explain how to efficiently implement our sequentiality breaker A and uniqueness breaker B.

Lemma 5.10. Suppose that Eval is computable in time tEval and Verify computable in time tVerify. Then time
complexity of the sequentiality adversary A (Algorithm 4) and the uniqueness adversary B (Algorithm 5) are
both poly(tVerify · tEval).

Lemma 5.10 follows directly by the following implementation of the breakers (Algorithm 6 and Algorithm 7).

Algorithm 6 Uniform version of the sequentiality breaker.
Input: pp; x ∈ X ; oracle access to f : {0, 1}∗ → {0, 1}λ
Output: z ∈ Y ∪ {⊥}

1: K := ∅.
2: p∗ := ∅. ▷ p∗ ⊆ {0, 1}∗ × {0, 1}λ.
3: Define function dom(p) := {x ∈ {0, 1}∗ | ∃y ∈ {0, 1}λ : (x, y) ∈ p} returning the set of the first

elements of a set of pairs.
4: for r ∈ [t′] do
5: Uniformly sample f∗ : {0, 1}∗ → {0, 1}λ consistent with p∗. ▷ See Remark 5.11
6: (y, π) := Evalf

∗
(pp, x);

7: K := K ⊎ {y}.
8: Let ℓ ⊆ {0, 1}∗ × {0, 1}λ be the set of query-answer pairs from the execution in Line 6.
9: For every z ∈ dom(ℓ) \ dom(p∗) query f(z) and update p∗ := p∗ ∪ (z, k) where (z, k) ∈ ℓ.

10: return majority of K if it exists an ⊥ otherwise.

Algorithm 7 Uniform version of the uniqueness breaker.
Input: pp; x ∈ X ; oracle access to f : {0, 1}∗ → {0, 1}λ
Output: z ∈ (Y ×Π) ∪ {⊥}

1: (y0, π0) := Evalf (pp, x); let I be the set of random oracle queries made during the execution.
2: p∗ := ∅. ▷ p∗ ⊆ {0, 1}∗ × {0, 1}λ.
3: Define function dom(p) := {x ∈ {0, 1}∗ | ∃y ∈ {0, 1}λ : (x, y) ∈ p} returning the set of the first

elements of a set of pairs.
4: for r ∈ [t′] do
5: Uniformly sample p′ ← ({0, 1}λ)I\dom(p∗).
6: f ′ := f(I\dom(p∗))→p′ . ▷ Here we only mean it symbolically, see Remark 5.11 for details.
7: (y, π) := Evalf (pp, x).
8: if y ̸= y0 ∧ Vf ′

(pp, y, π) = 1 then return (y, π).
9: Uniformly sample f∗ : {0, 1}∗ → {0, 1}λ consistent with p∗. ▷ See Remark 5.11

10: Run Evalf
∗
(pp, x);

11: Let ℓ ⊆ {0, 1}∗ × {0, 1}λ be the set of query-answer pairs from the execution in Line 10.
12: For every z ∈ dom(ℓ) \ dom(p∗) query f(z) and update p∗ := p∗ ∪ (z, k) where (z, k) ∈ ℓ.
13: return ⊥
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Remark 5.11. When we write assignments to oracles, we mean those to be defined lazily. In particular, the
oracle defined in Line 6 is evaluated as follows: when f ′(z) is queried we first check if z ∈ I \ dom(p∗), if it
is we return p′(z), otherwise we query f(z) and return the answer. The oracle defined in Line 9 is evaluated
as follows: when f∗(z) is queried we first check if z ∈ dom(p∗), if it is we return the unique k such that
(z, k) ∈ p∗, otherwise if z was queried before we return the previously returned value, otherwise we sample
k from {0, 1}λ uniformly at random and return k.

Remark 5.12. It is clear that the sequentiality breaker A runs in time poly(tVerify · tEval). However, A is not
parallelizable. If one can construct a sequentiality breaker that runs in parallel time smaller than tEval, it
would contradict the construction in [EFKP20], which presents a VDF that satisfies computational uniqueness
and sequentiality in the ROM, assuming the hardness of repeated squaring. Hence, only a polynomial
improvement is possible in the time complexity in either of our breakers unless the RSW assumption
[RSW96] fails.
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A Tightness of Theorem 5.1

Theorem 5.1 is essentially “tight” in terms of sequentiality: a VDF can be constructed in the ROM with
statistical uniqueness and weaker sequentiality.

Lemma A.1. Fix λ ∈ N and T ∈ N. There exists a VDF = (Setup,Eval,Verify) in which qSetup = 0,
qEval = T + 1, and qVerify = O(1) that satisfies

– perfect completeness,
– (qAdv, ϵ)-uniqueness for unbounded qAdv and ϵ = negl(λ), and
– (rAdv, q

′
Adv, γ)-sequentiality for every rAdv ∈ N, q′Adv = 2λ(T/rAdv−1)−1, and γ ≥ 1− ϵ/4.

In Theorem 5.1, we have that sequentiality error γ is upper bounded by 1− 2rAdv
rAdv−2qVerify · ϵ− α, which is

at most 1− 2ϵ− α. Therefore, Lemma A.1 complements Theorem 5.1 by arguing for the existence of VDFs
with perfect completeness and relaxed sequentiality error γ ≥ 1− ϵ/4.

To show Lemma A.1, it suffices to prove the following lemma:

Lemma A.2. For any security parameter λ, query complexity parameter T ∈ N+. Let n = (MT −1)/(M −
1) + 1. Then there is a search problem S ⊆ [2λ]n × [2] defined by verifiers V1,V2 and an algorithm D
computing S which satisfies the following:

(i) Both verifiers V1,V2 have query complexity O(1). D has query complexity T + 1.
(ii) Exactly 1/2λ-fraction of inputs have alternative solutions, i.e. there exists z ∈ Y such that (f, z) ∈ S

but z ̸= D(f).
(iii) For every r-round adversary A with query complexity at most 2λ(T/r−1)−1,

Pr
[
A(f) = D(f)

∣∣∣ f ← [2λ]n
]
≤ 1− 1

2λ+2
.

To construct the search problem in Lemma A.2, we define the following hard (on average) functions
against parallel decision trees.

Definition A.3. Let M > 0 be even, T ∈ N+. For n := (MT − 1)/(M − 1), let hM,T : [M ]n → {0, 1}
be the sequential function whose computation can be defined as a complete depth-T decision tree, where
different non-leaf nodes are labeled with different variables. The leaf nodes are labeled with the parity of the
variable associated with their respective parent nodes so that any non-trivial subtree is balanced, namely, the
subtree contains an equal number of 0-leaves and 1-leaves.

Lemma A.4. Any r-round algorithm computing hM,T with success probability 3/4 over the uniformly
random input has query complexity at least M ⌊(T−1)/r⌋/2.
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Proof. Fix ℓ = ⌊(T − 1)/r⌋. We prove by induction on R ∈ N that the following alternative statement holds:
Any R-round algorithm of query complexity Q⋆ ≤M l computing hM,kℓ+1 has success probability at most
(1 +Q⋆/M ℓ)/2.

When R = 0, any 0-round algorithm cannot make any queries. Since hM,1 is 0 on exactly half of the
inputs, the algorithm must compute hM,1 with success probability exactly 1/2.

Now assume that the statement is true when R = k − 1 ≥ 0. Then for R = k and any k-round algorithm
Ak of query complexity Q⋆ computing hM,kℓ+1. Let I0 ⊆ [n(M,kℓ+1)] of size |I0| = Q0 denote the set of
indices queried in the first round.

Recall that there is a complete depth-T decision tree computing hM,kℓ+1, whose nodes are labeled with
different variables. Let w1, . . . , wMℓ be all the nodes on the ℓ-th level. Moreover, for any 1 ≤ v ≤M ℓ, let
Iv be the set of indices of variables that appear in the subtree with root wv, gv := hM,kℓ+1|Cube(wv). That is,
gv is a function mapping from Cube(wv) to {0, 1} where gv(f) = hM,kℓ+1(f) for all f ∈ Cube(wv). Let
V := {v : Iv ∩ I0 ̸= ∅}. By the definition of hM,kℓ+1, I1, . . . , IMℓ are pairwise disjoint, so |V | ≤ |I0| = Q0.

For any v ∈ [M ℓ]\V , since Ak does not query any variable in Iv in the first round, it performs exactly the
same as some k − 1-round Q⋆ −Q0-query algorithm computing gv. It follows from the induction hypothesis
and the fact that gv is isomorphic to hM,(k−1)ℓ+1 that Ak computes gv with success probability at most
(1 + (Q⋆ −Q0)/M

ℓ)/2.
Then we can bound the probability that Ak computes hM,kℓ+1:

Pr
f←[M ]m

[Ak(f) = hM,kℓ+1(f)]

=
1

M ℓ

∑
v∈V

Pr
f←Cube(wv)

[Ak(f) = hM,kℓ+1(f)] +
∑

v∈[Mℓ]\V

Pr
f←Cube(wv)

[Ak(f) = hM,kℓ+1(f)]


≤ 1

M ℓ

(
|V |+ (M ℓ − |V |)(1 + (Q⋆ −Q0)/M

ℓ)/2
)

≤ 1

M ℓ

(
Q0 + (M ℓ −Q0)(1 + (Q⋆ −Q0)/M

ℓ)/2
)

≤(1 +Q⋆/M ℓ)/2.

Finally, by replacing Q⋆ with M ℓ/2 and observing that t ≥ rℓ+ 1, we obtain the desired claim.

Proof of Lemma A.2. The search problem is defined by two verifiers V1, V2 : [2
λ]n → {0, 1}: V1 accepts all

the inputs, and V2 only accepts f such that f1 = 1.
Now let us define D. For the set of input inputs {f : f1 ̸= 1}, D simply outputs 1. For rest of the inputs,

we embed the sequential function h2λ,T in the subcube {f : f1 = 1}. Specifically, we define

D(f) :=
{

1 f1 ̸= 1
h2λ,T

(
f[n]\{1}

)
+ 1 f1 = 1

.

It is clear that (i)(ii) hold. Note that any algorithm computing D with success probability at least 1− 2λ+2

also computes h2λ,T with success probability at least 3/4. By Lemma A.4, (iii) holds.
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