
Securing Lightning Channels against Rational Miners∗

Lukas Aumayr

TU Wien, Christian Doppler Laboratory Blockchain

Technologies for the Internet of Things

Vienna, Austria

lukas.aumayr@tuwien.ac.at

Zeta Avarikioti

TU Wien, Common Prefix

Vienna, Austria

georgia.avarikioti@tuwien.ac.at

Matteo Maffei

TU Wien, Christian Doppler Laboratory Blockchain

Technologies for the Internet of Things

Vienna, Austria

matteo.maffei@tuwien.ac.at

Subhra Mazumdar

Indian Institute of Technology Indore

Indore, India

subhra.mazumdar1993@gmail.com

Abstract

Payment channel networks (e.g., the Lightning Network in Bit-

coin) constitute one of the most popular scalability solutions for

blockchains. Their safety relies on parties being online to detect

fraud attempts on-chain and being able to timely react by pub-

lishing certain transactions on-chain. However, a cheating party

may bribe miners in order to censor those transactions, resulting in

loss of funds for the cheated party: these attacks are known in the

literature as timelock bribing attacks. In this work, we present the

first channel construction that does not require parties to be online

and, at the same time, is resistant to timelock bribing attacks.

We start by proving for the first time that Lightning channels are

secure against timelock bribing attacks in the presence of rational

channel parties under the assumption that these parties constantly

monitor the mempool and never deplete the channel in one di-

rection. The latter underscores the importance of keeping a coin

reserve in each channel as implemented in the Lightning Network,

albeit for different reasons. We show, however, that the security

of the Lightning Network against Byzantine channel parties does

not carry over to a setting in which miners are rational and accept

timelock bribes.

Next, we introduce CRAB, the first Lightning-compatible chan-

nel construction that provides security against Byzantine channel

parties and rational miners. CRAB leverages miners’ incentives to

safeguard the channel, thereby also forgoing the unrealistic assump-

tion of channel parties constantly monitoring the mempool.

Finally, we show how our construction can be refined to elimi-

nate the major assumption behind payment channels, i.e., the need

for online participation. To that end, we present Sleepy CRAB the

first provably secure channel construction under rational miners

that enables participants to go offline indefinitely. We also provide

a proof-of-concept implementation of Sleepy CRAB and evaluate

its cost in Bitcoin, thereby demonstrating its practicality.

1 Introduction

Blockchains inherently suffer from a scalability problem, as nodes

must store each transaction on-chain and validate them. The Bit-

coin blockchain has exceeded 500GB in space, and its transaction

throughput is around ten transactions per second, which is three

∗
This is the extended version of the work accepted at the 31st ACM Conference

on Computer and Communications Security (CCS), 2024.

orders of magnitude lower than that of traditional credit card net-

works. Blockchains can be classified into two fundamental cate-

gories: those with limited scripting capabilities (e.g., Bitcoin with

more than 50% of the cryptocurrency market share and privacy-

oriented cryptocurrencies like Monero and Zcash) and those sup-

porting Turing-complete scripting (Ethereum, Cardano, etc.). The

former category features a reduced trusted computing base and is

consequently much less prone to hacks and vulnerabilities, while

the latter enables the design of more powerful smart contracts.

In this work, we focus on blockchains with limited scripting

capabilities. In this context, Payment Channel Networks (PCNs)

constitute the most widely deployed scalability solution (e.g., the

Lightning Network in Bitcoin has a total value of around 200M

USD locked). On a high level, a payment channel (PC) enables an

arbitrary number of payments between users while only requiring

two on-chain transactions. More precisely, a PC between Alice and

Bob is created with a single on-chain transaction, where users lock

some of their coins into a shared output controlled by both users

(e.g., requiring a 2-of-2 multi-signature). Alice and Bob can pay

each other arbitrarily many times by exchanging authenticated off-

chain messages representing updates of their balance in the shared

output. At any point in time, either of them can close the channel

and retrieve their coins by posting the last channel balance on-

chain. Should a party try to close the channel with an old balance

on-chain, the other party has a certain amount of time to punish

such misbehavior, thereby collecting all the channel coins. This

punishment mechanism ensures the safety of the channel against

Byzantine users, under the assumption that users can timely post

punishment transactions on-chain. Finally, a PCN allows a payer

to send money to any payee as long as the two are connected by

a path of channels with sufficient capacity, updating the channel

balances atomically.

1.1 Limitations of PCs

On a high level, current PC protocols for blockchains with lim-

ited scripting like Bitcoin suffer from at least one of two severe

drawbacks that undermine their widespread deployment. The first

one is a system assumption: in order to engage in the punishment

mechanism, users are assumed to be online, either always [9, 38] or

at a certain predefined time [13], which is hardly realistic. Alterna-

tively, users have to rely on third parties, called watchtowers, that

act on behalf of offline users; but the watchtowers must either be

trusted [16, 28, 30, 34] or lock collateral for each monitored chan-

nel, which is financially infeasible [15, 17, 33]. The second one is a

security assumption: users [9, 13] or watchtowers [17, 28, 30, 34] are
assumed to be able to timely post transactions on-chain, which can

be defeated in case miners
∗
are subject to bribery and are willing to

censor transactions if they have a profit in doing so [44, 46]. This

leaves open the following research question: is it possible to design a
PC that is compatible with blockchains with limited scripting and does
not suffer from either of the previous drawbacks, i.e., it allows users
to safely go offline and it is secure against timelock bribing attacks?

1.2 Related Work

Timelock bribing. Timelock bribing attacks, originally introduced

for Hashed Time Lock Contracts (HTLCs) [36], leverage the vul-

nerabilities of timelocked contracts to censoring attacks. The core

idea of timelock bribing attacks is that blockchain miners can be

bribed to include a transaction on-chain, which is only valid in the

future after a timelock expires, and meanwhile censor a conflicting

but currently valid transaction. Applied to HTLCs, this attack may

result in loss of funds, violating their security under the assumption

of rational miners. Tracing such attacks is challenging as excluded

transactions are not reported on-chain, and to date, the Bitcoin

community has not reported any instances of such attacks on time-

sensitive protocols. Nevertheless, BitMEX Research [2] has high-

lighted some practical approaches for implementing TxWithhold

Smart Contracts. The objective of these contracts is to bribe miners

to omit certain transactions from their blocks. These works identify

that timelock bribing is a potential risk, especially for HTLCs which

are commonly used, e.g., for routing payments in the Lightning

Network [38].

To safeguard HTLCs against timelock bribing, Tsabary et al.

proposed MAD-HTLC [44], which enables miners to extract the

value locked should cheating occur. This is known as Maximal

(or sometimes Miner) Extractable Value (MEV) [21]. While such

optimizations are common in the Ethereum network, Bitcoin’s

default cryptocurrency client only offers basic optimization. The

authors introduced a patch to the standard Bitcoin client to create

Bitcoin-MEV infrastructure in order to implement MAD-HTLC.

Soon after, a reverse-bribing attack on MAD-HTLC was discovered

and mitigated by He-HTLC [46], based on the idea of burning part

of the deposit of the dishonest participant. Concurrently, Rapidash

[20] proposed a similar solution mainly focusing on atomic swaps.

Nevertheless, none of these works discussed or addressed bribing

attacks in payment channels. In contrast to HTLCs, where the

burning of funds disincentivizes misbehavior, payment channels

such as LC channels [38] can detect the cheating party, and thus have
the theoretic potential to compensate honest parties, and therefore

safeguard against Byzantine parties, as we elaborate below.

Payment Channels. The fundamental idea of payment channels

(PCs) is that the transaction workload is lifted off-chain while the

blockchain is used only in case of disputes. Hence, the on-chain

settlement process of PCs is critical for their security. This process

∗
Throughout this work we use the term miners. We note that our protocol is

agnostic to the underlying consensus protocol and the term can be replaced with block

proposers.

typically depends on one main premise: if a cheating party posts

an old transaction, the cheated party can post some data (e.g., re-

vocation transaction) on-chain within a pre-defined time period

(timelock) in order to ensure it will not lose its PC funds. This

premise, in turn, depends on two key assumptions: the channel

parties (AS1) constantly monitor the blockchain to detect potential

fraud with respect to their channel, i.e., cannot go offline for an

arbitrarily long period, and (AS2) can timely post a transaction on

the blockchain, i.e., they are not censored by the miners even if the

miners are rational.

In the following, we review the main PC constructions and po-

tential add-on solutions presented in the literature, pinpointing

their exact assumptions and guarantees. We mainly focus on two

assumptions, namely (AS1) online parties and (AS2) non-censoring

miners, as mentioned above, as well as if the solutions are appli-

cable to Bitcoin, which is the blockchain with the largest market

cap and hosting the largest PCN, the Lightning Network. To do so,

we evaluate if security holds under different system models consid-

ering the possible behavior of miners (honest/rational), attackers

(rational/Byzantine), and victims (online/offline). A comprehensive

comparison of the different solutions discussed here is illustrated

in Table 1.

Unidirectional PCs: The first payment channel proposals (e.g.,

CLTV [43] and Spilman [40]) were unidirectional, meaning that

one party is always the payer and the other party is always the

payee. In this setting, only the payee can close the channel and

there is no need to protect from attempts to finalize on-chain old

channel states (i.e. balance distributions) since the payee always

prefers the most recent state. In case the payee does not close the

channel within a fixed time set upon the channel creation, the payer

will be refunded. Other instances of unidirectional channels, such

as Paymo [42] and DLSAG [35], support off-chain payments in

Monero. Unidirectional PCs are, in general, safe against censoring

from rational miners (AS2), and the parties can be offline for the

lifetime of the channel (AS1). Since their lifetime is limited, these

channels have to be closed and opened again after a predefined

amount of time, which involves on-chain transactions. Furthermore,

unidirectional channels are not capital-efficient as the locked coins

can only flow in one direction; as such they were quickly replaced

by bi-directional PCs.

Bi-directional PC: Duplex micropayment channels (DMC) [23]

supported for the first time bi-directional payments, in which at

any time, each party can play the role of payer as well as payee, at

the cost of a bounded number of payments, after which the channel

can no longer be used and has to be closed. Eltoo [22] also supports

bi-directional payments but it is not compatible with Bitcoin due to

special scripting requirements. Lightning channels [38], which are

deployed in Bitcoin, are the de-facto standard today since they en-

able bidirectional payments as well as an unlimited channel lifetime.

These bidirectional payment channels have effective punishment

mechanisms to protect from attempts to finalize old channel states

on-chain. In particular, if the malicious party posts an old chan-

nel state, the honest party can raise a dispute within a given time

window, punishing the fraud attempt by collecting all the channel

balances. All these constructions guarantee security only if channel

parties are online (AS1) and miners are honest and do not censor

transactions (AS2).

2

Table 1: Comparison of bi-directional payment channel and watchtower constructions. Additional collateral refers to the total number of extra coins parties need

to lock that cannot be utilized for payments. 𝛿 is a small, positive value (e.g., 1 or one dust), and 𝑣 is the total capacity of the channel. All constructions except

Sleepy [13], Suborn (DMC) [16], and DMC [23] have an unrestricted lifetime. All constructions except Suborn (DMC) [16] and DMC [23] have an unbounded number

of payments. Unrestricted lifetime means the protocol does not require users to close the channel before a pre-specified time. Unbounded payments refer to

channel users making any number of payments while the channel is open. In terms of scripts, DS refers to digital signatures, CLTV to absolute timelocks, and CSV

to relative timelocks. The last six columns show balance security guarantees in the described settings, assuming different states of the attacker A (can be rational or

byzantine), the miners M (can be honest or rational), and the victim V (can be online or offline). ∼means the property holds just under one specific assumption.

Additional

collateral

Permissionless Script requirements
1

A: Either

M: Honest

V: Online

A: Either

M: Honest

V: Offline

A: Rational

M: Rational

V: Online

A: Rational

M: Rational

V: Offline

A: Byzantine

M: Rational

V: Online

A: Byzantine

M: Rational

V: Offline

DMC [23] 0 ✓ DS + CLTV ✓ ✗ ∼2 ✗ ✗ ✗

LC [38] 2𝛿 ✓ DS + CSV ✓ ✗ ∼2 ✗ ✗ ✗

LC + Suborn [16] 0 ✓ DS + CSV ✓ ✗ ✓3 ✗ ✗ ✗

Suborn (DMC) [16] 0 ✓ DS + CSV ✓ ✗ ✓3 ✗ ✗ ✗

LC + Monitors [1]/Outpost [28] 2𝛿 ✓ DS + CSV ✓ ✓ ∼2 ✗ ✗ ✗

Cerberus [17] 2𝑣 ✗ DS + CSV ✓ ✓4 ∼2 ✗ ✗ ✗

Sleepy [13] 2𝑣 ✓ DS + (optional) CLTV ✓ ✓4 ∼2 ✗ ✗ ✗

Brick [15] > 3𝑣 ✗ Turing Complete ✓5 ✓5 ✓5 ✓5 ✗ ✗

CRAB 2𝑣 (resp. 𝑣) ✓ DS + CSV ✓ ✗ ✓ ✗ ✓ (resp. ✗) ✗

Sleepy CRAB 2𝑣 (resp. 𝑣) ✓ DS + CSV ✓ ✓ ✓ ✓ ✓ (resp. ✗) ✓ (resp. ✗)
1
: Requiring less script capabilities from the blockchain results in better compatibility with currencies, and better on-chain privacy (fungibility).

2
: Only secure if parties constantly monitor the mempool.

3
: shows that the property holds within a specific parameter region (including collateral) but breaks otherwise.

4
: Requires

honest nodes to come online once in a long time period.
5
: Requires a committee of 3𝑓 + 1 nodes with at most 𝑓 nodes Byzantine.

Rational miners: The only work that investigated the security of

PCs under rational miners (addressing AS2), and considered time-

lock bribing attacks within the context of payment channels is [16].

There, Avarikioti et al. proposed a modification of DMC channels,

introducing a new channel primitive termed Suborn, that enabled
miners to claim the coins of the briber upon the honest party post-

ing the punishment transaction. Suborn channels, although secure

against timelock bribing attacks, still suffer from the DMC draw-

backs: only a limited number of transactions is feasible coupled

with a bounded channel lifetime. Additionally in [16], the param-

eter region in which bribes are effective in Lightning channels

was examined, and the authors proposed the use of an increased

fee in the revocation transaction, depending on the value of each

transaction, to increase the secure region. However, this work only

limits the parameter region in Lightning in which timelock bribes

are effective. Beyond this region, the channel design is not secure

against bribing attacks. Most importantly, both proposals in [16]

are insecure when parties are offline.

Offline parties: There are several works addressing the require-
ment for online participation in PCs (AS1). The most common

approach entails utilizing third parties, the so-called watchtowers,

to punish malicious channel parties on behalf of the offline counter-

party. This approach was originally introduced with Monitors [1],

some special nodes in the Bitcoin network that were deemed respon-

sible for monitoring the mempool and punishing fraud attempts.

Monitors, however, are not properly incentivized to provide this

service in the first place because they do not get paid unless fraud

happens. DCWC [14] is another watchtower proposal suffering

from the same weaknesses. Later, Outpost [28], Pisa [33], and Cer-

berus [17], solved this problem by granting a fee to watchtowers

for each channel update. Although all these proposals alleviate (but

do not eliminate) the demand for online participation, they assume

watchtowers can timely post transactions on-chain and do not con-

sider rational miners that may be bribed to censor such transactions.

Therefore, they still suffer from timelock bribing attacks and remain

secure only when miners are honest (AS2).

A similar approach to watchtowers, relying instead on a trusted

execution environment (TEE), was proposed in Teechan [31]. Teechan

guarantees security when honest parties go offline but it assumes

that transactions can be timely posted on-chain (AS2), similar to

watchtowers. Moreover, the security of TEEs is, in general, ques-

tionable given the number of discovered vulnerabilities [19, 45],

besides constituting a strong system assumption.

Taking a different approach to tackle the online participation

assumption without the use of watchtowers or TEEs, Aumayr et

al. recently proposed a new Bitcoin-compatible PC, called Sleepy

Channels [13]. Sleepy channels are yet another proposal that is

insecure against timelock bribing attacks, as their security depends

on parties timely posting transactions on-chain in case of fraud.

Additionally, Sleepy channels require a limited channel lifetime.

The only PC proposal that has successfully addressed both the

online participation (AS1) and remains secure under rational miners

that may engage in censoring (AS2) is Brick [15]. Brick employs a

pre-selected committee of watchtowers within the channel itself

and restricts the settlement process of the channel to either occur

in collaboration with the counterparty or the committee, thereby

achieving security in asynchrony without the use of timelocks. Nev-

ertheless, Brick suffers from several limitations: (i) it loses security

when a channel party is Byzantine, meaning they are willing to

lose coins in order to inflict loss to its counterparty, (ii) it needs

a Turing complete scripting language that makes it incompatible

with blockchains like Bitcoin, (iii) it requires a prohibitively high

collateral (at least three times the channel balance), (iv) it is not

permissionless since it relies on a predefined committee that is reg-

istered during the channel opening and collateralizes the channel

for security.

1.3 Our Contributions

We present the first PC construction that is secure against rational

miners (AS2) even when a channel party is Byzantine, allows users

to safely go offline (AS1), and is compatible with currencies with

3

limited scripting capabilities like Bitcoin. Moreover, our construc-

tion is permissionless, as it does not depend on pre-defined entities

to enforce security. Specifically, the contributions of this work can

be summarized as follows:

• We prove for the first time that the Lightning Network is se-

cure against timelock bribing attacks in the presence of rational

channel parties, under the assumption that these (i) monitor the

mempool and (ii) never deplete the channel in one direction.

The former is a fairly unrealistic assumption, which is, however,

required to protect from bribing attacks, whereas the latter is

already implemented in Lightning, albeit for a different reason,

as discussed in Section 2.2. In particular, we prove that a small

channel balance suffices to make the cheated party engage in

a bribing war, which in turn causes the misbehaving party to

lose more than it can gain. We formalize the aforementioned

bribing war in a game-theoretic model and prove that the honest

protocol execution is the Nash Equilibrium for rational parties.

We show, however, that the security of the Lightning Network

against Byzantine channel parties (i.e., parties willing to lose

coins to let the counterparty incur a loss too) does not carry over

to a setting in which miners are rational and accept bribes.

• Next, we introduce CRAB†, a PC construction that leverages min-

ers’ incentives to safeguard the channel without requiring chan-

nel parties to constantly monitor the mempool. CRAB is the first

channel primitive that is compatible with Lightning and preserves

(Byzantine) security even against rational miners. We achieve

this with the same collateral as solutions that provide weaker

security guarantees, like Cerberus [17] or Sleepy [13]. Unlike

previous watchtower-based solutions [13, 15, 17, 33], only chan-

nel parties lock collateral in CRAB, preserving its permissionless

nature. We point out, that the collateral amount required is the

minimum required to be secure against rational (or Byzantine)

counterparties.

• Finally, we refine CRAB to eliminate a major assumption behind

payment channels, i.e., the need for online participation (AS2).

Our construction, Sleepy CRAB, is the first PC that leverages

miners’ incentives to enable participants to go offline indefinitely

without relying on watchtowers, committees, TEE, or limiting the

channel lifetime, while maintaining balance security even when

a channel party is Byzantine and miners are rational. Thereby

Sleepy CRAB improves over all previous solutions, as demon-

strated in Table 1.

• We evaluate the performance of Sleepy CRAB and our results

show that the time and communication costs are in line with the

highly efficient Lightning Network.

2 Background and Model

In this section, we first provide the necessary notation as well

as an overview of Lightning channels (LC) and of the timelock

bribing attack. We then present the system model, assumptions

that persist throughout all the sections, and the desired properties

of the payment channel primitives examined in this work.

Figure 1: Illustration of our transaction chart notation: Trans-

action tx is on-chain (double-bordered) and has two out-

puts (boxes), whose spending conditions are specified by

arrows: the first output has value 𝑥1 that can be spent by

party 𝐵 with a transaction signed with pk𝐵 at or after round

𝑡1 (absolute timelock); the other one has value 𝑥2 that can be

spent by a transaction signed by pk𝐴 and pk𝐵 (multisig) but

only if at least 𝑡2 rounds passed since tx was posted on the

blockchain (relative timelock). Transaction tx′ is off-chain
(single-bordered), has one input, which is the second output

of tx containing 𝑥2 coins, and has only one output, which is

of value 𝑥2 and can be spent by a transaction whose witness

satisfies the output condition𝜓1 ∨𝜓2 ∨ (𝜓3 ∧𝜓4).𝜓1 := 𝑟 would

denote a hashlock, which can be satisfied if a witness 𝑥 is

given, such that 𝑥 = H(𝑟). The input of tx is not shown.

2.1 Preliminaries

UTXOmodel.We adopt the notation for UTXO-based blockchains

from [10]. Coins are held in outputs of transactions in the UTXO

model. The output 𝜃 is a tuple (𝜃 .cash, 𝜃 .𝜓), where 𝜃 .cash denotes

the amount of coins associated with the output and 𝜃 .𝜓 denotes

the conditions that need to be satisfied to spend the output. In

general, 𝜃 .𝜓 contains the scripts with specific operations supported

by the underlying blockchain. In this paper, we focus on Bitcoin,

which, among others, allows for signature verification (single and

multi-sig), absolute and relative timelocks, hashlocks, and logical ∧
and ∨. A user 𝑃 controls or owns an output 𝜃 if 𝜃 .𝜓 contains only

a signature verification with respect to the public key of 𝑃 .

A transaction in the UTXO model maps one or more exist-

ing unspent outputs to a list of new outputs. A transaction tx
consists of the following attributes (tx.txid, tx.Input, tx.Output,
tx.TimeLock, tx.Witness). tx.txid ∈ {0, 1}∗, called the identifier

of the transaction, is calculated as tx.txid := H ([tx]), where H
is a hash function that is modeled as a random oracle. [tx] is the
body of the transaction defined as [tx] := (tx.Input, tx.Output,
tx.TimeLock). tx.Input is a vector of strings [𝑎𝑑𝑑𝑟1, 𝑎𝑑𝑑𝑟2, . . . ,
𝑎𝑑𝑑𝑟𝑛] which identify the inputs of tx, where each 𝑎𝑑𝑑𝑟𝑖 , 𝑖 ∈ [1, 𝑛]
are the source addresses. Similarly, tx.Output is the output of

tx, comprising vector of new output addresses [𝑎𝑑𝑑𝑟 ′
1
, 𝑎𝑑𝑑𝑟 ′

2
, . . . ,

𝑎𝑑𝑑𝑟 ′𝑚]. tx.TimeLock ∈ N ∪ {0} denotes the absolute (or relative)
timelock of the transaction. It denotes that tx will not be accepted

by the blockchain before the round defined by tx.TimeLock. If the
timelock is 0, then tx can be spent immediately. Lastly, tx.Witness
∈ {0, 1}∗, called the transaction’s witness, contains the witness of

the transaction that is required to spend the transaction inputs. For

readability, we use a transaction chart notation, which we illustrate

and explain in Figure 1.

†CRAB is an acronym for Channel Resistant Against Bribery

4

Figure 2: Transaction scheme of an instance of LC between

𝐴 and 𝐵. It shows the state of lightning channel 𝐶 when the

initial state of the channel has been updated.

2.2 Lightning Channels

Architecture. Operating a lightning channel (LC) consists of the

following phases: open, update, and close. Throughout the paper,

we refer to an instance of LC as 𝐶 .

(a) Channel Open: Suppose Alice (𝐴) and Bob (𝐵) decide to es-

tablish a Lightning channel with an initial deposit of 𝑣 ′ = 𝑣 + 2𝛿 ,
contributed by𝐴, where 𝑣 is the transferable value and 𝛿 the (small)

channel reserve. To do so, they agree on a funding transaction

tx⟨fund,𝐶 ⟩ , that spends two outputs, one controlled by 𝐴 and one

by 𝐵, holding a total of 𝑣 ′ coins. tx⟨fund,𝐶 ⟩ then transfers these

coins to a new output requiring both signatures of 𝐴 and 𝐵, known

as a multi-sig address. Note that typically in LC, one party – in this

case, Alice – provides the entire funding amount 𝑣 ′.
Before publishing the funding transaction on-chain, both parties

create, sign, and exchange their own copy of the initial commitment

transaction, txA,0⟨commit,𝐶 ⟩ for 𝐴, and tx
B,0
⟨commit,𝐶 ⟩ for 𝐵. These trans-

actions spend the output of tx⟨fund,𝐶 ⟩ and distribute the funds of

the channel to their initial contributors (here, 𝐴 gets back 𝑣 ′ coins)
after a relative timelock +𝑡 expires. This timelock is to prevent

cheating by allowing the revocation of old states; more on this

below. Exchanging the initial commitments before opening the

channel on-chain is critical for security as it ensures that parties

cannot hold their counterparty hostage in the channel, upon its

creation.

Once tx⟨fund,𝐶 ⟩ is added to the blockchain, the payment channel

between 𝐴 and 𝐵 is effectively open. We illustrate the transaction

flow of 𝐶 in Figure 2, where parties 𝐴 and 𝐵 lock up some coins in

𝐶 via the funding transaction tx⟨fund,𝐶 ⟩ .
(b) Channel Update: If 𝐴 and 𝐵 wish to make an off-chain pay-

ment, they need to update the channel state, i.e., the distribu-

tion of the 𝑣 ′ coins among 𝐴 and 𝐵. To do so, the two parties

sign and exchange new commitment transactions, txA,1⟨commit,𝐶 ⟩ and

txB,1⟨commit,𝐶 ⟩ , and the revocation secrets for the previous commit-

ment transaction 𝑟0𝑎 (of 𝐴) and 𝑟0
𝑏
(of 𝐵). The new commitment

transactions validate that both parties agreed on the new channel

state and depict the new coin distribution after the payment; they

only differ in that they enforce a relative timelock +𝑡 on the output

of the party that holds it, e.g., txA,1⟨commit,𝐶 ⟩ enforces a timelock on

𝐴’ output. The revocation secrets ensure that the previous commit-

ment transaction can get invalidated if it appears on-chain, and the

corresponding party is penalized.

During the update phase where payments are executed off-chain

within a channel 𝐶 , it is recommended that each party maintains

a reserve 𝛿 ideally equal to 1% of the total channel capacity. This

reserve is a specified amount of coins that each participant should

retain in their channel balance and not use for transactions. The

intention behind introducing the channel reserve is to make it less

beneficial for a cheating party to close the channel at an old state [7].

Now, out of the total channel capacity 𝑣 ′ = 𝑣 + 2𝛿 , only 𝑣 is usable,
with 𝐴 and 𝐵 each maintaining a channel reserve of 𝛿 [5]. If one

party does not have the channel reserve initially (but instead, e.g., 0

coins), the reserve is ensured as soon as that party receives money.

(c) Channel Close: A payment channel can be closed either (i)

co-operatively or (ii) unilaterally.
(i) 𝐴 and 𝐵 may mutually agree to co-operatively close the channel.
In this case, they sign and post on-chain a transaction that spends

the output of the funding transaction tx⟨fund,𝐶 ⟩ and distributes to

each party its coins as agreed in the latest update of the channel.

(ii) If one of the parties is not responsive, say 𝐵, the counterpart 𝐴

may close the channel unilaterally without the cooperation of 𝐵.

To do so, 𝐴 publishes on-chain the last commitment transaction. 𝐵

recovers its funds immediately while 𝐴 can spend her funds only

after the relative timelock 𝑡 expires. For the rest of this work, we

denote by txA,0⟨spend,𝐶 ⟩ and txB,0⟨spend,𝐶 ⟩ the transactions spending

the outputs of txA,0⟨commit,𝐶 ⟩ and txB,0⟨commit,𝐶 ⟩ respectively.
In case a party posts an old commitment transaction in an at-

tempt to close the channel in a more beneficial state for themselves,

the revocation secrets come into play. Specifically, if 𝐴 posts the

old state txA,0⟨commit,𝐶 ⟩ on-chain to close the channel, she can access

her funds only after the relative timelock +𝑡 , 𝐵 can spend them

knowing 𝑟0𝑎 . Thus, 𝐵 employs the secret 𝑟0𝑎 to create a revocation

transaction txA,0⟨revoke,𝐶 ⟩ . The revocation transaction invalidates the
previous commitment transaction, and grants control over all the

channel funds to the party who submits the revocation on-chain.

Note that the validity of the revocation transaction is contingent on

a party publishing on-chain the corresponding old commitment, as

it spends the timelocked output of the old commitment. For exam-

ple, 𝐵 can utilize txA,0⟨revoke,𝐶 ⟩ with secret 𝑟
0

𝑎 to access the funds from

txA,0⟨commit,𝐶 ⟩ within time 𝑡 of its publication only if 𝐴 has posted

txA,0⟨commit,𝐶 ⟩ on-chain. Therefore, to ensure the safety of payment

channels, it is critical for parties involved to vigilantly monitor the

blockchain in order to detect and revoke potential fraud attempts.

Implementing the revocation. There are multiple ways of im-

plementing revocation. In [29], combined signatures are used, a

two-party scheme that allows the signer to construct the signing
key only if the secret holder shares secret information. This protocol

enables the efficient exchange of revocation secrets. However, as

pointed out in other work, e.g. [9, 13], this revocation functionality

can be implemented also by simply hashing a secret, adaptor signa-

tures, or using a 2-of-2 multi-signature. For example, the spending

condition for𝐴’s coins in txA,0⟨commit,𝐶 ⟩ (or 𝐵’s coins in txB,0⟨commit,𝐶 ⟩)

can be the hashlockH(𝑟0𝑎) (orH(𝑟0𝑏)).
5

Timelock bribing attack in Lightning Channels. We revisit

here the timelock bribing attack, specifically in the context of Light-

ning Channels, which was initially examined in [16]. After updating

the channel state, 𝐴 can maliciously post txA,0⟨commit,𝐶 ⟩ where she
holds the full channel capacity. Thereby, 𝐵 has to post the corre-

sponding revocation transaction using the secret 𝑟0𝑎 , before 𝑡 expires.

Given that the blockchain miners are assumed to be honest and do

not censor transactions, even when bribed by 𝐴, the punishment

mechanism of LC is secure in this setting. However, miners are, in

principle, rational agents and thus choose to mine the transaction

with a higher fee. Hence, the miners may censor an honest party’s

revocation transaction and allow the malicious party to publish its

old commitment transaction if the latter comes with a higher fee.

Specifically in our example, suppose 𝐴 publishes txA,0⟨commit,𝐶 ⟩ and

𝐵 publishes txA,0⟨revoke,𝐶 ⟩ with fee 𝑓𝑏 . Now 𝐴 publishes txA,0⟨spend,𝐶 ⟩
with fee 𝑓𝑎 : 𝑓𝑎 > 𝑓𝑏 . Miners may now censor 𝐵’s transaction until

𝑡 expires to get the larger fee 𝑓𝑎 instead of 𝑓𝑏 . Thus, the revocation

mechanism of LC is susceptible to timelock bribing attacks.

2.3 Model and Security Goals

System model and assumptions. We assume the existence of

a blockchain B, maintaining the coins currently associated with

each address. All miners in B are considered rational, while each

controls less than 50% of the total resources of the system. Miners

are responsible for posting transactions in B, thus they select the

transactions to be included in a block. A miner selects the most

profitable transactions from the mempool to maximize its profit;

if it finds a transaction with an “anyone can spend” condition, the
miner spends the output of that transaction. When miners have

the option to achieve equal profit from two different execution

branches of a protocol, they always prefer the one that awards

them the profit sooner than the branch that offers the same profit

later. Considering 𝑓 the average fee of a blockchain transaction, a

briber must thus offer a bribe higher than 𝑓 to persuade miners

to choose its preferred protocol execution branch, e.g., censor a

transaction. We incorporate in our model the loss caused by delays

in the transaction execution by considering a fixed opportunity

cost for miners denoted 𝜖 .

We denote any channel instance discussed in this paper by 𝐶 .

We consider payment channel primitives consisting of two parties

𝐴 and 𝐵, that may engage with the blockchain miners𝑀 to commit

fraud. 𝐴 and 𝐵 operate their payment channel independently; the

miners 𝑀 do not (and in fact cannot) see or monitor channels or

the inter-party communication. They act based on the informa-

tion shared with them by the users, e.g., by posting transactions.

We consider all players to be mutually distrusting rational agents,

meaning that the two parties and the miners may deviate from the

correct protocol execution if they are to increase their utility. The

utility encapsulates the monetary profits of the players. We ignore

the loss in opportunity cost for the channel parties.

Threat Model.We define the two different types of participants

that we wish to defend against in PCs, rational and Byzantine. A

participant’s strategy refers to the possible actions they can take in

a protocol.

Definition 1 (Rational Party). A rational party chooses the
strategy that maximizes its utility (e.g., monetary profit).

Definition 2 (Byzantine Party). A Byzantine party arbitrarily
deviates from the protocol execution, possibly choosing strategies that
may decrease its utility.

Byzantine parties can also be modeled as rational parties with a

fixed budget, who increase their utility when another party incurs

financial loss (even if they lose funds themselves). For this rea-

son, we often strive to design protocols that remain secure against

Byzantine behavior, to capture all possible deviations from the hon-

est protocol execution and, consequently, account for all types of

utility functions. We stress, however, that a Byzantine adversary

cannot utilize external (to the protocol) funds to increase its budget.

As a result, Byzantine parties may only use the channel funds they

can access (balance and their collateral) to bribe miners.

Desideratum. Two-party payment channel primitives must, in gen-

eral, satisfy the following property, stating that no party involved

in the channel should lose any coins.

Definition 3 (Balance Security). At any time when an honest
party 𝑃 ∈ {𝐴, 𝐵} holds 𝛼 coins in the latest state of the payment
channel, they can claim at least 𝛼 coins on the blockchain.

3 Analysis for the Bitcoin LC
In this section, we model a two-party LC interacting with the

blockchain miners as an Extensive Form Game (EFG) and demon-

strate it is secure under the assumptions that (a) channel parties

monitor the mempool and (b) the LC channel is never depleted in

one direction. The latter assumption highlights the significance of

the reserve of LC, which is already implemented albeit for protec-

tion against nothing-at-stake attacks (i.e., a party with no coins left

in the latest update of the channel will always attempt to commit

fraud as they have nothing to lose).

3.1 Lightning Channels Model and Analysis

A timelock bribing attack succeeds when the malicious party, say

𝐴, publishes an old state of the channel and manages to convince

the miners to censor the corresponding revocation transaction.

However, the success of such an attack is not straightforward as the

cheated party – in this case, 𝐵 – has also the ability to counter-bribe

the miners to include its revocation transaction. This leads to a

bribing war between the channel parties where rational miners

will follow the strategy that awards them the highest payoff, i.e., a

miner will publish the revocation transaction only if the bribe of 𝐵

is higher than the bribe of 𝐴.

The core idea of our proof is that each channel primitive can be

modeled as an EFG with Perfect Information (Definition 4) [37].

Definition 4 (Perfect Information Game). A game in exten-
sive form with perfect information can be formally represented as a
tree and defined by the tuple (𝑁,𝐻, 𝑃,𝐴𝑖 , 𝑢𝑖), 𝑖 ∈ 𝑁 , where:
• 𝑁 is a finite set of 𝑛 players, 𝑁 = 1, 2, ..., 𝑛. Each non-terminal
choice node is labeled with the identifier of the player who
makes the decision, 𝑖 ∈ 𝑁 .
• 𝐻 is the set of histories, where each history ℎ represents a
sequence of actions that leads to a particular node in the game

6

tree. 𝑍 ⊆ 𝐻 is the set of terminal histories representing the
ends of all possible play sequences (the leaf nodes in the tree).
• 𝑃 : 𝐻 \ 𝑍 → 𝑁 is the player function that maps each non-
terminal history (or decision node) to the player who is to move
at that history.
• 𝐴𝑖 is a function that associates each player 𝑖 and each history
ℎ with a set of actions 𝐴𝑖 (ℎ) available after the history ℎ has
occurred, assuming player 𝑖 is to move. Edges extending from a
node represent the actions, 𝐴𝑖 (ℎ) for each history ℎ, available
to the player 𝑖 making the move at that particular point.
• 𝑢𝑖 : 𝑍 → 𝑅 is the payoff (or utility) function for each player 𝑖 ,
which maps each terminal history (or outcome) 𝑧 ∈ 𝑍 to a real
number representing player 𝑖’s payoff in case terminal history
𝑧 is reached.

We observe that the elements depicted in the EFG provide a

comprehensive representation of the game, showing the sequence

of decision-making, the set of feasible actions at each stage, and

the consequent utilities for each player. Without loss of generality,

we assume that the latest state of the LC is where 𝐴 has transferred

all the coins to 𝐵, but she tries to cheat by posting the initial state

txA,0⟨commit,𝐶 ⟩ . We thus present the punishment mechanism for LC

in this form with 𝑁 = {𝐴, 𝐵,𝑀} illustrated as a game tree ΓLC in

Figure 3. The game starts with𝐴, selecting either to post the old state

txA,0⟨commit,𝐶 ⟩ or the latest state of the channel tx
A,𝑚
⟨commit,𝐶 ⟩ . Next,

𝐵 would punish 𝐴 by posting txA,0⟨revoke,𝐶 ⟩ or remaining inactive.

If 𝐵 chooses to punish, 𝐴 would follow up by either offering a

bribe 𝑝𝑎
1
: 𝑓 < 𝑝𝑎

1
< 𝑣 to the miners, or it would not bribe. If 𝐴

offers a bribe to the miners, 𝐵 would either choose to counterbribe

with fee 𝑝𝑏
1
: 𝑝𝑎

1
< 𝑝𝑏

1
< 𝑣 so that miners select txA,0⟨revoke,𝐶 ⟩ , or

it may remain inactive and allow 𝐴 to succeed. If 𝐵 chooses to

counterbribe, 𝐴 bribes with a fee 𝑝𝑎
2
> 𝑝𝑏

1
. This bribing war goes

on with 𝐴 bidding 𝑝𝑎
𝑖
followed by 𝐵 bidding 𝑝𝑏

𝑖
in the 𝑖𝑡ℎ round. 𝐴

finally stops in the 𝑛𝑡ℎ round when the fee offered becomes 𝑝𝑎𝑛 = 𝑣

and then 𝐵 offer a fee 𝑝𝑏𝑛 = 𝑣 . Finally, miner 𝑀 has to make a

decision whether to include txA,0⟨revoke,𝐶 ⟩ or tx
A,0
⟨spend,𝐶 ⟩ for mining.

The payoffs are mentioned in the leaves of ΓLC. If𝑀 chooses to mine

𝐴′𝑠 transaction, it will get the fee after +𝑡 has elapsed, hence the net
payoff deducting the opportunity cost is 𝑣 − 𝜖 . On the other hand,

if𝑀 chooses to mine 𝐵′𝑠 transaction,𝑀 gets the fee 𝑣 instantly. We

define a strategy profile in an EFG [37]:

Definition 5 (Strategy Profile). A strategy profile in an ex-
tensive form game with perfect information specifies for each player
𝑖 ∈ 𝑁 what action 𝑎 ∈ 𝐴𝑖 (ℎ) the player will take at every history ℎ at
which they are called to act. That is, for each player 𝑖 ∈ 𝑁 , a strategy
𝑠𝑖 is a function from the set of histories 𝐻𝑖 = ℎ ∈ 𝐻 : 𝑃 (ℎ) = 𝑖 to the
set of actions 𝐴𝑖 , such that 𝑠𝑖 (ℎ) ∈ 𝐴𝑖 (ℎ) for each ℎ ∈ 𝐻𝑖 . A strategy
profile is a list of strategies for all players, 𝑠 = (𝑠1, 𝑠2, ..., 𝑠𝑛).

Correct Protocol Execution as Nash Equilibrium. Equipped

with this model, we can outline the desired strategy profile that

encapsulates the ‘correct protocol execution’ (cf. Figure 3): When

the channel closes, 𝐴 chooses the latest state strategy. If 𝐴 posts an

old channel state to close the channel, 𝐵 will choose to punish 𝐴.

Following this,𝐴 will bribe the miners, and in response, 𝐵 will offer

a counterbribe to prevent 𝐴 from succeeding. This situation leads

A

B

A

Old state Latest
state

Punish
Not

Punish

B

Bribe
Not

Bribe

A

Counterbribe
Not

Bribe

Bribe
Not

Bribe

ABribe

Not
Bribe

B
Counterbribe

Not
Bribe

M

Accept A

Accept B

Figure 3: SPNE of ΓLC

to a bribing war, ensuring that 𝑀 receives the maximum payoff,

slightly higher than 𝑣 .

The key point now is to demonstrate that utility-maximizing

players will choose these actions at every step of the protocol

execution. We do so by proving that the desired strategy profile

constitutes a Subgame Perfect Nash Equilibrium (Definition 6) [37]

of our game.

Definition 6 (Subgame Perfect Nash Eqilibrium or SPNE).

A strategy profile 𝑠∗ = (𝑠∗
1
, 𝑠∗
2
, ..., 𝑠∗𝑛) is a Subgame Perfect Nash

Equilibrium if and only if, for every subgame𝐺 ′ of the original game
𝐺 , and every player 𝑖 ∈ 𝑁 , the strategy 𝑠∗

𝑖
is the best response to the

strategies of all other players in 𝐺 ′.
Formally, let 𝐻 ′ denote the set of all histories in subgame 𝐺 ′. For

each player 𝑖 , the strategy 𝑠∗
𝑖
is a best response in 𝐺 ′ if:

𝑢𝑖 (𝑠∗𝑖 , 𝑠
∗
−𝑖 ;ℎ) ≥ 𝑢𝑖 (𝑠𝑖 , 𝑠∗−𝑖 ;ℎ),

for all strategies 𝑠𝑖 available to player 𝑖 in 𝐺 ′, and for all ℎ ∈ 𝐻 ′.
Here, 𝑠∗−𝑖 denotes the strategies of all players other than 𝑖 in the SPNE,
and 𝑢𝑖 (𝑠𝑖 , 𝑠∗−𝑖 ;ℎ) denotes the payoff to player 𝑖 when all players play
according to the strategy profile (𝑠𝑖 , 𝑠∗−𝑖) in the subgame beginning
at history ℎ.

This condition must hold for all players and all subgames. In other
words, a strategy profile is an SPNE if it induces a Nash Equilibrium
in every subgame, including the game itself.

To determine the SPNE of a game, we employ a technique called

backward induction. Backward induction is a method that starts

7

at the end of a game, at the terminal nodes and moves backward

through the extensive form game tree. At each decision node, it is

assumed that the player will select the action leading to the highest

possible payoff, given their knowledge of future play. This process

continues until the beginning of the game is reached, resulting in a

prediction of the game’s outcome. This prediction, contingent on

perfect information and rational behavior, is the SPNE.

Theorem 1. The strategy profile 𝑠∗ (𝐴, 𝐵,𝑀)= ((latest state, bribe
𝑓 < 𝑝𝑎

1
< 𝑣 , bribe 𝑝𝑏

1
< 𝑝𝑎

2
< 𝑣 , . . . , bribe 𝑝𝑎𝑛 = 𝑣), (punish, coun-

terbribe 𝑝𝑎
1
< 𝑝𝑏

1
< 𝑣 , counterbribe 𝑝𝑎

2
< 𝑝𝑏

2
< 𝑣 , . . . , counterbribe

𝑝𝑏𝑛 = 𝑣), Accept B) is a Subgame Perfect Nash Equilibrium for our
game.

Proof. We use backward induction on ΓLC. If 𝐴 posts an old
state, she should ensure that𝑀 mines the transaction. 𝐴 and 𝐵 will

counter-bribe 𝑀 so that both 𝐴 and 𝐵 end up offering a fee 𝑣 to

𝑀 . With both transactions offering the same fee 𝑣 , 𝑀 will prefer

accept B over accept A as this gives the payoff without incurring

any opportunity cost. 𝐵 proposes a bribe 𝑝𝑏𝑛 = 𝑣 . This implies that𝐴

had bid the same fee. 𝐴 was provoked by 𝐵 who had counterbribed

an amount less than 𝑝𝑎𝑛 . 𝐵 was provoked by 𝐴 and this goes on till

𝐴 initiated the bribing attack. But before that, 𝐵 chose to punish

𝐴 when the latter posted an old state. Tracing the arrow marked

in blue in Figure 3, we observe that if 𝐴 had chosen old state, then
𝐵 would choose to punish, leading to bribing war, so 𝐴 earns a

payoff 0. This is less than the payoff of the latest state, i.e., 𝛿 > 0.

Thus, 𝐴 will post the latest state and earn 𝛿 rather than losing out

by bribing𝑀 . If 𝐴 always posts the latest state, 𝐵 will earn 𝑣 coins.

This proves that (latest state, bribe 𝑓 < 𝑝𝑎
1
< 𝑣 , bribe 𝑝𝑏

1
< 𝑝𝑎

2
< 𝑣 ,

. . . , bribe 𝑝𝑎𝑛 = 𝑣), (punish, counterbribe 𝑝𝑎
1
< 𝑝𝑏

1
< 𝑣 , counterbribe

𝑝𝑎
2
< 𝑝𝑏

2
< 𝑣 , . . . , counterbribe 𝑝𝑏𝑛 = 𝑣), Accept B) is a subgame

perfect Nash Equilibrium. □

Theorem 1 provides the desired security property for LC under
rational participants, as any 𝑃 ∈ {𝐴, 𝐵} closing the channel will

always post the latest state. However, if 𝐵 does not monitor the

mempool or back off from the bribing war somewhere in between,

𝐴 will win the bribing war by offering a bribe higher than the fee

offered by 𝐵.

Corollary 1. Assuming rational miners and rational parties,
balance security is satisfied in LC if and only if the parties monitor
the mempool.

Nonetheless, leveraging the bribing war to prove the security of

LC is not ideal, as it relies on the unrealistic assumption that channel

parties constantly monitor the mempool. As Bonneau points out

in [18], such a strategy would considerably alter the security model

of Bitcoin, necessitating all Bitcoin recipients to scan for potential

bribery attacks and be prepared to counter them.

Moreover, if a channel party behaves maliciously (Byzantine)

and is indifferent to losing their own funds to compromise the

security of LC, the other party is left vulnerable. For example, if 𝐴

is Byzantine and indifferent to loss of funds, she will instigate the

bribing war as illustrated in Figure 3 and offer a bribe of 𝑣 + 𝛿 coins.

Should 𝐵 decide to engage in this bribing war,𝐴 will force 𝐵 to lose

all 𝑣 coins. Following the EFG ΓLC, the miner will then choose to

mine the punishment transaction for a fee 𝑣 + 𝛿 . As a result, 𝐵 will

win the bribing war but at the cost of losing its funds.

Corollary 2. Assuming rational miners and Byzantine par-
ties, balance security is not satisfied in LC, despite the honest party
monitoring the mempool.

Modeling miners as single entity. Analyzing LC channels in

a model where miners are seen as a single entity is an easy and

straightforward way to derive positive results. It assumes that min-

ers are always guaranteed a delayed payoff in the future, which

gives them more money. A slightly weaker yet realistic modeling

of the miners that considers the distribution of miners allows us to

analyze the construction with tighter bounds because now there is

a chance that the bribing war is won by the honest party, even if

they only counter-bribe with a smaller amount.

Such an analysis is shown in Section 4.3, showing that collateral

of 𝑐 = 𝑣/2 (which would be the channel reserve in LC channels)

suffices to safeguard against the setting where there are at least two

competing miners with a non-zero chance of mining a block, and

no miner has more than 50% of the mining power. Nevertheless,

modeling the miners as multiple entities (i) cannot alleviate the

assumption that parties must monitor the mempool and (ii) will

not help make this construction secure against Byzantine counter-

parties.

4 CRAB Protocol
In this section, we introduce a new channel construction that is

secure against rational parties and miners even when parties are

simply running light client verification protocols. We term this

new construction CRAB and show that it is secure against Byzantine

channel participants.

4.1 CRAB Design
We adapt LC until we arrive at our channel construction, CRAB.
Contrarily to LC, an honest party of CRAB does not lose funds when
its channel counterparty behaves maliciously and publishes an

old state. This is achieved by leveraging the miners’ incentives to

enforce the correct protocol execution; now miners earn their fee

by penalizing the malicious party for publishing an old state.

Incentivizing miners to punish. As a first step towards our so-

lution, we try to incentivize miners by changing the punishment
transaction txA,0⟨revoke,𝐶 ⟩ (resp. tx

B,0
⟨revoke,𝐶 ⟩) so miners now get all

the funds, i.e., 𝑣 + 𝛿 coins. The rationale here is that 𝐴 cannot bribe

more than 𝑣 coins from the old state since 𝐴 gets at least 𝛿 in the

new state, which is strictly more profitable for 𝐴. Miners ignore

txA,0⟨spend,𝐶 ⟩ and instead include txA,0⟨revoke,𝐶 ⟩ , should 𝐴 post an old

state txA,0⟨commit,𝐶 ⟩ . This course of action gives the miners 𝑣 +𝛿 coins,

which is more than what 𝐴 can offer. However, while this coun-

termeasure ensures that miners post the punishment transaction,

it does not ensure balance security for 𝐵 as all its coins are lost.

We thus strive for a channel construction where miners are incen-

tivized to post the punishment transaction, and additionally, the

miners’ fee is borne by the malicious channel participant.

Collateralizing the channels. To shift the burden of the miners’

fees on the cheating party, we require both channel parties to lock 𝑐

8

Figure 4: Transaction scheme of CRAB. ACS is shorthand for

"anyone can spend", which in this case allows anyone, and

in particular any miner, who knows 𝑟
𝑗

𝐴
to claim the 𝑐 coins.

coins as collateral each. The collateral is like the channel reserve 𝛿

and it is not part of the usable channel capacity. The usable channel

capacity remains 𝑣 but the total amount of coins needed to open the

channel is 2 · 𝑐 + 𝑣 . For example, if 𝐴 provides the channel capacity

when opening the channel, then 𝐴 must lock 𝑣 + 𝑐 coins in total

while 𝐵 must lock 𝑐 coins.

We now modify the commitment transaction to alter the dis-

tribution of the channel balance and collateral. In particular, the

output of txA,0⟨commit,𝐶 ⟩ is split into three parts: (i) 𝐵 immediately

spends the collateral 𝑐 , (ii) the usable balance 𝑣 can be either be

spent by 𝐴 after a relative timelock +𝑡 or 𝐵 can immediately spend

it using the revocation secret 𝑟0𝑎 shared by𝐴, and (iii) the remaining

𝑐 coins can either be spend by𝐴 after relative timelock +𝑡 , or by any
miner (given “anyone can spend”) instantly, using secret 𝑟0𝑎 . Note
that, in this design, the miners will learn 𝑟0𝑎 from the revocation

transaction posted by 𝐵, which contains this secret. There is no

need for miners to monitor any communication outside the normal

blockchain protocol.

The current design aims to encourage miners to automatically

claim 𝐴’s collateral 𝑐 in case of fraud while ensuring 𝐵 will retrieve

(at least) its rightful funds. In detail, suppose𝐴 posts an old state on-

chain and engages in a bribing war. The maximum bribe a rational

𝐴will offer for posting old-state txA,0⟨spend,𝐶 ⟩ will not exceed 𝑣 . Thus,
for 𝑐 > 𝑣 , miners will always choose to include the punishment

transaction when a party commits fraud.

However, setting 𝑐 > 𝑣 leads to using an excessive amount of

collateral per channel, which in turn decreases the effective channel

capital utilization. In Section 4.3, we deduce the exact bounds of 𝑐

with respect to 𝑣 to ensure minimal collateralization of the channel

while maintaining security for its participants.

4.2 Protocol Description

This section describes our CRAB protocol for realizing bi-directional
payment channels. The transaction scheme is represented in Fig-

ure 4.We discuss the operations in CRAB and provide the pseudocode
for each operation in Figure 5.

Opening of channel. 𝐴 and 𝐵 open a CRAB 𝐶 by locking coins in

a 2-of-2 multi-sig address addrfund,𝐴𝐵 . We assume that the usable

channel capacity is funded solely by 𝐴. Since the intended channel

capacity is 𝑣 ,𝐴 has to lock 𝑣 +𝑐 , and 𝐵 has to lock just the collateral

amount, i.e., 𝑐 coins. Transaction tx⟨fund,𝐶 ⟩ sends 𝑣 + 2𝑐 coins from

addresses of 𝐴 and 𝐵 to addr𝐴𝐵 . Before publishing tx⟨fund,𝐶 ⟩ , 𝐴

and 𝐵 create copies of initial commitment transaction txA,0⟨commit,𝐶 ⟩
and txB,0⟨commit,𝐶 ⟩ and exchange signatures on these transactions.

Channel Update. 𝐴 and 𝐵 want to update the channel to 𝑗𝑡ℎ state

where 𝐴 has net balance 𝑣𝑎 + 𝑐 and 𝐵 has net balance 𝑣𝑏 + 𝑐 such
that 𝑣 = 𝑣𝑎 + 𝑣𝑏 . They generate two copies of the commitment

transaction, tx
A, 𝑗
⟨commit,𝐶 ⟩ and tx

B, 𝑗
⟨commit,𝐶 ⟩ , where tx

A, 𝑗
⟨commit,𝐶 ⟩ is

controlled by 𝐴 and tx
B, 𝑗
⟨commit,𝐶 ⟩ is controlled by 𝐵. We explain

the transaction scheme with respect to tx
A, 𝑗
⟨commit,𝐶 ⟩ having the

following outputs:

(i) 𝑣𝑏 + 𝑐 coins can be spent instantly by 𝐵.

(ii) 𝑣𝑎 + 𝑐 coins are send to a 2-of-2 multisig address that serves

as input of transaction txA,0⟨spend,𝐶 ⟩ . This can be spent by 𝐴 after a

relative timelock +𝑡 .
Similarly, for 𝐵, the steps for updating the channel with respect to

tx
B, 𝑗
⟨commit,𝐶 ⟩ are analogous to the above description. Except here 𝐵

has complete control but has to wait for a relative timelock 𝑡 before

publishing tx
B, 𝑗
⟨spend,𝐶 ⟩ and spends 𝑣𝑏 + 𝑐 coins. They invalidate the

previous state of the channel by exchanging revocation secrets 𝑟
𝑗−1
𝑎

and 𝑟
𝑗−1
𝑏

.

Closing of channel. CRAB follows the same procedure of channel

closure explained for LC in Section 2.2. However, we describe the

changes in the punishment mechanism upon fraudulent channel

closure.

If 𝐴 tries to close the channel by posting old state txA,0⟨commit,𝐶 ⟩ ,

𝐵 creates revocation transactions txA,0⟨revoke,𝐶 ⟩ = 𝑡𝑥

(
addr𝑟𝑠𝑚𝑐0,𝐴𝐵,

pk𝑗,𝐵, 0
)
, tx

𝜙A,0
⟨revoke,𝐶 ⟩ = 𝑡𝑥

(
addr𝑟𝑠𝑚𝑐0,𝐴𝐵, _, 0

)
. txA,0⟨revoke,𝐶 ⟩ allows

𝐵 to spend 𝑣 coins immediately provided they have the revocation

secret 𝑟0𝑎 . tx
𝜙A,0
⟨revoke,𝐶 ⟩ allows any miner with the revocation se-

cret 𝑟0𝑎 to spend 𝑐 coins. Thus we put ‘_’ in the place of the output

address for tx
𝜙A,0
⟨revoke,𝐶 ⟩ . The output of txA,0⟨commit,𝐶 ⟩ can also be

spent by publishing transaction txA,0⟨spend,𝐶 ⟩ after +𝑡 has elapsed.
However, the relative timelock +𝑡 on txA,0⟨spend,𝐶 ⟩ ensures that both

txA,0⟨revoke,𝐶 ⟩ and tx
𝜙A,0
⟨revoke,𝐶 ⟩ , have precedence over the former

while spending. A similar procedure is followed by 𝐴 who posts

tx
𝜙B,𝑚
⟨revoke,𝐶 ⟩ using secret 𝑟0

𝑏
to punish 𝐵 for posting old channel

state txB,0⟨commit,𝐶 ⟩ on-chain.

4.3 CRAB Analysis
In our analysis of CRAB, it is essential to revisit its core goals. De-
signed to eliminate the necessity for parties to constantly watch the

mempool and engage in active counterbribing, CRAB integrates a
pre-determined collateral, 𝑐 . This collateral serves both as a penalty

for cheating and an implicit counterbribe to miners. We stress that

such collateral is unavoidable, as it is necessary to counter-effect

the bribe of the cheating party to the miners. The key challenge

here is setting the collateral amount in advance while keeping it

minimal to ensure the construction’s efficacy.

9

Parties 𝐴 and 𝐵 each have funding address (also public keys) pkfund,𝐴 and pkfund,𝐵 respectively. The corresponding secret keys of these addresses
a
are

skfund,𝐴 and skfund,𝐵 . Both 𝐴 and 𝐵 have sufficient balance in the funding address to fund a CRAB𝐶 of capacity 𝑣 + 2𝑐 where 𝑣 + 𝑐 are locked by 𝐴 and

𝑐 coins are locked by 𝐵. The transactions can be broadcasted on the ledger B parameterized by (Δ, Σ,V) . Δ is the time after which a valid transaction

is appended to the ledger, a signature scheme Σ, and a set V , defining valid spending conditions, including signature verification under Σ, supporting
absolute and relative timelocks.

Opening of channel

(1) Parties use KGen(1𝜆) for generating the following keys: 𝐴 generates (pkcomm0,𝐴, skcomm0,𝐴), (pkrsmc0,𝐴, skrsmc0,𝐴) and 𝐵 generates

(pkcomm0,𝐵, skcomm0,𝐵), (pkrsmc0,𝐵, skrsmc0,𝐵) . 𝐴 and 𝐵 jointly generate 2-of-2 multi-sig addresses addrfund,𝐴𝐵 , addr𝑟𝑠𝑚𝑐0,𝐴𝐵 , addr’𝑟𝑠𝑚𝑐0,𝐴𝐵 and

addrcomm0,𝐴𝐵

(2) The following transactions are generated:

• Funding transaction: tx⟨fund,𝐶⟩ = 𝑡𝑥

(
[pkfund,𝐴, pkfund,𝐵], addrfund,𝐴𝐵, 0

)
• Initial commitment transaction: txA,0⟨commit,𝐶⟩ = 𝑡𝑥

(
addrfund,𝐴𝐵, [addr𝑟𝑠𝑚𝑐0,𝐴𝐵, pkcomm0,𝐵], 0

)
, txB,0⟨commit,𝐶⟩ =

𝑡𝑥

(
addrfund,𝐴𝐵, [pkcomm0,𝐴, addr’𝑟𝑠𝑚𝑐0,𝐴𝐵], 0

)
, txA,0⟨spend,𝐶⟩ = 𝑡𝑥

(
addr𝑟𝑠𝑚𝑐0,𝐴𝐵, pkrsmc0,𝐴, +𝑡

)
, and txB,0⟨spend,𝐶⟩ = 𝑡𝑥

(
addr’𝑟𝑠𝑚𝑐0,𝐴𝐵, pkrsmc0,𝐵, +𝑡

)
.

(3) 𝐴 and 𝐵 exchanges txA,0⟨commit,𝐶⟩ and tx
B,0
⟨commit,𝐶⟩ with each other. 𝐵 signs txA,0⟨commit,𝐶⟩ , sends the signature 𝜎comm0,𝐵 to 𝐴, and 𝐴 signs txB,0⟨commit,𝐶⟩ , sends

the signature 𝜎comm0,𝐴 to 𝐵. Note that txA,0⟨commit,𝐶⟩ (resp. tx
B,0
⟨commit,𝐶⟩) spends from a multi-sig address addrfund,𝐴𝐵 so it would need signature of 𝐵 (resp.𝐴)

as well. Next, 𝐴 and 𝐵 sign transaction tx⟨fund,𝐶⟩ individually, with 𝐴 generating 𝜎fund,𝐴 , and 𝐵 generating 𝜎fund,𝐵 . They exchange these signatures with

each other. Either 𝐴 or 𝐵 posts tx⟨fund,𝐶⟩ on B.

Channel Update

For a 𝑗𝑡ℎ channel update where 𝑣𝑎 and 𝑣𝑏 are the channel balances of 𝐴 and 𝐵 respectively:

(1) Parties use KGen(1𝜆) for generating the following keys: 𝐴 generates (pkcommj,𝐴, skcommj,𝐴), (pkrsmcj,𝐴, skrsmcj,𝐴) and 𝐵 generates

(pkcommj,𝐵, skcommj,𝐵), (pkrsmcj,𝐵, skrsmcj,𝐵) . 𝐴 and 𝐵 jointly generate a 2-of-2 multi-sig addresses addrcommj,𝐴𝐵

(2) Generate 𝑗𝑡ℎ commitment transaction: txA, 𝑗⟨commit,𝐶⟩ = 𝑡𝑥

(
addrfund,𝐴𝐵, [addr𝑟𝑠𝑚𝑐 𝑗,𝐴𝐵, pkcommj,𝐵], 0

)
, txB, 𝑗⟨commit,𝐶⟩ =

𝑡𝑥

(
addrfund,𝐴𝐵, [pkcommj,𝐴, addr’𝑟𝑠𝑚𝑐 𝑗,𝐴𝐵], 0

)
, txA, 𝑗⟨spend,𝐶⟩ = 𝑡𝑥

(
addr𝑟𝑠𝑚𝑐 𝑗,𝐴𝐵, pkrsmcj,𝐴, +𝑡

)
, and txB, 𝑗⟨spend,𝐶⟩ = 𝑡𝑥

(
addr’𝑟𝑠𝑚𝑐 𝑗,𝐴𝐵, pkrsmcj,𝐵, +𝑡

)
.

(3) 𝐴 and 𝐵 exchanges txA, 𝑗⟨commit,𝐶⟩ and txB, 𝑗⟨commit,𝐶⟩ with each other. 𝐵 signs txA, 𝑗⟨commit,𝐶⟩ , sends signature 𝜎commj,𝐵 to 𝐴, and 𝐴 signs txB, 𝑗⟨commit,𝐶⟩ , sends

signature 𝜎commj,𝐴 to 𝐵. Next, 𝐴 shares revocation secret 𝑟
𝑗−1
𝑎 with 𝐵, and 𝐵 shares revocation secret 𝑟

𝑗−1
𝑏

with 𝐴 to invalidate the (𝑗 − 1)𝑡ℎ state of the

channel.

Channel Closing

Each party can close the channel at 𝑗𝑡ℎ unrevoked state:

(1) If 𝐴 and 𝐵 mutually decide to close the channel: Revoke transactions txA, 𝑗⟨commit,𝐶⟩ and txB, 𝑗⟨commit,𝐶⟩ and create one transaction tx⟨close,𝐶⟩ =

𝑡𝑥

(
addrfund,𝐴𝐵, [pkcommj,𝐴, pkcommj,𝐵], 0

)
. Publish tx⟨close,𝐶⟩ on-chain.

(2) If 𝐴 (resp. 𝐵) unilaterally closes the channel: Publish txA, 𝑗⟨commit,𝐶⟩ (resp. tx
B, 𝑗
⟨commit,𝐶⟩) and txA, 𝑗⟨spend,𝐶⟩ (resp. tx

B, 𝑗
⟨spend,𝐶⟩) on-chain.

(3) If 𝐴 publishes an old state:

(a)𝐵 generates the address pk𝑗,𝐵 and also the following transactions - txA,0⟨revoke,𝐶⟩ = 𝑡𝑥

(
addr𝑟𝑠𝑚𝑐0,𝐴𝐵, pk𝑗,𝐵, 0

)
, tx

𝜙A,0
⟨revoke,𝐶⟩ = 𝑡𝑥

(
addr𝑟𝑠𝑚𝑐0,𝐴𝐵, _, 0

)
.

(b) 𝐵 can post txA,0⟨revoke,𝐶⟩ using secret 𝑟 0𝑎 on B before +𝑡 elapses. Miners uses the secret 𝑟 0𝑎 to post tx
𝜙A,0
⟨revoke,𝐶⟩ on B. So the secret 𝑟 0𝑎 allows 𝐵 to

immediately spend the output of txA,0⟨commit,𝐶⟩ before 𝐴 spends the coins via transaction txA,0⟨spend,𝐶⟩ .

a
Hash of the public key is used as addresses, but we ignore such details for a simplified explanation.

Figure 5: Pseudocode for CRAB

It is possible to analyze CRAB channels in the same way as LC
channels in Section 3. However, the analysis yields imperfect re-

sults: (i) a demand for higher collateral of 𝑐 ≥ 𝑣 where 𝑣 is the

total capacity of the channel, and (ii) no security against Byzantine

counterparties.

Therefore, we defer this analysis to Appendix A.1 and instead

opt for a more in-depth analysis here, which, in addition to the

collateral, takes timelocks into account and considers multiple (> 1)

distinct miners where at least one is not colluding, instead of the

miners as a single entity (cf. Section 7). This assumption is the

basis of every blockchain consensus and something that holds in

practice [16, 20, 46].

Our findings suggest that even with rational and miners, a collat-

eral of 𝑐 ≥ 𝑣
2
can secure against rational counterparties and 𝑐 ≥ 𝑣

against Byzantine counterparties. Note that this in-depth analysis

yields similar bounds for LC channels (albeit necessitating a channel
reserve of

𝑣
2
). However, due to the lack of collateral, LC channels

cannot be secure against Byzantine counterparties as an attacker

can simply bribe the full channel amount he owns. Also, recall that

LC channels cannot be secure against rational counterparties and
miners without monitoring the mempool.

Recall the setting we used for LC where 𝐴 tries to close the

channel by publishing the old state txA,0⟨commit,𝐶 ⟩ . Before the rel-

ative timelock +𝑡 expires, only txA,0⟨revoke,𝐶 ⟩ and tx
𝜙A,0
⟨revoke,𝐶 ⟩ can

be published. Let us look at the conditions under which including

tx
𝜙A,0
⟨revoke,𝐶 ⟩ in the blocks becomes the dominant strategy for the

miners in the presence of a rational attacker. The fee offered for

10

txA,0⟨spend,𝐶 ⟩ will not exceed 𝑣 as a rational attacker will choose not
to lose the collateral 𝑐 .

Let 𝑀 be any miner. We say that 𝑀 has a mining power 𝜆, ex-

pressed as the percentage of the total mining power. We analyze

any point in time between posting txA,0⟨commit,𝐶 ⟩ and the timelock

expiring. We represent the time period +𝑡 in terms of number of

blocks, denoted as 𝑘 . One must wait for block height to increase by

𝑘 blocks after txA,0⟨commit,𝐶 ⟩ is posted on-chain, only then tx
A,0
⟨spend,𝐶 ⟩

becomes valid. Further, we say that 𝐹 is the maximum fee earned

for a block without either tx
𝜙A,0
⟨revoke,𝐶 ⟩ and txA,0⟨spend,𝐶 ⟩ . If we re-

place one normal transaction in the block with tx
𝜙A,0
⟨revoke,𝐶 ⟩ , then

𝐹𝑐 := 𝐹 − 𝑓 + 𝑐 is the maximum amount of fees earned for mining

a block containing tx
𝜙A,0
⟨revoke,𝐶 ⟩ . Similarly, on replacing a normal

transaction in the block with txA,0⟨spend,𝐶 ⟩ , 𝐹𝑣 := 𝐹 − 𝑓 + 𝑣 is the fee
earned for a block containing txA,0⟨spend,𝐶 ⟩ .

If tx
𝜙A,0
⟨revoke,𝐶 ⟩ has already been included; this means that 𝐵

will get back 𝑣 coins by posting txA,0⟨revoke,𝐶 ⟩ , i.e., balance security
holds. Similarly, if there are other miners whose strategy is to

include tx
𝜙A,0
⟨revoke,𝐶 ⟩ in these upcoming 𝑘 blocks, 𝐵 is compensated

and balance security ensured. We thus focus on the corner case

where no other miner will include tx
𝜙A,0
⟨revoke,𝐶 ⟩ . We compute the

expected payoff of not including tx
𝜙A,0
⟨revoke,𝐶 ⟩ and instead try to

include txA,0⟨spend,𝐶 ⟩ in the first block after the timelock expires.

For any miner𝑀 , the expected number of blocks mined until the

timeout is 𝑘𝜆 of the 𝑘 remaining blocks. Thus, the expected payoff

is 𝑘𝜆𝐹 + 𝜆𝐹𝑣 . To see what is the dominant strategy, we compare

this to the expected payoff of including tx
𝜙A,0
⟨revoke,𝐶 ⟩ . For this, we

consider the following two cases.

Case 1: 𝑘𝜆 ≥ 1. 𝑀 has mining power such that it is expected to

mine at least one block in the 𝑘 remaining slots until the timelock

expires. Because we know that 𝑘𝜆 ≥ 1, the expected payoff for

including tx
𝜙A,0
⟨revoke,𝐶 ⟩ is 𝐹𝑐 + (𝑘𝜆 − 1)𝐹 + 𝜆𝐹 . Any such miner 𝑀

will include the punishment if the following inequality holds.

𝐹𝑐 + (𝑘𝜆 − 1)𝐹 + 𝜆𝐹 > 𝑘𝜆𝐹 + 𝜆𝐹𝑣 =⇒ 𝑐 − 𝑓 > 𝜆(𝑣 − 𝑓) (1)

Since the fee 𝑓 is negligible compared to 𝑣 and 𝑐 , we can rewrite

the inequality 𝑐 > 𝜆𝑣 . We observe that the collateral 𝑐 must exceed

𝑀’s proportionate share of the total value 𝑣 , such that it is more

profitable for 𝑀 to include txA,0⟨revoke,𝐶 ⟩ . Since we consider the

underlying blockchain secure, we know that 𝜆 < 0.5 holds for any

𝑀 . Thus, if 𝑐 = 𝑣
2
, the dominant strategy for any miner with 𝑘𝜆 ≥ 1

is to include tx
𝜙A,0
⟨revoke,𝐶 ⟩ .

Case 2: 𝑘𝜆 < 1. 𝑀’s mining power is such that it is expected to

mine fewer than one block in the 𝑘 remaining slots. The expected

payoff for including tx
𝜙A,0
⟨revoke,𝐶 ⟩ is 𝑘𝜆𝐹𝑐 + 𝜆𝐹 . Again, such a miner

𝑀 will include the punishment if the following inequality holds.

𝑘𝜆𝐹𝑐 + 𝜆𝐹 > 𝑘𝜆𝐹 + 𝜆𝐹𝑣 =⇒ 𝑐 − 𝑓 >
𝑣 − 𝑓

𝑘
(2)

From case 1, we observed that setting 𝑐 = 𝑣
2
would be enough

for miners to choose the punishment transaction tx
𝜙A,0
⟨revoke,𝐶 ⟩ over

txA,0⟨spend,𝐶 ⟩ . Given that 𝑐 = 𝑣
2
and fee 𝑓 is negligible, setting 𝑘 > 2

ensures that 𝑐 > 𝑣
𝑘
. We can merge case 1 and case 2 and write

𝑐 > 𝑚𝑎𝑥

(
𝜆𝑣, 𝑣

𝑘

)
. Since the least value of 𝑘 is 3, and the strongest

miner may have mining power more than
1

3
, setting 𝑐 = 𝑣

2
is

sufficient collateral to disincentivize cheating in both the cases.

To make matters worse, however, the strongest miner can an-

nounce a feather-forking attack for tx
𝜙A,0
⟨revoke,𝐶 ⟩ , disincentivizing

every otherminer from including tx
𝜙A,0
⟨revoke,𝐶 ⟩ . But then the strongest

miner’s mining power does not exceed 0.5, so the expected payoff

of the strongest miner will be strictly less than
𝑣
2
upon choosing

txA,0⟨spend,𝐶 ⟩ . Thus 𝑐 =
𝑣
2
is a tight bound on the collateral when the

participants and the miners are rational.

Corollary 3. Assuming rational miners and rational parties,
balance security is satisfied in CRAB, if the honest party is online,
and the collateral locked by each party is equal to half the channel
capacity 𝑐 = 𝑣/2.

If the attacker is Byzantine, the maximum amount she can bribe

is 𝑣 + 𝑐 . Ignoring fee 𝑓 , if we replace 𝑣 by 𝑣 + 𝑐 in Equation (1) and

in Equation (2), we get 𝑐 > 𝑚𝑎𝑥

(
𝜆(𝑣 + 𝑐), 𝑣+𝑐

𝑘

)
. Given𝑚𝑎𝑥 (𝜆, 1

𝑘
) <

0.5, a collateral 𝑐 = 𝑣 is necessary to prevent timelock bribing if 𝐴

is malicious and miners are rational.

Corollary 4. Assuming rational miners and Byzantine parties,
balance security is satisfied in CRAB, if the honest party is online, and
collateral locked by each party is equal to the channel capacity 𝑐 = 𝑣 .

Corollary 3 and Corollary 4 further imply that balance security

holds without parties monitoring the mempool. Further, as we have

pointed out that 𝑣/2 and 𝑣 are the lower bounds for the settings

where counterparties are rational and Byzantine, respectively, our

construction is collateral optimal.

5 Sleepy CRAB
Our construction of CRAB up to this point is secure in the rational

model using a collateral contingent on both parties being online.

If 𝐵 is offline and 𝐴 posts an old state txA,0⟨commit,𝐶 ⟩ , 𝐵 loses balance

security since 𝐵 cannot punish 𝐴. We adapt the construction of

CRAB for Sleepy CRAB so that balance security is guaranteed even

if honest channel participants remain offline.

5.1 Protocol Description

The channel design is the same as CRAB. The only difference here

is that the honest party is offline and miners need to post revoke

transactions by themselves. If 𝐵 wants to go offline after the𝑚𝑡ℎ

state update, he puts all the revocation secrets 𝑟0𝑎, 𝑟
1

𝑎, . . . , 𝑟
𝑚−1
𝑎 on a

public bulletin board (PBB). If 𝐴 posts any of the old states after 𝐵

has gone offline, then the miner selects the appropriate revocation

secret from the bulletin board and publishes the revocation transac-

tion to claim𝐴’s collateral. Later, when 𝐵 comes online, he can post

his revocation transaction to claim 𝐴′𝑠 deposit. To improve effi-

ciency, we discuss how users can safely go offline without dumping

11

all the revocation secrets into PBB. This can be achieved through

posting a minimum amount of information on the blockchain. Since

there could be multiple channel participants who might want to

go offline at the same time, their individual channel’s revocation

secret can be aggregated and put into one single transaction.

Using secret derivation. To achieve constant storage cost for

channels, we should guarantee that anyone with the current revo-

cation secret can derive the previous revocation secrets but should

not be able to generate any future revocation secret. There exist

techniques from the payment channel and watchtower literature to

store revocation secrets efficiently. Trapdoor one-way functions are

used in [47] to implement a scheme that allows for constant stor-

age of secrets per channel. The construction does not require any

modification on the core of the current Bitcoin system or Lightning

Network. The trapdoor one-way functions are easy to compute but

hard to invert without the knowledge of the secret or trapdoor 𝑡𝑑 .
We define the function as 𝑓𝑡𝑑 where 𝑦 ← 𝑓𝑡𝑑 (𝑥). 𝑦 could be derived

from 𝑥 . If a person has the knowledge of 𝑡𝑑 , then he or she can

compute 𝑥 ← 𝑓 −1
𝑡𝑑
(𝑡𝑑,𝑦).

A channel participant who wishes to go offline will post the

revocation secret of the last revoked state. No one except him can

derive the future revocation secret from this information.

We define the interface for revocation secret generation and

derivations in Sleepy CRAB:
(a) GenerateRevokeSecret(𝑦, 𝑡𝑑, 𝑖): Given the revocation secret 𝑦

for the current channel state, and the knowledge of trapdoor 𝑡𝑑 ,

the revocation secret for 𝑖𝑡ℎ state, we define 𝑦 𝑗 ← 𝑓 −1
𝑡𝑑
(𝑡𝑑,𝑦 𝑗−1)

for 1 ≤ 𝑗 ≤ 𝑖 where 𝑦0 = 𝑦.

(b) DeriveRevokeSecret(𝑥, 𝑘, 𝑖): Given the revocation secret 𝑥 of

channel state 𝑘 , to derive the revocation secret of the 𝑖𝑡ℎ channel

state where 0 ≤ 𝑖 < 𝑘 , we define 𝑦 𝑗−1 ← 𝑓𝑡𝑑 (𝑦 𝑗) for 𝑖 + 1 ≤ 𝑗 ≤ 𝑘

where 𝑦𝑘 = 𝑥 .

The authors have used RSA cryptosystem in [47], one of the famous

trapdoor one-way functions. A party must post the RSA public key

and the revocation secret of the last revoked state on-chain before

going offline. Given that the size of the RSAmodulus is 2048 bits (256

bytes), as per the experimental results shown in [47], the estimated

storage overhead for storing the public key and revocation secret is

close to 600 bytes. If we take the Bitcoin transaction fee of 7 satoshi

per byte [4] and a current price of roughly 26.9k USD/BTC [3], then

the fee for storing this information would be 1.13 USD.

Aggregating revocation secrets and posting it on-chain. Let us

now more efficiently utilize the blockchain on which the payment

channels are deployed, and thus, a blockchain that we know that

miners are reading. For instance, this can be implemented in Bit-

coin by posting a balance-neutral transaction (i.e., 𝐴 transferring

coins to herself), which has an additional zero-value output with

OP_RETURN storing the revocation secret. To make it easily identifi-

able to miners, 𝐴 can add an identifier marking this transaction as

holding such information and possibly identifying the channel’s

funding transaction.

Clearly, it is not desirable to post an on-chain transaction and

thus the associated fees every time one wishes to go offline. We

therefore propose the following two improvements. Multiple users

can create a joint transaction, which, instead of holding the secret

of one channel participant, holds the secret of multiple channel

participants. This can be implemented easily, using an untrusted
centralized service. Note that this service does not need to be trusted

since a user can check if her secret appears on the blockchain before

going offline. We mentioned previously that the storage overhead

of one secret is close to 600 bytes. Assuming a transaction size

limit of 400kb, up to roughly 600 users can put their secrets in a

single transaction, splitting the fee among themselves and avoiding

overhead which would be present if there were 600 individual

transactions. Again, note that one secret per channel is enough to

cover the whole channel history and users only need to post the

secret when they wish to go offline.

Using the blockchain’s network layer. It is important to high-

light that posting the revocation information on-chain is a way to

ensure that miners are aware of it. It suffices, however, to choose

any mechanism that transfers this information to the miners, e.g.,

posting it online in a forum or using the blockchain’s network layer.

The security of consensus protocols, e.g., of Bitcoin or Ethereum,

typically relies on a synchrony assumption, i.e., messages are deliv-

ered in a timely manner [26]. This synchrony, which in practice is

realized through flooding in Bitcoin, suffices to ensure that miners

see this information when users post it to the network, therefore

ensuring this construction. The compensation of miners for storing

this information is less straightforward than when posting the in-

formation on-chain, but this is an orthogonal and known problem

in the watchtower literature, e.g., [1, 17, 34].

5.2 Analysis of Sleepy CRAB
This construction is the same as CRAB, except for the derivation
of revocation secrets. Thus, the analysis of Section 4.3 transfers to

Sleepy CRAB. We have the same security guarantee as CRAB for

rational and Byzantine attackers but without assuming the honest

party is online.

Corollary 5. Assuming rational miners and rational parties,
balance security is satisfied in Sleepy CRAB, even when parties are
offline if the collateral locked by each party is equal to half the channel
capacity 𝑐 = 𝑣/2.

Corollary 6. Assuming rational miners and Byzantine parties,
balance security is satisfied in Sleepy CRAB, even when parties are
offline if the collateral locked by each party is equal to the channel
capacity 𝑐 = 𝑣 .

5.3 Interplay with Lightning channels

Sleepy CRAB can be used alongside Lightning channels in an agile

way. Users can use Lightning channels, until they wish to go offline,

at which point they simply change to Sleepy CRAB, using a tech-
nique known as splicing [39]. Splicing allows users to increase or

decrease the channel capacity with an on-chain transaction. This

can be thought of as closing the old and simultaneously opening

a new channel, with a different capacity. Indeed, we can use this

technique to change the nature of the channel to Sleepy CRAB, by
adding the necessary collateral and logic (or else change it back

to Lightning). We discuss the construction in Section B.2 of the

Appendix.

12

6 Evaluation

To evaluate our construction and show its practical feasibility, we

build a proof-of-concept implementation of CRAB. Since Sleepy
CRAB and CRAB are the same except for the derivation of revocation

secret, the implementation holds true for Sleepy CRAB, and from

here onwards, we refer to it merely as the evaluation for Sleepy
CRAB. This implementation creates the necessary transactions for

deploying our construction with the following goals in mind: (i)

measure the overhead both on-chain and off-chain, (ii) compare it

with existing constructions, and (iii) demonstrate its compatibility

with Bitcoin by publishing the transactions on the Bitcoin testnet.

More concretely, we compare our results with Lightning Network

(LN) channels [38], Generalized channels (GC) [9], and Sleepy chan-

nels [13]. The code of our implementation can be found in a public

GitHub repository [6].

We evaluate the following phases: open, update, punish, unilat-

eral close, and cooperative close. The update phase happens com-

pletely off-chain, for the other phases we also estimate on-chain

costs. For this, we take a current Bitcoin transaction fee of 7 satoshi

per byte [4] and a current price of roughly 26.9k USD/BTC [3]. This

allows us to accurately compute the current estimated on-chain

fees in USD. The funding transaction and, therefore, the (on-chain

part of the) opening phase is the same for all of these constructions,

essentially a transaction with two inputs and one output. The off-

chain part of the opening phase is analogous to the update phase. It

has a size of 338 bytes which results in approximately 0.64 USD in

on-chain fees. Similarly, the cooperative closure phase is the same

for all constructions, spending the funding transaction’s output

and generating two new outputs. It has a size of 225 bytes, which

is approximately 0.42 USD in on-chain fees.

For the other three phases, we show our results and comparison

in Table 2. We take the numbers for LN, GC, and Sleepy from the

evaluation in [9, 13]. For Sleepy CRAB, we investigate the following
transactions. The funding transaction has 338 bytes. The commit-

ment transaction has 457 bytes. The punish transaction has 192

bytes. Finally, the payment transaction has 418 bytes. To carry out

an update, we require exchanging two commitment transactions,

as well as the pre-signed payment transactions. This results in 4

transactions or 1750 bytes exchanged. Note that additionally, we

need to exchange the revocation key (32 bytes). We omit this in the

table for all constructions, since we focus on the transactions them-

selves. In practice, two of these keys, but also some other messages

specific to how the protocol is implemented, need to be exchanged.

For a punishment, one user needs to post a commitment transac-

tion, and the other user needs to publish a punishment transaction.

This totals 649 bytes or 1.22 USD in on-chain fees. For the unilateral

close, one user also needs to publish a commitment transaction,

followed by a payment transaction, totaling 875 bytes or 1.64 USD.

From these results, we can see that Sleepy CRAB is a very prac-

tical scheme. Its on-chain overhead is comparable to the other

channel constructions, both for punishing and unilateral closure.

The off-chain communication overhead is higher than [38] or [9],

but lower than [13]. All in all, Sleepy CRAB is cheap to deploy and

as we show, compatible with the current Bitcoin implementation,

which implies that it is also compatible with other cryptocurrencies

which have limited scripting capabilities.

Table 2: Results of our evaluation and comparison to existing

schemes: Lightning Network (LN), Generalized (GC), and

Sleepy channels.

update punish unilateral close

txs bytes # txs bytes USD # txs bytes USD

LN 2 706 2 513 0.97 2 511 0.96

GC 2 695 2 663 1.25 2 695 1.31

Sleepy

(fast)

10 2408 2 450 0.85

2

(3)

449

(823)

0.85

(1.55)

Sleepy CRAB 4 1750 2 649 1.22 2 875 1.64

7 Discussion, Limitations, and Extensions

Removing timelocks. One may wonder whether our channel

construction could achieve the sought-after goal of (bi-directional)

payment channels needing only the signature verification script of

the underlying blockchain. Such a channel construction could be

adapted for other cryptocurrencies like Monero that do not support

any timelock scripts. It turns out that we can indeed remove relative

timelocks from CRAB and subsequently from Sleepy CRAB but at
the cost of losing balance security in the presence of a Byzantine

attacker. We analyze variants without timelocks of CRAB in Ap-

pendix B and Sleepy CRAB in Appendix B.2 and prove that, when

removing timelocks, our channel constructions are secure only in

the rational attacker setting. As our analysis of Section 4.3 relies

on timelocks, we fall back to the analysis used for LC channels in
Section 3.1.

Miner-Party Collusion. In our analysis in Section 4.3, we assume

that there are at least two distinct miners with non-zero mining

power and competing interests, i.e., they do not collude with each

other. All other miners are allowed to collude freely with each

other. This is a very reasonable assumption, as it is the basis of

every blockchain consensus. From Section 4.3, we can see that

having two miners with competing interests is already enough to

ensure that every miner’s best strategy is to not accept the bribe.

Note that every miner can collude with the cheating party; this is

already captured in the analysis, where we consider the cheating

party to be Byzantine.

Interestingly, even if we relax our assumption and assume an

unrealistically strong and irrational adversary, controlling miner(s)

with a combined relative mining power of 0.5 < 𝜆 < 1, who tries

to actively include the bribe even though this is not rational (this

is, in fact, equivalent to the counterparty having mining power),

we can choose a timelock where the number of remaining blocks 𝑘

is long enough, such that the non-colluding miner(s) will create a

block within that timelock with overwhelming probability. Thus,

even in this case, CRAB remains secure.

Perfect Information Game. In our game, the cheating party sends

to the mempool the bribing transaction. We underscore that if the

cheating party (say Alice) does not broadcast the bribe to all miners,

any of the miners that win a block within the timelock and do not

have the bribe transaction as motivation will simply include the

revocation transaction of Bob. Therefore, the best strategy for Alice

is to broadcast the transaction to all the miners (as in Bitcoin Alice

cannot know the miners that will win the next 𝑘 blocks.

13

UnderlyingConsensus Protocol.Asmentioned, our construction

is not restricted to Proof-of-Work (PoW) but also applies to other

consensus mechanisms, such as Proof-of-Stake (PoS). We do need to

differentiate between unpredictable block proposers and predictable

ones, e.g., PoS public leader consensus protocols where the block

proposers are known in advance. In the latter setting, the cheating

party (say Alice) needs to bribe all the 𝑙 ≤ 𝑘 block proposers to

censor Bob’s transaction, which will require bribing each of the 𝑙

block proposers more than 𝑐 . This results in a total bribe of 𝑙 · 𝑐 .
Since Alice has at most 𝑣 coins for her bribe, if 𝑣 ≤ 𝑙 ·𝑐 holds (which
is the case for 𝑐 ≥ 𝑣

2
assuming there are at least 2 distinct block

proposers), the construction is secure.

8 Conclusion

Payment channels like the Lightning Network in Bitcoin, are one

of the most promising solutions to the scalability problem of cryp-

tocurrencies. Lightning channels, however, assume that parties con-

stantly monitor the blockchain and can timely post transactions on

it. This makes them vulnerable to timelock bribing attacks, where

a cheating party may bribe miners to censor valid transactions,

resulting in loss of funds for the cheated party.

In this work, we show that Lightning channels are secure against

timelock bribing when channel parties are rational and constantly

monitor the mempool. However, Lightning channels are insecure

when a channel party is Byzantine. We then present CRAB, the first
PC construction that is secure against rational miners even when

adversarial channel parties are Byzantine and is compatible with

currencies with limited scripting capabilities like Bitcoin. We then

refine CRAB to eliminate the major assumption behind payment

channels, i.e., the need for online participation, yielding Sleepy
CRAB. We provide a proof-of-concept implementation of Sleepy
CRAB, and results demonstrate that our construction, besides being

compatible with Lightning, is as efficient as Lightning channels.

As a future work, we intend to generalize our results to Layer-2

protocols building on payment channels, such as multi-hop pay-

ments [8, 11, 32], payment channel hubs [27, 41], virtual chan-

nels [10, 12, 24, 25], and so on. This requires non-trivial adjustments

of the game-theoretic argumentation, possibly leading to additional

refinements of such protocols.

Acknowledgements. This work was supported by the European

Research Council (ERC) under the Horizon 2020 research (grant

771527-BROWSEC); by the Austrian Science Fund (FWF) through

the SFB SpyCode project F8510-N and F8512-N, the project CoRaF

(grant agreement ESP 68-N), the Bridge-1 project PR4DLT (grant

13808694), and the COMET K1 SBA and COMET K1 ABC; by

CoBloX; by the Austrian Ministry for Digital and Economic Affairs,

the National Foundation for Research, Technology and Develop-

ment and the Christian Doppler Research Association through the

Christian Doppler Laboratory Blockchain Technologies for the In-

ternet of Things (CDL-BOT); and by theWWTF through the project

10.47379/ICT22045.

References

[1] 2016. Unlinkable Outsourced Channel Monitoring. https://diyhpl.us/wiki/

transcripts/scalingbitcoin/milan/unlinkable-outsourced-channel-monitoring/.

[2] 2022. TxWithhold Smart Contracts by Gleb Naumenko. https://blog.bitmex.com/

txwithhold-smart-contracts/

[3] 2023. Bitcoin price in USD. https://coinmarketcap.com/.

[4] 2023. Bitcoin transaction fees per byte. https://privacypros.io/tools/bitcoin-fee-

estimator/.

[5] 2023. BOLT #2: Peer Protocol for Channel Management. https://github.com/

lightning/bolts/blob/master/$02-peer-protocol.md$#rationale

[6] 2023. Github repository of our evaluation proof-of-concept. https://github.com/

crab-channels/evaluation.

[7] 2024. Lightning liquidity. https://bitcoin.design/guide/how-it-works/liquidity/

#channel-reserve

[8] Lukas Aumayr, Kasra Abbaszadeh, and Matteo Maffei. 2022. Thora: Atomic

and Privacy-Preserving Multi-Channel Updates (CCS ’22). Association for Com-

puting Machinery, New York, NY, USA, 165–178. https://doi.org/10.1145/

3548606.3560556

[9] Lukas Aumayr, Oguzhan Ersoy, Andreas Erwig, Sebastian Faust, Kristina

Hostáková, Matteo Maffei, Pedro Moreno-Sanchez, and Siavash Riahi. 2021. Gen-

eralized Channels from Limited Blockchain Scripts and Adaptor Signatures. In

Advances in Cryptology – ASIACRYPT 2021.
[10] Lukas Aumayr, Matteo Maffei, Oğuzhan Ersoy, Andreas Erwig, Sebastian Faust,

Siavash Riahi, Kristina Hostáková, and Pedro Moreno-Sanchez. 2021. Bitcoin-

compatible virtual channels. In 2021 IEEE Symposium on Security and Privacy
(SP). IEEE, 901–918.

[11] Lukas Aumayr, Pedro Moreno-Sanchez, Aniket Kate, and Matteo Maffei. 2021.

Blitz: Secure Multi-Hop Payments Without Two-Phase Commits. In 30th USENIX
Security Symposium (USENIX Security 21).

[12] Lukas Aumayr, Pedro Moreno Sanchez, Aniket Kate, and Matteo Maffei. 2023.

Breaking and Fixing Virtual Channels: Domino Attack and Donner. In 30th
Annual Network and Distributed System Security Symposium, NDSS.

[13] Lukas Aumayr, Sri AravindaKrishnan Thyagarajan, Giulio Malavolta, Pedro

Moreno-Sanchez, and Matteo Maffei. 2022. Sleepy Channels: Bi-Directional

Payment Channels without Watchtowers. In Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security (Los Angeles, CA, USA)

(CCS ’22). Association for Computing Machinery, New York, NY, USA, 179–192.

https://doi.org/10.1145/3548606.3559370

[14] Georgia Avarikioti, Felix Laufenberg, Jakub Sliwinski, Yuyi Wang, and

Roger Wattenhofer. 2018. Towards Secure and Efficient Payment Channels.

arXiv:1811.12740 [cs.CR]

[15] Zeta Avarikioti, Eleftherios Kokoris-Kogias, Roger Wattenhofer, and Dionysis

Zindros. 2021. Brick: Asynchronous Incentive-Compatible Payment Channels. In

Financial Cryptography and Data Security: 25th International Conference, FC 2021,
Virtual Event, March 1–5, 2021, Revised Selected Papers, Part II. Springer-Verlag,
Berlin, Heidelberg, 209–230. https://doi.org/10.1007/978-3-662-64331-0_11

[16] Zeta Avarikioti and Orfeas Stefanos Thyfronitis Litos. 2022. Suborn Channels:

Incentives Against Timelock Bribes. In International Conference on Financial
Cryptography and Data Security. Springer, 488–511.

[17] Zeta Avarikioti, Orfeas Stefanos Thyfronitis Litos, and Roger Wattenhofer. 2020.

Cerberus Channels: Incentivizing Watchtowers for Bitcoin. In Financial Cryptog-
raphy and Data Security, Joseph Bonneau and Nadia Heninger (Eds.). Springer

International Publishing, Cham, 346–366.

[18] Joseph Bonneau. 2016. Why BuyWhen You Can Rent?. In Financial Cryptography
and Data Security, Jeremy Clark, Sarah Meiklejohn, Peter Y.A. Ryan, DanWallach,

Michael Brenner, and Kurt Rohloff (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 19–26.

[19] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and

Ten H Lai. 2019. Sgxpectre: Stealing intel secrets from sgx enclaves via speculative

execution. In 2019 IEEE European Symposium on Security and Privacy (EuroS&P).
IEEE, 142–157.

[20] Hao Chung, Elisaweta Masserova, Elaine Shi, and Sri AravindaKrishnan Thya-

garajan. 2022. Rapidash: Foundations of Side-Contract-Resilient Fair Exchange.

Cryptology ePrint Archive (2022).
[21] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov,

Lorenz Breidenbach, and Ari Juels. 2020. Flash Boys 2.0: Frontrunning in Decen-

tralized Exchanges, Miner Extractable Value, and Consensus Instability. In 2020
IEEE Symposium on Security and Privacy, SP 2020, San Francisco, CA, USA, May
18-21, 2020. IEEE, 910–927. https://doi.org/10.1109/SP40000.2020.00040

[22] Christian Decker and Rusty Russell. 2018. eltoo: A Simple Layer2 Protocol for

Bitcoin. https://blockstream.com/eltoo.pdf.

[23] Christian Decker and Roger Wattenhofer. 2015. A Fast and Scalable Payment

Network with Bitcoin Duplex Micropayment Channels. In Stabilization, Safety,
and Security of Distributed Systems - 17th International Symposium, SSS 2015,
Edmonton, AB, Canada, August 18-21, 2015, Proceedings (Lecture Notes in Computer
Science, Vol. 9212), Andrzej Pelc and Alexander A. Schwarzmann (Eds.). Springer,

3–18. https://doi.org/10.1007/978-3-319-21741-3_1

[24] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, and Daniel Malinowski. 2019.

Perun: Virtual payment hubs over cryptocurrencies. In 2019 IEEE Symposium on
Security and Privacy (SP). IEEE, 106–123.

[25] Stefan Dziembowski, Sebastian Faust, and Kristina Hostáková. 2018. General

State Channel Networks. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security (Toronto, Canada) (CCS ’18). Association

14

https://diyhpl.us/wiki/transcripts/scalingbitcoin/milan/unlinkable-outsourced-channel-monitoring/
https://diyhpl.us/wiki/transcripts/scalingbitcoin/milan/unlinkable-outsourced-channel-monitoring/
https://blog.bitmex.com/txwithhold-smart-contracts/
https://blog.bitmex.com/txwithhold-smart-contracts/
https://coinmarketcap.com/
https://privacypros.io/tools/bitcoin-fee-estimator/
https://privacypros.io/tools/bitcoin-fee-estimator/
https://github.com/lightning/bolts/blob/master/$02-peer-protocol.md$#rationale
https://github.com/lightning/bolts/blob/master/$02-peer-protocol.md$#rationale
https://github.com/crab-channels/evaluation
https://github.com/crab-channels/evaluation
https://bitcoin.design/guide/how-it-works/liquidity/#channel-reserve
https://bitcoin.design/guide/how-it-works/liquidity/#channel-reserve
https://doi.org/10.1145/3548606.3560556
https://doi.org/10.1145/3548606.3560556
https://doi.org/10.1145/3548606.3559370
https://arxiv.org/abs/1811.12740
https://doi.org/10.1007/978-3-662-64331-0_11
https://doi.org/10.1109/SP40000.2020.00040
https://blockstream.com/eltoo.pdf
https://doi.org/10.1007/978-3-319-21741-3_1

for ComputingMachinery, New York, NY, USA, 949–966. https://doi.org/10.1145/

3243734.3243856

[26] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. 2024. The Bitcoin Backbone

Protocol: Analysis and Applications. J. ACM (apr 2024). https://doi.org/10.1145/

3653445 Just Accepted.

[27] Noemi Glaeser, Matteo Maffei, Giulio Malavolta, Pedro Moreno-Sanchez, Erkan

Tairi, and Sri Aravinda Krishnan Thyagarajan. 2022. Foundations of Coin Mixing

Services. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security (Los Angeles, CA, USA) (CCS ’22). Association for

Computing Machinery, New York, NY, USA, 1259–1273. https://doi.org/10.1145/

3548606.3560637

[28] Majid Khabbazian, Tejaswi Nadahalli, and Roger Wattenhofer. 2019. Outpost: A

Responsive Lightweight Watchtower. In Proceedings of the 1st ACM Conference on
Advances in Financial Technologies (Zurich, Switzerland) (AFT ’19). Association
for Computing Machinery, New York, NY, USA, 31–40. https://doi.org/10.1145/

3318041.3355464

[29] Aggelos Kiayias and Orfeas Stefanos Thyfronitis Litos. 2020. A Compos-

able Security Treatment of the Lightning Network. In 2020 IEEE 33rd Com-
puter Security Foundations Symposium (CSF). 334–349. https://doi.org/10.1109/

CSF49147.2020.00031

[30] Marc Leinweber, Matthias Grundmann, Leonard Schönborn, and Hannes Harten-

stein. 2019. TEE-Based DistributedWatchtowers for Fraud Protection in the Light-

ning Network. In Data Privacy Management, Cryptocurrencies and Blockchain
Technology: ESORICS 2019 International Workshops, DPM 2019 and CBT 2019,
Luxembourg, September 26–27, 2019, Proceedings (Luxembourg, Luxembourg).

Springer-Verlag, Berlin, Heidelberg, 177–194. https://doi.org/10.1007/978-3-030-

31500-9_11

[31] Joshua Lind, Ittay Eyal, Peter R. Pietzuch, and Emin Gün Sirer. 2016. Teechan:

Payment Channels Using Trusted Execution Environments. CoRR abs/1612.07766

(2016). arXiv:1612.07766 http://arxiv.org/abs/1612.07766

[32] Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schneidewind, Aniket Kate, and

Matteo Maffei. 2019. Anonymous Multi-Hop Locks for Blockchain Scalability and

Interoperability. In Network and Distributed System Security Symposium, NDSS.
[33] Patrick McCorry, Surya Bakshi, Iddo Bentov, Sarah Meiklejohn, and Andrew

Miller. 2019. Pisa: ArbitrationOutsourcing for State Channels. In Proceedings of the
1st ACM Conference on Advances in Financial Technologies (Zurich, Switzerland)
(AFT ’19). Association for Computing Machinery, New York, NY, USA, 16–30.

https://doi.org/10.1145/3318041.3355461

[34] Arash Mirzaei, Amin Sakzad, Jiangshan Yu, and Ron Steinfeld. 2021. FPPW: A

Fair and Privacy Preserving Watchtower for Bitcoin. In Financial Cryptography
and Data Security: 25th International Conference, FC 2021. Springer-Verlag, Berlin,
Heidelberg, 151–169. https://doi.org/10.1007/978-3-662-64331-0_8

[35] Pedro Moreno-Sanchez, Arthur Blue, Duc V. Le, Sarang Noether, Brandon Good-

ell, and Aniket Kate. 2020. DLSAG: Non-interactive Refund Transactions for

Interoperable Payment Channels in Monero. In Financial Cryptography and Data
Security, Joseph Bonneau and Nadia Heninger (Eds.). Springer International

Publishing, Cham, 325–345.

[36] Tejaswi Nadahalli, Majid Khabbazian, and Roger Wattenhofer. 2021. Timelocked

bribing. In Financial Cryptography and Data Security: 25th International Confer-
ence, FC 2021, Virtual Event, March 1–5, 2021, Revised Selected Papers, Part I 25.
Springer, 53–72.

[37] Martin J Osborne and Ariel Rubinstein. 1994. A course in game theory. MIT press.

[38] Joseph Poon and Thaddeus Dryja. 2016. The Bitcoin Lightning Network: Scalable

Off-Chain Instant Payments.

[39] Rusty Russell. 2018. [Lightning-dev] Splicing Proposal: Feedback please! https://

lists.linuxfoundation.org/pipermail/lightning-dev/2018-October/001434.html.

[40] Jeremy Spillman. 2013. Spillman-style payment channels. https://

lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002433.html.

[41] E. Tairi, P. Moreno-Sanchez, and M. Maffei. 2021. A2L: Anonymous Atomic

Locks for Scalability in Payment Channel Hubs. In 2021 2021 IEEE Symposium
on Security and Privacy (SP). IEEE Computer Society, Los Alamitos, CA, USA,

1919–1936. https://doi.org/10.1109/SP40001.2021.00111

[42] Sri AravindaKrishnan Thyagarajan, Giulio Malavolta, Fritz Schmid, and Do-

minique Schröder. 2022. Verifiable Timed Linkable Ring Signatures for Scalable

Payments for Monero. In Computer Security – ESORICS 2022, Vijayalakshmi

Atluri, Roberto Di Pietro, Christian D. Jensen, and Weizhi Meng (Eds.). Springer

Nature Switzerland, Cham, 467–486.

[43] Peter Todd. 2018. CLTV-style payment channels. https://github.com/bitcoin/

bips/blob/master/bip-0065.mediawiki#Payment_Channels.

[44] Itay Tsabary, Matan Yechieli, Alex Manuskin, and Ittay Eyal. 2021. MAD-HTLC:

because HTLC is crazy-cheap to attack. In 2021 IEEE Symposium on Security and
Privacy (SP). IEEE, 1230–1248.

[45] Jo Van Bulck, David Oswald, Eduard Marin, Abdulla Aldoseri, Flavio D Garcia,

and Frank Piessens. 2019. A tale of two worlds: Assessing the vulnerability of

enclave shielding runtimes. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security. 1741–1758.

[46] Sarisht Wadhwa, Jannis Stoeter, Fan Zhang, and Kartik Nayak. 2023. He-HTLC:

Revisiting Incentives in HTLC. In 30th Annual Network and Distributed System

A
old

state
latest
state

B
punish not punish

A

M M

accept reject

accept reject
M

rejectaccept

Figure 6: SPNE upon applying backward induction on ΓCRAB,𝑇

Security Symposium, NDSS 2023, San Diego, California, USA, February 27 - March
3, 2023. The Internet Society. https://www.ndss-symposium.org/ndss-paper/he-

htlc-revisiting-incentives-in-htlc/

[47] Guiyi Wei, Xiaohang Mao, Rongxing Lu, Jun Shao, Yunguo Guan, and Genhua Lu.

2021. Achieve space-efficient key management in lightning network. Computer
Networks 197 (2021), 108346. https://doi.org/10.1016/j.comnet.2021.108346

A Analysis of CRAB and Sleepy CRAB with

relative timelocks

We use the single miner assumption for analysis of CRAB and

sleepy CRAB with relative timelocks.

A.1 Rational Analysis of CRAB
We represent CRAB as an extensive form game with 𝑁 = {𝐴, 𝐵,𝑀}
illustrated as a game tree ΓCRAB,𝑇 in Figure 6. The action set of the

players is as follows: player 𝐴 selects her action from 𝑆𝐴 ={latest
state, old state with bribe 𝑓 < 𝑝 < 𝑐 , old state with bribe 𝑝 = 𝑐 , old
state with bribe 𝑝 = 𝑐 + 𝛿}, where 𝛿 > 𝜖 , and 𝜖 is the opportunity

cost. 𝐵 selects his action from 𝑆𝐵 ={punish, not punish} and miner

𝑀 selects its actions from {accept, reject}. The game starts with 𝐴,

selecting an action 𝑠 from set 𝑆𝐴 . Next, 𝐵 can choose to punish 𝐴

and reveal the revocation secret 𝑟0𝑎 , or not punish 𝐴. If 𝐵 chooses

to punish 𝐴, the latter will offer a bribe 𝑝 for mining txA,0⟨spend,𝐶 ⟩ .
In the next step, 𝑀 decides whether to accept or reject the bribe
offered by𝐴. We observe that the elements depicted in the extensive

form game provide a comprehensive representation of the game,

showing the sequence of decision-making, the set of feasible actions

at each stage, and the consequent utilities for each player.

Payoff Structure. We explain the payoff as illustrated in Figure 6:

(i) If 𝐴 publishes the old state txA,0⟨commit,𝐶 ⟩ , then the following situ-

ation arises:

(a) 𝐵 punishes 𝐴 by publishing txA,0⟨revoke,𝐶 ⟩ : 𝐴 bribes miners so that

txA,0⟨spend,𝐶 ⟩ is selected. We analyze the following cases:

– 𝐴 offers a bribe 𝑓 < 𝑝 < 𝑐 : If𝑀 chooses to accept then it gets a

fee less than 𝑐 but if𝑀 rejects the bribe and mines tx
𝜙A,0
⟨revoke,𝐶 ⟩ ,

it gets payoff 𝑢𝑀 ((old state, bribe f < p < c), 𝑝𝑢𝑛𝑖𝑠ℎ, 𝑟𝑒 𝑗𝑒𝑐𝑡) =
15

https://doi.org/10.1145/3243734.3243856
https://doi.org/10.1145/3243734.3243856
https://doi.org/10.1145/3653445
https://doi.org/10.1145/3653445
https://doi.org/10.1145/3548606.3560637
https://doi.org/10.1145/3548606.3560637
https://doi.org/10.1145/3318041.3355464
https://doi.org/10.1145/3318041.3355464
https://doi.org/10.1109/CSF49147.2020.00031
https://doi.org/10.1109/CSF49147.2020.00031
https://doi.org/10.1007/978-3-030-31500-9_11
https://doi.org/10.1007/978-3-030-31500-9_11
https://arxiv.org/abs/1612.07766
http://arxiv.org/abs/1612.07766
https://doi.org/10.1145/3318041.3355461
https://doi.org/10.1007/978-3-662-64331-0_8
https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-October/001434.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2018-October/001434.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002433.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-April/002433.html
https://doi.org/10.1109/SP40001.2021.00111
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki#Payment_Channels
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki#Payment_Channels
https://www.ndss-symposium.org/ndss-paper/he-htlc-revisiting-incentives-in-htlc/
https://www.ndss-symposium.org/ndss-paper/he-htlc-revisiting-incentives-in-htlc/
https://doi.org/10.1016/j.comnet.2021.108346

𝑐 , and 𝐵 gets 𝑢𝐵 ((old state, bribe 𝑓 < 𝑝 < 𝑐), punish, reject) =

𝑣 + 𝑐 .
– 𝐴 offers a bribe 𝑝 = 𝑐: If 𝑀 chooses to accept then it gets a

fee less than 𝑐 , due to loss of opportunity cost. If𝑀 rejects the

bribe, the payoff is 𝑢𝑀 ((old state, bribe 𝑝 = 𝑐), punish,reject)=𝑐 .

Payoff of 𝐴 and 𝐵 are as follows: 𝑢𝐴((old state, bribe 𝑝 = 𝑐),

punish,accept)=𝑣 , 𝑢𝐵 ((old state, bribe 𝑝 = 𝑐), punish,accept)=𝑐 ,

and 𝑢𝐴((old state, bribe 𝑝 = 𝑐), punish,reject)=0, 𝑢𝐵 ((old state,

bribe 𝑝 = 𝑐), punish,reject)=𝑐 + 𝑣 .
– 𝐴 offers a bribe 𝑝 = 𝑐 + 𝛿 : If𝑀 accepts the bribe, it gets payoff

more than 𝑐 and 𝐴 earns a payoff 𝑣 − 𝛿 . If𝑀 rejects the bribe,

𝐴 earns payoff 0

(b) 𝐵 does not punish 𝐴: 𝑢𝐴 (old state, not punish) = 𝑣 + 𝑐 , 𝑢𝐵 (
old state,not punish) = 𝑐 and 𝑢𝑀 (old state, not punish) = 𝑓 .

(ii) If𝐴 publishes the latest state,𝑢𝐴 (latest state) = 𝑐 ,𝑢𝐵 (latest state)
= 𝑣 + 𝑐 and 𝑢𝑀 (latest state) = 𝑓 .

Desired Protocol Execution. Our desired protocol execution is 𝐴

chooses to publish latest state on-chain, and 𝐵 chooses to punish
𝐴 when it posts an old channel state. Equipped with this model,

we will prove that our intended protocol execution is a subgame

perfect Nash Equilibrium (SPNE). Subgame Perfect Nash Equilib-

rium (SPNE) is a refinement of the concept of Nash Equilibrium for

extensive form games where players act sequentially.

We assume that 𝐵 can choose to punish 𝐴 with probability 𝑞 or

not to punish with probability 1 − 𝑞, where 𝑞 ∈ [0, 1].

Theorem 2. Given that 𝑐 = 𝑣
𝑞 , the strategy profile 𝑠∗ (𝐴, 𝐵,𝑀)=

((latest state, bribe 𝑝 = 𝑐 + 𝛿), (punish with probability 𝑞 ∈ [0, 1],
not punish with probability 1−𝑞), (reject, reject, accept)) is a Subgame
Perfect Nash Equilibrium for our game.

Proof. We prove that strategy profile 𝑠∗ (𝐴, 𝐵,𝑀) is SPNE using

backward induction on ΓCRAB. If 𝐴 posts an old state, she should

ensure that𝑀 mines the transaction. She will offer a fee 𝑝 = 𝑐 + 𝜖
and miners will choose to accept the fee as it is more than 𝑐 . When

the fee is less than 𝑐 , the miners will choose to reject over accept.

If 𝑝 = 𝑐 ,𝑀 rejects the bribe as it gets a fee 𝑐 instantly rather than

waiting and losing the opportunity cost. When 𝑝 = 𝑐 + 𝛿 where

𝛿 > 𝜖 ,𝑀 gets a payoff 𝑐 + 𝛿 − 𝜖 which is greater than 𝑐 , so𝑀 will

accept the bribe.𝐴will offer a bribe 𝑝 = 𝑐+𝛿 and she gets the payoff
𝑣−𝛿 . If the miner chooses to accept the bribe and mines txA,0⟨spend,𝐶 ⟩ ,
then 𝐵 gets a payoff of 𝑐 . If 𝐵 chooses not to punish 𝐴, he still gets a
payoff of 𝑐 . So 𝐵 remains indifferent between choosing to punish

and not punish. 𝐴 believes that 𝐵 has probability 𝑞 of choosing

punish (and with probability 1 − 𝑞 he will choose not to punish), so

her payoffwill be𝑞(𝑣−𝛿)+(1−𝑞) (𝑣+𝑐) = 𝑣+(1−𝑞)𝑐−𝑞𝛿 . If we want
𝐴 to choose latest state over the old state then 𝑣 + (1 −𝑞)𝑐 −𝑞𝛿 < 𝑐 .

In other words, 𝑐 > 𝑣
𝑞 − 𝛿 , so if we set 𝑐 = 𝑣

𝑞 then we can say the

strategy profile 𝑠∗ (𝐴, 𝐵,𝑀)= ((latest state, bribe 𝑝 = 𝑐 + 𝛿), (punish
with probability 𝑞 ∈ [0, 1], not punish with probability 1−𝑞), (reject,
reject, accept)) is a Subgame Perfect Nash Equilibrium for our game.

The selected strategies are shown using black arrow in Figure 6 on

the tree ΓCRAB,𝑇 . □

A.2 Rational Analysis of Sleepy CRAB
We represent Sleepy CRAB as an extensive form game with 𝑁 =

{𝐴,𝑀} illustrated as a game tree Γ
Sleepy CRAB in Figure 7. The action

A

M M

accept
reject accept reject

M

rejectaccept

latest stateold state

old state
old state

Figure 7: SPNE upon applying backward induction on

ΓSleepy CRAB,𝑇

set of the players is as follows: player 𝐴 selects her action from

𝑆𝐴 ={latest state, old state with bribe 𝑓 < 𝑝 < 𝑐 , old state with bribe
𝑝 = 𝑐 , old state with bribe 𝑝 = 𝑐 + 𝛿}, and miner𝑀 select its action

from {accept, reject}. The game starts with 𝐴, selecting an action

𝑠 from set 𝑆𝐴 . Next,𝑀 can choose to accept the bribe from 𝐴 and

mine txA,0⟨spend,𝐶 ⟩ , or reject the bribe and mine txA,0⟨revoke,𝐶 ⟩ . Since
𝐵 is offline, it has no role in the game.

Payoff Structure.We explain the payoff as illustrated in Figure 11:

(i) If 𝐴 publishes the old state txA,0⟨commit,𝐶 ⟩ , then the following situ-

ation arises:

• 𝐴 offers a bribe 𝑓 < 𝑝 < 𝑐: If𝑀 chooses to accept then it gets a

fee less than 𝑐 but if𝑀 rejects the bribe and mines tx
𝜙A,0
⟨revoke,𝐶 ⟩ ,

miner gets payoff 𝑢𝑀 ((old state, bribe 𝑓 < 𝑝 < 𝑐), reject) = 𝑐 , 𝐵

gets payoff 𝑣 + 𝑐 , and 𝐴 gets 0.

• 𝐴 offers a bribe 𝑝 = 𝑐 : If𝑀 accepts the bribe, it earns a payoff less

than 𝑐 . If𝑀 rejects the bribe, it gets the payoff is 𝑢𝑀 ((old state,

bribe 𝑝 = 𝑐), reject)=𝑐 . Payoff of 𝐴 are as follows: 𝑢𝐴 ((old state,

bribe 𝑝 = 𝑐), 𝑎𝑐𝑐𝑒𝑝𝑡) = 𝑣 , 𝑢𝐵 ((old state,bribe 𝑝 = 𝑐), accept) =

𝑐 , and 𝑢𝐴 ((old state, bribe 𝑝 = 𝑐),reject)=0, 𝑢𝐵 ((old state, bribe

𝑝 = 𝑐), reject) = 𝑐 + 𝑣 .
• 𝐴 offers a bribe 𝑝 = 𝑐 + 𝛿 : If 𝑀 accepts the bribe, it gets payoff

more than 𝑐 and 𝐴 earns a payoff 𝑣 − 𝜖 . If𝑀 rejects the bribe, 𝐴

earns payoff 0.

(ii) If𝐴 posts the latest state,𝑢𝐴 (latest state) = 𝑐 ,𝑢𝐵 (latest state)
= 𝑐 + 𝑣 , and 𝑢𝑀 (latest state) = 𝑓 .

Desired Protocol Execution. Our desired protocol execution is

𝐴 choosing the strategy latest state upon channel closure, and 𝑀

decides to punish when 𝐴 publishes the old state and offers a bribe

less than 𝑐 . We will prove our intended protocol execution is a

subgame perfect Nash Equilibrium (SPNE).

Theorem 3. Given that 𝑐 = 𝑣 , the strategy profile 𝑠∗ (𝐴,𝑀)=
(latest state, (reject, reject, accept)) is a Subgame Perfect Nash Equi-
librium for our game.

Proof. We use backward induction on Γ
Sleepy CRAB,𝑇 as shown

in Figure 7. If𝐴 posts an old state and offers a bribe less than 𝑐 coins,
miners will reject the bribe, mine tx

𝜙A,0
⟨revoke,𝐶 ⟩ and earn the collat-

eral 𝑐 . If 𝐴 offered a bribe of more than 𝑐 coins, then𝑀 will accept

the bribe from𝐴. If the bribe offered is 𝑐 , then𝑀 will choose to pun-

ish 𝐴 and reject the bribe. When𝑀 decides to mine tx
𝜙A,0
⟨revoke,𝐶 ⟩ , 𝐴

earns payoff 0. The only time𝑀 decides not to punish 𝐴 is when it

gets a fee 𝑐 +𝛿 −𝜖 coins. However,𝐴 would earn a payoff of at most

16

A
old

state
latest
state

B
punish not punish

A

M M

accept reject

accept reject
M

rejectaccept

Figure 8: SPNE upon applying backward induction on ΓCRAB
(in absence of relative timelock)

A
old

state
latest
state

B
punish not punish

A

M M

accept reject

accept reject
M

rejectaccept

Figure 9: CRAB as EFG ΓCRAB

𝑣 − 𝛿 coins. The payoffs for both cases are less than the payoff 𝐴

would get if she chooses the latest state and gets back her collateral

𝑐 , if 𝑐 = 𝑣 .

□

B Analysis after removal of relative timelocks

from CRAB and Sleepy CRAB
Cryptocurrencies like Monero do not possess the capability for

relative timelock in their script. To adapt CRAB for a wide range

of cryptocurrencies supporting only signatures, we can get rid

of the timelocks and rely on the miners to mine the most prof-

itable transactions. Except for no relative timelock on the spending

transaction, the transaction scheme remains the same as shown

in Figure 4. Since we have no timelocks in this construction, we

cannot use the analysis of Section 4.3, and instead use the (weaker)

single miner assumption and EFG-based analysis of Section 3.1.

B.1 Rational Analysis of CRAB
We represent CRAB as an extensive form game with 𝑁 = {𝐴, 𝐵,𝑀}
illustrated as a game tree ΓCRAB in Figure 9. The action set of the

players is as follows: player 𝐴 selects her action from 𝑆𝐴 ={latest
state, old state with bribe 𝑓 < 𝑝 < 𝑐 , old state with bribe 𝑝 = 𝑐 , old
state with bribe 𝑝 = 𝑐 +𝜖}, 𝐵 selects his action from 𝑆𝐵 ={punish, not
punish} and 𝑀 selects its actions from {accept, reject}. The game

starts with 𝐴, selecting an action 𝑠 from set 𝑆𝐴 . Next, 𝐵 can choose

to punish 𝐴 and reveal the revocation secret 𝑟0𝑎 , or not punish 𝐴.

If 𝐵 chooses to punish 𝐴, the latter will offer a bribe 𝑝 for mining

txA,0⟨spend,𝐶 ⟩ . In the next step,𝑀 decides whether to accept or reject
the bribe offered by 𝐴. We observe that the elements depicted in

the extensive form game provide a comprehensive representation

of the game, showing the sequence of decision-making, the set of

feasible actions at each stage, and the consequent utilities for each

player.

Payoff Structure. We explain the payoff as illustrated in Figure 9:

(i) If 𝐴 publishes the old state txA,0⟨commit,𝐶 ⟩ , then the following situ-

ation arises:

(a) 𝐵 punishes 𝐴 by publishing txA,0⟨revoke,𝐶 ⟩ : 𝐴 bribes miners so that

txA,0⟨spend,𝐶 ⟩ is selected. We analyze the following cases:

– 𝐴 offers a bribe 𝑓 < 𝑝 < 𝑐 : If𝑀 chooses to accept then it gets a

fee less than 𝑐 but if𝑀 rejects the bribe and mines tx
𝜙A,0
⟨revoke,𝐶 ⟩ ,

it gets payoff𝑢𝑀 ((𝑜𝑙𝑑𝑠𝑡𝑎𝑡𝑒, 𝑏𝑟𝑖𝑏𝑒f < p < c), 𝑝𝑢𝑛𝑖𝑠ℎ, 𝑟𝑒 𝑗𝑒𝑐𝑡) = 𝑐 ,

and 𝐵 gets 𝑢𝐵 ((old state, bribe 𝑓 < 𝑝 < 𝑐), punish, reject) =

𝑣 + 𝑐 .
– 𝐴 offers a bribe 𝑝 = 𝑐 :𝑀 can now choose to accept or reject the

bribe as there is no relative timelock on spending txA,0⟨spend,𝐶 ⟩ .
In both the cases the payoff is 𝑢𝑀 ((old state, bribe 𝑝 = 𝑐),

punish,accept)=𝑢𝑀 ((old state, bribe 𝑝 = 𝑐), punish,reject)=𝑐 .

Payoff of 𝐴 and 𝐵 are as follows: 𝑢𝐴((old state, bribe 𝑝 = 𝑐),

punish,accept)=𝑣 , 𝑢𝐵 ((old state, bribe 𝑝 = 𝑐), punish,accept)=𝑐 ,

and 𝑢𝐴((old state, bribe 𝑝 = 𝑐), punish,reject)=0, 𝑢𝐵 ((old state,

bribe 𝑝 = 𝑐), punish,reject)=𝑐 + 𝑣 .
– 𝐴 offers a bribe 𝑝 = 𝑐 + 𝜖 : If𝑀 accepts the bribe, it gets payoff

more than 𝑐 and 𝐴 earns a payoff 𝑣 − 𝜖 . If𝑀 rejects the bribe,

𝐴 earns payoff 0

(b) 𝐵 does not punish 𝐴: 𝑢𝐴 (old state, not punish) = 𝑣 + 𝑐 , 𝑢𝐵 (
old state,not punish) = 𝑐 and 𝑢𝑀 (old state, not punish) = 𝑓 .

(ii) If𝐴 publishes the latest state,𝑢𝐴 (latest state) = 𝑐 ,𝑢𝐵 (latest state)
= 𝑣 + 𝑐 and 𝑢𝑀 (latest state) = 𝑓 .

Desired Protocol Execution. Our desired protocol execution is 𝐴

chooses to publish latest state on-chain, and 𝐵 chooses to punish
𝐴 when it posts an old channel state. Equipped with this model,

we will prove that our intended protocol execution is a subgame

perfect Nash Equilibrium (SPNE). Subgame Perfect Nash Equilib-

rium (SPNE) is a refinement of the concept of Nash Equilibrium for

extensive form games where players act sequentially.

If there is no relative timelock on spending txA,0⟨spend,𝐶 ⟩ then𝑀

can choose to either accept or reject txA,0⟨spend,𝐶 ⟩ if bribe 𝑝 = 𝑐 . We

assume that a miner accepts txA,0⟨spend,𝐶 ⟩ with probability 𝑝 ∈ [0, 1]
and rejects it with probability 1 − 𝑝 . We additionally assume that

17

A
old

state
latest
state

B
punish not punish

A

M M

accept reject

accept reject
M

rejectaccept

Figure 10: SPNE upon applying backward induction on ΓCRAB
(in absence of relative timelock)

𝐵 can choose to punish 𝐴 with probability 𝑞 or not to punish with

probability 1 − 𝑞, where 𝑞 ∈ [0, 1].

Theorem 4. Given that 𝑐 = 𝑣
𝑞 , the strategy profile 𝑠∗ (𝐴, 𝐵,𝑀)=

((latest state, bribe 𝑝 = 𝑐 + 𝜖), (punish with probability 𝑞 ∈ [0, 1],
not punish with probability 1 − 𝑞), (reject, accept with probability
𝑝 ∈ [0, 1], reject with probability 1 − 𝑝 , accept)) is a Subgame Perfect
Nash Equilibrium for our game, provided there is no relative timelock.

Proof. We prove that strategy profile 𝑠∗ (𝐴, 𝐵,𝑀) is SPNE using

backward induction on ΓCRAB. If 𝐴 posts an old state, she should

ensure that𝑀 mines the transaction. She will offer a fee 𝑝 = 𝑐+𝜖 and
minerswill choose to accept the fee as it ismore than 𝑐 .When the fee

is less than 𝑐 , the miners will choose to reject over accept. If 𝑝 = 𝑐 ,𝑀

can now either choose to either accept txA,0⟨spend,𝐶 ⟩ with probability

𝑝 or reject the bribe from 𝐴 with probability 1 − 𝑝 . Though we

consider 𝑝 to lie in the range 0 and 1, this information is not known

to 𝐴, hence she would get a payoff 𝑝𝑣 upon selecting branch 𝑝 = 𝑐 .

The payoffs of branch 𝑝 = 𝑐 and 𝑝 = 𝑐 + 𝜖 are equal if 𝑝𝑣 = 𝑣 − 𝜖 or

𝑝 = 𝑣−𝜖
𝑣 . As 𝜖 is negligible, both the brances will have equal payoff

when 𝑝 ≈ 1. Since 𝐴 is not aware of 𝑀’s behavior, she assumes

𝑝𝑣 < 𝑣 − 𝜖 , and chooses 𝑝 = 𝑐 + 𝜖 to be sure that she gets the payoff
𝑣−𝜖 . If the miner chooses to accept the bribe and mines txA,0⟨spend,𝐶 ⟩ ,
then 𝐵 gets a payoff of 𝑐 . If 𝐵 chooses not to punish 𝐴, he gets a

payoff of 𝑐 . So 𝐵 remains indifferent between choosing to punish

and not punish. 𝐴 believes that 𝐵 has probability 𝑞 of choosing

punish (and with probability 1 − 𝑞 he will choose not to punish), so

her payoffwill be𝑞(𝑣−𝜖)+(1−𝑞) (𝑣+𝑐) = 𝑣+(1−𝑞)𝑐−𝑞𝜖 . If we want
𝐴 to choose latest state over the old state then 𝑣 + (1 − 𝑞)𝑐 − 𝑞𝜖 < 𝑐 .

In other words, 𝑐 > 𝑣
𝑞 − 𝜖 , so if we set 𝑐 = 𝑣

𝑞 then we can say the

strategy profile 𝑠∗ (𝐴, 𝐵,𝑀)= ((latest state, bribe 𝑝 = 𝑐 + 𝜖), (punish
with probability 𝑞 ∈ [0, 1], not punish with probability 1−𝑞), (reject,
accept with probability 𝑝 ∈ [0, 1], reject with probability 1 − 𝑝 ,

accept)) is a Subgame Perfect Nash Equilibrium for our game. The

selected strategies are shown using blue arrow in Figure 10 on the

tree ΓCRAB. □

Since both 𝐴 and 𝐵 need to lock equal collateral, both would

stick to choosing a collateral equal to 𝑣 so that 𝑐 > 𝑣 − 𝜖 .

Corollary 7. Assuming all participants are rational and mutu-
ally distrusting, parties opening a channel need to lock collateral as
large as the channel balance to realize an CRAB if there is no relative
timelock.

B.2 Rational Analysis of Sleepy CRAB
We represent Sleepy CRAB as an extensive form game with 𝑁 =

{𝐴,𝑀} illustrated as a game tree Γ
Sleepy CRAB in Figure 11. The action

set of the players is as follows: player 𝐴 selects her action from

𝑆𝐴 ={latest state, old state with bribe 𝑓 < 𝑝 < 𝑐 , old state with bribe
𝑝 = 𝑐 , old state with bribe 𝑝 = 𝑐 + 𝜖}, and miner𝑀 select its action

from {accept, reject}. The game starts with 𝐴, selecting an action

𝑠 from set 𝑆𝐴 . Next,𝑀 can choose to accept the bribe from 𝐴 and

mine txA,0⟨spend,𝐶 ⟩ , or reject the bribe and mine txA,0⟨revoke,𝐶 ⟩ . Since
𝐵 is offline, it has no role in the game. We assume that there is no

relative timelock on txA,0⟨spend,𝐶 ⟩ .

A

M M

accept
reject accept reject

M

rejectaccept

latest stateold state

old state
old state

Figure 11: Sleepy CRAB as an EFG ΓSleepy CRAB

Payoff Structure.We explain the payoff as illustrated in Figure 11:

(i) If 𝐴 publishes the old state txA,0⟨commit,𝐶 ⟩ , then the following situ-

ation arises:

• 𝐴 offers a bribe 𝑓 < 𝑝 < 𝑐: If𝑀 chooses to accept then it gets a

fee less than 𝑐 but if𝑀 rejects the bribe and mines tx
𝜙A,0
⟨revoke,𝐶 ⟩ ,

miner gets payoff 𝑢𝑀 ((old state, bribe 𝑓 < 𝑝 < 𝑐), reject) = 𝑐 , 𝐵

gets payoff 𝑣 + 𝑐 , and 𝐴 gets 0.

• 𝐴 offers a bribe 𝑝 = 𝑐:𝑀 can now choose to accept or reject the

bribe as there is no relative timelock on spending txA,0⟨spend,𝐶 ⟩ . In
both the cases the payoff is 𝑢𝑀 ((old state, bribe 𝑝 = 𝑐), accept) =

𝑢𝑀 ((old state, bribe 𝑝 = 𝑐), reject) = 𝑐 . Payoff of𝐴 are as follows:

𝑢𝐴 ((old state, bribe 𝑝 = 𝑐), accept) = 𝑣 ,𝑢𝐵 ((old state,bribe 𝑝 = 𝑐),

accept) = 𝑐 , and 𝑢𝐴 ((old state, bribe 𝑝 = 𝑐),reject) = 0, 𝑢𝐵 ((old
state, bribe 𝑝 = 𝑐), reject) = 𝑐 + 𝑣 .
• 𝐴 offers a bribe 𝑝 = 𝑐 + 𝜖: If 𝑀 accepts the bribe, it gets payoff

more than 𝑐 and 𝐴 earns a payoff 𝑣 − 𝜖 . If𝑀 rejects the bribe, 𝐴

earns payoff 0

(ii) If𝐴 posts the latest state,𝑢𝐴 (latest state) = 𝑐 ,𝑢𝐵 (latest state)
= 𝑐 + 𝑣 , and 𝑢𝑀 (latest state) = 𝑓 .

Desired Protocol Execution. Our desired protocol execution is

𝐴 choosing the strategy latest state upon channel closure, and 𝑀

decides to punish when 𝐴 publishes the old state and offers a bribe

less than 𝑐 . If 𝐴 has posted an old state,𝑀 will choose to punish 𝐴
when the bribe offered is more than 𝑣 but less than 𝑐 , or not punish
when the bribe provided is more than 𝑐 . If 𝐴 offers a fee 𝑐 , then

18

𝑀 can select punish or not punish with equal probability. We will

prove our intended protocol execution is a subgame perfect Nash

Equilibrium (SPNE).

A

M M

accept
reject accept reject

M

rejectaccept

latest stateold state

old state
old state

Figure 12: SPNE for Γ
Sleepy CRAB (without relative timelock)

Given there is no relative timelock on spending txA,0⟨spend,𝐶 ⟩ then

𝑀 can choose to either accept or reject txA,0⟨spend,𝐶 ⟩ if bribe 𝑝 = 𝑐 . We

assume that a miner accepts txA,0⟨spend,𝐶 ⟩ with probability 𝑝 ∈ [0, 1]
and rejects it with probability 1 − 𝑝 .

Theorem 5. Given that 𝑐 = 𝑣 + 𝜖 and there is no relative time-
lock, the strategy profile 𝑠∗ (𝐴,𝑀)= (latest state, (reject, accept with
probability 𝑝 , reject with probability 1 − 𝑝 , accept)) is a Subgame
Perfect Nash Equilibrium for our game.

Proof. We use backward induction on Γ
Sleepy CRAB as shown

in Figure 12. If 𝐴 posts an old state and offers a bribe less than 𝑐

coins, miners will reject the bribe, mine tx
𝜙A,0
⟨revoke,𝐶 ⟩ and earn the

collateral 𝑐 . If 𝐴 offered a bribe of more than 𝑐 coins, then𝑀 will

accept the bribe from 𝐴. If the bribe offered is 𝑐 , then 𝑀 has no

preference and can choose to punish 𝐴 or not to punish. When𝑀

decides to mine tx
𝜙A,0
⟨revoke,𝐶 ⟩ , 𝐴 earns payoff 0. The only time 𝑀

decides not to punish 𝐴 is when it gets a fee 𝑐 + 𝜖 coins. However,
𝐴 would earn a payoff of at most 𝑣 − 𝜖 coins. The payoffs for both
cases are less than the payoff 𝐴 would get if she chooses the latest

state and gets back her collateral 𝑐 .

We choose the collateral 𝑐 = 𝑣 + 𝜖 , i.e., slightly higher than 𝑣 to

get the intended protocol execution. If the collateral 𝑐 was equal to

𝑣 coins, then 𝐴 could offer 𝑐 = 𝑣 coins to miners for mining the old

state and keep 𝑣 coins. There is a non-zero probability with which

𝑀 might choose the old state, and 𝐵 ends up getting a payoff of 0.

□

From Theorem 5, we derive the desired property for Sleepy
CRAB under rational participants.

Corollary 8. Assuming rational parties and miners, with one
participant remaining offline, balance security is satisfied in Sleepy
CRAB.

C Interplay of Sleepy CRAB with LC
Sleepy CRAB can be used alongside Lightning channels in an agile

way. Users can use Lightning channels, until they wish to go offline,

at which point they simply change to Sleepy CRAB, using a tech-
nique known as splicing [39]. Splicing allows users to increase or

decrease the channel capacity with an on-chain transaction, which

can be thought of as closing the old and simultaneously opening

a new channel, with a different capacity. Indeed, we can use this

technique to change the nature of the channel to Sleepy CRAB, by
adding the necessary collateral and logic (or else change it back to

Lightning).

We illustrate splicing in Figure 13. The funding transaction

tx⟨fund,𝐶 ⟩ is used for opening a LC, where 𝐴 has a balance 𝑣 + 𝛿
coins and 𝐵 has a balance 𝛿 coins. 𝐴 and 𝐵 continue performing

off-chain payments using this lightning channel 𝐶 . 𝐴 and 𝐵 update

𝐶 to the 𝑗𝑡ℎ state update, where 𝐴 has a balance 𝑣𝑎 + 𝛿 and 𝐵 has

a balance 𝑣𝑏 + 𝛿 . If one of the participants wants to go offline, he

or she informs the other channel participant. 𝐴 and 𝐵 mutually

agrees to open a Sleepy CRAB, where tx⟨fund,𝐶 ⟩ is used to fund

the funding transaction of Sleepy CRAB. Additional input of 𝑐 − 𝛿
coins each would be required for the collateral from both 𝐴 and

𝐵 respectively. The funding transaction tx⟨𝑐𝑟𝑎𝑏−fund,𝐶 ⟩ is used to

open the Sleepy CRAB𝐶 , where𝐴 has balance 𝑣𝑎+𝑐 coins and 𝐵 has

a balance 𝑣𝑏 +𝑐 coins. Once tx⟨𝑐𝑟𝑎𝑏−fund,𝐶 ⟩ is posted on-chain, the
lightning channel ceases to exist. Neither 𝐴 can post tx

A, 𝑗
⟨commit,𝐶 ⟩

nor 𝐵 can post tx
B, 𝑗
⟨commit,𝐶 ⟩ on-chain.

𝐴 and 𝐵 continue using the Sleepy CRAB, and 𝐵 goes offline for

a certain period of time, after the 𝑘𝑡ℎ channel update. Let balance

of 𝐴 and 𝐵 be 𝑣 ′𝑎 + 𝑐 and 𝑣 ′
𝑏
+ 𝑐 . He has to post the secret 𝑟𝑘−1

𝑏
on-chain before going offline. If 𝐴 misbehaves when 𝐵 is offline,

miners will punish 𝐴. Once 𝐵 becomes active, he can request 𝐴 to

close the Sleepy CRAB and switch back to LC by withdrawing the

collateral 𝑐 . In the Figure 13, we show a third arrow going out of

tx⟨𝑐𝑟𝑎𝑏−fund,𝐶 ⟩ . It shows that the output of tx⟨𝑐𝑟𝑎𝑏−fund,𝐶 ⟩ serves
as the input of the funding transaction tx⟨𝑙𝑐−fund,𝐶 ⟩ for the new
LC between 𝐴 and 𝐵. Only 𝑣 + 2𝛿 coins are used for funding the

channel, rest 2𝑐 − 2𝛿 coins are divided equally between 𝐴 and 𝐵.

The initial commitment transaction of this new channel will have

output distributed as per the 𝑘𝑡ℎ state of Sleepy CRAB 𝐶 .

19

To Lightning Channel

Sleepy CRAB

Lightning Channel

Figure 13: Transaction scheme for Splicing

20

	Abstract
	1 Introduction
	1.1 Limitations of PCs
	1.2 Related Work
	1.3 Our Contributions

	2 Background and Model
	2.1 Preliminaries
	2.2 Lightning Channels
	2.3 Model and Security Goals

	3 Analysis for the Bitcoin LC
	3.1 Lightning Channels Model and Analysis

	4 CRAB Protocol
	4.1 CRAB Design
	4.2 Protocol Description
	4.3 CRAB Analysis

	5 Sleepy CRAB
	5.1 Protocol Description
	5.2 Analysis of Sleepy CRAB
	5.3 Interplay with Lightning channels

	6 Evaluation
	7 Discussion, Limitations, and Extensions
	8 Conclusion
	References
	A Analysis of CRAB and Sleepy CRAB with relative timelocks
	A.1 Rational Analysis of CRAB
	A.2 Rational Analysis of Sleepy CRAB

	B Analysis after removal of relative timelocks from CRAB and Sleepy CRAB
	B.1 Rational Analysis of CRAB
	B.2 Rational Analysis of Sleepy CRAB

	C Interplay of Sleepy CRAB with LC

