
Computation Efficient Structure-Aware PSI

From Incremental Function Secret Sharing

Gayathri Garimella Benjamin Goff Peihan Miao

Brown University

Abstract

Structure-Aware Private Set Intersection (sa-PSI), recently introduced by Garimella et al.
(Crypto’22), is a PSI variant where Alice’s input set SA has a publicly known structure (for
example, interval, ball or union of balls) and Bob’s input SB is an unstructured set of elements.
Prior work achieves sa-PSI where the communication cost only scales with the description size of
SA instead of the set cardinality. However, the computation cost remains linear in the cardinality
of SA, which could be prohibitively large.

In this work, we present a new semi-honest sa-PSI framework where both computation and
communication costs only scale with the description size of SA. Our main building block is a
new primitive that we introduce called Incremental Boolean Function Secret Sharing (ibFSS),
which is a generalization of FSS that additionally allows for evaluation on input prefixes. We
formalize definitions and construct a weak ibFSS for a d-dimensional ball with ℓ∞ norm, which
may be of independent interest. Independently, we improve spatial hashing techniques (from
prior work) when SA has structure union of d-dimensional balls in ({0, 1}u)d, each of diameter δ,
from O(u · d · (log δ)d) to O(log δ · d) in terms of both computation and communication. Finally,
we resolve the following open questions from prior work with communication and computation
scaling with the description size of the structured set.

� Our PSI framework can handle a union of overlapping structures, while prior work strictly
requires a disjoint union.

� We have a new construction that enables Bob with unstructured input SB to learn the
intersection.

� We extend to a richer class of functionalities like structure-aware PSI Cardinality and
PSI-Sum of associated values.

1

Contents

1 Introduction 3
1.1 Our Contributions . 3
1.2 Related Work . 5

2 Technical Overview 6

3 Preliminaries 9

4 Incremental Boolean Function Secret Sharing 10

5 sa-PSI with Alice Learning Output 12
5.1 Multiple (Overlapping) Balls with Multiple Points 12
5.2 Spatial Hashing . 16

6 ibFSS for d-dimensional ℓ∞-balls 19
6.1 ibDCF Definition . 19
6.2 ibDCF Constructions . 21

7 Instantiation and Evaluation 23
7.1 Single Ball with Single Point . 24
7.2 Multiple (Overlapping) Balls with Multiple Points 25
7.3 Spatial Hashing . 25

8 Extending Functionality 27
8.1 sa-PSI with Bob Learning Output . 27
8.2 Structure-Aware PSI Cardinality/Sum . 28

A Cryptographic Tools 37
A.1 Cryptographic Schemes . 37
A.2 Secure Two-Party Computation . 37

B Security Proofs 38
B.1 Proof of Theorem 6 . 38
B.2 Proof of Theorem 8 . 42
B.3 Proof of Theorem 9 . 47
B.4 Proof of Theorem 10 . 47
B.5 Proof of Theorem 11 . 47

2

1 Introduction

Private Set Intersection (PSI) enables two distrusting parties, each holding a private set of elements,
to jointly compute the intersection of their sets without revealing any additional information. Over
the past decade, PSI has found numerous real-world applications, such as secure password breach
checkup [ALP+21, Chr, Edg, Key], mobile private contact discovery [KRS+19, Sig], online adver-
tising measurement [IKN+20,MPR+20, Ads], privacy-preserving contact tracing in a global pan-
demic [TSS+20,BBV+20,App], and more. There has been enormous progress towards realizing PSI
efficiently to be deployed in practice, at scale. Most of these protocols have both the computational
and communication complexity proportional to the size of the two sets [HFH99,HEK12,KKRT16,
RR17,PSTY19,PRTY19,CM20,RS21,GPR+21,CRR21,RS21,RR22,CILO22,BPSY23].

Recent work by Garimella et al. [GRS22] considers the scenario where one party’s input set has a
publicly known structure. They introduce Structure-Aware PSI (sa-PSI), where Alice has an input
set SA ∈ S from a known family of structured sets S (for example, a single-dimensional interval,
high-dimensional ball, disjoint union of balls) and Bob’s input set SB consists of an unstructured
collection of elements. The size of SA could potentially be much larger than SB, namely |SA| ≫ |SB|,
but the structure leads to a succint description size of the set SA. sa-PSI [GRS22,GRS23] allows
Alice to learn the intersection SA∩SB with communication≪ |SA|, that scales with the description
size of SA instead of its cardinality.

Structure-aware PSI finds many applications in practice. For instance, suppose Alice and Bob
each have a set of points A and B respectively, and they want to identify which pairs of their points
are close by, namely (x, y) ∈ A×B satisfying D(x, y) ≤ δ, where D is a public distance metric and δ
is a public threshold. We can model this problem as an instance of sa-PSI, where Alice’s structured
input SA is a union of δ-balls (for each point x ∈ A, consider a ball centered at x with radius δ
under the distance metric D), and Bob’s input is his unstructured input set B. This can be used
for applications such as noisy/fuzzy biometric matching [FNP04,UCK+21] and privacy-preserving
ride sharing [RADN22,GWSW22], among others.

Prior works [GRS22,GRS23] present a general framework for semi-honest and malicious secure
sa-PSI, respectively, with specific construction for set family of union of d-dimensional balls in
the ℓ∞ norm, where the communication cost is independent of the total volume of the balls in the
structured input. However, an inherent limitation is that Alice’s local computation cost remains
linear in the size of her structured input |SA| (that is, total volume of the balls), which can be
exponentially large. This leaves us with the following open problem that is explicitly mentioned
in [GRS22]:

Can we achieve sa-PSI where both computation and communication costs only scale with the
description size of the structured set?

1.1 Our Contributions

Structure-Aware PSI with efficient computation. In this work, we answer the above question
in the affirmative. We present a new semi-honest sa-PSI protocol for union of ℓ∞-balls in a d-
dimensional space, where both computation and communication costs only scale with the description
size of the structured set. We achieve both communication and communication complexity of
O(NA · ud), in a d dimensional space ({0, 1}u)d where NA is the number of balls in Alice’s set,
instead of scaling with |SA|, which could potentially be as large as 2u·d.

3

Incremental Boolean Function Secret Sharing. The main building block underneath our
construction is a new notion we introduce, called Incremental Boolean Function Secret Sharing
(ibFSS). Intuitively speaking, FSS [BGI15] splits a function f from a function family F into two
functions, f0, f1, such that each function fb hides the function f and that f0(x) + f1(x) = f(x)
for all input x. Our new notion ibFSS is an instance of Boolean FSS [GRS22], for a function that
captures set membership of a structured set SA, meaning that f(x) = 0 if x ∈ SA and f(x) = 1
otherwise. Additionally, ibFSS also enables evaluation on prefixes of all the points while preserving
the FSS properties. We formalize the notion of ibFSS and give a construction for d-dimensional
ℓ∞-balls. We then present a generic framework of constructing sa-PSI from ibFSS, and instantiate
the protocol with d-dimensional ℓ∞-balls. As a result, Alice’s computation cost is reduced from
O(|SA|) to O(ud) for a single ball (see Table 1 in Section 7.1). It is worth noting that our ibFSS
construction only uses lightweight operations of pseudorandom generators (PRGs) and may be of
independent technical interest.

New, efficient construction for union of (overlapping) structured sets. We develop a
new approach for PSI with union of structures as input, that improves both computation and
communication costs from exponential to linear in the dimension d, namely from O(ud) to O(u · d)
(see Table 2 in Section 7.2). The construction in prior works [GRS22,GRS23] crucially requires
that Alice’s structure is a union of disjoint balls, because it is unclear how to construct an efficient
FSS scheme for a union of overlapping structures. However, such a requirement may not be feasible
in certain applications such as privacy-preserving ride sharing. We answer the following question
in the affirmative:

Can we achieve sa-PSI for a union of overlapping balls?

New spatial hashing techniques. Garimella et al. [GRS22] introduced a spatial hashing tech-
nique to improve the performance of structure-aware PSI for a union of NA disjoint d-dimensional
ℓ∞-balls of the same diameter δ. This technique was further improved in [GRS23]. In this work,
we introduce a new perspective on spatial hashing, which improves both computation and com-
munication costs from O(u · d · (log δ)d) to O(log δ · d) (see Table 3 in Section 7.3). Furthermore,
we relax the restrictions on the balls, supporting overlapping balls with different diameters. The
new spatial hashing techniques is compatible with the previous framework [GRS22, GRS23] and
improves the communication cost of all prior constructions.

Extended functionalities. The previous construction [GRS22, GRS23] is critically restricted
to one-sided, plain PSI, where Alice, the party holding the structured set, learns the entire set
intersection. It is unclear how to extend it to more advanced functionalities. For instance, certain
real-world applications may require only Bob to learn the output. A naive approach that does not
work is to have Alice send the FSS evaluations of all her elements in SA to Bob, which is highly
inefficient. Even worse, these evaluations can reveal critical information about Alice’s structured
set; in fact, they reveal Alice’s entire set to Bob! As another extension, we may want to reveal only
aggregate information about the intersection, while hiding the actual contents of the intersection.
One notable functionality, PSI-Cardinality, allows two parties to only learn the cardinality of their
intersection |SA ∩ SB|.

Can we achieve sa-PSI that enables only Bob to learn the output?
Can we achieve sa-PSI that enables Alice (or Bob) to learn PSI-Cardinality?

4

In this work, we present new sa-PSI protocols for these extended functionalities, allowing them to
learn PSI-Cardinality as well as PSI-Sum [IKN+20], in which Bob has an integer value associated
with every element in his set and they jointly learn the summation of all the associated values for
elements in the intersection. We further allow only Bob to learn the output in all these function-
alities, including PSI, PSI-Cardinality, and PSI-Sum. All our protocols have communication and
computation costs that only scale with the description size of the structured set. Our constructions
only use lightweight symmetric-key cryptographic operations (such as pseudorandom generators
and hash functions) and oblivious transfer (OT) [Rab05], which can be instantiated efficiently with
OT extension [IKNP03].

1.2 Related Work

Conventional PSI and related notions. In recent years, many paradigms for PSI protocols
have evolved, including circuit-based [HEK12,PSSZ15,PSWW18,PSTY19], Diffie-Hellman [HFH99,
JL10,IKN+20], oblivious polynomial evaluation [KS05,DMRY11], RSA [DT10,ADT11], fully homo-
morphic encryption [CLR17,CHLR18,CMdG+21], bloom filters [DCW13,RR17], oblivious trans-
fer [PSZ14, KKRT16, PRTY19, CM20], and vector oblivious linear evaluation [RS21, GPR+21,
CRR21, RR22] approaches, achieving both semi-honest and malicious security [RR17, OOS17,
CHLR18,PRTY20,RS21,CILO22,BPSY23].

As discussed earlier, certain applications require PSI with more refined functionalities, such
as allowing only a designated party to learn the output or enabling restricted computation on the
elements in the intersection [PSTY19,KK20,HMS21,GMR+21,RS21,HMS21,CGS22]. For instance,
PSI-Cardinality and PSI-Sum model many applications like aggregated ads measurement [IKN+20,
MPR+20] and privacy-preserving contact tracing [TSS+20,BBV+20].

Structure-aware PSI. Recent work of Garimella et al. [GRS22] introduced the notion of structure-
aware PSI, where Alice holds a set with a publicly known structure and Bob holds an unstruc-
tured set of points. In such a setting where one party’s set could be substantially larger than
the other, namely unbalanced PSI, it is possible to construct protocols with communication sub-
linear in the larger set using RSA accumulators [DT10, ADT11], leveled fully homomorphic en-
cryption [CLR17, CHLR18, CMdG+21], or laconic PSI [ABD+21, ALOS22, DKL+23, GHMM24].
However, they require expensive public-key cryptographic operations, and the computation cost
remains linear the larger set.

In contrast, the work of Garimella et al. [GRS22] constructs a semi-honest structure-aware PSI
using lightweight cryptographic tools including PRG, hash functions, and OT, taking advantage of
the efficient OT extension [IKNP03]. A follow-up work [GRS23] extends the protocol to achieve
malicious security. Both works achieve communication cost that only scales with the description
size instead of cardinality of Alice’s structured set. However, Alice’s computation cost still scales
with the cardinality of her set. Another recent work [vBP24] achieves both communication and
communication costs that scale linearly with the diameter δ and exponentially in the dimension d,
in two interaction messages. They rely on the Decisional Diffie-Hellman (DDH) assumption and
public-key operations, especially leveraging the homomorphism of ElGamal encryption [ElG85].

The following works [AKB07,WG14,WXL+18,GS19,ZCL21] study fuzzy matching or thresh-
old PSI, that reveals the intersection, only when it is above a certain threshold. Chakraborti
et al. [CFR21] and [UCK+21] construct fuzzy PSI protocols (which they call distance-aware PSI)
for Hamming distance metric, based on homomorphic encryption.

5

Function Secret Sharing. Function secret sharing (FSS) was first introduced by Boyle et
al. [BGI15] who proposed efficient FSS constructions for point functions, comparison functions,
and a few other interesting classes. These original FSS constructions were further optimized and
extended in a sequence of works for point functions, multi-point functions, comparison functions
and d-dimensional intervals [BGI16,BCG+21,BGIK22]. Boneh et al. [BBC+21] extended the con-
struction of Distributed Point Function (DPF), namely FSS for point functions, to Incremental
DCF, which allows for evaluation on any prefix of a string. In this work, we further extend the
notion to Incremental Distributed Comparison Function (DCF) and give an efficient construction
of it from PRG, which may be of independent interest. Boolean FSS (bFSS) was introduced by
Garimella et al. [GRS22] to capture structured sets, and they present bFSS constructions for union
of disjoint structured sets. We formalize an extended notion of Incremental Boolean FSS (ibFSS)
and present an ibFSS construction for d-dimensional ℓ∞ balls, from which we construct our sa-PSI
protocol.

2 Technical Overview

Prior framework for sa-PSI. We first briefly revisit the framework in prior works [GRS22,
GRS23]. The main building block is a weak Boolean FSS scheme t-bFSS (with evaluation output
bit length t) for Alice’s set family (e.g., a single-dimensional interval, d-dimensional ball, or union
of balls). The scheme succinctly secret shares a set SA and produces a pair of keys (k0, k1) ←
Share(1κ, SA) with the property that each key share kb hides the structure SA and that Eval(k0, y⃗)⊕
Eval(k1, y⃗) = 0t when y⃗ ∈ SA and Eval(k0, y⃗) ⊕ Eval(k1, y⃗) ̸= 0t otherwise. The authors leverage
this tool for set-membership testing and realize a secure PSI scheme as follows.

Alice generates κ independent sharings of her set and obtains (short) keys (k
(i)
0 , k

(i)
1)← Share(1κ, SA)

for each instance i ∈ [κ], where κ is the security parameter. Bob randomly samples a string
s← {0, 1}κ to indicate his choice bits for each sharing. Alice and Bob perform an oblivious trans-

fer (OT) protocol [Rab05], where Bob, as the receiver, learns one of the two shares k
(i)
s[i] based on

his choice bit s[i], while Alice remains oblivious to Bob’s choice bits. Bob defines a special function
that can be computed as follow:

F(y⃗) = H
(
Eval(k

(1)
s[i], y⃗)∥ . . . ∥Eval(k

(κ)
s[i], y⃗)

)
.

Bob sends {F(y⃗) | y⃗ ∈ SB} to Alice. Alice can only compute this special function if y⃗ ∈ SA,
otherwise the output looks pseudorandom. Why? When y⃗ ∈ SA, both key shares evaluate to

the same value, namely Eval(k
(i)
0 , y⃗) = Eval(k

(i)
1 , y⃗) by the t-bFSS property, hence the function

evaluation is independent of Bob’s choice bits. She simply computes the function as follows:

F(y⃗) = H
(
Eval(k

(1)
0 , y⃗)∥ . . . ∥Eval(k(κ)0 , y⃗)

)
.

When y⃗ /∈ SA, it holds that Eval(k
(i)
0 , y⃗) ̸= Eval(k

(i)
1 , y⃗), so Alice must simultaneously guess all

of Bob’s choice bits (which is negligibly likely), to compute the function. The output F(y⃗) is
pseudorandom to Alice assuming H is a correlation robust hash function. Therefore, Alice only
recognizes evaluations on values in the intersection.

Cost Analysis. If there exists a t-bFSS scheme with succinct keys (of size σ ≪ |SA|) for Alice’s
set family, then the sa-PSI protocol is communication-efficient with cost O((σ+ |SB|) ·κ). However,

6

an inherent drawback of this approach is that Alice must compute the following set of size |SA|

{H(Eval(k(1)0 , x⃗)∥ . . . ∥Eval(k(κ)0 , x⃗)) | x⃗ ∈ SA}

in order to locally compare with Bob’s message of hash evaluations, and identify matches to learn
the intersection. Alice’s computation cost scales with the cardinality of her structured input |SA|,
which can be prohibitively large for many applications.

Our new framework for sa-PSI. Our first contribution is a new framework for sa-PSI where both
computation and communication costs scale with the (short) description size of Alice’s set, from a
new tool called weak Incremental Boolean Function Secret Sharing ibFSS. At a high-level, the idea
is that Bob will craft and send additional “hints” along with hash evaluations on his inputs. The
hints will help Alice efficiently identify and search for values that are in the intersection, without
having to expand and compute on every item in her full set.

Firstly, we observe that a structured set from a set family SA ∈ S can be succintly represented
by a distinct and bounded set of w critical prefixes, where w is a direct function of S. Each of
these critical prefixes is a placeholder for all inputs in SA that share the same prefix. Stated
differently, every input in SA has one of the w critical prefixes as its prefix. For instance, if
Alice’s structured set is a one-sided interval (0, α], where the partition point α ∈ {0, 1}u, then
at most u critical prefixes will span her interval (since α is a string of length u). Alternatively,
if the structured set is a d-dimensional ℓ∞-ball, which is a cross product of 2 · d one-dimensional
intervals, then at most u2·d critical prefixes will span such an input. In our new sa-PSI framework,
we exploit the fact that the set of critical prefixes is much smaller than the total set size to reduce
computation. For this, we will require an additional property on the weak Boolean FSS (from prior
work [GRS22]) that allows evaluation not only on the inputs strings but also on all its prefixes.
The guarantee will be Eval(k0, y⃗) ⊕ Eval(k1, y⃗) = 0t for all y⃗ that is a critical prefix or contains
a critical prefix (this implicitly includes every input in Alice’s set SA). For all other y⃗, it holds
that Eval(k0, y⃗)⊕Eval(k1, y⃗) ̸= 0t. We formalize these requirements and define weak Incremental
Boolean Function Secret Sharing ibFSS in in Section 4, and present a construction for d-
dimensional ℓ∞-balls in Section 6.

So, how does our sa-PSI protocol work and what are these “hints”? Let’s use a simple example.
Alice’s input SA is a single d-dimensional ball (or any other structure in d-dimensional space), while
Bob’s input SB contains a single point y⃗ = (y1, . . . , yd) ∈ [2u]d. Following prior work, Alice secret
shares her input κ times using ibFSS. Bob then samples a uniform string s ← {0, 1}κ and via OT
learns one of the two keys for each sharing. Now, Bob defines a special function using his shares
and evaluates on his input y⃗:

F(y⃗) = H
(
Eval(k

(1)
s[i], y⃗)∥ . . . ∥Eval(k

(κ)
s[i], y⃗)

)
.

Additionally, he evaluates on all prefixes y⃗′ of his input as “hints” and sends to Alice:{
F(y⃗)

∣∣∣∣ ℓ1 ∈ [u], . . . , ℓd ∈ [u],

y⃗′ := ((y1)[1:ℓ1], . . . , (yd)[1:ℓd])

}
.

Alice identifies a set of critical prefixes for her input ball. The claim is that if Bob’s input y⃗ ∈ SA,
then there is exactly one critical prefix p⃗ = (p1, . . . , pd) that is a prefix match of y⃗. As guaranteed
by the ibFSS scheme, Alice can compute Bob’s function on this prefix p⃗ as follows:

F(p⃗) = H
(
Eval(k

(1)
0 , p⃗)∥ . . . ∥Eval(k(κ)0 , p⃗)

)
.

7

Alice can recognize F(p⃗) from Bob’s set of hints. Furthermore, it’s not hard to see that exactly one
of the two prefixes (p1∥0, p2, . . . , pd), (p1∥1, p2, . . . , pd) is a prefix of y⃗. Alice can correctly compute
the function on the matching prefix and is guaranteed to find this value in Bob’s set of hints (since
he sends evaluations on every prefix of his input). Similarly, Alice can iteratively figure out the
rest of the bits of y⃗ using binary search, to learn the intersection. Finally, if Bob’s input y⃗ /∈ SA,
then Alice cannot compute Bob’s function correctly on any of her prefixes, and as a result, learns
nothing about his private input. This is the crux of our new approach and how we achieve savings
in computation at the cost of slightly increased communication from Bob.

Multiple (overlapping) balls with multiple points. Next, we consider the case when Alice’s

input is a union of multiple balls (or any structure), namely SA = S⃗
(1)
A ∪ . . . ∪ S⃗

(NA)
A , and Bob’s

input contains multiple points |SB| > 1. Prior work [GRS22,GRS23] introduced an elegant sum
transformation to obtain a 1-bFSS scheme for a disjoint union of structures. However, this technique
is only compatible with a restricted class of strong 1-bFSS schemes that output a single bit, whose
constructions are significantly more expensive. In particular, both the key share sizes and evaluation
costs scale exponentially in the dimension d.

In this work, we circumvent this limitation to realize sa-PSI for union of structures (even possibly
overlapping structures, under certain conditions) from the more efficient weak t-bFSS schemes with
both key share sizes and evaluation costs linear in d. Our improvement comes from the following
observation. If Alice learns from the PSI ideal functionality that an element y⃗ is in the intersection,
then it implicitly reveals the underlying structured set(s) that contain y⃗, that is, every i ∈ [NA]

for which y ∈ S⃗
(i)
A . Hence, we propose a new protocol where Alice compares each of her structures

S⃗
(i)
A , i ∈ [NA], individually, with Bob’s input y⃗ (effectively, NA instances of PSI with a single

structure against Bob’s input y⃗). Since we evaluate each structure separately, the underlying t-
bFSS scheme can be instantiated more efficiently (no longer restricted by the sum transformation)
and it’s compatible even when the structures are overlapping.

To handle multiple points in Bob’s set, he will send prefix evaluations for each of his inputs
to Alice. It could happen that some prefixes overlap across different inputs, which may leak extra
information to Alice. A simple fix is to have Bob send the union of his evaluations across all inputs
and pad with dummy values, which we will show is sufficient. We present the full construction in
Section 5.1.

Spatial hashing. One drawback of our sa-PSI protocol discussed so far is that Bob’s commu-
nication cost scales with the number of structures in Alice’s set NA. Garimella et al. [GRS22]
introduced a technique called spatial hashing, that removes this dependence for a disjoint union
of d-dimensional ℓ∞-balls of the same, fixed diameter δ. This technique was further improved
in [GRS23]. Their high-level idea is to divide the input space into contiguous grid cells, construct
FSS keys for all the active grid cells that contain or intersect with Alice’s input balls, and then
pack these FSS keys into an oblivious key value store (OKVS) data structure [GPR+21]. In our
work, we present a new, improved spatial hashing technique, that is composable with our new (and
prior) framework instantiated with weak FSS, and supports overlapping structures of varying size.
We discuss more in Section 5.2.

Extended functionalities. We solve another open question from prior work – can we construct
sa-PSI where Bob (with unstructured set) learns the intersection? We leverage the fact that, Alice
can identify a (bounded) set of w ≪ |SA| critical prefixes to represent her set. For a given input
y⃗ ∈ SB, Bob only needs to compare all its prefixes with Alice’s critical prefixes. If Bob learns that

8

there is exactly one match, then he includes y⃗ in the intersection; otherwise not. A straightforward
method is to run a standard PSI-Caridinality between both sets of prefixes, for each of Bob’s input.
We present the construction in Section 8.1.

Finally, we present the first construction for Structure-Aware PSI-Cardinality. A naive approach
is that both parties run the best known semi-honest PSI-Cardinality protocol on their inputs.
However, since the communication and computation will scale with Alice’s set size |SA|, the protocol
is not efficient. Instead, since Alice can identify a set of w ≪ |SA| critical prefixes, if Bob’s input
intersects/matches with any of the critical prefixes, then it should be counted for intersection
cardinality, otherwise not. This idea can be further generalized to compute PSI-Sum. We discuss
the full details in Section 8.2.

3 Preliminaries

Notation. Let κ and λ denote the computational and statistical security parameter, respectively.
For an integer m ∈ N, let [m] = {1, 2, . . . ,m}. PPT stands for probabilistic polynomial time. By
∼=κ and ∼=λ we mean two distributions are computationally indistinguishable and statistically close,
respectively. Given a string α ∈ {0, 1}∗, we use |α| to denote its length, and α[1:i] to represent the
prefix of length i of α, where i ∈ [|α|]. For two strings α, β ∈ {0, 1}∗, we use α∥β to denote string
concatenation.

Ball of diameter δ in ℓ∞ metric space. Let x = (x1, . . . , xd) be a point in a d-dimensional

space. The ℓ∞ norm of x is defined as |x|∞
def
= maxi |xi|. A ball consists of the set of points within

some distance of a center point. The ball of diameter δ (or radius δ
2) centered at x is defined as

B(x, δ2)
def
= {y | d(x, y) ≤ δ

2}. Under the ℓ∞ norm, a ball B(x, δ2) is a polytope with 2d faces, i.e.,

the intersection of 2d half-spaces. Namely, the ball B(0, δ2) centered at the origin is the intersection

of all half-spaces of the form ±xi ≤ δ
2 for every i and every choice of sign.

Oblivious Key Value Stores. An oblivious key value stores (OKVS) (introduced in [GPR+21])
is a data structure that encodes a set of key value mappings, which effectively hides the underlying
key set when the associated values are pseudorandom.

Definition 1 (Oblivious Key Value Stores (OKVS) [GPR+21]). An OKVS consists of algorithms
Encode and Decode, with an associated key space K and value space V.

� Encode takes as input a set of A ∈ K × V of key-value pairs and outputs an object KV (or,
with statistically small probability, an error indicator ⊥).

� Decode takes as input an object KV, any key k ∈ K, and outputs a value v.

An OKVS must satisfy the following properties:

� Correctness: For all A ⊆ K × V with distinct keys, and all (k, v) ∈ A:

Pr[Decode(Encode(A), k) = v] = 1

Note that, we can invoke Decode(KV, k) on any key k on a given object KV.
� Obliviousness: For all distinct {k01, . . . , k0n} and distinct {k11, . . . , k1n}, the output of R(k01, . . . , k0n)

9

is computationally indistinguishable from that of R(k11, . . . , k1n), where:

R(k1, . . . , kn):
for i ∈ [n]: vi ← V
return Encode({(k1, v1), . . . , (kn, vn)})

The obliviousness property guarantees that if the values are pseudorandom, then any two out-
puts of experiment R, encoding different sets of keys are computationally indistinguishable. Addi-
tionally, our construction requires an additional independence property, that is satisfied by all the
constructions presented in [GPR+21].

Definition 2. An OKVS satisfies the independence property if for all A ⊆ K × V with dis-
tinct K-values, and any k∗ not appearing in the first component of any pair in A, the output of
Decode(Encode(A), k∗) is indistinguishable from random, over the randomness in Encode.

Other cryptographic tools. We give definitions for other cryptographic tools including pseudo-
random generators, Hamming correlation robust hash functions and secure two-party computation
(2PC) and specific 2PC functionalities, including oblivious transfer (OT), PSI cardinality, and PSI
with associated sum in Appendix A.

4 Incremental Boolean Function Secret Sharing

In this section, we define a weak multi-dimensional incremental Boolean Function Secret Sharing
(ibFSS) scheme. Looking ahead, we will use this scheme as a building block to construct our
structure-aware PSI protocol in Section 5. We then give a construction of ibFSS for d-dimensional
ℓ∞-balls in Section 6 and discuss our PSI protocol instantiated with it in Section 7.

A d-dimensional ibFSS scheme is defined for a family of d-dimensional sets S ⊆ 2U × · · · × 2U︸ ︷︷ ︸
d

where U = {0, 1}u.1 As a concrete example, one can think of S as the family of all d-dimensional
ℓ∞-balls. For each d-dimensional set in the family S, namely S⃗ = (S1 × · · · × Sd) ∈ S (in the
example, S⃗ is a d-dimensional ℓ∞-ball), the set S⃗ implicitly defines a Boolean function f on input
space ({0, 1}u)d as follows. For all x⃗ = (x1, . . . , xd) where each xi ∈ {0, 1}u, we define f(x⃗) = 0 if
x⃗ ∈ S⃗, and f(x⃗) = 1 otherwise. In incremental Boolean FSS, we additionally define the function
f evaluated on all prefixes of x⃗. Specifically, for all x⃗ = (x1, . . . , xd) where each xi ∈

⋃u
ℓ=1{0, 1}ℓ

can be of arbitrary length (at most u bits), we define f(x⃗) = 0 if the prefix x⃗ spans a set that is
entirely contained in S⃗ (in our formal definition below, PreSx⃗ ⊆ S⃗), and f(x⃗) = 1 otherwise. An
ibFSS scheme splits the function f into two functions f0, f1 (defined by keys k0, k1) such that each
function fb hides f , and that f0(x⃗)⊕ f1(x⃗) = f(x⃗) for all prefixes x⃗.

What we need for structure-aware PSI is a weak ibFSS, which relaxes the above definition in
two ways. First, the function f outputs a t-bit string instead of a single bit. Second, for each
prefix x⃗, it holds that f0(x⃗)⊕ f1(x⃗) = 0t if PreSx⃗ ⊆ S⃗ and f0(x⃗)⊕ f1(x⃗) ̸= 0t otherwise. This weak
definition follows from prior work [GRS22,GRS23]. In fact, they further relaxed the definition to
allow for false positives, which we don’t need to consider in this work. Throughout the rest of the
paper, we refer to ibFSS as the weak variant unless specified otherwise.

1In the ibFSS definition, we consider all dimensions to have the same input domain for simplicity. The same
definition and our constructions also work for dimensions with different input domains.

10

Definition 3. [(u, d, t)-ibFSS: Syntax] A (two-party) d-dimensional weak incremental Boolean func-
tion secret sharing scheme (u, d, t)-ibFSS for a family of sets S ⊆ 2U × · · · × 2U︸ ︷︷ ︸

d

, where U = {0, 1}u,

consists of a pair of algorithms (Share,Eval) with the following syntax:

� (k0, k1)← Share(1κ, Ŝ): The randomized share function takes as input the security parameter
κ and (the description of) a d-dimensional set S⃗ = (S1 × · · · × Sd) ∈ S, and outputs two key
shares.

� yidx ← Eval(idx, kidx, x⃗): The deterministic evaluation function takes as input a party index
idx ∈ {0, 1}, the corresponding key share kidx, and input x⃗ = (x1, . . . , xd) where each xi ∈⋃u

ℓ=1{0, 1}ℓ. It outputs a string yidx ∈ {0, 1}t.

Notation. For a string x ∈
⋃u

ℓ=1{0, 1}ℓ and U = {0, 1}u, we define a prefix set PreSx :=
{s | s[1:|x|] = x, s ∈ U} as the set of all the strings in U with a prefix x. For a vector x⃗ = (x1, . . . , xd),

where each xi ∈
⋃u

ℓ=1{0, 1}ℓ, we define PreSx⃗ := {s⃗ = (s1, . . . , sd) | (si)[1:|xi|] = xi for all i ∈ [d], si ∈
U}. Note that PreSx⃗ = PreSx1 × · · · × PreSxd

.

Definition 4. [(u, d, t)-ibFSS: Security] A (two-party) (u, d, t)-ibFSS scheme (Share,Eval) for S is
secure if it satisfies the following conditions:

� Correctness for yes-instances: For every d-dimensional set S⃗ = (S1×· · ·×Sd) ∈ S, every
input x⃗ = (x1, . . . , xd) for which PreSx1 ⊆ S1, . . . ,PreSxd

⊆ Sd (or equivalently, PreSx⃗ ⊆ S⃗),
and security parameter κ,

Pr

y0 ⊕ y1 = 0t

∣∣∣∣∣∣
(k0, k1)← Share(1κ, S⃗)
y0 ← Eval(0, k0, x⃗)
y1 ← Eval(1, k1, x⃗)

 = 1.

� Correctness for no-instances: For every d-dimensional set S⃗ = (S1 × · · · × Sd) ∈ S,
every input x⃗ = (x1, . . . , xd) for which PreSx1 ̸⊆ S1 or . . . or PreSxd

̸⊆ Sd (or equivalently,

PreSx⃗ ̸⊆ S⃗), and security parameter κ,

Pr

y0 ⊕ y1 ̸= 0t

∣∣∣∣∣∣
(k0, k1)← Share(1κ, S⃗)
y0 ← Eval(0, k0, x⃗)
y1 ← Eval(1, k1, x⃗)

 = 1.

� Privacy: There exists a PPT simulator Sim such that for all idx ∈ {0, 1} and all S⃗ ∈ S, the
following distributions are computationally indistinguishable in the security parameter κ:

(k0, k1)← Share(1κ, S⃗)
return kidx

∼=κ Sim(1κ, idx).

We say the ibFSS scheme has pseudorandom keys property, if the output of the simulator is
a random string of fixed length.

Decomposing a set into prefix sets. In our structure-aware PSI protocol, we will decompose
each structured set into a disjoint union of prefix sets. Specifically, for any single-dimensional set
S ∈ 2U , there is a unique way to decompose it into a disjoint union of prefix sets, S =

⋃̇
j∈[w]PreSxj

11

where xj ∈
⋃u

ℓ=1{0, 1}ℓ. Similarly, for any d-dimensional set S⃗ = (S1 × · · · × Sd) ∈ 2U × · · · × 2U︸ ︷︷ ︸
d

,

there is a unique way to decompose it into a disjoint union of prefix sets, S⃗ =
⋃̇

j∈[w]PreS−→xj
where

−→
xj = (xj1, . . . , x

j
d) and xji ∈

⋃u
ℓ=1{0, 1}ℓ

For instance, consider a single-dimensional interval S = {x | x < α, x ∈ {0, 1}u}, where

α = α(1)α(2) . . . α(u) ∈ {0, 1}u (bit representation of α). The set S can be decomposed into a
disjoint union of at most u prefix sets, namely S =

⋃̇
j∈[u]:α(j)=1PreSα(1)...α(j−1)0

. Similarly, a d-

dimensional interval can be decomposed into a disjoint union of at most ud prefix sets.

5 sa-PSI with Alice Learning Output

In this section, we present our new sa-PSI protocols where Alice holds a structured set and Bob
holds a set of unstructured points. We present the protocol where Alice’s input is a union of
(overlapping) structures and Bob’s input contains multiple points in Section 5.1 and our new
spatial hashing techniques in Section 5.2. In both protocols, only Alice learns the output.

5.1 Multiple (Overlapping) Balls with Multiple Points

We present in Figure 2 a general framework for two-party, semi-honest secure sa-PSI protocol, where
Alice’s input is a union of (overlapping) structures in a d-dimensional, well-defined metric space.
We summarize the key features in our framework below.

� Incremental Boolean FSS is a new tool, that allows Alice and Bob to evaluate on the
prefixes of their inputs. Bob evaluates his key share on every prefix of his input. Alice
identifies a set of critical prefixes, such that, a match with any critical prefix indicates that
the element is in the intersection.

� Intersection Search is a method for Alice to recursively search for Bob’s input in her set.
For every critical prefix in Alice’s input, she checks if there is a matching FSS evaluation in
Bob’s set Y . She then appends bit 0 to the prefix and checks if the FSS evaluation belongs
to set Y . If not, she is guaranteed to find prefix append with bit 1 in set Y . This process
continues until she figures out the matching input.

� OR Observation is a new method for sa-PSI when Alice’s input is a union of NA structures.
In our protocol, we break away from the ibFSS abstraction for the union of structures. Instead,
Alice computes an independent ibFSS secret sharing for each of her structures and compares
with Bob’s entire input set SB. An immediate advantage is that the sets can be overlapping
since they are handled independently. Furthermore, prior known FSS constructions for union
of structures are not as efficient as FSS for individual structures, leading to an advantage for
our approach (for the set families considered in [GRS22,GRS23]). We discuss the comparison
in more detail in Section 7.

Theorem 5. Given a two-party (u, d, t)-ibFSS scheme for a family of sets S ⊆ 2U × · · · × 2U︸ ︷︷ ︸
d

where

U = {0, 1}u and every set in S is a disjoint union of at most w prefix sets, and a Hamming-
correlation robust hash H : {0, 1}∗ → {0, 1}λ+log |NA|+log |NB |+logw+d log u, the protocol in Figure 2
realizes Fsa-PSI (Figure 1) in the FOT-hybrid model in the presence of semi-honest adversaries.

12

Parameters: A family of sets S ⊆ 2U × · · · × 2U︸ ︷︷ ︸
d

where U = {0, 1}u. Number of Alice’s structured

sets NA and size of Bob’s set NB.

Functionality:

1. Receive input SA =
⋃

i∈NA
S⃗
(i)
A , where S⃗

(i)
A ∈ S (or a concise representation of SA) from Alice.

2. Receive input SB ⊆ Ud of size NB from Bob.
3. [output] Send SA ∩ SB to Alice.

Figure 1: Ideal functionality Fsa-PSI for structure-aware PSI, where Alice learns the output.

Algorithm 1 Recursive Intersection Search

1: global variable: intersection set I
2: procedure IntSearch({k(η)}η∈[κ], u, index, x⃗, Y)
3: Parse x⃗ = (x1, . . . , xd)
4: Compute h := H

(
x⃗∥index;Eval(k(1), x⃗)∥ . . . ∥Eval(k(κ), x⃗)

)
5: if h /∈ Y then
6: return
7: else if |xi| = u for all i ∈ [d] then
8: I := I ∪ {x⃗}
9: return

10: Let i ∈ [d] be the smallest index such that |xi| ≤ u− 1
11: for b = 0 to 1 do
12: x⃗′ := (x1, . . . , xi−1, xi∥b, xi+1, . . . , xd)
13: IntSearch({k(η)}η∈[κ], u, index, x⃗′, Y)

Proof. Bob is corrupt. In the protocol, Bob learns only one of the key shares from OT for each
of the κ independent ibFSS sharings. We can simulate Bob’s view by invoking the ibFSS simulator
(Definition 4) that takes as input the security parameter κ and (public information) a description
of Alice’s set family and nothing else about her private input.

Alice is corrupt. First, we define the following useful functions, where each function’s output
{{0, 1}t}κ is a vector of length κ, where each component (string length t) is the result of ibFSS
evaluation:

E∗(y⃗) =
(
Eval(k

(1)
∗ , y⃗)∥ . . . ∥Eval(k(κ)∗ , y⃗)

)
E0(y⃗) =

(
Eval(k

(1)
0 , y⃗)∥ . . . ∥Eval(k(κ)0 , y⃗)

)
∆(y⃗) =

(
Eval(k

(1)
0 , y⃗)⊕ Eval(k

(1)
1 , y⃗)∥ . . . ∥Eval(k(κ)0 , y⃗)⊕ Eval(k

(κ)
1 , y⃗)

)
The goal is to simulate (through a sequence of hybrids) Alice’s view from the honest protocol
execution independent of Bob’s input.

Hybrid 0. In the protocol execution, Alice’s view consists of NA sets of values from Bob, which can
effectively be viewed as a single of set of values Y . We use the fact that

Eval(k
(η)
∗ , y⃗′) = Eval(k(η)si , y⃗′) = Eval(k

(η)
0 , y⃗′)⊕ s⊙ (Eval(k

(η)
0 , y⃗′)⊕ Eval(k

(η)
1 , y⃗′))

13

Parameters:
� computational security parameter κ and statistical security parameter λ

� family of sets S with corresponding (u, d, t)-ibFSS scheme (Share,Eval)

� oblivious transfer functionality FOT

� hamming-correlation robust hash H with output length λ+ log |NA|+ log |NB |+ logw + d log u

Inputs:

� Alice has NA structured sets SA =
⋃

i∈NA
S⃗
(i)
A , where S⃗

(i)
A ∈ S.

� Bob has an unstructured set SB ⊆ Ud of size NB .

Protocol:
1. Alice initializes the intersection as I := ∅.
2. Bob chooses a random string s← {0, 1}κ.
3. For each i ∈ [NA], the parties do the following (in parallel for each set):

(a) Alice generates κ independent ibFSS sharings of her structured set S
(i)
A . For each η ∈ [κ], compute

(k
(η)
0 , k

(η)
1)← Share(1κ, S

(i)
A).

(b) The parties invoke κ (parallel) instances of oblivious transfer using FOT. In the η-th instance:

� Alice is the sender with input (k
(η)
0 , k

(η)
1);

� Bob is the receiver with choice bit s[η]. He obtains output k
(η)
∗ = k

(η)
s[η].

(c) Bob does the following:

i. Initialize an empty set Y := ∅.
ii. For each element y⃗ ∈ SB :

� Write y⃗ = (y1, . . . , yd), where yj ∈ U for all j ∈ [d].

� Compute

Y ′ =
{
H
(
y⃗′∥i;Eval(k(1)∗ , y⃗′)∥ . . . ∥Eval(k(κ)∗ , y⃗′)

)∣∣∣
ℓ1 ∈ [u], . . . , ℓd ∈ [u]

y⃗′ := ((y1)[1:ℓ1], . . . , (yd)[1:ℓd])

}
� Update Y := Y ∪ Y ′.

iii. Pad Y with dummy random strings such that |Y | = NB · ud and send it to Alice.

(d) Alice does the following:

i. Write S
(i)
A =

⋃̇
j∈[w′]PreS−→xj

as disjoint union of w′ prefix sets (w is the upper bound for w′).

ii. For each j ∈ [w′], run IntSearch
(
{k(η)0 }η∈[κ], u, i,

−→
xj , Y

)
, with I being a global variable.

4. [output] Alice outputs the intersection I.

Figure 2: Protocol realizing Fsa-PSI (Figure 1) using ibFSS in the FOT-hybrid model.

where ⊙ denotes component wise multiplication (of single bit with t bit string) to rewrite the

14

message Y as shown below:

Y =

H
(
y⃗′∥i;Eval(k(1)∗ , y⃗′)∥ . . . ∥Eval(k(κ)∗ , y⃗′)

)∣∣∣∣∣∣
i ∈ [NA], y⃗ = (y1, . . . , yd) ∈ SB,
ℓ1 ∈ [u], . . . , ℓd ∈ [u],

y⃗′ := ((y1)[1:ℓ1], . . . , (yd)[1:ℓd])

=

H
(
y⃗′∥i;E∗(y⃗′

)∣∣∣∣∣∣
i ∈ [NA], y⃗ = (y1, . . . , yd) ∈ SB,
ℓ1 ∈ [u], . . . , ℓd ∈ [u],

y⃗′ := ((y1)[1:ℓ1], . . . , (yd)[1:ℓd])

=

H
(
y⃗′∥i;E0(y⃗′)⊕ s⊙∆(y⃗′)

)∣∣∣∣∣∣
i ∈ [NA], y⃗ = (y1, . . . , yd) ∈ SB,
ℓ1 ∈ [u], . . . , ℓd ∈ [u],

y⃗′ := ((y1)[1:ℓ1], . . . , (yd)[1:ℓd])

= Y1 ∪̇ Y2 ∪̇ Y3∪̇ Y4,

where we expand the terms as follows:

Y1 =

H
(
y⃗′∥i;E0(y⃗′)

)
∣∣∣∣∣∣∣∣∣∣
i ∈ [NA], S

(i)
A =

⋃̇
j∈[w′]PreS−→xj

,
−→
xj = (xj1, . . . , x

j
d),

y⃗ = (y1, . . . , yd) ∈ PreS−→
xj
∩ SB,

ℓ1 ∈ [|xj1| : u], . . . , ℓd ∈ [|xjd| : u],
y⃗′ := ((y1)[1:ℓ1], . . . , (yd)[1:ℓd])

Y2 =

H
(
y⃗′∥i;E0(y⃗′)⊕ s⊙∆(y⃗′)

)
∣∣∣∣∣∣∣∣∣∣
i ∈ [NA], S

(i)
A =

⋃̇
j∈[w′]PreS−→xj

,
−→
xj = (xj1, . . . , x

j
d),

y⃗ = (y1, . . . , yd) ∈ PreS−→
xj
∩ SB,

(ℓ1, . . . , ℓd) ∈ [u]d,where ℓ1 ∈ [|xj1 − 1|] ∨ . . . ∨ ℓd ∈ [|xjd − 1|],
y⃗′ := ((y1)[1:ℓ1], . . . , (yd)[1:ℓd])

Y3 =

H
(
y⃗′∥i;E0(y⃗′)⊕ s⊙∆(y⃗′)

)∣∣∣∣∣∣∣
i ∈ [NA], y⃗ = (y1, . . . , yd) ∈ SB \ S⃗(i)

A ,
ℓ1 ∈ [u], . . . , ℓd ∈ [u],

y⃗′ := ((y1)[1:ℓ1], . . . , (yd)[1:ℓd])

and Y4 consists of dummy pseudorandom strings with length equal to the hash outputs, such that
|Y | = NB · ud. Recall that, Bob sends hash evaluations on all prefix combinations of each of his

inputs for every input S
(i)
A =

⋃̇
j∈[w′]PreS−→xj

in Alice’s private input. For Bob’s protocol message Y

we get the following cases for every set S
(i)
A :

1. If Bob’s input y⃗ ∈ PreS−→
xj

and input prefix y⃗′ ∈ PreS−→
xj
: set Y1 includes hash evaluation on

prefix H(y⃗′∥i;E∗(y⃗′)). The ibFSS scheme correctness guarantees ∆(y⃗′) = 0t when evaluated
on an input y⃗′ in some prefix set y⃗′ ∈ PreS−→

xj
that comprises one of Alice’s sets. Thus, we can

simplify H(y⃗′∥i;E0(y⃗′)⊕ s⊙∆(y⃗′)) = H(y⃗′∥i;E0(y⃗′)).

2. If Bob’s input y⃗ ∈ PreS−→
xj

and input prefix y⃗′ /∈ PreS−→
xj
: set Y2 includes hash evaluation on

prefix H(y⃗′∥i;E∗(y⃗′)). The ibFSS scheme correctness guarantees ∆(y⃗′) consists of κ compo-
nents, where every component (string of length t) is non-zero, when evaluated on an input y⃗′

outside the prefix set.

15

3. If Bob’s input y⃗ /∈ S
(i)
A and input prefix y⃗′: set Y3 includes hash evaluation on prefix

H(y⃗′∥i;E∗(y⃗′)). Again, the ibFSS scheme correctness guarantees ∆(y⃗′) consists of κ com-
ponents, where every component (string of length t) is non-zero, when evaluated on an input

y⃗′ outside every prefix set of S
(i)
A .

Hybrid 1. In this hybrid, we replace all the hash outputs in Y2 and Y3 with uniform strings of
length λ+ log |NA|+ log |NB|+ logw + d log u as shown below:

Y = Y1 ∪̇ {h1, . . . , h|Y2|} ∪̇ {h
′
1, . . . , h|Y3|} ∪̇ Y4

where each hi, h
′
i ← {0, 1}λ+log |NA|+log |NB |+logw+d log u are sampled uniformly. This hybrid is in-

distinguishable from previous hybrid by the hamming correlation robust property (Definition 13)
which states that hash values of the form H(y⃗′∥i; ti ⊕ s⊙∆(y⃗′)) are jointly pseudorandom, if they
are never queried on repeated y⃗′∥i values and ∆(y⃗′) has at least κ non-zero components. As previ-
ously discussed all the hash outputs in Y2 and Y3 are computed on unique prefix concatenate with
structure index values and have non-zero ∆(y⃗′) evaluation with κ non-zero components.

Simulator. Hybrid 1 defines a valid simulation in the ideal world computed just using Alice’s input
SA and output SA ∩ SB. Note that, the output can be used to determine the cardinality of sets
Y2, Y3 and Y4.

Correctness. Only Alice learns the output and our goal is to show that the protocol satisfies
correctness. It suffices to consider Alice’s simulated view since it is indistinguishable from her view
in the honest execution of the protocol.

For every input x⃗ ∈ SB ∩ PreS−→
xj

in the intersection (over all choices of i ∈ [NA], S
(i)
A =⋃̇

j∈[w′]PreS−→xj
,
−→
xj = (xj1, . . . , x

j
d)), ibFSS scheme guarantees ∆(x⃗′) = 0t and the simulator includes

the following hash values in the message to Alice:{
H
(
x⃗′∥i;E0(x⃗′)

)∣∣∣∣∣ ℓ1 ∈ [|xj1| : u], . . . , ℓd ∈ [|xjd| : u]
x⃗′ := ((x1)[1:ℓ1], . . . , (xd)[1:ℓd])

}

By the collision resistant hash property, Alice can uniquely compute and recognize hash values
from Bob’s message and will correctly include every such element x⃗ in the output.

What is the probability that Alice wrongly includes an element x⃗ ∈ SA \ SB in her output?
This value is upper bounded by the probability that Alice finds the hash output of prefix of x⃗ in

Bob’s message, that is, H
(
x⃗′∥i;E0(x⃗′)

)
∈ Y , where x⃗ ∈ PreS

x⃗′ . By union bound, the probability

that Alice finds a value matching a specific prefix PreS
x⃗′ is |Y ′| · 2−λ−log |NA|−log |NB |−logw−d log u =

2−λ−log |NA|−logw. Again, by the union bound over total number of prefixes, the probability that
Alice includes a wrong element x⃗ in her output is less than w · |NA| ·2−λ−log |NA|−logw = 2−λ, which
is negligible.

5.2 Spatial Hashing

In the above construction, both parties compute ibFSS over the entire universe. Improving upon this
construction framework, Garimella et al. [GRS22] introduced a spatial hashing technique to reduce
the input domain for better efficiency. In this section, we present a new way of looking at spatial

16

hashing, which relaxes the restrictions on the structured sets and improves both computation and
communication costs.

Overview of our spatial hashing technique. We start with the same setting as prior work [GRS22,
GRS23], where Alice holds a union of d-dimensional ℓ∞-balls of diameter δ, namely every ball can
be written as [x1, x1 + δ) × · · · × [xd, xd + δ). We denote the ball as Ballx⃗ for its “left-bottom
corner” x⃗ = (x1, . . . , xd). We partition the entire universe ({0, 1}u)d into contiguous grid cells
of side length δ. For each vertex in the partitioned space, namely o⃗ = (o1, o2, . . . , od) where
each oi is a multiple of δ, we define a mini-universe with origin o⃗ and diameter 2δ. That is,
Univo⃗ := [o1, o1+2δ)× . . . [od, od+2δ). If all of Alice’s balls are disjoint and have the same diameter
δ, then each Ballx⃗ corresponds to a distinct grid cell, which is where x⃗ is located at. Let o⃗ be the
“left-bottom corner” of that grid cell, then it is guaranteed that Ballx⃗ ⊆ Univo⃗. We can construct
an ibFSS for Ballx⃗ in the mini-universe Univo⃗ with diameter 2δ.

Recall that each ball corresponds to a unique origin o⃗, which we refer to as active origins with
active mini-universes. We prepare an ibFSS key for each ball Ballx⃗ in its corresponding mini-universe
Univo⃗. Then we pack them into an oblivious-key value storage (OKVS) data structure [GPR+21],
where the origin is treated as the OKVS key, and the corresponding ibFSS key is treated as its
value.

To check if a point y⃗ in Bob’s set is contained in any of Alice’s input balls, we only need to
check all the mini-universes that contains y⃗, namely y⃗ ∈ Univo⃗ for origins o⃗ (there are 2d of them).
Bob can probe the OKVS data structure to obtain the ibFSS key for each relevant origin o⃗, and
evaluate ibFSS on y⃗ in the corresponding mini-universe Univo⃗. Thanks to our new OR observation,
Bob can simply send ibFSS evaluations for all the structures within any relevant origin o⃗ back to
Alice, without having to perform a sum transformation.

Illustrative examples. We give a few examples in Figure 3 in 2-dimensional space to illustrate our
new spacial hashing techniques. A structured set S⃗ can be assigned to an origin o⃗ if S⃗ is completely
contained in the mini-universe with origin o⃗ and diameter 2δ, namely S⃗ ⊆ Univo⃗. For instance,

Figure 3a shows a mini-universe with origin z⃗1, and S⃗
(1)
A ⊆ Univz⃗1 . Therefore, the structured set

S⃗
(3)
A in Figure 3b can be assigned to any of the four origins z⃗2, z⃗3, z⃗6, z⃗7. In Figure 3c, we consider

3 structured sets in Alice’s set. S⃗
(1)
A can be assigned to z⃗1; S⃗

(2)
A can be assigned to origins z⃗2 or z⃗6;

S⃗
(3)
A can be assigned to any of the four origins z⃗2, z⃗3, z⃗6, z⃗7. In this example, we assign S⃗

(1)
A , S⃗

(2)
A , S⃗

(3)
A

to z⃗1, z⃗6, z⃗3, respectively (highlighted in the figure). Alice generates an ibFSS key share for each
structured set and packs them into an OKVS, as shown in Figure 3e. When Bob evaluates at point
y⃗ (orange point in the figure), he needs to consider all the mini-universes that contain y⃗, namely
Univz⃗1 ,Univz⃗2 ,Univz⃗5 ,Univz⃗6 . In our new spatial hashing framework, Alice’s structured sets can

overlap as long as every S⃗
(i)
A can be assigned to a distinct origin o⃗(i) such that S⃗

(i)
A ⊆ Univo⃗(i) . In

another example in Figure 3d, we cannot find such a mapping.

What if there is no one-to-one mapping? When it is impossible to find a balls-to-origins
mapping in spatial hashing (e.g., Figure 3d), one potential solution is to increase the number of
structures that can be mapped to each universe, and then perform multi-ball-multi-point sa-PSI for
each universe. Another potential solution is to have smaller grid cells and a larger universe size,
so that Alice can find a unique mapping. Both solutions would incur higher communication and
computation costs. The protocol can be adapted depending on the specific application.

Extensions and improvements over prior work. First, we improve both computation and

17

z⃗1

z⃗5

z⃗9

z⃗2

z⃗6

z⃗10

z⃗3

z⃗7

z⃗11

S⃗
(1)
A

(a) S⃗
(1)
A ⊆ Univz⃗1

z⃗2

z⃗6

z⃗10

z⃗3

z⃗7

z⃗11

z⃗4

z⃗8

z⃗12

S⃗
(3)
A

(b) S⃗
(3)
A can be mapped to any of the four origins

z⃗2, z⃗3, z⃗6, z⃗7.

z⃗1

z⃗5

z⃗9

z⃗13

z⃗2

z⃗6

z⃗10

z⃗14

z⃗3

z⃗7

z⃗11

z⃗15

z⃗4

z⃗8

z⃗12

z⃗16

S⃗
(1)
A

S⃗
(2)
A

S⃗
(3)
A

Evaluation Point

δ

(c) Mapping structured sets to distinct origins (high-
lighted arrows).

z⃗1

z⃗5

z⃗9

z⃗13

z⃗2

z⃗6

z⃗10

z⃗14

z⃗3

z⃗7

z⃗11

z⃗15

z⃗4

z⃗8

z⃗12

z⃗16

S⃗
(1)
A

S⃗
(2)
A

S⃗
(3)
A

δ

(d) Impossible to find a mapping.

Univz⃗1

Univz⃗5

Univz⃗9

Univz⃗2

Univz⃗6

Univz⃗10

Univz⃗3

Univz⃗7

Univz⃗11

o⃗(1)o⃗(1)

o⃗(2)o⃗(2)

o⃗(3)o⃗(3)

S⃗
(1)
A FSS: Dummy FSS:

Dummy FSS: S⃗
(2)
A FSS:

Dummy FSS: Dummy FSS: Dummy FSS:

Dummy FSS:

S⃗
(3)
A FSS:

(e) Bob’s evaluation on all mini-universes that contain y⃗.

Figure 3: Our new spatial hashing techniques in 2-dimensional space.

18

communication costs of spatial hashing. In prior works [GRS22,GRS23], Bob needs to perform an
expensive sum transformation on the bFSS outputs. This restricts their bFSS to strong bFSS that
outputs a single bit, for which both computation and communication costs grow exponentially in
the dimension d. In contract, we get rid of the sum transformation, hence allowing for weak bFSS
that outputs a bit string, with both computation and communication costs linear in d.

Second, when constructing and evaluating our ibFSS in a mini-universe Univo⃗, we shift all
the points by the origin o⃗. Specifically, for x⃗ = (x1, . . . , xd) and o⃗ = (o1, . . . , od), we consider
x⃗.Shift(o⃗) := (x1 − o1, . . . , xd − od) in the mini-universe with diameter 2δ. When Bob computes
the hash value, we include the origin o⃗ as an index to avoid collisions. This shifting approach
eliminates the need for point functions in prior work [GRS23]. On a minor note, we also improve
on the domain of the ibFSS (size of mini-universe) from 3δ [GRS23] to 2δ.

Finally, we can further relax the restrictions on Alice’s input balls. Instead of requiring all the
balls to be disjoint and have the same diameter, the only requirement we need for our protocol to

work is that every structured set S⃗
(i)
A can be assigned to a distinct origin o⃗(i) such that S⃗

(i)
A ⊆ Univo⃗(i) .

In particular, these balls can have different diameters and overlap with each other. In fact, they
don’t even have to be ℓ∞-balls with the same diameter in each dimension; our construction works
for any structured set with an ibFSS scheme. We state the theorem below and defer its proof to
Appendix B.1.

Theorem 6. Given a two-party (log(2δ), d, t)-ibFSS scheme with pseudorandom keys for a family
of sets S ⊆ 2U × · · · × 2U︸ ︷︷ ︸

d

where U = 2δ and every set in S is disjoint union of at most w prefix

sets, an oblivious key-value store scheme (Encode,Decode), and a Hamming-correlation robust hash
H : {0, 1}∗ → {0, 1}λ+log |NA|+logw+log |NB |+d(1+log log(2δ)), the protocol in Figure 4 realizes Fsa-PSI

(Figure 1) in the FOT-hybrid model secure in the presence of semi-honest adversaries.

6 ibFSS for d-dimensional ℓ∞-balls

In this section, we present a construction an ibFSS for d-dimensional balls with ℓ∞-norm. Looking
ahead, we will instantiate our structure-aware PSI protocols with it and analyze our computation
and communication costs in Section 7. What we need for d-dimensional ℓ∞-balls is a weak incre-
mental Boolean Distributed Comparison Function (u, d, t)-ibDCF. It is an instance of (u, d, t)-ibFSS
for the specific set family of d-dimensional ℓ∞-balls. We formalize the definition in Section 6.1 and
give a construction in Section 6.2.

6.1 ibDCF Definition

We consider (u, d, t)-ibFSS for the set family of d-dimensional intervals S⃗INT = (S
(α1,β1)
1 × · · · ×

S
(αd,βd)
d) represented by interval tuples ((α1, β1), . . . , (αd, βd)), where αi ∈ {0, 1}u is a partition

point and βi ∈ {0, 1} is an indicator of left or right interval. Specifically, for every i ∈ [d], the set is

either a left interval S
(αi,0)
i = {x | x < αi, x ∈ {0, 1}u} or a right interval S

(αi,1)
i = {x | x > αi, x ∈

{0, 1}u}. We define the syntax below and the security requirement follows from (u, d, t)-ibFSS
(Definition 4).

Definition 7. [(u, d, t)-ibDCF: Syntax] A (two-party) d-dimensional weak incremental Boolean dis-
tributed comparison function scheme (u, d, t)-ibDCF for the family of d-dimensional interval sets
over the universe ({0, 1}u)d consists of a pair of algorithms (Share,Eval) with the following syntax:

19

Parameters:
� computational security parameter κ and statistical security parameter λ

� set family S with corresponding ((log(2δ), d, t)-ibFSS scheme (Share,Eval) (Definition 3)

� oblivious key-value store scheme (Encode,Decode) (Definition 1, Definition 2)

� oblivious transfer ideal functionality FOT

� ℓ OT instances such that Pr[Binomial(1− 2−t, ℓ) < κ] < 2−λ−|NB |−d(1+log log(2δ))

� hamming-correlation robust hash H with output length λ+log |NA|+logw+log |NB |+d(1+log log(2δ))

Inputs:

� Alice has NA structured sets SA =
⋃

i∈NA
S⃗
(i)
A , where S⃗

(i)
A ∈ S.

� Bob has an unstructured set SB ⊆ Ud of size NB .

Notation:
� For o⃗ = (o1, . . . , od) ∈ Ud, Univo⃗ := [o1, o1 + 2δ)× · · · × [od, od + 2δ).

� For x⃗ = (x1, . . . , xd), o⃗ = (o1, . . . , od) ∈ Ud, x⃗.Shift(o⃗) := (x1 − o1, . . . , xd − od).

� For S ⊆ Ud and o⃗ = (o1, . . . , od) ∈ Ud, S.Shift(o⃗) := {x⃗.Shift(o⃗)|x⃗ ∈ S}.
Protocol:

1. For each i ∈ [NA], Alice identifies a distinct origin o⃗(i) such that S⃗
(i)
A ⊆ Univo⃗(i) .

2. For each η ∈ [ℓ], Alice does the following:

(a) For each i ∈ [NA] compute (k
(i,η)
0 , k

(i,η)
1)← Share(1κ, S⃗

(i)
A .Shift(o⃗(i))).

(b) For b ∈ {0, 1} encode KV(η)
b ← Encode({(o⃗(1), k(1,η)b), . . . , (o⃗(NA), k

(NA,η)
b)}).

3. Bob chooses a random string s← {0, 1}ℓ.
4. The parties invoke ℓ (parallel) instances of FOT. In the η-th instance:

� Alice is the sender with input (KV(η)
0 ,KV(η)

1);

� Bob is the receiver with choice bit s[η]. He obtains output KV(η)
∗ = KV(η)

s[η].

5. Bob initializes a set Y := ∅ and does the following:
(a) For each element y⃗ ∈ SB , and for each origin z⃗ where y⃗ ∈ Univz⃗:

i. Write y⃗.Shift(z⃗) = (y1, . . . , yd), where yj ∈ [0, 2δ) for all j ∈ [d].

ii. For each η ∈ [ℓ], compute k
(η)
∗ := Decode(KV(η)

∗ , z⃗).

iii. Compute

Y ′ =
{
H
(
y⃗′∥z⃗;Eval(k(1)∗ , y⃗′)∥ . . . ∥Eval(k(ℓ)∗ , y⃗′)

)∣∣∣
ℓ1 ∈ [log(2δ)], . . . , ℓd ∈ [log(2δ)]

y⃗′ := ((y1)[1:ℓ1], . . . , (yd)[1:ℓd])

}
iv. Update Y := Y ∪ Y ′.

(b) Pad Y with dummy random strings such that |Y | = NB · (2 · log(2δ))d and send it to Alice.

6. Alice initializes set I := ∅. For each set i ∈ [NA], Alice does the following:

(a) Write S⃗
(i)
A .Shift(o⃗(i)) =

⋃̇
j∈[w′]PreS−→xj

as disjoint union of w′ prefix sets (w is the upper bound

for w′).

(b) For each j ∈ [w′], run IntSearch
(
{k(i,η)0 }η∈[ℓ], log(2δ), o⃗

(i),
−→
xj , Y

)
, with I being a global vari-

able.

7. [output] Alice outputs the intersection I.

Figure 4: Protocol realizing Fsa-PSI (Figure 1) using spatial hashing techniques.

20

� (k0, k1)← Share(1κ, ((α1, β1), . . . , (αd, βd)): The randomized share function takes as input the
security parameter κ and the description of a d-dimensional interval, namely a set of partition
points and bits (one for each dimension), where αi ∈ {0, 1}u and βi ∈ {0, 1}, and outputs two
key shares.

� yidx ← Eval(idx, kidx, x⃗): The deterministic evaluation function takes as input a party index
idx ∈ {0, 1}, the corresponding key share kidx, and input x⃗ = (x1, . . . , xd) where each xi ∈⋃u

ℓ=1{0, 1}ℓ. It outputs a string yidx ∈ {0, 1}t.

Handling two-sided intervals. While the above definition only considers single-sided intervals
in each dimension, we can use it to handle two-sided intervals in a generic manner. Specifically, a

two-dimensional (u, 2, t)-ibDCF for the set family S⃗2-INT = (S
(L,0)
1 × S

(R,1)
2) ∈ 2U × 2U can be used

as a single-dimensional ibDCF for a two-sided interval (L,R) if evaluating on x⃗ = (x, x) with the
same input in both dimensions.

Similarly, a 2d-dimensional (u, 2d, t)-ibDCF for the set family S⃗2d-INT = (S
(L1,0)
1 ×S

(R1,1)
2 ×· · ·×

S
(Ld,0)
2d−1 × S

(Rd,1)
2d) ∈ 2U × · · · × 2U︸ ︷︷ ︸

(2d)

can be used as an ibDCF for a d-dimensional ℓ∞-ball (L1, R1) ×

· · · × (Ld, Rd) if evaluating on x⃗ = (x1, x1, . . . , xd, xd) with the same input along each of the d
dimensions of the ball.

6.2 ibDCF Constructions

We first give a construction for a single-dimensional (u, 1, 1)-ibDCF for left-sided intervals in Fig-
ure 6. Our construction builds upon the optimized Distributed Point Function (DPF) construction
from [BGI18] with the addition of an extra variable. For a left-sided interval {x | x < α, x ∈
{0, 1}u}, we consider the DPF construction for the point function f(x) = 1 if x = α and f(x) = 0
otherwise. At a high level, in the GGM-tree based DPF construction [BGI18], each node in the
binary tree consists of a PRG seed and an additional output bit. They focus on the critical path
along α and keep the invariant that the output bit is a secret share of 1 on the critical path and
secret share of 0 off the critical path.

1

1

1

11

0 1

1

10

0 1

0 1

0

0

00

0 1

0

00

0 1

0 1

0 1

Interval
α

Figure 5: Incremental DCF for a single-dimensional left-sided interval {x | x < α, x ∈ {0, 1}u}.

21

(u, 1, 1)-ibDCF (Share, Eval):

Parameters: Let G : {0, 1}κ → {0, 1}2(κ+2) be a pseudorandom generator.

Share(1κ, (α, β = 0)):

Let α = α(1)α(2) . . . α(u) ∈ {0, 1}u be the bit decomposition.

Sample s
(0)
0 ← {0, 1}κ and s

(0)
1 ← {0, 1}κ uniformly at random.

Assign t
(0)
0 = 0 and t

(0)
1 = 1.

for i = 1 to u do

sL0 ∥tL0 ∥yL0 ∥ sR0 ∥tR0 ∥yR0 ← G(s
(i−1)
0) and sL1 ∥tL1 ∥yL1 ∥ sR1 ∥tR1 ∥yR1 ← G(s

(i−1)
1)

if α(i) = 0 then
sCW = sR0 ⊕ sR1
tLCW = tL0 ⊕ tL1 ⊕ 1 and tRCW = tR0 ⊕ tR1
yLCW = yL0 ⊕ yL1 and yRCW = yR0 ⊕ yR1
CW (i) = sCW ∥tLCW ∥tRCW ∥yLCW ∥yRCW

s
(i)
b = sLb ⊕ t

(i−1)
b · sCW for b = 0, 1

t
(i)
b = tLb ⊕ t

(i−1)
b · tLCW for b = 0, 1

else
sCW = sL0 ⊕ sL1
tLCW = tL0 ⊕ tL1 and tRCW = tR0 ⊕ tR1 ⊕ 1
yLCW = yL0 ⊕ yL1 ⊕ 1 and yRCW = yR0 ⊕ yR1
CW (i) = sCW ∥tLCW ∥tRCW ∥yLCW ∥yRCW

s
(i)
b = sRb ⊕ t

(i−1)
b · sCW for b = 0, 1

t
(i)
b = tRb ⊕ t

(i−1)
b · tRCW for b = 0, 1

Let kb = s
(0)
b ∥CW (1)∥CW (2)∥ . . . ∥CW (u)

return (k0, k1)

Eval(1κ, b, kb, x):

Parse kb = s(0)∥CW (1)∥ . . . ∥CW (u) and x = x(1), x(2), . . . x(ℓ)

Assign t(0) = b. Assign y(0) = b.
for i = 1 to ℓ do
Parse CW (i) = sCW ∥tLCW ∥tRCW ∥yLCW ∥yRCW

τ i = G(s(i−1))⊕ (t(i−1) · [sCW ∥tLCW ∥yLCW ∥sCW ∥tRCW ∥yRCW])
Parse τ i = sL∥tL∥yL ∥ sR∥tR∥yR ∈ {0, 1}2(κ+2)

Update yL = yL ⊕ y(i−1) and yR = yR ⊕ y(i−1)

if xi = 0 then s(i) = sL, t(i) = tL, y(i) = yL

else s(i) = sR, t(i) = tR, y(i) = yR

return y(ℓ)

Figure 6: Construction of a single-dimensional Incremental Boolean Distributed Comparison Func-
tion (u, 1, 1)-ibDCF for left-sided intervals.

In our construction, we use their output bit (t) as an indicator bit of whether we are on or off
the critical path, and add another bit (y) as the output bit. We leverage the indicator bit and keep
the following invariants: (1) if we are on the critical path, then the output bit is a secret share of
1; (2) if we deviate to the right of the critical path (namely α(i) = 0), then the output bit remains
a secret share of 1; (3) if we deviate to the left of the critical path (namely α(i) = 1), then the
output bit becomes a secret share of 0; and (4) once we deviate from the critical path, the output
remains a secret share of the same bit for the rest of the subtree (1 if deviating to the right and

22

0 if deviating to the left). The additional output bit y is highlighted in blue in the construction
(Figure 6).2 We illustrate these invariants in Figure 5. Specifically, for all the nodes highlighted in
light orange, the parties obtain secret shares of 0; for all the nodes highlighted in blue and light
blue, the parties obtain secret shares of 1.

Note that we present a construction for left-sided intervals. It is straightforward to construct
an analogous scheme for right-sided intervals, and we omit the details here. We state the theorem
below and defer its security proof to Appendix B.2.

Theorem 8. Given a pseudorandom generator G : {0, 1}κ → {0, 1}2(κ+2), the construction (Share,Eval)
in Figure 6 is a secure (u, 1, 1)-ibDCF scheme (Definition 7) for the family of single-dimensional
one-sided intervals, with key size |k0| = |k1| = u · (κ+ 4) + κ bits and output size |y0| = |y1| = 1.

Next we present our construction for a d-dimensional (u, d, d)-ibDCF scheme in Figure 7, where
we adapt the concat technique from prior work [GRS22]. We state the theorem below and defer its
proof to Appendix B.3.

Theorem 9. Given a single-dimensional (u, 1, 1)-ibDCF scheme, the construction (Share∗,Eval∗) in
Figure 7 is a secure (u, d, d)-ibDCF scheme (Definition 7) for the family of d-dimensional intervals,
with key size |k0| = |k1| = d · (u · (κ+ 4) + κ) bits and output size |y0| = |y1| = d.

(u, d, d)-ibDCF (Share∗,Eval∗):

Parameters: Let (Share, Eval) be a single-dimensional (u, 1, 1)-ibDCF scheme.

Share∗(1κ, ((α1, β1), . . . , (αd, βd))):

for i = 1 to d do
(ki0, k

i
1)← Share(1κ, (αi, βi))

k0 = (k10, . . . , k
d
0) and k1 = (k11, . . . , k

d
1)

return (k0, k1)

Eval∗(b, kb = (k1b , . . . , k
d
b), x⃗ = (x1, . . . , xd)):

return (Eval(b, k1b , x1) ∥ . . . ∥ Eval(b, kdb , xd))

Figure 7: Construction of Incremental Boolean Distributed Comparison Function (u, d, d)-ibDCF
for d-dimensional intervals with output length d.

7 Instantiation and Evaluation

We instantiate our sa-PSI protocols with d-dimensional balls with ℓ∞-norm using the ibDCF pre-
sented in Section 6, and analyze the computation and communication improvements over prior
work [GRS22,GRS23]. Since our protocol is semi-honest secure, we mainly compare with the semi-
honest work [GRS22]. Note that [GRS23] follows the same construction framework as [GRS22] for

2Note that similar ideas were presented in [APR+22] in to construct DCF from iDPF, where there are also
evaluation values at each node (vi) in their construction (Algorithm 7). However, outputting these values doesn’t
immediately work for us because we need the critical path to output a secret share of 1 (instead of 0 in their
construction). Another critical difference is that vi in [APR+22] remains unchanged when xi = 1, whereas our
construction generates fresh randomness for each node, resulting in fresh secret shares at each node and achieving
slightly stronger security guarantees that are essential in our sa-PSI protocols.

23

the most part while focusing on achieving malicious security, except that [GRS23] also introduces a
new spatial hashing technique that improves upon the semi-honest construction. Hence we compare
our work with both spatial hashing constructions.

7.1 Single Ball with Single Point

We start our comparison with the setting where Alice holds a single ball with ℓ∞-norm as the
distance metric in the d-dimensional universe ({0, 1}u)d, and Bob holds a single point. The com-
putation cost of the protocol can be broken down into three parts: (1) Alice generates all the FSS
keys, (2) Bob evaluates all the FSS on his inputs and computes hash values, and (3) Alice identifies
the set intersection from the hash values received from Bob. Our unit of computation cost is one
PRG or hash operation.

The communication cost can be broken down into two parts: (1) oblivious transfer where Alice
is the OT sender with FSS keys and Bob is the OT receiver with random choice bits, and (2) the
hash values sent from Bob to Alice. The computation and communication costs are summarized
in Table 1. Note that all the computation only involves efficient symmetric-key operations such as
PRGs (which can be instantiated with AES) and hash functions (which can be instantiated with
e.g., SHA256). There is also computation cost from OT on both parties, but we can leverage the
efficient OT extension [IKNP03], and the computation cost is dominated by the FSS key generation
and evaluation, so we omit this cost from the table.

Comp. & Comm. Costs [GRS22] Ours

Comp.
Alice

FSS O(u · d · ℓOT) O(u · d · ℓOT)

Intersection O(min(|SA| · u, 2u) · d · ℓOT) O(ud + u · d · ℓOT)

Bob’s Eval O(u · d · ℓOT) O(ud + u · d · ℓOT)

Comm.
(bits)

OT O(κ · u · d · ℓOT) O(κ · u · d · ℓOT)

Bob’s Hashes O(hout) O(ud · hout)

Table 1: Summary of computation and communication costs for the setting where Alice holds a single ℓ∞
ball in the d-dimensional universe ({0, 1}u)d and Bob holds a single point in the universe. hout = O(λ) is the
output length of the final hash function. ℓOT = O(κ) is the number of OTs. |SA| is upper bounded by 2u·d.

Cells in green indicate that our protocol achieves better complexity, and those in grey indicate
that our protocol requires higher overhead. Our main improvement over prior work is Alice’s
computation cost to identify the set intersection. In particular, prior work requires Alice to compute
hash values (i.e., perform FSS evaluations) on every element in her set, which could potentially be
exponentially large, namely |SA| is upper bounded by 2u·d. In our work, by leveraging our new
ibFSS construction for d-dimensional ℓ∞ balls, Alice only needs to compute hash values for up to
ud prefixes. In case there is a match, she can perform an efficient search for Bob’s element in time
u · d · ℓOT. To enable Alice to perform such a search, we require Bob to compute hash values for
all combinations of his prefixes, hence introducing a computation and communication overhead of
ud on Bob’s side. Text in red highlights our difference from prior work that attributes to our new
ibFSS technique.

24

7.2 Multiple (Overlapping) Balls with Multiple Points

Next, we consider the setting where Alice holds NA balls with ℓ∞-norm as the distance metric in
the d-dimensional universe ({0, 1}u)d, and Bob holds NB points in the universe. The computation
and communication costs can be broken down in a similar way as above, which is summarized in
Table 2.

Comp. & Comm. Costs [GRS22,GRS23] Ours

Comp.
Alice

FSS O(NA · ud · ℓOT) O(NA · u · d · ℓOT)

Intersection O(|SA| ·NA · ud · ℓOT) O(NA · ud +NB · u · d · ℓOT)

Bob’s Eval O(NA ·NB · ud · ℓOT) O(NA ·NB · (ud + u · d · ℓOT))

Comm.
(bits)

OT O(κ ·NA · ud · ℓOT) O(κ ·NA · u · d · ℓOT)

Bob’s Hashes O(NB · hout) O(NB ·NA · ud · hout)

Table 2: Summary of computation and communication costs for the setting where Alice holds NA number
of ℓ∞ balls in the d-dimensional universe ({0, 1}u)d and Bob holds NB points in the universe. hout = O(λ)
is the output length of the final hash function. ℓOT = O(κ) is the number of OTs. |SA| is upper bounded by
2u·d. Prior work [GRS22,GRS23] only allows Alice to hold disjoint balls while our protocol also supports
overlapping balls.

Besides the improvement from ibFSS (which is highlighted in red), we have several new contribu-
tions in this setting. The way that prior work deals with multiple balls is via a sum transformation
to combine multiple FSS into a single one that achieves the OR functionality. Since their sum
transformation only works for FSS that outputs a single bit, they have to use strong FSS for d-
dimensional balls [BGI16], incurring an overhead of ud in both computation and communication
for every ball and every FSS evaluation. By utilizing our new observation for the OR functionality
in PSI, we no longer need the sum transformation, allowing for the usage of weak FSS that outputs
multiple bits for each ball. This reduces the exponential overhead (ud) down to linear in the di-
mension (u · d). Moreover, the sum transformation in prior work only works for disjoint balls. We
eliminate this restriction in our protocol and allow for overlapping balls as well. We highlight our
difference from prior work in blue in the table.

7.3 Spatial Hashing

In this section, we analyze the multi-ball-multi-point protocols using the spatial hashing tech-
nique [GRS22]. In particular, Alice holds NA number ℓ∞-balls of diameter δ in the d-dimensional
universe ({0, 1}u)d, and Bob holds NB points. Note that prior work [GRS22, GRS23] addition-
ally considers more restricted settings where the balls are not only disjoint, but are guaranteed
to be far apart (> 4δ [GRS22] or > 8δ [GRS23] in distance), which we do not compare with.
In fact, our protocol works for a more relaxed setting where Alice’s balls do not have the same
diameter, and they can even overlap. The computation and communication costs can be broken
down in a similar way as above, which is summarized in Table 3. All three constructions require
an OKVS [GPR+21,RR22,BPSY23], typically with linear overhead (and small constants) in the
number of keys, so we ignore this overhead.

In addition to the improvements from ibFSS (highlighted in red) and those from the new OR
observation (highlighted in blue), we introduce new techniques to improve upon spatial hashing,
which may be of independent interest. The spatial hashing technique is introduced in [GRS22] and

25

Comp. & Comm. Costs [GRS22] [GRS23] Ours

Comp.
Alice

FSS O(NA · (4 log δ)d · ℓOT) O(NA · u · d · (log δ)d · ℓOT) O(NA · log δ · d · ℓOT)

Intersection O(|SA| · (2 log δ)d · ℓOT) O(|SA| · u · d · (2 log δ)d · ℓOT) O(NA · (log δ)d +NB · log δ · d · ℓOT)

Bob’s Eval O(NB · (2 log δ)d · ℓOT) O(NB · u · d · (2 log δ)d · ℓOT) O(NB · 2d · ((log δ)d + log δ · d · ℓOT)

Comm.
(bits)

OT O(κ ·NA · (4 log δ)d · ℓOT) O(κ ·NA · u · d · (log δ)d · ℓOT) O(κ ·NA · log δ · d · ℓOT)

Bob’s Hashes O(NB · hout) O(NB · hout) O(NB · (2 log δ)d · hout)

Table 3: Summary of computation and communication costs for spatial hashing. hout = O(λ) is the output
length of the final hash function. ℓOT = O(κ) is the number of OTs. |SA| is upper bounded by 2u·d. Prior
work [GRS22,GRS23] only allows Alice to hold disjoint balls with fixed diameter δ while our protocol
also supports overlapping balls with different diameters.

Comp. & Comm. Costs
d = 2 d = 3 d = 5

[GRS23] Ours [GRS23] Ours [GRS23] Ours

Comp.
(PRGs, SHA256)

Alice
FSS 86M 840K 516M 1.3M 13.8B 2.1M

Intersection 352B 2.8B 135T 4.2B 1478Q 7.0B
Bob’s Eval 1.2T 11.3B 13.8T 34.6B 1468T 324B

Comm.
OT 1.3GB 12.5MB 7.7GB 18.8MB 205GB 31.3MB

Bob’s Hashes 4.77MB 477MB 4.77MB 4.77GB 4.77MB 477GB

Table 4: Suppose Alice has NA = 300 balls with fixed diameter δ = 32 and Bob has a collection of NB = 106

points in d = {2, 3, 5} dimensional space over U = {0, 1}u, u = 32. Let computational security parameter
κ = 128 and statistical security parameter λ = 40. We estimate the computation and communication cost
of our new, spatial hashing technique and compare against the previous best construction [GRS23]. Our
unit of computation cost is one PRG or hash operation. K, M, B, T, Q stand for thousand, million, billion,
trillion, quadrillion respectively in computation units. For example, 1K means 1000 AES/SHA256 calls.

improved in [GRS23]. In [GRS22], they consider all the active grids that overlap with at least one
ball. Each active grid may contain up to 2d union of disjoint balls, so this problem is reduced to
the multi-ball-multi-point setting. Therefore, they need to use the expensive sum transformation
on strong FSS, inheriting the (log δ)d overhead and introducing a new 2d overhead as the maximum
number of balls per grid. Additionally, each ball may overlap with up to 2d grids, hence the total
number of active grids is upper bounded by NA · 2d, introducing another 2d overhead in FSS key
generation. The follow-up work [GRS23] improves the spatial hashing technique by mapping every
ball into a unique grid, hence reducing the number of active grids. However, for each point in
Bob’s set, he needs to evaluate FSS for all the adjacent grids and perform the sum transformation,
which still requires strong FSS and the (log δ)d overhead. Moreover, they apply a distributed point
function (DPF) to reduce the domain from the universe to the grid, introducing another overhead
of u · d.

In our work, we also map every ball into a unique grid, but Bob does not need to perform the
sum transformation on adjacent cells. Instead, we can leverage our new OR observation and achieve
a log δ · d overhead similar to the multi-ball-multi-point protocol. Additionally, we eliminate the
usage of DPF by shifting both the balls and points to their corresponding mini-universe, saving
another factor of u · d. Finally, we relax our restriction on Alice’s balls in that they can overlap
and have different diameters. The only remaining restriction is that every ball can be mapped to
a distinct grid that fully contains this ball. We highlight our difference from prior work in brown
in the table.

To illustrate our improvement, we estimate the concrete computational and communication
costs for specific settings in Table 4 comparing our protocol with the previous best spatial hashing

26

technique [GRS23]. Alice’s computation cost is improved by 125−211M×, and Bob’s computation
cost is improved by 106 − 4, 531×. In term of communication, we achieve lower communication
cost in OT (104− 6, 550×) while incurring higher communication overhead in Bob’s hashes (100−
100K×). The overhead can outweigh the OT savings in certain scenarios. For instance, when
d = 5, the total communication cost of [GRS23] is 205GB while ours is 477GB. However, the total
computation cost of [GRS23] is 1478Q while ours is 331B, showing a 4.5 million times improvement.

Concretely, we can estimate for the ride sharing application setting where Alice (passengers)
has NA = 300 balls with fixed diameter δ = 32 wants to be matched with Bob (drivers) NB = 300
in a two-dimensional space over U = {0, 1}u for u = 32. In our protocol (respectively, in prior
work [GRS23]), the computation cost of Alice generating FSS is 840K (86M), Alice computing
intersection is 848K (352B), Bob evaluating FSS is 3.3M (344M); the communication cost of OT
is 12.8MB (1.28GB), Bob’s hashes is 146KB (1.46KB). Our protocol outperforms prior work by
orders of magnitudes in both computation and communication. .

8 Extending Functionality

In this section, we present a construction for sa-PSI where Bob learns the output (Section 8.1). With
a slight modification, we construct protocols that allow Alice (or Bob) to learn structure-aware PSI
cardinality or PSI with associated sum (Section 8.2). One difference from prior constructions is
that we only allow Alice’s structured set to be a union of disjoint sets.

8.1 sa-PSI with Bob Learning Output

Construction Overview. Following the syntax from spatial hashing, both parties prepare their
inputs. In Step 1, Alice assigns each of her structures to a distinct origin and prepares a set X
of all prefix values along with the origin as an identifier. In Step 2, Bob computes a set Y for
each input y⃗, which consists of all prefixes associated with every origin that contains the input. If
y⃗ ∈ SA ∩ SB, then there is exactly one matching value (corresponding to Alice’s prefix and origin),
namely |X ∩ Y | = 1, which must be accounted for while computing PSI cardinality between X
and Y . If y⃗ /∈ SA ∩ SB, then there is no matching value, hence |X ∩ Y | = 0. Alice and Bob
can use a FPSI-CA ideal functionality, for each set Y , for Bob to learn |X ∩ Y |. If Bob learns that
the cardinality is 1 then he includes the input y⃗ in intersections, if cardinality is 0 then he does
not include it in the intersection. We define the ideal functionality for sa-PSI where Bob learns
the output in Figure 8. Note that a difference from Figure 1 is that Alice’s structured sets are
disjoint. We present our protocol in Figure 9, state the theorem below and defer its security proof
to Appendix B.4.

Theorem 10. The protocol in Figure 9 securely realizes Fsa-PSI (Figure 8) in the FPSI-CA-hybrid
model in the presence of semi-honest adversaries.

Cost Analysis. For the set family S as disjoint union of NA balls with diameter ≤ δ in ℓ∞ norm,
Alice and Bob run NB instances of FPSI-CA, between sets of size n1 = NA ·w = NA · (log(2δ))d and
n2 = (2 log(2δ))d. If we instantiate FPSI-CA with a semi-honest construction with linear computation
and communication in set sizes [PSTY19,IKN+20,KK20,GMR+21,RS21,CGS22,HMS21], then we
achieve sa-PSI for Bob to learn output with communication and computation costs O(NB ·(n1+n2)),
which is ≪ |SA|.

27

Parameters: A family of sets S ⊆ 2U × · · · × 2U︸ ︷︷ ︸
d

where U = {0, 1}u. Number of Alice’s structured

sets NA and size of Bob’s set NB.

Functionality:

1. Receive input SA =
⋃̇

i∈NA
S⃗
(i)
A , where S⃗

(i)
A ∈ S and SA is a disjoint union of structured sets

(or a concise representation of SA) from Alice.
2. Receive input SB ⊆ Ud of size NB from Bob.
3. [output] Send SA ∩ SB to Bob.

Figure 8: Ideal functionality Fsa-PSI for structure-aware PSI, where Bob learns the output.

Parameters:
� private set intersection cardinality ideal functionality FPSI-CA

Inputs:

� Alice has NA structured sets SA =
⋃̇

i∈NA
S⃗
(i)
A , where S⃗

(i)
A ∈ S and the structured sets in SA

are disjoint.

� Bob has an unstructured set SB ⊆ Ud of size NB.

Protocol:
1. Alice initializes X := ∅ and does the following:

(a) Identify a distinct origin o⃗(i) for each i ∈ [NA] such that S⃗
(i)
A ⊆ Univo⃗(i) .

(b) For each i ∈ [NA]:

i. Write S⃗
(i)
A .Shift(o⃗(i)) =

⋃̇
j∈[w′]PreS−→xj

as disjoint union of w′ prefix sets (w is the

upper bound for w′).

ii. Update set X := X ∪ {(
−→
xj∥o⃗(i)) | j ∈ [w′]}.

(c) Pad X with dummy random strings such that |X| = NA · w.
2. Bob initializes I := ∅ and does the following:

(a) For each element y⃗ ∈ SB, and for each origin z⃗ where y⃗ ∈ Univz⃗:
i. Write y⃗.Shift(z⃗) = (y1, . . . , yd), where yj ∈ [0, 2δ) for all j ∈ [d].

ii. Compute

Y :=

{
(y⃗′∥z⃗)

∣∣∣∣ ℓ1 ∈ [log(2δ)], . . . , ℓd ∈ [log(2δ)]

y⃗′ := ((y1)[1:ℓ1], . . . , (yd)[1:ℓd])

}
(b) Bob sends set Y and Alice sends X to ideal functionality FPSI-CA.

(c) Bob receives output cnt from FPSI-CA. Update set I = I ∪ {y⃗} if cnt = 1.

3. [output] Bob outputs the intersection I.

Figure 9: Protocol realizing Fsa-PSI (Figure 8), where Bob learns the output SA ∩ SB.

8.2 Structure-Aware PSI Cardinality/Sum

Construction Overview. The above principle can be extended to allow Alice (or Bob) to learn
structure-aware PSI cardinality |SA∩SB|, except that we accumulate over all the Y sets computed
for each of Bob’s input. It could be the case that two different inputs have overlapping prefixes
within the same origin (for example, points which are “close” to each other). In our protocol,

28

Bob computes a multi-set with an associated cnt, indicating the number of inputs that any given
prefix is associated with. After this, Alice and Bob can use FPSI-Sum, to learn the cardinality. We
define the ideal functionality in Figure 10 and present our construction in Figure 11. We state the
theorem below and defer its proof to Appendix B.5.

Parameters: a family of sets S ⊆ 2U × · · · × 2U︸ ︷︷ ︸
d

where U = {0, 1}u. Number of Alice’s structured

sets NA and size of Bob’s set NB.

Functionality:

1. Receive input SA =
⋃̇

i∈NA
S⃗
(i)
A , where S⃗

(i)
A ∈ S and SA is a disjoint union of structured sets

(or a concise representation of SA) from Alice.
2. Receive input SB ⊆ Ud of size NB from Bob.
3. [output] Send output |SA ∩ SB| to Alice (or Bob).

Figure 10: Ideal functionality Fsa-PSI-CA for structure-aware PSI cardinality.

Theorem 11. The protocol in Figure 11 securely realizes Fsa-PSI-CA (Figure 10) in the FPSI-Sum-
hybrid model, secure in the presence of semi-honest adversaries.

Cost Analysis. For the set family S as disjoint union ofNA balls of diameter ≤ δ in ℓ∞ norm, Alice
and Bob run an instance of FPSI-Sum between sets of size n1 = NA · w = NA · (log(2δ))d and n2 =
|SB| · (2 · log(2δ))d. If we realize FPSI-Sum with a semi-honest construction with linear computation
and communication in set sizes [PSTY19,KK20,HMS21,RS21,CGS22], then we achieve sa-PSI-CA
with communication and computation costs of O(n1 + n2), which is ≪ |SA|. Note that we require
the protocol to only reveal the associated sum, while hiding the intersection cardinality.

Structure-Aware PSI-Sum. The construction in Figure 11 can be extended to realize structure-
aware PSI with associated sum, when Bob’s inputs have associated values. The only change is that
the associated value cnt, for any prefix y⃗′∥z⃗ in origin z⃗ in set Yv, is the sum of Bob’s associated
values for all inputs that share the prefix y⃗′.

Acknowledgments

This project is supported in part by the NSF CNS Award 2247352, Brown DSI Seed Grant, Meta
Research Award, Google Research Scholar Award, and Amazon Research Award.

References

[ABD+21] Navid Alamati, Pedro Branco, Nico Döttling, Sanjam Garg, Mohammad Hajiabadi,
and Sihang Pu. Laconic private set intersection and applications. In Kobbi Nissim
and Brent Waters, editors, TCC 2021, Part III, volume 13044 of LNCS, pages 94–125.
Springer, Heidelberg, November 2021.

[Ads] Private Intersection-Sum Protocols with Applications to Attributing Aggregate Ad
Conversions. https://research.google/pubs/pub51026/.

29

https://research.google/pubs/pub51026/

Notation: We denote a set of elements as X and a set where every element has an associated
value as Xv = {(x, v) | x ∈ X, val(x) = v}.
Parameters:

� private set intersection with associated sum ideal functionality FPSI-Sum

Inputs:

� Alice has NA structured sets SA =
⋃̇

i∈NA
S⃗
(i)
A , where S⃗

(i)
A ∈ S and sets in SA are non-

overlapping.

� Bob has an unstructured set SB ⊆ Ud of size NB.

Protocol:
1. Alice initializes X := ∅ and does the following:

(a) Identify a distinct origin o⃗(i) for each i ∈ [NA] such that S⃗
(i)
A ⊆ Univo⃗(i) .

(b) For each i ∈ [NA]:

i. Write S⃗
(i)
A .Shift(o⃗(i)) =

⋃̇
j∈[w′]PreS−→xj

as disjoint union of w′ prefix sets (w is the

upper bound for w′).

ii. Update set X := X ∪ {(
−→
xj∥o⃗(i)) | j ∈ [w′]}.

(c) Pad X with dummy random strings such that |X| = NA · w.
2. Bob initializes a set with associated value Yv := ∅ and does the following:

(a) For each element y⃗ ∈ SB, and for each origin z⃗ where y⃗ ∈ Univz⃗:
i. Write y⃗.Shift(z⃗) = (y1, . . . , yd), where yj ∈ [0, 2δ) for all j ∈ [d].

ii. Compute

Y ′ =

{
(y⃗′∥z⃗)

∣∣∣∣ ℓ1 ∈ [log(2δ)], . . . , ℓd ∈ [log(2δ)]

y⃗′ := ((y1)[1:ℓ1], . . . , (yd)[1:ℓd])

}
iii. For each (y′∥z⃗) ∈ Y ′: if (y′∥z⃗) /∈ Y then Yv = Yv∪{(y′∥z⃗, 1)}, else for (y′∥z⃗, cnt) ∈ Yv,

update cnt = cnt+ 1.
(b) Pad Yv with dummy random strings and values such that |Yv| = NB · (2 · log(2δ))d.

3. Alice sends X and Bob sends Yv to FPSI-Sum.

� Alice learns output: functionality FPSI-Sum returns output to Alice.

� Bob learns output: functionality FPSI-Sum returns output to Bob.

Figure 11: Protocol realizing Fsa-PSI-CA (Figure 10) in the FPSI-Sum-hybrid model.

[ADT11] Giuseppe Ateniese, Emiliano De Cristofaro, and Gene Tsudik. (If) size matters: Size-
hiding private set intersection. In Dario Catalano, Nelly Fazio, Rosario Gennaro, and
Antonio Nicolosi, editors, PKC 2011, volume 6571 of LNCS, pages 156–173. Springer,
Heidelberg, March 2011.

[AKB07] Giuseppe Ateniese, Jonathan Kirsch, and Marina Blanton. Secret handshakes with
dynamic and fuzzy matching. In NDSS, volume 7, pages 43–54, 2007.

[ALOS22] Diego F. Aranha, Chuanwei Lin, Claudio Orlandi, and Mark Simkin. Laconic private
set-intersection from pairings. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine
Shi, editors, ACM CCS 2022, pages 111–124. ACM Press, November 2022.

30

[ALP+21] Asra Ali, Tancrède Lepoint, Sarvar Patel, Mariana Raykova, Phillipp Schoppmann,
Karn Seth, and Kevin Yeo. Communication-computation trade-offs in PIR. In Michael
Bailey and Rachel Greenstadt, editors, USENIX Security 2021, pages 1811–1828.
USENIX Association, August 2021.

[ALSZ13] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More effi-
cient oblivious transfer and extensions for faster secure computation. In Ahmad-Reza
Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013, pages 535–548.
ACM Press, November 2013.

[App] Privacy-Preserving Contact Tracing. https://covid19.apple.com/

contacttracing.

[APR+22] Amit Agarwal, Stanislav Peceny, Mariana Raykova, Phillipp Schoppmann, and Karn
Seth. Communication efficient secure logistic regression. Cryptology ePrint Archive,
Report 2022/866, 2022. https://eprint.iacr.org/2022/866.

[BBC+21] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai.
Lightweight techniques for private heavy hitters. In 2021 IEEE Symposium on Security
and Privacy, pages 762–776. IEEE Computer Society Press, May 2021.

[BBV+20] Alex Berke, Michiel A. Bakker, Praneeth Vepakomma, Ramesh Raskar, Kent Larson,
and Alex ’Sandy’ Pentland. Assessing disease exposure risk with location histories
and protecting privacy: A cryptographic approach in response to A global pandemic.
CoRR, abs/2003.14412, 2020.

[BCG+21] Elette Boyle, Nishanth Chandran, Niv Gilboa, Divya Gupta, Yuval Ishai, Nishant
Kumar, and Mayank Rathee. Function secret sharing for mixed-mode and fixed-
point secure computation. In Anne Canteaut and François-Xavier Standaert, editors,
EUROCRYPT 2021, Part II, volume 12697 of LNCS, pages 871–900. Springer, Hei-
delberg, October 2021.

[BGI15] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. In Elisabeth
Oswald and Marc Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of
LNCS, pages 337–367. Springer, Heidelberg, April 2015.

[BGI16] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing: Improvements
and extensions. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, An-
drew C. Myers, and Shai Halevi, editors, ACM CCS 2016, pages 1292–1303. ACM
Press, October 2016.

[BGI18] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing: Improvements and
extensions. Cryptology ePrint Archive, Report 2018/707, 2018. https://eprint.

iacr.org/2018/707.

[BGIK22] Elette Boyle, Niv Gilboa, Yuval Ishai, and Victor I. Kolobov. Programmable
distributed point functions. In Yevgeniy Dodis and Thomas Shrimpton, editors,
CRYPTO 2022, Part IV, volume 13510 of LNCS, pages 121–151. Springer, Heidel-
berg, August 2022.

31

https://covid19.apple.com/contacttracing
https://covid19.apple.com/contacttracing
https://eprint.iacr.org/2022/866
https://eprint.iacr.org/2018/707
https://eprint.iacr.org/2018/707

[BPSY23] Alexander Bienstock, Sarvar Patel, Joon Young Seo, and Kevin Yeo. Near-optimal
oblivious key-value stores for efficient psi, PSU and volume-hiding multi-maps. In
Joseph A. Calandrino and Carmela Troncoso, editors, 32nd USENIX Security Sym-
posium, USENIX Security 2023, Anaheim, CA, USA, August 9-11, 2023. USENIX
Association, 2023.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October
2001.

[CFR21] Anrin Chakraborti, Giulia Fanti, and Michael K. Reiter. Distance-aware private set
intersection, 2021.

[CGS22] Nishanth Chandran, Divya Gupta, and Akash Shah. Circuit-PSI with linear complex-
ity via relaxed batch OPPRF. PoPETs, 2022(1):353–372, January 2022.

[CHLR18] Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal. Labeled PSI from fully
homomorphic encryption with malicious security. In David Lie, Mohammad Mannan,
Michael Backes, and XiaoFengWang, editors, ACM CCS 2018, pages 1223–1237. ACM
Press, October 2018.

[Chr] Protect your accounts from data breaches with Password Checkup. https://

security.googleblog.com/2019/02/protect-your-accounts-from-data.html.

[CILO22] Wutichai Chongchitmate, Yuval Ishai, Steve Lu, and Rafail Ostrovsky. PSI from ring-
OLE. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, ACM CCS
2022, pages 531–545. ACM Press, November 2022.

[CLR17] Hao Chen, Kim Laine, and Peter Rindal. Fast private set intersection from ho-
momorphic encryption. In Bhavani M. Thuraisingham, David Evans, Tal Malkin,
and Dongyan Xu, editors, ACM CCS 2017, pages 1243–1255. ACM Press, Octo-
ber / November 2017.

[CM20] Melissa Chase and Peihan Miao. Private set intersection in the internet setting from
lightweight oblivious PRF. In Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO 2020, Part III, volume 12172 of LNCS, pages 34–63. Springer, Heidelberg,
August 2020.

[CMdG+21] Kelong Cong, Radames Cruz Moreno, Mariana Botelho da Gama, Wei Dai, Ilia Il-
iashenko, Kim Laine, and Michael Rosenberg. Labeled PSI from homomorphic encryp-
tion with reduced computation and communication. In Giovanni Vigna and Elaine
Shi, editors, ACM CCS 2021, pages 1135–1150. ACM Press, November 2021.

[CRR21] Geoffroy Couteau, Peter Rindal, and Srinivasan Raghuraman. Silver: Silent VOLE
and oblivious transfer from hardness of decoding structured LDPC codes. In Tal
Malkin and Chris Peikert, editors, CRYPTO 2021, Part III, volume 12827 of LNCS,
pages 502–534, Virtual Event, August 2021. Springer, Heidelberg.

32

https://security.googleblog.com/2019/02/protect-your-accounts-from-data.html
https://security.googleblog.com/2019/02/protect-your-accounts-from-data.html

[DCW13] Changyu Dong, Liqun Chen, and Zikai Wen. When private set intersection meets big
data: an efficient and scalable protocol. In Ahmad-Reza Sadeghi, Virgil D. Gligor,
and Moti Yung, editors, ACM CCS 2013, pages 789–800. ACM Press, November 2013.

[DKL+23] Nico Döttling, Dimitris Kolonelos, Russell W. F. Lai, Chuanwei Lin, Giulio Malavolta,
and Ahmadreza Rahimi. Efficient laconic cryptography from learning with errors. In
Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part III, volume 14006
of LNCS, pages 417–446. Springer, Heidelberg, April 2023.

[DMRY11] Dana Dachman-Soled, Tal Malkin, Mariana Raykova, and Moti Yung. Secure efficient
multiparty computing of multivariate polynomials and applications. In Javier Lopez
and Gene Tsudik, editors, ACNS 11, volume 6715 of LNCS, pages 130–146. Springer,
Heidelberg, June 2011.

[DT10] Emiliano De Cristofaro and Gene Tsudik. Practical private set intersection protocols
with linear complexity. In Radu Sion, editor, FC 2010, volume 6052 of LNCS, pages
143–159. Springer, Heidelberg, January 2010.

[Edg] Password Monitor: Safeguarding passwords in Microsoft
Edge. https://www.microsoft.com/en-us/research/blog/

password-monitor-safeguarding-passwords-in-microsoft-edge/.

[ElG85] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory, 31(4):469–472, 1985.

[FNP04] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching and
set intersection. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004,
volume 3027 of LNCS, pages 1–19. Springer, Heidelberg, May 2004.

[GHMM24] Sanjam Garg, Mohammad Hajiabadi, Peihan Miao, and Alice Murphy. Laconic
branching programs from the Diffie-Hellman assumption. In Qiang Tang and Vanessa
Teague, editors, PKC 2024, Part II, volume 14603 of LNCS, pages 323–355. Springer,
Heidelberg, April 2024.

[GMR+21] Gayathri Garimella, Payman Mohassel, Mike Rosulek, Saeed Sadeghian, and Jas-
pal Singh. Private set operations from oblivious switching. In Juan Garay, editor,
PKC 2021, Part II, volume 12711 of LNCS, pages 591–617. Springer, Heidelberg,
May 2021.

[GPR+21] Gayathri Garimella, Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. Obliv-
ious key-value stores and amplification for private set intersection. In Tal Malkin and
Chris Peikert, editors, CRYPTO 2021, Part II, volume 12826 of LNCS, pages 395–425,
Virtual Event, August 2021. Springer, Heidelberg.

[GRS22] Gayathri Garimella, Mike Rosulek, and Jaspal Singh. Structure-aware private set
intersection, with applications to fuzzy matching. In Yevgeniy Dodis and Thomas
Shrimpton, editors, CRYPTO 2022, Part I, volume 13507 of LNCS, pages 323–352.
Springer, Heidelberg, August 2022.

33

https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/

[GRS23] Gayathri Garimella, Mike Rosulek, and Jaspal Singh. Malicious secure, structure-
aware private set intersection. In Helena Handschuh and Anna Lysyanskaya, editors,
CRYPTO 2023, Part I, volume 14081 of LNCS, pages 577–610. Springer, Heidelberg,
August 2023.

[GS19] Satrajit Ghosh and Mark Simkin. The communication complexity of threshold
private set intersection. In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part II, volume 11693 of LNCS, pages 3–29. Springer, Heidelberg,
August 2019.

[GWSW22] Jie Gao, Terrence Wong, Bassant Selim, and Chun Wang. VOMA: A privacy-
preserving matching mechanism design for community ride-sharing. IEEE Trans.
Intell. Transp. Syst., 23(12):23963–23975, 2022.

[HEK12] Yan Huang, David Evans, and Jonathan Katz. Private set intersection: Are garbled
circuits better than custom protocols? In NDSS 2012. The Internet Society, February
2012.

[HFH99] Bernardo A. Huberman, Matthew K. Franklin, and Tad Hogg. Enhancing privacy
and trust in electronic communities. In Stuart I. Feldman and Michael P. Wellman,
editors, Proceedings of the First ACM Conference on Electronic Commerce (EC-99),
Denver, CO, USA, November 3-5, 1999, pages 78–86. ACM, 1999.

[HMS21] Kyoohyung Han, Dukjae Moon, and Yongha Son. Improved circuit-based PSI via
equality preserving compression. Cryptology ePrint Archive, Report 2021/1440, 2021.
https://eprint.iacr.org/2021/1440.

[IKN+20] Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Shobhit Saxena, Karn
Seth, Mariana Raykova, David Shanahan, and Moti Yung. On deploying secure com-
puting: Private intersection-sum-with-cardinality. In IEEE European Symposium on
Security and Privacy, EuroS&P 2020, Genoa, Italy, September 7-11, 2020, pages 370–
389. IEEE, 2020.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers
efficiently. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 145–
161. Springer, Heidelberg, August 2003.

[JL10] Stanislaw Jarecki and Xiaomin Liu. Fast secure computation of set intersection. In
Juan A. Garay and Roberto De Prisco, editors, SCN 10, volume 6280 of LNCS, pages
418–435. Springer, Heidelberg, September 2010.

[Key] Password Monitoring – Apple Platform Security. https://support.apple.com/

en-al/guide/security/sec78e79fc3b/web.

[KK13] Vladimir Kolesnikov and Ranjit Kumaresan. Improved OT extension for transferring
short secrets. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II,
volume 8043 of LNCS, pages 54–70. Springer, Heidelberg, August 2013.

34

https://eprint.iacr.org/2021/1440
https://support.apple.com/en-al/guide/security/sec78e79fc3b/web
https://support.apple.com/en-al/guide/security/sec78e79fc3b/web

[KK20] Ferhat Karakoç and Alptekin Küpçü. Linear complexity private set intersection for
secure two-party protocols. In Stephan Krenn, Haya Shulman, and Serge Vaudenay,
editors, CANS 20, volume 12579 of LNCS, pages 409–429. Springer, Heidelberg, De-
cember 2020.

[KKRT16] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient
batched oblivious PRF with applications to private set intersection. In Edgar R.
Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai
Halevi, editors, ACM CCS 2016, pages 818–829. ACM Press, October 2016.

[KRS+19] Daniel Kales, Christian Rechberger, Thomas Schneider, Matthias Senker, and Chris-
tian Weinert. Mobile private contact discovery at scale. In Nadia Heninger and Patrick
Traynor, editors, USENIX Security 2019, pages 1447–1464. USENIX Association, Au-
gust 2019.

[KS05] Lea Kissner and Dawn Xiaodong Song. Privacy-preserving set operations. In Vic-
tor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 241–257. Springer,
Heidelberg, August 2005.

[MPR+20] Peihan Miao, Sarvar Patel, Mariana Raykova, Karn Seth, and Moti Yung. Two-sided
malicious security for private intersection-sum with cardinality. In Daniele Micciancio
and Thomas Ristenpart, editors, CRYPTO 2020, Part III, volume 12172 of LNCS,
pages 3–33. Springer, Heidelberg, August 2020.

[OOS17] Michele Orrù, Emmanuela Orsini, and Peter Scholl. Actively secure 1-out-of-N OT
extension with application to private set intersection. In Helena Handschuh, editor,
CT-RSA 2017, volume 10159 of LNCS, pages 381–396. Springer, Heidelberg, February
2017.

[PRTY19] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. SpOT-light: Lightweight
private set intersection from sparse OT extension. In Alexandra Boldyreva and Daniele
Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 401–431.
Springer, Heidelberg, August 2019.

[PRTY20] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. PSI from PaXoS: Fast,
malicious private set intersection. In Anne Canteaut and Yuval Ishai, editors, EURO-
CRYPT 2020, Part II, volume 12106 of LNCS, pages 739–767. Springer, Heidelberg,
May 2020.

[PSSZ15] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phasing: Private
set intersection using permutation-based hashing. In Jaeyeon Jung and Thorsten Holz,
editors, USENIX Security 2015, pages 515–530. USENIX Association, August 2015.

[PSTY19] Benny Pinkas, Thomas Schneider, Oleksandr Tkachenko, and Avishay Yanai. Efficient
circuit-based PSI with linear communication. In Yuval Ishai and Vincent Rijmen, ed-
itors, EUROCRYPT 2019, Part III, volume 11478 of LNCS, pages 122–153. Springer,
Heidelberg, May 2019.

35

[PSWW18] Benny Pinkas, Thomas Schneider, Christian Weinert, and Udi Wieder. Efficient
circuit-based PSI via cuckoo hashing. In Jesper Buus Nielsen and Vincent Rijmen, ed-
itors, EUROCRYPT 2018, Part III, volume 10822 of LNCS, pages 125–157. Springer,
Heidelberg, April / May 2018.

[PSZ14] Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster private set intersection
based on OT extension. In Kevin Fu and Jaeyeon Jung, editors, USENIX Security
2014, pages 797–812. USENIX Association, August 2014.

[Rab05] Michael O Rabin. How to exchange secrets with oblivious transfer. Cryptology ePrint
Archive, 2005.

[RADN22] Sara Ramezanian, Gizem Akman, Mohamed Taoufiq Damir, and Valtteri Niemi.
Lightweight privacy-preserving ride-sharing protocols for autonomous cars. In Björn
Brücher, Christoph Krauß, Mario Fritz, Hans-Joachim Hof, and Oliver Wasenmüller,
editors, Computer Science in Cars Symposium, CSCS 2022, Ingolstadt, Germany, 8
December 2022, pages 11:1–11:11. ACM, 2022.

[RR17] Peter Rindal and Mike Rosulek. Improved private set intersection against mali-
cious adversaries. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EURO-
CRYPT 2017, Part I, volume 10210 of LNCS, pages 235–259. Springer, Heidelberg,
April / May 2017.

[RR22] Srinivasan Raghuraman and Peter Rindal. Blazing fast PSI from improved OKVS and
subfield VOLE. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors,
ACM CCS 2022, pages 2505–2517. ACM Press, November 2022.

[RS21] Peter Rindal and Phillipp Schoppmann. VOLE-PSI: Fast OPRF and circuit-PSI
from vector-OLE. In Anne Canteaut and François-Xavier Standaert, editors, EURO-
CRYPT 2021, Part II, volume 12697 of LNCS, pages 901–930. Springer, Heidelberg,
October 2021.

[Sig] Technology preview: Private contact discovery for Signal. https://signal.org/

blog/private-contact-discovery/.

[TSS+20] Ni Trieu, Kareem Shehata, Prateek Saxena, Reza Shokri, and Dawn Song. Epione:
Lightweight contact tracing with strong privacy. IEEE Data Eng. Bull., 43(2):95–107,
2020.

[UCK+21] Erkam Uzun, Simon P. Chung, Vladimir Kolesnikov, Alexandra Boldyreva, and Wenke
Lee. Fuzzy labeled private set intersection with applications to private real-time bio-
metric search. In Michael Bailey and Rachel Greenstadt, editors, USENIX Security
2021, pages 911–928. USENIX Association, August 2021.

[vBP24] Aron van Baarsen and Sihang Pu. Fuzzy private set intersection with large hyperballs.
In Marc Joye and Gregor Leander, editors, Advances in Cryptology - EUROCRYPT
2024 - 43rd Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Zurich, Switzerland, May 26-30, 2024, Proceedings, Part V,
volume 14655 of Lecture Notes in Computer Science, pages 340–369. Springer, 2024.

36

https://signal.org/blog/private-contact-discovery/
https://signal.org/blog/private-contact-discovery/

[WG14] Yamin Wen and Zheng Gong. Private mutual authentications with fuzzy matching.
International Journal of High Performance Systems Architecture, 5(1):3–12, 2014.

[WXL+18] Xu An Wang, Fatos Xhafa, Xiaoshuang Luo, Shuaiwei Zhang, and Yong Ding. A
privacy-preserving fuzzy interest matching protocol for friends finding in social net-
works. Soft Computing, 22(8):2517–2526, 2018.

[ZCL21] En Zhang, Jian Chang, and Yu Li. Efficient threshold private set intersection. IEEE
Access, 9:6560–6570, 2021.

A Cryptographic Tools

A.1 Cryptographic Schemes

Pseudorandom Generator. A pseudorandom generator (PRG) is a deterministic function
G : {0, 1}κ → {0, 1}γ(κ) where G(x) for a randomly sampled x ← {0, 1}κ is computationally
indistinguishable from a string randomly sampled from {0, 1}γ(κ) for any PPT adversary.

Hamming Correlation Robustness. Our protocol requires a hash function with a generalization
of the “correlation robustness” property from OT-extension [IKNP03].

Definition 12 (Correlation Robust Hash Function [IKNP03]). Let H : {0, 1}∗ × {0, 1}κ → {0, 1}v
be a function and define the related function Fs(t, x) = H(t;x⊕ s), where s ∈ {0, 1}κ. We say that
H is correlation robust if Fs is computationally indistinguishable from a random function, against
distinguishers that never query with repeated t-values. Intuitively, values of the form H(ti;xi ⊕ s)
look jointly pseudorandom, even with known ti, xi values and an unknown but common s value.

The specific property we use is defined below:

Definition 13. Let H : {0, 1}∗ × ({0, 1}z)ℓ → {0, 1}v be a function and define the related function
Fs(t, x,∆) = H(t;x ⊕ (s ⊙ ∆)), where s ∈ {0, 1}ℓ; x,∆ are vectors of length ℓ with components
in {0, 1}z; and ⊙ is component wise multiplication (of a bit times a string). We say that H is
Hamming correlation robust if Fs is computationally indistinguishable from a random function,
against distinguishers that never query with repeated t-values and always query with ∆ having at
least κ nonzero components.

Intuitively, values of the form H(ti;xi ⊕ (s⊙∆i)) look jointly pseudorandom, even with known
ti, xi,∆i values and an unknown but common s value, provided that each ∆i has high Hamming
weight.

This definition generalizes the one from [KKRT16] in that x and ∆ are bit strings (vectors of
bits) in [KKRT16], whereas in our protocol x and ∆ can be vectors with components from {0, 1}z.

A.2 Secure Two-Party Computation

Semi-Honest Security. We define secure two-party computation protocols, in the presence of
semi-honest adversaries, using the Universal Composability (UC) framework [Can01]. Parties P0

with input x0 and P1 with input x1 run protocol Π to learn the output of a function f(x0, x1)
where party Pi learns fi(x0, x1). Party Pi’s Viewi(x0, x1) during an honest execution consists of her
private input xi, privately chosen randomness and the transcript of the protocol. Let Outi(x0, x1)

37

be Pi’s output from protocol Π. We say that protocol Π securely realizes a functionality f if there
exists a PPT simulator Sim for both parties and for all possible inputs x0, x1 such that for i ∈ {0, 1},

(Sim(1κ, i, xi, fi(x0, x1)), f1−i(x0, x1)) ∼=κ (Viewi(x0, x1),Out1−i(x0, x1)) .

Oblivious Transfer. Oblivious transfer (OT) [Rab05] is a special secure two-party computation
protocol. In a single OT instance, the sender submits a pair of strings (m0,m1) and the receiver
learns exactly one of the messages mb, based on his choice bit b ∈ {0, 1}. The sender is oblivious
of the choice bit. In Figure 12 we formally define the ideal functionality for ℓ parallel instances of
oblivious transfer. A single OT instances requires public-key operations, while a large number of
OT instances can be efficiently realized from κ number of public-key operations using OT extension
techniques [IKNP03,KK13,ALSZ13].

Parameters: number of OTs ℓ, payload length r.

� Receive (m1,0,m1,1), . . . , (mℓ,0,mℓ,1) from the sender, where each mi,b ∈ {0, 1}r.
� Receive b⃗ ∈ {0, 1}ℓ from the receiver.

� Send output (m1,b1 , . . . ,mℓ,bℓ) to the receiver.

Figure 12: Ideal functionality FOT for ℓ oblivious transfers.

PSI Cardinality and PSI with Associated Sum. We formalize the ideal functionality FPSI-CA

for two-party PSI cardinality in Figure 13, where one party (either Alice or Bob), learns the output.
We define the ideal functionality FPSI-Sum for two-party PSI with associated sum in Figure 14, where
Alice (or Bob) learns only the sum of the associated values for items in the intersection.

Parameters: Size of sets n1, n2.

� Receive input A = {a1, . . . , an1} where ai ∈ {0, 1}∗ from Alice.

� Receive input B = {b1, . . . , bn2} where bi ∈ {0, 1}∗ from Bob.

� Alice (or Bob) learns |A ∩B|, the cardinality of intersection.

Figure 13: Ideal functionality FPSI-CA for computing cardinality of intersection.

Parameters: Size of sets n1, n2.

� Receive input A = {a1, . . . , an} where ai ∈ {0, 1}∗ from Alice.

� Receive input B = {(b1, v1) . . . , (bn2 , vn2)} where bi ∈ {0, 1}∗ and vi ∈ Z from Bob.

� Alice learns s =
∑

bi∈A vi, the sum of associated values for intersection elements.

Figure 14: Ideal functionality FPSI-Sum for computing sum of associated values in intersection.

B Security Proofs

B.1 Proof of Theorem 6

Bob is corrupt. The goal is to simulate Bob’s view in the protocol (independent of Alice’s input)
which consists of ℓ OKVS encodings received from the FOT.

38

Hybrid 0. We begin with the honest execution of the protocol where Bob’s view is generated using
Alice’s private input SA.

Hybrid 1. In the protocol, based on Bob’s choice s[j] for each of his ℓ OT instances, he learns one

KV(j)s[j] out of the two encoding sets (KV(j)0 ,KV(j)1). Recall that, an encoding set KV(j)b with index

b only encodes ibFSS shares with the same index, where b ∈ {0, 1}. As a result, Bob is guaranteed
to learn only one of two ibFSS shares for each of the ℓ independent sharings of her NA inputs. In

this hybrid, we modify how each of the sets {KV(1)s[1], . . . , KV
(ℓ)
s[ℓ]} to be computed as:

KV(j)s[j] ← Encode({(o⃗(1), k′(1,j)s[j]), . . . , (o⃗(NA), k
′(NA,j)
s[j])})

For every structure i ∈ [NA], the ibFSS key share is generated k
′(i,j)
s[j] ← Sim(1κ, s[j]) by invoking the

underlying ibFSS scheme privacy simulator (Definition 4). These shares are simulated independent
of Alice’s input and just using the security parameter and Bob’s choice bit s[j]. This hybrid is
indistinguishable from the honest execution in the FOT-hybrid model and by the privacy of the
ibFSS scheme.

Hybrid 2. This hybrid is identical to the previous hybrid, except that we replace the keys {o⃗(1), . . . , o⃗(NA)}
with an arbitrary set of distinct keys {o⃗′

(1)
, . . . , o⃗′

(NA)
} in Step 1. Now, the encoding sets {KV(1)s[1],

. . . , KV(ℓ)s[ℓ]} from previous hybrid are computed as follows:

KV(j)s[j] ← Encode({(o⃗′
(1)

, k
′(1,j)
s[j]), . . . , (o⃗′

(NA)
, k

′(NA,j)
s[j])})

By the obliviousness property of the OKVS scheme (Definition 1), the original and modified encoding
sets are computationally indistinguishable when associated values (ibFSS key shares) in the key-
value mapping are pseudorandom. Since we instantiate the protocol with an ibFSS scheme that
has pseudorandom keys property, this hybrid is indistinguishable from previous hybrid.

Simulator. Hybrid 2 defines a valid simulation in the ideal world where Bob’s view is simulated
independent of Alice’s private input SA.

Alice is corrupt. We define the following helper functions to evaluate on any input y⃗ contained in
the mini-universe with origin z⃗, namely y⃗ ∈ Univz⃗, where the function output {{0, 1}t}ℓ is a vector
of length ℓ with components of string length t corresponding to ibFSS evaluations:

E∗(y⃗∥z⃗) =
(
Eval(Decode(KV(1)∗ , z⃗), y⃗)∥ . . . ∥Eval(Decode(KV(ℓ)∗ , z⃗), y⃗)

)
Eb(y⃗∥z⃗) =

(
Eval(Decode(KV(1)b , z⃗), y⃗)∥ . . . ∥Eval(Decode(KV(ℓ)b , z⃗), y⃗)

)
where b ∈ {0, 1}

∆(y⃗∥z⃗) = E0(y⃗∥z⃗)⊕ E1(y⃗∥z⃗)

Since Decode(KV(η)∗ , z⃗) = Decode(KV(η)0 , z⃗)⊕ s[η]⊙ (Decode(KV(η)0 , z⃗)⊕ Decode(KV(η)1 , z⃗)), we get

E∗(y⃗∥z⃗) = E0(y⃗∥z⃗)⊕ s⊙ (E0(y⃗∥z⃗)⊕ E1(y⃗∥z⃗)) (1)

Now, we will show through a sequence of hybrids how Alice’s view can be simulated independent
of Bob’s input.

39

Hybrid 0. In the protocol, Alice’s receives a set of values Y from Bob.

Y =

H
(
y⃗′∥z⃗;E∗(y⃗′∥z⃗)

)∣∣∣∣∣∣∣∣
y⃗ ∈ SB, y⃗ ∈ Univz⃗,
y⃗.Shift(z⃗) = (y1, . . . , yd),
ℓ1 ∈ [log(2δ)], . . . , ℓd ∈ [log(2δ)],

y⃗′ := ((y1)[1:ℓ1], . . . , (yd)[1:ℓd])

We write the set Y = Y1 ∪̇ Y2 ∪̇ Y3 ∪̇ Y4 ∪̇ Y5 as the disjoint union of sets, where each term can be
expressed as follows.

Y1 =

H
(
y⃗′∥o⃗(i);E0(y⃗′∥o⃗(i))

)
∣∣∣∣∣∣∣∣∣∣
i ∈ [NA], S⃗

(i)
A .Shift(o⃗(i)) =

⋃̇
j∈[w′]PreS−→xj

,
−→
xj = (xj1, . . . , x

j
d),

y⃗ ∈ SB, y⃗ ∈ Univo⃗(i) , y⃗.Shift(o⃗
(i)) = (y1, . . . , yd) ∈ PreS−→

xj
,

ℓ1 ∈ [|xj1| : log(2δ)], . . . , ℓd ∈ [|xjd| : log(2δ)],
y⃗′ := ((y1)[1:ℓ1], . . . , (yd)[1:ℓd])

Y2 =

H
(
y⃗′∥o⃗(i);E∗(y⃗′∥o⃗(i))

)
∣∣∣∣∣∣∣∣∣∣
i ∈ [NA], S⃗

(i)
A .Shift(o⃗(i)) =

⋃̇
j∈[w′]PreS−→xj

,
−→
xj = (xj1, . . . , x

j
d),

y⃗ ∈ SB, y⃗ ∈ Univo⃗(i) , y⃗.Shift(o⃗
(i)) = (y1, . . . , yd) ∈ PreS−→

xj
,

(ℓ1, . . . , ℓd) ∈ [log(2δ)]d,where ℓ1 ∈ [|xj1 − 1|] ∨ . . . ∨ ℓd ∈ [|xjd − 1|],
y⃗′ := ((y1)[1:ℓ1], . . . , (yd)[1:ℓd])

Y3 =

H
(
y⃗′∥o⃗(i);E∗(y⃗′∥o⃗(i))

)∣∣∣∣∣∣∣∣∣
i ∈ [NA], y⃗ ∈ SB, y⃗ ∈ Univo⃗(i) ,

y⃗.Shift(o⃗(i)) = (y1, . . . , yd) /∈ S⃗
(i)
A .Shift(o⃗(i)),

ℓ1 ∈ [log(2δ)], . . . , ℓd ∈ [log(2δ)],

y⃗′ := ((y1)[1:ℓ1], . . . , (yd)[1:ℓd])

Y4 =

H
(
y⃗′∥z⃗;E∗(y⃗′∥z⃗)

)∣∣∣∣∣∣∣∣
y⃗ ∈ SB, y⃗ ∈ Univz⃗, y⃗.Shift(z⃗) = (y1, . . . , yd),

z⃗ /∈ {o⃗(1), . . . , o⃗(NA)}
ℓ1 ∈ [log(2δ)], . . . , ℓd ∈ [log(2δ)],

y⃗′ := ((y1)[1:ℓ1], . . . , (yd)[1:ℓd])

and Y5 consists of dummy pseudorandom strings of length equal to the hash outputs, such that

|Y | = NB · (2 · log(2δ))d. In the protocol, every set S
(i)
A in Alice’s input is uniquely mapped to the

origin o⃗(i) of a mini-universe, such that S⃗
(i)
A .Shift(o⃗(i)) ⊆ Univo⃗(i) . Therefore, Alice’s input defines

a set of origins O = {o⃗(1), . . . , o⃗(NA)}. When Bob evaluates on a point y⃗ ∈ SB, he considers all
the (bounded set of) origins (and in turn mini-universes) that contain his input. For each of these
origins, he sends hash evaluations on all prefix combinations of his input vector.

If Bob’s input y⃗ ∈ Univo⃗(i) belongs to a mini-universe defined by one of Alice’s origins o⃗(i),

then Decode(KV(η)∗ , o⃗(i)) is valid ibFSS share of Alice’s input S⃗
(i)
A (by correctness property of OKVS

scheme), for η ∈ [ℓ]. For all such inputs y⃗ ∈ SB, y⃗ ∈ Univo⃗(i) , we get the following cases:

1. If Bob’s input y⃗.Shift(o⃗(i)) ∈ S⃗
(i)
A .Shift(o⃗(i)) =

⋃̇
j∈[w′]PreS−→xj

belongs to some prefix set: set

Y1 consists of hash outputs H(y⃗′∥o⃗(i);E∗(y⃗′∥o⃗(i))) of every input prefix y⃗′ ∈ S⃗
(i)
A .Shift(o⃗(i)) =⋃̇

j∈[w′]PreS−→xj
that also belongs to the same prefix set. In this case, (E0(y⃗′∥o⃗(i))⊕E1(y⃗′∥o⃗(i))) =

0t,∆(y⃗′∥o⃗(i)) has all zero components, by the correctness of ibFSS scheme. Thus, we can
simplify Equation 1 and hash outputs in Y1 as H(y⃗′∥o⃗(i);E0(y⃗′∥o⃗(i))).

40

2. If Bob’s input y⃗.Shift(o⃗(i)) ∈ S⃗
(i)
A .Shift(o⃗(i)) =

⋃̇
j∈[w′]PreS−→xj

belongs to some prefix set: set

Y2 consists of hash outputs H(y⃗′∥o⃗(i);E∗(y⃗′∥o⃗(i))) of every input prefix y⃗′ /∈ S⃗
(i)
A .Shift(o⃗(i)) =⋃̇

j∈[w′]PreS−→xj
outside the prefix set. In this case, (E0(y⃗′∥o⃗(i)) ⊕ E1(y⃗′∥o⃗(i))) ̸= 0t, ∆(y⃗′∥o⃗(i))

consists of ℓ = O(κ) non-zero components, by the correctness of ibFSS scheme.

3. If Bob’s input y⃗.Shift(o⃗(i)) /∈ S⃗
(i)
A .Shift(o⃗(i)) =

⋃̇
j∈[w′]PreS−→xj

is outside Alice’s input: set Y3

consists of hash outputs H(y⃗′∥o⃗(i);E∗(y⃗′∥o⃗(i))) of every input prefix y⃗′ of input y⃗. Again,
(E0(y⃗′∥o⃗(i))⊕ E1(y⃗′∥o⃗(i))) ̸= 0t, ∆(y⃗′∥o⃗(i)) consists of ℓ = O(κ) non-zero components, by the
correctness of ibFSS scheme.

Finally, consider the case when Bob’s input y⃗.Shift(z⃗) ∈ Univz⃗ is evaluated on a mini-universe

defined by z⃗ /∈ {o⃗(1), . . . , o⃗(NA)}, then Decode(KV(η)∗ , z⃗) is not a valid ibFSS share (by correctness

property of OKVS scheme), for η ∈ [ℓ]. Instead, Decode(KV(η)b , z⃗),Eval(Decode(KV(η)b , z⃗), y⃗′) are
uniform strings for every b ∈ {0, 1}, η ∈ [ℓ], by the independence property of OKVS scheme (Defi-
nition 2). Set Y4 consists of hash outputs H(y⃗′∥z⃗;E∗(y⃗′∥z⃗)) of every input prefix y⃗′ of such inputs
y⃗ and ∆(y⃗′∥z⃗) is a uniform string of length d · ℓ (by OKVS independence property).

Hybrid 1. This hybrid is identical to the previous one, except that we abort if there exists any
hash in set Y4 whose ∆(y⃗′∥z⃗) has less than κ non-zero components. From our previous hybrid,
we know that ∆(y⃗′∥z⃗) is a uniform string for each hash evaluations in Y4. Further, protocol
specifies that parameter ℓ (number of components) is chosen so that Pr[Binomial(1− 2−d, ℓ) < κ] <
2−λ−|NB |−d(1+log log(2δ)). We use the fact that |Y4| ≤ |Y | and by union bound, the abort probability
is upper bounded by 2−λ−|NB |−d(1+log log(2δ)) · |NB · (2 · log(2δ))d| = 2−λ, which is negligible. Thus,
this hybrid is indistinguishable from the honest execution.

Hybrid 2. Only change is that, we replace the hash outputs in Y2, Y3 and Y4 with uniform strings
of length λ+ log |NA|+ logw + log |NB|+ d(1 + log log(2δ)) as shown below:

Y = Y1 ∪̇ {h1, . . . , h|Y2|} ∪̇ {h
′
1, . . . , h

′
|Y3|} ∪̇ {h

′′
1, . . . , h

′′
|Y4|} ∪̇ Y5

where each hi, h
′
i, h

′′
i ← {0, 1}λ+log |NA|+logw+log |NB |+d(1+log log(2δ)) are sampled uniformly. This hy-

brid is indistinguishable from previous hybrid by the hamming correlation robust property (Defini-
tion 13) which states that hash values of the formH(y⃗′∥z⃗; ti⊕s⊙∆(y⃗′∥z⃗)) are jointly pseudorandom,
if they are queried on unique y⃗′∥z⃗ values and ∆(y⃗′∥z⃗) has at least κ non-zero components. These
properties hold for sets Y2, Y3, Y4 since they are disjoint sets with hash outputs computed on unique
y⃗′∥z⃗ values and ∆(y⃗′∥z⃗) evaluation has at least κ non-zero components (from discussion in Hybrid
0 and Hyrid 1).

Simulator. Hybrid 2 defines a valid simulation in the ideal world computed just using Alice’s input
SA and output SA ∩ SB. Note that, the output can be used to determine |Y2|,|Y3|+ |Y4|, and |Y5|.

Correctness. We will prove that Alice indeed outputs the intersection SA ∩ SB as her output,

except with negligible probability. Let’s consider an input a⃗ from Alice’s set S⃗
(i)
A which belongs to

prefix set a⃗ ∈ PreS−→
xj
,
−→
xj = (xj1, . . . , x

j
d), that is, a⃗.Shift(o⃗

(i)) ∈ S⃗
(i)
A .Shift(o⃗(i)) =

⋃̇
j∈[w′]PreS−→xj

. (The

ibFSS scheme guarantees ∆(a⃗′∥o⃗(i)) = 0t, where a⃗′ ∈ PreS−→
xj
). For every such input a⃗ = (a1, . . . , ad)

we get the following cases:

41

� When a⃗ ∈ SB: set Y1 will include the following hash values{
H
(
a⃗′∥o⃗(i);E0(a⃗′∥o⃗(i))

)∣∣∣∣∣ ℓ1 ∈ [|xj1| : u], . . . , ℓd ∈ [|xjd| : u]
a⃗′ := ((a1)[1:ℓ1], . . . , (ad)[1:ℓd])

}

By collision resistant hash property, Alice can uniquely recognize these hash values and cor-
rectly includes a⃗ in her output.

� When a⃗ /∈ SB: Alice wrongly includes a⃗ in her output only when she finds hash of her

prefix set H(
−→
xj∥o⃗(i);E0(

−→
xj∥o⃗(i))) in Bob’s message. By union bound, the probability of find-

ing a matching value for a specific prefix is 2−λ−log |NA|−logw−log |NB |−d(1+log log(2δ)) · |Y | =
2−λ−log |NA|−logw. By union bound over total number of prefixes, the probability of including
a wrong value is less than w · |NA| · 2−λ−log |NA|−logw = 2−λ, is negligible.

B.2 Proof of Theorem 8

Notation. We begin by presenting notation that is helpful for both the correctness and security
proofs. Let Lose ∈ {L,R} refers the path that exits the special path determined by α. If α(j) = 0
then Lose = R is the right subtree and if α(j) = 1 then then Lose = L is the left subtree. We
define Keep ̸= Lose as the path determined by α. The correction word CW (j) consists of five part
computed as follows:

� sCW = sLoseb ⊕ sLose1−b

� tLCW = tLb ⊕ tL1−b ⊕ α(j) ⊕ 1

� tRCW = tRb ⊕ tR1−b ⊕ α(j)

� yLCW = yLb ⊕ yL1−b ⊕ α(j)

� yRCW = yRb ⊕ yR1−b

This entails the following:

� tKeepCW = tKeepb ⊕ tKeep1−b ⊕ 1

� tLoseCW = tLoseb ⊕ tLose1−b

� yKeepCW = yKeepb ⊕ yKeep1−b

� yLoseCW = yLoseb ⊕ yLose1−b ⊕ α

Given these, the correction word is constructed as CW (j) = sCW ∥tLCW ∥yLCW ∥sCW ∥tRCW ∥yRCW .

Correctness. We will show that for each pairing of interval boundary prefix α[1:j] and evaluation

prefix x[1:j], our ibDCF protocol outputs the correct secret shared value y(j) := y
(j)
0 ⊕ y

(j)
1 , given

that it already determined the correct y(j−1) as well as t(j−1) and s(j−1). t(j−1) := t
(j−1)
0 ⊕ t

(j−1)
1

is the indicator for if α[1:j−1] = x[1:j−1], and s(j−1) := s
(j−1)
0 ⊕ s

(j−1)
1 is the random seed used to

calculate correction words.

Proof. We proceed by cases.
Case 0: j = 0:

For a zero bit input, correctness relies only on initialization of values. y
(0)
b = b and t

(0)
b = b by

assignment, so y(0) = 1 and t(0) = 1. Further, s(0) is generated uniformly at random.

42

Case 1: x[1:j] = α[1:j]:

t
(j)
b ⊕ t

(j)
1−b = (tKeepb ⊕ t

(j−1)
b · tKeepCW)⊕ (tKeep1−b ⊕ t

(j−1)
1−b · t

Keep
CW)

= (tKeepb ⊕ tKeep1−b)⊕ tKeepCW · (t
(j−1)
b ⊕ t

(j−1)
1−b)

= (tKeepb ⊕ tKeep1−b)⊕ (tKeepb ⊕ tKeep1−b ⊕ 1) · 1
= 1

s
(j)
b ⊕ s

(j)
1−b = (sKeepb ⊕ t

(j−1)
b · sCW)⊕ (sKeep1−b ⊕ t

(j−1)
1−b · sCW)

= (sKeepb ⊕ sKeep1−b)⊕ sCW · (t(j−1)
b ⊕ t

(j−1)
1−b)

= (sKeepb ⊕ sKeep1−b)⊕ (sLoseb ⊕ sLose1−b) · 1
= (sL0 ⊕ sR0)⊕ (sL1 ⊕ sR1)

These two pairs of values are substrings of outputs from our pseudorandom generator G with

pseudorandom inputs s
(j−1)
0 and s

(j−1)
1 , respectively. Thus, s(j) is also pseudorandom.

y
(j)
b ⊕ y

(j)
1−b = (yKeepb ⊕ t

(j−1)
b · yKeepCW ⊕ y

(j−1)
b)⊕ (yKeep1−b ⊕ t

(j−1)
1−b · y

Keep
CW ⊕ y

(j−1)
1−b)

= (yKeepb ⊕ yKeep1−b)⊕ yKeepCW · (t
(j−1)
b ⊕ t

(j−1)
1−b)⊕ (y

(j−1)
b ⊕ y

(j−1)
1−b)

= (yKeepb ⊕ yKeep1−b)⊕ yKeepCW · 1⊕ 1

= (yKeepb ⊕ yKeep1−b)⊕ (yKeepb ⊕ yKeep1−b)⊕ 1

= 1

Case 2: x[1:j−1] = α[1:j−1], x
(j) ̸= α(j):

t
(j)
b ⊕ t

(j)
1−b = (tLoseb ⊕ t

(j−1)
b · tLoseCW)⊕ (tLose1−b ⊕ t

(j−1)
1−b · t

Lose
CW)

= (tLoseb ⊕ tLose1−b)⊕ tLoseCW · (t
(j−1)
b ⊕ t

(j−1)
1−b)

= (tLoseb ⊕ tLose1−b)⊕ (tLoseb ⊕ tLose1−b) · 1
= 0

s
(j)
b ⊕ s

(j)
1−b = (sLoseb ⊕ t

(j−1)
b · sCW)⊕ (sLose1−b ⊕ t

(j−1)
1−b · sCW)

= (sLoseb ⊕ sLose1−b)⊕ sCW · (t(j−1)
b ⊕ t

(j−1)
1−b)

= (sLoseb ⊕ sLose1−b)⊕ (sLoseb ⊕ sLose1−b) · 1
= 0

y
(j)
b ⊕ y

(j)
1−b = (yLoseb ⊕ t

(j−1)
b · yLoseCW ⊕ y

(j−1)
b)⊕ (yLose1−b ⊕ t

(j−1)
1−b · y

Lose
CW ⊕ y

(j−1)
1−b)

= (yLoseb ⊕ yLose1−b)⊕ yLoseCW · (t
(j−1)
b ⊕ t

(j−1)
1−b)⊕ (y

(j−1)
b ⊕ y

(j−1)
1−b)

= (yLoseb ⊕ yLose1−b)⊕ yLoseCW · 1⊕ 1

= (yLoseb ⊕ yLose1−b)⊕ (yLoseb ⊕ yLose1−b ⊕ α(j))⊕ 1

= α(j)

When α(j) = 1, and x(j) = 0, x[1:j] < α[1:j] and y(j) = 0 as expected. Conversely, when α(j) = 0,

and x(j) = 1, x[1:j] > α[1:j] and y(j) = 1.

43

Case 3: x[1:j−1] ̸= α[1:j−1]:

From case 2, s
(j−1)
b = s

(j−1)
1−b . Therefore, tLb ∥yLb ∥tRb ∥yRb = tL1−b∥yL1−b∥tR1−b∥yR1−b, and we can disregard

the party index subscripts on these terms. Further, we will see that the Keep/Lose terms cancel
out, so we will handle both cases with Choice for succinctness.

t
(j)
b ⊕ t

(j)
1−b = (tChoiceb ⊕ t

(j−1)
b · tChoiceCW)⊕ (tChoice1−b ⊕ t

(j−1)
1−b · t

Choice
CW)

= (tChoice ⊕ t
(j−1)
b · tChoiceCW)⊕ (tChoice ⊕ t

(j−1)
1−b · t

Choice
CW)

= (tChoice ⊕ tChoice)⊕ (t
(j−1)
b ⊕ t

(j−1)
1−b) · tChoiceCW

= 0⊕ 0 · tChoiceCW

= 0

s
(j)
b ⊕ s

(j)
1−b = (sChoiceb ⊕ t

(j−1)
b · sCW)⊕ (sChoice1−b ⊕ t

(j−1)
1−b · sCW)

= (sChoice ⊕ t
(j−1)
b · sCW)⊕ (sChoice ⊕ t

(j−1)
1−b · sCW)

= (sChoice ⊕ sChoice)⊕ sCW · (t(j−1)
b ⊕ t

(j−1)
1−b)

= 0⊕ sCW · 0
= 0

y
(j)
b ⊕ y

(j)
1−b = (yChoiceb ⊕ t

(j−1)
b · yChoiceCW ⊕ y

(j−1)
b)⊕ (yChoice1−b ⊕ t

(j−1)
1−b · y

Choice
CW ⊕ y

(j−1)
1−b)

= (yChoice ⊕ t
(j−1)
b · yChoiceCW ⊕ y

(j−1)
b)⊕ (yChoice ⊕ t

(j−1)
1−b · y

Choice
CW ⊕ y

(j−1)
1−b)

= (yChoice ⊕ yChoice)⊕ yChoiceCW · (t(j−1)
b ⊕ t

(j−1)
1−b)⊕ (y

(j−1)
b ⊕ y

(j−1)
1−b)

= 0⊕ yChoiceCW · 0⊕ (y
(j−1)
b ⊕ y

(j−1)
1−b)

= y
(j−1)
b ⊕ y

(j−1)
1−b

= y(j−1)

The shortest differing equal-length prefixes of x and α, if they exist, are enough to determine the
output value y of every longer evaluation prefix, because the difference between prefixes can not
change sign as the prefixes grow in length. Indeed, we echo the output of the previous prefix in
this case.

Therefore, by induction, our ibDCF protocol outputs the correct y := y0 ⊕ y1 for any interval
boundary α and evaluation input x.

Security. Through a sequence of hybrids, we show that for each party b ∈ {0, 1}, the key kb =

s
(0)
b ∥CW (1)∥CW (2)∥ . . . ∥CW (u) is pseudorandom. First, let us define hybrid Hybj(1

κ, α, b) for
j ∈ {0, 1, . . . , u} as follows:

� Let α = α(1)α(2) . . . , α(u) ∈ {0, 1}u be the bit decomposition.

� Sample uniformly s
(0)
b ← {0, 1}

κ, t
(0)
b = b and y

(0)
b = b.

� For i ≤ j, sample the correction words CW (1), CW (2), . . . , CW (j) ← {0, 1}κ+4 uniformly at

random and use them to compute s
(i)
b ∥t

(i)
b ∥y

(i)
b (according to the pseudocode).

44

� For j, uniformly sample the other party’s PRG seed s
(j)
1−b ← {0, 1}

κ and let t
(j)
1−b = 1 − t

(j)
b

and y
(j)
1−b = 1− y

(j)
b

� For i > j, compute the values honestly CW (i), s
(i)
b ∥t

(i)
b ∥y

(i)
b , s

(i)
1−b∥t

(i)
1−b∥y

(i)
1−b (according to the

pseudocode) as a function of the values sampled in the previous step.

� The output of the hybrid is the key kb = s
(0)
b ∥CW (1)∥CW (2)∥ . . . ∥CW (u).

By design, we can see that Hyb0 corresponds to honest key generation process from the pseu-
docode. On the other hand, Hybu yields a key that is truly random. Now, we will show that every
pair of adjacent hybrids are indistinguishable by the security of the pseudorandom generator. The
following claims and theorem complete the formal proof.

Claim 14. For both parties b ∈ {0, 1}, any choice of α ∈ {0, 1}u:

{kb ← Hyb0(1
κ, α, b)} ≡ {kb : (k0, k1)← Gen(1κ, α)}

Claim 15. For both parties b ∈ {0, 1}, any choice of α ∈ {0, 1}u:

{kb ← Hybu(1
κ, α, b)} ≡ {kb ← {0, 1}u·(κ+4)+κ}

Theorem 16. Given any secure pseudorandom generator G, such that, any adversary B has dis-
tinguishing advantage ϵ in time T . There exists a polynomial p, so that for every j ∈ [u], b ∈ {0, 1},
α ∈ {0, 1}u and every adversary A running in time T ′ ≤ T − p(κ) can distinguish between Hybj−1,
Hybj with ϵ advantage as follows:∣∣Pr[kb ← Hybj−1(1

κ, α, b); c← A(1κ, kb) : c = 1]−Pr[kb ← Hybj(1
κ, α, b); c← A(1κ, kb) : c = 1]

∣∣ < ϵ

Proof. We present a PRG adversary B in Figure 15 with the same advantage as an adversary A
that can distinguish between Hybj−1(1

κ, α, b) and Hybj(1
κ, α, b). If r is sampled pseudorandomly

(s ← {0, 1}κ and G(s) = r), then the output kb of B is identically distributed to Hybj−1(1
κ, α, b).

If r is sampled uniformly at random r ← {0, 1}2(κ+2) then output of B is identically distributed to
Hybj(1

κ, α, b) by the following argument (utilizing notation defined above).

If r is random, then sLose1−b , t
L
1−b, t

R
1−b, y

L
1−b, y

R
1−b acts as one-time pad so that CW (j) is uniformly

distributed. The seed for further computation s
(j)
1−b is also uniformly distributed since s

(j)
1−b is either

sKeep1−b or sKeep1−b ⊕ sCW . Next, we verify the values t
(j)
b , t

(j)
1−b, y

(j)
b , y

(j)
1−b following using the fact that

(t
(j−1)
b ⊕ t

(j−1)
1−b = 1) and (y

(j−1)
b ⊕ y

(j−1)
1−b = 1):

t
(j)
b ⊕ t

(j)
1−b = (tKeepb ⊕ t

(j−1)
b · tKeepCW)⊕ (tKeep1−b ⊕ t

(j−1)
1−b · t

Keep
CW)

= (tKeepb ⊕ tKeep1−b)⊕ tKeepCW · (t
(j−1)
b ⊕ t

(j−1)
1−b)

= (tKeepb ⊕ tKeep1−b)⊕ 1 · (tKeep0 ⊕ tKeep1 ⊕ 1)

= 1

y
(j)
b ⊕ y

(j)
1−b = (yKeepb ⊕ t

(j−1)
b · yKeepCW ⊕ y

(j−1)
b)⊕ (yKeep1−b ⊕ t

(j−1)
1−b · y

Keep
CW ⊕ y

(j−1)
1−b)

= (yKeepb ⊕ yKeep1−b)⊕ yKeepCW · (t
(j−1)
b ⊕ t

(j−1)
1−b)⊕ (y

(j−1)
b ⊕ y

(j−1)
1−b)

= (yKeepb ⊕ yKeep1−b)⊕ yKeepCW · 1⊕ 1

= (yKeepb ⊕ yKeep1−b)⊕ (yKeep0 ⊕ yKeep1)⊕ 1

= 1

45

PRG adversary B∗(1κ, (j, b, α), r):
Let α = α(1)α(2) . . . α(u) ∈ {0, 1}u be the bit decomposition.

Sample s
(0)
b ← {0, 1}

κ uniformly at random, t
(0)
b = b and y

(0)
b = b.

for i = 1 to (j − 1) do

CW (i) ← {0, 1}κ+4. Parse CW (i) = sCW ∥tLCW ∥tRCW ∥yLCW ∥yRCW

sLb ∥tLb ∥yLb ∥ sRb ∥tRb ∥yRb ← G(s
(i−1)
b)

if α(i) = 0:

s
(i)
b = sLb ⊕ t

(i−1)
b · sCW

t
(i)
b = tLb ⊕ t

(i−1)
b · tLCW

if α(i) = 1:

s
(i)
b = sRb ⊕ t

(i−1)
b · sCW

t
(i)
b = tRb ⊕ t

(i−1)
b · tRCW

Assign t
(j−1)
1−b = 1− t

(j−1)
b

for i = j to u do

Let sLb ∥tLb ∥yLb ∥ sRb ∥tRb ∥yRb ← G(s
(i−1)
b)

if i = j then
sL1−b∥tL1−b∥yL1−b ∥ sR1−b∥tR1−b∥yR1−b = r (prg challenge)

else

sL1−b∥tL1−b∥yL1−b ∥ sR1−b∥tR1−b∥yR1−b ← G(s
(i−1)
1−b)

if α(i) = 0 then
sCW = sR0 ⊕ sR1
tLCW = tL0 ⊕ tL1 ⊕ 1 and tRCW = tR0 ⊕ tR1
yLCW = yL0 ⊕ yL1 and yRCW = yR0 ⊕ yR1
CW (i) = sCW ∥tLCW ∥tRCW ∥yLCW ∥yRCW

s
(i)
b = sLb ⊕ t

(i−1)
b · sCW for b = 0, 1

t
(i)
b = tLb ⊕ t

(i−1)
b · tLCW for b = 0, 1

else
sCW = sL0 ⊕ sL1
tLCW = tL0 ⊕ tL1 and tRCW = tR0 ⊕ tR1 ⊕ 1
yLCW = yL0 ⊕ yL1 ⊕ 1 and yRCW = yR0 ⊕ yR1
CW (i) = sCW ∥tLCW ∥tRCW ∥yLCW ∥yRCW

s
(i)
b = sRb ⊕ t

(i−1)
b · sCW for b = 0, 1

t
(i)
b = tRb ⊕ t

(i−1)
b · tRCW for b = 0, 1

return kb = s
(0)
b ∥CW (1)∥CW (2)∥ . . . ∥CW (u)

Figure 15: PRG adversary B that can distinguish between r that is either sampled randomly r ← {0, 1}2(κ+2)

or the output of a PRG function s ← {0, 1}κ and r = G(s) from a hybrid distinguishing adversary A with
advantage ϵ for any choice of j ∈ [u], b ∈ {0, 1}, α ∈ {0, 1}u.

46

B.3 Proof of Theorem 9

Correctness. Given y0 ← Eval(0, k0, x⃗), y1 ← Eval(1, k1, x⃗) we need to show that y0 ⊕ y1 = 0d

for yes-instances and y0 ⊕ y1 ̸= 0d for no-instances. According to the scheme, y0 ⊕ y1 = y
(1)
0 ⊕

y
(1)
1 ∥ . . . ∥ y(d)0 ⊕ y

(d)
1 , where for i ∈ [d]: y

(i)
0 , y

(i)
1 are result of evaluation of (u, 1, 1)-ibDCF scheme

on keys k
(i)
0 , k

(i)
1 respectively.

� For every input x⃗ = (x1, . . . , xd) for which PreSx1 ⊆ S1, . . . ,PreSxd
⊆ Sd, y0 ⊕ y1 = 0d since

y
(i)
0 ⊕ y

(i)
1 = 0 for every i ∈ [d].

� For every input x⃗ = (x1, . . . , xd) for which PreSx1 ̸⊆ S1 or . . . or PreSxd
̸⊆ Sd, y0 ⊕ y1 ̸= 0d

since y
(i)
0 ⊕ y

(i)
1 ̸= 0 for at least one index i ∈ [d].

Privacy. To show that the scheme is secure, the simulator must generate a key kidx that is
indistinguishable from output of the Share∗ algorithm. For each of the d dimensions, the simulator
invokes the simulator k(i) ← Sim(1κ, idx) of secure (u, 1, 1)-ibDCF scheme, concatenates outputs
and returns the key kidx = (k(1), . . . , k(d)).

B.4 Proof of Theorem 10

Simulator. Simply forwards the output from ideal functionality to Bob.

Correctness. For every input y⃗ ∈ SA ∩ SB, there is exactly one set S⃗
(i)
A , such that y⃗ ∈ S⃗

(i)
A , since

Alice’s input is a disjoint union of sets. This set is uniquely mapped to a single origin o⃗(i), by

construction. Input prefix y⃗′ matches with exactly one critical prefix
−→
xj , since S⃗

(i)
A .Shift(o⃗(i)) =⋃̇

j∈[w′]PreS−→xj
is the disjoint union of prefix sets. Therefore, X ∩ Y = {(

−→
xj∥o⃗(i))}, |X ∩ Y | = 1

(where Y corresponds to input y⃗) and Bob is guaranteed to include y⃗ in the output.

For every y⃗ /∈ SA∩SB, the input is outside every set S⃗
(i)
A in Alice’s input. For every i ∈ [NA], j ∈

[w′], S⃗
(i)
A .Shift(o⃗(i)) =

⋃̇
j∈[w′]PreS−→xj

, Alice’s prefix
−→
xj is not a prefix of y⃗. Therefore, X ∩Y = ∅ and

Bob will not include y⃗ in the intersection.

B.5 Proof of Theorem 11

We sketch a proof for the case when Alice learns the output. Analogous arguments hold for the
case when Bob learns the output.

Simulator. Simply forwards the output from ideal functionality to Alice.

Correctness. First, for any input y⃗ ∈ SA ∩ SB, there is exactly one set S⃗
(i)
A such that y⃗ ∈ S⃗

(i)
A ,

since Alice’s input is a disjoint union of sets. This set is uniquely mapped to a single origin o⃗(i),

by construction. Some prefix y⃗′ of y⃗ matches with exactly one prefix
−→
xj , since S⃗

(i)
A .Shift(o⃗(i)) =⋃̇

j∈[w′]PreS−→xj
is the disjoint union of prefix sets. Therefore, X ∩ Y ′ = {(

−→
xj∥o⃗(i))}, |X ∩ Y ′| = 1

(where Y ′ corresponds to input y⃗), any input in Bob’s set matches with exactly one prefix in X.

Second, for every set S⃗
(i)
A , mapped to origin o⃗(i), with prefix sets S⃗

(i)
A .Shift(o⃗(i)) =

⋃̇
j∈[w′]PreS−→xj

,

the ideal functionality FPSI-Sum counts the number of times (
−→
xj∥o⃗(i)) value appears in Bob’s multi-

set Yv (each count is associated with a distinct output is Bob’s set). Thus, Alice accounts for every
matching input in Bob’s set.

47

For every y⃗ /∈ SA∩SB, the input is outside every set S⃗
(i)
A in Alice’s input. For every i ∈ [NA], j ∈

[w′], S⃗
(i)
A .Shift(o⃗(i)) =

⋃̇
j∈[w′]PreS−→xj

, Alice’s prefix
−→
xj is not a prefix of y⃗. Therefore, X ∩ Y ′ = ∅

and input y⃗ is not counted in the output from FPSI-Sum.

48

	Introduction
	Our Contributions
	Related Work

	Technical Overview
	Preliminaries
	Incremental Boolean Function Secret Sharing
	sa-PSI with Alice Learning Output
	Multiple (Overlapping) Balls with Multiple Points
	Spatial Hashing

	ibFSS for d-dimensional -balls
	ibDCF Definition
	ibDCF Constructions

	Instantiation and Evaluation
	Single Ball with Single Point
	Multiple (Overlapping) Balls with Multiple Points
	Spatial Hashing

	Extending Functionality
	sa-PSI with Bob Learning Output
	Structure-Aware PSI Cardinality/Sum

	Cryptographic Tools
	Cryptographic Schemes
	Secure Two-Party Computation

	Security Proofs
	Proof of [thm:spatial]Theorem 6
	Proof of [thm:ibDCF]Theorem 8
	Proof of [thm:multi-dcf]Theorem 9
	Proof of [thm:sapsi-bob]Theorem 10
	Proof of [thm:sapsi-ca]Theorem 11

