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ABSTRACT
A contingent payment protocol involves two mutually distrustful

parties, a buyer and a seller, operating on the same blockchain, and

a digital product, whose ownership is not tracked on a blockchain

(e.g. a digital book, but not a NFT). The buyer holds coins on the

blockchain and transfers them to the seller in exchange for the prod-

uct. However, if the blockchain does not hide transaction details,

any observer can learn that a buyer purchased some product from

a seller. In this work, we take contingent payment a step further:

we consider a buyer who wishes to buy a digital product from a

seller routing the payment via an untrusted mixer. Crucially, we

require that said payment is unlinkable, meaning that the mixer (or

any other observer) does not learn which buyer is paying which

seller. We refer to such setting as unlinkable contingent payment
(UCP).

We present MixBuy, a system that realizes UCP. Mixbuy relies on

oracle-based unlinkable contingent payment (O-UCP), a novel four-
party cryptographic protocol where the mixer pays the seller and

the seller provides the buyer with the product only if a semi-trusted

notary attests that the buyer has paid the mixer. More specifically,

we require four security notions: (i) mixer security that guarantees

that if the mixer pays the seller, the intermediary must get paid

from the buyer; (ii) seller security that guarantees that if the seller

delivers the product to the buyer, the seller must get paid from the

intermediary; (iii) buyer security that guarantees that if the buyer

pays the intermediary, the buyer must obtain the product; and (iv)

unlinkability that guarantees that given a set of buyers and sellers,

the intermediary should not learn which buyer paid which seller.

We present a provably secure and efficient cryptographic con-

struction for O-UCP. Our construction can be readily used to realize

UCP on most blockchains, as it has minimal functionality require-

ments (i.e., digital signatures and timelocks). To demonstrate the

practicality of our construction, we provide a proof of concept for

O-UCP and our benchmarks in commodity hardware show that the

communication overhead is small (a few kB per message) and the

running time is below one second.

1 INTRODUCTION
Given the increasing deployment of cryptocurrencies, they are now

accepted for purchases of digital products such as music, software,

e-books, authentication token for a website or mobile phone plan

(e.g. [1, 3, 11, 22, 44, 56, 58]). A contingent payment involves a buyer
and a seller, a blockchainB and a digital product 𝑝 whose ownership

is not tracked on a blockchain (e.g. a digital book, but not a NFT).

Buyer holds 𝛼 coins on B and wants to transfer them to the seller

in exchange for the product 𝑝 . In the contingent payment setting,

buyer and seller have addresses (or accounts) in the same blockchain

B. Hence, with the exception of blockchains like Monero [53] or

ZeroCash [8] which support anonymous transactions, an observer

who identifies seller’s accounts can find out which accounts have

been used to purchase goods from a seller and for which amounts.

In this work, we strive to take the contingent payment a step

further adding the property of unlinkability between buyer and

seller. We call this extension unlinkable contingent payment. Here, a
group of buyers and a group of sellers route their payments through

a mixer such that neither the mixer, nor any other observer to the

blockchain knows which buyer is paying which seller.

Problem Description. An unlinkable contingent payment (UCP)

involves a blockchain B, a product 𝑝 , and three participants: buyer,

seller, and mixer. Initially, the buyer holds 𝛼 coins, the mixer holds

𝛽 coins, and the seller holds product 𝑝 . At the end of a successful

UCP, the buyer should have transferred 𝛼 coins to the mixer, the

mixer should have transferred 𝛽 coins to the seller (we assume

𝛼 − 𝛽 ≥ 0 is mixer’s fee), and the buyer should have received 𝑝

from the seller. A protocol for UCP should enforce the following

security and privacy properties: (a) if the mixer transfers 𝛽 coins to

the seller, the mixer obtains 𝛼 coins from the buyer (mixer security);

(b) if the seller delivers 𝑝 to the buyer, the seller receives 𝛽 coins

from the mixer (seller security); (c) if the buyer transfers 𝛼 coins to

the mixer, the buyer obtains the product 𝑝 (buyer security); (d) for

a set of buyers and sellers, the mixer should not learn which buyer

paid which seller (unlinkability).

Designing a protocol for the problem described above turns

out to be a non-trivial task. To illustrate the obstacles, consider

a setting where a buyer locks some funds into a shared address

with the mixer for a pre-determined amount of time 𝑇 . Similarly,

assume that the mixer locks some funds into a shared address

with a seller, also for time 𝑇 . In blockchains this is a standard,

well-established procedure realizable, e.g., with 2-out-of-2 multisig

addresses [64]. This is needed to ensure that the buyer and themixer

do not quit the protocol prematurely. The funds are unlocked after

𝑇 , which determines the maximum duration of the protocol. To

complete the UCP protocol, (i) the buyer cannot send to the mixer

the signed transaction before receiving the product 𝑝 from the

seller; (ii) the mixer cannot send to the seller the signed transaction

before receiving a signed transaction from the buyer; (iii) the seller

cannot deliver product 𝑝 to the buyer before receiving a signed

transaction from the mixer.

Hence, we end up on a fair exchange of three items of interest

(i.e., coins or product) between three mutually untrusted parties.

It is established that such fair exchange cannot be achieved in the

standard model [10]. However, it has been shown that the (allegedly

weak) synchronicity guarantees provided by blockchains (often

called claim-or-refund [10]) suffice to solve a weaker version of fair

exchange: either each party receives the expected item of interest

before a pre-defined time𝑇 , or they get refunded their initial item of

interest. In fact, several blockchain applications have been proposed

in the literature that leverage this claim-or-refund model to provide

a trade-off between functionality, security and unlinkability.
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Table 1: Related Work. Intermediated unlinkable contingent payment has not been explored yet.

Two-Party

Intermediated

Linkable Unlinkable

Payment Coordination [9, 38, 40, 50, 62] [4, 25, 39, 41, 51, 55] [28, 29, 33, 35, 37, 57, 59]

Contingent Payment [12, 14, 21, 27, 52] [45, 54] This Work

1.1 Related Work
We classify existing works with respect to the type of assets ex-

changed. We categorize as payment coordination the protocols

where the ownership of all of exchanged assets is tracked by a

blockchain. We categorize as contingent payment the protocols

where the ownership of all assets except for one (i.e., the product) is

tracked by the blockchain. We categorize as intermediated the pro-

tocols in which sender/receiver or buyer/seller rely on an untrusted

intermediary to route the payment between them.

Two-party Payment Coordination. Also known as atomic swaps,
involves two parties: Alice and Bob. Alice has 𝛼 coins in B1, while
Bob has 𝛽 coins in B2. Their objective is to have Bob own 𝛼 coins in

B1, while Alice owns 𝛽 coins inB2. This problem has been explored

thoroughly by the research community and several solutions are

proposed based on cryptographic protocols (e.g., [62]), smart con-

tracts (e.g., [38, 40, 50]), and trusted hardware (e.g., [9]). However,

these protocols are restricted to the coordinated exchange of assets

whose ownership is tracked on the blockchain.

Intermediated Payment Coordination. Intermediated payment co-

ordination involves at least three parties: Alice, Bob and an interme-

diary. We discuss three common approaches, multi-hop payments,
centralized coin mixers and cyclic swaps. In multi-hop payments,

Alice has 𝛼 coins in B1, the intermediary has 𝛽 coins in B2 and Bob
operates in B2. Their objective is to have the intermediary own

𝛼 coins in B1 while Bob owns 𝛽 coins in B2. In this sense, Alice

paid Bob using the intermediary as an exchange between B1 and
B2. In practice, multi-hop payments have been proposed for scala-

bility/layer 2 networks, such as the Lightning Network [4, 51, 55],

or cross currency payments [25]. Multi-hop payment protocols co-

ordinate the transfer of assets whose ownership is tracked by the

blockchain. Moreover, the intermediary is able to link the incoming

payment received from Alice with the outgoing payment to Bob. In

order to prevent leaking such information to the intermediary, cen-

tralized coin mixers [28, 29, 33, 35, 37, 57, 59] have been proposed.

Centralized coin mixers involve three type of parties: senders (Al-

ice), receivers (Bob) and mixer (also called hub or tumbler). In this

setting, the mixer collects 𝛼 coins from each sender. Each receiver

collects 𝛽 coins from the mixer in a randomized order, which pre-

vents the mixer from learning which sender paid to which receiver.

Although centralized coin mixers provide unlinkability towards the

mixer, they only model the coordinated transfer of assets whose

ownership is tracked on the blockchain. In cyclic swaps [39, 41],

Alice has 𝛼 coins in B1, the intermediary has 𝛽 coins in B2 and Bob
has an asset, for example a product 𝑝 whose ownership is tracked

in B3. The objective is to have the intermediary own 𝛼 coins in

B1, Bob own 𝛽 coins in B2 and Alice own 𝑝 in B3. Although cyclic

swaps can be used to model the intermediated purchase of a product

𝑝 , note that the ownership of 𝑝 is tracked by B3.

Two-party Contingent Payment. Two-party contingent payment,

called zero-knowledge contingent payment (zkCP) (e.g. [12, 14, 21,

27, 52]), is an operation between a buyer and a seller. The buyer

owns 𝛼 coins in a blockchain B and the seller holds the product 𝑝 .

Crucially, in zkCP the ownership of 𝑝 is not tracked in a blockchain.

The goal of a zkCP is to have the buyer own the product 𝑝 and the

seller own the corresponding 𝛼 coins in B. Existing works in zkCP

do not model the inclusion of a mixer.

Intermediated Contingent Payment. In practice, they derive from

multi-hop payments. For instance, Alice owns 𝛼 coins in B1, the
mixer owns 𝛽 coins in B2 and Bob, who also operates in B2, owns
product 𝑝 . The objective is to have Alice own product 𝑝 , mixer own

𝛼 coins in B1 and Bob own 𝛽 coins in B2. This problem has been

explored in practice with the Lightning Service Authentication

Token (LSAT) [45, 54], but the security of the protocol has not been

formally proven. Moreover, the mixer knows that Alice paid Bob

and thus unlinkability is not achieved.

In summary, none of the existing relatedworks give a satisfactory

solution to the functionality of UCP.

1.2 Our Goal and Contributions.
As summarized in Table 1, none of the existing works simultane-

ously provide the functionality, security and privacy properties

required by UCP. Hence, the following question naturally raises:

Can we provide a secure protocol for unlinkable contingent payment?
We answer this question in the affirmative. For that, in this work

we present MixBuy, the first protocol for unlinkable contingent

payment. In particular:

• We describe MixBuy, which comprises two phases: the setup

phase in which the shared addresses are prepared and funded

whereas the product is prepared to be delivered; and the execu-

tion phase, in which the payment and product delivery takes

place. We base our setup phase on prior work on zkCP, while

the execution phase is a novel contribution of this work.

• We formalize the execution phase with the notion of oracle-
based unlinkable contingent payment (O-UCP), a novel four-party
cryptographic protocol where the mixer pays the seller and the

seller delivers the product only if a semi-trusted notary attests

that the buyer has paid the mixer. We present a provably secure

and efficient cryptographic construction for O-UCP.

• We provide a proof of concept for O-UCP. Our performance

evaluation in commodity hardware shows small communication

overhead (few kB per message) and running times below one

second, thereby demonstrating the practicality of our approach.
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2 TECHNICAL OVERVIEW
2.1 Unlinkable Contingent Payment Overview
An unlinkable contingent payment (UCP) involves a product 𝑝 , and

three parties: buyer B, mixer M and seller S. As shown in Fig. 1,

at the beginning of the UCP the buyer owns a key pair (vk𝐵, sk𝐵)
that controls 𝛼 coins. The mixer owns a key pair (vk𝑀 , sk𝑀 ) that
controls 𝛽 coins. Finally, the seller owns a key pair (vk𝑆 , sk𝑆 ) that
represents seller’s address. UCP is divided in two phases: setup
phase and execution phase. We next overview the setup phase.

UCP: Setup Phase. During the setup phase, parties proceed as

follows. In this description, we assume that there is a predefined

timeout 𝑇 known by every party that denotes the upper bound on

the protocol completion time. First, the buyer and the mixer create

a shared address (vk𝐵, vk𝑀 ) (e.g., in the form of 2-of-2 multisig),

and the buyer transfers 𝛼 coins to that shared address. Analogously,

mixer and seller create a shared address (vk𝑀 , vk𝑆 ) to which the

mixer transfers 𝛽 coins. Both shared addresses are set with a timeout

𝑇 after which the coins can be refunded to their original owners.

Second, the seller prepares the delivery of digital product 𝑝 to the

buyer. As in zkCP protocols [12, 14, 27, 52], the seller samples an

encryption/decryption key pair (pek, pdk) and encrypts the digital

product 𝑝 with the encryption key pek. Then, the seller generates
a zero-knowledge proof 𝜋 certifying that (i) the ciphertext is the

encryption of 𝑝 under pek; and (ii) 𝑝 satisfies some predicate 𝜙 . For

instance, the product 𝑝 may be a file (e.g. digital book) and𝜙 outputs

1 if hashing 𝑝 results into some fixed value ℎ (i.e., ℎ = H(𝑝)).1 The
setup phase ends with the buyer checking the proof 𝜋 .

The described setup phase is defined and analyzed in previous

zkCP protocols. MixBuy also borrows this setup phase. The open

technical challenge that we tackle in this work is thus the design of

the execution phase. Next, we overview the expected functionality

of the execution phase.

UCP: Execution Phase. The execution phase starts in a setting

where 𝛼 coins are locked in the shared address (vk𝐵, vk𝑀 ), 𝛽 coins

are locked in the shared address (vk𝑀 , vk𝑆 ), and the buyer holds a

pair (𝑐, 𝜋), where 𝑐 is the encryption of the product 𝑝 under public

key pek and 𝜋 is a zero-knowledge proof. The execution phase

must be designed to achieve the following outcomes: (1) mixer

gets 𝜎𝐵 ← Sig(sk𝐵,m𝐵
) from the buyer, where m

𝐵
is a transac-

tion that transfers 𝛼 coins from (vk𝐵, vk𝑀 ) to vk𝑀 ; (2) seller gets

𝜎𝑀 ← Sig(sk𝑀 ,m
𝑀
) from the mixer, where m

𝑀
is a transaction

that transfers 𝛽 coins from (vk𝑀 , vk𝑆 ) to vk𝑆 ; (3) buyer gets pdk
and thus can get 𝑝 decrypting ciphertext 𝑐 . Hence, it must ensure

buyer security, mixer security, seller security and unlinkability.

Designing such a protocol is technically challenging. Among the

properties that such protocol needs to provide, we find unlinka-

bilty to be the most challenging one, motivating us to inspire our

approach from centralized coin mixers [28, 29, 33, 35, 37, 57, 59]. In

a nutshell, a centralized coin mixing protocol provides the same

outcomes (1) and (2) as required by the execution phase of UCP.

However, a direct application of a centralized coin mixing protocol

would fail to provide outcome (3). Moreover, in the coin mixing

1
The reader might wonder how buyer knows ifℎ corresponds to𝐻 (𝑝 ) (i.e., a malicious

seller has not used ℎ′ = 𝐻 (𝑝′ )). This is an orthogonal problem for which solutions

exist (e.g., a penalization mechanism is proposed in [21]).

Figure 1: Buyer and mixer create the shared address
(vk𝐵, vk𝑀 ) which the buyer funds with 𝛼 coins. Mixer and
seller create the shared address (vk𝑀 , vk𝑆 ) which the mixer
funds with 𝛽 coins. Finally, seller encrypts the product (𝑐)
and proves in zero knowledge (𝜋 ) that 𝑐 contains the product.

setting, buyer and seller must collaborate with each other to arrive

to the desired outcomes (1) and (2), an assumption that cannot be

made in UCP, where buyer and seller are mutually distrustful.

2.2 Towards our Solution
For context, we first overview how a centralized coin mixing proto-

col works. In particular, we review the puzzle-promise and puzzle-solve

paradigm, first introduced in [37], and later followed by other de-

signs of centralized coin mixing protocols.

The Puzzle-promise and Puzzle-solve Paradigm. A centralized

coin mixing protocol assumes that the same setup as described

for UCP has been successfully executed, except for the preparation

for the delivery of the product that is naturally not considered.

Concretely, there are also three parties: Alice, mixer, and Bob. 𝛼

coins are locked in shared address (vk𝐴𝑙𝑖𝑐𝑒 , vk𝑀 ), and 𝛽 coins are

locked in shared address (vk𝑀 , vk𝐵𝑜𝑏 ).
The protocol is run in epochs and consists of two steps, namely,

puzzle-promise and puzzle-solve (cf. Fig. 2 (i)).

Puzzle-promise. During epoch E𝑖 , the mixer hides signature 𝜎𝑀

in a randomizable puzzle rP
1
and sends it to Bob. A randomizable

puzzle ensures that one cannot learn 𝜎𝑀 from rP
1
. Bob verifies that

learning the solution 𝑠1 corresponding to rP
1
would allow to extract

𝜎𝑀 . In the affirmative case, Bob chooses a random value 𝑟 and uses

it to randomize rP
1
into rP

2
so that they cannot be linked together.

Moreover, the solution 𝑠2 to rP
2
is a randomization of 𝑠1 with 𝑟 . Bob

sends rP
2
to Alice, who holds it until the end of epoch E𝑖 .

Puzzle-solve. At the beginning of epoch E𝑖+1, Alice engages with
the mixer in a protocol where the mixer gets 𝜎𝐴 only if Alice learns

𝑠2. Alice forwards 𝑠2 to Bob, who in turn can derandomize it to

obtain 𝑠1 and then 𝜎𝑀 from rP
1
.

The key observation regarding unlinkability is that the random-

ization factor 𝑟 is unknown to the mixer, hence the mixer cannot

link rP
1
to rP

2
. Assume 𝑛 honest Bobs that interact with the mixer
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Figure 2: From left to right: (i) Coin mixing protocol. During puzzle-promise, mixer sends rP
1
to Bob, who randomizes into rP

2

and sends it to Alice. During puzzle-solve, Alice provides mixer with rP
2
, who solves it, allowing Alice to learn 𝑠2 and mixer to

publish 𝜎𝐴. Then, Alice forwards 𝑠2 to Bob, who derandomizes it to get 𝑠1 and solve rP
1
, obtaining 𝜎𝑀 . (ii) Attempt to build UCP

linking the reveal of product decryption key pdk to 𝑠2. After puzzle-promise, the seller encrypts pdk using rP
2
and forwards 𝑐𝑝𝑑𝑘

to the buyer. Attack: buyer and mixer collude such that mixer reveals 𝑠2 without the buyer publishing 𝜎𝐵 . Hence, the buyer
gets pdk without paying. (iii) Attempt to build UCP linking the reveal of pdk to 𝑠1. After puzzle-promise, the seller encrypts pdk
using rP

1
and forwards 𝑐𝑝𝑑𝑘 to the buyer. Buyer and mixer begin puzzle-solve, which reveals 𝑠2 and publish 𝜎𝐵 . Attack: seller

and mixer collude such that seller never de-randomizes 𝑠2 to reveal 𝑠1 or 𝜎𝑀 . Hence, the buyer paid but did not receive pdk.

during epoch E𝑖 (i.e., puzzle-promise step). Thenceforth, 𝑛 corre-

sponding honest Alices interact with the mixer in any order during

E𝑖+1 (i.e., puzzle-solve step). Following the aforementioned obser-

vation, the mixer cannot link who paid to whom, up to what is

leaked by the content of the transactions themselves (e.g., payment

amounts). We discuss these system aspects in Section 6. The unlink-

ability of the puzzle-promise, puzzle-solve paradigm in coin mixing

protocols has been formally analyzed in [29].

Limitations of Puzzle-promise, Puzzle-solve Paradigm in UCP. Re-
call that a two-party contingent payment ties the published trans-

action paying the seller to the disclosure of the product decryption

key pdk (hence, the delivery of product 𝑝) to the buyer. In other

words, the buyer engages with the seller in a protocol where the

seller gets 𝜎𝐵 only if buyer learns pdk. Likewise, in UCP we want

to tie the published transaction on the blockchain that sends 𝛽

coins from the mixer to the seller (i.e.,𝑚𝑀 ), to the disclosure of

pdk. Note that if we use the puzzle-promise, puzzle-solve paradigm

off-the-shelf as implementation of the execution phase in UCP, we

are missing the guarantee that the buyer learns pdk.
Designing such a protocol is technically challenging. In the next,

we describe how any attempt to leverage the blockchain in such a

manner that one of the solutions 𝑠1, 𝑠2 to puzzles rP
1
, rP

2
, respec-

tively, leads to the reveal of pdk is futile. The root of the problem
lies in the fact that contrary to the puzzle-promise puzzle-solve

paradigm, where the buyer and the seller cooperate in order to

route an unlikable payment via the mixer, in the UCP setting the

three parties are mutually distrustful.

More specifically, assume that we tie the disclosure of pdk to

puzzle solution 𝑠2, e.g., by encrypting pdk into ciphertext 𝑐𝑝𝑑𝑘
such that it can only be decrypted with 𝑠2. We deploy a smart

contract that reveals 𝑠2 if transaction𝑚𝐵 , that sends 𝛼 coins from

the buyer to the mixer, is published (cf. Fig. 2 (ii)). Nevertheless,

the following attack on seller security is possible: at the end of the

puzzle-promise step, when the honest seller forwards the puzzle

rP
2
to the malicious buyer, the latter can collude with the malicious

mixer such that the buyer learns the puzzle solution 𝑠2 without

publishing the transaction m
𝐵
. As a result, the buyer can use 𝑠2

to get pdk, while the seller does not get paid because 𝑠2 cannot be

obtained from the blockchain.

Conversely, assume that we tie the disclosure of pdk to puzzle

solution 𝑠1 and we deploy a smart contract that reveals 𝑠1 if transac-

tion m
𝑀
, sending 𝛽 coins from the mixer to the seller, is published.

(cf. Fig. 2 (iii)). Nevertheless, the following attack on buyer security

is possible: during the puzzle-solve step, the malicious seller col-

ludes with the malicious mixer such that the latter does not publish

transaction m
𝑀
.
2
As a result, the honest buyer, who according to

the puzzle-promise, puzzle-solve paradigm has already published

transaction m
𝐵
, does not get pdk because 𝑠1 cannot be obtained.

Solving the Fair Exchange Problem. In order to cope with the

above deadlock, we introduce a fourth party, called notary, that
is trusted to carry out a simple task, namely, to attest all trans-

actions published on the blockchain. A transaction’s attestation

is a signature on such transaction verifiable under the notary’s

verification key v̂k, that is disseminated through a public channel

(e.g., a bulletin board or a blockchain). The notary’s functionality is

thus similar to that of oracle and data feeds that have been largely

studied in the literature [20, 43, 47, 49, 63, 65] and deployed solu-

tions exist.
3
The advantages of such limited trust on the notary are

twofold: (a) the notary is oblivious about what attested transactions

are used for, i.e., no communication between the notary and the

other three parties is required in order to carry out an UCP; and

2
Colluding parties can split buyer’s coins with a transaction different to m

𝑀
.

3
ChainLink: https://chain.link; SupraOracles: https://supra.com
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(b) the limited requirements on notary’s functionality reduces the

burden on deploying it in practice.

A key technical contribution of our work is a novel cryptographic

construction that leverages notary’s attestation to tie the inclusion

ofm
𝐵
in the blockchain (i.e., buyer’s payment to the mixer) to both:

(i) the disclosure of decryption key pdk to the buyer; and (ii) the

disclosure of 𝜎𝑀 to the seller. In this construction, notary’s attesta-

tion is independent of the authorization scheme of the blockchain

and is only required for security, but not for unlinkability. Next, we

overview this construction (and the rest of MixBuy).

2.3 Overview of MixBuy
MixBuy provides the functionality of UCP, ensuring buyer security,

mixer security, seller security and unlinkability.

Setup Phase. The setup phase in MixBuy is identical to the one

described in Section 2.1. Additionally, the notary’s verification key

v̂k is disseminated through a public channel (e.g., a bulletin board

or a blockchain).

Execution Phase. The execution phase inMixBuy is run in epochs

and consists of three steps, namely, puzzle-promise, puzzle-link, and
attest-and-solve, as shown in Fig. 3. The puzzle-promise step com-

prises the same operations as the puzzle-promise step of coin mix-

ing. On the contrary, steps puzzle-link and attest-and-solve fully

differ from the puzzle-solve in coin mixing and instead are based

on a novel cryptographic construction described hereafter.

Puzzle-promise. During epoch E𝑖 , themixer creates a re-randomizable

puzzle rP
1
containing 𝜎𝑀 and sends it to the seller, who randomizes

it into rP
2
. Buyer receives rP

2
and holds it until epoch E𝑖 ends.

Puzzle-link. At the beginning of epoch E𝑖+1, the buyer forwards rP
2

to the mixer. Note that at this point, similarly to the puzzle-promise,

puzzle-solve paradigm, the randomization factor 𝑟 used by the seller

to randomize 𝑠1 is unknown to the mixer, hence the mixer cannot

link 𝑠1 to 𝑠2. In this way, MixBuy achieves unlinkability.

The mixer then opens rP
2
and includes the solution 𝑠2 into an

attestation puzzle aP
3
. It is crucial to see here that although rP

2
and

aP
3
hide the same value, we have designed attestation puzzle aP

3
in

such a way that it can be opened only if the notary attests m
𝐵
(i.e.,

a payment from the buyer to the mixer). At this point, the mixer is

ensured that in order to obtain the solution to rP
2
, the buyer must

have included m
𝐵
in the blockchain, meaning that the mixer has

got 𝛼 coins from the buyer if rP
2
(hence, rP

1
) is solved. In this way,

MixBuy achieves mixer security.

Thereafter, the mixer sends aP
3
to the buyer who forwards it to

the seller. The possession of aP
3
ensures the seller that if the buyer

pays the mixer usingm
𝐵
, then the notary will provide an attestation

for such transaction (i.e., the notary is trusted for this task), thus

the seller opens aP
3
, learns the solution 𝑠2, de-randomizes it to

learn 𝑠1 and finally obtains 𝜎𝑀 from rP
1
. Henceforth, the seller is

safe to provide the buyer with an attestation puzzle aP
4
containing

the product decryption key pdk that the buyer needs to obtain the

product. As with aP
3
, the solution to aP

4
can only be obtained if

the notary attests m
𝐵
. In this way, MixBuy achieves seller security.

Finally, the buyer in possession of aP
4
is guaranteed that pub-

lishingm
𝐵
will release the decryption key pdk. In this way, MixBuy

achieves buyer security.

Figure 3: MixBuy execution phase. Puzzle-promise as in coin
mixing (cf. Fig. 2). In Puzzle-link, mixer re-encrypts 𝑠2 into
aP

3
and seller encrypts the product decryption key pdk into

aP
4
. In Attest-and-solve, the oracle attests buyer’s payment,

so buyer and seller can solve aP
3
and aP

4
.

Attest-and-solve. At this point, the buyer is in the unique position

to trigger the final operations of the attest-and-solve step by sub-

mittingm
𝐵
. Afterm

𝐵
is published, the notary outputs its attestation

that the payment occurred. Thereafter, the buyer can use the attes-

tation to solve puzzle aP
4
, retrieve the product decryption key pdk

and get the product 𝑝 . Likewise, the seller can use the attestation

to solve puzzle aP
3
, learn the solution to puzzle rP

2
, recover the

solution to the puzzle rP
1
, and then submit m

𝑀
.

3 PRELIMINARIES
Notation. We denote by 𝜆 the security parameter. Symbol (

$←)

denotes the sampling of an element at random from a uniform

distribution, (←) is used to store values from a probabilistic oper-

ation, (:=) is used to assign values from a deterministic operation,

and (↼) is used to parse data from a variable. Furthermore, ek, dk,
vk, and sk denote encryption, decryption, verification, and sign-

ing keys, respectively. We consider probabilistic polynomial time
(PPT) and deterministic polynomial time (DPT) machines as efficient

algorithms. In security games, adversaries are stateful.

Relation. We recall the notion of a relation. For that, let R ⊆
D𝑆 × D𝑤 be a relation with statement/witness pairs (X,w) ∈
D𝑆 × D𝑤 . We denote by LR the associated language defined as

LR := {X ∈ D𝑆 | ∃w ∈ D𝑤 s.t. (X,w) ∈ R}. For any relation that

we consider in this paper, we require the following two properties:

(i) There exists a PPT algorithm createR(1𝜆) that computes (X,w) ∈
R (note that this implies that |X |, |w | ≤ poly(𝜆)); and (ii) the relation
is decidable in polynomial time. Furthermore, we say that R is a

hard relation if for all PPT adversaries A, the probability that on

input X A outputs w such that (X,w) ∈ R is negligible, where the

probability is taken over the coins ofA and (X,w) ← createR(1𝜆).
We say that a relation is linearly homomorphic if there exist a pair
of operations (⊗, +) such that for (X1,w1) ∈ R, (X2,w2) ∈ R it holds

that (X1 ⊗ X2,w1 + w2) ∈ R.
5
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Digital Signature Scheme. We require a digital signature scheme [31]

DS := (KGen, Sig, Vf), where: (i) PPT algorithm KGen gets as input

the security parameter 1
𝜆
and outputs a verification/signing key

pair (vk, sk); (ii) PPT algorithm Sig gets as input a signing key sk
and a message 𝑚, and outputs a signature 𝜎 ; and (iii) DPT algo-

rithm Vf gets as input a verification key vk, a message𝑚, and a

signature 𝜎 , and outputs 1 if 𝜎 is a valid signature on 𝑚 under

vk, otherwise it outputs 0. We require a correct DS (i.e. it holds

that Pr[Vf (vk,𝑚, Sig(sk,𝑚)) = 1] = 1) and secure for existential

unforgeability under chosen message attack (EUF-CMA).

Adaptor Signature Scheme. We require an adaptor signature scheme [4,

17] ADP := (PreSig, PreVf, Adapt, Extract), defined with respect to

a digital signature scheme DS and a relation R where: (i) PPT al-

gorithm PreSig gets as input a signing key sk, a message𝑚, and a

public statement X, and outputs a pre-signature 𝜎 ; (ii) DPT algo-

rithm PreVf gets as input a verification vk, a message𝑚, a public

statement X and a pre-signature 𝜎 and outputs 1 if 𝜎 is a valid

pre-signature on𝑚 under vk and X, otherwise it outputs 0; (iii) DPT
algorithm Adapt gets as input a pre-signature 𝜎 and a witness w,

and outputs a signature 𝜎 ; and (iv) DPT algorithm Extract gets as
input a signature 𝜎 , a pre-signature 𝜎 and a public statement X,
and outputs a witness w. We require a correct ADP, secure for full
extractability and adaptability, as defined in [17].

Non-Interactive Zero Knowledge. Let R be a hard relation with

corresponding L := {X | ∃w s.t. (X,w) ∈ R}. We require a non-

interactive zero-knowledge proof system [19] NIZK := (SetUp,
Prove,Vf), for relation R, where: (i) PPT algorithm SetUp gets as

input the security parameter 1
𝜆
and outputs a common reference

string crs and a trapdoor td; (ii) PPT algorithm Prove gets as input
a crs, a public statement X and a witness w, and outputs a proof 𝜋 ;

and (iii) DPT algorithm Vf gets as input a crs, a public statement X
and a proof 𝜋 , and outputs 1 if 𝜋 is a valid proof, otherwise it outputs

0. We require three security properties, namely, completeness, zero-

knowledge, and knowledge-soundness [7].

Witness Encryption based on Signatures. We require a witness

encryption based on signatures schemeWES := (Enc,Dec), defined
with respect to a digital signature scheme D̂S = (�KGen, Ŝig, V̂f),
where: (i) PPT algorithm Enc gets as input a tuple comprising a

verification key v̂k and a message �̂�, a plaintext m, and outputs a

ciphertext 𝑐 ; and (ii) DPT algorithm Dec gets as input a signature �̂�
and a ciphertext 𝑐 , and outputs a plaintext m. We say thatWES is

correct if it holds that Pr[Dec(Ŝig(ŝk, �̂�), Enc((v̂k, �̂�),𝑚)) = m] =
1, and we require the security notion of indistinguishability under

chosen plaintext attack (IND-CPA) as defined in [49].

Verifiable Witness Encryption for a Relation. We require a verifi-

able witness encryption for a relation scheme VWER := (EncR,
VfEncR,DecR), defined with respect to a relation R and a digital

signature scheme D̂S = (�KGen, Ŝig, V̂f), where: (i) PPT algorithm

EncR gets as input a tuple comprising a verification key v̂k and

a message �̂�, a a witness w, and outputs a ciphertext tuple, con-

taining ciphertext and a proof (𝑐, 𝜋); (ii) DPT algorithm VfEncR
gets as input a ciphertext tuple, containing ciphertext and a proof

(𝑐, 𝜋), a tuple comprising a verification key v̂k and a message �̂�

and a public statement X, and outputs 1 if it is a valid ciphertext,

otherwise it outputs 0; and (iii) DPT algorithm Dec gets as input
a signature �̂� and and tuple comprising a ciphertext 𝑐 and a proof

𝜋 , and outputs a witness w′. We require a VWER secure for one-

wayness, which guarantees that w can be recovered from 𝑐 only

with a valid signature 𝜎 on message m̂ under verification key v̂k;
and verifiability, which guarantees that if 𝜋 verifies, 𝑐 encrypts w
such that (X,w) ∈ R. We provide formal definitions of VWER and

its security properties in Appendix A. In Appendix C we provide a

construction of VWER, together with the security proofs.

Linear-Only Homomorphic Encryption Scheme. We require a linear-

only homomorphic encryption scheme LHE := (KGen, Enc,Dec) [34],
where: (i) PPT algorithm KGen gets as input the security parameter

1
𝜆
and outputs a encryption/description key pair (ek, dk); (ii) PPT

algorithm Enc gets as input an encryption key ek and a plaintext𝑚,

and outputs a ciphertext 𝑐 ; and (iii) DPT algorithmDec gets as input
a decryption key dk and a ciphertext 𝑐 , and outputs a plaintext𝑚.

We say that LHE is correct if it holds that Pr[Dec(dk, Enc(ek,𝑚)) =
𝑚] = 1 and we require the standard notion of indistinguishabil-

ity under chosen plaintext attack (IND-CPA) [30]. An encryption

scheme is linearly homomorphic if there exists a pair of operations
(◦, +) such that Enc(ek,𝑚1) ◦ Enc(ek,𝑚2) = Enc(ek,𝑚1 +𝑚2). We

define an additional property called OMDL-LHE because it becomes

useful to prove the security of our proposed construction in Sec-

tion 5. We provide the intuition in the following, while the formal

definition is in Appendix A. In OMDL-LHE, the challenger gener-
ates an encryption/decryption key pair and a list of 𝑘 +1 (statement,

witness) pairs. Then, encrypts all witnesses with the encryption key

and provides the encryption key, the statements and ciphertexts to

the adversary. The adversary has access to a decryption oracle. If

the adversary is able to return more valid witnesses than queries

to the decryption oracle, wins the game.

4 MIXBUY: OUR APPROACH FOR UCP
Environment. Protocol MixBuy involves a digital product 𝑝 , and

four parties: buyer B, mixer M, seller S, and notary N. The buyer

owns a key pair (vk𝐵, sk𝐵) that controls 𝛼 coins. The mixer owns a

key pair (vk𝑀 , sk𝑀 ) that controls 𝛽 coins. The seller owns a key pair
(vk𝑆 , sk𝑆 ) that represents seller’s address, The notary owns a key

pair (v̂k, ŝk) and attest all transactions published on the blockchain.

These attestations are disseminated through a public channel (e.g.,

a bulletin board or a blockchain). For ease of exposition, we de-

scribe the notary functionality as a single party, nevertheless we

can distribute this functionality to a set of notaries (as discussed

in Section 6). Finally, we assume the existence of a public inventory

in the form of a key-value store that maps digital product 𝑝 to its

hash value ℎ (i.e., ℎ := H(𝑝)).

Threat Model. The three parties carrying out an unlinkable con-

tingent payment, namely, the buyer, the mixer, and the seller are

mutually distrustful. The notary is only trusted to correctly attest

all transactions published on the blockchain. Moreover, we assume

the blockchain accepts a transaction m only if it is accompanied by

a digital signature 𝜎 that correctly verifies with the corresponding

verification key vk. Finally, we assume that the communication

between buyer and seller is not visible to the mixer, which is a com-

mon assumption in centralized coin mixing services [29, 37, 59].
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MixBuy: Contingent Payment in the Presence of Coin Mixers

Figure 4: MixBuy protocol. Bootstrapping: mixer and notary
generate the encryption/decryption key and the verifica-
tion/decryption key. Setup phase: buyer, mixer and seller pre-
pare the purchase (cf. Fig. 1). Execution phase: involves three
steps, puzzle-promise, puzzle-link, and attest-and-solve.

4.1 Protocol Definition
In this section, we define oracle-based unlinkable contingent payment
(O-UCP), our novel cryptographic protocol for MixBuy’s execution

phase. Thereafter, we show how O-UCP is used in MixBuy to exe-

cute unlinkable contingent payment. Finally, we formally describe

the security and unlinkability properties of O-UCP.

Naming convention for the algorithms in Definition 1. The first
letter indicates the party invoking the algorithm (e.g., seller S), the
name of the algorithm follows (e.g., Set), and the subscript indicates
the order of execution where appropriate. We denote randomizable

puzzles by rP and attestation puzzles by aP.

Definition 1 (Oracle-based Unlinkable Contingent Payment). The
oracle-based unlinkable contingent payment is defined w.r.t. a digital
signature scheme DS = (KGen, Sig,Vf) and a relation R. It comprises
11 algorithms (MGen, NGen,MSet1, SSet2,MSet3, SSet4, BVfSet,
NAttest, VfAttest, SSolve, BSolve), defined bellow:
• (ek, dk) ← MGen(1𝜆): PPT algorithm invoked by mixer gets as

input the security parameter 1𝜆 and outputs the keypair (ek, dk).
• (v̂k, ŝk) ← NGen(1𝜆): PPT algorithm invoked by notary, gets as

input the security parameter 1𝜆 and outputs the notary verifica-
tion/signing keypair (v̂k, ŝk).

• rP
1
← MSet1 (ek, sk𝑀 ,m

𝑀
): PPT algorithm invoked bymixer, gets

as input mixer’s encryption and signing keys ek and sk𝑀 , and a
transaction m

𝑀
from mixer to seller , and outputs randomizable

puzzle rP
1
.

•
{
(rP

2
, st

𝑆
),⊥

}
← SSet2 (ek, vk𝑀 ,m

𝑀
, rP

1
): PPT algorithm invoked

by seller, gets as input mixer’s encryption key ek, mixer’s verifi-
cation key vk𝑀 , a transaction from mixer to seller m

𝑀
, and a

randomizable puzzle rP
1
, and outputs either a tuple comprising

randomizable puzzle rP
2
and seller’s secret state st

𝑆
, or aborts (⊥).

• aP
3
← MSet3 (dk, v̂k,m𝐵

, rP
2
): PPT algorithm invoked by mixer,

gets as input mixer’s decryption key dk, notary’s verification key
v̂k, a transaction from buyer to mixer m

𝐵
, and randomizable puzzle

rP
2
, and outputs attestation puzzle aP

3
.

•
{
aP

4
,⊥

}
← SSet4 (v̂k,m𝐵

, pdk, aP
3
, st

𝑆
): PPT algorithm invoked

by seller, gets as input notary’s verification key v̂k, a transaction
from buyer to mixer m

𝐵
, product’s decryption key pdk, attesta-

tion puzzle aP
3
, and seller’s secret state st

𝑆
, and outputs either

attestation puzzle aP
4
, or aborts (⊥).

• 1/0← BVfSet (v̂k,m
𝐵
, pek, aP

4
): DPT algorithm invoked by buyer,

gets as input notary’s verification key v̂k, a transaction from buyer
to mixer m

𝐵
, product’s encryption key pek, and attestation puzzle

aP
4
, and outputs 1 if puzzle aP

4
hides the corresponding product’s

decryption key pdk, otherwise it outputs 0.
• 𝜏 ← NAttest (ŝk,m

𝐵
): PPT algorithm invoked by notary, gets as

input notary’s signing key ŝk and a transaction from buyer to mixer
m
𝐵
, and outputs the attestation token 𝜏 .

• 1/0← VfAttest(v̂k,m
𝐵
, 𝜏): DPT algorithm gets as input notary’s

verification key v̂k, a transaction from buyer to mixer m
𝐵
, and an

attestation token 𝜏 , and returns 1 if 𝜏 is a valid attestation on m
𝐵

under the key v̂k, otherwise it outputs 0.
• 𝜎

𝑀
← SSolve (𝜏, rP

1
, aP

3
, st

𝑆
): DPT algorithm invoked by seller,

gets as input an attestation token 𝜏 , puzzle rP
1
, attestation puzzle

aP
3
, and seller’s secret state st

𝑆
, and outputs a signature 𝜎

𝑀
.

• pdk← BSolve (𝜏, aP
4
): DPT algorithm invoked by buyer, gets as

input an attestation token 𝜏 and attestation puzzle aP
4
, and outputs

product’s decryption key pdk.

O-UCP in MixBuy. Hereby, we show how O-UCP is used in

MixBuy to execute an unlinkable contingent payment. The protocol

is divided in three phases, namely, bootstrapping, setup phase, and

execution phase (cf. Fig. 4).

Bootstrapping. During bootstrapping, the mixer and the notary

invoke algorithmsMGen andNGen, respectively, in order to gener-

ate their key pairs (ek, dk) and (v̂k, ŝk). Bootstrapping is executed

only once at the time of deploying MixBuy.

Setup phase. The setup phase in MixBuy is identical to the one

described in Section 2.1 with the addition of the dissemination of

notary’s verification key v̂k.
Execution phase. The execution phase in MixBuy is run in epochs

and consists of three steps, namely, puzzle-promise, puzzle-link, and
attest-and-solve:

• Puzzle-promise. In epoch E𝑖 , mixer invokesMSet1 to create rP
1

and sends it to the seller. In turn, seller invokes SSet2 to check

if rP
1
is well-formed and randomizes it into rP

2
. Finally, seller

sends rP
2
to the buyer, who holds it until the end of epoch E𝑖 .

7
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• Puzzle-link. At the beginning of epoch E𝑖+1, the buyer sends rP
2

and transaction m
𝐵
to the mixer. Thereafter, the mixer invokes

MSet3 that outputs attestation puzzle aP
3
, which can be solved

with notary’s attestation 𝜏 on m
𝐵
. The mixer sends aP

3
to the

buyer, who in turn forwards it to the seller. The seller invokes

SSet4 that verifies that aP
3
is well-formed and outputs attestation

puzzle aP
4
, which encrypts the product decryption key pdk and

can be solved with notary’s attestation 𝜏 onm
𝐵
. The seller sends

aP
4
to the buyer, who runs BVfSet to check if aP

4
is well-formed.

• Attest-and-solve. The attest-and-solve step is triggered with the

submission of transactionm
𝐵
by the buyer. Thereafter, the notary

invokes NAttest to create attestation 𝜏 , which is disseminated

through a public channel. Finally, the buyer and the seller use

𝜏 to invoke BSolve and SSolve, respectively, in order to get the

product decryption key pdk and the authorization 𝜎
𝑀
.

Definition 2 (O-UCP Correctness). A O-UCP is said to be correct if
for all 𝜆 ∈ N, all (v̂k, ŝk) ∈ NGen(1𝜆), all (ek, dk) ∈ MGen(1𝜆), all
(vk𝑀 , sk𝑀 ) ∈ KGen(1𝜆), all (vk𝐵, sk𝐵) ∈ KGen(1𝜆), all (pek, pdk) ∈
R, and all pairs of messages (m

𝐵
,m

𝑀
), it holds that:

Pr
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𝑏0 = 1

𝑏1 = 1

𝑏2 = 1

𝑏3 = 1

𝑏4 = 1
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rP
1
← MSet1 (ek, sk𝑀 ,m

𝑀
)

(rP
2
, st

𝑆
) ← SSet2 (ek, vk𝑀 ,m

𝑀
, rP

1
)

aP
3
← MSet3 (dk, v̂k,m𝐵

, rP
2
)

aP
4
← SSet4 (v̂k,m𝐵

, pdk, aP
3
, st

𝑆
)

𝜎
𝐵
← Sig(sk𝐵,m𝐵

) ; 𝜏 ← NAttest (ŝk,m
𝐵
)

𝜎
𝑀
← SSolve (𝜏, rP

1
, aP

3
, st

𝑆
)

pdk′ ← BSolve (𝜏, aP
4
)

𝑏0 := BVfSet (v̂k,m
𝐵
, pek, aP

4
)

𝑏1 := Vf (vk𝐵,m𝐵
, 𝜎

𝐵
) ; 𝑏2 := Vf (vk𝑀 ,m

𝑀
, 𝜎

𝑀
)

𝑏3 := VfAttest(v̂k,m
𝐵
, 𝜏 ) ; 𝑏4 := (pek, pdk′ ) ∈ R



= 1

Mixer Security. This property protects the balance of the mixer

such that if the mixer pays to the seller, the former will be paid by

the buyer. When interacting with an mixer in O-UCP, an adversary

might stop when reaching MSet1, MSet3, or at the end. We model

this with OMSet1, OMSet3, and OFull. Note that for a given trans-

action m
𝐵
, the adversary may choose to pay (hence, attestation

exists) or not to pay (hence, attestation does not exist). Regardless

of adversary’s decision, the mixer will give only one attestation

puzzle per transaction to the adversary (i.e., OMSet3 and OFull are
mutually exclusive). The adversary returns a set of tuples compris-

ing mixer’s verification keys vk𝑖
𝑀
, messages m𝑖

𝑀
and signatures

𝜎𝑖
𝑀
. The set contains one tuple more than the number of completed

interactions with the mixer (i.e., the number of OFull calls). We

model two scenarios in which the adversary wins. If one of the

tuples contains a valid forgery for a message that was not queried

in OMSet1 (condition 𝑏0), the adversary wins. Alternatively, the

adversary wins if all tuples contain different messages m𝑖
𝑀

queried

in OMSet1 and all signatures 𝜎𝑖
𝑀

are valid (conditions 𝑏1 and 𝑏2).

The second winning condition implies that the adversary managed

to obtain information from rP
1
or aP

3
without an attestation.

Definition 3 (Mixer Security). A O-UCP offers mixer security if
there exists a negligible function negl(𝜆) such that for all 𝜆 ∈ N and
for all PPT adversaries A it holds that Pr[ExpM(𝜆) = 1] ≤ negl(𝜆),
with ExpM defined in Fig. 5.

ExpM

Q1 := ∅ ; Q2 := ∅ ; q := 0

(v̂k, ŝk ) ← NGen(1𝜆 )

(ek, dk ) ← MGen(1𝜆 ){
(vk𝑖𝑀 ,m𝑖

𝑀 , 𝜎𝑖
𝑀 )

}
𝑖∈ [0,q] ← A

OMSet1,OMSet3,OFull (ek, v̂k )

𝑏0 := ∃𝑖 ∈ [0, q] s.t. (vk𝑖𝑀 , · ) ∈ Q1
∧ (vk𝑖𝑀 ,m𝑖

𝑀 ) ∉ Q1 ∧ Vf (vk
𝑖
𝑀 ,m𝑖

𝑀 , 𝜎𝑖
𝑀 ) = 1

𝑏1 := ∀𝑖 ∈ [0, q], (vk𝑖𝑀 ,m𝑖
𝑀 ) ∈ Q1 ∧ Vf (vk

𝑖
𝑀 ,m𝑖

𝑀 , 𝜎𝑖
𝑀 ) = 1

𝑏2 := ∀𝑖, 𝑗 ∈ [0, q], 𝑖 ≠ 𝑗, (vk𝑖𝑀 ,m𝑖
𝑀 , 𝜎𝑖

𝑀 ) ≠ (vk
𝑗

𝑀
,m𝑗

𝑀
, 𝜎

𝑗

𝑀
)

return 𝑏0 ∨ (𝑏1 ∧ 𝑏2 )
OMSet1 (m𝑀

)
(vk𝑀 , sk𝑀 ) ← KGen(1𝜆 )

rP
1
← MSet1 (ek, sk𝑀 ,m𝑀 )

Q1 := Q1 ∪ (vk𝑀 ,m𝑀 )
return (rP

1
, vk𝑀 )

OMSet3 (m𝐵
, rP

2
)

if m𝐵 ∈ Q2 abort
Q2 := Q2 ∪ (m𝐵 )

aP
3
← MSet3 (dk, v̂k,m𝐵, rP2 )

return (aP
3
)

OFull(m
𝐵
, rP

2
, 𝜎 , vk)

if m𝐵 ∈ Q2 abort
q = q + 1
Q2 := Q2 ∪ (m𝐵 )

aP
3
← MSet3 (dk, v̂k,m𝐵, rP2 )

if Vf (vk,m𝐵, 𝜎 ) = 0 abort

𝜏 ← NAttest (ŝk,m𝐵 )
return (aP

3
, 𝜏 )

Figure 5: Definition of the experiment ExpM.

Seller Security. This property ensures that the adversary can

only get the product if the seller is paid. Here, the adversary has

access to an attestation oracle ONAttest, that models payments

from the adversary to the mixer. The adversary generates all the

mixer setup information, two messages m
𝑀
, m

𝐵
, as well as puzzle

rP
1
. Then, the challenger provides the adversary with rP

2
, and

the adversary produces aP
3
. Finally, the challenger produces aP

4
,

which encrypts the product decryption key pdk and sends it to the

adversary, who replies with a decryption key pdk′. We model two

scenarios in which the adversary wins. The adversary wins if it did

not use the attestation oracle on m
𝐵
(i.e. the buyer did not paid),

but the decryption key pdk′ is correct (condition 𝑏0). This winning
condition implies that the adversary managed to get the product

without paying. Alternatively, if the adversary wins if it used the

attestation oracle on m
𝐵
(i.e. the buyer did paid), but the seller fails

to extract signature 𝜎
𝑀

for the payment m
𝑀
(conditions 𝑏1 and 𝑏2).

In this case the adversary was able to trick the seller with ill-formed

rP
1
or aP

3
that prevents the seller to obtain 𝜎

𝑀
.

Definition 4 (Seller Security). AO-UCP is said to offer seller security
if there exists a negligible function negl(𝜆) such that for all 𝜆 ∈ N and
for all PPT adversaries A it holds that Pr[ExpS(𝜆) = 1] ≤ negl(𝜆),
where ExpS is defined in Fig. 6.

Buyer Security. This property ensures that the adversary cannot

prevent the buyer from getting the product if the buyer pays for

it. We model the property by providing the adversary access to

8



MixBuy: Contingent Payment in the Presence of Coin Mixers

ExpS

Q := [ ]

(v̂k, ŝk ) ← NGen(1𝜆 )

(pek, pdk) ← createR(1𝜆 )

(ek, vk𝑀 ,m𝐵,m𝑀 , rP
1
) ← AONAttest (v̂k, pek){

(rP
2
, st𝑆 ),⊥

}
← SSet2 (ek, vk𝑀 ,m𝑀 , rP

1
)

if ⊥ abort

aP
3
← AONAttest (rP

2
){

aP
4
,⊥

}
← SSet4 (v̂k,m𝐵, pdk, aP3, st𝑆 )

if ⊥ abort

pdk′ ← AONAttest (aP
4
)

if Q[m𝐵 ] = ⊥
𝑏0 := (pek, pdk′ ) ∈ R

else

𝜏 := Q[m𝐵 ]
𝜎𝑀 ← SSolve (𝜏, rP

1
, aP

3
, st𝑆 )

𝑏1 := VfAttest(v̂k,m𝐵, 𝜏 ) = 1

𝑏2 := Vf (vk𝑀 ,m𝑀 , 𝜎𝑀 ) = 0

return 𝑏0 ∨ (𝑏1 ∧ 𝑏2 )

ONAttest (𝜎,m, vk)
if Vf (vk,m, 𝜎 ) = 0 abort

𝜏 ← NAttestN (ŝk,m )
Q[m ] := 𝜏

return 𝜏

Figure 6: Definition of the experiment ExpS.

an attestation oracle OSigNAttest that models the signature gen-

eration from the buyer and the notary. The adversary can query

oracle OSigNAttest with messages of their choice. Then, the ad-

versary outputs a tuple of buyer signature 𝜎∗
𝐵
, product encryption

key pek, transaction from buyer to mixerm
𝐵
and puzzle aP

4
, which

encrypts the product decryption key pdk. We model two scenarios.

If the transaction m
𝐵
provided by the adversary was not queried

in OSigNAttest, but the forged signature 𝜎∗
𝐵
is valid, the adversary

wins (condition 𝑏0). Here the adversary was successful in stealing

money from buyer’s account. Alternatively, the adversary wins if

the oracle was queried, aP
4
verifies, but the challenger is unable

to extract a valid pek from aP
4
(conditions 𝑏1, 𝑏2 and 𝑏3). In this

scenario the adversary tricks the buyer with an ill-formed aP
4
that

does not contain the product decryption key pdk.

Definition 5 (Buyer Security). A O-UCP is said to offer buyer se-
curity if there exists a negligible function negl(𝜆) such that for all
𝜆 ∈ N and for all PPT adversariesA it holds that Pr[ExpB(𝜆) = 1] ≤
negl(𝜆), where ExpB is defined in Fig. 7.

Unlinkability. This property models the impossibility for the

mixer to distinguish between two concurrent O-UCP executions.

We model this property by completing two interactions with an ad-

versarial mixer. These two interactions start sequentially requesting

rP
1
from the adversary. Thereafter, the challenger runs algorithm

SSet2 for each received puzzle. At this point, the challenger flips

a coin that defines the order in which puzzles rP
2
are sent to the

adversary: i.e., in the same or the reversed order as puzzles rP
1
were

received from the adversary. Once the full interaction is completed,

if both or one of the operations fail, the challenger forwards⊥ to the

ExpB

Q := [ ]

(v̂k, ŝk ) ← NGen(1𝜆 )

(vk𝐵, sk𝐵 ) ← KGen(1𝜆 )
(𝜎∗𝐵, pek,m𝐵, aP4 )

← AOSigNAttest (vk𝐵, v̂k )
if Q[m𝐵 ] = ⊥
𝑏0 := (Vf (vk𝐵,m𝐵, 𝜎

∗
𝐵 ) = 1)

else

𝜏 := Q[m𝐵 ]
pdk← BSolve (𝜏, aP

4
)

𝑏1 := BVfSet (v̂k,m𝐵, pek, aP4 )

𝑏2 := VfAttest(v̂k,m𝐵, 𝜏 )
𝑏3 := (pek, pdk) ∉ R

return 𝑏0 ∨ (𝑏1 ∧ 𝑏2 ∧ 𝑏3 )

OSigNAttest (m)
𝜎𝐵 ← Sig(sk𝐵,m )

𝜏 ← NAttest (ŝk,m )
Q[m ] := 𝜏

return (𝜎𝐵, 𝜏 )

Figure 7: Definition of the experiment ExpB.

adversary, otherwise the resulting signatures are forwarded. The

adversary wins if they can guess if the order of rP
2
was reversed

with a probability better than random guess.

Definition 6 (Unlinkability). A O-UCP is unlinkable if there exists
a negligible function negl(𝜆) such that for all 𝜆 ∈ N and for all PPT
adversaries A it holds that Pr[ExpLink(𝜆) = 1] ≤ negl(𝜆), where
ExpLink is defined in Fig. 8.

5 OUR CRYPTOGRAPHIC CONSTRUCTION
As described in Section 2, we remark that for the preparation of the

product delivery, we follow the construction in zkCP and thus refer

the reader to [12, 14, 27, 52] for a more complete description, secu-

rity analysis and performance evaluation. In this section, we focus

on describing the cryptographic construction, security analysis and

performance evaluation of O-UCP.

Building Blocks. We require a digital signature scheme (D̂S), an
adaptor signature scheme (ADP), a linear only encryption scheme

(LHE), a witness encryption based on signatures (WES), verifiable
witness encryption for a relation (VWER), and a NIZK, with the

properties described in Section 3. Regarding the NIZK, we require

two different languages. Language L1 is used forMSet1 while L2

is used for MSet3.

L1 := { (𝑐, ek, X ) |∃ w s.t. 𝑐 ← LHE.Enc(ek,w ) ∧ (X,w ) ∈ R}

L2 := { (𝑐, v̂k,m𝐵, X ) |∃w s.t. 𝑐 ←WES.Enc( (v̂k,m𝐵 ),w )∧(X,w ) ∈ R}

Overview. We present a high level overview of our construction,

and the formal description is given in Fig. 9.

Bootstrapping. MGen and NGen are instantiated as the key gener-

ation algorithm of the LHE scheme and the signature scheme D̂S
used in WES and VWER, respectively.

9
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ExpLink

(vk0𝐵, sk
0

𝐵 ) ← KGen(1𝜆 ) ; (vk1𝐵, sk
1

𝐵 ) ← KGen(1𝜆 )

(ek, v̂k, vk0𝑀 , vk1𝑀 , rP0
1
, rP1

1
, (m0

𝑀 ,m0

𝐵 ), (m
1

𝑀 ,m1

𝐵 ) ) ← A(vk
0

𝐵, vk
1

𝐵 )
𝑏 ← {0, 1}

(pek0, pdk0 ) ← createR(1𝜆 ) ; (pek1, pdk1 ) ← createR(1𝜆 ){
(rP0

2
, st0𝑆 ),⊥

}
← SSet2 (ek, vk0𝑀 ,m0

𝑀 , rP0
1
){

(rP1
2
, st1𝑆 ),⊥

}
← SSet1 (ek, vk1𝑀 ,m1

𝑀 , rP1
1
)

(aP0
3
, aP1

3
) ← A(rP0⊕𝑏

2
, rP1⊕𝑏

2
){

aP0
4
,⊥

}
← SSet4 (v̂k,m0

𝐵, pdk
0, aP0

3
, st0⊕𝑏

𝑆
){

aP1
4
,⊥

}
← SSet4 (v̂k,m1

𝐵, pdk
1, aP1

3
, st1⊕𝑏

𝑆
)

𝜎0

𝐵 ← Sig(sk0𝐵,m
0

𝐵 )
𝜎1

𝐵 ← Sig(sk1𝐵,m
1

𝐵 )
(𝜏0, 𝜏1 ) ← A(𝜎0

𝐵, 𝜎
1

𝐵 )

𝜎0⊕𝑏
𝑀
← SSolve (𝜏0, rP0⊕𝑏

1
, aP0

3
, st0⊕𝑏

𝑆
)

𝜎1⊕𝑏
𝑀
← SSolve (𝜏1, rP1⊕𝑏

1
, aP1

3
, st1⊕𝑏

𝑆
)

if (Vf (vk0𝑀 ,m0

𝑀 , 𝜎0

𝑀 ) = 0) ∨ (Vf (vk1𝑀 ,m1

𝑀 , 𝜎1

𝑀 ) = 0)
𝜎0

𝑀 = 𝜎1

𝑀 = ⊥
𝑏′ ← A(𝜎0

𝑀 , 𝜎1

𝑀 )
return (𝑏 = 𝑏′ )

Figure 8: Definition of the experiment ExpLink. Note that in
order to improve readability, we have not explicitly stated
the conditions in which the challenger aborts: if any of the
algorithms returns ⊥, the challenger aborts the game.

Puzzle-promise. MSet1 starts with the generation of public state-

ment/witness pair (X1,w1) ∈ R. This is followed with the genera-

tion of a pre-signature 𝜎 of transactionm
𝑀

with statement X1. The
witness w1 is encrypted using LHE resulting in ciphertext 𝑐1 and a

NIZK proof 𝜋1 for language L1 is generated. Finally, the random-

izable puzzle rP
1
is set to (𝜎, 𝑐1, 𝜋1,X1). Algorithm SSet2 verifies

that pre-signature 𝜎 and proof 𝜋1 are valid. Thereafter, a public

statement/witness pair (X𝑟 ,w𝑟 ) ∈ R is generated and used to ran-

domize X1 to X2 and ciphertext 𝑐1 into 𝑐2, using the homomorphic

properties of R and LHE. Finally, puzzle rP
2
is set to (𝑐2, X2).

Puzzle-link. MSet3 decrypts 𝑐2 and re-encrypts the witness w2

using WES resulting in ciphertext 𝑐3, which can be decrypted with

notary’s attestation on transaction m
𝐵
. A NIZK proof 𝜋3 for L2 is

generated and the attestation puzzle aP
3
is set to (𝑐3, 𝜋3). Algorithm

SSet4 first verifies that the proof 𝜋3 is valid and then encrypts pdk
using VWER resulting in ciphertext/proof tuple (𝑐4, 𝜋4). 𝑐4 can

be decrypted with notary’s attestation on transaction m
𝐵
. Finally,

the attestation puzzle aP
4
is set to (𝑐4, 𝜋4). Algorithm BVfSet is

instantiated as the verification algorithm of the VWER scheme.

Attest-and-solve. NAttest and VfAttest are instantiated as the sig-

nature generation and verification of the signature scheme D̂S,
respectively. SSolve decrypts theWES ciphertext 𝑐4 to get w2 and

then obtains w1 by removing the randomization factor w𝑟 from w2.

Finally, uses witness w1 to adapt the pre-signature 𝜎 into signature

𝜎
𝑀
. BSolve is instantiated as the decryption algorithm of VWER.

5.1 Security Analysis
In the following, we state our claims and provide intuitions on

the security and privacy of our construction. We refer the reader

to Appendix B for the full proofs.

Theorem 1 (Mixer Security). Assume that NIZK is zero knowl-
edge, thatWES is IND-CPA, that adaptor signature is full extractable
and the linear only encryption scheme is OMDL-LHE. Then, our con-
struction offers mixer security according to Definition 3.

In mixer security, the adversary attempts to generate a signature

𝜎
𝑀

on a transaction m
𝑀

without notary’s attestation 𝜏 on transac-

tion m
𝐵
. Note that an attestation on m

𝐵
means that the mixer was

paid. In a successful attack the adversary produces 𝜎
𝑀

either from

the randomizable puzzle rP
1
or the attestation puzzle aP

3
without

an attestation. Puzzle rP
1
comprises a pre-signature 𝜎 on transac-

tion m
𝐵
under the verification key vk𝐵 and public statement X1,

an LHE ciphertext 𝑐1 encrypting w1, a NIZK 𝜋1 for language L1,

and X1. Given that OMDL-LHE holds, the adversary cannot extract

any information about w1 from 𝑐1. Likewise, given that a NIZK

proof for L1 is zero knowledge, 𝜋1 does not leak any information

about w1. Finally, given that the adaptor signature scheme satisfies

the strong full extractability notion, the adversary cannot forge

a valid signature 𝜎
𝑀

using the pre-signature 𝜎 and public state-

ment X1. As regards to puzzle aP
3
, it comprises aWES ciphertext

𝑐3 encrypting w2 and a NIZK 𝜋3 for language L2. Given that WES
is IND-CPA secure, the adversary cannot extract any information

about w2 from 𝑐3. Similarly, given that a NIZK proof for L2 is zero

knowledge, 𝜋3 does not leak any information about w2. Therefore,

the adversary cannot produce 𝜎
𝑀

from puzzles rP
1
and aP

3
without

notary’s attestation, hence mixer security holds.

Theorem 2 (Seller Security). Assume the VWER is one way,
NIZK is secure under soundness-knowledge and adaptor signature
scheme is secure under adaptability. Then, our construction offers
seller security according to Definition 4.

In seller security, the adversary wants to obtain pdk without the
seller getting a valid 𝜎

𝑀
(i.e., without paying). In a successful attack

the adversary: (i) extracts pdk from aP
4
, containing a VWER cipher-

text/proof pair (𝑐4, 𝜋4); (ii) forges NIZK proofs 𝜋1 for language L1

or 𝜋3 for language L2, convincing the seller that rP
1
hides w1 or

aP
3
hides w2, respectively; or (iii) produces a valid pre-signature 𝜎

on message m
𝑀

under the verification key vk𝑀 and public state-

ment X1, such that it cannot be adapted to a valid signature 𝜎
𝑀

using witness w1. Concerning (i), given that VWER satisfies one-

wayness, the adversary cannot extract pdk from (𝑐4, 𝜋4) without
notary’s attestation 𝜏 . As regards to (ii), given that NIZK proofs

for languages L1, L2 satisfy the soundness-knowledge notion, the

adversary cannot forge either 𝜋1 or 𝜋3 without correctly hiding w1,

w2 in puzzles rP
1
, aP

3
, respectively. Finally about (iii), given that

the adaptor signature scheme satisfies the adaptability notion, a

valid 𝜎 can always be adapted to a valid 𝜎
𝑀

usingw1. Therefore, the

adversary cannot obtain the product decryption key pdk without
the seller receiving a payment, hence seller security holds.
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MGen(1𝜆)

(ek, dk ) ← LHE.KGen(1𝜆 )

return (ek, dk )

NGen(1𝜆)

(v̂k, ŝk ) ← D̂S.�KGen(1𝜆 )
return (v̂k, ŝk )

NAttest (ŝk,m
𝐵
)

𝜏 ← D̂S.Ŝig(ŝk,m𝐵 )
return 𝜏

VfAttest(v̂k,m
𝐵
, 𝜏)

return D̂S.V̂f (v̂k,m𝐵, 𝜏 )

BVfSet (v̂k,m
𝐵
, pek, aP

4
)

(𝑐4, 𝜋4 ) ↼ aP
4

return VWER.VfEncR(𝑐4, 𝜋4, (v̂k,m𝐵 ), pek)

MSet1 (ek, sk𝑀 ,m
𝑀
)

(X1,w1 ) ← createR(1𝜆 )
𝜎 ← ADP.PreSig(sk𝑀 ,m𝑀 , X1 )

𝑐1 ← LHE.Enc(ek,w1 )

y := (𝑐𝑀 , ek, X1 )
𝜋1 ← NIZK.ProveL1 (crs, y,w1 )
rP

1
:= (𝜎, 𝑐1, 𝜋1, X1 )

return rP
1

SSet4 (v̂k,m𝐵
, pdk, aP

3
, st

𝑆
)

(𝑐3, 𝜋3 ) ↼ aP
3

(X2, ·, · ) ↼ st𝑆

y := (𝑐3, v̂k,m𝐵, X2 )
if NIZK.VfL2 (crs, y, 𝜋3 ) = 0 abort

(𝑐4, 𝜋4 ) ← VWER.EncR( (v̂k,m𝐵 ), pdk)
aP

4
:= (𝑐4, 𝜋4 )

return aP
4

SSet2 (ek,m𝑀
, vk𝑀 , rP

1
)

(𝜎, 𝑐1, 𝜋1, X1 ) ↼ rP
1

y := (𝑐1, ek, X1 )
𝑎 := NIZK.VfL1 (crs, y, 𝜋1 )
𝑏 := ADP.PreVf (vk𝑀 ,m𝑀 , X1, 𝜎 )
if (𝑎 = 0) ∨ (𝑏 = 0) abort

(X𝑟 ,w𝑟 ) ← createR(1𝜆 )
X2 := X𝑟 ⊗ X1

𝑐𝑟 ← LHE.Enc(ek,w𝑟 )
𝑐2 := 𝑐1 ◦ 𝑐𝑟
rP

2
:= (𝑐2, X2 )

st𝑆 := (X2, X𝑟 ,w𝑟 )
return (rP

2
, st𝑆 )

BSolve (𝜏, aP
4
)

(𝑐4, 𝜋4 ) ↼ aP
4

pdk := VWER.DecR(𝜏, 𝑐4, 𝜋4 )
return pdk

MSet3 (dk, v̂k,m𝐵
, rP

2
)

(𝑐2, X2 ) ↼ rP
2

w2 ← LHE.Dec(dk, 𝑐2 )

𝑐3 ←WES.Enc( (v̂k,m𝐵 ),w2 )

y := (𝑐3, v̂k,m𝐵, X2 )
𝜋3 ← NIZK.ProveL2 (crs, y,w2 )
aP

3
:= (𝑐3, 𝜋3 )

return aP
3

SSolve (𝜏, rP
1
, aP

3
, st

𝑆
)

(𝜎, ·, ·, · ) ↼ rP
1

(𝑐3, 𝜋3 ) ↼ aP
3

( ·, ·,w𝑟 ) ↼ st𝑆
w2 ←WES.Dec(𝜏, 𝑐3 )
w1 = w2 − w𝑟

𝜎𝑀 := ADP.Adapt(𝜎,w1 )
return 𝜎𝑀

Figure 9: Our cryptographic construction for O-UCP.

Theorem 3 (Buyer Security). Assume the signature scheme is
EUF-CMA and VWER provides VWER verifiability. Then, our con-
struction offers buyer security according to Definition 5.

In buyer security, the adversary attempts to obtain signature 𝜎
𝐵

on m
𝐵
without the buyer getting the product decryption key pdk.

In a successful attack the adversary: (i) forges a signature 𝜎
𝐵
; or

(ii) produces aP
4
, comprising a VWER ciphertext/proof pair (𝑐4, 𝜋4),

such that either 𝑐4 does not encrypt pdk or it cannot be decrypted
using notary’s attestation 𝜏 , yet 𝜋4 convinces the buyer that 𝑐4 is

well-formed. Concerning (i), given that the DS is EUF-CMA, the

adversary cannot produce such a forgery. As regards to (ii), given

thatVWER satisfies verifiability, the adversary cannot produce such

a pair (𝑐4, 𝜋4). Therefore, the adversary cannot obtain 𝜎
𝐵
without

the buyer getting pdk, hence buyer security holds.

Theorem 4 (Unlinkability). Assume that createR samples at
random from a uniform distribution. Then, our construction offers
unlinkability according to Definition 6.

In unlinkability, the adversary attempts to distinguish if buyer
0

interacted with seller
0
or with seller

1
. However, the adversary only

knowsw0

1
,w1

1
,w0⊕𝑏

2
andw1⊕𝑏

2
. In order to computew0⊕𝑏

2
andw1⊕𝑏

2
,

the challenger sampled at random from a uniform distribution two

values w0

𝑟 and w1

𝑟 and added them to w0

1
, w1

1
. Then, the challenger

flipped a coin and provided the values to the adversary according

to the random outcome. Note that w0

2
and w1

2
are indistinguishable

from elements sampled at random from the same distribution as

w0

𝑟 and w1

𝑟 . Hence, in order to distinguish if buyer
0
interacted with

seller
0
or with seller

1
, the adversary would need to identify the or-

der in which two elements were sampled at random from a uniform

distribution. Since the adversary cannot do this with a probability

greater than 1/2 + negl(𝜆), unlinkability holds.

5.2 Performance Evaluation
We evaluate our implementation for O-UCP for puzzle-promise,

puzzle-link and attest-and-solve.

Puzzle-promise. AlgorithmsMSet1 and SSet2 rely on the implemen-

tation of A2L [24]. As such, this step is implemented in C and relies

on RELIC [2], GMP [32] and PARI [60]. We rely on the Schnorr ADP
for curve secp256k1. The LHE is instantiated with HSM-CL [15, 16]

encryption scheme for 128-bit security level.

Puzzle-link.MSet3, SSet4 and BVfSet are based on the implemen-

tation made available with the paper Cryptographic Oracle-based
Conditional Payments [48, 49]. The oracle implementation is writ-

ten in Rust with the crates Ristretto [42] and zkp [36]. In particu-

lar, MSet3 runs the decryption algorithm of HSM-CL encryption

scheme discussed in the previous paragraph (in C) to obtain w2,

followed by its re-encryption using the oracle encryption of [48, 49]

(in Rust). SSet4 runs the verification of the previous encryption and

followed by the oracle encryption applied to pdk. Finally, BVfSet is
implemented exactly as the verification algorithm of [48, 49].

Attest-and-solve. SSolve and BSolve use building blocks from [24,

48, 49] SSolve is implemented as the decryption algorithm of [48,

49]. BSolve runs the decryption algorithm of [48, 49], followed by

the de-randomization and Adapt algorithms of [24].

NIZKs inMSet1 andMSet3 are instantiated with Σ protocols [18]

made non interactive with the Fiat-Shamir heuristic [26]. We omit

from the evaluation MGen, NGen and NAttest since their imple-

mentation is key and signature generation.
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Table 2: Running time and message size of MixBuy.

Algorithm Time (ms)
MSet1 0.2 ± 0.1
SSet2 500 ± 300
MSet3 200 ± 100
SSet4 20 ± 1
BVfSet 10 ± 1
SSolve 2 ± 1
BSolve 2 ± 1

Message Size (kB)
rP

1
4.8

rP
2

2.2

aP
3

6.3

aP
4

6.3

Optimizations. MSet1 and SSet2 compute (X1,w1) and (X𝑟 ,w𝑟 ),
respectively. The computation of these statement/witness pairs is

pre-computed in advance. MSet3 and SSet4 require to run cut-and-

choose to perform the proofs. The random values required by the

cut-and-choose technique are pre-computed as in [49].

Testbed and Results. We conducted our experiments in an Ubuntu

22.04.3 virtual machine with 4GB of RAM and 2 processors. In our

experiments, all four parties run on the same machine and commu-

nicate via localhost. We measured the average runtimes over 100

runs each, taking into consideration the optimizations mentioned

above. We also measure the size of the messages exchanged be-

tween parties. Note that the messages considered are rP
1
, rP

2
, aP

3

and aP
4
. Our findings (cf. Table 2) show that SSet2 and MSet3 take

significantly longer than the rest of the algorithms. The reason for

this is the use of the computationally heavy HSM-CL encryption:

SSet2 randomizes a HSM-CL ciphertext andMSet3 decrypts it. The
message sizes is relatively small, of a few kB, while the total exe-

cution time is under a second. The results of this proof of concept

show that O-UCP is practical in commodity hardware.

6 DISCUSSION
Deploying MixBuy. In MixBuy, the notary can only attest trans-

actions that are publicly accessible (i.e., on-chain transactions). We

consider three environments to deploy MixBuy: (i) buyer and seller

operate in the same cryptocurrency and mixer provides unlinkabil-

ity; (ii) buyer and seller operate in different cryptocurrencies and

the mixer also acts as an exchange platform; and (iii) the buyer

operates on-chain, the seller off-chain, and the mixer runs a subma-

rine swap [46] service. A submarine swap is an exchange between

on-chain and off-chain liquidity. Moreover, MixBuy requires com-

patibility with shared addresses, either through programmability

(e.g., HashTimeLock and multisignature [55]), or cryptographic pro-

tocols (e.g., two-party adaptor signatures [23] and timed verifiable

signatures [61]), and hence is compatible with most blockchains.

Reducing Trust in the Notary. A single notary constitutes a single

point of failure, hence buyer and seller might prefer to distribute

the transaction attestation among a set of notaries. Hence, transac-

tion m
𝐵
is attested only when threshold number of notaries have

attested with their respective signing keys. MixBuy requires min-

imal changes for such setting: convert algorithms (i) MSet3 and
SSet4 (cf. Fig. 9) to encrypt w2 and pdk under a set of notaries’

verification keys; and (ii) SSolve and BSolve (cf. Fig. 9) to decrypt

𝑐3 and 𝑐4 using a set of attestations 𝜏 , as described in [49].

Variable Amounts. In MixBuy all buyer transactions are of value

𝛼 , while all seller transactions are of value 𝛽 . Hence, unlikability is

achieved for purchases products that have the same price. Never-

theless, as long as products have a price that is a multiple of 𝛽 (e.g.,

𝑘 ·𝛽), buyer and seller would need to run 𝑘 times the puzzle-promise

and puzzle-link steps. Instead of encrypting the decryption key of

the product pdk in aP
4
, the seller encrypts a 𝑘-share of pdk, such

that all 𝑘 of them are needed to reconstruct pdk. Once the buyer has
all 𝑘-aP

4
, the attest-and-solve step can start and the buyer sends

the k payments to the mixer. The notary produces 𝑘 attestations,

allowing the buyer to get the product, and the seller to get the 𝑘

payments from the mixer. However, setting up several instances of

MixBuy for a purchase might be tedious for buyers. This problem is

common to most centralized coin mixers [29, 35, 37, 59]. However,

Accio [28] and Blindhub [57] achieve unlinkability for senders and

receivers that are transferring different amounts. We see the exten-

sion of MixBuy to support purchases for products with different

prices as interesting future work.

GriefingAttack. Themixermight be subject to griefing attacks [59],

as it happens with centralized coin mixers [28, 29, 35, 37, 57, 59].

For MixBuy the attack results in the seller requesting rP
1
, which

makes the mixer lock funds in a shared account with the seller.

If the attacker can lock the mixer’s coins without a cost, a set of

malicious buyers and sellers might collude to lock all mixer funds

in shared addresses, resulting in a denial of service. In order to mit-

igate this attack, the adversary should only be able to lock mixer’s

coins at an equivalent cost. Note that in Fig. 1, the buyer needs to

lock 𝛼 coins in the shared address with the mixer before the mixer

locks 𝛽 coins with the seller. For simplicity, we omitted that after

the buyer locks 𝛼 coins, the mixer provides a blind signature, which

the buyer forwards to the seller. Then, the seller presents the blind

signature to the mixer. If it is valid and has not been used before,

the mixer locks 𝛽 coins. This approach is inspired by [59].

Breaking Unlinkability. The mixer might attempt to break the

unlinkability by boycotting some of the transactions during the

puzzle-promise step such that only one buyer receives rP
2
(e.g. by

providing only one valid rP
1
). If only one buyer has rP

2
, when the

buyer finalizes the purchase, the mixer can link the only buyer with

the only seller. This attack affects most centralized coin mixing

services [28, 29, 35, 37, 57, 59]. However, the business model of the

mixer is to route a payment from a sender to a receiver in exchange

for a fee. Therefore, mixer’s cost for breaking unlinkability is two-

fold: (i) losing the fees for all but one of the payments; and (ii) losing

credibility as an mixer, hence missing potential future users.

7 CONCLUSIONS
In this work, we presented MixBuy, a system that realizes unlink-

able contingent payments (UCP). MixBuy relies on oracle-based
unlinkable contingent payment (O-UCP), a novel four-party cryp-

tographic protocol where the mixer pays the seller and the seller

provides the buyer with the product only if a semi-trusted notary

attests that the buyer has paid the mixer. We presented a provably

secure and efficient cryptographic construction for O-UCP, and a

proof of concept that demonstrates its practicality.
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A EXTENDED PRELIMINARIES
To facilitate the reader the games to which we make our reductions

in Appendix B, we restate the games required by the security prop-

erties of EUF-CMA for digital signatures [31], strong full extractabil-

ity and adaptability for adaptor signatures [17], the IND-CPA [49]

security property of witness encryption based on signatures, cor-

rectness, one-wayness and verifiability for VWER and the zero-

knowledge [19] and knowledge soundness [7] for NIZK. We also

define the additional security property for the linear-only encryp-

tion scheme, OMDL-LHE. We also restate the one more discrete

logarithm assumption, needed to prove OMDL-LHE

A.1 Digital Signature
Definition 7 (EUF-CMA). An digital signature scheme is said to of-
fer EUF-CMA if for all 𝜆 ∈ N, there exists a negligible function negl(𝜆)
such that for all PPT adversariesA, it holds that Pr[EUF − CMA(𝜆) =
1] ≤ negl, where EUF − CMA is defined in Fig. 10.

A.2 Adaptor Signatures
Regarding (strong) full extractability, note that we have added con-

dition 𝑏2, which does not exist in [17]. The reason for this is that

we consider an attack that the adversary is able to forge a signature

without querying the presignature oracle.

Definition 8 ((Strong) Full Extractability). An adaptor signature
scheme is said to offer (strong) full extractability if for all 𝜆 ∈ N, there
exists a negligible function negl(𝜆) such that for all PPT adversaries
A, it holds that Pr[(s)fext(𝜆) = 1] ≤ negl, where (s)fext is defined
in Fig. 11.

Definition 9 (Pre-Signature Adaptability). An adaptor signature
scheme is said to offer pre-signature adaptability if for all 𝜆 ∈ N, any
message 𝑚 ∈ {0, 1}∗, any statement and witness pair (X,w) ∈ R,
any public key such that vk ∈ SUPP(KGen) and any pre-signature
𝜎 ∈ {0, 1}∗ that satisfies PreVf (vk,𝑚, X,𝜎), we have that

Pr[Vf (vk,𝑚,Adapt(𝜎,w)) = 1] = 1.

A.3 Witness Encryption based on Signatures
Definition 10 (IND-CPA). A witness encryption based on signatures
scheme is said to offer IND-CPA if for all 𝜆 ∈ N, there exists a negli-
gible function negl(𝜆) such that for all PPT adversaries A, it holds
that Pr[IND-CPA(𝜆) = 1] ≤ 1

2
+ negl, where IND-CPA is defined

in Fig. 12.

EUF − CMA

Q := ∅

(vk, sk ) ← KGen(1𝜆 )

(𝑚,𝜎 ) ← ASigO (vk )
return Vf (vk,𝑚, 𝜎 ) ∧𝑚 ∉ Q

SigO(𝑚)

𝜎 ← Sig(sk,𝑚)
Q := Q ∪𝑚
return 𝜎

Figure 10: Experiment for EUF-CMA.
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fext(𝜆), sfext(𝜆)
Q𝑓 𝑒𝑥𝑡 := ∅ ; Q𝑠 𝑓 𝑒𝑥𝑡 := ∅ ; Q𝑠𝑡 := ∅
Q𝑝𝑆 := [ ]

(vk, sk ) ← KGen(1𝜆 )

(𝑚∗, 𝜎∗ ) ← AOSig,OPreSig,OnewX (vk )
fext : assert𝑚∗ ∉ Q𝑓 𝑒𝑥𝑡

sfext : assert (𝑚∗, 𝜎∗ ) ∉ Q𝑠 𝑓 𝑒𝑥𝑡
𝑏0 := Vf (vk,𝑚∗, 𝜎∗ )
𝑏1 := ∀(X, 𝜎 ) ∈ Q𝑝𝑆 [𝑚∗ ] 𝑠.𝑡 . X ∉ Q𝑠𝑡
(X, Extract(𝜎∗, 𝜎, X ) ∉ R

𝑏2 := Q𝑝𝑆 [𝑚∗ ] = ⊥
return 𝑏0 ∧ (𝑏1 ∨ 𝑏2 )

OSig(𝑚)
𝜎 ← Sig(sk,𝑚)
Q𝑓 𝑒𝑥𝑡 := Q𝑓 𝑒𝑥𝑡 ∪ {𝑚}
Q𝑠 𝑓 𝑒𝑥𝑡 := Q𝑠 𝑓 𝑒𝑥𝑡 ∪ { (𝑚,𝜎 ) }
return 𝜎

OPreSig(𝑚, X)
𝜎 ← PreSig(sk,𝑚, X )
Q𝑝𝑆 [𝑚] := Q𝑝𝑆 [𝑚] ∪ { (X, 𝜎 ) }
return 𝜎

OnewX ()
(X,w ) ← createR(1𝜆 )
Q𝑠𝑡 := Q𝑠𝑡 ∪ {X}
return X

Figure 11: Experiments for full extractability (fext(𝜆)) and
strong full extractability (sfext(𝜆))

IND-CPA(𝜆)
Q := ∅;

(v̂k, ŝk ) ← �KGen(1𝜆 )
(𝑚∗,m

0
,m

1
) ← AOŜig (vk )

𝑏
$← {0, 1}

𝑐𝑏 ← Enc( (v̂k,𝑚∗ ),m
𝑏
)

𝑏′ ← AOŜig (𝑐𝑏 )
𝑏0 := (𝑏 = 𝑏′ )
𝑏1 :=𝑚∗ ∉ Q
return 𝑏0 ∧ 𝑏1

OŜig(𝑚)

𝜎 ← Ŝig(ŝk,𝑚)
Q := Q ∪ {𝑚}
return 𝜎

Figure 12: Experiment IND-CPA forwitness encryption based
on signatures.

A.4 Verifiable Witness Encryption for a Relation
Here we present a variation of the primitive verifiable witness

encryption based on threshold signatures (VWETS) introduced

in [49]. We perform the following simplifications with respect to

the original primitive: (i) the encrypted value is not a signature,

but the logarithm of an element in a group where the discrete

logarithm problem is computationally hard; and (ii) we consider a

ExpOWA (𝜆)
Q := ∅

(v̂k, ŝk ) ← �KGen(1𝜆 )
(X,w ) ← createR(1𝜆 )

w∗ ← AOŜig,OEncR (v̂k, X )
𝑏 := (X,w∗ ) ∈ R
return 𝑏

OŜig(m̂)
if m̂ ∈ Q abort

Q := Q ∪ m̂

𝜎 ← Ŝig(ŝk, m̂)
return

OEncR(m̂)
if m̂ ∈ Q abort

Q := Q ∪ m̂

(𝑐, 𝜋 ) ← EncR( (v̂k, m̂),w )
return (𝑐, 𝜋 )

ExpVerA (𝜆)

(m̂, v̂k, 𝜎, 𝑐, 𝜋, X ) ← A(1𝜆 )
w∗ ← DecR(𝜎, (𝑐, 𝜋 ) )

𝑏0 := VfEncR( (𝑐, 𝜋 ), (v̂k, m̂), X ) = 1

𝑏1 := V̂f (v̂k, m̂, 𝜎 ) = 1

𝑏2 := (X,w∗ ) ∉ R

return 𝑏0 ∧ 𝑏1 ∧ 𝑏2

Figure 13: Definition of the experiments ExpOW and ExpVer.

single oracle. This is done in order to facilitate the description of

UCP. In section Section 6 we discuss how to decentralize the trust

in the notary of UCP.

Definition 11 (Verifiable Witness Encryption for a Relation (VWER)).
A Verifiable witness encryption for a relation is defined w.r.t. a rela-
tion R and a signature scheme, D̂S = (�KGen, Ŝig, V̂f). It comprises
three algorithms (EncR, VfEncR and DecR), defined bellow:

• (𝑐, 𝜋) ← EncR((v̂k, m̂),w) : PPT algorithm EncR gets as input a

tuple, comprising a verification key v̂k and a message m̂, and a
witness w, and outputs the ciphertext tuple, containing ciphertext
and a proof (𝑐, 𝜋).

• 1/0← VfEncR((𝑐, 𝜋), (v̂k, m̂), X) : DPT algorithm VfEncR gets
as input a tuple comprising a ciphertext 𝑐 and a proof 𝜋 , a tuple
comprising a public key v̂k and amessage m̂, and a public statement
X, and outputs 1 if it is a valid ciphertext, otherwise it outputs 0.
• w′ ← DecR(𝜎, (𝑐, 𝜋)) : DPT algorithm DecR gets as input a sig-

nature 𝜎 and tuple comprising a ciphertext 𝑐 and a proof 𝜋 , and
outputs a witness w′.

Definition 12 (VWER Correctness). A VWER is said to be correct
if for all 𝜆 ∈ N, all keys v̂k ∈ SUPP(�KGen(1𝜆)), all messages m̂, all
statement and witness (X,w) ∈ R, the following holds:
(1) Pr[VfEncR(EncR((v̂k, m̂),w), (v̂k, m̂), X) = 1] = 1

(2) If V̂f (v̂k, m̂, 𝜎) = 1, then:

Pr[(X,DecR(𝜎, EncR((v̂k, m̂),w))) ∈ R] = 1

Definition 13 (VWEROneWayness). AVWER is said to be one way
if there exists a negligible function negl(𝜆) such that for all 𝜆 ∈ N and
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all PPT adversariesA it holds that Pr[ExpOWA (𝜆) = 1] ≤ negl(𝜆),
where ExpOWA is defined in Fig. 13.

Definition 14 (VWER Verifiability). A VWER is said to be verifiable
if there exists a negligible function negl(𝜆) such that for all 𝜆 ∈ N and
all PPT adversaries A it holds that Pr[ExpVerA (𝜆) = 1] ≤ negl(𝜆),
where ExpVerA is defined in Fig. 13.

A.5 NIZK
Definition 15 (Zero Knowledge). A non interactive zero knowledge
proof is said to offer zero knowledge if for all 𝜆 ∈ N, there exists a
negligible function negl(𝜆) and a PPT simulator S such that for all
PPT adversaries A, it holds that

Pr


𝑏 = 𝑏∗

�����
(crs, td) ← SetUp(1𝜆 )
(X,w ) ← A(crs)

𝑏 ←
$
{0, 1}

if 𝑏 = 0 : 𝜋 ← Prove(crs, X,w )
if 𝑏 = 1 : 𝜋 ← S(crs, X, td)

𝑏∗ ← A(X,𝜋 )


≤ 1

2

+ negl

Definition 16 (Knowledge Soundness). A non interactive zero
knowledge proof is said to offer knowledge soundness if for all 𝜆 ∈ N,
there exists a negligible function negl(𝜆) and a extractor E such that
for all PPT adversaries A, it holds that

Pr

∧
𝑏0 := 1

𝑏1 := 1

�����
(crs, td) ← SetUp(1𝜆 )
(X, 𝜋 ) ← A(crs)

𝑏0 := Vf (crs, X, 𝜋 ) = 1

𝑏1 := (X, E(td, X, 𝜋 ) ) ∉ R

 ≤ negl

A.6 Linear-Only Homomorphic Encryption
Scheme.

We define an additional property called OMDL-LHE. Here, the chal-
lenger generates an encryption/decryption key pair and a list of

𝑘 + 1 (statement, witness) pairs. Then, encrypts all witnesses with

the encryption key and provides the encryption key, the statements

and ciphertexts to the adversary. The adversary has access to a

decryption oracle. If the adversary is able to return more valid wit-

nesses than queries to the decryption oracle, wins the game. As

stated in Lemma 1 a linear only encryption achieves OMDL-LHE
if OMDL holds. We formally prove Lemma 1 in Appendix D. We

introduce Lemma 1 because it becomes useful to prove the security

of our proposed construction in Section 5.

Definition 17 (OMDL-LHE). An encryption scheme is said to of-
fer OMDL-LHE security if for all 𝜆 ∈ N, there exists a negligible
function negl(𝜆) such that for all PPT adversaries A, it holds that
Pr[OMDL-LHE(𝜆) = 1] ≤ negl, where the experiment OMDL-LHE
is defined in Fig. 14.

One-More Discrete Logarithm Assumption. We recall the one-

more discrete logarithm (OMDL) [5, 6] assumption.

Definition 18 (One-More Discrete Logarithm (OMDL) Assump-

tion). Let G be a uniformly sampled cyclic group of prime order 𝑝
and let 𝑔 be a random generator of G. The OMDL assumption states
that for all 𝜆 ∈ N, there exists a negligible function negl(𝜆) such that
for all PPT adversaries A making at most 𝑞 queries to ODL, it holds

OMDL-LHEA (𝜆)
q := 0

(ek, dk ) ← LHE.KGen(1𝜆 )

{ (X𝑖 ,w𝑖 ) }𝑖∈ [0,𝑘 ] ← createR(𝑘+1) (1𝜆 )
for 𝑖 ∈ [0, 𝑘 ] :

𝑐𝑖 ← LHE.Enc(ek,w𝑖 ){
w′𝑖

}
𝑖∈ [0,𝑘 ] ← A

ODec (ek, { (X𝑖 , 𝑐𝑖 ) }𝑖∈ [0,𝑘 ] )
𝑏0 := ∀𝑖, w′𝑖 = w𝑖

𝑏1 := q < 𝑘

return 𝑏0 ∧ 𝑏1

ODec(𝑐, X)
q := q + 1

w := LHE.Dec(dk, 𝑐 )
if (X,w ) ∈ R

return w

else return ⊥

Figure 14: Definition of the OMDL-LHE experiment.

that:

Pr

∀𝑖 : 𝑥𝑖 = 𝑟𝑖

�������
𝑟1 ...𝑟𝑞+1

$← Z𝑞

∀𝑖 ∈ [1, 𝑞 + 1], ℎ𝑖 ← 𝑔
𝑟𝑖
𝑖

{𝑥𝑖 }𝑖∈ [1,𝑞+1] ← AODL ({ℎ𝑖 }𝑖∈ [1,𝑞+1] )

 = 1

where ODL takes as input ℎ ∈ G and outputs 𝑥 s.t. ℎ = 𝑔𝑥 .

Lemma1. Let LHE be a linear-only homomorphic encryption scheme.
Assuming the hardness of the OMDL assumption, LHE is secure under
OMDL-LHE.

B ORACLE-BASED UNLINKABLE
CONTINGENT PAYMENT CORRECTNESS,
SECURITY AND PRIVACY PROOFS

Theorem 5 (O-UCPCorrectness). Assume the adaptor signature
scheme is correct, assume the WES encryption is correct, assume
that VWER is correct and that the linear only encryption scheme is
correct. Then, our protocol in Fig. 9 offers O-UCPcorrectness according
to Definition 2.

Proof. We have to prove that (i) BVfSet (v̂k,m
𝐵
, pek, aP

4
)) = 1;

(ii)Vf(vk𝐵,m𝐵
, 𝜎

𝐵
) = 1; (iii)Vf (vk𝑀 ,m

𝑀
, 𝜎

𝑀
) = 1; (iv)VfAttest(v̂k,m

𝐵
, 𝜏) =

1; and (v) (pek, pdk′) ∈ R.
As described in Definition 2, we need to prove the previous

conditions in the following setting: 𝜆 ∈ N, (v̂k, ŝk) ∈ NGen(1𝜆),
(ek, dk) ∈ MGen(1𝜆), (vk𝑀 , sk𝑀 ) ∈ KGen(1𝜆), (vk𝐵, sk𝐵) ∈ KGen(1𝜆),
(pek, pdk) ∈ R, and a pair of messages (m

𝐵
,m

𝑀
).

Case BVfSet (v̂k,m
𝐵
, pek, aP

4
)) = 1: As defined in BVfSet, we

have that

BVfSet (v̂k,m𝐵, pek, aP4 ) ) =

VWER.VfEncR(aP
4
, (v̂k,m𝐵 ), pek) =

VWER.VfEncR(VWER.EncR( (v̂k,m𝐵 ), pdk), (v̂k,m𝐵 ), pek) = 1

Case Vf (vk𝐵,m𝐵
, 𝜎

𝐵
) = 1: This trivially holds from the correct-

ness of the digital signature scheme, namely

Vf (vk𝐵,m𝐵, Sig(sk𝐵,m𝐵)) = 1
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Case Vf (vk𝑀 ,m
𝑀
, 𝜎

𝑀
) = 1: We analyze this case in two steps.

First, assume that the value w1 obtained in SSolve is the same value

w1 used inMSet1. Then, it holds that:

Vf (vk𝑀 ,m𝑀 , 𝜎𝑀 ) =
Vf (vk𝑀 ,m𝑀 ,ADP.Adapt(𝜎,w1)) =

Vf (vk𝑀 ,m𝑀 ,ADP.Adapt(ADP.PreSig(sk𝑀 ,m𝑀 , X1),w1) = 1

Now, we show that indeed the value w1 obtained in SSolve is

the same value w1 used inMSet1.

w1 = w2 − w𝑟

w1 = WES.Dec(𝜏, 𝑐3 ) − w𝑟

w1 = WES.Dec(D̂S.Ŝig(ŝk,m𝐵 ), 𝑐3 ) − w𝑟

w1 = WES.Dec(D̂S.Ŝig(ŝk,m𝐵 ),WES.Enc( (v̂k,m𝐵 ),w
∗
2
) ) − w𝑟

w1 = w∗
2
− w𝑟

w1 = LHE.Dec(dk, 𝑐2 ) − w𝑟

w1 = LHE.Dec(dk, 𝑐1 ◦ 𝑐𝑟 ) − w𝑟

w1 = LHE.Dec(dk, LHE.Enc(ek,w1 ) ◦ LHE.Enc(ek,w𝑟 ) ) − w𝑟

w1 = LHE.Dec(dk, LHE.Enc(ek,w1 + w𝑟 ) − w𝑟

w1 = w1 + w𝑟 − w𝑟

Case VfAttest(v̂k,m
𝐵
, 𝜏) = 1: This trivially holds from the cor-

rectness of the digital signature scheme used for attestations, namely

D̂S.V̂f (v̂k,m𝐵, D̂S.Ŝig(ŝk,m𝐵)) = 1

Case (pek, pdk′) ∈ R: Recall that in the initial setting we have

that (pek, pdk) ∈ R. For this case, we prove that pdk′ = pdk, which
trivially implies that (pek, pdk′) ∈ R.

pdk′ = VWER.DecR(𝜏, 𝑐4, 𝜋4 )

pdk′ = VWER.DecR(D̂S.Ŝig(ŝk,m𝐵 ),VWER.EncR( (v̂k,m𝐵 ), pdk) )
pdk′ = pdk

□

Theorem 1 (Mixer Security). Assume that NIZK is zero knowl-
edge, thatWES is IND-CPA, that adaptor signature is full extractable
and the linear only encryption scheme is OMDL-LHE. Then, our con-
struction offers mixer security according to Definition 3.

Proof. We require the following game hops in order to prove

our claim:

Game ExpM𝐺0
: This game, formally defined in Fig. 15, corre-

sponds to the original game for ExpM defined in Definition 3 The

game is expanded with the interactions described in our implemen-

tation.

Game ExpM𝐺1
: This game, formally defined in Fig. 16, works

exactly as 𝐺0 but with the highlighted grey line. The challenger

uses a simulator instead of the Prove algorithm to generate the

proof forMSet1.
Game ExpM𝐺2

: This game, formally defined in Fig. 17, works

exactly as 𝐺1 but with the highlighted grey line. The challenger

uses a simulator instead of the Prove algorithm to generate the

proof forMSet3.
Game ExpM𝐺3

: This game, formally defined in Fig. 18, works ex-

actly as𝐺2 but with the highlighted grey line. Instead of encrypting

w2, the challenger encrypts 0 in OMSet3.
Game ExpM𝐺4

: This game, formally defined in Fig. 19, works

exactly as 𝐺3 but with the highlighted grey lines. The challenger

has an additional memory Q′
1
to keep track of the presignatures and

statements provided in OMSet1. The game aborts if the adversary

wins with a signature on message that was not queried in OMSet1
or with a signature on a message queried in OMSet1 such that the

corresponding presignature does not provide the witness to the

statement.

Claim 1. Let Bad1 be the event that:���� Pr[ExpM𝐺0 (𝜆) = 1]
− Pr[ExpM𝐺1 (𝜆) = 1]

���� > negl

Assume that the NIZK used forL1 is zero knowledge. Then Pr[Bad1 (1𝜆) =
1] ≤ negl(𝜆).

Proof. Assume by contradiction that Pr[Bad1 (1𝜆)] > negl(𝜆),
then there exists PPT distinguisher A such that:

Pr

𝑏 = 𝑏∗

����� 𝑏
$← {0, 1}

ExpM𝐺𝑏 (𝜆)
𝑏∗ ← A()

 >
1

2

+ negl

We can construct adversaryB that usesA to break zero knowledge

of L1 with the following steps:

• B initializes the challenger, who will flip a bit and decide if

it uses Prove or the simulator S. The simulator sets the crs
that will be used for the proofs related to L1. B initializes

the crs for L2.

• B runs (v̂k, ŝk) ← D̂S.�KGen(1𝜆) and (ek, dk) ← LHE.KGen(1𝜆).
• B invokesA on input v̂k and ek to obtain

{
vk𝑖

𝑀
,m𝑖

𝑀
, 𝜎𝑖

𝑀

}
𝑖∈[0,q] .

• B receives the guess 𝑏∗ from A, which B forwards to the

challenger.

Regarding oracles OMSet3 and OFull, B knows all the private

information required to run them. However, regarding OMSet1,
instead of running either S or Prove, B will forward the statement

y and w1 to the challenger, who will provide the proof 𝜋1. Then, B
will place this proof in rP

1
.

Our adversary B perfectly simulates ExpM𝐺0
and ExpM𝐺1

toA.

Moreover, it is easy to see thatB is a PPT algorithm. If the adversary

can distinguish between the two gameswith probability higher than

1

2
+negl(𝜆), since the only difference between both games is whether

the challenger decided to use Prove or S when it was initialized

by B, the guess 𝑏∗ also wins the zero knowledge game with the

same probability. However, this contradicts the assumption that

the NIZK for L1 is zero knowledge. Thus, Pr[Bad1 (1𝜆)] ≤ negl(𝜆)
and this claim has been proven. Therefore, we can conclude that

ExpM𝐺0 ≈ ExpM𝐺1 □

Claim 2. Let Bad2 be the event that:���� Pr[ExpM𝐺1 (𝜆) = 1]
− Pr[ExpM𝐺2 (𝜆) = 1]

���� > negl
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ExpM𝐺0

Q1 := ∅ ; Q2 := ∅ ; q := 0

(v̂k, ŝk ) ← D̂S.�KGen(1𝜆 )
(ek, dk ) ← LHE.KGen(1𝜆 ){
vk𝑖𝑀 ,m𝑖

𝑀 , 𝜎𝑖
𝑀

}
𝑖∈ [0,q] ← A

OMSet1,OMSet3,OFull (ek, v̂k )

𝑏0 := ∃𝑖 ∈ [0, q] s.t. (vk𝑖𝑀 , · ) ∈ Q1
∧ (vk𝑖𝑀 ,m𝑖

𝑀 ) ∉ Q1 ∧ Vf (vk
𝑖
𝑀 ,m𝑖

𝑀 , 𝜎𝑖
𝑀 ) = 1

𝑏1 := ∀𝑖 ∈ [0, q], (vk𝑖𝑀 ,m𝑖
𝑀 ) ∈ Q1 ∧ Vf (vk

𝑖
𝑀 ,m𝑖

𝑀 , 𝜎𝑖
𝑀 ) = 1

𝑏2 := ∀𝑖, 𝑗 ∈ [0, q], 𝑖 ≠ 𝑗, (vk𝑖𝑀 ,m𝑖
𝑀 , 𝜎𝑖

𝑀 ) ≠ (vk
𝑗

𝑀
,m𝑗

𝑀
, 𝜎

𝑗

𝑀
)

return 𝑏0 ∨ (𝑏1 ∧ 𝑏2 )

OMSet1 (m𝑀
)

(vk𝑀 , sk𝑀 ) ← KGen(1𝜆 )

(X1,w1 ) ← createR(1𝜆 )
𝜎 ← ADP.PreSig(sk𝑀 ,m𝑀 , X1 )

𝑐1 ← LHE.Enc(ek,w1 )

y := (𝑐1, ek, X1 )
𝜋1 ← NIZK.ProveL1 (crs, y,w1 )
rP

1
:= (𝜎, 𝑐1, 𝜋1, X1 )

Q1 := Q1 ∪ (vk𝑀 ,m𝑀 )
return (rP

1
, vk𝑀 )

OMSet3 (m𝐵
, rP

2
)

if m𝐵 ∈ Q2 abort
Q2 := Q2 ∪ (m𝐵 )
(𝑐2, X2 ) ↼ rP

2

w2 ← LHE.Dec(dk, 𝑐2 )

𝑐3 ←WES.Enc( (v̂k,m𝐵 ),w2 )

y := (𝑐3, v̂k,m𝐵, X2 )
𝜋3 ← NIZK.ProveL2 (crs, y,w2 )
aP

3
:= (𝑐3, 𝜋3 )

return (aP
3
)

OFull(m
𝐵
, rP

2
, 𝜎 , vk)

if m𝐵 ∈ Q2 abort
q := q + 1
Q2 := Q2 ∪ (m𝐵 )
(𝑐2, X2 ) ↼ rP

2

w2 ← LHE.Dec(dk, 𝑐2 )

𝑐3 ←WES.Enc( (v̂k,m𝐵 ),w2 )

y := (𝑐3, v̂k,m𝐵, X2 )
𝜋3 ← NIZK.ProveL2 (crs, y,w2 )
aP

3
:= (𝑐3, 𝜋3 )

if Vf (vk,m𝐵, 𝜎 ) = 0 abort

𝜏 ← D̂S.Ŝig(ŝk,m𝐵 )
return (aP

3
, 𝜏 )

Figure 15: The mixer security game expanded with our implementation.

Assume that the NIZK used forL2 is zero knowledge. Then Pr[Bad2 (1𝜆) =
1] ≤ negl(𝜆).

Proof. Assume by contradiction that Pr[Bad2 (1𝜆)] > negl(𝜆),
then there exists PPT distinguisher A such that:

Pr

𝑏 = 𝑏∗

����� 𝑏
$← {0, 1}

ExpM𝐺
1+𝑏 (𝜆)

𝑏∗ ← A()

 >
1

2

+ negl

We can construct adversaryB that usesA to break zero knowledge

of L2 with the following steps:

• B initializes the challenger, who will flip a bit and decide

if it uses Prove or the simulator S. The simulator sets the

crs that will be used for the proofs related to OMSet3. B
initializes the crs for L1.

• B runs (v̂k, ŝk) ← D̂S.�KGen(1𝜆) and (ek, dk) ← LHE.KGen(1𝜆).
• B invokesA on input v̂k and ek to obtain

{
vk𝑖

𝑀
,m𝑖

𝑀
, 𝜎𝑖

𝑀

}
𝑖∈[0,q] .

• B receives the guess 𝑏∗ from A, which B forwards to the

challenger.

Regarding oracle OMSet1, B knows all the private information

required to run them. However, regarding OMSet3 and OFull, in-
stead of running either S or Prove, B will forward the statement y

and w2 to the challenger, who will provide the proof 𝜋3. Then, B
will place this proof in aP

3
.

Our adversary B perfectly simulates ExpM𝐺1
and ExpM𝐺2

toA.

Moreover, it is easy to see thatB is a PPT algorithm. If the adversary

can distinguish between the two gameswith probability higher than

1

2
+negl(𝜆), since the only difference between both games is whether

the challenger decided to use Prove or S when it was initialized

by B, the guess 𝑏∗ also wins the zero knowledge game with the

same probability. However, this contradicts the assumption that the

NIZK used in L2 is zero knowledge. Thus, Pr[Bad2 (1𝜆)] ≤ negl(𝜆)
and this claim has been proven. Therefore, we can conclude that

ExpM𝐺1 ≈ ExpM𝐺2 □

Claim 3. Let Bad3 be the event that:���� Pr[ExpM𝐺2 (𝜆) = 1]
− Pr[ExpM𝐺3 (𝜆) = 1]

���� > negl

Assume thatWES used inOMSet3 is IND-CPA secure. Then Pr[Bad3 (1𝜆) =
1] ≤ negl(𝜆).

Proof. Let 𝑞2 := |Q2 | denote the number of queries to oracle

OMSet3. We consider 𝑞2 sub-games such that for sub-game 𝑖 ∈
[1, 𝑞2] queries 1 to 𝑖 − 1 are answered by oracle OMSet3 of game

ExpM𝐺3
, while queries 𝑖 + 1 to 𝑞2 are answered by oracle OMSet3

18
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ExpM𝐺1

Q1 := ∅ ; Q2 := ∅ ; q := 0

(v̂k, ŝk ) ← D̂S.�KGen(1𝜆 )
(ek, dk ) ← LHE.KGen(1𝜆 ){
vk𝑖𝑀 ,m𝑖

𝑀 , 𝜎𝑖
𝑀

}
𝑖∈ [0,q] ← A

OMSet1,OMSet3,OFull (ek, v̂k )

𝑏0 := ∃𝑖 ∈ [0, q] s.t. (vk𝑖𝑀 , · ) ∈ Q1
∧ (vk𝑖𝑀 ,m𝑖

𝑀 ) ∉ Q1 ∧ Vf (vk
𝑖
𝑀 ,m𝑖

𝑀 , 𝜎𝑖
𝑀 ) = 1

𝑏1 := ∀𝑖 ∈ [0, q], (vk𝑖𝑀 ,m𝑖
𝑀 ) ∈ Q1 ∧ Vf (vk

𝑖
𝑀 ,m𝑖

𝑀 , 𝜎𝑖
𝑀 ) = 1

𝑏2 := ∀𝑖, 𝑗 ∈ [0, q], 𝑖 ≠ 𝑗, (vk𝑖𝑀 ,m𝑖
𝑀 , 𝜎𝑖

𝑀 ) ≠ (vk
𝑗

𝑀
,m𝑗

𝑀
, 𝜎

𝑗

𝑀
)

return 𝑏0 ∨ (𝑏1 ∧ 𝑏2 )

OMSet1 (m𝑀
)

(vk𝑀 , sk𝑀 ) ← KGen(1𝜆 )

(X1,w1 ) ← createR(1𝜆 )
𝜎 ← ADP.PreSig(sk𝑀 ,m𝑀 , X1 )

𝑐1 ← LHE.Enc(ek,w1 )

y := (𝑐1, ek, X1 )
𝜋1 ← SL1 (y)
rP

1
:= (𝜎, 𝑐1, 𝜋1, X1 )

Q1 := Q1 ∪ (vk𝑀 ,m𝑀 )
return (rP

1
, vk𝑀 )

OMSet3 (m𝐵
, rP

2
)

if m𝐵 ∈ Q2 abort
Q2 := Q2 ∪ (m𝐵 )
(𝑐2, X2 ) ↼ rP

2

w2 ← LHE.Dec(dk, 𝑐2 )

𝑐3 ←WES.Enc( (v̂k,m𝐵 ),w2 )

y := (𝑐3, v̂k,m𝐵, X2 )
𝜋3 ← NIZK.ProveL2 (crs, y,w2 )
aP

3
:= (𝑐3, 𝜋3 )

return (aP
3
)

OFull(m
𝐵
, rP

2
, 𝜎 , vk)

if m𝐵 ∈ Q2 abort
q := q + 1
Q2 := Q2 ∪ (m𝐵 )
(𝑐2, X2 ) ↼ rP

2

w2 ← LHE.Dec(dk, 𝑐2 )

𝑐3 ←WES.Enc( (v̂k,m𝐵 ),w2 )

y := (𝑐3, v̂k,m𝐵, X2 )
𝜋3 ← NIZK.ProveL2 (crs, y,w2 )
aP

3
:= (𝑐3, 𝜋3 )

if Vf (vk,m𝐵, 𝜎 ) = 0 abort

𝜏 ← D̂S.Ŝig(ŝk,m𝐵 )
return (aP

3
, 𝜏 )

Figure 16: The mixer security game, identical to ExpM𝐺0 , except for the highlighted grey lines. Instead of running Prove for the
proof of MSet1, the challenger runs a simulator S.

of game ExpM𝐺2
. The intuition is that if Pr[Bad3 (1𝜆)] > negl(𝜆),

then there exists some PPT distinguisher A𝑖 , for 𝑖 ∈ [1, 𝑞2], that
it can determine with non-negligible probability whether it plays

game ExpM𝐺2
or game ExpM𝐺3

base on the 𝑖𝑡ℎ answer of oracle

OMSet3.
More precisely, assume by contradiction that Pr[Bad3 (1𝜆)] >

negl(𝜆), then there exists PPT distinguisher A𝑖∗ such that:

Pr

𝑏 = 𝑏∗

����� 𝑏
$← {0, 1}

ExpM𝑠𝑢𝑏𝐺𝑖∗ (𝜆)
𝑏∗ ← A𝑖∗ ( )

 >
1

2

+ negl

We can construct adversary B that usesA𝑖∗ to break IND-CPA the

encryption used in OMSet3 with the following steps:

• B initializes the challenger, who sends v̂k.
• B runs (ek, dk) ← LHE.KGen(1𝜆).
• B invokes A on input v̂k and ek.
• OMSet3 queries are treated in the following manner: (i) for

𝑗 ∈ [1, 𝑖∗−1],B answerswith of 𝑐3, 𝑗 ←WES.Enc((v̂k,m
𝐵
), 0);

(ii) for 𝑗 ∈ [𝑖∗+1, 𝑞2],B answerswith 𝑐3, 𝑗 ←WES.Enc((v̂k,m
𝐵
),w2);

and (iii) for 𝑗 = 𝑖∗, B sets �̂�∗ := m
𝐵
,𝑚0 := w2 and𝑚1 := 0

and forwards the tuple (�̂�∗,𝑚0,𝑚1) to the challenger to

obtain 𝑐𝑏 which in turn B forwards to A𝑖∗ as 𝑐3, 𝑗 .

• Thereafter A𝑖∗ outputs
{
vk𝑖

𝑀
,m𝑖

𝑀
, 𝜎𝑖

𝑀

}
𝑖∈[0,q] .

• B receives the guess 𝑏∗ fromA𝑖∗ , which B forwards to the

challenger.

Regarding oracle OMSet1, B knows all the private information

required to run it. Regarding OFull, B can run up to Ŝig. When

arriving at this line, B forwards the query to OSig of theWES IND-
CPA oracle, which returns 𝜏 . Note that this means that memory

Q3 and the memory of IND-CPA are synchronized. As already

described, B knows all the private information required to run

oracle OMSet3.
Our adversary B perfectly simulates the sub-game ExpM𝑠𝑢𝑏𝐺𝑖∗

to A𝑖∗ . Moreover, it is easy to see that B is a PPT algorithm. If

adversary A𝑖∗ can win the sub-game ExpM𝑠𝑢𝑏𝐺𝑖∗ with probability

higher than
1

2
+ negl(𝜆), since the only difference between games

ExpM𝐺2
and ExpM𝐺3

is the 𝑖∗th query of OMSet3 that was for-

warded to the challenger and since Q2 and Q3 intersection has to

be empty, A𝑖∗ has not made a query to the same message of the

challenger ciphertext in OFull, which satisfies that the sign oracle

was not queried on the same message of the challenge. Therefore,

the bit forwarded by A𝑖∗ can also be used to differentiate in the
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ExpM𝐺2

Q1 := ∅ ; Q2 := ∅ ; q := 0

(v̂k, ŝk ) ← D̂S.�KGen(1𝜆 )
(ek, dk ) ← LHE.KGen(1𝜆 ){
vk𝑖𝑀 ,m𝑖

𝑀 , 𝜎𝑖
𝑀

}
𝑖∈ [0,q] ← A

OMSet1,OMSet3,OFull (ek, v̂k )

𝑏0 := ∃𝑖 ∈ [0, q] s.t. (vk𝑖𝑀 , · ) ∈ Q1
∧ (vk𝑖𝑀 ,m𝑖

𝑀 ) ∉ Q1 ∧ Vf (vk
𝑖
𝑀 ,m𝑖

𝑀 , 𝜎𝑖
𝑀 ) = 1

𝑏1 := ∀𝑖 ∈ [0, q], (vk𝑖𝑀 ,m𝑖
𝑀 ) ∈ Q1 ∧ Vf (vk

𝑖
𝑀 ,m𝑖

𝑀 , 𝜎𝑖
𝑀 ) = 1

𝑏2 := ∀𝑖, 𝑗 ∈ [0, q], 𝑖 ≠ 𝑗, (vk𝑖𝑀 ,m𝑖
𝑀 , 𝜎𝑖

𝑀 ) ≠ (vk
𝑗

𝑀
,m𝑗

𝑀
, 𝜎

𝑗

𝑀
)

return 𝑏0 ∨ (𝑏1 ∧ 𝑏2 )

OMSet1 (m𝑀
)

(vk𝑀 , sk𝑀 ) ← KGen(1𝜆 )

(X1,w1 ) ← createR(1𝜆 )
𝜎 ← ADP.PreSig(sk𝑀 ,m𝑀 , X1 )

𝑐1 ← LHE.Enc(ek,w1 )

y := (𝑐1, ek, X1 )
𝜋1 ← SL1 (y)
rP

1
:= (𝜎, 𝑐1, 𝜋1, X1 )

Q1 := Q1 ∪ (vk𝑀 ,m𝑀 )
return (rP

1
, vk𝑀 )

OMSet3 (m𝐵
, rP

2
)

if m𝐵 ∈ Q2 abort
Q2 := Q2 ∪ (m𝐵 )
(𝑐2, X2 ) ↼ rP

2

w2 ← LHE.Dec(dk, 𝑐2 )

𝑐3 ←WES.Enc( (v̂k,m𝐵 ),w2 )

y := (𝑐3, v̂k,m𝐵, X2 )
𝜋3 ← SL2 (y)
aP

3
:= (𝑐3, 𝜋3 )

return (aP
3
)

OFull(m
𝐵
, rP

2
, 𝜎 , vk)

if m𝐵 ∈ Q2 abort
q := q + 1
Q2 := Q2 ∪ (m𝐵 )
(𝑐2, X2 ) ↼ rP

2

w2 ← LHE.Dec(dk, 𝑐2 )

𝑐3 ←WES.Enc( (v̂k,m𝐵 ),w2 )

y := (𝑐3, v̂k,m𝐵, X2 )
𝜋3 ← SL2 (y)
aP

3
:= (𝑐3, 𝜋3 )

if Vf (vk,m𝐵, 𝜎 ) = 0 abort

𝜏 ← D̂S.Ŝig(ŝk,m𝐵 )
return (aP

3
, 𝜏 )

Figure 17: The mixer security game, identical to ExpM𝐺1 , except for the highlighted grey lines. Instead of running Prove for the
proof of MSet2, the challenger runs a simulator S.

IND-CPA game. However, this contradicts the assumption that the

WES used is IND-CPA.

Our adversary B chooses which sub-game 𝑖∗ to play with prob-

ability
1

𝑞2
. Thus, Pr[Bad3 (1𝜆)] ≤ negl(𝜆)

𝑞2
≤ negl(𝜆) and this claim

has been proven. Therefore, we can conclude that ExpM𝐺2 ≈
ExpM𝐺3 □

Claim 4. Let Bad4 be the event that ExpM𝐺4 aborts because 𝑏0 or
𝑏3 is satisfied. Assume that the adaptor signature scheme provides
full extractability. Then Pr[Bad4 (1𝜆) = 1] ≤ negl(𝜆).

Proof. Assume by contradiction that there exists a PPT ad-

versary A such that Pr[Bad4 (1𝜆)] > negl(𝜆). We can construct

adversary B that uses A to break full extractability of the adaptor

signature used in OMSet1 with the following steps:

• B runs (ek, dk) ← LHE.KGen(1𝜆) and (v̂k, ŝk) ← D̂S.�KGen(1𝜆).
• B initializes the challenger and obtains the public key of

the challenger, vk.
• B invokesA on input v̂k and ek to obtain

{
vk𝑖

𝑀
,m𝑖

𝑀
, 𝜎𝑖

𝑀

}
𝑖∈[0,q] .

• B searches for a triplet of vk𝑖
𝑀
,m𝑖

𝑀
, 𝜎𝑖

𝑀
such that 𝑏0 or

𝑏4 hold. If vk𝑖
𝑀

= vk, then B forwards (m𝑖
𝑀
, 𝜎𝑖

𝑀
) to the

challenger. If vk𝑖
𝑀

≠ vk, B samples a signature from the

signature space and forwards it to the challenger.

Regarding oracle OMSet3 and OFull, B knows all the private

information required to run them. Regarding OMSet1, B samples

fresh keys with each query. However, for one the queries, B gener-

ates a public statement X and uses it together with the message from

A as input for OPreSig of the fext game to obtain a presignature.

The rest of OMSet1 runs normally.

Our adversary B perfectly simulates ExpM𝐺4
toA. Moreover, it

is easy to see that B is a PPT algorithm. Now, the only differences

between ExpM𝐺3
and ExpM𝐺4

are the change in the memory of

B and the abort condition. Since we assume that A is successful

in aborting ExpM𝐺4
, this means that A satisfies either 𝑏0 or 𝑏3.

If A satisfies 𝑏0, this means that one of the signatures was done

for a message that was not queried in OMSet1. If the forgery is

valid for the challenger’s public key vk, but not for the other keys
generated with OMSet1, it holds that: (i) B did not queried OSig of
fext; (ii) the signature verifies for vk; and (iii)m𝑖

𝑀
was not queried in

OPreSig. Therefore, ifA forges a signature for vk without querying
OMSet1 for m𝑖

𝑀
, B wins fext. Alternatively, if A satisfies 𝑏3, this

means that m𝑖
𝑀

was queried in OMSet1, but the signature and

the presignature do not output a valid witness. If the forgery is
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ExpM𝐺3

Q1 := ∅ ; Q2 := ∅ ; q := 0

(v̂k, ŝk ) ← D̂S.�KGen(1𝜆 )
(ek, dk ) ← LHE.KGen(1𝜆 ){
vk𝑖𝑀 ,m𝑖

𝑀 , 𝜎𝑖
𝑀

}
𝑖∈ [0,q] ← A

OMSet1,OMSet3,OFull (ek, v̂k )

𝑏0 := ∃𝑖 ∈ [0, q] s.t. (vk𝑖𝑀 , · ) ∈ Q1
∧ (vk𝑖𝑀 ,m𝑖

𝑀 ) ∉ Q1 ∧ Vf (vk
𝑖
𝑀 ,m𝑖

𝑀 , 𝜎𝑖
𝑀 ) = 1

𝑏1 := ∀𝑖 ∈ [0, q], (vk𝑖𝑀 ,m𝑖
𝑀 ) ∈ Q1 ∧ Vf (vk

𝑖
𝑀 ,m𝑖

𝑀 , 𝜎𝑖
𝑀 ) = 1

𝑏2 := ∀𝑖, 𝑗 ∈ [0, q], 𝑖 ≠ 𝑗, (vk𝑖𝑀 ,m𝑖
𝑀 , 𝜎𝑖

𝑀 ) ≠ (vk
𝑗

𝑀
,m𝑗

𝑀
, 𝜎

𝑗

𝑀
)

return 𝑏0 ∨ (𝑏1 ∧ 𝑏2 )

OMSet1 (m𝑀
)

(vk𝑀 , sk𝑀 ) ← KGen(1𝜆 )

(X1,w1 ) ← createR(1𝜆 )
𝜎 ← ADP.PreSig(sk𝑀 ,m𝑀 , X1 )

𝑐1 ← LHE.Enc(ek,w1 )

y := (𝑐1, ek, X1 )
𝜋1 ← SL1 (y)
rP

1
:= (𝜎, 𝑐1, 𝜋1, X1 )

Q1 := Q1 ∪ (vk𝑀 ,m𝑀 )
return (rP

1
, vk𝑀 )

OMSet3 (m𝐵
, rP

2
)

if m𝐵 ∈ Q2 abort
Q2 := Q2 ∪ (m𝐵 )
(𝑐2, X2 ) ↼ rP

2

w2 ← LHE.Dec(dk, 𝑐2 )

𝑐3 ←WES.Enc( (v̂k,m
𝐵
), 0)

y := (𝑐3, v̂k,m𝐵, X2 )
𝜋3 ← SL2 (y)
aP

3
:= (𝑐3, 𝜋3 )

return (aP
3
)

OFull(m
𝐵
, rP

2
, 𝜎 , vk)

if m𝐵 ∈ Q2 abort
q := q + 1
Q2 := Q2 ∪ (m𝐵 )
(𝑐2, X2 ) ↼ rP

2

w2 ← LHE.Dec(dk, 𝑐2 )

𝑐3 ←WES.Enc( (v̂k,m𝐵 ),w2 )

y := (𝑐3, v̂k,m𝐵, X2 )
𝜋3 ← SL2 (y)
aP

3
:= (𝑐3, 𝜋3 )

if Vf (vk,m𝐵, 𝜎 ) = 0 abort

𝜏 ← D̂S.Ŝig(ŝk,m𝐵 )
return (aP

3
, 𝜏 )

Figure 18: The mixer security game, identical to ExpM𝐺2 , except for the highlighted grey line. Instead of running encrypting w3

in OMSet2, the challenger encrypts 0.

valid for the challenger’s public key vk, but not for the other keys
generated with OMSet1, it holds that: (i) B did not queried OSig
of fext; (ii) the signature verifies for vk; (iii) the public statement

was not queried in OnewX; and (iv) extract gives a witness not in

the relation. Therefore, if A satisfies 𝑏3, B also breaks fext. We

only need to quantify the probability thatA sends a forgery for vk
instead of any other key generated with queries to OMSet1.A is a

polynomial-time adversary, which means that the 𝑘 queries made to

OMSet1 are polynomially bounded. We assume that A satisfies 𝑏0
or 𝑏3 with a non negligible probability 𝜖 . Then, the probability that

the forgery presented to B is on vk is 𝜖/𝑘 . Therefore, if B forwards

the forgery to the challenger, the probability of winning fext is
Pr[Bad4 (1𝜆) = 1]/𝑘 . Since 𝑘 is polynomial and Pr[Bad4 (1𝜆) = 1]
is non negligible, B wins with non negligible probability. However,

this contradicts the assumption that the adaptor signature scheme

offers full extractability. Thus, Pr[Bad4 (1𝜆)] ≤ negl(𝜆) and this

claim has been proven. Therefore, we can conclude that ExpM𝐺3 ≈
ExpM𝐺4

□

Claim5. Assume the encryption scheme is OMDL-LHE. Then Pr[ExpM𝐺4 (1𝜆) =
1] ≤ negl(𝜆).

Proof. Assume by contradiction that there exists a PPT adver-

sary A such that Pr[ExpM𝐺4 (1𝜆)] > negl(𝜆). We can construct

adversary B that uses A to break OMDL-LHE of the encryption

used in OMSet1 with the following steps:

• B initializes the challenger, who provides B with ek and

{(X𝑖 , 𝑐𝑖 )}𝑖∈[0,𝑘 ] .
• B runs (v̂k, ŝk) ← D̂S.�KGen(1𝜆).
• B invokesA on input v̂k and ek to obtain

{
vk𝑖

𝑀
,m𝑖

𝑀
, 𝜎𝑖

𝑀

}
𝑖∈[0,q] .

• Since we assume that A wins ExpM𝐺4
, then 𝑏0 and 𝑏3 are

not satisfied.

• For each of the tuples vk𝑖
𝑀
,m𝑖

𝑀
, 𝜎𝑖

𝑀
, B gets 𝜎𝑖 and X𝑖

1
from

Q′
1
and extracts w𝑖

1
. Note that (X𝑖

1
,w𝑖

1
) ∈ R, as otherwise

B would abort because of 𝑏3. Also note that due to con-

ditions 𝑏1 and 𝑏2, all witnesses are different. Parameter 𝑘

from OMDL-LHE corresponds to the number of queries for

OMSet1, while Parameter 𝑞 from OMDL-LHE corresponds

to the number of queries for OFull. For the witnesses re-
maining between the q+1 witnesses obtained from A until

the k+1 that must be forwarded to the challenger, B calls

k-q times ODec of OMDL-LHE. Finally, B sends all k+1

witnesses to the challenger.
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ExpM𝐺4

Q1 := ∅ ; Q2 := ∅ ; q := 0

Q′
1
:= [ ]

(v̂k, ŝk ) ← D̂S.�KGen(1𝜆 )
(ek, dk ) ← LHE.KGen(1𝜆 ){
vk𝑖𝑀 ,m𝑖

𝑀 , 𝜎𝑖
𝑀

}
𝑖∈ [0,q] ← A

OMSet1,OMSet3,OFull (ek, v̂k )

𝑏0 := ∃𝑖 ∈ [0, q] s.t. (vk𝑖𝑀 , · ) ∈ Q1
∧ (vk𝑖𝑀 ,m𝑖

𝑀 , · ) ∉ Q1 ∧ Vf (vk𝑖𝑀 ,m𝑖
𝑀 , 𝜎𝑖

𝑀 ) = 1

𝑏1 := ∀𝑖 ∈ [0, q], (vk𝑖𝑀 ,m𝑖
𝑀 ) ∈ Q1 ∧ Vf (vk

𝑖
𝑀 ,m𝑖

𝑀 , 𝜎𝑖
𝑀 ) = 1

𝑏2 := ∀𝑖, 𝑗 ∈ [0, q], 𝑖 ≠ 𝑗, (vk𝑖𝑀 ,m𝑖
𝑀 , 𝜎𝑖

𝑀 ) ≠ (vk
𝑗

𝑀
,m𝑗

𝑀
, 𝜎

𝑗

𝑀
)

𝑏3 := ∃𝑖 ∈ [0, q] s.t. (vk𝑖𝑀 ,m𝑖
𝑀
) ∈ Q1 ∧ (𝜎𝑖 , X𝑖

1
) ↼ Q′

1
[m𝑖

𝑀
]

∧ Vf (vk𝑖
𝑀
,m𝑖

𝑀
, 𝜎𝑖

𝑀
) = 1 ∧ (X𝑖

1
, Extract(𝜎𝑖

𝑀
, 𝜎𝑖 , X𝑖

1
) ) ∉ R

if 𝑏0 ∨ 𝑏3 abort
return 𝑏0 ∨ (𝑏1 ∧ 𝑏2 )

OMSet1 (m𝑀
)

(vk𝑀 , sk𝑀 ) ← KGen(1𝜆 )

(X1,w1 ) ← createR(1𝜆 )
𝜎 ← ADP.PreSig(sk𝑀 ,m𝑀 , X1 )

𝑐1 ← LHE.Enc(ek,w1 )

y := (𝑐1, ek, X1 )
𝜋1 ← SL1 (y)
rP

1
:= (𝜎, 𝑐1, 𝜋1, X1 )

Q1 := Q1 ∪ (vk𝑀 ,m𝑀 )
Q′
1
[m

𝑀
] := (𝜎, X1 )

return (rP
1
, vk𝑀 )

OMSet3 (m𝐵
, rP

2
)

if m𝐵 ∈ Q2 abort
Q2 := Q2 ∪ (m𝐵 )
(𝑐2, X2 ) ↼ rP

2

w2 ← LHE.Dec(dk, 𝑐2 )

𝑐3 ←WES.Enc( (v̂k,m𝐵 ), 0)

y := (𝑐3, v̂k,m𝐵, X2 )
𝜋3 ← SL2 (y)
aP

3
:= (𝑐3, 𝜋3 )

return (aP
3
)

OFull(m
𝐵
, rP

2
, 𝜎 , vk)

if m𝐵 ∈ Q2 abort
q := q + 1
Q2 := Q2 ∪ (m𝐵 )
(𝑐2, X2 ) ↼ rP

2

w2 ← LHE.Dec(dk, 𝑐2 )

𝑐3 ←WES.Enc( (v̂k,m𝐵 ),w2 )

y := (𝑐3, v̂k,m𝐵, X2 )
𝜋3 ← SL2 (y)
aP

3
:= (𝑐3, 𝜋3 )

if Vf (vk,m𝐵, 𝜎 ) = 0 abort

𝜏 ← D̂S.Ŝig(ŝk,m𝐵 )
return (aP

3
, 𝜏 )

Figure 19: The mixer security security game, works exactly as𝐺3 but with the highlighted grey lines. The challenger has an
additional memory Q′

1
to keep track of the presignatures and statements provided in OMSet1. The game aborts if the adversary

wins with a signature on message that was not queried in OMSet1 or with a signature on a message queried in OMSet1 such
that the corresponding presignature does not provide the witness to the statement.

Regarding oracle OMSet3, since 𝑐3 encrypts zero, there is no

need to decrypt rP
2
, so B can run the oracle with the information

in their hands. Regarding OFull, B forwards the decryption query

to the decryption oracle of OMDL-LHE, while the rest of the oracle
remains the same. Note that this ensures that the counter for both

oracles is the same. Finally, regarding OMSet1, B uses for each

query a different pair of X𝑖 , 𝑐𝑖 received from the challenger to make

𝜎 and 𝑐1.

Our adversary B perfectly simulates ExpM𝐺4
to A. Moreover,

it is easy to see that B is a PPT algorithm. Since we assume thatA
is successful in winning ExpM𝐺4

, this implies that the adversary is

able to produce one signature more than the q signatures he has

had access to. Since the adversary wins the game, it does not abort

on 𝑏0 or 𝑏4, which ensures that all of the witnesses extracted for all

𝑖 ∈ [0, q] are valid. Finally, since the messages of all tuples sent by

A are in the memory of Q1, and they are one more in number that

the counter of q, this implies that the decryption oracle has not been

called for at least one of the witnesses extracted by B. Note that the
counters of both games are synchronized and that B is only using

the pairs X𝑖 , 𝑐𝑖 sent by the challenger to run OMSet1. Therefore,
when B forwards all the witnesses to the challenger, the set of

witnesses also wins the OMDL-LHE. However, this contradicts the
assumption that the encryption scheme satisfies OMDL-LHE, and
so A does not exist. □

Wehave proved that ExpM𝐺0 ≈ ExpM𝐺4
and that Pr[ExpM𝐺4 (1𝜆) =

1] ≤ negl(𝜆). Therefore, Theorem 1 has been proven.

□

Theorem 2 (Seller Security). Assume the VWER is one way,
NIZK is secure under soundness-knowledge and adaptor signature
scheme is secure under adaptability. Then, our construction offers
seller security according to Definition 4.
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ExpS𝐺0

Q := [ ]

(v̂k, ŝk ) ← D̂S.�KGen(1𝜆 )
(pek, pdk) ← createR(1𝜆 )

(ek, vk𝑀 ,m𝐵,m𝑀 , rP
1
) ← AONAttest (v̂k, pek)

(𝜎, 𝑐1, 𝜋1, X1 ) ↼ rP
1

y := (𝑐1, ek, X1 )
if NIZK.VfL1 (crs, y, 𝜋1 ) = 0 abort

if ADP.PreVf (vk𝑀 ,m𝑀 , X1, 𝜎 ) = 0 abort

(X𝑟 ,w𝑟 ) ← createR(1𝜆 )
X2 := X𝑟 ⊗ X1

𝑐𝑟 ← LHE.Enc(ek𝑀 ,w𝑟 )
𝑐2 := 𝑐1 ◦ 𝑐𝑟
rP

2
:= (𝑐2, X2 )

st𝑆 := (X2, X𝑟 ,w𝑟 )

aP
3
← AONAttest (rP

2
)

(𝑐3, 𝜋3 ) ↼ aP
3

y := (𝑐3, v̂k,m𝐵, X2 )
if NIZK.VfL2 (crs, y, 𝜋3 ) = 0 abort

(𝑐4, 𝜋4 ) ← VWER.EncR( (v̂k,m𝐵 ), pdk)
aP

4
:= (𝑐4, 𝜋4 )

pdk′ ← AONAttest (aP
4
)

if Q[m𝐵 ] = ⊥
𝑏0 := (pek, pdk′ ) ∈ R

else

𝜏 ← Q[m𝐵 ]
w2 ←WES.Dec(𝜏, 𝑐3 )
w1 := w2 − w𝑟

𝜎𝑀 ← ADP.Adapt(𝜎,w1 )

𝑏1 := D̂S.V̂f (v̂k,m𝐵, 𝜏 ) = 1

𝑏2 := Vf (vk𝑀 ,m𝑀 , 𝜎𝑀 ) = 0

return 𝑏0 ∨ (𝑏1 ∧ 𝑏2 )

ONAttest (vk,m, 𝜎 )
if Vf (vk,m, 𝜎 ) = 0 abort

𝜏 ← D̂S.Ŝig(ŝk,m𝐵 )
Q[m ] := 𝜏

return 𝜏

Figure 20: Seller security expanded with the interactions
described in our implementation.

Proof. We require the following game hops in order to prove

our theorem:

Game ExpS𝐺0
: This game, formally defined in Fig. 20, corre-

sponds to the original game for ExpS defined in Definition 4 The

ExpS𝐺1

Q := [ ]

(v̂k, ŝk ) ← D̂S.�KGen(1𝜆 )
(pek, pdk) ← createR(1𝜆 )

(ek, vk𝑀 ,m𝐵,m𝑀 , rP
1
) ← AONAttest (v̂k, pek)

(𝜎, 𝑐1, 𝜋1, X1 ) ↼ rP
1

y := (𝑐1, ek, X1 )
if NIZK.VfL1 (crs, y, 𝜋1 ) = 0 abort

if ADP.PreVf (vk𝑀 ,m𝑀 , X1, 𝜎 ) = 0 abort

(X𝑟 ,w𝑟 ) ← createR(1𝜆 )
X2 := X𝑟 ⊗ X1

𝑐𝑟 ← LHE.Enc(ek𝑀 ,w𝑟 )
𝑐2 := 𝑐1 ◦ 𝑐𝑟
rP

2
:= (𝑐2, X2 )

st𝑆 := (X2, X𝑟 ,w𝑟 )

aP
3
← AONAttest (rP

2
)

(𝑐3, 𝜋3 ) ↼ aP
3

y := (𝑐3, v̂k,m𝐵, X2 )
if NIZK.VfL2 (crs, y, 𝜋3 ) = 0 abort

(𝑐4, 𝜋4 ) ← VWER.EncR( (v̂k,m𝐵 ), pdk)
aP

4
:= (𝑐4, 𝜋4 )

pdk′ ← AONAttest (aP
4
)

if Q[m𝐵 ] = ⊥
𝑏0 := (pek, pdk′ ) ∈ R
if 𝑏0 abort

else

𝜏 ← Q[m𝐵 ]
w2 ←WES.Dec(𝜏, 𝑐3 )
w1 := w2 − w𝑟

𝜎𝑀 ← ADP.Adapt(𝜎,w1 )

𝑏1 := D̂S.V̂f (v̂k,m𝐵, 𝜏 ) = 1

𝑏2 := Vf (vk𝑀 ,m𝑀 , 𝜎𝑀 ) = 0

return 𝑏0 ∨ (𝑏1 ∧ 𝑏2 )

Figure 21: Seller security game, identical to ExpS𝐺0 , except
for the highlighted grey lines. If condition 𝑏0 is satisfied, the
game aborts. The oracle is the same as in Fig. 20.

game is expanded with the interactions described in our implemen-

tation.

Game ExpS𝐺1
: This game, formally defined in Fig. 21, works

exactly as 𝐺0 but with the highlighted grey line. If condition 𝑏0 is

satisfied, the game aborts.

Game ExpS𝐺2
: This game, formally defined in Fig. 22, works

exactly as𝐺1 but with the highlighted grey line. If (X2,w2) ∉ R the

game aborts.
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ExpS𝐺2

Q := [ ]

(v̂k, ŝk ) ← D̂S.�KGen(1𝜆 )
(pek, pdk) ← createR(1𝜆 )

(ek, vk𝑀 ,m𝐵,m𝑀 , rP
1
) ← AONAttest (v̂k, pek)

(𝜎, 𝑐1, 𝜋1, X1 ) ↼ rP
1

y := (𝑐1, ek, X1 )
if NIZK.VfL1 (crs, y, 𝜋1 ) = 0 abort

if ADP.PreVf (vk𝑀 ,m𝑀 , X1, 𝜎 ) = 0 abort

(X𝑟 ,w𝑟 ) ← createR(1𝜆 )
X2 := X𝑟 ⊗ X1

𝑐𝑟 ← LHE.Enc(ek𝑀 ,w𝑟 )
𝑐2 := 𝑐1 ◦ 𝑐𝑟
rP

2
:= (𝑐2, X2 )

st𝑆 := (X2, X𝑟 ,w𝑟 )

aP
3
← AONAttest (rP

2
)

(𝑐3, 𝜋3 ) ↼ aP
3

y := (𝑐3, v̂k,m𝐵, X2 )
if NIZK.VfL2 (crs, y, 𝜋3 ) = 0 abort

(𝑐4, 𝜋4 ) ← VWER.EncR( (v̂k,m𝐵 ), pdk)
aP

4
:= (𝑐4, 𝜋4 )

pdk′ ← AONAttest (aP
4
)

if Q[m𝐵 ] = ⊥
𝑏0 := (pek, pdk′ ) ∈ R
if 𝑏0 abort

else

𝜏 ← Q[m𝐵 ]
w2 ←WES.Dec(𝜏, 𝑐3 )
if (X2,w2 ) ∉ R abort

w1 := w2 − w𝑟

𝜎𝑀 ← ADP.Adapt(𝜎,w1 )

𝑏1 := D̂S.V̂f (v̂k,m𝐵, 𝜏 ) = 1

𝑏2 := Vf (vk𝑀 ,m𝑀 , 𝜎𝑀 ) = 0

return 𝑏0 ∨ (𝑏1 ∧ 𝑏2 )

Figure 22: Seller security game, identical to ExpS𝐺1 , except
for the highlighted grey lines. If w1 is not the R of X1, the
game aborts.The oracle is the same as in Fig. 20.

Game ExpS𝐺3
: This game, formally defined in Fig. 23, works

exactly as𝐺2 but with the highlighted grey line. If (X1,w1) ∉ R the

game aborts.

Claim 6. Let Bad1 be the event that ExpS𝐺1 aborts because 𝑏0 is
satisfied. Assume that the VWER is one way. Then Pr[Bad1 (1𝜆) =
1] ≤ negl(𝜆).

Proof. Assume by contradiction that there exists a PPT ad-

versary A such that Pr[Bad1 (1𝜆)] > negl(𝜆). We can construct

ExpS𝐺3

Q := [ ]

(v̂k, ŝk ) ← D̂S.�KGen(1𝜆 )
(pek, pdk) ← createR(1𝜆 )

(ek, vk𝑀 ,m𝐵,m𝑀 , rP
1
) ← AONAttest (v̂k, pek)

(𝜎, 𝑐1, 𝜋1, X1 ) ↼ rP
1

y := (𝑐1, ek, X1 )
if NIZK.VfL1 (crs, y, 𝜋1 ) = 0 abort

if ADP.PreVf (vk𝑀 ,m𝑀 , X1, 𝜎 ) = 0 abort

(X𝑟 ,w𝑟 ) ← createR(1𝜆 )
X2 := X𝑟 ⊗ X1

𝑐𝑟 ← LHE.Enc(ek𝑀 ,w𝑟 )
𝑐2 := 𝑐1 ◦ 𝑐𝑟
rP

2
:= (𝑐2, X2 )

st𝑆 := (X2, X𝑟 ,w𝑟 )

aP
3
← AONAttest (rP

2
)

(𝑐3, 𝜋3 ) ↼ aP
3

y := (𝑐3, v̂k,m𝐵, X2 )
if NIZK.VfL2 (crs, y, 𝜋3 ) = 0 abort

(𝑐4, 𝜋4 ) ← VWER.EncR( (v̂k,m𝐵 ), pdk)
aP

4
:= (𝑐4, 𝜋4 )

pdk′ ← AONAttest (aP
4
)

if Q[m𝐵 ] = ⊥
𝑏0 := (pek, pdk′ ) ∈ R
if 𝑏0 abort

else

𝜏 ← Q[m𝐵 ]
w2 ←WES.Dec(𝜏, 𝑐3 )
if (X2,w2 ) ∉ R abort

w1 := w2 − w𝑟

if (X1,w1 ) ∉ R abort

𝜎𝑀 ← ADP.Adapt(𝜎,w1 )

𝑏1 := D̂S.V̂f (v̂k,m𝐵, 𝜏 ) = 1

𝑏2 := Vf (vk𝑀 ,m𝑀 , 𝜎𝑀 ) = 0

return 𝑏0 ∨ (𝑏1 ∧ 𝑏2 )

Figure 23: Seller security game, identical to ExpS𝐺1 , except
for the highlighted grey lines. If w3 is not the R of X3, the
game aborts.The oracle is the same as in Fig. 20.

adversary B that uses A to break one wayness of VWER with the

following steps:

• B initializes the challenger of ExpOWA game and obtains

v̂k and pek.
• B invokesA on input v̂k and pek to obtain (ek, vk𝑀 ,m

𝐵
,m

𝑀
, rP

1
).

B parses rP
1
as (𝜎, 𝑐1, 𝜋1, X1) and sets y := (𝑐1, ek, X1).
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• B checks the NIZK and the presignature. Since we assume

thatA aborts on 𝑏0 and has all the information required to

generate valid proofs, B does not abort here.

• B runs (X𝑟 ,w𝑟 ) ← createR(1𝜆), X2 := X2 ⊗ X1, 𝑐𝑟 ←
LHE.Enc(ek𝑀 ,w𝑟 ) and 𝑐2 := 𝑐𝑟 ◦ 𝑐2 and then sets rP

2
:=

(𝑐2, X2) and st
𝑆
:= (X2, X𝑟 ,w𝑟 ).

• B invokes A on input rP
2
to obtain aP

3
, which B parses

to obtain (𝑐3, 𝜋3).
• B checks the NIZK. Since we assume that A aborts on

𝑏0 and has all the information required to generate valid

proofs, B does not abort here.

• B queries OEncR on message m
𝐵
to obtain (𝑐4, 𝜋4), which

is assigned as aP
4
.

• B invokes A on input aP
4
to obtain pdk′, which is for-

warded to the challenger.

Regarding ONAttest,B does not know ŝk and cannot run D̂S.Ŝig.
Therefore, B forwards these queries to OŜig. Note that this ensures
that the messages queried in both oracles are the same.

Our adversary B perfectly simulates ExpS𝐺1
to A. Moreover, it

is easy to see that B is a PPT algorithm. Now, if A is successful

in aborting in 𝑏0, this means that m
𝐵
is not on the memory of

Q, which implies that it is also not in the memory of OŜig. In
addition, only m

𝐵
is on the memory of OEncR. This ensures that

the intersection of the two memories is an empty set. Note that

condition 𝑏0 is equivalent to condition 𝑏1 of ExpOWA . Since our
assumption is that A aborts with no negligible probability, this

means that B wins ExpOWA with the same probability. However,

this contradicts our assumption that VWER is one way, so this

adversary does not exist. This claim has been proven and we can

conclude that ExpS𝐺0 ≈ ExpS𝐺1

□

Claim7. LetBad2 be the event that ExpS𝐺2 aborts because (X2,w2) ∉
R. Assume that the NIZK for L2 is secure under knowledge-soundness.
Then Pr[Bad2 (1𝜆) = 1] ≤ negl(𝜆).

Proof. Assume by contradiction that there exists a PPT ad-

versary A such that Pr[Bad2 (1𝜆)] > negl(𝜆). We can construct

adversary B that uses A to break break knowledge-soundness of

NIZK for L2 with the following steps:

• B initializes the challenger who sets the crs.
• B runs (v̂k, ŝk) ← D̂S.�KGen(1𝜆) and (pek, pdk) ← createR(1𝜆).
• B invokesA on input v̂k and pek to obtain (ek, vk𝑀 ,m

𝐵
,m

𝑀
, rP

1
).

B parses rP
1
as (𝜎, 𝑐1, 𝜋1, X1) and sets y := (𝑐1, ek, X1).

• B checks the NIZK and the presignature. Since we assume

that A aborts on the highlighted grey line and has all the

information required to generate valid proofs, B does not

abort here.

• B runs (X𝑟 ,w𝑟 ) ← createR(1𝜆), X2 := X𝑟 ⊗ X1, 𝑐𝑟 ←
LHE.Enc(ek𝑀 ,w𝑟 ) and 𝑐2 := 𝑐𝑟 ◦ 𝑐2 and then sets rP

2
:=

(𝑐2, X2) and st
𝑆
:= (X2, X𝑟 ,w𝑟 ).

• B invokes A on input rP
2
to obtain aP

3
, which B parses

to obtain (𝑐3, 𝜋3).
• B checks the NIZK. Since we assume that A aborts on

𝑏0 and has all the information required to generate valid

proofs, B does not abort here.

• B runs (𝑐4, 𝜋4) ← VWER.EncR((v̂k,m
𝐵
), pdk), which is

assigned as aP
4
.

• B invokes A on input aP
4
to obtain pdk′.

• B extracts 𝜏 from Q[m
𝐵
] and uses it to decrypt 𝑐3 and

obtain w2.

• B forwards 𝑐3, v̂k, m𝐵
, X2 and 𝜋3 to the challenger.

Regarding ONAttest, B has all the information required to sim-

ulate it to A. Our adversary B perfectly simulates ExpS𝐺2
to A.

Moreover, it is easy to see that B is a PPT algorithm. Now, if A
makes the challenger abort on the grey line with non-negligible

probability, this means that the zero knowledge proof for L2 was
done for ((𝑐3, v̂k,m𝐵

, X2),w2) ∉ L2, while NIZK.VfL2
(crs, (𝑐3, v̂k,

m
𝐵
, X2), 𝜋3) = 1. However, this contradicts our assumption that

the NIZK used for L2 is knowledge sound, so this adversary does

not exist. This claim has been proven and we can conclude that

ExpS𝐺1 ≈ ExpS𝐺2
. □

Claim8. LetBad3 be the event that ExpS𝐺3 aborts because (X1,w1) ∉
R. Assume that the NIZK for L1 is secure under knowledge-soundness.
Then Pr[Bad3 (1𝜆) = 1] ≤ negl(𝜆).

Proof. Assume by contradiction that there exists a PPT ad-

versary A such that Pr[Bad3 (1𝜆)] > negl(𝜆). We can construct

adversary B that uses A to break Knowledge soundness of NIZK

for L1 with the following steps:

• B initializes the challenger who sets the crs.
• B runs (v̂k, ŝk) ← D̂S.�KGen(1𝜆) and (pek, pdk) ← createR(1𝜆).
• B invokesA on input v̂k and pek to obtain (ek, vk𝑀 ,m

𝐵
,m

𝑀
, rP

1
).

B parses rP
1
as (𝜎, 𝑐1, 𝜋1, X1) and assigns y := (𝑐1, ek, X1).

• B checks the NIZK for L1 and the presignature. Since we

assume that A aborts on the highlighted grey line and has

all the information required to generate valid proofs, B
does not abort here.

• B runs (X𝑟 ,w𝑟 ) ← createR(1𝜆), X2 := X𝑟 ⊗ X1, 𝑐𝑟 ←
LHE.Enc(ek𝑀 ,w𝑟 ) and 𝑐2 := 𝑐𝑟 ◦ 𝑐1 and then sets rP

2
:=

(𝑐2, X2) and st
𝑆
:= (X2, X𝑟 ,w𝑟 ).

• B invokes A on input rP
2
to obtain aP

3
, which B parses

to obtain (𝑐3, 𝜋3).
• B checks the NIZK for L2. Since we assume that A aborts

on the grey line and has all the information required to

generate valid proofs, B does not abort here.

• B runs (𝑐4, 𝜋4) ← VWER.EncR((v̂k,m
𝐵
), pdk), which is

assigned as aP
4
.

• B invokes A on input aP
4
to obtain pdk′.

• B extracts 𝜏 from the memory using m
𝐵
as key. Uses 𝜏 as

decryption key for 𝑐3 to obtain w2. Since we assume that B
aborts because (X1,w1) ∉ R, this means that (X2,w2) ∈ R.

• B computes w1 := w2 − w𝑟 . Note that w1 is the same as A
encrypted in 𝑐1 for the same reasons as outlined in Theo-

rem 5 since X2, 𝑐2 and X𝑟 are created by B honestly.

• B forwards 𝑐1, ek, X1 and 𝜋1 to the challenger.

Regarding ONAttest, B has all the information required to sim-

ulate it to A. Our adversary B perfectly simulates ExpS𝐺3
to A.

Moreover, it is easy to see that B is a PPT algorithm. Now, if A
makes the challenger abort on the grey line with non-negligible

probability, this means that the zero knowledge proof for L1 was
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done for ((𝑐1, ek, X1),w1) ∉ L1, while NIZK.VfL1
(crs, (𝑐1, ek,

X1), 𝜋1) = 1. However, this contradicts our assumption that the

NIZK used for L1 is knowledge sound, so this adversary does

not exist. This claim has been proven and we can conclude that

ExpS𝐺2 ≈ ExpS𝐺3
. □

Claim 9. Assume that the adaptor signature scheme is secure under
adaptability. Then Pr[ExpS𝐺3 (1𝜆) = 1] ≤ negl(𝜆).

Proof. Assume by contradiction that there exists a PPT adver-

saryA such that Pr[ExpS𝐺3 (1𝜆) = 1] > negl(𝜆). We can construct

adversary B that usesA to break adaptability of the adaptor signa-

ture scheme with the following steps:

• B runs (v̂k, ŝk) ← D̂S.�KGen(1𝜆) and (pek, pdk) ← createR(1𝜆).
• B invokesA on input v̂k and pek to obtain (ek, vk𝑀 ,m

𝐵
,m

𝑀
, rP

1
).

B parses rP
1
as (𝜎, 𝑐1, 𝜋1, X1) and sets y := (𝑐1, ek, X1).

• B checks the NIZK for L1 and the presignature. Since we

assume that A wins the game and has all the information

required to generate valid proofs, B does not abort here.

• B runs (X𝑟 ,w𝑟 ) ← createR(1𝜆), X2 := X𝑟 ⊗ X1, 𝑐𝑟 ←
LHE.Enc(ek𝑀 ,w𝑟 ) and 𝑐2 := 𝑐𝑟 ◦ 𝑐1 and then sets rP

2
:=

(𝑐2, X2) and st
𝑆
:= (X2, X𝑟 ,w𝑟 ).

• B invokes A on input rP
2
to obtain aP

3
, which B parses

to obtain (𝑐3, 𝜋3).
• B checks the NIZK for L2. Since we assume that A wins

the game and has all the information required to generate

valid proofs, B does not abort here.

• B runs (𝑐4, 𝜋4) ← VWER.EncR((v̂k,m
𝐵
), pdk), which is

assigned as aP
4
.

• B invokes A on input aP
4
to obtain pdk′.

• B extracts 𝜏 from the memory using m
𝐵
as key. Uses 𝜏 as

decryption key for 𝑐3 to obtain w2

• B obtains w1 using w𝑟 and w2.

• B forwards X1, w1, 𝜎 , m𝑀
, vk𝑀 to the challenger.

Regarding ONAttest, B has all the information required to sim-

ulate it to A. Our adversary B perfectly simulates ExpS𝐺3
to A.

Moreover, it is easy to see that B is a PPT algorithm. Now, the

presignature is valid, as otherwise B would have aborted. How-

ever, since A wins the game with non-negligible probability, this

means that Adapt(𝜎,w1) produces a signature that does not verify
for m

𝑀
and vk𝑀 . Therefore, if B forwards X1, w1, 𝜎 , m𝑀

, vk𝑀 to

the challenger, this wins the adaptability game with non-negligible

probability. However, this contradicts our assumption that the adap-

tor signature scheme guarantees adaptability, so this adversary does

not exist. This claim has been proven. □

Wehave proved that ExpS𝐺0 ≈ ExpS𝐺3
and that Pr[ExpS𝐺3 (1𝜆) =

1] ≤ negl(𝜆). Therefore, Theorem 2 has been proven. □

Theorem 3 (Buyer Security). Assume the signature scheme is
EUF-CMA and VWER provides VWER verifiability. Then, our con-
struction offers buyer security according to Definition 5.

Proof. We consider the following game hops:

Game ExpB𝐺0
: This game, formally defined in Fig. 24, corre-

sponds to the original game for ExpB defined in Definition 5. The

ExpB𝐺0

Q := [ ]

(v̂k, ŝk ) ← D̂S.�KGen(1𝜆 )
(vk𝐵, sk𝐵 ) ← KGen(1𝜆 )

(𝜎∗𝐵, pek,m𝐵, aP4 ) ← A
OSigNAttest (vk𝐵, v̂k )

if Q[m𝐵 ] = ⊥
𝑏0 := (Vf (vk𝐵,m𝐵, 𝜎

∗
𝐵 ) = 1)

else

𝜏 ← Q[m𝐵 ]
(𝑐4, 𝜋4 ) ↼ aP

4

pdk := VWER.DecR(𝜏, 𝑐4, 𝜋4 )

𝑏1 := VWER.VfEncR(𝑐4, 𝜋4, (v̂k,m𝐵 ), pek)

𝑏2 := D̂S.V̂f (v̂k,m𝐵, 𝜏 )
𝑏3 := (pek, pdk) ∉ R

return 𝑏0 ∨ (𝑏1 ∧ 𝑏2 ∧ 𝑏3 )

OSigNAttest (m)
𝜎𝐵 ← Sig(sk𝐵,m )

𝜏 ← D̂S.Ŝig(ŝk,m𝐵 )
Q[m ] := 𝜏

return (𝜎𝐵, 𝜏 )

Figure 24: Buyer security expanded with the interactions
described in our implementation.

game is expanded with the interactions described in our implemen-

tation.

Game ExpB𝐺1
: This game, formally defined in Fig. 25, works ex-

actly as𝐺0 but with highlighted grey line. If the adversary satisfies

condition 𝑏0, the game aborts.

Claim 10. Let Bad1 be the event that ExpB𝐺1 aborts on the high-
lighted grey line. Assume that the digital signature scheme is unforge-
able. Then Pr[Bad1 (1𝜆) = 1] ≤ negl(𝜆).

Proof. Assume by contradiction that there is a PPT adversary

A such that Pr[Bad1 (1𝜆)] > negl(𝜆), then we can construct a PPT

adversary B that usesA to break unforgeability of digital signature

with the following steps:

• B receives vk𝐵 from challenger.

• B runs (v̂k, ŝk) ← D̂S.�KGen(1𝜆).
• B invokesA on input v̂k and vk𝐵 to obtain a (𝜎∗

𝐵
, pek,m

𝐵
, aP

4
).

• B forwards 𝜎∗
𝐵
and m

𝐵
to the challenger.

To simulate OSigNAttest, B needs to invoke oracle OSig of the

EUF-CMA challenger. This ensures that Q and the memory of EUF-

CMA are synchronized. For the other signature, D̂S.Ŝig, B can

generate the 𝜏 locally.

Our adversaryB perfectly simulates ExpB𝐺1
toA. Moreover, it is

easy to see thatB is a PPT algorithm. Now, ifA has Pr[Bad1 (1𝜆)] >
negl(𝜆), this means that Vf (vk𝐵,m𝐵

, 𝜎∗
𝐵
) = 1 and that m

𝐵
has

not been queried in OSigNAttest. Since the memories of oracles
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ExpB𝐺1

Q := [ ]

(v̂k, ŝk ) ← D̂S.�KGen(1𝜆 )
(vk𝐵, sk𝐵 ) ← KGen(1𝜆 )

(𝜎∗𝐵, pek,m𝐵, aP4 ) ← A
OSigNAttest (vk𝐵, v̂k )

if Q[m𝐵 ] = ⊥
𝑏0 := (Vf (vk𝐵,m𝐵, 𝜎

∗
𝐵 ) = 1)

if 𝑏0 abort

else

𝜏 ← Q[m𝐵 ]
(𝑐4, 𝜋4 ) ↼ aP

4

pdk := VWER.DecR(𝜏, 𝑐4, 𝜋4 )

𝑏1 := VWER.VfEncR(𝑐4, 𝜋4, (v̂k,m𝐵 ), pek)

𝑏2 := D̂S.V̂f (v̂k,m𝐵, 𝜏 )
𝑏3 := (pek, pdk) ∉ R

return 𝑏0 ∨ (𝑏1 ∧ 𝑏2 ∧ 𝑏3 )

OSigNAttest (m)
𝜎𝐵 ← Sig(sk𝐵,m )

𝜏 ← D̂S.Ŝig(ŝk,m𝐵 )
Q[m ] := 𝜏

return (𝜎𝐵, 𝜏 )

Figure 25: Buyer security game, identical to ExpB𝐺0 , except
for the highlighted grey line. If condition 𝑏0 is satisfied, the
game aborts.

OSigNAttest and OSig are synchronized, these two conditions are

equivalent to the wining conditions of EUF-CMA game. However,

this contradicts our assumption that the signature scheme is EUF-

CMA secure, so A does not exist and this claim has been proven.

We can conclude that ExpB𝐺0 ≈ ExpB𝐺1 □

Claim 11. Assume that VWER satisfies VWER Verifiability. Then
Pr[ExpB𝐺1 (1𝜆) = 1] ≤ negl.

Proof. Assume by contradiction that there is a PPT adversary

A such that Pr[ExpB𝐺1 (1𝜆) = 1] > negl(𝜆), then we can construct

a PPT adversary B that uses A to break VWER Verifiability of

VWER with the following steps:

• B runs (v̂k, ŝk) ← D̂S.�KGen(1𝜆).
• B runs (vk𝐵, sk𝐵) ← KGen(1𝜆).
• B invokesA on input v̂k and vk𝐵 to obtain a (𝜎∗

𝐵
, pek,m

𝐵
, aP

4
).

• B extracts (𝑐4, 𝜋4) from aP
4
and 𝜏 from Q[m

𝐵
].

• B runs pdk← VWER.DecR(𝜏, 𝑐4, 𝜋4).
• B forwards (m

𝐵
, v̂k, 𝜏, 𝑐4, 𝜋4, pek) to the challenger.

To simulate OSigNAttest, B uses ŝk and sk𝐵 .
Our adversaryB perfectly simulates ExpB𝐺1

toA. Moreover, it is

easy to see thatB is a PPT algorithm. Now, ifA has Pr[ExpB𝐺1 (1𝜆) =
1] > negl(𝜆), thismeans thatVWER.VfEncR(𝑐4, 𝜋4, (v̂k,m𝐵

), pek) =

ExpLink𝐺0

(vk0𝐵, sk
0

𝐵 ) ← KGen(1𝜆 ) ; (vk1𝐵, sk
1

𝐵 ) ← KGen(1𝜆 )

(ek, v̂k, vk0𝑀 , vk1𝑀 , rP0
1
, rP1

1
, (m0

𝑀 ,m0

𝐵 ), (m
1

𝑀 ,m1

𝐵 ) ) ← A(vk
0

𝐵, vk
1

𝐵 )
𝑏 ← {0, 1}
(𝜎0, 𝑐0

1
, 𝜋0

1
, X0

1
) ↼ rP0

1
; (𝜎1, 𝑐1

1
, 𝜋1

1
, X1

1
) ↼ rP1

1

if NIZK.VfL1 (crs, (𝑐
0

1
, ek, X0

1
), 𝜋0

1
) = 0 abort

if NIZK.VfL1 (crs, (𝑐
1

1
, ek, X1

1
), 𝜋1

1
) = 0 abort

if ADP.PreVf (vk0𝑀 ,m0

𝑀 , X0
1
, 𝜎0 ) = 0 abort

if ADP.PreVf (vk1𝑀 ,m1

𝑀 , X1
1
, 𝜎1 ) = 0 abort

(X0𝑟 ,w0

𝑟 ) ← createR(1𝜆 ) ; (X1𝑟 ,w1

𝑟 ) ← createR(1𝜆 )
X0
2
:= X0𝑟 ⊗ X0

1
; X1

2
:= X1𝑟 ⊗ X1

1

𝑐0𝑟 ← Enc(ek𝑀 ,w0

𝑟 ) ; 𝑐1𝑟 ← Enc(ek𝑀 ,w1

𝑟 )
𝑐0
2
:= 𝑐0

1
◦ 𝑐0

2
; 𝑐1

2
:= 𝑐1

1
◦ 𝑐1

2

rP0
2
:= (𝑐0

2
, X0

2
) ; rP1

2
:= (𝑐1

2
, X1

2
)

st0𝑆 := (X0
2
, X0𝑟 ,w

0

𝑟 ) ; st1𝑆 := (X1
2
, X1𝑟 ,w

1

𝑟 )

(aP0
3
, aP1

3
) ← A(rP0⊕𝑏

2
, rP1⊕𝑏

2
)

(𝑐0
3
, 𝜋0

3
) ↼ aP0

3
; (𝑐1

3
, 𝜋1

3
) ↼ aP1

3

if NIZK.VfL2 (crs, (𝑐
0

3
, v̂k,m0

𝐵, X
0⊕𝑏
2

, 𝜋0⊕𝑏
3
) = 0) abort

if NIZK.VfL2 (crs, (𝑐
1

3
, v̂k,m1

𝐵, X
1⊕𝑏
2

, 𝜋1⊕𝑏
3
) = 0 abort

𝜎0

𝐵 ← Sig(sk0𝐵,m
0

𝐵 ) ; 𝜎
1

𝐵 ← Sig(sk1𝐵,m
1

𝐵 )
(𝜏0, 𝜏1 ) ← A(𝜎0

𝐵, 𝜎
1

𝐵 )

w0⊕𝑏
2
←WES.Dec(𝜏0, 𝑐0

3
) ; w1⊕𝑏

2
←WES.Dec(𝜏1, 𝑐1

3
)

w0⊕𝑏
1

:= w0⊕𝑏
2
− w0⊕𝑏

𝑟 ; w1⊕𝑏
1

:= w1⊕𝑏
2
− w1⊕𝑏

𝑟

𝜎0⊕𝑏
𝑀
← ADP.Adapt(𝜎0⊕𝑏 ,w0⊕𝑏

1
)

𝜎1⊕𝑏
𝑀
← ADP.Adapt(𝜎1⊕𝑏 ,w1⊕𝑏

1
)

if (Vf (vk0𝑀 ,m0

𝑀 , 𝜎0

𝑀 ) = 0) ∨ (Vf (vk1𝑀 ,m1

𝑀 , 𝜎1

𝑀 ) = 0)
𝜎0

𝑀 = 𝜎1

𝑀 = ⊥
𝑏′ ← A(𝜎0

𝑀 , 𝜎1

𝑀 )
return (𝑏 = 𝑏′ )

Figure 26: unlinkability property expanded with the interac-
tions described in our implementation.

1 , V̂f (v̂k,m
𝐵
, 𝜏) = 1 and (pek, pdk) ∉ R. Note that these three con-

ditions are the same conditions as those in ExpVerA , therefore,
winning ExpB𝐺1

with no negligible probability implies winning

ExpVerA also with no negligible proability. However, this contra-

dicts our assumption that the VWER achieves VWER verifiability,

so A does not exist and this claim has been proven. □

Wehave proved that ExpB𝐺0 ≈ ExpB𝐺1
and that Pr[ExpB𝐺1 (1𝜆) =

1] ≤ negl(𝜆). Therefore, Theorem 3 has been proven. □

Theorem 4 (Unlinkability). Assume that createR samples at
random from a uniform distribution. Then, our construction offers
unlinkability according to Definition 6.
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ExpLink𝐺1

(vk0𝐵, sk
0

𝐵 ) ← KGen(1𝜆 ) ; (vk1𝐵, sk
1

𝐵 ) ← KGen(1𝜆 )

(ek, v̂k, vk0𝑀 , vk1𝑀 , rP0
1
, rP1

1
, (m0

𝑀 ,m0

𝐵 ), (m
1

𝑀 ,m1

𝐵 ) ) ← A(vk
0

𝐵, vk
1

𝐵 )
𝑏 ← {0, 1}
(𝜎0, 𝑐0

1
, 𝜋0

1
, X0

1
) ↼ rP0

1
; (𝜎1, 𝑐1

1
, 𝜋1

1
, X1

1
) ↼ rP1

1

if NIZK.VfL1 (crs, (𝑐
0

1
, ek, X0

1
), 𝜋0

1
) = 0 abort

if NIZK.VfL1 (crs, (𝑐
1

1
, ek, X1

1
), 𝜋1

1
) = 0 abort

if ADP.PreVf (vk0𝑀 ,m0

𝑀 , X0
1
, 𝜎0 ) = 0 abort

if ADP.PreVf (vk1𝑀 ,m1

𝑀 , X1
1
, 𝜎1 ) = 0 abort

(X0𝑟 ,w0

𝑟 ) ← createR(1𝜆 ) ; (X1𝑟 ,w1

𝑟 ) ← createR(1𝜆 )
X0
2
:= X0𝑟 ⊗ X0

1
; X1

2
:= X1𝑟 ⊗ X1

1

𝑐0𝑟 ← Enc(ek𝑀 ,w0

𝑟 ) ; 𝑐1𝑟 ← Enc(ek𝑀 ,w1

𝑟 )
𝑐0
2
:= 𝑐0

1
◦ 𝑐0

2
; 𝑐1

2
:= 𝑐1

1
◦ 𝑐1

2

rP0
2
:= (𝑐0

2
, X0

2
) ; rP1

2
:= (𝑐1

2
, X1

2
)

st0𝑆 := (X0
2
, X0𝑟 ,w

0

𝑟 ) ; st1𝑆 := (X1
2
, X1𝑟 ,w

1

𝑟 )

(aP0
3
, aP1

3
) ← A(rP0⊕𝑏

2
, rP1⊕𝑏

2
)

(𝑐0
3
, 𝜋0

3
) ↼ aP0

3
; (𝑐1

3
, 𝜋1

3
) ↼ aP1

3

if NIZK.VfL2 (crs, (𝑐
0

3
, v̂k,m0

𝐵, X
0⊕𝑏
2

, 𝜋0⊕𝑏
3
) = 0) abort

if NIZK.VfL2 (crs, (𝑐
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3
, v̂k,m1

𝐵, X
1⊕𝑏
2
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) = 0 abort

𝜎0

𝐵 ← Sig(sk0𝐵,m
0

𝐵 ) ; 𝜎
1

𝐵 ← Sig(sk1𝐵,m
1

𝐵 )
𝑏′ ← A(𝜎0

𝐵
, 𝜎1

𝐵
)

return (𝑏 = 𝑏′ )

Figure 27: unlinkability game, identical to ExpLink𝐺0 , except
for the highlighted grey lines: the adversary provides the bit
after receiving the signatures from the buyer.

Proof. We consider the following game hops:

Game ExpLink𝐺0
: This game, formally defined in Fig. 26, corre-

sponds to the original game for unlinkability defined in Definition 6

The game is expanded with the interactions described in our imple-

mentation.

Game ExpLink𝐺1
: This game, formally defined in Fig. 27, works

exactly as 𝐺0 but the adversary provides the bit after receiving the

signatures from the buyer.

Game ExpLink𝐺2
: This game, formally defined in Fig. 28, works

exactly as𝐺1 but with highlighted grey lines. Instead of randomiz-

ing the ciphertexts with a randomly sampledwitnesses, 𝑐2 is directly

calculated as the encryption of a randomly sampled element from

a uniform distribution.

Claim 12. Let Bad1 be the event that:���� Pr[ExpLink𝐺0 (𝜆) = 1]
− Pr[ExpLink𝐺1 (𝜆) = 1]

���� > negl

Proof. The difference between the two games is that in ExpLink𝐺0

the challenger provides the pair (𝜎0
𝑀
, 𝜎1

𝑀
) or ⊥ to the adversary,

while in ExpLink𝐺1
, this information is not shared with the adver-

sary. However, note that the adversary knows w0

1
and w1

1
and has

ExpLink𝐺2

(vk0𝐵, sk
0

𝐵 ) ← KGen(1𝜆 ) ; (vk1𝐵, sk
1

𝐵 ) ← KGen(1𝜆 )

(ek, v̂k, vk0𝑀 , vk1𝑀 , rP0
1
, rP1

1
, (m0

𝑀 ,m0

𝐵 ), (m
1

𝑀 ,m1

𝐵 ) ) ← A(vk
0

𝐵, vk
1

𝐵 )
𝑏 ← {0, 1}
(𝜎0, 𝑐0

1
, 𝜋0

1
, X0

1
) ↼ rP0

1
; (𝜎1, 𝑐1

1
, 𝜋1

1
, X1

1
) ↼ rP1

1

if NIZK.VfL1 (crs, (𝑐
0

1
, ek, X0

1
), 𝜋0

1
) = 0 abort

if NIZK.VfL1 (crs, (𝑐
1

1
, ek, X1

1
), 𝜋1

1
) = 0 abort

if ADP.PreVf (vk0𝑀 ,m0

𝑀 , X0
1
, 𝜎0 ) = 0 abort

if ADP.PreVf (vk1𝑀 ,m1

𝑀 , X1
1
, 𝜎1 ) = 0 abort

(X0𝑟 ,w0

𝑟 ) ← createR(1𝜆 ) ; (X1𝑟 ,w1

𝑟 ) ← createR(1𝜆 )

(X0
2
,w0

2
) ← createR(1𝜆 ) ; (X1

2
,w1

2
) ← createR(1𝜆 )

𝑐0
2
← Enc(ek𝑀 ,w0

2
) ; 𝑐1

2
← Enc(ek𝑀 ,w1

2
)

rP0
2
:= (𝑐0

2
, X0

2
) ; rP1

2
:= (𝑐1

2
, X1

2
)

st0𝑆 := (X0
2
, X0𝑟 ,w

0

𝑟 ) ; st1𝑆 := (X1
2
, X1𝑟 ,w

1

𝑟 )

(aP0
3
, aP1

3
) ← A(rP0⊕𝑏

2
, rP1⊕𝑏

2
)

(𝑐0
3
, 𝜋0

3
) ↼ aP0

3
; (𝑐1

3
, 𝜋1

3
) ↼ aP1

3

if NIZK.VfL2 (crs, (𝑐
0

3
, v̂k,m0

𝐵, X
0⊕𝑏
2

, 𝜋0⊕𝑏
3
) = 0) abort

if NIZK.VfL2 (crs, (𝑐
1

3
, v̂k,m1

𝐵, X
1⊕𝑏
2

, 𝜋1⊕𝑏
3
) = 0 abort

𝜎0

𝐵 ← Sig(sk0𝐵,m
0

𝐵 ) ; 𝜎
1

𝐵 ← Sig(sk1𝐵,m
1

𝐵 )
𝑏′ ← A(𝜎0

𝐵, 𝜎
1

𝐵 )
return (𝑏 = 𝑏′ )

Figure 28: unlinkability game, identical to ExpLink𝐺1 , except
for the highlighted grey lines. Instead of randomizing the
ciphertext received by the adversary, the new plaintext that
are encrypted and sent are sampled directly from a uniform
distribution.

generated the presignatures using X0
1
and X1

1
. Therefore, in both

games the adversary is able to generate on its own the same pair

(𝜎0
𝑀
, 𝜎1

𝑀
) that the challenger would have provided. Therefore, the

adversary in ExpLink𝐺0
and ExpLink𝐺1

has the same information,

so ExpLink𝐺0 ≈ ExpLink𝐺1
. □

Claim 13. Let Bad2 be the event that:���� Pr[ExpLink𝐺1 (𝜆) = 1]
− Pr[ExpLink𝐺2 (𝜆) = 1]

���� > negl

Assume that createR randomly samples from a uniform distribution.
Then Pr[Bad2 (1𝜆) = 1] ≤ negl(𝜆).

Proof. The difference between the two games is whether w2

was randomly sampled from a uniform distribution or if it is w1

masked with w𝑟 , which is randomly sampled from the same uni-

form distribution. If we assume that createR samples from a uni-

form distribution, both instances are statistically indistinguish-

able. Therefore, Pr[Bad2 (1𝜆) = 1] ≤ negl(𝜆) and ExpLink𝐺1 ≈
ExpLink𝐺2

. □
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Since ExpLink𝐺0 ≈ ExpLink𝐺2
, we only have left to quantify

the probability of winning ExpLink𝐺2
. The probability of winning

ExpLink𝐺2
is equivalent to distinguish in which order to uniformly

random elements were sampled from a uniform distribution. There-

fore, Pr[ExpLink𝐺2 = 1] ≤ 1

/2 + negl(𝜆), which satisfies the unlink-

ability notion as defined in Definition 6. This concludes the proof

for Theorem 4.

□

C CONSTRUCTION AND SECURITY PROOFS
OF VWER

Here we present a concrete construction of VWER encrypting the

discrete logarithm of a group element. Our construction relies on

the following cryptographic blocks:

• A digital signature scheme D̂S = (�KGen, Ŝig, V̂f) instanti-
ated as the BLS digital signature scheme.

• A witness encryption based on signatures WES := (Enc,
Dec) presented in [49].

We provide the details of the construction in Fig. 29. 𝐻 denotes

the random oracle used in The Fiat-Shamir heuristic, 𝛾 is the statis-

tical parameter defining the numbers of ciphertexts required by the

cut-and-choose techinque, 𝑆op and 𝑆unop denote the set of opened

and unopened values outputted by algorithm EncR, respectively.

C.1 Correctness and Security Proofs
Theorem 6. Our VWER construction is correct according to Defi-

nition 12.

Proof. Let (𝑐, 𝜋) ← EncR((v̂k, m̂),w). To prove correctness we
first need to show that

Pr[VfEncR(𝑐, 𝜋, (v̂k, m̂), X) = 1] = 1

Note that algorithm VfEncR will output 0 if one of the following

occurs.

(1) If 𝑏𝑖 = 1 and 𝑐𝑖 ≠ WES.Enc((v̂k, m̂), 𝑟𝑖 ; 𝑟 ′𝑖 ). Provided the

encryption is done correctly, this cannot occur.

(2) If 𝑏𝑖 = 0 and 𝑔𝑠𝑖 ≠ 𝑅𝑖 ⊗ X. By construction we have 𝑠𝑖 :=

𝑟𝑖 + w. This implies 𝑔𝑠𝑖 = 𝑔𝑟𝑖 ⊗ 𝑔w = 𝑅𝑖 ⊗ X and therefore

this case never occurs.

Next we need to show that if we have V̂f (v̂k, m̂, 𝜎) = 1, then

Pr[(X,DecR(𝜎, 𝑐, 𝜋)) ∈ R] = 1

We are given that V̂f (v̂k, m̂, 𝜎) = 1. For all 𝑏𝑖 = 0 we have

𝑟𝑖 := WES.Dec(𝜎, 𝑐𝑖 ). By the correctness property ofWES we can
correctly compute all 𝑟𝑖 . Each 𝑟𝑖 is associated to a tuple (𝑖, 𝑠𝑖 , 𝑐𝑖 ). By
construction it is guaranteed that 𝑅𝑖 = 𝑔𝑟𝑖 . Pick any 𝑟𝑖 and let’s call

it 𝑟𝑎 , since by construction 𝑠𝑎 := 𝑟𝑎 + w, we can always compute

w∗ := 𝑠𝑎 − 𝑟𝑎 . Therefore, (X,w∗) ∉ R never occurs. □

Theorem 7. Assume thatWES is IND-CPA and the discrete loga-
rithm problem is hard. Then our protocol offers VWER one wayness
according to Definition 13.

Proof. We require the following game hops in order to prove

our claim:

Public parameters: (G, 𝑔, 𝑞,𝛾, 𝐻 )

EncR((v̂k, m̂),w)
𝑆op := ∅ ; 𝑆unop := ∅
for 𝑖 ∈ [1, 𝛾 ] :

𝑟𝑖
$← Z𝑞 ; 𝑅𝑖 := 𝑔𝑟𝑖

𝑐𝑖 := WES.Enc( (v̂k, m̂), 𝑟𝑖 ; 𝑟 ′𝑖 )
// where 𝑟 ′𝑖 are the random coins used inWES.Enc.

(𝑏1, 𝑏2, ..., 𝑏𝛾 ) := 𝐻 ( (𝑐𝑖 , 𝑅𝑖 )𝑖∈ [1,𝛾 ] )
for 𝑖 ∈ [1, 𝛾 ] :

if 𝑏𝑖 = 1 then

𝑆op := 𝑆op ∪ { (𝑖, 𝑟𝑖 , 𝑟 ′𝑖 ) }
if 𝑏𝑖 = 0 then

𝑠𝑖 := 𝑟𝑖 + w
𝑆unop := 𝑆unop ∪ { (𝑖, 𝑠𝑖 , 𝑐𝑖 ) }

return 𝑐 := {𝑐𝑖 }𝑖∈ [1,𝛾 ] , 𝜋 := {𝑆op, 𝑆unop, {𝑅𝑖 }𝑖∈ [1,𝛾 ] }

VfEncR(𝑐, 𝜋, (v̂k, m̂), X)
{𝑐𝑖 }𝑖∈ [1,𝛾 ] ↼ 𝑐 ; {𝑆op, 𝑆unop, {𝑅𝑖 }𝑖∈ [1,𝛾 ] } ↼ 𝜋

(𝑏1, 𝑏2, ..., 𝑏𝛾 ) := 𝐻 ( (𝑐𝑖 , 𝑅𝑖 )𝑖∈ [1,𝛾 ] )
for 𝑖 ∈ [1, 𝛾 ] :

if 𝑏𝑖 = 1 then

Check that (𝑖, 𝑟𝑖 , 𝑟 ′𝑖 ) ∈ 𝑆op
Check that 𝑐𝑖 = WES.Enc( (v̂k, m̂), 𝑟𝑖 ; 𝑟 ′𝑖 )

if 𝑏𝑖 = 0 then

Check that (𝑖, 𝑠𝑖 , 𝑐𝑖 ) ∈ 𝑆unop
Check that 𝑔𝑠𝑖 = 𝑅𝑖 ⊗ X

if Any of the checks fail return 0, else return 1

DecR(𝜎, 𝑐, 𝜋)
{𝑐𝑖 }𝑖∈ [1,𝛾 ] ↼ 𝑐 ; {𝑆op, 𝑆unop, {𝑅𝑖 }𝑖∈ [1,𝛾 ] } ↼ 𝜋

foreach (𝑖, 𝑠𝑖 , 𝑐𝑖 ) ∈ 𝑆unop
𝑟𝑖 := WES.Dec(𝜎, 𝑐𝑖 )

There exists at least one 𝑟𝑎 s.t. 𝑅𝑎 = 𝑔𝑟𝑎

w∗ := 𝑠𝑎 − 𝑟𝑎
return w∗

Figure 29: Construction for VWER.

Game ExpOW𝐺0

A : This game, formally defined in Fig. 30, corre-

sponds to the original game for VWER one wayness defined in Def-

inition 13. The game is expanded with the interactions described

in our construction.

Game ExpOW𝐺1

A : This game, formally defined in Fig. 31, works

exactly as 𝐺0 but with the highlighted grey line. For the oracle

query OEncR the random oracle 𝐻 is simulated by lazy sampling,

a random bit string (𝑏1, 𝑏2, ..., 𝑏𝛾 ) is sampled and the output of the

random oracle on the ciphertexts 𝑐𝑖 and 𝑅𝑖 is set to it. Since the
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ExpOW𝐺0

A
Q := Q := ∅

(v̂k, ŝk ) ← �KGen(1𝜆 )
(X,w ) ← createR(1𝜆 )

w∗ ← AOŜig,OEncR (v̂k, X )
𝑏 := (X,w∗ ) ∈ R
return 𝑏

OŜig(m̂)
if m̂ ∈ Q abort

Q := Q ∪ m̂

𝜎 ← Ŝig(ŝk, m̂)
return

OEncR(m̂)
if m̂ ∈ Q abort

Q := Q ∪ m̂
𝑆op = 𝑆unop := ∅
for 𝑖 ∈ [0, 𝛾 ] :

𝑟𝑖
$← Z𝑞 ; 𝑅𝑖 := 𝑔𝑟𝑖

𝑐𝑖 := WES.Enc( (v̂k, m̂), 𝑟𝑖 ; 𝑟 ′𝑖 )
(𝑏1, 𝑏2, ..., 𝑏𝛾 ) := 𝐻 ( (𝑐𝑖 , 𝑅𝑖 )𝑖∈ [0,𝛾 ] )
for 𝑖 ∈ [0, 𝛾 ] :
if 𝑏𝑖 = 1 then

𝑆op := 𝑆op ∪ { (𝑖, 𝑟𝑖 , 𝑟 ′𝑖 ) }
if 𝑏𝑖 = 0 then

𝑠𝑖 := 𝑟𝑖 + w
𝑆unop := 𝑆unop ∪ { (𝑖, 𝑠𝑖 , 𝑐𝑖 ) }

𝑐 := {𝑐𝑖 }𝑖∈ [0,𝛾 ]
𝜋 := {𝑆op, 𝑆unop, {𝑅𝑖 }𝑖∈ [0,𝛾 ] }
return (𝑐, 𝜋 )

Figure 30: Definition of the experiment ExpOW𝐺0

A .

output of the random oracle is supposed to be random, ExpOW𝐺0

A
and ExpOW𝐺1

A are indistinguishable.

Game ExpOW𝐺2

A : This game, formally defined in Fig. 32, works

exactly as𝐺0 but with the highlighted grey line. For the oracle query

OEncR, for the ciphertexts 𝑐𝑖 of 𝑆unop (i.e., 𝑏𝑖 = 0) are replaced by

encryptions of 0.

Game ExpOW𝐺3

A : This game, formally defined in Fig. 33, works

exactly as 𝐺1 but with the highlighted grey line. Fore the oracle

query OEncR, 𝑏𝑖 = 0 the variables 𝑠𝑖 are randomly smapled as

𝑠𝑖 ← Z𝑞 and 𝑅𝑖 is computed as 𝑅𝑖 :=
𝑔𝑠𝑖

X . The distribution of 𝑠𝑖 and

𝑅𝑖 are identical to the previous hybrid and therefore ExpOW𝐺2

A and

ExpOW𝐺2

A are indistinguishable.

ExpOW𝐺1

A
Q := Q := ∅

(v̂k, ŝk ) ← �KGen(1𝜆 )
(X,w ) ← createR(1𝜆 )

w∗ ← AOŜig,OEncR (v̂k, X )
𝑏 := (X,w∗ ) ∈ R
return 𝑏

OŜig(m̂)
if m̂ ∈ Q abort

Q := Q ∪ m̂

𝜎 ← Ŝig(ŝk, m̂)
return

OEncR(m̂)
if m̂ ∈ Q abort

Q := Q ∪ m̂
𝑆op = 𝑆unop := ∅
for 𝑖 ∈ [0, 𝛾 ] :

𝑟𝑖
$← Z𝑞 ; 𝑅𝑖 := 𝑔𝑟𝑖

𝑐𝑖 := WES.Enc( (v̂k, m̂), 𝑟𝑖 ; 𝑟 ′𝑖 )
(𝑏1, 𝑏2, ..., 𝑏𝛾 ) ← {0, 1}𝛾

for 𝑖 ∈ [0, 𝛾 ] :
if 𝑏𝑖 = 1 then

𝑆op := 𝑆op ∪ { (𝑖, 𝑟𝑖 , 𝑟 ′𝑖 ) }
if 𝑏𝑖 = 0 then

𝑠𝑖 := 𝑟𝑖 + w
𝑆unop := 𝑆unop ∪ { (𝑖, 𝑠𝑖 , 𝑐𝑖 ) }

𝑐 := {𝑐𝑖 }𝑖∈ [0,𝛾 ]
𝜋 := {𝑆op, 𝑆unop, {𝑅𝑖 }𝑖∈ [0,𝛾 ] }
return (𝑐, 𝜋 )

Figure 31: Definition of the experiment ExpOW𝐺1

A .

Claim 14. Let Bad1 be the event that:����� Pr[ExpOW𝐺1

A (𝜆) = 1]
− Pr[ExpOW𝐺2

A (𝜆) = 1]

����� > negl

Assume thatWES used inOEncR is IND-CPA secure. Then Pr[Bad1 (1𝜆) =
1] ≤ negl(𝜆).

Proof. Let 𝑞𝐸 := |Q| denote the number of queries to oracle

OEncR. We consider 𝑞𝐸 sub-games such that in sub-game 𝑗 ∈
[1, 𝑞𝐸 ], for queries 1 to 𝑗 − 1 to oracle OEncR ciphertexts 𝑐𝑖 , for

𝑖 ∈ [1, 𝛾], of 𝑆unop encrypt 0 (i.e., as in game ExpOW𝐺2

A ); while for

queries 𝑗 + 1 to 𝑞𝐸 ciphertexts 𝑐𝑖 for 𝑖 ∈ [1, 𝛾] of 𝑆unop encrypt 𝑟𝑖
(i.e., as in game ExpOW𝐺2

A ). The intuition is that if Pr[Bad1 (1𝜆)] >
negl(𝜆), then there exixts some PPT distinguisher A𝑖 , for 𝑖 ∈
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ExpOW𝐺2

A
Q := Q := ∅

(v̂k, ŝk ) ← �KGen(1𝜆 )
(X,w ) ← createR(1𝜆 )

w∗ ← AOŜig,OEncR (v̂k, X )
𝑏 := (X,w∗ ) ∈ R
return 𝑏

OŜig(m̂)
if m̂ ∈ Q abort

Q := Q ∪ m̂

𝜎 ← Ŝig(ŝk, m̂)
return

OEncR(m̂)
if m̂ ∈ Q abort

Q := Q ∪ m̂
𝑆op = 𝑆unop := ∅
for 𝑖 ∈ [0, 𝛾 ] :

𝑟𝑖
$← Z𝑞 ; 𝑅𝑖 := 𝑔𝑟𝑖

(𝑏1, 𝑏2, ..., 𝑏𝛾 ) ← {0, 1}𝛾

for 𝑖 ∈ [0, 𝛾 ] :
if 𝑏𝑖 = 1 then

𝑐𝑖 := WES.Enc( (v̂k, m̂), 𝑟𝑖 ; 𝑟 ′𝑖 )
𝑆op := 𝑆op ∪ { (𝑖, 𝑟𝑖 , 𝑟 ′𝑖 ) }

if 𝑏𝑖 = 0 then

𝑠𝑖 := 𝑟𝑖 + w

𝑐𝑖 := WES.Enc( (v̂k, m̂), 0)
𝑆unop := 𝑆unop ∪ { (𝑖, 𝑠𝑖 , 𝑐𝑖 ) }

𝑐 := {𝑐𝑖 }𝑖∈ [0,𝛾 ]
𝜋 := {𝑆op, 𝑆unop, {𝑅𝑖 }𝑖∈ [0,𝛾 ] }
return (𝑐, 𝜋 )

Figure 32: Definition of the experiment ExpOW𝐺2

A .

[1, 𝑞𝐸 ], that it can determinewith non-negligible probabilitywhether

it plays game ExpOW𝐺1

A or game ExpOW𝐺2

A based on the 𝑖𝑡ℎ answer

of oracle OEncR.
More specifically, assume by contradiction that Pr[Bad1 (1𝜆)] >

negl(𝜆), then there exists PPT distinguisher A 𝑗∗ such that:

Pr

𝑏 = 𝑏∗

����� 𝑏
$← {0, 1}

ExpOW
𝑠𝑢𝑏𝐺 𝑗∗
A (𝜆)

𝑏∗ ← A 𝑗∗ ( )

 >
1

2

+ negl

We can construct adversary B that uses A𝑖∗ to break IND-CPA

the encryption used in OEncR with the following steps:

• B initializes the challenger, who sends v̂k.

ExpOW𝐺3

A
Q := Q := ∅

(v̂k, ŝk ) ← �KGen(1𝜆 )
(X,w ) ← createR(1𝜆 )

w∗ ← AOŜig,OEncR (v̂k, X )
𝑏 := (X,w∗ ) ∈ R
return 𝑏

OŜig(m̂)
if m̂ ∈ Q abort

Q := Q ∪ m̂

𝜎 ← Ŝig(ŝk, m̂)
return

OEncR(m̂)
if m̂ ∈ Q abort

Q := Q ∪ m̂
𝑆op = 𝑆unop := ∅
for 𝑖 ∈ [0, 𝛾 ] :
(𝑏1, 𝑏2, ..., 𝑏𝛾 ) ← {0, 1}𝛾

for 𝑖 ∈ [0, 𝛾 ] :
if 𝑏𝑖 = 1 then

𝑟𝑖
$← Z𝑞 ; 𝑅𝑖 := 𝑔𝑟𝑖

𝑐𝑖 := WES.Enc( (v̂k, m̂), 𝑟𝑖 ; 𝑟 ′𝑖 )
𝑆op := 𝑆op ∪ { (𝑖, 𝑟𝑖 , 𝑟 ′𝑖 ) }

if 𝑏𝑖 = 0 then

𝑠𝑖
$← Z𝑞 ; 𝑅𝑖 :=

𝑔𝑠𝑖

X

𝑐𝑖 := WES.Enc( (v̂k, m̂), 0)
𝑆unop := 𝑆unop ∪ { (𝑖, 𝑠𝑖 , 𝑐𝑖 ) }

𝑐 := {𝑐𝑖 }𝑖∈ [0,𝛾 ]
𝜋 := {𝑆op, 𝑆unop, {𝑅𝑖 }𝑖∈ [0,𝛾 ] }
return (𝑐, 𝜋 )

Figure 33: Definition of the experiment ExpOW𝐺3

A .

• B runs (X,w) ← createR(1𝜆).
• B invokes A𝑖∗ on input v̂k and X.
• OEncR queries are treated in the following manner: (i) for

𝑗 ∈ [1, 𝑗∗−1],B answerswith 𝑐𝑖 := WES.Enc((v̂k, m̂), 𝑟 𝑗 ; 0)
for 𝑏𝑖 = 0; (ii) for 𝑗 ∈ [ 𝑗∗ + 1, 𝑞𝐸 ], B answers with 𝑐𝑖 :=

WES.Enc((v̂k, m̂), 𝑟 𝑗 ; 𝑟 ′𝑗 ); and (iii) for 𝑗 = 𝑗∗, B chooses at

random 𝑖∗ such that 𝑏𝑖∗ = 0 and sets �̂�∗ := �̂�,𝑚0 := 𝑟𝑖∗

and 𝑚1 := 0 and forwards the tuple (�̂�∗,𝑚0,𝑚1) to the

challenger to obtain 𝑐𝑏 which in turn B forwards to A 𝑗∗

as 𝑐𝑖∗ .

• Thereafter A 𝑗∗ outputs w∗.
• B receives the guess 𝑏∗ from A 𝑗∗ .
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• B forwards 𝑏∗ to the challenger.

As already described, B knows all the private information re-

quired to run oracle OEncR. Regarding oracle OŜig, B forwards

the query to OSig of the WES oracle, which returns 𝜎 . Note that

this means that memory Q and the memory of WES oracle are

synchronized.

Our adversaryB perfectly simulates the sub-game ExpOW
𝑠𝑢𝑏𝐺 𝑗∗
A

toA 𝑗∗ . Moreover, it is easy to see thatB is a PPT algorithm. If adver-

sary A 𝑗∗ outputs 𝑏
∗ = 𝑏 with probability higher than

1

2
+ negl(𝜆),

since the only difference between games ExpOW𝐺1

A and ExpOW𝐺2

A
is the ciphertext 𝑐𝑖∗ of the 𝑗

∗
th query to OEncR that was forwarded

to the challenger, the bit forwarded by A can also be used to dif-

ferentiate in the IND-CPA game. However, this contradicts the

assumption that theWES used is IND-CPA.

Our adversary B chooses which sub-game 𝑗∗ to play with prob-

ability
1

𝑞𝐸
. Moreover, B chooses which ciphertext 𝑐𝑖∗ to forward to

the challenger with probability
1

𝛾 Thus, Pr[Bad1 (1𝜆)] ≤ negl(𝜆)
𝛾𝑞𝐸

≤
negl(𝜆) and this claim has been proven. Therefore, we can conclude

that ExpOW𝐺1

A ≈ ExpOW𝐺1

A □

Claim 15. Assume that the discrete logarithm problem is hard. Then
Pr[ExpOW𝐺3

A (1
𝜆) = 1] ≤ negl(𝜆).

Proof. Assume by contradiction that there exists PPT adversary

A such that Pr[ExpOW𝐺3

A (1
𝜆) = 1] > negl(𝜆). We can construct

adversary B that uses A to solve the discrete logarithm problem

with the following steps:

• B initializes the challenger, who sends X.
• B runs (v̂k, ŝk) ← �KGen(1𝜆).
• B invokes A on input v̂k and X to obtain w∗.
• B forwards w∗ to the challenger.

Regarding oracles OŜig and OEncR, B knows all the private

information required to simulate them.

Our adversary B perfectly simulates ExpOW𝐺3

A toA. Moreover,

it is easy to see that B is a PPT algorithm. Now if A wins with

Pr[ExpOW𝐺3

A (1
𝜆) = 1] > negl(𝜆), this means that (X,w∗) ∈ R,

therefore winning ExpOW𝐺3

A with non-negligible probability im-

plies solving the discrete logarithm problem with non-negligible

probability. However, this contradicts the assumption that the dis-

crete logarithm problem is hard, thus such an A cannot exist and

this claim has been proven. □

Wehave shown that ExpOW𝐺0

A ≈ ExpOW𝐺3

A and that Pr[ExpOW𝐺3

A (1
𝜆) =

1] ≤ negl(𝜆). Therefore Theorem 7 has been proven. □

Theorem 8. Assume D̂S is signature schemes that satisfy unforge-
ability andWES be a secure witness encryption based on signatures
scheme. Then, our protocol offers Verifiable witness encryption for a relation
according to Definition 14.

Proof. Assume that an adversary A breaks the verifiability

of the protocol. This implies that A message m̂ outputs oracle

verification key v̂k, oracle signature 𝜎 on message m̂ , outputs

(𝑐, 𝜋) of EncR and a public statement X such that:

(1) 𝜎 is a valid signature, i.e., V̂f (v̂k, m̂, 𝜎) = 1.

OM-CCA-A2L

q := 0

(ek, dk ) ← KGen(1𝜆 )

(X𝑖 ,w𝑖 ) ← createR(1𝜆 )

𝑐𝑖 ← Enc(ek,w𝑖 ){
w′𝑖

}
𝑖∈ [0,𝑘 ] ← A

OA2L (ek, { (X𝑖 , 𝑐𝑖 ) }𝑖∈ [0,𝑘 ] )
𝑏0 := ∀𝑖,w′𝑖 = w𝑖

𝑏1 := q < 𝑘

return 𝑏0 ∧ 𝑏1

OA2L(vk,m, X, 𝑐, �̂�)
if vk ∉ (ADP.KGen(1𝜆 ) ) abort

w ← Dec(dk, 𝑐 )
if PreVf (X,m, vk, �̂� ) ∧ (X,w ) ∈ R
q := q + 1
return w

else return ⊥

Figure 34: One more CCA-A2L

(2) The output of EncR is valid, i.e., VfEncR(𝑐, 𝜋, (v̂k, m̂), X) =
1.

(3) The final outputted witness w∗ ← DecR(𝜎, 𝑐, 𝜋) is not in a

hard relation with the public statement X, i.e., (X,w∗) ∉ R.

We will now show that if the first and second conditions hold

true, then algorithm DecR will output a witness w∗ so that it holds

that (w∗, X) ∈ R except with negligible probability.

Recall that (m̂, v̂k) is associatedwith𝛾-many ciphertexts (𝑐1, 𝑐2, ..., 𝑐𝛾 )
that encrypt random values (𝑟1, 𝑟2, ..., 𝑟𝛾 ). Note that algorithmDecR
decrypts these ciphertexts in order to get the encrypted values

(𝑟1, 𝑟2, ..., 𝑟𝛾 ).
Next, recall that since algorithm VfEncR outputs 1, we are guar-

anteed that: 𝑔𝑠𝑖 = 𝑅𝑖 ⊗ X, for 𝑖 ∈ [0, 𝛾], where 𝑅𝑖 = 𝑔𝑟𝑖 . Thus, the

following equation is satisfied in the exponent, 𝑠𝑖 = 𝑟𝑖 + w.

Setting the total number of ciphertexts 𝛾 sufficiently large, then

the probability of all (𝑟1, 𝑟2, ..., 𝑟𝛾 ) be invalid is negligible according
to theorem 2 of [13]. More precisely, we are guaranteed that there

exists at least one 𝑟𝑖 such that 𝑐𝑖 := WES.Enc((v̂k, m̂), 𝑟𝑖 ; 𝑟 ′𝑖 ) and
𝑅𝑖 = 𝑔𝑟𝑖 (recall that 𝑅𝑖 was part of 𝜋 ). This implies that a valid

witness w∗ can be computed as w∗ = 𝑠𝑖 − 𝑟𝑖 . Hence, giving the

property of verifiability. □

D PROOF OF LEMMA 1
In [29], Lemma 4.8 is very similar to Lemma 1. They prove that

the following property, called one more CCA A2L (OM-CCA-A2L)

(Fig. 34) holds if the OMDL assumption holds. Instead of proving

directly against OMDL, we will prove Lemma 1 by contradiction

against OM-CCA-A2L.

Claim16. Assume that OM-CCA-A2L holds. Then Pr[OMDL-LHE(1𝜆) =
1] ≤ negl(𝜆).
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Proof. Assume by contradiction that there exists a PPT adver-

sary A such that Pr[OMDL-LHE(1𝜆) = 1] ≤ negl(𝜆). We can

construct adversary B that uses A to break OM-CCA-A2L with

the following steps:

• B initializes the challenger, who provides B with ek and

{(X𝑖 , 𝑐𝑖 )}𝑖∈[0,𝑘 ] .
• B invokes A on input ek and {(X𝑖 , 𝑐𝑖 )}𝑖∈[0,𝑘 ] to obtain{

w′
𝑖

}
𝑖∈[0,𝑘 ] .

• B sends

{
w′
𝑖

}
𝑖∈[0,𝑘 ] to the challenger.

Regarding oracle OMDL-LHE, for every query that B receives, he

will run (vk, sk) ← ADP.KGen and sample a message m. Then he

generates a presignature using the X queried by A. Now, he will

run the query to oracle OA2L using c and X as received from A,

together with the generated vk, messagem and presignature. Since

the presignature check of OA2L will always pass, OA2L will only

return ⊥ if c is not encrypting the DL of X. This ensures that q of

both oracles is the same.

Our adversary B perfectly simulates OMDL-LHE to A. More-

over, it is easy to see that B is a PPT algorithm. Now, since the

count of both oracles is synchronized and the k is the same in both

games, if

{
w′
𝑖

}
𝑖∈[0,𝑘 ] wins OMDL-LHE, it also wins OM-CCA-A2L.

However, this contradicts the assumption that OM-CCA-A2L holds.

Therefore, A does not exist. □
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