
This paper has been accepted at IEEE International Symposium on Hardware Oriented

Security and Trust (HOST), 2025.

SoCureLLM: An LLM-driven Approach for
Large-Scale System-on-Chip Security Verification

and Policy Generation
Shams Tarek, Dipayan Saha, Sujan Kumar Saha, Mark Tehranipoor, Farimah Farahmandi
Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA

{shams.tarek, dsaha, sujansaha}@ufl.edu, {tehranipoor, farimah}@ece.ufl.edu

Abstract—Contemporary methods for hardware security ver-
ification struggle with adaptability, scalability, and availability
due to the increasing complexity of the modern system-on-
chips (SoCs). Large language models (LLMs) have emerged as
a viable approach to address these shortcomings in security
verification because of their natural language understanding,
advanced reasoning, and knowledge transfer capabilities. How-
ever, their application to large designs is limited by inherent
token limitation and memorization constraints. In this paper,
we introduce SoCureLLM, an LLM-based framework that ex-
cels in identifying security vulnerabilities within SoC designs
and creating a comprehensive security policy database. Our
framework is adaptable and adept at processing varied, large-
scale designs, overcoming the abovementioned issues of LLM.
In evaluations, SoCureLLM detected 76.47% of security bugs
across three vulnerable RISC-V SoCs, outperforming the state-
of-the-art security verification methods. Furthermore, assessing
three additional large-scale RISC-V SoC designs against various
threat models led to the formulation of 84 novel security policies,
enriching the security policy database. Previously requiring
extensive manual effort to craft, these newly generated security
policies can be used as guidelines for developing secured SoC
designs.

Index Terms—Large Language Model, Hardware Security,
Verification, Security Bug Detection, Policy Generation

I. INTRODUCTION

Modern system-on-chips (SoCs) integrate third-party intel-
lectual property (3PIP) from global vendors, making security
verification crucial due to their complexity and the horizontal
development process. Hardware security vulnerabilities may
occur due to unintentional design mistakes, deliberate actions
by malicious insiders, security-unaware optimization by CAD
tools, or flaws within test and debug infrastructures. The rise
in microarchitectural attacks highlights the need for robust se-
curity verification to protect assets such as sensitive user data,
cryptographic keys, and configuration information. Hardware
vulnerabilities can cause massive financial losses and product
recalls in the semiconductor industry [1]. To address this, there
is an industry shift towards a security development lifecycle
(SDL) for SoCs [2]. Nonetheless, current verification tools

focus more on functional than security aspects, often missing
critical vulnerabilities in the pre-silicon phase.

Hardware security vulnerabilities can be of different types,
such as information leakage, access control violation, unau-
thorized memory access, fault injection attacks, and side-
channel attacks. To address these vulnerabilities, recent re-
search predominantly targets establishing security verification
frameworks for SoC designs, employing methods such as
information flow tracking [3], assertion-based security prop-
erty verification [4], fuzzing [5], runtime verification monitor
[6], and Concolic testing [7]. However, these methods fall
short of scalability for large designs. They are not adaptable
enough to use in other designs without notable modifications,
have limited coverage, and demand significant computational
resources [8]. These approaches also necessitate extensive
manual analysis of designs, identifying threat models and
vulnerabilities to formulate effective security policies for thor-
ough verification. Furthermore, the commercial tools available
for security verification often require in-depth knowledge to
operate effectively.

To address such limitations of contemporary verification
methods, there is a pressing need for a solution that pos-
sesses a nuanced understanding of complex SoC designs and
can transfer knowledge of one design to another to uncover
vulnerabilities effectively but requires the least manual inter-
vention. Large language models (LLMs), with their advanced
pattern recognition, natural language understanding, advanced
reasoning, and knowledge transfer capabilities, stand out as
promising candidates for this task. LLMs can analyze design
documentation and codebases to learn the specific characteris-
tics of one design and apply this knowledge to another, poten-
tially revealing security weaknesses that are not immediately
apparent. Moreover, LLMs can potentially automate parts of
the verification process, significantly reducing the need for
manual analysis. However, existing LLMs maintain a fixed
context length1, which is not long enough to accommodate

1Context Length: The number of tokens an LLM can process at once.

a large design. Hence, current LLM-based hardware security
solutions focus only on small hardware designs [9] because of
token2 limitation and limited memorization3 issues.

To put a solution together, we introduce SoCureLLM,
an LLM-based hardware security verification technique that
solves the abovementioned problems by integrating the me-
thodical partitioning of complex designs, enriching the anal-
ysis with contextual summarization for continuity, and em-
ploying refined prompting strategies for targeted exploration.
Along with the potential to detect hardware vulnerabilities,
SoCureLLM also creates a comprehensive security policy
database, which is essential for ensuring the security robust-
ness of hardware designs.

The key contributions of our work are summarized as
follows:
• SoCureLLM is the first LLM-based hardware security
verification framework to handle large-scale SoC designs.
• The framework exhibits scalability and flexibility, effec-
tively addressing the token limitation and memorization prob-
lems typically associated with LLMs.
• We introduce an automated vulnerability detection method
within SoCureLLM, which thoroughly evaluates designs for
potential security flaws.
• SoCureLLM integrates a procedure for creating an ex-
tensive security policy database through threat model-based
assessments of the large designs.
• The performance of our framework is demonstrated
through a rigorous evaluation of various buggy SoC designs,
and we compare the performance with existing security
verification methods.

In the remainder of this paper, Section II narrates the
preliminaries and related works. Later, Section III describes
the proposed methodology. Afterward, the experimental setup,
a case study, and the results are discussed in Section IV.
Finally, Section V concludes the paper.

II. BACKGROUND & PRIOR WORKS

In Section II-A, we initially provide an overview of the
foundational concepts related to LLMs and SoC security to fa-
miliarize the reader with the basics. This foundational knowl-
edge is essential for comprehending the proposed methodology
and discussions presented in this paper. Subsequently, Section
II-B explores the relevant research work.

A. Preliminaries

1) Large Language Model (LLM)
LLMs, a subset of generative artificial intelligence (GAI),

specialize in processing and generating natural language.
They are trained on extensive text datasets, which enables
them to perform a wide range of linguistic tasks, such as
extracting knowledge from the provided information. The
transformer architecture [10] serves as the foundation for the

2Token: The smallest unit of text LLM processes.
3Lack of Memorization: Limitation of LLMs in retaining and recalling

information over an extended period.

most advanced LLMs such as GPT-3 [11], and GPT-4 [12].
This architecture allows GPT models to generate coherent
and contextually relevant text by building upon each token
it produces, iteratively refining the output as it progresses
through the sequence.

2) In-context Learning & Prompting
In-context learning (ICL) [11] leverages the innate capabil-

ity of LLMs to adapt their outputs based on given examples or
instructions within the input prompt. This allows the models
to perform tasks without explicit training or fine-tuning for
each new task - a process typically requiring substantial
computational resources and time.

Prompting, in turn, is the mechanism by which users
communicate with LLMs, providing them with the context
or examples they need to learn in context. The quality of the
prompt directly influences the success of in-context learning
and the performance of the model. A well-engineered prompt
can succinctly convey the task requirements and guide the
LLM toward the desired output. With this importance in
mind, various prompting techniques, such as chain of thought
(CoT) [13], have emerged. These techniques aim to optimize
how LLMs are guided during inference to produce the most
accurate and relevant responses possible.

3) Parameters in LLM models
One significant benefit of LLMs compared to traditional

deep learning methods is their ability to control the output
generated using various parameters [14]. An example of such
a parameter is the temperature, which adjusts the variability in
the predictions made by the model. When generating text, an
LLM predicts the next word based on a probability distribution
that reflects the likelihood of different words appearing in con-
text, as learned from its training data. The temperature setting
influences this distribution: A higher temperature results in a
broader, more uniform spread, leading to outputs that are more
diverse and unpredictable. Conversely, a lower temperature
narrows the distribution, making the output more consistent
and predictable.

4) SoC Security Vulneabilities
Hardware security vulnerabilities are weak points in the

design of a system that attackers can exploit. For example,
during interrupt handling, if the processor is not running at the
highest privilege level, any attacker can exploit the interrupt
service routine (ISR), potentially gaining control over the en-
tire system. The vulnerabilities might arise unintentionally due
to design mistakes or intentionally through rogue employees
or compromised 3PIPs, often revealed during the transition
from models to physical implementations. CAD tools may
inadvertently contribute to these bugs during synthesis as
they have not been designed with security in mind. Test
and debug infrastructures could also expose the system to
post-manufacture security breaches. Common vulnerabilities
and exposures (CVE) and common weakness enumeration
(CWE) by MITRE are the primary references to classify these
issues, offering a comprehensive list of prevalent hardware
and software vulnerabilities. Table I shows a portion of the
vulnerabilities considered in this paper.

Fig. 1: Overall flow of the proposed SoCureLLM framework

5) Security Policy
Modern SoC designs contain sensitive information that

requires protection from unauthorized access, guided by prin-
ciples of confidentiality, integrity, and availability [15]. Se-
curity policies translate these principles into practical design
constraints, helping IP designers and design integrators in es-
tablishing and executing protective measures. Security policies
vary, with some ensuring access control, protocol verification,
and memory defense, while others guard against informa-
tion leakage, fault injection, and denial of service. However,
formulating these policies for modern SoCs is complex and
makeshift, demanding considerable manual labor based on
specific customer needs and design details. To address the
aforementioned privilege escalation issue, a verification en-
gineer must understand the ISR’s specific implementation in
the design under test, as well as the potential consequences
of privilege escalation. Crafting such a security policy will be
time-intensive due to these detailed requirements.

B. Prior Works
As the security verification techniques in SoC designs

evolve, H. Witharana et al. [4] introduced an automated frame-
work for generating security assertions tailored to specific
vulnerabilities. However, the effort is limited to a specific set
of vulnerabilities. B. Ahmad et al. [16] developed security-
specific scanners to identify and analyze hardware CWEs
and evaluated their performance in different open-source de-
signs. This method still involves manual intervention. Machine
learning-based hardware verification methods [17] face chal-
lenges such as design dependency, data scarcity, scalability,
and efficiency problems, limiting their broader applicability
and effectiveness. Recent research efforts [9], [18], [19], [20]
using LLM have begun to address the detection and mitigation

of hardware vulnerabilities. D. Saha et al. [18] explored
the potential capabilities of LLM in different SoC security
tasks and mentioned the challenge of LLM-guided methods
in handling large hardware design due to the limitation of
context length. The study in [21] used LLMs to identify
and map security vulnerabilities in SoC designs to relevant
CWEs, generate assertions, and enforce security policies, with
demonstrated efficacy in open-source SoC benchmarks. W.
Fu et al. [20] curated a dataset of hardware design defects
and remediation steps from open-source projects. They trained
medium-sized LLMs to identify hardware bugs but excluded
lengthy files exceeding the models’ context limits, leaving
large hardware designs unanalyzed. In another work, D. Saha
et al. [19], identified 16 different security vulnerabilities and
weaknesses in small FSM designs using hand-crafted prompts.
However, none of these works addressed the challenge of
locating security bugs in large designs, which is the main
objective of this paper.

III. PROPOSED SOCURELLM FRAMEWORK

Identifying vulnerabilities early in the design process
is paramount to upholding the integrity, confidentiality,
and availability of designs. A comprehensive database of
security policies greatly enhances the validation of any
security verification framework, including the detection of
vulnerabilities. Our proposed framework intends to harness
the capabilities of LLMs to fulfill these objectives. Within this
framework, the LLM adopts different names depending on
its function: it is the “Summarizer LLM” when condensing
information, the “Detector LLM” when scanning for security
policy violations, the “Finder LLM” when locating potential
attack points, and the “Generator LLM” when crafting security
policies for IPs. The important steps of this framework are

TABLE I: A PORTION OF THE HARDWARE VULNERABILITIES USED IN THIS WORK

CWE ID Vulnerability
Type

Vulnerability Description CIA Violation Required Security Policy Security Implication

CWE-1198 Privilege level Improper privilege assignment Confidentiality The privilege level must revert to
the highest level upon returning
from a debug session

Unauthorized access
control

CWE-269 Privilege level Improper interrupt handling Confidentiality The process of interrupt handling
should only occur in the highest
privilege level of a processor core

Unauthorized access
control

CWE-269 Privilege level Illegal changes in enable signals Confidentiality,
integrity

Privilege levels should remain un-
changed during instruction execu-
tion, and updates to read/write en-
able for control and data registers
should not occur during privilege
transfers

Unauthorized access
control

CWE-250 Privilege level Illegal virtual page access request Integrity The Memory Management Unit
(MMU) must consistently uphold
the appropriate privilege levels for
accessing virtual memory pages

Unauthorized access
control

CWE-250 Privilege level Illegal instruction execution Confidentiality,
integrity

Instructions with the highest privi-
lege level of a process should main-
tain their privilege status through-
out the execution

Unauthorized access
control

CWE-1260 Memory access Memory range overlapping Confidentiality The memory address ranges for all
security-critical IPs within an SoC
need to be distinct and clearly de-
fined

Unauthorized memory
access

CWE-284 Memory access Illegal DMA access Confidentiality The DMA controller must be moni-
tored while accessing the protected
memory region

Unauthorized memory
access

CWE-1245 FSM Vulnerable FSM encoding Integrity When transitioning between two
consecutive unprotected states, the
Hamming distance between them
must be 1

Access to protected
states

CWE-1271 Reset related Important register values were in-
accurately cleared during reset

Confidentiality Upon reset, all critical registers
must undergo initialization

Information leakage

CWE-506 Hardware Trojan A Trojan in the CSR mod-
ule, causing the Supervisor User
Memory Access (SUM) bit of the
MSTATUS register to be set to 1,
enabling access to user-level vir-
tual pages from supervisor mode

Confidentiality When supervisor mode does not
have access to user-level pages, the
SUM bit must be set to 0

Information leakage

CWE-506 Hardware Trojan Trojan implanted in decoder
module for tracking hardware ex-
ceptions, causing CPU to halt at
threshold

Availability, integrity The processor needs to monitor
unauthorized hardware exceptions

Denial of service
(DoS)

CWE-310 Crypto IP A Trojan within the AES engine,
resulting in the encryption pro-
cess being halted for an uncom-
mon plaintext byte, which acts as
a trigger.

Availability, integrity The AES engine should signal
DONE after completing the 10th
round of operations for a 128-bit
AES cipher key

Denial of service
(DoS)

CWE-310 Crypto IP A Trojan leading to the leakage
of the encryption key when en-
countering a rare plaintext byte

Confidentiality The AES encryption key must not
be exposed

Information leakage

CWE-1244 Debug Module Illegal JTAG access Confidentiality Every debugging session should
demand a password, with the pass-
word verification system correctly
implemented

Information leakage

CWE-1244 Debug Module Illegal JTAG access Confidentiality For every, debug request, there
should be a bitwise check after
every reset

Information leakage

presented in Figure 1. The following sections give detailed
explanations of each step.

Step 1 : Partitioning of Designs into Smaller Code Snippets:
In this framework, we employ large-scale, open-source buggy
SoC designs as our initial input. Since LLM cannot handle
such a large volume of tokens simultaneously, our framework
adopts a design partitioning approach. A Python-based
Verilog code divider splits the design into a series of smaller
code snippets based on various rules. Initially, the individual
IP modules are separated from each other. Subsequently, each
IP is further subdivided into smaller code segments. The code
snippets are saved as text files in a local repository. Although
the framework allows random segmentation of the design
without requiring complete functionality, we have defined a
set of rules based on various Verilog constructs to guide the
segmentation process. These rules consider factors such as
the number of lines of code, the count of ‘always’ blocks,
the presence of case statements, and any IP instantiations
within the module. For example, consider a control & status
register (CSR) IP module comprising 1500 lines of code; it
can be divided into 15 distinct code snippets. The first snippet
contains all inputs, outputs, and parameters. The second and
third snippets correspondingly encapsulate the CSR Read
logic and the CSR Write & update logic. The rest of the
code is divided into code snippets similarly, depending on the
other rules.

Step 2 : Generation of Additional Context through Summari-
zation: LLMs often struggle with context retention in
interactions. Apart from creating smaller code snippets, we
need to preserve and provide the information from earlier
segments during the complete analysis. To capture the
most significant information from each code snippet, we
generate a concise technical natural language summary for
every snippet. This stage employs the “Summarizer LLM”
to craft these summaries. A carefully constructed context
prompt helps the LLM in producing a thorough summary
that includes the signal, security, and functional information
of the code snippets. These summaries are subsequently
stored as text files within a local storage repository. Notably,
these summaries are rigorously constrained to a concise fixed
length. These condensed summaries play an important role in
step 3 as additional context in the framework.

The following textbox presents an example summary
derived from a segment of code pertaining to the CSR
module. This summary contains essential functional elements,
such as procedural blocks, as well as security-related details,
including privilege levels. Consider a scenario where the
security policy prompt requires verification of a particular
policy: after a debug session, the processor must revert to
the highest privilege level. When the code snippet is fed to
an LLM along with this summary (of a different snippet), it
will work as an additional context regarding the processor’s
privilege status.

Example of summary

This Verilog code snippet consists of three always_comb
blocks: privilege_check, exception_ctrl, and wfi_ctrl. The
privilege_check block checks for privilege violations when
performing operations on the Control Status Register (CSR).
For a violation, it sets the privilege_violation flag. The
exception_ctrl block handles exceptions, setting the cause
to ILLEGAL_INSTR and marking the exception as valid if
there’s access exception or privilege violation. The wfi_ctrl
block controls the Wait for Interrupt (WFI) instruction. It sets
the wfi_d flag based on the status of mip_q, debug_req_i,
irq_i[1], debug_mode_q, csr_op_i, and ex_i.valid. Machine
(M) mode is the highest privilege level for the CSR module.

Step 3 : Detection of Security Policy Violation: Following
the generation of summaries and code snippets, in this phase,
our framework proceeds to employ the “Detector LLM”. In
this particular step, we employ a predefined policy prompt
that contains the security policies to be checked, with the aim
of identifying a spectrum of hardware vulnerabilities within
the code snippets. To ensure the correctness of the decisions
made by the LLM, we follow a specific prompting strategy
while crafting the security policy prompt. The details of this
prompting strategy are comprehensively described in Section
III-A.

In this recursive step, the Detector LLM analyzes each
code snippet against a security policy prompt. The LLM then
produces a response that may confirm or deny violations or
seek more context for a definitive ruling on policy compliance.
The results are marked as conclusive if a clear affirmation or
negation of the policy violation is confirmed. Otherwise, the
decisions are inconclusive. For conclusive findings, the LLM
generates an in-depth violation report detailing the findings
and explanations.

In contrast, when the decision remains inconclusive, we
need to provide additional context from the prior code snip-
pets. Hence, the current code snippet, along with the policy
prompt and the summary of the preceding code snippet, is
resubmitted to the LLM. This process repeats until the LLM
gives a definite answer on policy violations or until it has
reviewed all prior summaries. If still undecided, the LLM
creates a report stating it is inconclusive and moves on to the
next code snippet. For example, if our design is divided into
100 code snippets and we are examining the fourth snippet
using the LLM with the policy prompt, it will produce a
clear violation report or, if the decision is inconclusive, we
provide the LLM with the fourth snippet, policy prompt, and
a summary of the third snippet for further analysis. This step is
repeated, incorporating summaries of the 2nd and 1st snippets,
if needed, until the LLM reaches a conclusive decision. If it
remains unresolved after all summaries are reviewed, the LLM
compiles an inconclusive report for the fourth snippet before
moving on to the fifth.

Given the variability in outcomes across different code
snippets - where some may comply with security policies and
others may not - the framework adopts a cautious approach.
The framework prioritizes critical findings; therefore, if even

Algorithm 1 Detection of Security Policy Violation

Require: S = {s1, s2, . . . , sn}: Set of code snippets, V : Set
of vulnerabilities, Pv: Security policy prompt for v ∈ V ,
Pc: Context prompt, Lsummary: Summarization LLM, Ldetection:
Decision-making LLM, C: Conclusive decisions, O =
{o1,v, o2,v, . . . , on,v}: Intermediate detection outcomes, Rv:
Vulnerability report.

Ensure: {Rv | v ∈ V }: Set of reports for each vulnerability.
1: S ← D
2: Store S in memory
3: for all v ∈ V do
4: for all si ∈ S do
5: ri ← Lsummary(Pc, si) /* LLM creates summary */
6: oi,v ← Ldetection(si, Pv) /* LLM performs security check

*/
7: if oi,v /∈ C then
8: for j = i− 1 downto 1 do
9: oi,v ← Ldetection(si, Pv, rj) /* Includes summary */

10: if oi,v ∈ C then
11: break
12: Rv ← maxseverity(O) /*Reports as buggy, if detected in any

snippet*/
13: return {Rv | v ∈ V }

Algorithm 2 Generation of Security Policy

Require: S = {s1, s2, . . . , sn}: Set of code snippets, T : Set of
threat models, Lfinder: Finder LLM, Lgenerator: Generator LLM, Pt:
Threat model prompt, Pe: Policy extraction prompt, Fc: Fidelity
Checking.

Ensure: SP = {sp1,1, sp1,2, . . . , spn,m}: Set of security policies
approved after fidelity check.

1: Initialize SP = ∅
2: for all si ∈ S do
3: Initialize AP = ∅
4: for all t ∈ T do
5: APi ← Lfinder(si, Pt) /* LLM identifies potential attack

points*/
6: AP ← AP ∪APi /* Aggregate attack points */
7: for all ap ∈ AP do
8: spi,ap ← Lgenerator(si, ap, Pe) /* LLM creates security

policy */
9: passed← Fc(spi,ap) /* Manual scrutiny evaluates the

policy */
10: if passed then
11: SP ← SP ∪ {spi,ap} /* Add only approved policies

to SP */
12: return SP

a snippet exhibits noncompliance or a security flaw, the
whole design is marked as vulnerable. In the context of our
previous example, even if 1 out of 100 code snippets is
found to have issues after a thorough iterative assessment,
the framework would still categorize the overall design as
potentially vulnerable. The algorithm 1 concisely depicts the
hardware vulnerability detection flow (step 1 , 2 and 3) of
the proposed framework.

Step 4 : Generation of New Security Policies: In this stage,
we require the inclusion of code snippets as input to the
“Finder LLM”. Distinct from the policy prompt approach,
we employ an alternative strategy. We craft a threat model

prompt containing a curated selection of threat models
capable of investigating breaches in integrity, confidentiality,
or availability within the design. This prompt is meticulously
designed to encompass various scenarios stemming from the
chosen threat models. The threat models in consideration
include the following categories: information leakage, denial
of service, confidentiality attack, privilege escalation, access
control violation, and unauthorized memory access. Upon
submitting these inputs, the Finder LLM formulates a
response that identifies potential points of vulnerability within
the design. These vulnerabilities can manifest as sensitive
signals, specific conditions, or distinct case statements. The
“Generator LLM” is supplied with potential attack points in
conjunction with the policy extraction prompt. This policy
extraction prompt directs the Generator LLM to transform
these potential attack points into actionable security policies.

Step 5 : Scrutinization of Generated Policies: The generated
policies are then subjected to a thorough examination. It is
possible that certain policies derived may coincide with the
security policies mentioned in the security policy prompt.
Additionally, some of the policies might be impractical to
implement. Therefore, this process of scrutinization filters out
such policies, retaining only the viable ones in an extensive
security policy database. Algorithm 2 concisely represents the
security policy generation aspect (step 1 , 4 and 5) of the
proposed framework.

A. Prompting Strategies

As discussed in Section II-A2, since the performance of an
LLM is significantly influenced by the prompting technique
used, our framework is designed with customized prompting
strategies to enhance performance.

Security
Policy

Explanatory
Evaluations

Input
Design

Final Security Verdict

Violation
Hypothesis

Robustness
Hypothesis

Comparative
Evaluation

Dual Hypotheses Prompting

(a)

Security

Policy

Explanatory

Evaluations

Input

Design

Final Security Verdict

Violation

Hypothesis

Robustness

Hypothesis
Comparative

Evaluation

Dual Hypotheses Prompting

Specific

Instruction

Input

Design

Relevant

Example

Additional

Context

Generated Output

Detailed Prompting

(b)

Fig. 2: Different prompting strategies used in SoCureLLM: Overview of dual
hypotheses prompting (a) and detailed prompting (b)

While formulating the security policy prompt in step 3 of
the proposed framework, we adopt a novel prompting strategy
named the “dual hypotheses prompting approach”, shown in
Figure 2a. In this prompting strategy, the LLM is tasked
first to consider two assumptions: violation and robustness
hypotheses. In the ‘violation hypothesis’, the LLM is asked
to assume that there is a violation of the given security policy
within the design and generate plausible explanations for such
violation. Then, in the ‘robustness hypothesis’, the LLM is
prompted to consider the contrary, focusing on the absence of

vulnerabilities by highlighting robust security features of the
design. By contrasting these two scenarios, the strategy facili-
tates a comprehensive evaluation, comparing the explanations
to ascertain which is more convincing. The strategy concludes
by evaluating the most logical explanation to determine the
presence or absence of the violation of the security policy.
This approach essentially mirrors scientific hypothesis testing,
adapted for the domain of SoC security. It enhances critical
evaluation by contrasting scenarios of risk, leading to more
informed and rational decision-making in SoC security.

Furthermore, we follow another prompting technique
(shown in Figure 2b) in designing the context, threat model,
and policy extraction prompts. In this method, the LLM is
guided by specific instruction, additional context, relevant
examples, and self-scrutiny instruction along with the input
design to produce enriched output. In this case, specific
instructions ensure the process adheres to defined criteria.
Additional context and relevant examples enrich decision-
making by providing depth and situational awareness, while
self-scrutiny instruction is a critical introspective step in which
the LLM reviews and optimizes its own processes to ensure
accuracy and relevance.

IV. EXPERIMENTS

In order to confirm the efficacy of the proposed framework
SoCureLLM, an extensive experiment has been performed on
multiple SoC designs. Section IV-A presents the experimental
setup. Next, Section IV-B explains the methodology through
a case study. Finally, Section IV-C describes the experimental
results with analysis.

A. Experimental Setup

Although any LLM can be used in the SoCureLLM frame-
work, we applied the GPT-4 [12] API within our framework
as the core LLM. We focused on detecting security policy
violations in three vulnerable RISC-V SoCs: hack@dac 2018
(PULPissimo core [22]), TrustHub benchmark, and HOST
2022 (Ariane core). The hack@dac 2018 SoC is a renowned
SoC with known bugs, often used as a benchmark in various
verification methods. Since the GPT-4 model was trained with
data up to September 2021, it might be familiar with the
hack@dac 2018 SoC. To circumvent issues related to the
availability of design information, we have opted for two other
SoCs, HOST 2022 and the TrustHub benchmark, as they are
mainly closed-source. We utilized three additional open-source
RISC-V SoCs for the security policy generation flow: CVA6,
lowRISC(ibex), and CV32E40P. A Python-based tool was
developed to segment Verilog code for analysis. Simulations
were conducted using Verilator and Cadence Incisive, while
Cadence Jaspergold SPV and FPV tools were employed for
formal verification.

B. Case Study

To evaluate the effectiveness of our proposed framework for
detecting vulnerabilities in SoCs, we selected three RISC-V-
based SoCs as detailed in the preceding section. This case

Dual Hypothesis Prompting (C.1)

//Input Code Snippet & Summaries will be added to the
prompt automatically//

Security Policy: The debug module’s password-checking
mechanism must be logically correct, and all related signals
should be cleared during the reset state.

Consider two scenarios: First, assume that the security
policy is breached in the provided code snippet and the
technical summaries. Write an analysis based on this
assumption.
Second, assume that the security policy is adhered to in the
provided code snippet and the technical summaries. Write
an analysis based on this assumption.

Compare the two analyses and identify the more logical
one. If you reach to a conclusive decision, provide a detailed
explanation based on your analysis. If your decision is
inconclusive, you will request additional summaries from
the previous snippets sequentially.

Your response should strictly maintain the following
structure:

Analysis under Breach of Security Policy Assumption:
add your response here

Analysis under Adherence to Security Policy
Assumption:
add your response here

Final Verdict:
add your response here
“The decision is conclusive” or “The decision is
inconclusive”

study illustrates the process of identifying a vulnerability
within the debug module of the TrustHub benchmark and the
hack@dac 2018 SoC. The bug is located within the JTAG TAP
controller module and is characterized by a flawed password
verification mechanism. This mechanism is crucial for any
debugger utilizing the JTAG module, with the presumption that
an attacker could mimic a debugger to bypass this password
verification. The vulnerability lies in the “correct” counter,
which tallies the number of correct password bits during each
attempt. The counter increases when the input password bit
aligns with the actual password bit, unlocking the module
when the counter matches or exceeds the total number of pass-
word bits. However, during the reset state, this “correct”
counter was not cleared to zero due to the bug, leaving the
module perpetually unlocked after a single successful entry,
thereby creating a potential backdoor for attackers.

SoCureLLM initially segments the entire SoC into multiple
code snippets based on the integrated IPs and peripherals.
Subsequently, these IPs are broken down into smaller code
snippets, which are saved as local text files alongside a
technical summary for each. The process is not repeated

Response from GPT-4 without correct Summary (C.2)

Analysis under Breach of Security Policy Assumption:
Retention of previous state information (passchk,
correct, bitmask) in other non-reset states can
be exploited if these variables are not appropriately re-
initialized when expected. An attacker could manipulate
the transition conditions by ensuring that correct hits
the specific value, thereby setting passchk to 1 without a
legitimate authentication sequence.

Analysis under Adherence to Security Policy
Assumption:
If the system enters the reset state, it should explicitly clear
signals like passchk, correct, bitmask, and others
to adhere to the policy that all related signals should be
reset. This ensures that any remaining or leftover signal
values from prior operations that could jeopardize security
are eliminated each time the machine is reset.

Final Verdict:
A definitive conclusion on vulnerability cannot be
reached without further details on other parts of the
system. Additional snippets or a broader view of the full
implementation would be necessary to determine compliance
or breach of the stated security policy conclusively.

The decision is inconclusive.

for the same SoC for other security policies. To identify
security policy violations (Step 3 in our framework), each
snippet is analyzed by the detector LLM with a security
policy prompt, employing the dual hypothesis prompting tech-
nique. The specific prompt used in the proposed framework
to detect the vulnerability of the JTAG module mentioned
above is shown in Textbox C.1. This prompt instructs the
detector LLM to evaluate based on two hypotheses: detecting
security policy violations and ensuring compliance with the
security policy. From these assessments, the detector LLM
determines whether it can make a definitive decision. If the
decision is conclusive, it produces a detailed report of the
violation. If the outcome is inconclusive, the SoCureLLM
framework supplies the summaries of previous code snippets
sequentially until a definitive conclusion is achieved. The
prompt additionally ensures that the detector LLM consistently
delivers structured responses. In the case of this vulnerability,
one snippet encompasses the actual implementation of the
password-checking logic, and a separate snippet contains the
reset state that includes the bug. When the snippet with the
password-checking logic is analyzed without any summary of
the previous code snippets, the response from the detector
LLM, as displayed in Textbox C.2, does not yield a definitive
conclusion. Nonetheless, it outlines the potential implications
of both violating and adhering to the security policy as outlined
in the prompt. However when the detector LLM reviews the
technical summary describing the reset state, where the bug
resides, along with the provided code snippet, it conclusively
identifies the snippet as vulnerable, as indicated in Textbox

Response from GPT-4 with correct Summary (C.3)

Analysis under Breach of Security Policy Assumption:
Because correct is not cleared, an attacker who
successfully unlocks the JTAG module once can bypass
the password-checking mechanism in subsequent attempts.
The counter value remains above the conditional check
(correct == 32’h8000_FFFF), automatically setting
passchk to 1, which should only happen after a successful
password check.
This persistent correct signal effectively disables the
password-checking mechanism after one successful entry,
making the module vulnerable to unauthorized access
without further password verification. The module stays
unlocked indefinitely, a severe security risk allowing
persistent, unauthorized access.

Analysis under Adherence to Security Policy
Assumption:
With the additional context provided, it becomes evident
that despite resetting passchk, failing to reset correct
is a significant oversight. This non-compliance with the
security policy undermines any other security measures
implemented in the code.
The initial analysis assumed the other signals might
be correctly managed based on the snippet. However,
knowing now that correct is not reset, it is clear
that the implementation does not adhere to the essential
security policy of clearing all sensitive signals during a reset.

Final Verdict:
Based on the combined analysis of both code snippets
and the new summary provided, the code is definitively
vulnerable. The failure to reset the correct signal allows
for an easily exploitable loophole that can leave the module
unlocked indefinitely, providing unauthorized access without
subsequent password verification. This represents a serious
security flaw requiring immediate correction to comply
with security policies and ensure the integrity of the module.

The decision is conclusive.

C.3. Notably, the security policy violation was so evident
that the detector LLM found no grounds to support policy
adherence. This case study emphasizes the importance of the
technical summaries in pinpointing security policy violations
and mitigating the limitations of LLM memorization, affirming
the value of feedback and segmentation-based examination
within SoC designs through SoCureLLM, thus enhancing the
accuracy of security assessments.

C. Evaluation

We examined three buggy SoCs containing 68 hardware
vulnerabilities in the security policy violation evaluation. Due
to space limitations, we cannot detail each vulnerability, en-
couraging readers to go through [22], [23] for comprehensive
information about the vulnerabilities and the security policies
used in the policy prompt. A general overview of the bugs can
be found in Section II-A4.

As discussed in Section III, for the identification of se-
curity bugs, our proposed method incorporates several key

TABLE II: Performance comparison between open-ended security assessment and proposed SoCureLLM in the detection of security bugs

Design IP LoC Open Ended Security Assessment Security Policy Violation Assessment
(SoCureLLM)

bugs in
the

module

bugs
detected

bugs
detected

successfully

TPR TNR # bugs
detected

bugs
detected

successfully

TPR TNR

Debug Unit 715 7 5 4 0.571 0.950 8 6 0.857 0.900
GPIO 408 5 3 2 0.400 0.955 4 4 0.800 1.000
CSR 1510 3 1 0 0.000 0.958 2 2 0.667 1.000

Hack@Dac2018 RISC-V Core 14635 7 3 2 0.286 0.950 9 5 0.713 0.800
AXI Interface 810 1 0 0 0.000 1.000 1 1 1.000 1.000

Crypto Modules 11606 4 2 1 0.250 0.957 2 2 0.500 1.000
Total 29684 27 14 9 0.333 0.963 26 20 0.741 0.956
CSR 1510 10 4 3 0.300 0.944 8 8 0.800 1.000

RISC-V Core 14635 4 5 2 0.500 0.870 5 4 1.000 0.957
Decoder 1418 4 2 1 0.25 0.957 4 3 0.750 0.957

Trust-Hub MMU 519 2 0 0 0.000 1.000 1 1 0.500 1.000
Benchmark PMP 278 1 0 0 0.000 1.000 1 1 1.000 1.000

AES 12624 4 2 2 0.500 1.000 3 3 0.750 1.000
AXI Interface 810 2 1 1 0.500 1.000 2 1 0.500 0.960

Total 31794 27 14 9 0.333 0.970 24 21 0.778 0.982
CSR 1510 4 3 2 0.500 0.900 3 3 0.750 1.000

Crypto Module 8133 5 2 2 0.400 1.000 5 4 0.800 0.890
HOST 2022 RISC-V Core 14635 4 3 2 0.500 0.900 5 3 0.750 0.800

memory unit 235 1 0 0 0.000 1.000 1 1 1.000 1.000
Total 24513 14 8 6 0.423 0.952 14 11 0.786 0.923

steps, including partitioning the design, summarizing, and
implementing novel prompting techniques. To demonstrate the
effectiveness of these enhancements, we compared our results
with an open-ended, LLM-driven, zero-shot bug identification
approach that identifies bugs without specific context about the
design in question. In this open-ended approach, we supplied
the LLM with a buggy design and posed a broad question
aimed at identifying general bugs. Table II highlights the
effectiveness of our framework in identifying vulnerabilities
through security policy violations compared to open-ended se-
curity assessment. The comparison indicates that SoCureLLM
has a true positive rate (TPR) of 76.47%, significantly out-
performing the open-ended method’s 35.29%, showcasing its
higher efficiency in accurately detecting vulnerabilities present
in the design. This highlights the critical role of specific
prompting and summarization in identifying security policy
violations. The open-ended verification approach lacked de-
fined prompts and summarization, leading to its inability to
detect most bugs. In addition, the framework achieves a higher
true negative rate (TNR) of 96.46%, showing its reliability in
confirming the absence of bugs and minimizing false positives.
The lines of code (LoC) in the table demonstrate our frame-
work’s capability to process large-scale designs, effectively
addressing the token limitation and memorization issues in
LLMs.

Figure 3 compares traditional security verification methods
(formal verification, simulation, static code analysis) and So-
CureLLM. The results indicate that SoCureLLM outperforms
other verification approaches in bug detection, specifically
detecting 16.18% more bugs than the closest competitor (sim-
ulation). Although simulation or static code analysis can catch
some bugs, they are generally slower than the other methods.
Moreover, it takes significant manual effort to prepare the test
stimuli for the process. Regarding formal verification, it can
pinpoint vulnerabilities when there are clear deviations from
specified requirements, such as value mismatches or parameter

5

13

15

20

7

16

17

21

4

9

9

11

0 10 20 30 40 50 60

Security Path Verification

Formal Property Verification

Simulation/Static Code Analysis

SoCureLLM

Number of bugs

Total Bugs= 68

Hack@dac 2018 TrustHub Benchmarks HOST 2022

Fig. 3: Comparison of our proposed framework with the contemporary security
verification techniques in terms of the number of bugs detected successfully
in the SoCs under test

inconsistencies (i.e., memory range overlaps, privilege escala-
tions, and reset-related issues). SoCureLLM is faster and more
user-friendly as it only needs design specifications to find vul-
nerabilities, unlike formal tools that take more time and need
detailed knowledge of the specifications and implementation.
For instance, autoSVA [24], a formal verification approach,
requires approximately one hour to evaluate the MMU module
of the Ariane core, while SoCureLLM completes the analysis,
including verifying all security policies, in just 15 minutes.

Some vulnerabilities, such as hardware Trojans, are inher-
ently difficult to detect due to their stealthy nature, posing chal-
lenges even for SoCureLLM. However, a potential approach
might involve fine-tuning a custom LLM with a substantial
dataset of hardware Trojan examples, enabling it to effectively
identify such threats to some extent. Future work could also
focus on inter-modular bugs by integrating an additional
mechanism to analyze interactions between modules, enabling
the detection of these complex vulnerabilities. In terms of
expenses, a complete analysis of the hack@dac 2018 SoC for

18

8

15

4

17

4

11

6
8

2

9

3

9

6 7

3

6

2

21

13
15

5

16

4

10

5

12

4

14

4

7

4
6

2

9

5

0

5

10

15

20

25

#Attack Points #New Policies #Attack Points #New Policies #Attack Points #New Policies

CVA6 Ibex Core CV32E40PN
um

be
r o

f A
tta

ck
 P

oi
nt

s/
N

ew
 P

ol
ic

ie
s

Total number of generated security policy= 84

Information Leakage Denial of Service Confidentiality Violation

Privilege Escalation Access Control Violation Unauthorized Memory Access

Fig. 4: Number of potential attack points for different threat model analyses
in each SoC and newly generated security policies after scrutinization.

vulnerability detection costs just around $7.5, a figure that
is significantly economical compared to the costs of time-
to-market and commercial licensing tools. Furthermore, this
cost is continually decreasing with the advancement of LLM
technology.

Figure 4 illustrates the quantity of potential weak points and
the security policies derived from chosen threat models for
three SoCs. The weak points are consistently about twice the
number of security policies, attributed to multiple attack points
leading to similar types of security policies. The SoCureLLM
develops security policies by spotting potential vulnerabilities,
but manual review is crucial to refine them. This step is nec-
essary to eliminate overly unfeasible ones like those for brute-
force attacks and dismiss broad ones such as suggesting the
use of physical unclonable functions (PUFs) or cryptomodules.
Despite these issues, the manual scrutiny process used here
is still more efficient than creating security policies for each
threat model from the ground up. A noticeable decrease in the
count of security policies across different designs is observed
due to the scrutinization process eliminating repetitive policies
from each SoC. Eventually, our framework generated 84
new security policies from the designs. A sample list of the
generated security policies for the lowRISC (ibex) controller
module is shown in the corresponding textbox.

Sample of generated security policies

• Monitor the ‘debug_mode_o’ signal to ensure it does not
leak through side channels.
• Review state transitions for potential escalation vectors,
especially around ‘current_priv_lvl_i’.
• Implement rate-limiting and sanity checks on the
‘irq_req_ctrl_i’ signal to prevent IRQ flooding.
• Implement strict access control checks on debug and
control registers.
• Audit the control flow for any unauthorized bypasses or
weak checks.
• Implement bounds checking for memory accesses and
handle exceptions for ‘data_misaligned_i‘.

D. Discussion

When evaluating our method compared to traditional static
bug detection techniques, it becomes evident that our ap-
proach achieves superior precision scores. We also compared
our approach with a recently published state-of-the-art bug
identification technique [25]. Our method demonstrated a
significant improvement in precision, achieving approximately
0.95 compared to their reported precision of around 0.70. Both
results were evaluated using the hack@dac 2018 Pulpissimo
buggy SoC. Although static methods are well known for their
use in hardware design and verification, they also fail to
provide absolute assurance in terms of security bug detection.
In contrast, our proposed method not only outperforms the
leading security bug identification techniques but also offers
distinct advantages that distinguish it from conventional static
analysis.

SoCureLLM offers a streamlined and automated implemen-
tation process, making it simpler and more efficient than tra-
ditional static methods, which often require extensive manual
effort. The ease of implementation extends to adaptability
as well; our approach is inherently flexible to accommodate
new vulnerabilities without requiring significant changes to
the underlying framework. This adaptability is due to the
consistent prompting strategies and implementation criteria
that we have established, which remain the same regardless
of the type or nature of the vulnerability being addressed. On
the other hand, static bug identification methods often neces-
sitate specific modifications for each new design, which can
be time-consuming and resource-intensive. Furthermore, So-
CureLLM employs rule-based partitioning and summarization
techniques, making it highly effective for analyzing large-scale
designs. Hence, SoCureLLM is designed to be compatible with
any LLM, whether open-source or closed-source, ensuring its
adaptability across different platforms.

A key advantage of our method is its scalability. Through an
iterative approach, we decompose the design into manageable
components, enabling a thorough examination of each part and
efficient handling of complex systems. This scalability ensures
our approach can adapt to larger, more intricate designs with-
out sacrificing performance, addressing a significant limitation
of many static methods.

A crucial aspect of maintaining the reliability of our method
involves controlling the variability of the responses generated
by LLM. To this end, we have set the temperature value used in
the experiments to be consistently low, as discussed in Section
II-A3. This setting minimizes randomness in the outputs,
ensuring that similar prompts will produce similar responses.
This consistency is vital for achieving more deterministic
behavior from the LLM, which is a key requirement for any
verification method that aims to be integrated into a formal
verification flow.

V. CONCLUSION

SoCureLLM offers a flexible, scalable solution to hard-
ware security verification for large-scale SoCs, employing an
LLM-based framework to effectively navigate the complexities

of modern SoC designs. It outperforms traditional methods
by efficiently detecting security vulnerabilities and enriching
security policy databases. SoCureLLM not only solves the
challenges in the existing hardware verification techniques
but also addresses the token limitation and memorization
constraints of traditional LLMs. The future direction of this
research involves fine-tuning an LLM specifically for hardware
security verification to enhance its precision and effectiveness
within the domain.

ACKNOWLEDGMENT

This research was funded by the U.S. National Science
Foundation (NSF) under the Faculty Early Career Develop-
ment (CAREER) Program, Grant No. 2339971.

REFERENCES

[1] Z. Kenjar, T. Frassetto, D. Gens, M. Franz, and A.-R. Sadeghi,
“V0ltpwn: Attacking x86 processor integrity from software,” in 29th
USENIX Security Symposium (USENIX Security 20), 2020, pp. 1445–
1461.

[2] H. Khattri, N. K. V. Mangipudi, and S. Mandujano, “Hsdl: A security
development lifecycle for hardware technologies,” in 2012 IEEE Inter-
national Symposium on Hardware-Oriented Security and Trust, 2012,
pp. 116–121.

[3] A. Ardeshiricham, W. Hu, J. Marxen, and R. Kastner, “Register transfer
level information flow tracking for provably secure hardware design,” in
Design, Automation & Test in Europe Conference & Exhibition (DATE),
2017, 2017, pp. 1691–1696.

[4] H. Witharana, A. Jayasena, A. Whigham, and P. Mishra, “Automated
generation of security assertions for rtl models,” J. Emerg. Technol.
Comput. Syst., vol. 19, 2023.

[5] T. Trippel, K. G. Shin, A. Chernyakhovsky, G. Kelly, D. Rizzo, and
M. Hicks, “Fuzzing hardware like software,” in USENIX Security
Symposium, 2022, pp. 3237–3254.

[6] A. Kassem and Y. Falcone, “Detecting fault injection attacks with
runtime verification,” in Proc. of the 3rd ACM Workshop on Software
Protection, 2019, p. 65–76.

[7] X. Meng, S. Kundu, A. K. Kanuparthi, and K. Basu, “Rtl-contest:
Concolic testing on rtl for detecting security vulnerabilities,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 41, no. 3, pp. 466–477, 2021.

[8] S. R. Rajendran, S. Tarek, B. M. Hicks, H. M. Kamali, F. Farah-
mandi, and M. Tehranipoor, “Hunter: Hardware underneath trigger for
exploiting soc-level vulnerabilities,” in 2023 Design, Automation Test
in Europe Conference Exhibition (DATE), 2023, pp. 1–6.

[9] B. Ahmad, S. Thakur, B. Tan, R. Karri, and H. Pearce, “On hardware
security bug code fixes by prompting large language models,” IEEE
Transactions on Information Forensics and Security, vol. 19, pp. 4043–
4057, 2024.

[10] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[11] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models
are few-shot learners,” in Advances in Neural Information Processing
Systems, vol. 33, 2020, pp. 1877–1901.

[12] OpenAI, “Gpt-4 technical report,” 2023. [Online]. Available:
https://arxiv.org/pdf/2303.08774.pdf

[13] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V.
Le, D. Zhou et al., “Chain-of-thought prompting elicits reasoning in
large language models,” Adv. in Neural Information Processing Systems,
vol. 35, pp. 24 824–24 837, 2022.

[14] [Online]. Available: https://platform.openai.com/docs/api-
reference/chat/create

[15] A. Basak, S. Bhunia, and S. Ray, “A flexible architecture for systematic
implementation of soc security policies,” in 2015 IEEE/ACM Interna-
tional Conference on Computer-Aided Design (ICCAD), 2015, pp. 536–
543.

[16] B. Ahmad, W.-K. Liu, L. Collini, H. Pearce, J. M. Fung, J. Valamehr,
M. Bidmeshki, P. Sapiecha, S. Brown, K. Chakrabarty et al., “Don’t
cweat it: Toward cwe analysis techniques in early stages of hardware
design,” in Proc. of the 41st IEEE/ACM Int. Conf. on Computer-Aided
Design, 2022, pp. 1–9.

[17] Z. Pan and P. Mishra, “A survey on hardware vulnerability analysis using
machine learning,” IEEE Access, vol. 10, pp. 49 508–49 527, 2022.

[18] D. Saha, S. Tarek, K. Yahyaei, S. K. Saha, J. Zhou, M. Tehranipoor, and
F. Farahmandi, “Llm for soc security: A paradigm shift,” IEEE Access,
vol. 12, pp. 155 498–155 521, 2024.

[19] D. Saha, K. Yahyaei, S. Kumar Saha, M. Tehranipoor, and F. Farah-
mandi, “Empowering hardware security with llm: The development of a
vulnerable hardware database,” in 2024 IEEE International Symposium
on Hardware Oriented Security and Trust (HOST), 2024, pp. 233–243.

[20] W. Fu, K. Yang, R. G. Dutta, X. Guo, and G. Qu, “Llm4sechw: Leaver-
ing domain-specific large language model for hardware debugging,”
Asian Hardware Oriented Security and Trust (AsianHOST), 2023.

[21] S. Paria, A. Dasgupta, and S. Bhunia. (2023) Divas: An llm-based end-
to-end framework for soc security analysis and policy-based protection.

[22] G. Dessouky, D. Gens, P. Haney, G. Persyn, A. Kanuparthi, H. Khattri,
J. M. Fung, A.-R. Sadeghi, and J. Rajendran, “HardFails: Insights into
Software-Exploitable hardware bugs,” in USENIX Security Symposium,
2019, pp. 213–230.

[23] S. Tarek, H. Al Shaikh, S. R. Rajendran, and F. Farahmandi, “Bench-
marking of soc-level hardware vulnerabilities: A complete walkthrough,”
in 2023 IEEE Computer Society Annual Symposium on VLSI (ISVLSI).
Los Alamitos, CA, USA: IEEE Computer Society, jun 2023, pp. 1–6.

[24] M. Orenes-Vera, A. Manocha, D. Wentzlaff, and M. Martonosi, “Au-
tosva: Democratizing formal verification of rtl module interactions,” in
ACM/IEEE Design Automation Conference (DAC), 2021, pp. 535–540.

[25] S. S. Miftah, S. Kundu, A. Mordahl, S. Wei, and K. Basu, “Rtl-spec:
Rtl spectrum analysis for security bug localization,” in 2024 IEEE
International Symposium on Hardware Oriented Security and Trust
(HOST). IEEE, 2024, pp. 171–181.

