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Abstract

We study network-agnostic secure multiparty computation with perfect security. Tradition-
ally MPC is studied assuming the underlying network is either synchronous or asynchronous.
In a network-agnostic setting, the parties are unaware of whether the underlying network is
synchronous or asynchronous.

The feasibility of perfectly-secure MPC in synchronous and asynchronous networks has been
settled a long ago. The landmark work of [Ben-Or, Goldwasser, and Wigderson, STOC’88] shows
that n > 3ts is necessary and sufficient for any MPC protocol with n-parties over synchronous
network tolerating ts active corruptions. In yet another foundational work, [Ben-Or, Canetti,
and Goldreich, STOC’93] show that the bound for asynchronous network is n > 4ta, where ta
denotes the number of active corruptions. However, the same question remains unresolved for
network-agnostic setting till date. In this work, we resolve this long-standing question.

We show that perfectly-secure network-agnostic n-party MPC tolerating ts active
corruptions when the network is synchronous and ta active corruptions when the
network is asynchronous is possible if and only if n > 2max(ts, ta) + max(2ta, ts).

When ta ≥ ts, our bound reduces to n > 4ta, whose tightness follows from the known
feasibility results for asynchronous MPC. When ts > ta, our result gives rise to a new bound
of n > 2ts +max(2ta, ts). Notably, the previous network-agnostic MPC in this setting [Appan,
Chandramouli, and Choudhury, PODC’22] only shows sufficiency for a loose bound of n >
3ts + ta.
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1 Introduction

Secure multiparty computation (MPC) protocols enable n mutually distrusting parties to collab-
oratively compute a function on their inputs while ensuring the privacy of these inputs. Mutual
distrust is typically modeled as an adversary that can control and coordinate the behavior of a sub-
set of the parties. Further, depending on the resilience of MPC protocols to the prevailing network
conditions, they can be classified as synchronous and asynchronous. The synchronous model has
the property that the network has a known bounded delay. That is, the messages communicated
between the honest parties are guaranteed to be delivered within a finite time delay, which is known
publicly. In contrast, in the asynchronous network model, the messages between honest parties may
be delivered after any finite delay. That is, there is no time bound to deliver the message; however,
it is guaranteed that the messages between honest parties will be delivered eventually.

Traditionally, the design of MPC protocols has a monolithic view of the network. The protocols
are designed assuming either a purely synchronous or purely asynchronous network; thus, the
parties are aware of the network conditions. Deviating from this traditional approach of modeling
the network, a line of research focuses on the scenario where parties are unaware of the network
type [13, 15, 21, 3]. The requirements of both synchronous and asynchronous networks must be
captured by a single protocol while ensuring security. Protocols designed in this setting are often
referred to as network-agnostic protocols. While the prior two models had been at the center of
study for more than three decades, the latter model is gaining a lot of traction recently due to
its theoretical challenges and practical importance. We study network-agnostic MPC with perfect
security. Perfect security, considered to be the most basic security, provides the strongest guarantee
against a computationally unbounded adversary while ensuring zero error probability.

The feasibility questions for perfectly-secure MPC for synchronous and asynchronous settings
have been settled a long ago. The landmark works of [27, 9] show that perfectly-secure MPC in the
synchronous setting tolerating ts active corruption is possible if and only ts < n/3. Similarly, it is
known that perfect security in the asynchronous setting can be achieved as long as the number of
corrupt parties is ta < n/4 [8, 11, 2]. The feasibility question of perfectly-secure network-agnostic
MPC is still unresolved. [3] shows sufficiency of such a protocol with n > 3ts + ta tolerating ts
active corruptions when the network is synchronous and ta active corruptions when the network is
asynchronous. So far, it is not known if the bound is tight.

Our Main Result

In this work, we completely settle the feasibility of perfectly-secure network-agnostic MPC. We
prove the following theorem.

Theorem 1.1 (Main Result). There exists a perfectly-secure, network-agnostic MPC protocol that
is secure against an adversary corrupting up to ts parties in a synchronous network and up to ta
parties in the asynchronous network if and only if n > 2 ·max (ts, ta) + max (2ta, ts).

When ts ≤ ta, our result gives a bound of n > 4ta, which is the known lower bound for
asynchronous MPC protocols. Also, as observed by the prior works, any known MPC protocol
designed for the asynchronous network with this bound will be trivially secure in the synchronous
network, thus serving as the network-agnostic protocol. For the other case, when ts > ta, we further
have two cases. First, when 2ta ≥ ts, we obtain a bound of n > 2ts + 2ta. Whereas when 2ta < ts,
we have that n > 3ts is necessary and sufficient. Thus, we show that the threshold n > 3ts + ta
used in the prior works on perfectly-secure network-agnostic protocols is not tight for this setting.
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Main Technical Result

Our main result is obtained via two key components– the necessity and the sufficiency.

Theorem 1.2 (Necessity). For any n, if 2 · max (ts, ta) + max (2ta, ts) ≥ n, then there is no
perfectly-secure n-party MPC protocol that is secure against an adversary corrupting ts parties in
the synchronous network and ta parties in the asynchronous network.

Due to reasons mentioned earlier, in the remaining discussion we focus on the case when ta < ts.
In this, when 2ta ≤ ts, the impossibility of n ≤ 3ts is inherited from the impossibility in the
synchronous setting. So the most interesting case is that of n ≤ 2ts + 2ta when 2ta > ts, which we
prove. We assume n = 2ts + 2ta and show that no network-agnostic perfectly-secure protocol with
n parties can compute a specific function f (described below) when the network is asynchronous.
For this, we assume the existence of an n-party network-agnostic protocol with n = 2ts + 2ta and
arrive at a contradiction as follows. We first reduce the n party protocol to a 4 party protocol
with parties P1, P2, P3, P4 where P1, P2 emulate disjoint sets of ts parties each, and each of P3, P4

emulate ta parties in the underlying protocol. Next, we identify a function f as follows

f(x1, x2,⊥,⊥)→ (x1 ∧ x2, x1 ∧ x2,⊥,⊥)

Since the n party protocol is secure against an adversary corrupting ts parties in the synchronous
network and ta parties in the asynchronous network, the 4 party protocol should be secure if P1 or
P2 is corrupt when run in a synchronous network, or one of P3, P4 is corrupt in an asynchronous
network. We conclude our proof by showing that it is impossible for P1, P2 to have a unanimous
output when the protocol is executed in the asynchronous network where either P3 or P4 is corrupt.

Our second contribution is providing a matching upper bound. In our view, the most technically
involved contributions here are the weak secret sharing and verifiable triple sharing protocols. Weak
secret sharing is a primitive with the following properties: (i) privacy: after the sharing phase, the
adversary cannot learn anything about the secret of an honest dealer; (ii) commitment: the secret
is completely determined by the shares of the honest parties after the sharing phase completes,
however, all the honest parties may not necessarily have their shares; and (iii) correctness: if
the dealer is honest, at the end of the sharing phase, all the honest parties hold their shares
corresponding to the dealer’s secret. Whereas, verifiable triple sharing allows a dealer to share
multiplication triples whose correctness is verified. In the network-agnostic setting, since parties are
unaware of the network type, protocols must tolerate the worst-case corruption. Hence, protocols
typically operate with the sharing threshold of ts (> ta). Our construction of both primitives,
weak secret sharing as well as verifiable triple sharing crucially relies on utilizing the additional
ts − ta degree of freedom which is inherently available when a protocol operating with threshold
ts is instantiated in the asynchronous network with at most ta corrupt parties. Leveraging this
degree of freedom while unaware of the exact network type constitutes our work’s primary technical
contribution, allowing us to obtain a protocol matching the lower bound. Verifiable secret sharing
is built using weak secret sharing to ensure that all honest parties have shares even for a corrupt
dealer. Verifiable secret sharing then serves as a building block for triple secret sharing which acts
as the primary tool for generating random multiplication triples, the main ingredient for MPC.

Theorem 1.3 (Sufficiency). Let n, ts, ta be such that n > 2ts + max(2ta, ts). There exists a
perfectly-secure, network-agnostic MPC protocol for any function secure against an adversary that
can corrupt up to ts parties in the synchronous and up to ta parties in the asynchronous network.

Our weak secret sharing relies on finding a n − ts size clique which requires exponential time.
Despite this, our protocol faces several challenges as discussed in Section 2. Similarly, our verifiable
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secret sharing iterates over all subsets of size ts−ta to ensure privacy, which also requires exponential
complexity. Designing efficient protocols with an optimal threshold is an interesting open problem.

1.1 Related Work

We review some more related work. Network-agnostic computation has been considered in other
settings such as the general adversarial structure [4, 5], statistical and computational security [5, 13,
15, 21]. It has also been studied for state machine replication [14], secure message transmission [22],
and consensus [3]. Crucially, [3] gives perfectly-secure, network-agnostic protocols for consensus and
broadcast with ts, ta < n/3, which is optimal for synchronous and asynchronous networks.

2 Technical Overview

In this section, we provide a technical overview of our work. We describe the weak and verifiable
secret sharing schemes in Section 2.1. Verifiable secret sharing allows a dealer to perform a degree-
ts Shamir-sharing (often abbreviated as ts-sharing) of its secrets. It is built on top of weak secret
sharing similar to prior work [29, 28, 25]. In our MPC, each party shares multiplication triples
using the above protocol whose correctness must then be verified. This is captured by verifiable
triple sharing, which requires additional techniques as described in Section 2.2. In Section 2.3, we
conclude by outlining how these primitives are used to build the network-agnostic MPC protocol.

2.1 Weak and Verifiable Secret Sharing

We start with an approach similar to the prior network-agnostic work of [3] and construct a prim-
itive which we refer to as weak secret sharing (WSS) which proceeds in two phases, sharing and
reconstruction. This primitive is weaker than verifiable secret sharing (VSS) in terms of the guar-
antees it offers and allows a dealer to share a secret with the following properties:

• Privacy: When the dealer is honest, the adversary cannot learn any information regarding
the dealer’s secret at the end of the sharing phase.

• Commitment: If the dealer is corrupt, after the sharing phase, either no honest party holds
a share or a subset of honest parties hold their shares such that they completely define the
dealer’s secret. All parties that hold a share, have shares corresponding to a common secret.

• Correctness: If the dealer is honest, all the honest parties hold shares consistent with the
dealer’s secret at the end of the sharing phase.

Although [3] provides a protocol for weak secret sharing, which they call weak polynomial shar-
ing, they assume a threshold of n > 3ts+ta. We discuss the high level approach of [3], which follows
from previous work in this setting [15] and the challenges to extend it to the optimal-resiliency set-
ting. To construct a network-agnostic WSS protocol, the idea is to run a protocol designed for WSS
in a synchronous network followed by that for an asynchronous network with some intermediate
steps to ensure correctness. In more detail, the protocol design relies on observing the proper-
ties guaranteed by the synchronous protocol, and either deciding on an output or deciding to run
the asynchronous protocol subsequently. Typically, the sharing occurs via a bivariate polynomial,
where the dealer sends a univariate polynomial as a share to each party. This is followed by par-
ties checking the pairwise consistency of their shares by exchanging one point with each party and
broadcasting the result of this check. Subsequently, parties ensure that the dealer has committed to
a polynomial (and hence a value) by checking the existence of a clique of sufficiently large size. To
ensure this in polynomial time, their protocol uses the (n, t)-Star algorithm [18] whose properties
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are described below and in Section 3. We give a high-level relevant description of their protocol,
bypassing the finer details such as specific time steps and wait periods to ensure correctness.

1. (Sending polynomial shares) The dealer chooses a symmetric bivariate polynomial S(x, y)
with degree ts in each variable and the constant term embedding its secret. The dealer then
sends to each Pi, its share S(x, i). Let the polynomial received by Pi be qi(x).

2. (Pairwise consistency check) Each Pi sends to every Pj a point qi(j).

3. (Broadcasting the results of consistency check) Let qji be received by Pi from Pj . Pi

broadcasts OK(i, j) if qji = qi(j) holds, and NOK(i, j, qi(j)) otherwise.

4. (Constructing the consistency graph) Each party constructs a graph G with vertices
as {1, . . . , n} such that an edge (i, j) is included in G if and only if OK(i, j) and OK(j, i) is
received from the broadcast of Pi, Pj respectively.

5. (Finding (n, ts)-Star) The dealer updates its consistency graph as follows:

• Remove all edges incident on Pi if NOK(i, j, qij) was received from Pi and qij ̸= S(i, j).

• From the set of vertices, remove those with degree smaller than n− ts. Perform this step
iteratively till no more vertices can be eliminated.

Let the graph induced after these modifications beGD, and the set of vertices beW . Following
this, the dealer runs the (n, ts)-Star algorithm and broadcasts it if found.

6. (Deciding on (n, ts) or (n, ta)-Star) Parties run a Byzantine agreement protocol to decide
on whether an (n, ts)-Star was found, or whether to proceed and identify an (n, ta)-Star.

7. (Find (n, ta)-Star) In the latter case, dealer runs (n, ta)-Star algorithm, broadcasts it if found.

8. (Computing the Output) Finally, parties decide on the output based on the outcome of
the byzantine agreement and upon validating the dealer’s broadcast of the Star2.

Protocol in the non-optimal threshold setting [3]. The above protocol by Appan et al. [3]
crucially relies on the fact that n > 3ts + ta. Consider the case of finding an (n, ts)-Star in the
graph GD with vertex set as W . The output of Star algorithm is a pair of sets say (C,D) where
C ⊆ D ⊆ W , |C| ≥ n − 2ts and |D| ≥ n − ts. Additionally, there exists an edge between each
i ∈ C and every j ∈ D. This implies |C| ≥ ts + ta + 1 and |D| ≥ 2ts + ta + 1. Their protocol
guarantees commitment to a polynomial in the synchronous network by ensuring that all the honest
parties in W are indeed consistent with each other. We say that parties Pi, Pj are consistent if their
pairwise consistency check is successful, thus OK(i, j) and OK(j, i) are received from their broadcast
respectively. Specifically, the protocol is designed with appropriate timeouts which ensure that if
a pair of honest parties has a conflict (their exchanged points do not match) in the synchronous
network, then this conflict would be conveyed to all honest parties before they accept (n, ts)-Star.
Parties accept (n, ts)-Star, that is the sets C,D, if and only if there are no conflicts among the
parties in it and C,D ⊆W . So if a Star is accepted, then all honest parties included in W (hence in
C,D) are pairwise consistent. Thus, a unique bivariate polynomial is defined by the honest parties.

Now consider the scenario when the network is asynchronous; however, the adversary behaves
similarly to the synchronous case till the honest parties accept (n, ts)-Star. Now, we cannot argue
that the honest parties inW are consistent with each other and define a unique bivariate polynomial
based on the timeout argument. A pair of honest parties which are in conflict may be included in W
solely due to the delay of their NOK messages, which can never occur in the synchronous network.
Instead of the timeout guarantees, the argument for the asynchronous case relies on the threshold

2Validating requires checking certain conditions. We mention the conditions relevant to our discussion when
required.
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of n > 3ts + ta. Observe that |C| ≥ n − 2ts, and we also have that the adversary can corrupt at
most ta parties in the asynchronous network. This ensures that there are at least |C| − ta > ts
honest parties in the set C, which are consistent with each other (by the properties of the Star
algorithm). These parties thus define a unique bivariate polynomial of degree ts in each variable.
Further, this guarantees that all the parties in D also have their shares on this unique polynomial.
This follows from the fact that by the properties of Star algorithm, parties in D are bound to be
consistent with all the parties in C, which in turn includes at least ts + 1 honest parties defining
the polynomial.

Challenges with optimal-threshold. Translating the above protocol to optimal resilience has
immediate problems. Consider the latter case described above, where the network is asynchronous
and parties have accepted an (n, ts)-Star. The condition |C|− ta > ts no longer holds. This implies
that there is no unique bivariate polynomial defined by the shares of honest parties in C, and
consequently parties in D. Thus, we do not get any guarantees from the synchronous protocol
when run in the asynchronous network, which are typically required to ensure correctness. This is
one of the primary hurdles in constructing our protocol and requires us to introduce new techniques.

Extending to the optimal resilience. Our first crucial observation is that the issue of ensuring
the dealer’s commitment can be mitigated if we consider an (n, ta)-Star regardless of the network
type. This is because, in this case, the sets C,D are such that |C| ≥ n− 2ta and |D| ≥ n− ta. This
guarantees us that |C| − ta = n− 3ta > ts, and thus the honest parties in C indeed define a unique
bivariate polynomial with their shares. However, we cannot expect an (n, ta)-Star to be found in
the synchronous network even when the dealer is honest. Given that ts > ta, even for an honest
dealer, the biggest clique that the consistency graph may have is of size n − ts. Whereas the Star
algorithm guarantees an output of (n, ta)-Star only when the graph contains a bigger clique of size
n − ta. Therefore, we start with a clique of size n − ts and find a way to expand it to a clique of
size n− ta so that we have an (n, ta)-Star regardless of the network type.

Our protocol has the following structure. It follows [3] till broadcasting the result of pairwise
consistency check. After this, the dealer finds and broadcasts a clique of size n−ts. If it successfully
broadcasts this within a designated time, parties proceed to the clique extension phase. Otherwise,
it means that the dealer is either corrupt in a synchronous network, or the network is asynchronous.
To handle this, parties run an agreement and immediately decide to switch modes and expect the
dealer to broadcast a clique of size n− ta. We now discuss the clique extension phase.

The extension combines the following observations to satisfy our requirements while maintaining
privacy in each network condition. First, we observe that in the synchronous network, a pair of
honest parties will broadcast the outcome of their pairwise consistency checks within a designated
time. Thus, when the dealer is honest, if any pair of parties does not have an edge between them by
this time, then at least one of these parties must be corrupt, and we can publicly reveal the common
point these parties hold without breaching privacy. However, if the network is asynchronous, this
claim does not hold. A pair of parties without an edge may indeed be slow honest parties whose
broadcast is delayed. Hence, such a revelation of points leads to the adversary learning more points
on the polynomial. However, we observe that the protocol operating with degree (ts, ts) bivariate
polynomial in the asynchronous network has an additional degree of freedom of ts−ta. We leverage
this freedom to ensure privacy in the asynchronous network. Precisely, the dealer first identifies a
clique of the maximum possible size in the consistency graph. We are done if the clique is already
of size n− ta. Otherwise, we expect a clique of size at least n− ts. An honest dealer in synchronous
network will surely find such a clique consisting of all the honest parties. To extend the clique, the
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dealer identifies at most ts − ta additional parties it wishes to include in the clique as follows.
At a high level, the dealer attempts to identify ts − ta parties that are either corrupt or can be

labeled as corrupt as per synchronous time allowance (e.g. remaining silent when it is supposed to
speak within a timestamp can be taken as a corrupt behavior). Let us denote this set as U which
is maintained over multiple runs. We make sure that in each run, either there is a growth in U or
the clique is expanded to size n− ta (in which case we are done). Whenever there is a growth in U ,
the dealer instructs all the parties to restart the protocol with the polynomials of parties in U now
being public. We make sure that each party added to U by an honest dealer in the synchronous
network is guaranteed to be corrupt and will now be forced to behave honestly, thus increasing the
clique size by |U |. Hence, once U is of size ts − ta, the dealer will successfully identify an n − ta
sized clique consisting of all the honest parties along with the corrupt parties in U . While in the
synchronous network, the designated time steps ensure privacy for an honest dealer by only adding
corrupt parties to U , privacy is maintained even in the asynchronous network due to the public
revelation of at most ts − ta polynomials of honest parties. Together with ta polynomials of the
corrupt parties, the adversary may learn at most ts univariate polynomial shares on the dealer’s
(ts, ts)-degree bivariate polynomial which still ensures privacy. It is worth noting that the number
of reruns may go up to ts − ta. Details follow.

First, the dealer identifies if any party broadcast an incorrect value during pairwise consistency
check or was silent in the consistency check for more than ts parties. If it finds such parties, it
includes them in a set U . If the dealer finds no such party that can be added to U after the pairwise
check, then the dealer arbitrarily identifies a set of ts− ta−|U | parties, say V , outside the clique of
size n− ts. Thereafter, it instructs all parties not yet marked consistent with V to broadcast their
pairwise points, and similarly, parties in V broadcast their corresponding points. Observe that if
all the parties indeed broadcast their correct points within the designated time of the synchronous
network, then the clique expands to size n − ta. If not, then the dealer can once again identify
parties that are silent or broadcast an incorrect value and add them to U . This way in each run
we make sure either (n− ta)-sized clique is found or U is expanded in size and a rerun is invoked.

We will briefly discuss how each party computes its share in the weak secret sharing protocol
after accepting a fully-consistent clique of size n−ta, where all the parties in the clique are pair-wise
consistent. Since the clique has at least n − ta − ts > ts + max (ta, ts − ta) honest parties, their
shares define a unique bivariate polynomial of degree ts in both variables. Hence, a party inside the
clique can output the univariate polynomial it received from the dealer and used during pairwise
consistency check. On the other hand, a party lying outside the clique is required to obtain its
polynomial share which is consistent with the honest parties in the clique. For this, the parties in
the clique send their pairwise common points to a party outside the clique. Again, we use some
crucial observations, as below, to ensure that an honest party outside the clique indeed reconstructs
a correct polynomial in all cases except when the network is synchronous and the dealer is corrupt.
It is because of this exception our protocol does not qualify to be a verifiable secret sharing.

First, in an asynchronous network, online error correction and the fact that the clique is of
size n − ta > 2ts + max (ta, ts − ta) > 3ta allows a party to reconstruct its correct polynomial by
correcting at most ta errors. On the other hand, we observe that if the network is synchronous,
then all the honest parties’ pairwise points get delivered to a party outside within a designated time
which is known beforehand; however, we cannot ensure the correction of ts errors. Here, we use
the properties of the Reed-Solomon decoding algorithm, which allows a party to detect and correct
errors simultaneously. A clever application of this technique, as discussed in the next paragraph,
allows a party outside the clique to identify if the set of points it has received has more than ta
errors. This in turn allows the party to conclude if the network is synchronous leveraging the fact
that ta < ts holds. The knowledge that the network is synchronous allows a party outside the clique
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to conclude if the dealer behaves honestly or not, based on which it can either output the received
univariate polynomial or ⊥. We ensure that for a misbehaved corrupt dealer, it always outputs ⊥.

No. of points Correct Detect Outcome
received Sync Async

ts + ta + 1 0 ta Success Wait
ts + ta + 2 1 ta − 1 Success Wait
...

...
...

...
...

ts + 2ta ta − 1 1 Success Wait

ts + 2ta + 1 ta 0 Success Success

ts + 2ta + 2 ta 1 Detect -
ts + 2ta + 3 ta 2 Detect -
...

...
...

...
...

2ts + ta + 1 ta ts − ta Detect -

Table 1: Simultaneous error correction and
detection

We conclude with the description of how the simulta-
neous error correction and detection is leveraged in our
protocol. As mentioned, in a synchronous network it is
guaranteed that a party receives at least n − ta − ts ≥
ts + ta + 1 points from the honest parties in the clique.
Moreover, these will be received within a designated time
which is known beforehand for a synchronous network.
Hence, upon receiving ts + ta + 1 points, a party starts
the decoding procedure. It then decides on the number of
errors to be detected and corrected as per Table 1 and de-
cides on whether to accept the reconstructed polynomial
as indicated. Suppose a party outside the clique receives
m = ts + ta + 1+ x points from the parties in the clique.
Let us analyze the scenario of a synchronous network. If
x ≤ ta, then the decoding procedure is guaranteed to succeed due to the following: (i) at most
x of the total m points are erroneous, and (ii) the number of errors that can be corrected equals
m−(ts+1)

2 ≥ x. Hence, if the reconstruction succeeds, the party can output the reconstructed poly-
nomial. On the other hand, if x > ta, then by properties of the decoding algorithm, it can detect
the presence of more than ta errors and conclude that the network is synchronous. Now consider
the case of an asynchronous network when the party outside receives the same number of points
m = ts + ta + 1 + x. Unlike the synchronous case, we do not have the guarantee that at most x
points are erroneous. Since the network is asynchronous and the messages are received in arbitrary
or even adversarially controlled order, it is possible that there are up to ta erroneous points. Hence,
we need the mechanism to allow correction of up to x and additionally detection of up to x − ta
errors simultaneously. In this case, if there indeed are more than x errors, then the reconstruction
fails and the party can wait to receive more correct points from the slow honest parties. In the
worst case, when x = ta, the reconstruction will succeed. In our protocol, we use these observations
to allow a party outside the clique to recover its polynomial. We refer the reader to Section 3 for
details about simultaneous error correction and detection and the exact bounds.

From weak secret sharing to verifiable secret sharing. We use the standard approach
taken in the prior works [29, 28, 25, 3] to extend the weak secret sharing scheme to the stronger
primitive of verifiable secret sharing. For this, we rely on a “two-layer” approach, wherein the first
layer is similar to the weak secret sharing, whereas the second layer enables parties outside the
clique to recover their polynomial even when the dealer is corrupt in the synchronous network.
More specifically, in the verifiable secret sharing protocol, parties proceed very similarly to weak
secret sharing, however, the pairwise consistency checks are now performed differently. Instead
of directly exchanging their pairwise points, each party now initiates an instance of weak secret
sharing to share its univariate polynomial received from the dealer. A party broadcasts OK(j) for
a party Pj in the verifiable secret sharing if and only if it computes the pairwise point as output
in Pj ’s instance of weak secret sharing. Doing so allows a party outside the clique to reconstruct
its correct polynomial based on the points from parties in whose weak secret sharing instances
it computes an output. This is a standard technique to extend weak secret sharing to verifiable
secret sharing. However, in our case, we require an additional constraint to ensure privacy of the
underlying secrets. Note that our weak secret sharing (and consequently, verifiable secret sharing)
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operates by revealing points for (at most) ts− ta parties during execution. Thus, we now have two
layers of such revelation, one in each of the n “inner” instances of weak secret sharing, followed by
that in the “outer” layer protocol for verifiable secret sharing. To ensure that at most ts univariate
polynomials are revealed to the adversary, we have to ensure that the revelation of points occurs for
the same set of ts− ta parties in the inner and outer layer. For this, we run an instance of verifiable
secret sharing conditioned on a global set Z of ts − ta parties for which the dealers in the inner
weak secret sharing instances and the dealer from the outer layer are permitted to reveal values.
Since our weak sharing for an honest dealer in the synchronous network is guaranteed to succeed
when shares of ts − ta corrupt parties are public, we have the guarantee that the verifiable secret
sharing succeeds for at least some subsets Z consisting of corrupt parties. This primitive suffices in
our MPC protocol to ensure that inputs and multiplication triples are shared successfully. Hence,
we iterate over all subsets of parties of size ts− ta and finally choose the instances corresponding to
some set Z where parties successfully complete sharing. Apart from this constraint, the technique
follows in a straightforward manner. We refer the readers to Section 7, [3] and the proof of our
protocol for more details.

Challenges in achieving polynomial time protocol. We now briefly discuss the challenges
we encountered while trying to achieve a polynomial time algorithm for weak secret sharing. Note
that one of the exponential time components in our protocol is that of clique finding of size n− ts.
Specifically, we allow the dealer to run in exponential time and identify a clique of size n− ts. We
stress that identifying such a clique is crucial to allow for its extension to size n− ta. We leave it as
an interesting direction to identify if clique expansion can occur without requiring clique finding,
for instance by using techniques such as Star algorithm [18].

2.2 Verifiable Triple Sharing

In a verifiable triple sharing (VTS) protocol, the dealer is required to share a multiplication triple
verifiably while ensuring privacy of the triple. Our starting point is the verifiable triple sharing
schemes of [20] which are designed independently for both the synchronous and the asynchronous
networks. We outline their synchronous protocol with ts < n/3 assuming a synchronous verifiable
secret sharing scheme, which outputs ts-sharing of the input secret. This is followed by the slight
changes needed for their asynchronous verifiable triple sharing.

To share a multiplication triple, the dealer first chooses 2ts + 1 random multiplication triples
(ai, bi, ci) for i ∈ {1, . . . , 2ts + 1} and shares them via degree-ts polynomials using the verifiable
secret sharing protocol. To verify the multiplicative relation, parties first transform these random
triples into correlated triples (xi, yi, zi) such that they lie on polynomials X,Y, Z of degree ts, ts, 2ts
respectively such that XY = Z if and only if all the 2ts + 1 input triples (ai, bi, ci) are correct.
Therefore the task of verifying the input triples reduces to the task of verifying XY = Z. Towards
the latter, the sharings of X(i), Y (i), Z(i), ith point on each of these polynomials is reconstructed to
only Pi, who locally verifies that X(i)·Y (i) = Z(i) holds and broadcasts the result of its verification.
If the verification fails for some Pi, then parties publicly reconstruct X(i), Y (i), Z(i) and verify the
relation. If it fails, the dealer is discarded. Otherwise, the protocol completes successfully if the
(local or public) verification holds for at least 3ts+1 parties, which in turn includes at least 2ts+1
honest parties. The latter confirms that XY = Z, since the polynomials are of degree at most 2ts.
The output of parties is the sharing of X(β), Y (β), Z(β) for some public value β /∈ {1, . . . , n}. In
the above protocol, the degree of the polynomials X and Y is crucially set to ts to ensure privacy
and correctness of triple verification. Observe that the verification process reveals one point on
these polynomials to every party, allowing the adversary to learn (at most) ts points. Setting a
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smaller degree would allow an adversary to obtain the complete polynomials X,Y , violating the
privacy of the output triple X(β), Y (β), Z(β) for an honest dealer. On the other hand, having
a higher degree would not ensure verification of a corrupt dealer’s triples. Consider the scenario
when n = 3ts+1. If the polynomials X,Y are of degree d > ts, then Z will be of degree more than
2d > 2ts + 1. This requires at least 2d+ 1 > 2ts + 2 points on the polynomial to be verified by the
honest parties, which is not possible since there may be only 2ts + 1 honest parties in the network
in the worst case. We summarize the synchronous verifiable triple sharing scheme of [20] below.

1. Dealer shares 2ts + 1 triples, say (ai, bi, ci) for i ∈ {1, . . . , 2ts + 1} using a VSS protocol.

2. Parties transform these triples into correlated triples such that they lie on polynomials
X(·), Y (·), Z(·) where X · Y = Z holds. Specifically, parties define the polynomials X,Y, Z
of degree ts, ts, 2ts respectively such that X(i) = ai, Y (i) = bi and Z(i) = ci for each
i ∈ {1, . . . , ts + 1}. Note that the degree ts polynomials X,Y are completely defined by
these points. Parties hold shares of each of these ts + 1 points on the three polynomials.

3. By linearity of ts-sharing, parties hold shares of the extrapolated points X(i), Y (i) for i ∈
{ts + 2, . . . , 2ts + 1}.

4. Parties compute Z(i) for all i ∈ {ts + 2, . . . , 2ts + 1} while maintaining the multiplicative
relation. For this, they consume one multiplication triple (ai, bi, ci) shared by the dealer and
use Beaver’s multiplication protocol to obtain the sharing of Z(i) = X(i) · Y (i) from the
sharings of X(i), Y (i). The polynomial Z(·) of degree 2ts is now defined completely.

5. Using linearity on the sharings of {X(i), Y (i), Z(i)} for i ∈ {1, . . . , 2ts + 1}, parties obtain
sharings of X(i), Y (i), Z(i) for each i ∈ {2ts + 2, . . . , n} though local computation. Thus
parties now have sharings of each X(i), Y (i), Z(i) for i ∈ {1, . . . , n}.

6. To verify the multiplicative relation of the shared triples, parties have to ensure thatX ·Y = Z
holds. Towards this, X(i), Y (i), Z(i) are reconstructed to Pi, who verifies that X(i) · Y (i) =
Z(i) holds and broadcasts the result of the verification, either OK or NOK. Note that this
step leaks ts points on polynomials X,Y, Z to the adversary when the dealer is honest.

7. For each party Pi whose verification fails, the check is performed publicly by reconstructing
the points X(i), Y (i), Z(i) to all.

8. Since the polynomials are of degree ts, ts, 2ts respectively, the triples are verified if 2ts + 1
honest parties (3ts+1 parties in total) confirm the relation. Otherwise, the dealer is discarded.

In the asynchronous setting with ta < n/4, the protocol operates with the appropriate thresh-
old ta both for sharing as well as the degree of X,Y ; the rest of the steps follow closely to the
synchronous case with a few caveats. For instance, to avoid an endless wait in the asynchronous
setting, parties can afford to wait for the OK or NOK broadcast of at most n− ta parties. However,
given that n− ta ≥ 3ta + 1 and the polynomials X,Y are now of degree ta, correctness is ensured
when the multiplicative relation is verified for n − ta parties. For an honest dealer, all the n − ta
honest parties will eventually broadcast OK, ensuring that the triple sharing is successful. On the
other hand, verifying n− ta points on the polynomial ensures correctness even for a corrupt dealer.

Network-agnostic protocol in the non-optimal threshold setting [3]. Recall that they
use n > 3ts + ta. Being agnostic of the network and the threshold, [3] follows the above protocol
idea while keeping the degree of the sharings and X,Y as ts (since ts > ta) and makes sure that
X(i) ·Y (i) = Z(i) holds for at least 2ts+1 honest parties as follows. They define a set W of parties
with |W | ≥ n − ts and ensure that every party in W verifies X(i) · Y (i) = Z(i) either privately
or publicly. W is constructed such that it contains all n − ts honest parties when the network is
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synchronous and it contains at least 2ts + 1 honest parties when the network is asynchronous. For
this, they wait till a designated time and add to W the first (at least) n− ts parties that respond
to the verification of triples. The designated time is such that in the synchronous network, all
the honest parties respond within this time and hence get included in W . On the other hand,
in the asynchronous network W may contain arbitrary n − ts parties conditioned on the message
scheduling. Thus, W may include ta corrupt parties, leaving at least |W | − ta honest parties in
W . As mentioned, they ensure that every party in W verifies X(i) · Y (i) = Z(i) either privately
or publicly. This works when the network is synchronous, since every honest party is in W and
there are at least 2ts + 1 of them. A corrupt dealer will get caught if it shares incorrect triples. In
contrast, when the network is asynchronous, they have at least |W | − ta ≥ 2ts + 1 honest parties
in W , which again ensures that either the triples are correct or the dealer is discarded.

Challenges with optimal-threshold. We observe that the protocol of [3] crucially relies on the
resilience of n > 3ts + ta to ensure correctness of triples. Reducing the threshold to optimal has
an immediate problem in ensuring that the triples shared indeed satisfy the multiplicative relation.
When n > 2ts +max(2ta, ts), we have that |W | = n− ts ≥ ts +max(2ta, ts) + 1. Assume that the
network is asynchronous. It no longer holds that |W | − ta ≥ 2ts + 1. Hence, the correctness of
the triples cannot be established. Further, expecting a bigger W , say of size n − ta to ensure the
correctness may result in an indefinite wait even for an honest dealer. This is because, an adversary
corrupting up to ts parties may remain silent, preventing the protocol from proceeding.

Extending to the network-agnostic setting with optimal resilience. We discuss our tech-
niques that extend the ideas of the above approach to the network-agnostic setting. To account for
worst-case corruption, our protocol also operates with ts-sharing and degree-ts polynomials X,Y .
Observe that following a similar template as above, to ensure the correctness of the multiplica-
tive relation, 2ts + 1 honest parties must confirm their local verification, had the network been
synchronous. In contrast, in an asynchronous setting, it suffices if any ta+(2ts+1) parties confirm.

We ensure these two conditions hold in our network agnostic protocol as follows. First we
enforce that parties resolve the NOK received from any party within a pre-specified time before
computing their output in the protocol. Second, we demand that the total number of distinct
points i for which X(i) · Y (i) = Z(i) is verified, either privately or publicly, be at least n − ta.
Contrast this with the n− ts number of points required to be verified in [3]. The first requirement
ensures correctness in the synchronous network, whereas the second condition guarantees it in
the asynchronous network. Specifically, in a synchronous network, the properties offered by the
network-agnostic broadcast protocol make sure that all the honest parties receive the OK or NOK
messages from other honest parties within a designated time. Hence, they compute their output
only upon verifying each NOK message received. This ensures that if the dealer is not discarded,
then X(i) · Y (i) = Z(i) has been verified for all the honest parties. Since there are at least 2ts + 1
honest parties in the synchronous case, we are guaranteed correctness of the triples. On the other
hand, if the network is asynchronous, the second condition of verifying a total of n − ta points
comes into effect to ensure correctness. Since parties verify the multiplicative relation for n − ta
points and the adversary can corrupt at most ta parties, we have that the relation holds for at least
n− 2ta ≥ 2ts+1 honest parties. Again, we are guaranteed correctness of the multiplication triples.
However, making sure these two conditions hold requires additional techniques.

Observe that in a synchronous network, we can expect at most n− ts parties to broadcast the
result of their local verification within the designated time. There may be ts corrupt parties which
remain silent, that is, these parties neither broadcast OK nor NOK. In such a case, enforcing a
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support of n− ta would result in stalling the protocol even for an honest dealer. To remedy this, we
perform a dealer-guided public reconstruction of points X(i), Y (i), Z(i) of a subset of parties who
either broadcast NOK later than the designated time or are silent. We enforce that the total number
of points verified, which includes the publicly verified values and those from the OK messages of
parties is at least n− ta. Here, the term dealer-guided refers to the criteria that the dealer chooses
the parties whose points have to be reconstructed publicly. An important aspect to note here is that
with ts-degree polynomials we do not have any additional degree of freedom in the synchronous
setting. Moreover, we have only ts − ta degree of freedom in the asynchronous setting. Thus,
revealing the points has to be performed carefully by the dealer. To maintain privacy here, we
ensure that the dealer only begins the guided reconstruction upon waiting for a designated time
and additionally receiving at least n− ts OKs, and performs the public reconstruction for at most
ts−ta parties. The intuition behind privacy in the synchronous setting is that honest parties always
broadcast their OK messages which are received by all within in the designated time. Hence, their
points are never reconstructed publicly. On the other hand, in the asynchronous setting, some of
the honest parties may be slow. However, an honest dealer reveals points for at most ts− ta honest
parties, still ensuring the degree of freedom of 1 and hence maintaining privacy.

In conclusion, our protocol ensures that parties verify all NOKs received within a designated
time and that verification succeeds for at least n − ta ≥ ta + 2ts + 1 parties. This ensures that if
the dealer is not discarded, the triples generated are correct regardless of the underlying network.

2.3 Putting it all together: The MPC Protocol

At a high level, our MPC protocol uses Beaver’s circuit randomization trick [7] and adopts a two-
phase structure. The first phase corresponds to Beaver triple generation, followed by the second
phase of circuit evaluation. Verifiable secret sharing and verifiable triple sharing are utilized in the
former phase, whereas existing primitives suffice for the latter.

Beaver triple generation. This phase ensures that verified random multiplication triples are
shared among parties as follows. Each party acts as the dealer to share random multiplication triples
using verifiable secret sharing. Parties then verify the correctness of these triples using verifiable
triple sharing. If the triples are correct, they are accepted in further computation. Otherwise,
parties discard the dealer and assume a default sharing on its behalf. Note that our verifiable
secret sharing is guaranteed to succeed for all honest dealers only in the case when the global set of
ts − ta parties considered for revelation consists of corrupt parties. Given this, our MPC protocol
first iterates over instances of verifiable secret sharing corresponding to all subsets of ts− ta parties.
This ensures that the sharing instances of all honest parties will terminate for some common subset
(eventually). Also, corrupt parties may never initiate their triple sharing and given that the network
may be asynchronous, waiting for all n dealers’ instances may result in an endless wait. To prevent
this, we use a primitive called asynchronous common set (ACS) which allows parties to agree on a
common set of at least n−ts dealers whose triples will be used in circuit evaluation, and importantly,
their triples are obtained from the instance of verifiable secret sharing corresponding to the same
global set of ts − ta parties. Agreement on this set is crucial since different parties may compute
their output in the sharing instances of dealers in a different order due to asynchrony. Moreover,
each party acting as dealer may have revealed points of a different set of ts − ta parties, raising a
privacy concern when the triples are used to evaluate the circuit. To obtain such a set, we use two
consecutive layers of ACS as follows. Let the number of subsets of size ts−ta be k. For each subset,
we run an instance of ACS to identify a subset of size (at least) n− ts parties for which all parties
compute their output in triple sharing. This results in k ACS instances where each one either has
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an output of a set of size (at least) n− ts or does not terminate. Of these, parties have to agree on
one. For this, they run a second instance of ACS on the k instances with input as 1 corresponding
to the ACS for which it has obtained a set of size n − ts as output. Upon receiving an output ℓ,
parties consider the set of size at least n− ts from the ℓth ACS instance for further computation.
At this stage, parties have agreed on the set of triples shared by at least n− ts dealers. To ensure
secure evaluation of the circuit, we require random multiplication triples that are unknown to any
party, for which we use a ‘triple extraction’ protocol from the literature [20, 3]. It consumes one
triple shared by each dealer and extracts a random triple unknown to any party.

Circuit evaluation. Parties use the triples from the prior phase to perform a shared evaluation
of the circuit. They begin by sharing their inputs to the circuit. Similar to the case of triple sharing,
to avoid endless wait and to ensure privacy, parties run two layers of ACS to agree on a set of at
least n− ts parties whose input will be considered. A default value is assumed as the input of the
remaining parties. In practice, input sharing is performed simultaneously with the triple sharing
and common ACS instantiations happen for both. Subsequently, evaluation of the circuit proceeds
as follows. Linear gates (addition and multiplication by a constant) are evaluated locally. Parties
use one multiplication triple from the first phase and rely on Beaver’s multiplication [7] protocol
to evaluate a multiplication gate. Following this, parties reconstruct the protocol output. Finally,
they terminate upon ensuring that a sufficient number of parties have computed the output so as
to ensure that all parties obtain their output. This concludes our MPC protocol.

3 Preliminaries

3.1 Network Model and Definitions

We consider a set of parties P = {P1, . . . , Pn} connected via pairwise private and authenticated
channels. The distrust among the parties is modeled as a centralized, computationally unbounded
adversary. We consider a static adversary that decides the set of corrupt parties at the beginning
of the protocol execution. The underlying network conditions can be synchronous or asynchronous,
and the parties are unaware of the exact network type during the protocol execution. In a syn-
chronous network, every message sent is delivered within a fixed, known time bound ∆. Moreover,
the messages are delivered in the same order they are sent in. In contrast, in the asynchronous
network, the messages are delivered with an arbitrary but finite delay with the only guarantee that
the messages are eventually delivered. Moreover, the messages may be delivered in an arbitrary
order. This is modeled by a scheduler which decides on the sequence of message deliveries, where
the scheduler is assumed to be controlled by the adversary. The adversary can corrupt up to ts
out of the n parties maliciously when the network is synchronous, whereas it can corrupt up to ta
parties under asynchronous network conditions and make them behave arbitrarily.

Our protocols are defined over a field F, such that |F| > n. We denote the elements of the field
by {0, 1, . . . , n}. Further, we use [v] to denote the degree-ts Shamir-sharing of a value v among
parties in P.

Additionally, in constructing our protocols, we use several well-known primitives from the lit-
erature. We elaborate on these in Section 4 and refer the readers to the same for further details.

3.2 Symmetric Bivariate Polynomials

A degree (l, l) symmetric bivariate polynomial over F is of the form F (x, y) =
∑i=l,j=l

i,j=0 bijx
iyj where

bij ∈ F and bij = bji holds for all i, j ∈ {0, . . . , l}. This implies that F (i, j) = F (j, i) holds for every

12



i, j. Moreover, F (x, i) = F (i, y) is also true for each i ∈ {1, . . . , n}.
Our protocol uses (ts, ts) symmetric bivariate polynomials. Further, fi(x) = F (x, i) = F (i, y)

is called the ith univariate polynomial of F (x, y) and is associated with party Pi in the protocol.

3.3 Finding a (n, t)-Star

Definition 3.1. Let G be a graph over the nodes {1, . . . , n}. We say that a pair (C,D) of sets
such that C ⊆ D ⊆ {1, . . . , n} is an (n, t)-star in G if the following hold: (a) |C| ≥ n − 2t, (b)
|D| ≥ n− t, (c) For every j ∈ C and every k ∈ D, the edge (j, k) exists in G.

3.4 Almost-surely Terminating

Following the approach of Appan et al. [3], we use randomized asynchronous byzantine agreement
protocols designed for threshold ta < ts < n/3 (note that our resiliency matches with this require-
ment) in our work, which guarantee that almost-surely all the honest parties eventually receive
their output. This implies that the probability that an honest party receives its output after par-
ticipating in an infinite number of rounds of a protocol approaches 1 asymptotically [1, 24, 6].
Specifically,

limT→∞ Pr [An honest party Pi receives its output by local time T ] = 1

where the probability is over the randomness of the honest parties and the adversary in the protocol.
Also, the property of almost-surely receiving the output carries forward to all the protocols that
use asynchronous byzantine agreement as a primitive. Similar to [3], for simplicity, we do not
specify the terminating condition for each sub-protocol. Rather, when a party terminates the MPC
protocol, it also terminates in all the sub-protocol instances.

3.5 Simultaneous Error Correction and Detection of Reed-Solomon Codes

We require the following coding-theory related results. Let C be a Reed-Solomon (RS) code word
of length N , corresponding to a k-degree polynomial (containing k + 1 coefficients). Assume that
at most t errors can occur in C. Let C̄ be the word after introducing error in C in at most t
positions. Let the distance between C and C̄ be s where s ≤ t. Then there exists an efficient
decoding algorithm that takes C̄ and a pair of parameters (e, e′) as input, such that e+ e′ ≤ t and
N − k − 1 ≥ 2e+ e′ hold and gives one of the following as output:

1. Correction: output C if s ≤ e, i.e. the distance between C and C̄ is at most e;

2. Detection: output “more than e errors” otherwise.

Note that detection does not return the error indices; rather, it simply indicates error correction
fails due to the presence of more than correctable (i.e., e) errors. The above property of RS codes
is traditionally referred to as simultaneous error correction and detection. In fact, the bounds,
e+ e′ ≤ t and N − k − 1 ≥ 2e+ e′, are known to be necessary. We cite:

Theorem 3.2 ([19, 23]). Let C be a Reed-Solomon (RS) code word of length N , corresponding
to a k-degree polynomial (containing k + 1 coefficients). Let C̄ be a word of length N such that
the distance between C and C̄ is at most t. Then RS decoding can correct up to e errors in C̄ to
reconstruct C and detect the presence of up to e+ e′ errors in C̄ if and only if N − k− 1 ≥ 2e+ e′

and e+ e′ ≤ t.

Corollary 3.3. Let C and C̄ be as in Theorem 3.2 with N = ts+ ta+1+x, k = t = ts and x ≤ ta.
Then RS decoding can correct up to x errors and detect the presence of up to ta − x errors in C̄.

13



Proof. This follows since N − k − 1 = ta + x, 2e+ e′ = 2x+ (ta − x) = ta + x and e+ e′ = ta < ts
hold.

Corollary 3.4. Let C and C̄ be as in Theorem 3.2 with N = ts + ta + 1 + x, k = t = ts and
ta < x ≤ ts. Then RS decoding can correct up to ta errors and detect the presence of up to x− ta
errors in C̄.

Proof. This follows since N − k − 1 = ta + x, 2e+ e′ = 2ta + (x− ta) = ta + x and e+ e′ = x ≤ ts
hold.

4 Existing Primitives

In our work, we use network-agnostic protocols from [3] for several primitives, such as broadcast
and byzantine agreement, to name a few. Although designed for the non-optimal threshold, these
naturally follow to the optimal threshold scenario. Below, we give a description of each of them
along with the (n, t)-Star algorithm from [18] for completeness.

4.1 Finding a (n, ta)-Star

Definition 4.1. Let G be a graph over the nodes {1, . . . , n}. We say that a pair (C,D) of sets
such that C ⊆ D ⊆ {1, . . . , n} is an (n, t)-star in G if the following hold:

• |C| ≥ n− 2t,

• |D| ≥ n− t,

• For every j ∈ C and every k ∈ D, the edge (j, k) exists in G.

Canetti [17] showed that if a graph has a clique of size n − t, then there exists an efficient
algorithm which always finds an (n, t)-Star. In our protocol, we use the parameter t = ta. For
completeness, we describe the algorithm for finding an (n, ta)-Star in Algorithm 4.2, which is taken
from [8, 18] and modified to suit our parameter. Moreover, we modify the algorithm from [18] to
output the extended Star using the techniques of [26].

Protocol 4.2: (n, ta)-Star

Input: An undirected graph G (over the nodes {1, . . . , n}) and a parameter ta.

1. Find a maximum matchingM inG. LetN be the set of matched nodes (namely, the endpoints
of the edges in M) and let N := {1, . . . , n} \N .

2. Let T be the set of triangle-heads, i.e., all vertices that are not endpoints of the matching
but they have two neighbors in the matching.

T :=
{
i ∈ N | ∃j, k s.t. (j, k) ∈M and (i, j), (i, k) ∈ G

}
.

Let C := N \ T .
3. Let B the set of matched nodes that have neighbors in C. That is, set:

B :=
{
j ∈ N | ∃i ∈ C s.t. (i, j) ∈ G

}
.

Let D := {1, . . . , n} \B.

4. If |C| ≥ n−2ta (i.e. |C| ≥ 2ts+1) and D ≥ n− ta (i.e. |D| ≥ 2ts+ ta+1) then compute E as
the set of all the parties which do not have edges with at least 2ts + 1 parties in C. Finally,
construct a set F as the set of all the parties that do not have edges with at least 2ts + 1
parties in E.
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5. Output: If |E| ≥ n− ta and |F | ≥ n− ta then output (C,D,E, F ). Otherwise, output ⊥.

4.2 Asynchronous Reliable Broadcast (Acast)

As in [3], we use Bracha’s asynchronous reliable broadcast protocol [16] (also referred to as Acast)
where there is a designated sender who holds a message m ∈ {0, 1}ℓ to be communicated to all
the parties. Appan et al. [3] demonstrated that the Acast protocol, although designed for the
asynchronous network, also provides certain guarantees in the synchronous network. We recall the
protocol and its properties below.

Protocol 4.3: ΠAcast

Input: The sender holds a message m ∈ {0, 1}ℓ.

1. The sender on holding an input m, sends (init,m) to all the parties.

2. Upon receiving (init,m) from the sender, send (echo,m) to all the parties. Do not execute
this step more than once.

3. Upon receiving (echo,m′) from n− t parties, send (ready,m′) to all the parties.

4. Upon receiving (ready,m′) from t+ 1 parties, send (ready,m′) to all the parties.

5. Upon receiving (ready,m′) from n− t parties, output m′.

Lemma 4.4. Bracha’s Acast protocol ΠAcast is secure against an adversary corrupting up to t < n/3
parties and achieves the following properties.

1. Synchronous Network:

(a) Liveness: If the sender is honest, then all the honest parties obtain an output within
time 3∆.

(b) Validity: If the sender is honest, then every honest party with an output, has the sender’s
message m as the output.

(c) Consistency: If the sender is corrupt and some honest party outputs m′ at time T , then
every honest party outputs m′ within time T + 2∆.

2. Asynchronous Network:

(a) Liveness: If the sender is honest, then all honest parties eventually obtain an output.

(b) Validity: If the sender is honest, then every honest party with an output, has the sender’s
message m as the output.

(c) Consistency: If the sender is corrupt and some honest party outputs m′, then every
honest party eventually outputs m′.

4.3 Byzantine Broadcast (BC)

Appan et al. [3] construct a broadcast protocol which relies on Bracha’s asynchronous reliable
broadcast [16] and an existing synchronous byzantine agreement protocol which is denoted by
ΠSBA. We give the protocol ΠBC for broadcast below, assuming the existence of ΠAcast and ΠSBA.
We avoid repetition and refer the readers to [3] for further details on the exact instantiation of
these protocols since we make a black-box use of these primitives.
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Protocol 4.5: ΠBC

Input: The sender holds a message m ∈ {0, 1}ℓ.
(Regular Mode):

1. The sender Acasts the message m using ΠAcast.

2. At time 3∆, each party Pi participates in an instance of synchronous broadcast protocol ΠSBA

with its input set as follows:

• If m′ ∈ {0, 1}ℓ is received from the Acast of the sender, then Pi sets m
′ as the input.

• Otherwise, Pi sets its input as ⊥.
3. At time 3∆ + TSBA, each Pi computes its output as follows:

• If m′ ∈ {0, 1}ℓ is received from the Acast of the sender and m′ is computed as the output
of ΠSBA, then Pi sets m

′ as the output.

• Otherwise, Pi sets its output as ⊥.

(Fallback Mode):

1. Each Pi which has computed its output as ⊥ at time 3∆ + TSBA, updates it to m′ if m′ is
received from the Acast of the sender.

Lemma 4.6. Protocol ΠBC is secure against an adversary corrupting up to t < n/3 parties and
has the following properties, where TBC = 3∆+TSBA = (12n−3)∆ when ΠSBA is instantiated using
[12].

1. Synchronous network:

(a) (Regular Mode)
i. Liveness: At time TBC, every honest party has an output (through regular-mode).

ii. Validity: If the sender is honest, then every honest party outputs m (through regular-
mode).

iii. Consistency: If the sender is corrupt, then every honest party has the same output
(m′ or ⊥) at the end of TBC (through regular-mode).

(b) (Fallback Mode)
i. Fallback Consistency: If the sender is corrupt and some honest party outputs m′ at

time T > TBC (through fallback-mode), then every honest party outputs m′ by time
T + 2∆ (through fallback-mode).

2. Asynchronous network:

(a) (Regular Mode)
i. Liveness: At time TBC, every honest party has an output (through regular-mode).

ii. Weak Validity: If the sender is honest, then every honest party outputs m or ⊥
(through regular-mode).

iii. Weak Consistency: If the sender is corrupt, then every honest party has either a
common m′ or ⊥ as the output at the end of TBC (through regular-mode).

(b) (Fallback Mode)
i. Fallback Validity: If the sender is honest, then each honest party that outputs ⊥ at

TBC (through regular-mode) outputs m (through fallback-mode).

ii. Fallback Consistency: If the sender is corrupt and some honest party outputs m′ at
time T (either through regular or fallback-mode), then every honest party eventually
outputs m′ (either through regular or fallback-mode).
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4.4 Byzantine Agreement (BA)

Appan et al. [3] provide a network-agnostic byzantine agreement protocol by following the approach
of [13]. Here, each party first broadcasts its input via an instance of ΠBC followed by running an
instance of some asynchronous byzantine agreement protocol ΠABA. Each party decides its input
to ΠABA based on the number of parties for which it received an output in their respective instance
of the broadcast protocol and the plurality of the received values. We provide the protocol from [3]
below for completeness, where ΠABA can be instantiated with any existing protocol such as [1, 6].

Protocol 4.7: ΠBA

Input: Each Pi holds a bit bi ∈ {0, 1}. Each Pi also initialises a set Ri ← ϕ.

1. Each Pi on holding an input bi, broadcasts bi using ΠBC.

2. For j ∈ {1, . . . n}, let b(j)i ∈ {0, 1,⊥} be received from the broadcast of Pj via regular mode.

Update Ri = Ri ∪ {j} if b(j)i ̸= ⊥. Compute the input vi for an instance of ΠABA as follows:

• If |Ri| ≥ n− t then set vi to be the majority bit among the b
(j)
i values of parties in Ri.

If there is no majority, then set vi = 1.

• Otherwise, set vi = bi.

3. At time TBC, participate in an instance of ΠABA with input vi. Set the output as the output
computed from ΠABA.

Lemma 4.8. Protocol ΠBA achieves the following properties in the presence of an adversary which
corrupts up to t < n/3 parties:

1. Synchronous network: The protocol is a perfectly-secure SBA protocol, where all the honest
parties receive their output within time TBA = TBC + TABA.

(a) Guaranteed liveness: All the honest parties obtain an output by time TBA.

(b) Validity: If all the honest parties have the same input v, then all the honest parties with
an output, outputs v.

(c) Consistency: All the honest parties with an output, output the same value v.

2. Asynchronous network: The protocol is a perfectly-secure ABA protocol.

(a) Almost-surely liveness: Almost-surely, all the honest parties obtain an output eventually.

(b) Validity: If all the honest parties have the same input v, then all the honest parties with
an output, outputs v.

(c) Consistency: All the honest parties with an output, output the same value v.

4.5 Agreement on a Common Set (ACS)

The ACS primitive [18] allows parties to agree on a common set of at least n− t parties Com ⊂ P,
such that each party in Com satisfies some predefined property prop which has the following features
in the asynchronous network:

1. Every honest party eventually satisfies prop.

2. If some honest Pi sees that a party Pj satisfies prop, then eventually all the honest parties
see that Pj satisfies prop.

Although the above protocol was primarily designed for the asynchronous network, it was shown
in [3] that the protocol satisfies certain properties in the synchronous network where each party in
Com satisfies some predefined property prop which has the following features:
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1. Every honest party satisfies prop at the onset of the protocol.

2. If some honest Pi sees that a party Pj satisfies prop, then within a fixed time, all the honest
parties see that Pj satisfies prop.

In our protocols, we use the parameter t = ts. We describe the variant of the protocol from
[18], which was used in [3] for completeness.

Protocol 4.9: ΠACS

Input: Each party Pi holds a dynamically growing set Si.
Input Guarantees:

• If the network is synchronous, then for an honest Pi, at the onset j ∈ Si for each honest Pj .
Moreover, if a corrupt k ∈ Si for some honest Pi, then within a fixed time, k ∈ Sj for all
honest parties Pj .

• If the network is asynchronous, then for an honest Pi, eventually j ∈ Si for each honest Pj .
Moreover, if k ∈ Si for some honest Pi, then eventually k ∈ Sj for all honest parties Pj .

1. Each Pi participates in an instance of byzantine agreement protocol Πj
BA where j ∈ {1, . . . , n}

with input 1 if j ∈ Si.

2. Once (at least) n − ts instances of ΠBA terminate with output 1, Pi participates with input
0 in the byzantine agreement instances Πj

BA such that j /∈ Si.

3. Upon termination of all the n instances of byzantine agreement, Pi outputs Com as the set
of parties Pj such that Πj

BA terminated with the output 1.

Theorem 4.10. Protocol ΠACS is secure against an adversary corrupting up to ts parties in the
synchronous network and ta parties in the asynchronous network and has the following properties.

1. Synchronous network:

(a) Liveness: At time TACS = 2TBA, every honest party has an output.

(b) ts correctness: At time TACS, every honest party outputs Com of size at least n− ts such
that the following holds:

• All the honest parties belong to Com.

• For each j ∈ Com, it is guaranteed that j ∈ Si for each honest party Pi.

2. Asynchronous network:

(a) Liveness: Almost-surely, every honest party eventually has an output.

(b) ta correctness: Almost-surely, every honest party eventually outputs Com of size at least
n− ts such that the following holds:

• For each j ∈ Com, it is guaranteed that eventually j ∈ Si for each honest party Pi.

5 Lower Bound

Theorem 5.1. For any n, if 2 ·max (ts, ta)+max (2ta, ts) ≥ n, then there is no n-party MPC pro-
tocol that is perfectly-secure against an adversary corrupting ts parties in the synchronous network
and ta parties in the asynchronous network.

Proof. We first consider two cases, when ts ≤ ta and otherwise. For the former case, we have that
4ta ≥ n, and the known impossibility result of [8] follows immediately. For the latter scenario, when
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ts > ta, we further analyze it considering two cases. First, when 2ta < ts, we have that 3ts ≥ n.
We now see that the impossibility of a network-agnostic protocol for this setting follows directly
from the impossibility of synchronous protocols with this threshold [10]. Thus, what remains to be
shown is the case of 2ts + 2ta ≥ n when ts > ta and 2ta ≥ ts. We prove this by contradiction as
follows.

Assume 2ts + 2ta = n, and there exists a generic MPC protocol π which is ts-secure in the
synchronous network and ta-secure in the asynchronous network. Partition the n parties into four
disjoint sets S1, S2, S3, S4 such that |S1| = |S2| = ts and |S3| = |S4| = ta and consider the following
scenarios.

Case I: Synchronous network, Parties in S1 (S2) are corrupted. The adversary blocks
all communication from parties in S1 (S2) towards parties in S2 (S1). Further, it ignores the
messages received from the parties in S2 (S1) during its local computation. It performs the rest of
the computation and communication as per the protocol specification.

Case II: Asynchronous network, Parties in S4 are corrupted. In this case, the adversary
indefinitely delays all the communication between the (honest) parties in S1 and S2. The adversary
performs the computation and communication with the parties as per the protocol specification.

Observe that the corruption scenarios described above are valid in the synchronous and asyn-
chronous networks, respectively. Moreover, each party’s view is identical in both scenarios, thus
guaranteeing that the parties remain unaware of the network type when either of the aforemen-
tioned corruption occurs during the protocol. The security guarantees of the protocol ensure that,
in either case, parties receive the output of the protocol. We leverage these observations to arrive
at a contradiction.

Specifically, we show that given such an n-party generic MPC protocol, we can construct an
MPC protocol for 4 parties, say P1, . . . , P4 where Pi emulates the parties in Si. This new protocol
is secure with respect to an adversary that either corrupts one of P1, P2 when the network is
synchronous or corrupts one among P3, P4 when the network is asynchronous. Now consider an
instance of the protocol amongst the four parties to compute the following functionality:

f(x1, x2,⊥,⊥)→ (x1 ∧ x2, x1 ∧ x2,⊥,⊥)

We show that it is impossible for the output receiving parties, P1 and P2 to have a unanimous out-
put, thus showing the impossibility of the underlying n party network-agnostic protocol. Consider
the scenario when the network is asynchronous, and the adversary corrupts the party P4. Fur-
ther, the adversary follows the same (valid) strategy of blocking communication between parties
as described in Case II, which implies blocking communication between P1 and P2 in the 4-party
protocol.

Let π(x1, x2) be an instance of the protocol with inputs x1, x2 and r
π(x1,x2)
i for each i ∈ [4]

denote the randomness of each Pi in the instance π(x1, x2). Let Tij (1 ≤ i < j ≤ 4) denote the
transcript of the channels between Pi and Pj . Note that T12 = ϕ. Moreover, due to perfect security,
T13 and T14 individually are independent of P1’s input x1. Otherwise, a corrupt P3 or P4 will be
able to learn P1’s input. For the same reason, T23 and T24 individually are independent of P2’s
input x2. Hence, we can conclude that P1’s output is determined by its internal state and the
joint distribution {T13, T14}. Similarly, P2’s output is determined by its internal state and the joint
distribution {T23, T24}. Suppose these are the transcripts of the protocol instance π(0, 1). Since
T23 and T24 are individually independent of x1, there exists some T ′

24 such that {T23, T
′
24} results

in an output 1 for P2. If not, then it implies that irrespective of T24, the output of P2 is always
0. This further implies that the output of P2 is completely decided by its internal state and T23.
However, T23 itself is independent of x1. This is because, the view of P3 in the protocol must be
independent of x1, due to perfect security and T23 is contained in the view of P3. Now note that P1
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does not communicate with P2 at all. This means P1’s input is ignored in the output computation
of P2, leading to breach of correctness. Therefore, we can conclude that in an instance π(0, 1),
there exists some T ′

24 such that {T23, T
′
24} results in an output 1 for P2.

Relying on the above fact, we can now conclude that an adversary corrupting P4 in an instance
of π(0, 1) can behave according to T14, T34 with P1, P3 respectively, and according to T ′

24 with P2.
This results in P1 having the output 0, while P2 outputs 1.

6 Weak Secret Sharing

Some part of the protocol proceeds in a sequence of time steps. Whereas some parts are action-
based, parties execute these steps as and when they receive the messages required to perform these
steps. Throughout the descriptions of protocols, we denote the wait period of time steps with red
font, whereas the action-based steps of our protocols are denoted using blue font. We use also use
the existing primitives such as broadcast and agreement, which are emulated using Protocol 4.5 and
Protocol 4.7 of [3] (recalled in Section 4.3 and 4.4 respectively). In the subsequent description, ∆
denotes the round delay associated with a synchronous network. We also use the notations TBC and
TBA to denote the time required by the broadcast and agreement protocols of [3] in the synchronous
network. The exact values for these are inherited from their work and detailed in Section 4.

Protocol 6.1: ΠWSS

Input: The dealer holds a secret s ∈ F.
Initialisation: The dealer initialises two sets W,U to ϕ. Only W is reset in every (re)run to
∅. The set U is initialised only during the first run, and is used without re-initialisation during
subsequent reruns.
Condition: When instantiated from the verifiable secret sharing protocol, the dealer ensures that
the sets U,W, V ⊆ Z, where Z is the global set of parties used in verifiable secret sharing. Parties
discard the dealer if U or V broadcasted by the dealer is such that U, V ̸⊆ Z.

1. (Polynomial Share Distribution) The dealer chooses a symmetric bivariate polynomial F (x, y)
of degree ts in both x, y and delivers fi(x) = F (x, i) to Pi. If |U | > ts − ta, then assign U to
be the set of first ts − ta parties lexicographically. The dealer broadcasts (U, {fi(x)}i∈U ).

2. (Pair-wise exchange) At time ∆, if fi(x) is received then every Pi sends fij = fi(j) to every
Pj .

3. (Pair-wise Consistency Check) At time TBC
3 Pi prepares a vector Ri of length n as follows

and broadcasts it. It sets Ri[j] = NR for all j if any of the following happens:

(a) it receives no fi(x)

(b) the dealer’s broadcast results in ⊥
(c) some fj(x) in the broadcast (U, {fi(x)}i∈U ) is of degree more than ts

(d) there are indices j, k such that fj(k) ̸= fk(j) in the broadcast (U, {fi(x)}i∈U )
Otherwise, it sets Ri as follows. (1) if Pj ∈ U , then Ri[j] = fi(j) (2) if Pj ̸∈ U , then set
(a) Ri[j] = NR if no fji is received from Pj , (b) Ri[j] = fi(j) if fji is received from Pj and
fi(j) ̸= fji, (c) Ri[j] = OK otherwise.

3Had the network been synchronous, then we know that TBC > ∆. Hence, fi(x) and the dealer’s broadcast, both
initiated simultaneously, will be received by Pi by TBC.
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4. (Asynchronous Pair-wise Consistency Checking) The parties execute the following steps as
and when they receive the required values. On receiving the broadcast (U, {fi(x)}i∈U ) and
polynomial fi(x) from the dealer, every Pi ̸∈ U sends fij = fi(j) to every Pj and broadcasts
AOKj if (a) fji from Pj ̸∈ U is received and fi(j) = fji (b) fj(i) for Pj ∈ U satisfies
fi(j) = fj(i).

5. (Restart or Clique Finding) At time 2TBC, the dealer puts Pi ̸∈ U in W if either happens (a)
Pi’s broadcast of Ri resulted in ⊥ or (b) Pi’s broadcasted Ri has more than ts NRs or (c)
Ri[j] ̸= F (i, j) when Ri[j] ̸= OK and Ri[j] ̸= NR.
The dealer makes a graph G with n vertices corresponding to n parties. There is an edge
when Ri[j] = Rj [i] = OK. There is no edge if Ri[j] = NR or Rj [i] = NR. The dealer finds a
clique Q of size n − ts + |U | in the graph including U . If |Q| ≥ n − ta, then the dealer sets
Qa = Q and broadcasts (sync, G,Qa). Otherwise, if |W | > 0, then the dealer sets U = U ∪W
and broadcasts (restart, U). Otherwise, it broadcasts (continue, Q,G, V ), where V is a set of
(ts − ta)− |U | parties (vertices) outside Q ∪ U .

6. (Asynchronous Clique Finding) The dealer executes the following steps as and when it receives
the required messages. First, the dealer initiates a graph A with parties as vertices with edges
between a pair of parties in U . On receiving broadcasts AOKij and AOKji from Pi, Pj ̸∈ U ,
it adds an edge between Pi, Pj . On receiving broadcast AOKij from Pi ̸∈ U,Pj ∈ U , it adds
an edge between Pi, Pj . Each time there is an update in A, it invokes (C,D,E, F )← Star(A)
(Protocol 4.2) If |F | > n− ta, it sets Qa = F and broadcasts (async, A,Qa).

7. (Conflict Resolution for Clique Expansion or Restart) At time 3TBC, the parties do the fol-
lowing:

(a) If (sync, G,Qa) is received, then Pi verifies G,Qa as follows. It checks the validity of Gi in
the same way as in Step 7c. It checks if Qa is a (n−ta)-size clique in Gi including parties
in U . If the verification passes, then set bi = 1 and bi = 0 otherwise and participate in
an instance of ΠBA. If the protocol output is 1 then go to Protocol 6.2. Otherwise, wait
for (async, A,Qa) from the dealer.

(b) If (restart, U) is received, then set bi = 0 and participate in an instance of ΠBA. If the
output is 1, then go to Protocol 6.2. Otherwise, restart the protocol from Step 1.

(c) If (continue, Q,G, V ) is received, then set bi = 0 and participate in an instance of ΠBA. If
the output is 1, then go to Protocol 6.2. Otherwise, when the output is 0, verify Q,G, V .
For this, construct Gi exactly as the dealer did based on the broadcasts available at time
2TBC at Step 5. G is marked as invalid if

i. it is different from Gi AND

ii. there is a pair Pj , Pk ̸∈ U such that Rj [k] ̸= Rk[j] or there is a pair Pj ̸∈ U,Pk ∈ U
such that Rj [k] ̸= fk(j).

Q is invalid if it is not a clique in a valid G of size at least n − ts + |U | and does not
include parties in U . V is invalid if it is not a set of (ts − ta) − |U | parties (vertices)
outside Q ∪ U in a valid G.

If Q,G, V are valid, then for each (Pj , Pk) who do not have an edge and Pj ∈ V , Pj

broadcasts fj(k) and Pk broadcasts fk(j) if fj(x) and fk(x) if received from the dealer
at time ∆. Otherwise, they broadcast ⊥. Let V ′ be the set of parties in V and the
parties they do not have an edge to.

If G or Q or V from broadcast (continue, Q,G, V ) is invalid, then wait until a broadcast
(async, A,Qa) from the dealer is received. Go to Protocol 6.2 on receiving (async, A,Qa).

21



(d) If ⊥ is received then set bi = 0 and participate in an instance of ΠBA. If the output is 1,
then go to Protocol 6.2. Otherwise, wait until a broadcast (async, A,Qa) from the dealer
is received. Go to Protocol 6.2 on receiving (async, A,Qa).

8. (Clique Expansion or Restart (for the dealer)) At time 4TBC+TBA, the dealer adds Pi in W if
the broadcast of Pi ∈ V ′ in the previous step is ⊥ or if the broadcast is not F (i, j). If |W | > 0,
then the dealer sets U = U ∪W and broadcasts (restart, U). Otherwise, if |Q ∪ V | ≥ n − ta
then the dealer sets clique Qa = Q ∪ V and broadcasts (sync, G,Qa). Otherwise, the dealer
broadcasts (restart, {ϕ}). 4

9. (Local Computation: Deciding on exit route or restart (for all)) At time 5TBC + TBA, every
Pi does as follows:

(a) If (restart, U) is received, then set bi = 0 and participate in an instance of ΠBA. If the
output is 1, then go to Protocol 6.2. Otherwise, restart the protocol from Step 1 with
U and W reset to ∅.

(b) If (sync, G,Qa) is received from the broadcast of the dealer it constructs Gi in the same
way as in Step 7c. It then updatesGi based on the broadcasts received at time 4TBC+TBA

and checks its validity as in Step 7c. Next, it checks if Qa is a (n− ta)-size clique in Gi

including parties in U . If the verification passes, then set bi = 1 and bi = 0 otherwise
and participate in an instance of ΠBA. If the protocol output is 1 then go to Protocol 6.2.
Otherwise, wait for (async, A,Qa) from the dealer.

(c) If ⊥ is received from the broadcast, then set bi = 0 and participate in an instance
of ΠBA. If the output is 1, then go to Protocol 6.2. Otherwise, wait until a broadcast
(async, A,Qa) from the dealer is received. Go to Protocol 6.2 on receiving (async, A,Qa).

The following steps are executed by a party when it receives an output of 1 from any ΠBA

instance. Otherwise, parties continue to participate in ΠWSS iterations.

Protocol 6.2: ΠOutput
WSS

Condition for Output: Parties output via (async, A,Qa) only after local time (ts − ta + 1) ·
(5TBC +2TBA). Parties output via (sync, G,Qa) only before local time (ts− ta +1) · (5TBC +2TBA).

Upon receiving (sync, G,Qa) or (async, A,Qa) from the dealer, each Pi verifies G,Qa or A,Qa

as follows: It constructs Gi or Ai exactly the way the dealer does in the respective steps based on
the broadcasts available until now. Pi continues to update Gi or Ai based on the broadcasts it
receives if the edges in G (respectively A) are not a subset of the edges in Gi (resp. Ai) or Qa is
not a (n− ta)-size clique in Gi (resp. Ai). Otherwise, it does the following:

1. If Pi ∈ Qa \U , then it sends fi(j) to every Pj /∈ Qa ∪U , waits for time 3∆ and outputs fi(x).

2. If Pi /∈ Qa, it waits for 3∆ time5 and upon receiving ts + ta +1 points from parties in Qa (Pi

obtains points of parties in U from the dealer’s broadcast) does the following:

• Upon receiving ts+ ta+1+x points, if x ≤ ta then Pi tries to correct up to x errors and
simultaneously detect up to ta − x errors (Corollary 3.3). If the decoding is successful,
then Pi outputs the reconstructed polynomial.

4The last condition is required only for the case when the set Z is defined from the verifiable secret sharing.
5In a synchronous network, if some honest party validates Qa at time T , other honest parties may receive and

validate it by time at most T + 2∆ when the dealer is corrupt. Hence, their shares may reach parties outside Qa

at time T + 3∆. Upon receiving Qa, each party outside it thus waits for 3∆ time to ensure that it receives all the
honest parties’ shares before starting error correction.
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• Upon receiving ts+ ta+1+x points, if x > ta then Pi tries to correct up to ta errors and
simultaneously detect up to x − ta errors (Corollary 3.4). If the decoding is successful,
then Pi outputs the reconstructed polynomial. Otherwise, Pi detects that the network
is synchronous. It then checks the following: If (sync, G,Qa) is received at time 3TBC,
then it checks the validity of Gi in the same way as in Step 7c. It checks if Qa is a
(n − ta)-size clique in Gi or including parties in U . If (sync, G,Qa) is received at time
5TBC, then it first updates Gi based on the broadcasts received at time 4TBC and checks
its validity as in Step 7c. Next, it checks if Qa is a (n − ta)-size clique in Gi including
parties in U .

It outputs fi(x) if it is received from the dealer within ∆ time from the start, Qa does
not include any Pj such that Pj ’s broadcast at time 2TBC is fji ̸= fi(j) and the above
verification passes. It outputs ⊥ otherwise.

Theorem 6.3. Let TWSS = (ts − ta + 1) · (5TBC + 2TBA) + 3∆. Protocol ΠWSS is perfectly-secure
against an adversary corrupting up to ts parties in the synchronous network and up to ta parties
in the asynchronous network and has the following properties.

1. Synchronous network:

(a) ts correctness: When the dealer is honest, at time TWSS, all the honest parties output
fi(x) = F (x, i) corresponding to F (x, y) held by the dealer.

(b) ts privacy: The view of the adversary is independent of the honest dealer’s secret s.

(c) ts weak commitment: When the dealer is corrupt, either no honest party computes an
output or there exists a set of at least ts+ta+1 honest parties Pi such that each Pi outputs
fi(x) where fi(x) = F ′(x, i) for some (ts, ts) degree polynomial F ′(x, y). Moreover, if
some honest party computes its output at T ≤ TWSS then all honest compute their output
at the same time. If some honest party computes an output at time T > TWSS then all
the honest parties compute their output within T + 2∆.

2. Asynchronous network:

(a) ta correctness: When the dealer is honest, almost-surely all the honest parties output
fi(x) = F (x, i) eventually where F (x, y) is held by the dealer.

(b) ts privacy: The view of the adversary is independent of the honest dealer’s secret s.

(c) ta strong commitment: When the dealer is corrupt, either no honest party computes an
output or almost-surely each honest party Pi outputs fi(x) eventually such that fi(x) =
F ′(x, i) for some (ts, ts) degree polynomial F ′(x, y).

Proof. We first prove the properties of ΠWSS in the synchronous network.

1. Synchronous network:

(a) ts correctness: Let the dealer be honest. Since the network is synchronous, we have that
the adversary can corrupt up to ts parties and the network delay is ∆. At the start
of the protocol, we also have that W,U are empty. Given this, we have that within ∆
time, all the parties will have their univariate polynomial shares. Further, each pair of
honest parties Pi, Pj will exchange their common points on the polynomial within time
2∆. By the liveness and validity property of broadcast in a synchronous network, we
have that (U, {fi(x)}i∈U ) will also be received by all the honest parties by time TBC.
Thus, we have that each honest party Pi will set Ri[j] = OK corresponding to every
honest party Pj . Moreover, Pi sets Ri[j] = fi(j) corresponding to each Pj ∈ U such
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that fi(j) = F (i, j). Thus, each honest Pi has at most ts NRs corresponding to the
corrupt parties. Further, the liveness and validity properties of broadcast ensure that
the honest parties’ broadcast instances successfully terminate with an output by time
2TBC. Moreover, if Ri[j] = fij is broadcasted by an honest Pi then it is guaranteed that
fij = F (i, j) indeed holds. Given that all the above conditions hold, an honest Pi is
never added to W by the dealer. This implies that the dealer is bound to find a clique
Q of size at least n− ts + |U | which contains all the honest parties and the parties in U .
We now have the following cases to consider:
i. The dealer finds Q such that |Q| ≥ n − ta. This implies that at time 2TBC,

the dealer receives Ri[j] = OK and Rj [i] = OK for each Pi, Pj ∈ Q. Due to the
consistency property of broadcast in the synchronous network, we have that all
the honest parties will indeed see the same Ri’s at time 2TBC as that seen by the
dealer. Further, the dealer sets Qa = Q and broadcasts (sync, G,Qa) which will be
received by all the honest parties by time 3TBC. Consequently, each honest party Pi

will construct the graph Gi exactly as the dealer, and hence its verification passes.
Hence, all the honest parties will participate with input 1 in ΠBA, and due to its
liveness and validity, they will receive the output as 1 by time 3TBC+TBA. Further,
every honest Pi ∈ Qa sends its share fi(j) to every Pj /∈ Qa. It waits for ∆ time and
outputs fi(x) at time 3TBC+∆. Each Pi /∈ Qa receives at least |Q|− ts ≥ ts+ ta+1
points from the honest parties in Qa. We then have two cases to consider:

• If Pi receives up to ta erroneous points from parties in Qa, then by Corollary 3.3
it will recover the same polynomial after error correction as what the dealer
shared and hence output the correct fi(x) at time 3TBC + TBA + 3∆.

• If Pi receives more than ta erroneous points from parties in Qa, then by Corol-
lary 3.4 we have that Pi will detect this. It in turn learns that the network is
indeed synchronous. Moreover, an honest Pi would have received its share fi(x)
from the dealer within time ∆ and sent its pairwise points fi(j) to each Pj . Let
the point received by Pj ∈ Qa be fij . If indeed fj(i) ̸= fij did not hold for Pj ,
then Pj would have broadcasted Rj [i] = fj(i) by time 2TBC. Given that the
dealer is honest, we have that a Pj that broadcasted an incorrect value at 2TBC

would be included in W and hence Pj /∈ Qa which is a contradiction. Thus,
it must hold that Pj either broadcasted Rj [i] = NR or Rj [i] = F (i, j) = fi(j).
Thus, Pi can identify a corrupt Pj which sends an erroneous point. In this
case, Pi outputs the correct polynomial received from the dealer fi(x) by time
3TBC + TBA + 3∆.

ii. The dealer broadcasts (restart, U). In this case, we have that the dealer has
added at least one party in the set W and hence added at least one new party in the
set U . Due to the liveness and validity properties of broadcast in the synchronous
network, we have that all the honest parties will receive the dealer’s broadcast by
time 3TBC. Hence, all the honest parties will participate with input 0 in ΠBA, and
due to its liveness and validity, they will receive the output as 0 by time 3TBC+TBA.
Subsequently, they restart the protocol successfully and in synchronization with each
other. Moreover, as argued before, it is guaranteed that no honest party gets added
to W or U . Thus, after at most ts−ta restarts, U will include at least ts−ta corrupt
parties. The dealer will thus make the polynomials of ts−ta corrupt parties public in
the subsequent run of the protocol and is guaranteed to find a clique of size (n− ta)
which includes the (n − ts) honest parties and the ts − ta parties from U whose
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polynomials are public. Hence, in the subsequent run, the prior case is guaranteed
to occur and parties will successfully output shares on the dealer’s polynomial.

iii. The dealer broadcasts (continue, Q,G, V ). In this case, it must hold that |Q| <
n − ta, |U | < ts − ta and W = ϕ. Again, by the properties of broadcast, we have
that the dealer’s broadcasted message will be delivered to all the honest parties by
time 3TBC. Hence, all the honest parties will participate with input 0 in ΠBA and
due to its liveness and validity, they will receive the output as 0 by time 3TBC+TBA.
Thus, they will proceed to check the validity of Q,G, V and identify that it is valid.
It is guaranteed that each honest Pj ∈ V , has an edge with every honest Pk and
the corresponding OK is received by all the honest parties, including the dealer by
time 2TBC. Hence, for each (Pj , Pk) pair where Pj ∈ V and does not have an edge
with some Pk, it is guaranteed that at least one of Pj , Pk is corrupt. Further, every
honest Pk such that it does not have an edge with Pj ∈ V broadcasts the correct
fk(j) and is received by all the honest parties and the dealer by time 4TBC. Hence,
once again, no honest party gets added to W . We now have two cases to consider:

• The dealer broadcasts (restart, U). This implies that the broadcast of some Pk

or Pj such that Pk does not have an edge with Pj ∈ V results in a ⊥ or results
in value not equal to F (k, j) at time 4TBC + TBA. The dealer adds at least one
party to W and hence adds at least one new party to U . By the argument above,
we have that Pk or Pj added to W is guaranteed to be corrupt. The dealer then
broadcasts (restart, U) which is received by all the honest parties by time 5TBC.
All the honest parties will participate with input 0 in ΠBA and due to its liveness
and validity, they will receive the output as 0 by time 5TBC + 2TBA. Thus, all
honest parties restart the protocol in synchronization. By the same argument as
earlier, upon at most ts−ta restarts, we have that an honest dealer will conclude
the protocol by finding a |Q| ≥ n− ta which includes the (n− ts) honest parties
and ts − ta parties from U .

• The dealer broadcasts (sync, G,Qa). In this case, it must hold that for every
Pj ∈ V , such that (Pj , Pk) did not have an edge at time 2TBC, both parties
indeed broadcasted the correct value F (k, j) by time 4TBC, thus ensuring that
(Pj , Pk) are now consistent. Given that a valid Q is of size |Q| = n − ts + |U |
and the dealer has additionally resolved conflicts with (ts− ta)−|U | parties, this
implies that Qa = Q ∪ V is indeed of size at least n − ta. Hence, the dealer’s
broadcast of (sync, G,Qa) actually contains a clique of the required size and will
be received by the parties within time TBC. Consequently, each honest party Pi

will construct the graph Gi exactly as the dealer, hence its verification passes.
All the honest parties will thus participate with input 1 in ΠBA and due to its
liveness and validity, they will receive the output as 1 by time 5TBC + TBA. The
parties then compute their output similar to the first case (The dealer finds
Q such that |Q| ≥ n− ta) at time 5TBC + 2TBA + 3∆.

(b) ts privacy: Observe that the only step at which the dealer reveals information regarding
the secret (excluding the initial step of sharing the polynomial) corresponds to the public
broadcast of fi(x) for parties in U . Note that a party Pi is added to U at time 2TBC if its
broadcast corresponding to the pairwise consistency checks results in ⊥, has more than ts
NRs or has an incorrect fi(j) value. Neither of these conditions holds true for an honest
party; hence, an honest party does not get added to U at this time step. Further, parties
also get included to U at time 4TBC. Here, a party Pi may get added to U if its broadcast
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corresponding to a party Pj ∈ V results in a ⊥ or has an incorrect value. Given that an
honest party receives an honest dealer’s broadcast of (continue, Q,G, V ) at time 3TBC

and its own polynomial from the dealer in time ∆, it broadcasts the required (correct)
values which are received by the dealer at time 4TBC. Hence, an honest party does not
get added to U . Thus, we have that from the dealer’s communication, an adversary
can learn at most ts univariate polynomials corresponding to the corrupt parties, thus
ensuring privacy.
Further, we show that the adversary does not learn any additional information from
the broadcast of honest parties. During pairwise exchange, it is ensured that the honest
parties successfully send common points to each other. Hence, every honest Pi broadcasts
Ri[j] = OK corresponding to every honest Pj and does not reveal any information o an
adversary. Further, an honest party only broadcasts points for a party in Pj ∈ V such
that (Pi, Pj) does not have an edge by time 2TBC. Given that this does not hold for
any honest Pj as argued earlier, each fi(j) revealed by an honest party Pi corresponds
to a corrupt Pj , thus not revealing any information to the adversary. In conclusion,
the adversary cannot learn any information beyond (at most) ts univariate polynomial
shares it can obtain from (at most) ts corrupt parties, ascertaining ts privacy.

(c) ts weak commitment: If no honest party computes an output, then the weak commitment
holds trivially. Hence, we consider the case when there exists some honest party Pk which
computes the output at time T . We further analyze this in the following cases:
i. Pk computes the output via obtaining (sync, G,Qa) in some iteration of the

protocol: In this case, it implies that Pk obtains the output of ΠBA as 1 either at
time 3TBC + TBA or 5TBC + 2TBA. This further implies that some honest party Ph

participates in ΠBA with input 1. If not, then the liveness and validity of ΠBA would
ensure that parties output 0 and not compute output via (sync, G,Qa). Consider the
case that Ph has bh = 1 in ΠBA instance at time 3TBC. In this case, note that Ph must
have verified that the dealer’s graphG is indeed the same asGh constructed using the
broadcast it receives by time 2TBC. Moreover, Qa also satisfies the requirements. By
the consistency and liveness properties of broadcast in the synchronous network, we
have that the output computed by all the honest parties in the broadcast instance of
the dealer is the same at time 3TBC. Similarly, by the properties of broadcast, it also
holds that the output of broadcast instances computed by all the honest parties at
time 2TBC is identical to that computed by Ph. Hence, it must hold that (sync, G,Qa)
is received and verified by all the parties successfully. Hence, all the parties must
have set bi = 1 in the instance of ΠBA and obtained the output 1 at time 3TBC+TBA.
Given that |Qa| ≥ n− ta and all the parties are consistent with each other, we have
that all the honest parties in Qa output fi(x) such that F ′(x, i) = fi(x) for some
(ts, ts)-degree bivariate polynomial F ′ at time 3TBC + TBA + 3∆ in that iteration.
Now consider an honest party Pi /∈ Qa. By time 3TBC + TBA +3∆, Pi is guaranteed
to receive fj(i) from each honest Pj ∈ Qa. If Pi receives at most ta erroneous points
(points not lying on F ′(x, y)) and additionally it holds fi(x) = F ′(x, i) received
from the dealer at time ∆ in this iteration, then by Corollary 3.3, Pi must have
successfully reconstructed the same fi(x) from the points of parties in Qa and set
it as its output, thus ensuring the correct output. On the other hand, suppose Pi

receives more than ta erroneous points from the parties in Qa. In this case, by
Corollary 3.4, Pi identifies that the network is synchronous. If Pi has not received
fi(x) from the dealer by time ∆ then it outputs ⊥. Otherwise, Pi had received its
polynomial by time ∆ and sent fi(j) to every Pj , an honest party Pj ∈ Qa for whom
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the value did not match would have indeed broadcasted its own value in Rj [i] at
time 2TBC or its value fj(i) would already be public if Pj ∈ U . If indeed Pj ∈ Qa has
broadcasted Rj [i] at time 2TBC or Pj ∈ U has fj(i) which is not equal to fi(j), then
Pi identifies that the dealer is corrupt since it has included Pj ∈ Qa while it has sent
fi(x) such that fi(j) ̸= F ′(i, j). Hence, Pi outputs ⊥. On the other hand, if Pj has
broadcasted Rj [i] = fi(j) or Rj [i] = NR at time 2TBC, then Pi identifies that Pj is
corrupt and has sent it an incorrect value at time 3TBC+TBA+3∆. In this case, Pi

ignores fji sent by Pj . If Pi successfully reconstructs a polynomial after discarding
these points which is equal to fi(x) received from the dealer, then it is guaranteed
that the polynomial is indeed consistent with all the honest parties in Qa. This is
because Pi only discards the points of corrupt parties who behaved inconsistently
at times 2TBC and 3TBC + TBA + 3∆. Thus, we have that an honest Pi /∈ Qa indeed
outputs fi(x) = F ′(x, i), where F ′(x, y) is the (ts, ts)-degree bivariate polynomial
defined by the honest parties in Qa.
The other case, that Ph has bh = 1 in ΠBA instance at time 5TBC + 2TBA follows
similarly. Here, it must also hold that the output of ΠBA at time 3TBC +TBA was 0.
Otherwise, Ph and all the honest parties would proceed as in the former case. Thus
we have that Ph received (sync, G,Qa) at time 5TBC + TBA and accepted it, then it
implies that it also received a valid (continue, Q,G, V ) at time 3TBC and broadcasts
of parties corresponding to V at time 4TBC + TBA. If not, then Ph would have
either received an invalid (sync, G,Qa) or (restart, U) or ⊥ or an invalid G,Q, V in
(continue, Q,G, V ). In either of these cases, Ph would not have proceeded to execute
steps designated for time beyond 4TBC+TBA and not participated in ΠBA with input
1, which is a contradiction. Since Ph received valid broadcasts from the dealer at
time 3TBC and 5TBC + TBA, by the consistency and liveness properties of broadcast
in the synchronous network, we have that all the honest parties also received it at
the designated time steps. Following this, the argument for ts weak commitment
follows exactly as that for the previous case, where all the honest parties either
output shares on the same polynomial or ⊥ at time 5TBC + 2TBA + 3∆.

ii. Ph computes the output via obtaining (async, A,Qa) at time T in some
iteration of the protocol: First note that this implies that none of the (ts −
ta) iterations terminated via the (sync, G,Qa) path for Ph. Since the decision of
output computation is taken via ΠBA, by its liveness and consistency property, it is
guaranteed that no honest party computes its output via (sync, G,Qa). Note that
since Ph computes the output at time T , it implies that the dealer’s broadcast indeed
has a valid clique which was received and verified by Ph by time T − 3∆. Moreover,
by the fallback consistency property of broadcast in a synchronous network, we
have that all the honest parties will receive (async, A,Qa) and the AOK messages
to validate its correctness within time (T − 3∆) + 2∆ = T − ∆. By the fact that
|Qa| ≥ n − ta and includes at least ts + ta + 1 honest parties, we have that fi(x)
held by each Pi ∈ Qa is such that fi(x) = F ′(x, i) for some (ts, ts)-degree bivariate
polynomial F ′(x, y). Moreover, each Pi ∈ Qa will compute an output by time
(T −∆)+ 3∆ = T +2∆. Consider an honest Pi /∈ Qa. As before, since the network
is synchronous, it is guaranteed to receive fj(i) from each honest Pj ∈ Qa by time
at most T . Since Pi /∈ Qa waits for time at least 3∆ upon accepting (async, A,Qa),
it is guaranteed to receive the points of all the honest parties before proceeding for
reconstruction. At this time, if it receives less than ta erroneous points, then it
successfully recovers the correct polynomial fi(x) = F ′(x, i) defined by the honest
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parties in Qa and computes an output at time T +2∆. Otherwise, Pi identifies that
the network is synchronous. In this case, if the dealer was honest then Pi knows that
it would have terminated via (sync, G,Qa). Hence, Pi identifies that the dealer is
corrupt and outputs ⊥. Thus, we have that all the honest parties output fi(x) such
that fi(x) = F ′(x, i) holds for some (ts, ts) degree polynomial F ′(x, y). Moreover,
all honest parties compute their output within a delay of 2∆ from each other.

2. Asynchronous network: We now prove the properties of ΠWSS in the asynchronous network.

(a) ta correctness: Let the dealer be honest. Since the network is asynchronous, we have
that the adversary can corrupt at most ta parties. Given this and the fact that all the
honest parties’ messages (including the dealer’s) get delivered eventually, we have that
the set of all the honest parties eventually constitutes an (n− ta) sized clique. Thus we
have that via the sequence of steps corresponding to an asynchronous network, the dealer
will eventually broadcast (async, A,Qa) which will be validated by all the honest parties.
Moreover, each honest Pi ∈ Qa will output a correct fi(x) which it received from an
honest dealer. Now consider the case of an honest party Pi outside Qa. An honest party
Pi /∈ Qa will eventually receive fj(i) from every honest party Pj ∈ Qa. Since at most ta
parties are corrupt and can send erroneous points to Pi, by Corollary 3.3 we have that
Pi will successfully reconstruct and output a correct fi(x) consistent with the dealer’s
bivariate polynomial. Moreover, if some honest party actually receives (sync, G,Qa) and
obtains an output, by the consistency of ΠBA we have that some honest party participated
with input 1 in the agreement protocol. Hence, all the honest parties will eventually
receive the output as 1 and compute their output correctly.

(b) ts privacy: As in the synchronous case, the only step at which the dealer reveals informa-
tion regarding its secret beyond the sharing of polynomials is when it broadcasts fi(x)
corresponding to each Pi ∈ U . Note that the dealer adds a party in U if Ri[j] ̸= F (i, j)
or Pi’s broadcast results in NR for more than ts parties. Given that the network is asyn-
chronous, an honest Pi may thus get added to U . However, it is ensured that the dealer
reveals fi(x) for at most ts − ta such parties. Thus, in the worst case, we have that the
adversary learns ts such univariate polynomials fi(x) corresponding to ta corrupt parties
and additionally ts − ta honest parties in U . Hence, the adversary can learn exactly as
much information regarding the secret as in the synchronous case, thus ensuring privacy.
Further, we show that the adversary does not learn anything beyond ts univariate poly-
nomials, even from the broadcast of the parties. First, observe that during the pairwise
exchange, if an honest party Pi does not receive fj(i) from an honest Pj then it broad-
casts NR at time TBC. When it eventually receives fj(i) from Pj , it is guaranteed that
fj(i) = fi(j) and hence Pi broadcasts AOKj . Hence, the broadcasts corresponding to
pairwise checks do not reveal any information regarding the honest parties’ secrets. Next,
we have that parties may reveal information regarding their polynomial if they receive
(sync, Q,G, V ) from the dealer. In this case again, it is possible that V contains an hon-
est party Pi for whom all the parties Pj not having an edge with Pi reveal their common
point fj(i). However, note again that |U ∪ V |ts − ta, and hence, at most ts − ta honest
parties’ polynomials may be revealed to the adversary. By the same argument as earlier,
we have that the adversary gains no information beyond ts univariate polynomials on the
dealer’s polynomial, which is exactly as in the case of the synchronous network. Thus,
we have that ts privacy holds even in the asynchronous network.

(c) ts strong commitment: We now show that when the network is asynchronous, irrespective
of the adversary’s behavior, each honest party Pi will output fi(x) such that fi(x) =
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F ′(x, i) for some (ts, ts) degree polynomial F ′(x, y).
We will first show that given two cliques, say Qa and Q′

a, each of size at least n − ta,
we have that the shares held by the honest parties in Qa as well as Q′

a are consistent
with the same (ts, ts) degree bivariate polynomial. Given that |Qa| ≥ n − ta, |Q′

a| and
we have a total of n parties, it must hold that |Qa ∩Q′

a| ≥ n− 2ta. Moreover, we know
that n − 2ta ≥ 2ts + 1. Hence, it holds that Qa ∩ Q′

a contains at least ts + 1 honest
parties who hold polynomials that define a unique (ts, ts) degree bivariate polynomial,
say F (x, y). Let H be the set of (at least) ts + 1 honest parties such that an honest
Pi ∈ H when Pi ∈ Qa ∩ Q′

a. Further, since both Qa and Q′
a are cliques, it holds that

each honest Pj ∈ Qa ∪ Q′
a is consistent with every Pi ∈ H. Given that the degree ts

polynomial fj(x) held by Pj is consistent with (at least) ts+1 points of F (x, j), it must
hold that fj(x) = F (x, j) for each Pj ∈ Qa as well as every Pj ∈ Q′

a. This ensures that
all the honest parties belonging to different cliques of size at least n− ta are guaranteed
to hold polynomials consistent with a unique (ts, ts) degree bivariate polynomial. Given
this, we now argue that our protocol ensures ts strong commitment in an asynchronous
network.
If no honest party computes an output when the dealer is corrupt, commitment holds
trivially. Thus, we consider the case when some honest party Ph computes an output.
Note that this implies that Ph has received either (sync, G,Qa) and (async, A,Qa) and
verified it to compute an output. In the former case, we have that Ph received 1 as the
output of ΠBA during some iteration of the protocol. Hence, there exists some honest
party that participated in an instance of ΠBA with input 1. If not, then by the validity
of ΠBA, all the honest parties would have output 0. Hence, Ph would not have computed
its output via (sync, G,Qa) which is a contradiction. By the consistency of ΠBA it thus
holds that all the honest parties will receive 1 as the output of ΠBA and eventually
compute their output. This is because parties in Qa will eventually verify the clique and
compute their output. For parties outside, Qa, by Corollary 3.3, we have that they will
be able to reconstruct the polynomial that is consistent with the honest parties in Qa.
Similarly, if Ph computes its output via (async, A,Qa), the same argument holds.

A note on extending the weak secret sharing to verifiable secret sharing. As described
earlier, to ensure privacy when many instances of weak secret sharing are executed simultaneously
inside a verifiable secret sharing protocol, we require an additional condition which is also mentioned
in Protocol 6.1. Specifically, we require that the polynomials, or the points on polynomials that
are revealed during the protocol execution belong to a common set Z of ts − ta parties across
these instances. That is, we require that the sets U, V,W across all parallel instances of the above
protocol be such that U, V,W ⊆ Z for a common set Z where |Z| = ts − ta. In particular, we are
interested in the case where Z consists of only corrupt parties due to reasons that will be discussed
in the subsequent section. In this case, for a synchronous network, the dealer will now not be
able to include an arbitrary corrupt party to the sets U or V when it is silent since it may not
belong to the set Z. Hence, it has to carefully choose the initial clique of size n− ts such that the
ts − ta parties outside are corrupt and belong to Z, and consequently can be included in U, V to
either restart or extend the clique. Moreover, the honest dealer also has to ensure that the clique
comprises of (at least) n − ts honest parties which are guaranteed to communicate and help with
clique expansion. This is because, the ta corrupt parties outside Z may get included in the clique
and stay silent during the clique expansion phase, preventing the clique from getting extended and
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yet not allowing the dealer to restart with a new party in U . To ensure these conditions, the weak
secret sharing considering such a set Z of ts − ta corrupt parties may in fact require ts reruns for
successful completion. This is because, when any of the ta corrupt parties is included in the initial
clique of size (at least) n− ts identified by the dealer prevent expansion of the clique, the dealer has
to simply restart the protocol with (restart, {ϕ}) and ensure that the silent parties from previous
runs are not included in the initial clique of n− ts that it identifies. Note that for an honest dealer,
such a clique consisting of all the honest parties is guaranteed to exist. Moreover, the ta parties
can cause at most ta such reruns. Along with the ts − ta reruns that the corrupt parties in Z
can additionally cause (by getting added to U due to responding with incorrect values or staying
silent), this amounts to ts reruns when considering a specific set Z. We refer to the time for this
execution of weak secret sharing as T ′

WSS = (ts + 1) · (5TBC + 2TBA) + 3∆.

7 Verifiable Secret Sharing

The weak secret sharing protocol falls short of providing the properties of verifiable secret sharing.
This is because, when the dealer is corrupt and the network is synchronous, it is possible that some
honest parties, specifically the parties lying outside the (n, ta)-Star, may not receive their shares.
To fix this, and ensure that all or none of the honest parties receive their shares, we follow the
approach of [3]. As described in [3], this results in a verifiable secret sharing protocol ΠVSS with
two layers, wherein in the outer layer is the dealer of verifiable secret sharing executing the same
steps as that of weak secret sharing. Whereas in the inner layer, each party executes an instance of
weak secret sharing acting as the dealer to perform the pair-wise consistency check on the shares
received from the dealer of verifiable secret sharing. The VSS protocol ensures that all the parties
hold a degree-ts Shamir-sharing of the dealer’s input secret. However, in order to ensure privacy
of secrets in our case, we also require an additional constraint while executing this two-layered
protocol. Specifically, we require that if any dealer in the weak secret sharing instances in the inner
layer or the dealer of verifiable secret sharing in outer layer reveals points publicly, then it must
be for a common (sub)set of ts − ta parties. This is required in order to ensure that the adversary
does not learn more that ts univariate polynomials on a (symmetric) bivariate polynomial with
degree ts in both variables. The guarantee we get is that the protocol will almost surely terminate
for an honest dealer in a synchronous network when this set of parties is corrupt. Our protocol is
thus described for a global set of ts − ta corrupt parties Z and we abuse the notation to refer to it
as verifiable secret sharing. In order to obtain an actual protocol for verifiable secret sharing, we
have to iterate over all subsets of size ts− ta, of which some are guaranteed to succeed, and further
agree on which successful instance will be considered for computing an output. The latter task is
achieved via the two layered ACS protocol as described in Section 2. Rest of the protocol ideas
remain the same as in the prior works.

Here, we give a complete description of our verifiable secret sharing protocol for a set Z of ts−ta
corrupt parties, which allows a dealer to generate a degree-ts sharing of its input among parties,
followed by its proof.

Protocol 7.1: ΠVSS

Input: The dealer holds a secret s ∈ F.
Initialisation: The dealer initialises two sets W,U to ϕ. Only W is reset in every run to ∅.
Condition: At all times in the protocol, the dealer ensures that the sets U,W, V ⊆ Z. Parties
discard the dealer if U or V broadcasted by the dealer is such that U, V ̸⊆ Z.
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1. (Polynomial Share Distribution) The dealer chooses a symmetric bivariate polynomial F (x, y)
of degree ts in both x, y and delivers fi(x) = F (x, i) to Pi. If |U | > ts − ta, then assign U to
be the set of first ts − ta parties lexicographically. The dealer broadcasts (U, {fi(x)}i∈U ).

2. (Pair-wise exchange) At time TBC, if fi(x) is received at time ∆ then every Pi participates in

an instance of ΠWSS as the dealer, say Π
(i)
WSS with input fi(x). Pi also participates in Π

(j)
WSS

instances for every j ∈ {1, . . . , n} \ U .

3. (Pair-wise Consistency Check) At time TBC + TWSS Pi prepares a vector Ri of length n as
follows and broadcasts it. It sets Ri[j] = NR for all j if either of the following happens:

(a) it receives no fi(x)

(b) the dealer’s broadcast results in ⊥
(c) some fj(x) in the broadcast (U, {fi(x)}i∈U ) is of degree more than ts

(d) there are indices j, k such that fj(k) ̸= fk(j) in the broadcast (U, {fi(x)}i∈U )
Otherwise, it sets Ri as follows. (1) if Pj ∈ U , then Ri[j] = fi(j) (2) if Pj ̸∈ U , then set (a)

Ri[j] = NR if fji is not computed as output in Pj ’s instance Π
(j)
WSS, (b) Ri[j] = fi(j) if fji is

received as output from Π
(j)
WSS and fi(j) ̸= fji, (c) Ri[j] = OK otherwise.

4. (Asynchronous Pair-wise Consistency Checking) The parties execute the following steps as
and when they receive the required values. On receiving the broadcast (U, {fi(x)}i∈U ) and
polynomial fi(x) from the dealer, every Pi ̸∈ U participates in an instance of ΠWSS as the

dealer, say Π
(i)
WSS with input fi(x). Pi also participates in Π

(j)
WSS instances for every j ∈

{1, . . . , n}. Pi broadcasts AOKj if (a) fji is computed from Π
(j)
WSS from Pj ̸∈ U and fi(j) = fji

(b) fj(i) for Pj ∈ U satisfies fi(j) = fj(i).

5. (Restart or Clique Finding) At time 2TBC + TWSS, the dealer puts Pi ̸∈ U in W if either
happens (a) Pi’s broadcast of Ri resulted in ⊥ or (b) Pi’s broadcasted Ri has more than ts
NRs or (c) Ri[j] ̸= F (i, j) when Ri[j] ̸= OK and Ri[j] ̸= NR.
The dealer makes a graph G with n vertices corresponding to n parties. There is an edge
when Ri[j] = Rj [i] = OK. There is no edge if Ri[j] = NR or Rj [i] = NR. The dealer finds a
clique Q of size n − ts + |U | in the graph including U . If |Q| ≥ n − ta, then the dealer sets
Qa = Q and broadcasts (sync, G,Qa). Otherwise, if |W | > 0, then the dealer sets U = U ∪W
and broadcasts (restart, U). Otherwise, it broadcasts (continue, Q,G, V ), where V is a set of
(ts − ta)− |U | parties (vertices) outside Q ∪ U .

6. (Asynchronous Clique Finding) The dealer executes the following steps as and when it receives
the required messages. First, the dealer initiates a graph A with parties as vertices with edges
between a pair of parties in U . On receiving broadcasts AOKij and AOKji from Pi, Pj ̸∈ U ,
it adds an edge between Pi, Pj . On receiving broadcast AOKij from Pi ̸∈ U,Pj ∈ U , it adds
an edge between Pi, Pj . Each time there is an update in A, it invokes (C,D,E, F )← Star(A)
(Protocol 4.2) If |F | > n− ta, it sets Qa = F and broadcasts (async, A,Qa).

7. (Conflict Resolution for Clique Expansion or Restart) At time 3TBC + TWSS, the parties do
the following:

(a) If (sync, G,Qa) is received, then Pi verifies G,Qa as follows. It checks the validity of Gi in
the same way as in Step 7c. It checks if Qa is a (n−ta)-size clique in Gi including parties
in U . If the verification passes, then set bi = 1 and bi = 0 otherwise and participate in
an instance of ΠBA. If the protocol output is 1 then go to Protocol 7.2. Otherwise, wait
for (async, A,Qa) from the dealer.

(b) If (restart, U) is received, then set bi = 0 and participate in an instance of ΠBA. If the
output is 1, then go to Protocol 7.2. Otherwise, restart the protocol from Step 1.
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(c) If (continue, Q,G, V ) is received, then set bi = 0 and participate in an instance of ΠBA. If
the output is 1, then go to Protocol 7.2. Otherwise, when the output is 0, verify Q,G, V .
For this, construct Gi exactly as the dealer did based on the broadcasts available at time
2TBC + TWSS at Step 5. G is marked as invalid if

i. it is different from Gi AND

ii. there is a pair Pj , Pk ̸∈ U such that Rj [k] ̸= Rk[j] or there is a pair Pj ̸∈ U,Pk ∈ U
such that Rj [k] ̸= fk(j).

Q is invalid if it is not a clique in a valid G of size at least n− ta and does not include
parties in U . V is invalid if it is not a set of (ts − ta) − |U | parties (vertices) outside
Q ∪ U in a valid G.

If Q,G, V are valid, then for each (Pj , Pk) who do not have an edge and Pj ∈ V , Pj

broadcasts fj(k) and Pk broadcasts fk(j) if fj(x) and fk(x) if received from the dealer
at time ∆. Otherwise, they broadcast ⊥. Let V ′ be the set of parties in V and the
parties they do not have an edge to.

If G or Q or V from broadcast (continue, Q,G, V ) is invalid, then wait until a broadcast
(async, A,Qa) from the dealer is received. Go to Protocol 7.2 on receiving (async, A,Qa).

(d) If ⊥ is received then set bi = 0 and participate in an instance of ΠBA. If the output is 1,
then go to Protocol 7.2. Otherwise, wait until a broadcast (async, A,Qa) from the dealer
is received. Go to Protocol 7.2 on receiving (async, A,Qa).

8. (Clique Expansion or Restart (for the dealer)) At time 4TBC + TWSS + TBA, the dealer adds
Pi in W if the broadcast of Pi ∈ V ′ in the previous step is ⊥ or if the broadcast is not
F (i, j). If |W | > 0, then the dealer sets U = U ∪W and broadcasts (restart, U). Otherwise,
if |Q ∪ V | ≥ n − ta then the dealer sets clique Qa = Q ∪ V and broadcasts (sync, G,Qa).
Otherwise, the dealer broadcasts (restart, {ϕ}).

9. (Local Computation: Deciding on exit route or restart (for all)) At time 5TBC + TWSS + TBA,
every Pi does as follows:

(a) If (restart, U) is received, then set bi = 0 and participate in an instance of ΠBA. If the
output is 1, then go to Protocol 7.2. Otherwise, restart the protocol from Step 1 with
U and W reset to ∅.

(b) If (sync, G,Qa) is received from the broadcast of the dealer it constructs Gi in the
same way as in Step 7c. It then updates Gi based on the broadcasts received at time
4TBC + TWSS + TBA and checks its validity as in Step 7c. Next, it checks if Qa is a
(n− ta)-size clique in Gi including parties in U . If the verification passes, then set bi = 1
and bi = 0 otherwise and participate in an instance of ΠBA. If the output of the protocol
is 1 then go to Protocol 7.2. Otherwise, wait for (async, A,Qa) from the dealer.

(c) If ⊥ is received from the broadcast, then set bi = 0 and participate in an instance
of ΠBA. If the output is 1, then go to Protocol 7.2. Otherwise, wait until a broadcast
(async, A,Qa) from the dealer is received. Go to Protocol 7.2 on receiving (async, A,Qa).

Protocol 7.2: ΠOutput
VSS

Condition for Output: Parties output via (async, A,Qa) only after local time (ts + 1) · (5TBC +
T ′
WSS+2TBA). Parties output via (sync, G,Qa) only before local time (ts+1) ·(5TBC+T ′

WSS+2TBA).

Upon receiving (sync, G,Qa) or (async, A,Qa) from the dealer, each Pi verifies G,Qa or A,Qa
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as follows: It constructs Gi or Ai exactly the way the dealer does in the respective steps based on
the broadcasts available until now. Pi continues to update Gi or Ai based on the broadcasts it
receives if the edges in G (respectively A) are not a subset of the edges in Gi (resp. Ai) or Qa is
not a (n− ta)-size clique in Gi (resp. Ai). Otherwise, it does the following:

1. If Pi ∈ Qa, outputs fi(x).

2. If Pi /∈ Qa then upon computing fji as output from Π
(j)
WSS corresponding to ts + 1 parties

Pj ∈ Qa, Pi reconstructs its polynomial fi(x) and outputs it.

Theorem 7.3. Let TVSS = (ts+1)·(5TBC+T ′
WSS+2TBA) and Z be a subset of ts−ta corrupt parties.

Protocol ΠVSS, when executed with the set Z, is perfectly-secure against an adversary corrupting up
to ts parties in the synchronous network and up to ta parties in the asynchronous network and has
the following properties.

1. Synchronous network:

(a) ts correctness: When the dealer is honest, at time TVSS, all the honest parties output
si = fi(0).

(b) ts privacy: The view of the adversary is independent of the honest dealer’s secret s.

(c) ts strong commitment: When the dealer is corrupt, either no honest party computes
an output or each honest party Pi is such that Pi outputs si. Moreover, it holds that
si = f ′(i) for some degree-ts polynomial f ′(x). Also, if some honest party outputs by
time T , then all honest parties have an output by time T + 2∆.

2. Asynchronous network:

(a) ta correctness: When the dealer is honest, almost-surely all the honest parties output
si = fi(0) eventually.

(b) ts privacy: The view of the adversary is independent of the honest dealer’s secret s.

(c) ta strong commitment: When the dealer is corrupt, either no honest party computes an
output or almost-surely each honest party Pi outputs si eventually such that si = f ′(i)
for some degree-ts polynomial f ′(x).

Proof. At a very high level, the proof follows closely to that of ΠWSS. We first prove the properties
of ΠVSS in the synchronous network.

1. Synchronous Network:

(a) ts correctness: Consider the dealer to be honest. Given that the network is synchronous,
we have that the network has a delay of at most ∆. Thus, each honest party Pi will
receive its fi(x) from the dealer within time ∆. Moreover, the dealer’s broadcast of
(U, {fi(x)}i∈U ) will be received within time TBC from the start and initiate the instance

of Π
(i)
WSS. Further, every honest party will also participate in the instances initiated by

all the other honest parties. We have that by time TBC + TWSS, all the honest parties
will compute output in the ΠWSS instance of every other honest party. Thus, we have
that by time TBC + TWSS, Pi has all the required information to compute the vector Ri.
Hence, it will compute Ri such that Ri[j] = OK for every honest Pj and the correct fi(j)
corresponding to every Pj ∈ U and broadcasts it. By the liveness and validity property
of broadcast in the synchronous network, we have that all the honest parties broadcast
will be received successfully by time 2TBC + TWSS. Hence, we have that no honest party
gets added to W . Similar to ΠWSS, we now have the following cases to consider:
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i. The dealer finds a Q such that |Q| ≥ n−ta. This implies that the dealer received
the broadcasts of all the parties in Q by time 2TBC + TWSS. By the consistency
property of broadcast, we have that all the honest parties would also have received
the same. Further, we have that the dealer will broadcast (sync, G,Qa) which will
be received by all the parties at time 3TBC+TWSS. And hence, all the honest parties
will participate in ΠBA with input 1. By the liveness and validity of ΠBA in the
synchronous network, all the honest parties will output 1 at time 3TBC+TWSS+TBA

and hence compute the output as follows. Every Pi ∈ Qa will output the polynomial
fi(x) it received from the dealer. Now consider an honest party Pi /∈ Qa. Since
|Qa| ≥ n− ta, we have that at least n− ta− ts ≥ ts+1 honest parties. Thus, it holds

that Pi must have computed fji as the output in Pj ’s instance of Π
(j)
WSS. Hence,

Pi has at least ts + 1 points on a ts degree polynomial. We now consider the case

when Pi has computed its output in Π
(j)
WSS for some corrupt party Pj ∈ Qa. Since

(sync, G,Qa) is such that the dealer honestly computed Qa, it must hold that Qa

was indeed a clique at time 2TBC + TWSS. This implies that each honest Pk ∈ Qa

is broadcasted Rk[j] = OK corresponding to every corrupt Pj ∈ Qa. By the ts
weak commitment property of ΠWSS, we have that all the honest parties would have
indeed computed fkj which lie on a unique ts degree polynomial. Given that at least
ts+1 honest parties broadcasted OK to such a corrupt party Pj , it must indeed hold

that Pj participated with the dealer’s correct polynomial fj(x) in Π
(j)
WSS. Hence, we

have that even if Pi /∈ Qa has computed an output fji in Π
(j)
WSS corresponding to

a corrupt Pj , it must hold that fji = fi(j). Hence, the polynomial interpolated
by Pi /∈ Qa is indeed fi(x) = F (x, i) where F (x, y) is the (ts, ts) degree bivariate
polynomial held by the dealer.

ii. The dealer broadcasts (restart, U). In this case, we have that the dealer added
at least one party to W , and hence added at least one new party to U . Further,
by the validity of broadcast, all the honest parties will receive (restart, U) at time
3TBC + TWSS and set their input to ΠBA as 0. By the validity of ΠBA, all parties
will output 0 at time 3TBC + TWSS + TBA and consequently, restart the protocol
in synchronization. Moreover, note that a party is added to W if and only if it
broadcasts an incorrect value or its broadcast results in more than ts NRs. However,

given that each honest Pi computes fji in Π
(j)
WSS corresponding to every honest party

Pj , and it receives fi(x) from the dealer within ∆ time, we have that Ri[j] = OK
for every honest Pj . Moreover, for every corrupt Pj such that fji ̸= fi(j), it holds
that Ri[j] = fi(j) broadcasted by Pi is indeed the correct value. Hence, an honest
party is never added to W and hence not added to U . Given this observation, we
have that upon ts − ta restarts of the protocol, an honest dealer would have added
ts − ta corrupt parties to U , and hence their polynomials would be public. Thus,
in the subsequent iteration, the dealer is bound to find a clique of size n − ta and
successfully terminate via the former path of (sync, G,Qa).

iii. The dealer broadcasts (continue, Q,G, V ). This implies that |Qa| < n − ta,
|U | < ts − ta and W = ϕ. Since the dealer broadcasts this at time 2TBC + TWSS, we
have that all the honest parties receive it by 3TBC+TWSS and participate with input
0 in ΠBA. Parties will thus output 0 at time 3TBC+TWSS+TBA and proceed to verify
the dealer’s broadcasted sets. By the validity of broadcast at time 2TBC + TWSS, we
have that all the honest parties will identify Q,G, V to be valid. Moreover, we have

that an honest Pi ∈ V , would have computed an output in Π
(j)
WSS every honest Pj
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and hence neither Pi nor Pj broadcast their value at this stage. Also, each honest
Pi broadcasts the correct fi(j) for every corrupt Pj ∈ V which is received by all the
honest parties including the dealer at time 4TBC + TWSS + TBA. Hence, an honest
party does not get added to W . We now have three cases to consider:

• The dealer broadcasts (restart, U). This implies that the broadcast of some
corrupt party Pj either resulted in a ⊥ or had an incorrect value. In either case,
the dealer adds this party to W and thus has identified a new party to be added
to U . The dealer’s broadcast of (restart, U) is received by all the honest parties
by time 5TBC+TWSS+TBA who participated with input 0 in an instance of ΠBA.
Thus, by the validity of ΠBA, the honest parties will obtain 0 as the output at
time 5TBC + TWSS + 2TBA and restart the protocol in synchronization.

• The dealer broadcasts (sync, G,Qa). This implies that for every Pj ∈ V such
that (Pj , Pk) did not have an edge, both Pj and Pk broadcasted the correct fj(k)
by time 4TBC + TWSS + TBA. By the validity of broadcast, we have that all the
honest parties indeed have the same output. Due to this, parties will participate
in ΠBA with input 1. By the validity of ΠBA, we have that all the honest parties
will output 1 at time 5TBC+TWSS+2TBA and compute their output. The output
computation will be successful due to the same argument as the first case (The
dealer finds a Q such that |Q| ≥ n− ta.) and hence we avoid repetition.

• The dealer broadcasts (restart, {ϕ}). This implies that all the parties in V indeed
broadcasted their correct values and could not be added to U . At the same time,
the dealer could not extend the clique to size ≥ n− ta. This implies that some
party from Q did not respond with its common values with parties in V , however
they could not be added to U since it is not in the global set Z. Note that all the
honest parties would respond within the designated time and hence, the only
parties which may have been silent in the clique are corrupt. This further implies
that the honest dealer can restart the protocol by ensuring that the silent party
is excluded from the clique that it computes. For an honest dealer, a clique
of size ≥ n − ts is guaranteed to exist even when all the ts corrupt parties are
excluded from it. Further, such a restart may occur at most ts times, accounting
for (at most) ta restarts due to silent parties in the clique which are not in Z,
and (at most) ts− ta restarts due to the parties in Z. Hence, we have that after
(at most) ts restarts, an honest dealer would have successfully broadcasted a
clique of size ≥ n− ta. Also, we have that the dealer’s broadcast of (restart, {ϕ})
is received by all the honest parties by time 5TBC +TWSS +TBA who participate
with input 0 in an instance of ΠBA. Thus, by the validity of ΠBA, the honest
parties will obtain 0 as the output at time 5TBC + TWSS + 2TBA and restart the
protocol in synchronization.

In all the above cases, note that parties compute their output within time TVSS.

(b) ts privacy: Apart from sending the pairwise shares to each party, the dealer reveals
information corresponding to its secret only when it broadcasts fi(x) corresponding to
every Pi ∈ U such that U ⊆ Z. Moreover, a party Pi is added to U only if it broadcasts
the incorrect value corresponding to fi(j) or its broadcasts result in a ⊥ or more than
ts NRs. Given this, we note that no honest party gets added to U . Thus, we have
that every party in U is corrupt when the dealer is honest and hence already knows the
fi(x) broadcasted by the dealer. Now consider the values broadcasted by the honest

parties. Since every honest Pi computes an output in Π
(j)
WSS instance of every honest
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Pj , we have that by time 2TBC + T ′
WSS, Pi broadcasts their Ri[j] = OK. By the validity

property of broadcast, this will be received by all the honest parties including the dealer
and the consistency graph constructed by all the honest parties contains an edge for
every honest (Pi, Pj). The only other time step at which an honest party Pi broadcasts
fi(j) for some party Pj is when the dealer broadcasts (continue, Q,G, V ). Again, at this
step, an honest Pi will only broadcast the correct fi(j) corresponding to only corrupt Pj .
Specifically, an honest Pi /∈ V will broadcast fi(j) for every corrupt Pj ∈ V where V ⊆ Z
and consists only of corrupt parties. These are the values that the adversary already
knows having obtained the fj(x) corresponding to every Pj and hence does not learn
anything additionally. Finally, we have that for every corrupt Pj , the adversary learns

fi(j) corresponding to an honest Pi in its instance of Π
(i)
WSS. However, this information is

already available to the adversary due to its univariate polynomial share fj(x). Further,
the ts privacy of ΠWSS ensures that the adversary’s view remains independent of an
honest party’s polynomial fi(x). Moreover, since the values are revealed corresponding
to the same set Z of ts − ta parties across all instances of ΠWSS, privacy is ensured. In
conclusion, we have that the adversary can learn at most ts univariate polynomials fj(x)
corresponding to (at most) ts corrupt parties, thus ensuring ts privacy.

(c) ts strong commitment: Consider the case when the dealer is corrupt. If no honest party
computes an output, then strong commitment holds trivially. We thus consider the
case when some honest party, say Pk, computes its output. We now have two cases to
consider:
i. Pk computes the output by obtaining (sync, G,Qa) in some iteration of

the protocol. This implies that Pk received 1 as the output of ΠBA in some
iteration of the protocol before TVSS. This further implies that there exists some
honest party Ph which participated in ΠBA with input 1. If not, then all the honest
parties would have set their input as 0, and by the validity property of ΠBA, all
the parties would have received 0. In this case, parties would not have output via
(sync, G,Qa) which is a contradiction. Thus, it must be that some Ph set bh = 1
as its input to ΠBA. This also implies that Ph received the dealer’s broadcasts
as well as the necessary broadcasts from the parties as per the synchronous time
steps and verified it. By the liveness and consistency properties of broadcast, we
thus have that all the honest parties must have computed the same output in all the
broadcast instances and set their input to ΠBA as 1. This in turn implies that all the
honest parties will compute their output via (sync, G,Qa). Further, since accepting
(sync, G,Qa) involves verifying the dealer’s graph based on the broadcast of parties
at time 2TBC + T ′

WSS, it must hold that honest parties indeed broadcasted their Ri

vector at time TBC + T ′
WSS. This also implies that there exist honest parties that

obtained the output of Π
(j)
WSS instantiated by some corrupt party Pj ∈ Qa within

time T ′
WSS of its start. By the ts weak commitment property of ΠWSS, it must thus

hold that all the honest parties that compute an output in Π
(j)
WSS do so within the

same time and hence have their output by time TBC + T ′
WSS. Now consider the

honest parties in Qa. Since parties verify the validity of the clique Qa, it is ensured
that all the honest parties in Qa are actually consistent with each other. Thus, each
honest Pi ∈ Qa must hold fi(x) such that fi(x) = F ′(x, i) for some (ts, ts) degree
bivariate polynomial F ′(x, y). Now consider an honest party Pi /∈ Qa. Given that
|Qa| ≥ n − ta, we have that there are at least n − ta − ts ≥ ts + 1 honest parties
in Qa. Hence, it is guaranteed that an honest Pi /∈ Qa will compute an output in

36



ΠWSS instances of at least ts +1 parties from Qa. Consequently, Pi can reconstruct
its fi(x) consistent with the polynomial F ′(x, y) defined by the shares of the honest

parties in Qa. Finally, in case Pi has computed its output in Π
(j)
WSS for some corrupt

party Pj ∈ Qa, then by the same argument as in the case of ts correctness, we have
that the output fji computed by Pi is indeed the same as F ′(i, j). This holds since
the corrupt Pj ∈ Qa is consistent with at least ts + 1 honest parties, thus ensuring
that fj(x) shared by Pj in its ΠWSS instance is actually F ′(x, j). Hence, we have
that an honest Pi /∈ Qa successfully reconstructs its fi(x) = F ′(x, i) within time
TVSS ensuring ts strong commitment.

ii. Pk computes its output via obtaining (async, A,Qa) at time T in some
iteration of the protocol. We first note that in this case, T > TVSS since the
parties did not output via (sync, G,Qa) in any of the ts+1 iterations of the protocol.
Since Pk computes its output at time T , it implies that it received (async, A,Qa) and
verified the broadcasts of all the parties in Qa by time T . Given that the network is
synchronous, by the ts fallback consistency property of broadcast, we have that all
the honest parties will receive (async, A,Qa) as well as the corresponding broadcasts
by time at most T + 2∆. Thus, an honest party Pi ∈ Qa will output fi(x) by time
T +2∆. Since |Qa|− ts ≥ ts+1, we have that the univariate polynomial shares of all
the honest parties in Qa indeed define a (ts, ts) degree bivariate polynomial F ′(x, y)
such that fi(x) = F ′(x, i) holds for each Pi ∈ Qa. Further, since Qa is verified to

be a clique by some honest party at time T , it implies that Π
(i)
WSS instance of each

honest Pi ∈ Qa terminated before time T . By the ts correctness property of ΠWSS in
the synchronous network, we have that all the honest parties compute their output

at the same time and hence would have computed their output in Π
(i)
WSS before time

T . This further implies that every honest Pj /∈ Qa must have computed its output
in at least ts+1 instances of ΠWSS corresponding to the honest parties in the clique,
and hence will compute its output by time T +2∆ in the worst case upon receiving
(async, A,Qa) and validating it. Moreover, the correctness of the polynomial fj(x)
interpolated by an honest Pj /∈ Qa can be established as in the earlier cases. We
avoid repeating the argument since it’s identical to the prior cases.

2. Asynchronous Network: We now prove the properties of ΠVSS in the asynchronous network.

(a) ta correctness: Let the dealer be honest. Given that the network is asynchronous, we
have that the adversary can corrupt at most ta of the parties. Given this, we have that

eventually, each honest Pi will successfully compute the output in Π
(j)
WSS corresponding

to every honest Pj and broadcast AOKj . Thus, it is guaranteed that the dealer will
eventually identify a clique Qa of size at least n− ta consisting of all the honest parties
and broadcast it. Thus, if the parties do not compute their output via (sync, G,Qa),
then we have that they will eventually receive (async, A,Qa) and compute their output.
For every honest Pi ∈ Qa, we have that it will output fi(x) received from the dealer.

On the other hand, an honest Pi /∈ Qa will eventually compute its output in Π
(j)
WSS

corresponding to at least ts + 1 honest parties in Qa and hence compute its output as

in the prior cases. If Pi /∈ Qa computes fji as output in Π
(j)
WSS corresponding to some

corrupt Pj ∈ Qa, then by the same argument as the synchronous case, fji = fi(j) must
hold where fi(x) = F (x, i) corresponding to the (ts, ts) degree bivariate polynomial held
by the dealer.
In the case that some honest party computes its output via (sync, G,Qa), then it must
hold that some honest party participated with input 1 in ΠBA instance. Otherwise, all
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the honest parties would have input 0 and the validity of ΠBA would ensure that parties
received 0 and do not compute their output via (sync, G,Qa) which is a contradiction.
Thus, we have that some honest party input 1 to ΠBA. By the consistency of ΠBA,
we first have that all the honest parties will output 1 and compute their output via
(sync, G,Qa). Moreover, the party which participated with 1 would have verified the
validity of Qa before accepting it. Thus, all the honest parties will eventually validate
Qa, accept it and compute their output as described in the prior cases.

(b) ts privacy: The argument for ts privacy is exactly as in the case of the synchronous
network, hence we avoid repetition.

(c) ta strong commitment: Let the dealer be corrupt. Since the network is asynchronous,
we have that the dealer can corrupt at most ta parties. Note that ts strong commitment
was already achieved by the weaker variant of ΠWSS. This property follows very closely
to ΠVSS. Strong commitment holds trivially if no honest party computes an output
in a corrupt dealer’s instance. Thus, we consider the case when some honest party
Ph computes an output. We have two cases here: either Ph computes an output via
(sync, G,Qa) or (async, A,Qa). In the former case, we have that some honest party
participated in an instance of ΠBA with input 1. If not then the validity of ΠBA would
ensure that parties output 0 and do not compute their output via (sync, G,Qa) which
is a contradiction. Thus, we have that there exists some honest party which input 1 to
ΠBA. This honest party is guaranteed to have checked the validity of Qa as required in
the protocol at designated time steps. Hence, it must hold that Qa is indeed a clique,
which will eventually be verified by all the honest parties to compute the output. Every
Pi ∈ Qa will thus output fi(x) such that fi(x) = F ′(x, i) for some (ts, ts)-degree bivariate
polynomial defined by the honest parties in Qa. Further, given that |Qa| ≥ n − ta, we
have that the number of parties in Qa \ U is at least n − ta − (ts − ta), that is n − ts.
Of these, we are guaranteed to have at least n − 2ts ≥ ts + 1 honest parties. For every

Pi /∈ Qa, it is thus ensured that Pi will compute its output fji in the instance Π
(j)
WSS

of every honest Pj ∈ Qa, and hence successfully reconstruct fi(x) = F ′(x, i) eventually.
In the latter case, it must hold that Ph did not output via (sync, G,Qa) in any of the
ts + 1 iterations of the protocol. Since Ph indeed computes its output upon receiving
(async, A,Qa), it must hold that Ph verified the validity of Qa. This implies that all the
honest parties will eventually receive the same and compute their output. As in ΠWSS,
we also have that the shares of the honest parties in two different cliques Qa and Q′

a

define the same (ts, ts)-degree bivariate polynomial. Hence, irrespective of which n− ta
sized clique an honest party accepts, it is ensured that its output will be consistent with
all the honest parties.

When this VSS is invoked within the MPC protocol, we also require to ensure that for a
synchronous network, all the honest parties’ inputs are considered in the computation. Hence, we
further need that whichever instance of VSS is chosen via the two-layered ACS execution, must
be such that all the honest parties should have completed their sharing. While our protocol above
guaranteed that for a set Z of corrupt parties, all honest parties terminate within time TVSS, when
this set includes honest parties, termination is not necessarily guaranteed. For instance, consider
the case where Z includes all honest parties, and an honest dealer identifies a clique Q of size
n − ts during Step 5 that includes all the corrupt parties. It broadcasts (continue, Q,G, V ) where
V ⊆ Z, that is V contains all honest parties. Further, during Step 7, given that the network is
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synchronous, all the honest parties will broadcast their values. However, suppose that the corrupt
parties from the clique remain silent at this step. In this case, neither the parties in V can be added
to the clique, nor can the dealer restart by adding these parties to the public set U . This results
in a scenario where the VSS cannot progress for an honest dealer. However, since the network is
synchronous, the guarantee is that this lack of progress will be identified by all the honest parties.
To ensure that the VSS instances corresponding to Z either terminate for all honest dealers within
TVSS and their inputs get considered or none of the honest parties consider these instances for
further computation, we additionally put a constraint that parties participate with input 1 in ACS
corresponding to Z if and when they see progress or they confirm that progress can be made in the
VSS instances for all the dealers, or after time TVSS. This ensures the condition required in MPC
when the ACS instances actually succeed. For similar reasons, when Z contains honest parties, to
prevent honest parties’ values from being revealed in the VSS instance because of non-terminating
weak secret sharing instances of honest dealers, we need to ensure that the outer VSS dealer only
proceeds with Step 5 when it knows that all the weak secret sharing instances can make progress
as described.

8 Verifiable Triple Sharing

In this section, we give our triple sharing protocol which was discussed in Section 2.2. We describe
the protocol for the case when VSS is invoked with the set Z consisting only of corrupt parties.

Protocol 8.1: ΠVTS

Input: The dealer holds 2ts +1 random multiplication triples denoted by {(ai, bi, ci)}i∈{1,...,2ts+1}.
Common Input: n+1 distinct elements from F, 1, . . . , n and β. Parties hold a set Z of size ts−ta
(which includes only corrupt parties for the purpose of protocol description, but can be invoked
with any arbitrary set of parties).
Condition: Parties continue to resolve conflicts by publicly reconstructing X(i), Y (i), Z(i) for
NOK(i) received from a party Pi until they discard the dealer or compute an output.

1. The dealer generates the degree-ts sharings by executing ΠVSS corresponding to the set Z to
compute ([ai] , [bi] , [ci]) for every i ∈ {1, . . . , 2ts + 1}.

2. Upon computing the output in all the instances of ΠVSS, wait for the time to be a multiple of
∆. Then, for each i ∈ {1, . . . , ts + 1}, parties locally set [xi] = [ai], [yi] = [bi] and [zi] = [ci].

3. Let X(·) and Y (·) be the unique polynomials of degree at most ts defined by the points
{(i, xi)}i∈{1,...,ts+1} and {(i, yi)}i∈{1,...,ts+1} respectively. The parties locally compute [xi] =
[X(i)] and [yi] = [Y (i)], for each i ∈ {ts + 2, . . . , 2ts + 1}.6

4. Parties invoke ΠBeaver with {[xi] , [yi] , [ai] , [bi] , [ci]}i∈{ts+2,...,2ts+1} and wait for time TBeaver.
Upon obtaining the output {[zi]}i∈{ts+2,...,2ts+1} where zi = xiyi for every i ∈ {ts+2, . . . , 2ts+
1}, wait for the time to be a multiple of ∆ and then proceed to the next step.

5. Let Z(·) be the polynomial of degree at most 2ts defined by the points {(i, zi)}i∈{1,...,2ts+1}.

6. Parties compute {([X(i)] , [Y (i)] , [Z(i)])} for each i ∈ {2ts + 2, . . . , n} using {([X(i)] , [Y (i)] ,
[Z(i)])}i∈{1,...,2ts+1}.

7. For each Pi ∈ P, parties invoke ΠprivRec 3 times with [X(i)], [Y (i)] and [Z(i)] as input
respectively to enable Pi to privately reconstruct X(i), Y (i) and Z(i). Each party waits for
time TPrivRec. Upon computing the output, wait for the time to be a multiple of ∆ and proceed
to the next step.

6Computing a new point on a polynomial of degree ts is a linear function of ts + 1 given unique points on the
same polynomial.
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8. If X(i) · Y (i) = Z(i) holds, Pi broadcasts OK(i), and broadcasts NOK(i) otherwise. Parties
publicly reconstructX(i), Y (i), Z(i) for each NOK(i) by broadcasting their shares. Each party
waits for TBC before proceeding to the next step.

9. The dealer constructs a set OK = {i|OK(i) was received from Pi’s broadcast}. Once |OK| ≥
n− ts, the dealer constructs a set NOK of size (n− ta)− |OK| such that NOK ⊂ P \OK and
broadcasts (OK,NOK). Parties wait for time TBC before proceeding.

10. Parties publicly reconstruct X(i), Y (i), Z(i) for each i ∈ NOK,by broadcasting their shares.
Wait for time TBC. Upon receiving X(i), Y (i), Z(i), verify that X(i) · Y (i) = Z(i) holds. If
not, then discard the dealer.

11. Upon receiving OK(i) from each i ∈ OK, completing the prior check for each i ∈ NOK, and
ensuring that OK ∪ NOK ≥ n− ta, each party proceeds to the next step.

12. Discard the dealer if X(i) · Y (i) = Z(i) does not hold for some party which broadcasted
NOK(i). If the dealer is discarded, parties output a default degree-ts sharing of a publicly
known value. Otherwise, parties locally compute and output their shares of ([X(β)] , [Y (β)] , [Z(β)]),
where β ̸= i for every i ∈ {1, . . . , n}.

Theorem 8.2. Let Z be a subset of ts − ta corrupt parties. Protocol ΠVTS, when executed with
the set Z, is perfectly-secure against an adversary corrupting up to ts parties in the synchronous
network and ta parties in the asynchronous network and has the following properties.

1. Synchronous network:

(a) ts privacy: The view of the adversary is independent of the output triple shared on behalf
of an honest dealer.

(b) ts correctness: Within time TVTS = TVSS+TBeaver+TPrivRec+3TBC = TVSS+3TBC+2∆,
the honest parties output a degree-ts Shamir-sharing of a multiplication triple on behalf
of an honest dealer.

(c) ts strong commitment: If the dealer is corrupt, then either no honest party has an output,
or all the honest parties output a degree-ts Shamir-sharing of a multiplication triple on
behalf of the dealer. Moreover, if some honest party computes its output at time T , then
all the honest parties compute their output by time T + 2∆.

2. Asynchronous network:

(a) ta privacy: The view of the adversary is independent of the output triple shared on behalf
of an honest dealer.

(b) ta correctness: Almost-surely, the honest parties eventually output a degree-ts Shamir-
sharing of a multiplication triple on behalf of an honest dealer.

(c) ta strong commitment: If the dealer is corrupt, then either no honest party has an output,
or all the honest parties eventually output a degree-ts Shamir-sharing of a multiplication
triple on behalf of the dealer.

Proof. We first prove the properties of ΠVTS in the synchronous network, followed by the proof for
the asynchronous network.

1. Synchronous network:

(a) ts privacy: In a synchronous network, for an honest dealer, each honest party computes
its shares in ΠVSS corresponding to the set Z (including corrupt parties only) by time
TVSS. All the parties thus begin the execution of ΠBeaver simultaneously, and by the
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guarantees of ΠBeaver, they receive the output within time ∆, that is each honest party
computes its output of ΠBeaver by time TVSS+∆. Further, by the guarantees of ΠprivRec,
we have that each honest party Pi receives its points X(i), Y (i), Z(i) within time TVSS+
2∆ and broadcasts OK(i). Since the honest parties start their broadcast simultaneously,
all honest parties (including the dealer) receive the OK(i) messages by time TVSS +
2∆ + TBC. Moreover, no honest party broadcasts NOK(i) when the dealer is honest.
Thus, the dealer constructs its set OK which includes all the honest parties, which also
ensures that |OK| ≥ n − ts. This guarantees that the set NOK ⊂ P \ OK does not
include any honest party. Hence, the publicly reconstructed points X(i), Y (i), Z(i) for
each i ∈ NOK correspond to points held by the corrupt parties. This implies that
an adversary knows ts points on each polynomial X(·), Y (·), Z(·) which are of degree
ts, ts, 2ts respectively, thus ensuring one degree of freedom. Hence, we have that for
every candidate output triple (X(β), Y (β), Z(β)), we have a corresponding input triple
(ak, bk, ck) for some k ∈ {1, . . . ,m} unknown to the adversary that is consistent with the
adversary’s view.

(b) ts correctness: Let the dealer be honest. Note that all the honest parties obtain the
output of ΠVSS corresponding to Z instantiated by an honest dealer within time TVSS.
This further implies that ΠBeaver and ΠprivRec succeed for all the honest parties by time
TVSS + TBeaver + TPrivRec = TVSS + 2∆. Hence, each honest party Pi broadcasts OK(i),
which, by the validity of broadcast in the synchronous network, is received by all the
honest parties, including the dealer by time TVSS + TBC + 2∆. Hence, all the honest
parties simultaneously proceed to the next step at time TVSS + TBC + 2∆. Parties
additionally keep broadcasting their shares corresponding to every NOK(j) which is
received. By the validity property of broadcast in the synchronous network, we also
have that the dealer’s broadcast of (OK,NOK) sets will be received by all the parties by
time TVSS + 2TBC + 2∆. Finally, parties broadcast their shares corresponding to every
j ∈ NOK. Again, by the validity and liveness of broadcast in the synchronous network,
we have that every honest party’s shares will be received by all the honest parties by
time TVSS + 3TBC + 2∆. Further, we have that if NOK(j) was broadcasted by some
corrupt Pj and X(j), Y (j), Z(j) is reconstructed by this time, then it would hold that
X(j) · Y (j) = Z(j) and hence the dealer is not discarded. Thus, we have that all the
honest parties output their shares by time TVSS + 3TBC + 2∆.

(c) ts strong commitment: If no honest party computes an output in the protocol then
strong commitment holds trivially. Hence, we consider the case when there exists some
honest party which computes an output. Note first that to ensure the correctness of
the output, that is, to ensure that the honest parties output shares of a multiplication
triple, it is required to verify that X(·) · Y (·) = Z(·) holds for at least 2ts + 1 distinct
points on these polynomials. In the protocol, this translates to ensuring that the relation
holds for (at least) 2ts + 1 honest parties. Suppose there exists some honest Ph party
that successfully outputs its shares in the protocol without discarding the dealer. For
contradiction, suppose that the relation does not hold for some honest party Pi. First,
observe that since Ph outputs its shares, it implies that Ph computes the outputs of all
the ΠVSS instances initiated by the dealer. Suppose the time at which Ph computed
this is T . Note that every honest party would thus have computed its output by time
T + 2∆ in the worst case. Suppose the worst case, that is Pi computed its output in
ΠVSS at time T + 2∆. It is thus possible that Pi received its X(i), Y (i), Z(i) at time
T +2∆+ TBeaver + TPrivRec = T +4∆, whereas Ph obtained its X(h), Y (h), Z(h) at time
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T +TBeaver+TPrivRec = T +2∆. That is, it is possible that some honest parties broadcast
their OK(i) or NOK(i) after a 2∆ delay compared to other honest parties. Specifically,
Ph may have broadcast OK(h) and proceed to the next step by time T + TBC + 2∆.
Moreover, Ph’s broadcast would have been received by all within this time. In contrast,
Pi’s broadcast may be delivered to parties (including Ph) by time T + TBC + 4∆. This
implies that X(i), Y (i), Z(i) would have been reconstructed by time T + 2TBC + 4∆.
However, the earliest Ph can compute its output is at time T + 3TBC + 2∆. This is
because Ph waits for TBC time for the dealer’s broadcast of (OK,NOK). It waits for
another TBC time for ensuring reconstruction of values corresponding to parties in NOK.
Since we have that T+3TBC+2∆ > T+2TBC+4∆, Ph must have receivedX(i), Y (i), Z(i)
before it proceeded to compute its output. If indeed X(i) · Y (i) = Z(i) did not hold,
then Ph would have discarded the dealer, which is a contradiction. Thus, it must be
that X(i) · Y (i) = Z(i). This also implies that every honest party Pi’s NOK(i) would
have been received by time at most T + 2TBC + 4∆ and verified by Ph. Since Ph did
not discard the dealer, X(i) · Y (i) = Z(i) must hold for every honest Pi. Given that the
number of honest parties is at least 2ts +1, X(·) · Y (·) = Z(·) must hold. Consequently,
no honest party will discard the dealer and hence all output their shares on the dealer’s
polynomials. Moreover, if some honest party computes its output by time T ′, we have
that it received all the corresponding broadcasts by time T ′. By the fallback validity of
broadcast, all the honest parties receive the necessary broadcasts by time T ′ + 2∆ and
subsequently compute the output.

2. Asynchronous network:

(a) ta privacy: In the asynchronous network, for an honest dealer, each honest party com-
putes its shares in ΠVSS eventually (regardless of the set Z). This ensures that all the
parties eventually begin the execution of ΠBeaver and receive their output. Further, this
also guarantees that parties invoke ΠprivRec, and each honest party Pi receives its points
X(i), Y (i), Z(i) eventually and broadcasts OK(i). Thus we have that even if the corrupt
parties are silent, an honest dealer can compute the set OK of size (at least) n− ts even-
tually. In the worst case, the set NOK broadcasted by the dealer may be of size (at most)
(ts− ta) and moreover may comprise completely of honest parties. Note that the points
X(i), Y (i), Z(i) of each i ∈ NOK are revealed publicly. This causes the adversary to
learn ts− ta points on each of X(·), Y (·), Z(·) corresponding to the ts− ta honest parties
included in NOK, in addition to the ta points of the corrupt parties. The adversary thus
learns ts points on each of X(·), Y (·), Z(·), which is exactly the information available
to the adversary in the synchronous setting. By the same argument as privacy in the
synchronous setting, we have that the adversary’s view is independent of the output
multiplication triple.

(b) ta correctness: Let the dealer be honest. By the ta correctness of ΠVSS in the asyn-
chronous network (regardless of Z), we have that the honest parties will eventually
compute their output. Similarly, by the ta correctness of ΠBeaver and ΠprivRec, we also
have that each honest Pi eventually receives its X(i), Y (i), Z(i) and consequently broad-
casts OK(i). Since we have n− ta honest parties, it must hold that the dealer will indeed
be able to construct the set OK consisting of at least n − ts parties. Again, due to
the validity property of broadcast in the asynchronous network, it is ensured that the
parties will receive the dealer’s broadcast of (OK,NOK), and consequently reconstruct
the values X(j), Y (j), Z(j). These reconstructed values are guaranteed to be correct.
Moreover, every NOK(j) broadcasted by a corrupt Pj will eventually be received by all
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the honest parties due to the consistency property of broadcast. Hence, we have that
parties will eventually reconstruct X(j), Y (j), Z(j) for each Pj and verify its correctness.
Thus, all the honest parties will eventually output shares on the polynomials shared by
the dealer as the shares of its multiplication triple.

(c) ta strong commitment: This follows similarly to the synchronous case due to the ta
strong commitment property of ΠVSS (regardless of the set Z) and consistency of ΠBC

in the asynchronous network. Specifically, if no honest party computes its output, then
commitment holds trivially. On the other hand, if any honest party computes its output
in ΠVSS, then by the ts strong commitment property, we have that all the honest parties
compute their output. Similarly, by the ta correctness property of ΠprivRec and ΠBeaver, it
is ensured that parties eventually compute their point on X(·), Y (·), Z(·). Now observe
that every honest party computes its output only upon verifying that the multiplica-
tive relation holds true for at least n − ta parties. Since all the communication occurs
via broadcast for the verification, the consistency property of broadcast ensures that if
some honest party computes its output then eventually all the honest parties compute
their output. Further, given that the adversary can corrupt at most ta parties in the
asynchronous network, this ensures that the multiplicative relation of X(·), Y (·), Z(·)
is verified for at least n − 2ta ≥ 2ts + 1 honest parties. As mentioned earlier, since
X(·), Y (·), Z(·) are degree ts, ts, 2ts polynomials respectively, this verification ensures
the correctness of the multiplication triples shared by a corrupt dealer.

9 Preprocessing Phase

9.1 Private Reconstruction Protocol

We now describe the reconstruction of a degree-ts shared value [v] to a particular party P ∗. For
this, all the parties reveal their shares of [v] to P ∗, who tries to recover the secret as follows. P ∗

waits for ∆ time to receive the shares from other parties. P ∗ waits for 2ts + 1 shares, all of which
lie on a degree-ts polynomial. If such a polynomial is reconstructed, it is guaranteed to be correct
since it agrees with the shares of at least ts + 1 honest parties. Recovering such a polynomial
requires P ∗ to apply error correction repeatedly in an “online” manner to recover the secret in
the case of an asynchronous network. Whereas, in the synchronous network case, it is guaranteed
that all the honest parties will send their shares lying on the same polynomial within ∆ time, and
hence, the reconstruction will succeed. Reconstruction towards all can be performed similarly with
n instances of the protocol, one towards each party. Alternatively, parties can also broadcast their
respective shares to reconstruct a value publicly.

Protocol 9.1: ΠprivRec

Input: Parties hold the degree-ts Shamir-sharing of a value [v].
Common Input: Description of a field F, n non-zero distinct field elements 1, . . . , n and the
identity of a party P ∗.

1. Each Pi sends its share [v]i to P ∗.

2. P ∗ waits for ∆ time and then applies online error correction on the received shares as follows.
For each r = 0, . . . , ts:

(a) Upon receiving n − ts ≥ 2ts + 1 values, P ∗ looks for a codeword of a polynomial of
degree-ts with a distance of at most r from the values it received. If there is no such
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codeword, then P ∗ proceeds to the next iteration. Otherwise, P ∗ sets pr(x) as the unique
Reed-Solomon reconstruction.

(b) If pr(j) = [v]j holds for at least 2ts + 1 parties, P ∗ computes v = pr(0). Otherwise, it
proceeds to the next iteration.

Theorem 9.2. Protocol ΠprivRec is secure against an adversary corrupting up to ts parties in the
synchronous network and ta parties in the asynchronous network and has the following properties.

1. Synchronous network:

(a) ts correctness: Within time ∆, each honest party outputs v.

2. Asynchronous network:

(a) ta correctness: Each honest party eventually outputs v.

Proof. We prove the properties of ΠprivRec in the synchronous network and subsequently in the
asynchronous network.

1. Synchronous network:

(a) ts correctness: In a synchronous network, each honest party receives shares on the
degree-ts polynomial from every other honest party within time ∆. Thus, an honest
party receives at least n − ts ≥ 2ts + 1 correct points on the polynomial. Moreover, if
an honest party receives r incorrect shares by time ∆, then by the guarantees of Reed-
Solomon codes and given that r ≤ ts, an honest party having (at least) 2ts+1+r points
can correct r points and recover the correct polynomial.

2. Asynchronous network:

(a) ta correctness: In the asynchronous network, note that each honest party will eventually
receive n− ta ≥ 2ts+ ta+1 correct points from the honest parties. By reasoning similar
to that in the synchronous setting, the honest parties will eventually compute the correct
polynomial defined by the honest parties’ shares.

9.2 Beaver’s Multiplication Protocol

This protocol uses the well-known Beaver’s circuit randomization [7] technique to perform the
multiplication of two shared values. Specifically, given a pre-shared random and private multi-
plication triple ([a] , [b] , [c]), this technique reduces the computation of [z] = [xy] from [x] and
[y] to two public reconstructions. Towards this, parties first locally compute [d] = [x] − [a]
and [e] = [y] − [b], followed by public reconstruction of d and e. Now, parties can compute [z]
locally using these values together with the shared multiplication triple. More precisely, since
z = xy = ((x−a)+a)((y− b)+ b) = (d+a)(e+ b) = de+db+ ea+ab = de+db+ ea+ c parties can
compute [z] = [xy] = de+ d [b] + e [a] + [c]. The formal description of the protocol appears below.

Protocol 9.3: ΠBeaver

Input: Parties hold the degree-ts Shamir-sharing of a triple ([a] , [b] , [c]) and the inputs [x] and [y].

1. Parties locally compute [d] = [x]− [a] and [e] = [y]− [b].

2. Parties execute 2n instances of ΠprivRec, two towards every party for reconstructing d and e
respectively. Wait for time ∆.
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3. Parties locally compute [z] = de+ d [b] + e [a] + [c].

Theorem 9.4. Protocol ΠBeaver is secure against an adversary corrupting up to ts parties in the
synchronous network and ta parties in the asynchronous network and has the following properties.

1. Synchronous network:

(a) Liveness: At time ∆, every honest party has an output.

(b) ts privacy: If (a, b, c) is a random multiplication triple from the adversary’s view, then
the view of the adversary is independent of x and y (and thus z).

(c) ts correctness: Within time ∆, the honest parties output a degree-ts Shamir-sharing of
z such that z = xy if and only if (a, b, c) is a correct multiplication triple, i.e. c = ab
holds.

2. Asynchronous network:

(a) Liveness: Every honest party eventually has an output.

(b) ts privacy: If (a, b, c) is a random multiplication triple from the adversary’s view, then
the view of the adversary is independent of x and y (and thus z).

(c) ta correctness: The honest parties eventually output a degree-ts Shamir-sharing of z such
that z = xy if and only if (a, b, c) is a correct multiplication triple, i.e. c = ab holds.

Proof. We prove the properties of ΠBeaver in both networks simultaneously.

1. Liveness: By the linearity property of Shamir-sharing, parties can locally compute the degree-
ts Shamir-sharing of d and e. Further, due to ts (resp. ta) correctness of ΠprivRec in the
synchronous (resp. asynchronous) network, we have that parties will receive the reconstructed
values d and e within time ∆ (resp. eventually). The computation of [z] is local thereafter;
hence, we have the required liveness guarantees.

2. ts (resp. ta) privacy: If (a, b, c) is a random multiplication triple from the adversary’s view,
then for every possible x and y values, there exist a and b such that they are consistent with
the adversary’s view and the publicly reconstructed values of d and e. Thus, the adversary’s
view is independent of x and y (hence z).

3. ts (resp. ta) correctness: Note that z = de+db+ea+c = (x−a)(y−b)+(x−a)b+(y−b)a+c =
xy + c − ab. Hence, by inspection, it is clear that z = xy if and only if c − ab = 0, that is,
c = ab.

9.3 Triple Extraction Protocol

The last component of the Beaver triple generation phase of our protocol is a triple extraction
protocol that consumes one (verified) multiplication triple, say ([ai] , [bi] , [ci]), shared by each party
Pi ∈ Com in the prior stage and extracts h + 1 − t random triples not known to any party,
where h = ⌊ |Com|−1

2 ⌋. For simplicity, let m = |Com| and without loss of generality, we assume
Com = {P1, . . . , Pm}. At a high level, the protocol proceeds as follows. First, the parties “trans-
form” the m random shared triples ([ai] , [bi] , [ci]) for each i ∈ {1, . . . ,m} into m correlated triples
([xi] , [yi] , [zi]) for every i ∈ {1, . . . ,m} such that the values {xi, yi, zi}i∈{1,...,m} lie on the polynomi-
als X(·), Y (·) and Z(·) of degree h, h and 2h respectively where X(·) · Y (·) = Z(·). Specifically, for
each i ∈ {1, . . . ,m}, it holds that X(i) = xi, Y (i) = yi and Z(i) = zi where 1, . . . ,m are publicly
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known distinct elements from F. Furthermore, the transformation ensures that the adversary knows
{xi, yi, zi} only if Pi is corrupt. This implies that the adversary may know (at most) t points on
each of the polynomials X(·), Y (·) and Z(·) of degree h, h and 2h respectively, thus guaranteeing
a degree of freedom of h + 1 − t in X(·), Y (·) (and thus Z(·)). Parties thus output the shared
evaluation of these polynomials at h+ 1− t publicly known points β1, . . . , βh+1−t as the extracted
shared multiplication triples.

The transformation itself works as follows. The parties simply set xi = ai, yi = bi, zi = ci for
i ∈ {1, . . . , h+1}. Next, [xi] and [yi] for every i ∈ {h+2, . . . ,m} can be computed non-interactively
by taking linear combination of {xi, yi}i∈{1,...,h+1}. Following this, [zi] for every i ∈ {h+ 2, . . . ,m}
is computed using Beaver’s trick where the inputs are [xi] and [yi] and the random multiplication
triple consumed is ([ai] , [bi] , [ci]). Clearly, if Pi is corrupt, then xi, yi, zi is known to the adversary
as claimed. Finally, we note that triple extraction reduces to running a batch of O(h) Beaver
multiplications. The formal description appears in Protocol 9.5.

Protocol 9.5: Triple Extraction – ΠtripleExt

Common input: The description of a field F, a set Com ⊆ P such that m = |Com| ≥ n− ts, m =
2h+1 non-zero distinct elements 1, . . . ,m and h+1− ts non-zero distinct elements β1, . . . , βh+1−ts .
Without loss of generality, assume Com = {P1, . . . , Pm}.

Input: Parties hold the degree-ts shared triples ([ai] , [bi] , [ci]) for every i ∈ {1, . . . ,m} such that
(ai, bi, ci) is known to party Pi.

1. For each i ∈ {1, . . . , h+ 1}, parties locally set [xi] = [ai], [yi] = [bi] and [zi] = [ci].

2. Let X(·) and Y (·) be the degree-h polynomials defined by the points {xi}i∈{1,...,h+1} and
{yi}i∈{1,...,h+1} respectively such that X(i) = xi and Y (i) = yi for all i ∈ {1, . . . , h+ 1}.

3. For each i ∈ {h+ 2, . . . ,m}, parties locally compute [xi] = [X(i)] and [yi] = [Y (i)].

4. Parties invoke ΠBeaver with {[xi] , [yi] , [ai] , [bi] , [ci]}i∈{h+2,...,m} and obtain {[zi]}i∈{h+2,...,m}
where zi = xiyi for every i ∈ {h+ 2, . . . ,m}. Wait for time ∆.

5. Let Z(·) be the degree-2h polynomial defined by the points {zi}i∈{1,...,m} such that Z(i) = zi
for all i ∈ {1, . . . ,m}.

6. Parties locally compute [ai] = [X(βi)], [bi] = [Y (βi)] and [ci] = [Z(βi)] for every i ∈
{1, . . . , h+ 1− ts}.

Theorem 9.6. Protocol ΠtripleExt is secure against an adversary corrupting up to ts parties in
the synchronous network and up to ta parties in the asynchronous network and has the following
properties.

1. Synchronous network:

(a) ts privacy: The triples {(ai,bi, ci)}i∈{1,...,h+1−ts} are random from the adversary’s view.

(b) ts correctness: Within time TtripleExt = ∆, the honest parties output a degree-ts Shamir-
sharing of of each triple {(ai,bi, ci)}i∈{1,...,h+1−ts}.

2. Asynchronous network:

(a) ts privacy: The triples {(ai,bi, ci)}i∈{1,...,h+1−ts} are random from the adversary’s view.

(b) ta correctness: The honest parties eventually output a degree-ts Shamir-sharing of each
triple {(ai,bi, ci)}i∈{1,...,h+1−ts}.

Proof. We prove the properties of ΠtripleExt in both networks simultaneously.
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1. ts privacy: Note that (since ta < ts) in the worst case, there will be at most ts corrupt parties
in the set Com. This implies that at most ts points are known to the adversary on each of
the polynomials X(·) and Y (·). This ensures a degree of freedom of h + 1 − ts on each of
these polynomials (and hence on Z(·)). Hence, we have that for every candidate set of triples
{(ai,bi, ci)}i∈{1,...,h+1−ts}, there exists a set of h+1−ts corresponding candidate input triples
([aj ] , [bj ] , [cj ]) unknown to the adversary that is consistent with the adversary’s view.

2. ts (resp. ta) correctness: By the properties of ΠBeaver in the synchronous (resp. asynchronous)
network, we have that parties will receive obtain {[zi]}i∈{h+2,...,m} within time ∆ (resp. even-
tually). Since all the input triples are guaranteed to be valid multiplication triples, by con-
struction of the protocol, it holds that Z(·) = X(·) · Y (·) such that X(·), Y (·) are degree-h
polynomials and Z(·) is a degree-2h polynomial. It thus follows that all the honest parties
output ([ai] , [bi] , [ci]) = ([X(βi)] , [Y (βi)] , [Z(βi)]) for every i ∈ {1, . . . , h+1−ts} within time
∆ (resp. eventually). Moreover, the relation ci = ai ·bi holds for every i ∈ {1, . . . , h+1− ts}
since Z(·) = X(·) · Y (·) holds.

10 The Complete MPC Protocol

This section describes our complete MPC protocol as a composition of the primitives described so
far and the existing primitives detailed in Section 4. It has the following well-known two-phase
structure: a preprocessing phase wherein parties generate random Beaver triples and an online
phase wherein parties consume these triples to evaluate the circuit. We elaborate on these two
phases below.

Beaver Triple Generation. In this phase, the goal is to generate degree-ts shares of random
multiplication triples of the form (a, b, c) where c = a · b. We require C random triples to be shared
to evaluate a circuit with C multiplication gates. This phase can be further viewed as consisting
of three stages:

1. Triples with a dealer: In this stage, each party Pi acts as a dealer and shares triples of the
form (ai, bi, ci) such that ci = ai · bi must hold. The dealer is required to provide a perfect
zero-knowledge proof to establish the correctness of its triples. Our main contribution lies in
this stage, where the sharing of triples is performed using the verifiable secret sharing protocol
(ΠVSS) discussed in Section 7. Further, we also give a protocol for verifiable triple sharing
(ΠVTS), which allows the dealer to prove that the triples it shared are indeed correct. If a
dealer’s sharing fails, then its triples are ignored by all the parties. This protocol appears in
Section 8.

2. Agreement on a Common Set (ACS): Irrespective of the network type, we have that the triple
sharing instances of the honest dealers will eventually terminate but only corresponding to
certain subsets of size ts − ta for which revealing shares is allowed. We thus have to identify
a subset for which this indeed succeeds, and for sufficient number of parties. Here, sufficient
is the same as ensuring that the sharing terminates for (at least) n − ts dealers. This is
because, the instances corresponding to ts corrupt dealers in the synchronous network, and
analogously ta corrupt dealers in the asynchronous network may never terminate. Further,
parties are unaware of the underlying network condition, and in the worst case, ts corrupt
parties may not even initiate their triple sharing. To prevent endless waiting, parties proceed
upon successful completion of (at least) n − ts instances of triple sharing. Moreover, the
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triple sharing should have completed corresponding to the same global set of ts− ta for which
values are revealed during sharing. This task is handled by two consecutive layers of the
ACS protocol, ΠACS, described in Section 4. Parties first run an instance of ACS protocol for
each subset of size ts − ta to identify if at least n − ts parties complete their sharing. Since
more that one ACS instance may succeed in finding such a subset, parties have to agree on a
particular instance whose output will be used as the common set. For this, they run a second
layer of ACS and agree on the instance to be considered, and consequently on the subset Com
of size at least n− ts to be used in further evaluation of the circuit.

3. Triples without a dealer: Once a common set of parties Com whose triple sharing has termi-
nated successfully been determined, the goal is to then extract random triples unknown to
any party. For this, we use the existing triple sharing protocol, ΠtripleExt, which consumes the
triples shared by each party in Com and extracts random triples.

Circuit Evaluation. This is the second phase of our MPC protocol, which at a high level, consists
of four stages. At the input sharing stage, parties share their inputs to the circuit. Similar to the
case of triple sharing, to avoid endless wait and to ensure privacy, parties run two layers of ACS to
agree on a set of at least n − ts parties whose input will be considered for evaluation. Moreover,
these parties would have terminated their sharing instance for the same global set of ts− ta parties
whose shares may be publicly revealed during verifiable secret sharing. A default value is assumed
as the input of the remaining parties. In practice, input sharing is performed simultaneously with
the triple sharing and a common ACS instantiation happens for both. The second stage comprises
of the shared evaluation of the circuit. Since our sharing is linear, addition and multiplication
by a constant operations can be performed locally. For multiplication, we rely on the well-known
technique of Beaver’s circuit randomisation [7]. Here, parties use the triples generated in the prior
phase to evaluate multiplication gates in the circuit using Beaver multiplication. In this protocol,
by using a pre-shared triple ([a] , [b] , [c]), the task of computing a degree-ts sharing [xy] from [x]
and [y] reduces to two public reconstructions. The protocol description for Beaver’s multiplication
protocol, ΠBeaver, appears in Section 4. The third stage corresponds to the reconstructing the
output of the circuit to the parties. Finally, the last stage ensures that sufficiently many parties
have obtained the same output. If this holds, then parties safely terminate with the output, in the
MPC protocol as well as all the underlying protocols. This concludes our MPC protocol, which
appears below. In the protocol description, we perform input sharing along with triple sharing
in the first phase and invoke the two-layered ΠACS to decide on a common set of parties that
successfully share both.

Protocol 10.1: Network-Agnostic MPC – Πna
MPC

Common input: The description of a circuit, the field F, n non-zero distinct elements 1, . . . , n
and a parameter h where n − ts = 2h + 1. Let m = ⌈ C

h+1−ts
⌉ and k =

(
n

ts−ta

)
. Let Z1, . . . , Zk be

the subsets of parties, each of size ts − ta.
Input: Parties hold their inputs (belonging to F ∪ {⊥}) to the circuit.
(Beaver triple generation and Input sharing:)

1. (Beaver Triple generation with a dealer) Each Pi chooses m random multiplication
triples and executes m instances of ΠVTS (Protocol 8.1, Section 8) simultaneously.

2. (Input sharing) Each party Pi holding ki inputs to the circuit executes ki instances of ΠVSS

simultaneously (Protocol 7.1, Section 7). Parties wait for time TVTS.

3. (Input to ACS-1) For each Z ∈ {Z1, . . . , Zk}, each Pi initialises a set SZ
i ← ϕ. It includes

j in SZ
i if it receives an output in all the ΠVSS and ΠVTS instances of Pj corresponding to the
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global set Z.

4. (ACS-1 Execution) Parties invoke ΠACS (Protocol 4.9, Section 4) corresponding to each
Z ∈ {Z1, . . . , Zk} to agree on a set ComZ of at least n − ts parties whose instances of triple
sharing and input sharing will terminate eventually for all the honest parties. Let Πi

ACS be
the instance corresponding to Zi. Parties wait for time TACS.

5. (Input to ACS-2) Each Pi initialises a set Si ← ϕ. It includes j in Si if it receives an output
set of size n− ts in the ACS instance Πj

ACS.

6. (ACS-2 Execution) Parties invoke ΠACS (Protocol 4.9, Section 4) to agree on a set of size
exactly 1 which indicates the ACS instance Πℓ

ACS and the set of parties ComZℓ
of size n− ts

therein whose triple sharing and input sharing will terminate eventually for all the honest

parties. Let (
[
aji

]
,
[
bji

]
,
[
cji

]
) for j ∈ [m] denote the triples shared by Pi ∈ ComZℓ

. The input

sharing for the parties outside ComZℓ
is taken as default sharing of 0. Parties wait for time

TACS.

7. (Beaver Triple Extraction) Upon receiving output from ΠACS, parties execute m instances
of ΠtripleExt (Protocol 9.5, Section 4) with ComZℓ

as the common input and additionally

(
[
aji

]
,
[
bji

]
,
[
cji

]
) for every Pi ∈ ComZℓ

as the input for the jth instance. Let ([ai] , [bi] , [ci])

for i ∈ [C] denote the random multiplication triples generated. Wait for time ∆.

(Circuit evaluation:)

1. (Linear Gates) Parties locally apply the linear operation on their respective shares of the
inputs.

2. (Multiplication Gates) Let ([ai] , [bi] , [ci]) be the multiplication triple associated with the
ith multiplication gate with shared inputs ([xi] , [yi]). Parties invoke ΠBeaver (Protocol 9.3,
Section 4) with {[xi] , [yi] , [ai] , [bi] , [ci]} for all gates i at the same layer of the circuit and
obtain the corresponding [zi] as the output sharing for every gate i. Wait for time ∆.

3. (Output) For an output gate y with the associated sharing [y], upon computing the share of
y, parties execute ΠprivRec (Protocol 9.1, Section 4) towards every party Pi. Wait for time ∆.

4. (Termination:) Each party Pi does the following:

• If y has been computed during the output step, then send (ready, y) to all the parties.

• If (ready, y) has been received from at least ts + 1 distinct parties, then send (ready, y)
to all the parties, if not sent before.

• If (ready, y) has been received from at least 2ts + 1 distinct parties, then output y and
terminate the protocol.

Theorem 10.2. Let n, ts, ta be such that ta < ts and n > 2ts +max(2ta, ts). Protocol 10.1, ΠMPC,
is a network-agnostic MPC protocol that is perfectly-secure against an adversary corrupting up to
ts parties in a synchronous network and up to ta parties in the asynchronous network. It has the
following properties:

• ts correctness: In a synchronous network, all the honest parties compute y = f(x1, . . . , xn),
where xi = 0 if i /∈ Com such that |Com| ≥ n − ts and every honest party belongs to Com
within time TMPC = TVTS + 2TACS + TtripleExt +D.TBeaver + TPrivRec.

• ta correctness: When the network is asynchronous, all the honest parties eventually compute
y = f(x1, . . . , xn), where xi = 0 if i /∈ Com such that |Com| ≥ n− ts.
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• ts privacy: Irrespective of the network type, the adversary’s view is independent of the inputs
of the honest parties in Com.

Proof. We first consider a synchronous network with up to ts corruptions. By the ts correctness
property of the triple sharing and verifiable secret sharing protocols, we have that the triple sharing
and input sharing instances of all the honest parties will terminate within time TVTS for all subsets
Z which include only corrupt parties. Moreover, by the discussion given at the end of Section 7, if
the sharing instance of some honest party cannot terminate corresponding to some global subset Z
of parties, then no honest party participates with an input 1 in the ACS within TVSS < TVTS. To
see this, we consider the following extreme cases:

• When the dealer is honest and the set Z consists of only corrupt parties: In this case, when
the network is synchronous, we have the guarantee that the dealer can always identify a clique
of size n− ts consisting of all the honest parties (although this may require at most ta reruns
of the protocol as described at the end of Section 6, but the dealer VSS instance will not
stall). Moreover, the VSS is designed such that parties in Z either resolve all their conflicts
and get added to the clique, or they are non-responsive and the dealer can reveal their values
publicly in the VSS. Also, the addition of parties to the clique or their shares being revealed
publicly occurs as per the synchronous time steps, ensuring that all honest dealer’s VSS is
successful within TVSS.

• When the dealer is honest and the set Z consists of all honest parties: In this case, it
is guaranteed that all the honest parties in Z broadcast their values within the required
time steps. However, it is possible that the n − ts sized clique that the dealer identified
includes corrupt parties (not in Z), and moreover, these parties remain silent during the clique
expansion phase, thus causing the honest dealer’s VSS instance to be stuck. However, given
that all parties can publicly see this deadlock, they will not proceed to the ACS instance
corresponding to this set Z. Moreover, below, we argue that such a deadlock cannot be
emulated by a corrupt dealer in the case when Z has all corrupt parties. This is crucial since
it allows the parties to successfully proceed with (at least) those VSS instances corresponding
to the sets Z which consists of only the corrupt parties.

• When the dealer is corrupt and the set Z consists of only corrupt parties: Observe in this
case that if the dealer is unable to identify a clique of size n− ts excluding the parties in Z as
per the synchronous time steps, then as per our protocol steps, parties will naturally switch
modes and assume the network to be asynchronous and expect a larger clique of size n − ta
from the dealer. On the other hand, the dealer may indeed able to find a clique of size n− ts
excluding the parties in Z. In this case again, we conclude that the dealer cannot emulate
a deadlock situation. This is because of the following reasons. During clique expansion, V
will comprise of parties in Z which are by definition corrupt. If some party from Z does
not broadcast, then the dealer can restart the protocol (thus ensuring there is no deadlock).
Moreover, we are guaranteed that the honest parties in the clique will broadcast their values
as per the time steps. If on the other hand, some corrupt party (not in Z) is included in
the clique and is non-responsive at this stage, then the dealer naturally proceeds to the next
rerun of the protocol (as described at the end of Section 6 and in the protocol), thus ensuring
that there is progress in the VSS instance. In each rerun of the protocol, the same argument
holds true and hence we have that a corrupt dealer cannot emulate its VSS instance being
stalled in this case.
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• When the dealer is corrupt and the set Z consists of honest parties: In this case, it is possible
that a corrupt dealer’s VSS instance succeeds or fails depending on its behaviour. However,
due the argument discussed in the first case, parties will input a 1 to the ACS corresponding
to this set Z if and only if all the honest parties VSS instances make progress (and thus
succeed within TVSS).

Thus, we have that for any set Z for which parties participate with input 1 in the corresponding
ACS within time TVSS, all the honest dealers’ VSS instances must have terminated in the case
of a synchronous network. This also implies that the input requirements of the protocol ΠACS

for synchronous network will hold true for at least some global subsets of size ts − ta. Hence, by
the ts correctness property of ΠACS, within time TACS parties will output a set ComZ for these
subsets Z such that |ComZ | ≥ n − ts and it includes all the honest parties. Moreover, if there is
some corrupt Pi ∈ ComZ , it implies that some honest party Ph computed the output of verifiable
secret sharing and triple sharing in Pi’s instances. If not, then it would mean that no honest
party includes Pi in its set Si, and hence, all the parties would input 0 for the instance Πi

BA. By
the validity property of ΠBA in the synchronous network, we have that parties output 0 in the
instance Πi

BA. Thus, Pi is excluded from ComZ , which is a contradiction. Therefore, given that
some honest party computes the output in Pi’s instances of verifiable secret sharing and triple
sharing, by the ts strong commitment property of both these protocols, we have that all the honest
parties compute an output. Further, since all the honest parties receive these ComZ sets by the
correctness property of ΠACS, we have that all honest parties will participate in the second layer
of ACS execution with input 1 corresponding to them and this satisfies the requirements of ΠACS.
Again, due to the correctness of ACS, we have that parties will obtain an output within time TACS

which corresponds to some ℓ such that the ACS had succeeded corresponding to Zℓ. Consequently,
we have that parties hold shares corresponding to m multiplication triples shared by each party
in ComZℓ

. Subsequently, by the ts correctness property of ΠtripleExt, within time ∆ parties will
compute the shares of random triples for h + 1 − ts for each instance of ΠtripleExt. Given that we
have m = ⌈ C

h+1−ts
⌉, parties obtain the random shares for C multiplication triples. In the circuit

evaluation phase, the linear gates are computed locally. Whereas for the multiplication gates, the
ts correctness property of ΠBeaver ensures that all the honest parties obtain the correct sharing of
the output of the gates within time ∆. Finally, the ts correctness of the reconstruction protocol
ΠprivRec in the synchronous network ensures that parties receive their output within time ∆. Thus,
we have that in a synchronous network, all the honest parties will send (ready, y) messages. Since
there are at least 2ts+1 honest parties, termination is guaranteed. The proof for the ts correctness
in the asynchronous network follows similarly, with the modification that it now relies on the ts
correctness of all the subprotocols in the asynchronous network. For termination, note that at
least 2ts + 1 honest parties will eventually send (ready, y) message which all the honest parties
will receive. Moreover, if some honest party terminates with an output y, then it implies that it
received (ready, y) from at least ts+1 honest parties. All honest parties will eventually receive these
messages and send (ready, y) to all. Since there are at least 2ts + 1 honest parties, termination is
ensured.

The ts privacy of the MPC protocol in either of the network conditions follows from the ts
privacy of the subprotocols. Specifically, from the ts privacy of ΠVSS, we have that the inputs
of honest parties are random from the adversary’s view. Further, from the ts privacy of ΠVTS,
it follows that the multiplication triples shared by each honest Pi for i ∈ Com are random from
the adversary’s view. Given this, the ts privacy of ΠtripleExt ensures that the multiplication triples
extracted from the triples of parties in Com are indeed random from the view of the adversary.
Finally, the ts privacy of ΠBeaver guarantees that the adversary does not learn any additional
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information during the evaluation of a multiplication gate. Moreover, the rest of the gates are
computed non-interactively, thus ensuring ts privacy of the MPC protocol.
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