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Abstract. Homomorphic secret sharing (HSS) is a distributed analogue of fully homomorphic
encryption (FHE) where following an input-sharing phase, two or more parties can locally
compute a function over their private inputs to obtain shares of the function output.

Over the last decade, HSS schemes have been constructed from an array of different assumptions.
However, all existing HSS schemes, except ones based on assumptions known to imply multi-
key FHE, require a public-key infrastructure (PKI) or a correlated setup between parties. This
limitation carries over to many applications of HSS.

In this work, we construct multi-key homomorphic secret sharing (MKHSS), where given only
a common reference string (CRS), two parties can secret share their inputs to each other and
then perform local computations as in HSS, eliminating the need for PKI or a correlated setup.
Specifically, we present the first MKHSS schemes supporting all NC1 computations from either
the decisional Diffie–Hellman (DDH) assumption, the decisional composite residuosity (DCR)
assumption, or DDH-like assumptions in class group.

Our constructions imply the following applications in the CRS model:

– Succinct two-round secure computation. Under the same assumptions as our MKHSS
schemes, we construct a succinct, two-round, two-party secure computation protocol for NC1

circuits. Previously, such a result was only known from the learning with errors assumption.

– Attribute-based NIKE. Under DCR or class group assumptions, we construct non-
interactive key exchange (NIKE) protocols where two parties agree on a key if and only
if their secret attributes satisfy a public NC1 predicate. This significantly generalizes the
existing notion of password-based NIKE.

– Public-key PCFs. Under DCR or class group assumptions, we construct public-key pseu-
dorandom correlation functions (PCFs) for any NC1 correlation. This yields the first public-
key PCFs for Beaver triples (and more) from non-lattice assumptions.

– Silent MPC. Under DCR or class group assumptions, we construct a p-party secure
computation protocol in the silent preprocessing model where the preprocessing phase has
communication O(p), ignoring polynomial factors. All prior protocols that do not rely on
multi-key FHE techniques require Ω(p2) communication.

⋆ This work was done in part while the author was at IRIF.
⋆⋆ This work was done in part while the author was at NTT Research.

1



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1 Applications of multi-key HSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Technical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Background on HSS from group-based assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Challenges associated with multi-keyness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Full synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Putting everything together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 Extending the ideas to the DDH setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.7 Recovering full synchronization under BHHO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1 Distributed evaluation of RMS programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Multi-Key Homomorphic Secret Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 External security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 MKHSS in the NIDLS framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4 MKHSS from DDH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1 Sublinear, two-round secure computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Attribute-based non-interactive key exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Public-Key PCFs from MKHSS and Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.1 Background: Public-key pseudorandom correlation functions . . . . . . . . . . . . . . . . . . . . . . 45
6.2 Public-key PCFs from MKHSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.3 Multi-party computation with silent preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

A Alternative Construction of Multi-Key HSS from DCR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
A.1 Overview of the alternative approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
A.2 Synchronizing keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
A.3 Synchronizing input shares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
A.4 Alternative construction of MKHSS from DCR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

1 Introduction

In a homomorphic secret sharing (HSS) [BGI16] scheme supporting a class of functions F , two or
more parties, each with a share of a secret x, can compute a function f ∈ F over x to get a share of
the result f(x). For security, any strict subset of the shares must hide the secret x. Importantly, the
shares must be homomorphic, in that they must support local (non-interactive) function evaluations
such that for any f ∈ F , the output shares correspond to an additive sharing of f(x).

The key property of HSS is succinctness, namely, the size of the input and output shares must be
independent of the size of the circuit computing the function over the secret-shared inputs. HSS can
be viewed as a distributed analogue of fully homomorphic encryption [Gen09]: it allows two parties
to securely compute a function over their private inputs succinctly with respect to the circuit size.

Starting from the seminal work of Boyle, Gilboa, and Ishai [BGI16], a key goal of HSS is to build
secure computation schemes from assumptions other than learning with errors (LWE). By now, many
HSS schemes are known [BGI16, DHRW16, BGI17, BCG+17, BKS19, BCG+19b, CM21, OSY21,
RS21, ADOS22, DIJL23] from a variety of standard assumptions that vary in the number of parties
(most schemes support two parties), the class of supported functions (most schemes support NC1

computations), and correctness error. While some HSS schemes have a non-negligible correctness
error, they still have applications to secure computation [BGI17, DIJL23].

Over the last decade, HSS schemes have enabled a variety of applications in cryptography.
These applications include secure computation with sublinear communication [BGI16, Cou19, CM21,
DIJL23], private information retrieval [GI14, BGI16], pseudorandom correlation generators [BCGI18,
BCG+19b], constrained pseudorandom functions [CMPR23], and more.



Assumption CRS Transparent
Setup

Computational
Class Error

[DHRW16] iO+DDH ✗ ✓ P/poly negl

[DHRW16, XW23] LWE ✓ ✓ P/poly⋆ negl

Theorem 1 NIDLS DDH ✓ ✗† NC1 negl

Theorem 2 DDH ✓ ✓ NC1 1/poly

Theorem 6 DCR ✓ ✗ NC1 negl

Table 1: Constructions of MKHSS realized in this work and comparison to prior work.
⋆Requires making circular security assumptions to obtain a scheme for all circuits.
†When instantiated with class groups, the setup is transparent.

Homomorphic secret sharing with multiple inputs. The basic notion of HSS only enables
computations over the private input of a single party. To support multiple private inputs, the notion
of public-key HSS [BGI17, ADOS22] was proposed. In a public-key HSS scheme, following a CRS
setup, there is a public-key setup phase where the parties sample and publish their respective public
keys. Using these public keys, the parties locally derive a common public key and use it for secret
sharing their inputs with one another.5 This enables the parties to perform secure computations over
their private inputs encrypted under the common public key.

Intuitively, public-key HSS can be viewed as an analogue of threshold fully homomorphic encryp-
tion [AJL+12]—a multi-party version of FHE in the public-key infrastructure (PKI) model. The key
drawback of this notion is the necessity of the PKI setup, which itself relies on a CRS, prior to
the input sharing phase. This limitation, in turn, affects the applications of HSS. For example, the
PKI requirement carries over in the application of HSS to sublinear secure computation, imposing a
minimum of three rounds, which is suboptimal [HLP11].

Furthermore, while HSS (with negligible correctness error) for NC1 computations implies pseudo-
random correlation functions (PCFs) for NC1 correlations [BGMM20, CMPR23] (assuming the exis-
tence of pseudorandom functions computable in NC1), the same is not known for public-key PCFs. A
public-key PCF [OSY21, BCM+24] is a much stronger primitive that allows two parties to generate
correlated randomness “on the fly,” without needing to engage in a correlated setup ahead of time.

Multi-key homomorphic secret sharing. In this work, we study multi-key homomorphic secret
sharing (MKHSS), which does not require any PKI or other correlated-randomness setup. Instead,
given only a CRS, the parties can directly secret share their inputs to each other. In this sense,
MKHSS can be viewed as an analogue of multi-key FHE [LTV12, MW16]—a multi-party version of
FHE that enables computing over the private data of multiple entities, without needing PKI.

MKHSS for multiple parties is readily implied by spooky encryption [DHRW16], which is currently
only known from assumptions known to imply FHE. Similarly to the foundational work of Boyle et
al. [BGI16], which initiated the study of HSS as an alternative to FHE, we investigate the feasibility
of MKHSS from assumptions not known to imply FHE. As we discuss next, MKHSS enables new
applications that were not previously known from public-key HSS, similarly to how multi-key FHE
enabled many new applications relative to the older (and weaker) notion of threshold FHE.

We show that multi-key HSS is possible from group-based assumptions in the two-party setting
and prove the following theorem:

Informal Theorem 1 (Existence of MKHSS). There exist the following instantiations of a two-party,
multi-key homomorphic secret sharing scheme for computing all functions in the class NC1:

(1) Under the DDH assumption over cyclic groups, with a transparent setup, and inverse polynomial
correctness error.

(2) Under the DDH assumption and small exponent assumption over class groups, with transparent
setup, and negligible correctness error.

(3) Under the DCR assumption, with a trusted setup, and negligible correctness error.

5 Alternatively, a correlated setup can take place where the parties obtain shares of a secret key belonging
to a common public key.
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In fact, the construction over class groups is an instantiation of a general template for MKHSS
schemes in the non-interactive discrete log sharing (NIDLS) framework of Abram et al. [ADOS22].
The same template yields MKHSS schemes under the DDH and small exponent assumptions over the
group used for Paillier encryption, as well as an extension of the Joye–Libert cryptosystem described
by Abram et al. [ADOS22].

Similar to prior works, our MKHSS schemes support evaluating polynomial size restricted multi-
plication straight-line (RMS) programs—arithmetic circuits over the integers with restrictions on the
inputs to multiplication gates, which contain the class NC1.

Our DCR and class group instantiations have a negligible correctness error and support an ex-
ponentially large message space, similar to non-multi-key HSS constructions from these assump-
tions [RS21, OSY21, ADOS22]. In addition, the class group instantiation offers a transparent setup,
which is not the case for the DCR construction where the CRS is structured. Our DDH instantiation
works over any Diffie–Hellman group and has the benefit of having a transparent setup. However,
similar to non-multi-key HSS constructions from DDH [BGI16], it only supports a polynomial size
message space and has an inherent (but tunable) inverse polynomial correctness error.

We summarize our results in Table 1.

1.1 Applications of multi-key HSS

We show that many of the applications that multi-key FHE implies are also possible from MKHSS
in the two-party setting, thanks to our constructions. We briefly summarize the applications of our
schemes. Technical details surrounding these applications can be found in Sections 5 and 6.

Sublinear, two-round secure computation. As was shown by Boyle et al. [BGI17], standard HSS
already gives two-party secure computation in three rounds and with sublinear communication in the
circuit size. At a high level, the three-round protocol proceeds as follows:

Round 1: Agree on a public key and derive shares of the secret key.

Round 2: Exchange inputs encrypted under the public key.

Round 3: Locally evaluate the function and output the resulting shares.

The question of constructing two-round sublinear secure computation protocols from group-based
assumptions has remained open. In particular, only multi-key FHE was known to be sufficient to
instantiate sublinear two-round secure computation in the CRS model.

Our constructions of MKHSS give the first realization of sublinear, two-round, two-party secure
computation in the CRS model from assumptions that are not known to imply FHE. Concretely,
multi-key HSS immediately implies the following sublinear, two-round secure computation protocol:

Round 1: Exchange inputs encrypted under independent public keys.

Round 2: Locally evaluate the function and output the resulting shares.

When the MKHSS scheme has negligible correctness error, this protocol achieves reusability of
the first round messages [BL20, BGMM20, AJJM20, BJKL21, AJJM21] in the following sense: the
parties can compute different functions over their inputs without having to recompute their first
round messages. Furthermore, a party can reuse its first-round message in different computations
with different parties. In particular, this enables one party to even go offline after sending the first
message, and only later complete the computation asynchronously.

While it is also possible to obtain two-round secure computation from DDH using our MKHSS
construction, the construction does not support reusability and is more challenging to instantiate due
to the polynomial correctness error.

Informal Theorem 2. Under each of the three instantiations of multi-key homomorphic secret
sharing from Informal Theorem 1, there exists a sublinear, two-party, two-round secure computation
protocol for computations in the class NC1.

Attribute-based NIKE. We show that our constructions of MKHSS also imply attribute-based
non-interactive key exchange (ANIKE) supporting NC1 predicates.

An ANIKE scheme involves two parties, each with their own secret attribute. The requirement is
that the parties can derive a shared key if their secret attributes jointly satisfy a public predicate.
However, if their attributes do not satisfy the predicate, then they derive independent keys (and do
not learn that the predicate was unsatisfied).
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ANIKE captures password-based NIKE as well as its extensions such as fuzzy password-based
NIKE, where parties can derive a shared key only if they share approximately-matching passwords
(e.g., those derived from biometrics). In general, ANIKE is well-suited for applications that involve
authenticating complicated credentials before providing sensitive information.

We briefly summarize the construction (details are provided in Section 5.2).

Public key: Alice samples an MKHSS public and secret key, and generates input shares of her
secret attribute xA and a random shift. Her public key consists of her MKHSS public key and
the input share of her attribute and shift. Bob computes his public key in a symmetric manner.

Key derivation Alice, given (1) her secret key, (2) her own input share, and (3) Bob’s public
key with an input share of his secret attribute xB , uses MKHSS to evaluate the program which
computes the predicate and multiplies the result by the random shift of each party. Bob evaluates
his shares exactly as Alice does. The key for each party consists of the subtractive share output
by the MKHSS evaluation.

If the predicate evaluates to 0, which we define as the predicate being satisfied, Alice and Bob end
up with pseudorandom subtractive shares of 0, i.e., the same key. On the other hand, if the predicate
evaluates to 1, Alice and Bob end up with subtractive shares of a random value (i.e., independent
keys) because of the random shifts.

To the best of our knowledge, all existing constructions of key exchange which support NC1

predicates require interaction and/or assume some idealized model [KKL+16, Mel22]. We realize the
first non-interactive construction in the standard model. Thanks to the non-interactivity property,
our ANIKE scheme—and the associated security proof—is conceptually very simple. In contrast,
interactive constructions of ANIKE have many moving parts, have complicated proofs as a result,
and many constructions have been broken due to subtle flaws [JRX24].

Informal Theorem 3. Under the DCR assumption or the DDH and small exponent assumption in
class groups, there exists an attribute-based non-interactive key exchange protocol supporting predicates
in the class NC1.

Public-key PCFs for NC1 correlations. Modern secure computation protocols are realized in
the preprocessing model [Bea95, DPSZ12]. In this model, during an “offline” preprocessing phase,
the computing parties generate a large amount of pseudorandom correlations that are independent
of any function they will later compute. Then, during an online phase, the parties use the stored
correlations to compute a function over their inputs in a secure protocol. Thanks to the correlated
randomness, the online phase has far greater efficiency by not requiring any cryptographic operations.
Pseudorandom correlation functions [BCG+20a] (PCFs) push this model of secure computation to
the limit by allowing parties to obtain a short key that they can use to locally, and “on-demand,” to
generate correlated pseudorandomness for use in the online phase.

Starting with the work of Orlandi, Scholl, and Yakoubov [OSY21], which introduced the concept
of a public-key PCF, parties can non-interactively derive a PCF key using only the other party’s
public key. The advantage of public-key PCFs is that any pair of parties can generate correlated ran-
domness on the fly, using only each other’s public keys. However, existing constructions of public-key
PCFs [OSY21, BCM+24, CDD+24], are restricted to the OT/VOLE correlation (or weaker variants
thereof). In particular, barring spooky encryption, constructing a public-key PCF for even Beaver
triple correlations has, so far, remained elusive.

In Section 6, we use our MKHSS constructions to build the first public-key PCF for any NC1

correlation, from either the DCR assumption or the DDH and small exponent assumption in class
groups.

Informal Theorem 4. Under the DCR assumption or the DDH and small exponent assumption in
class groups, there exists a public-key pseudorandom correlation function for NC1 correlations.

Remark 1 (Public-key PCFs with a transparent setup). We remark that our approach to constructing
public-key PCFs from MKHSS is markedly different from prior constructions of public-key PCFs.
Specifically, prior work on public-key PCFs [OSY21, ADOS22] exploit properties of HSS schemes
built from the Paillier or Goldwasser–Micali encryption scheme to realize the public-key setup (e.g.,
the fact that these encryption schemes have have a dense ciphertext space). This prevents the existing
approaches to public-key PCFs to have a transparent setup. In contrast, our approach via MKHSS
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is generic, which allows us to obtain a public-key PCF with a transparent setup (from class groups).
Such a result was not known before, even for the OT/VOLE correlation.

Silent, secure multi-party computation. For multi-party computation protocols instantiated in
the preprocessing model, the typical choice of correlated randomness consists of Beaver triples [Bea92].
A p-party Beaver triple consists of additive shares of (a, b, ab), where a, b are random elements in some
finite ring. In practice, the cost of securely generating the correlated randomness in the preprocessing
phase often dominates the overall cost of the protocol. To mitigate this cost, a relatively recent line
of work [BCGI18, BCG+19a, BCG+19b, BCG+20a] has introduced the silent preprocessing model, in
which the correlated randomness is replaced by correlated pseudorandomness computed by a PCF.

Thanks to recent advances in homomorphic secret sharing and PCFs, there exist silent preprocess-
ing protocols for generating suitable correlated pseudorandomness from standard assumption such
as DCR, DDH and the small exponent assumption in class groups, and variants of LPN [BCG+20b,
OSY21, RS21, ADOS22, BCCD23]. However, in the context of p-party secure computation, all known
methods (that do not rely on spooky encryption) incur an Ω(p2) · poly(λ) communication overhead
in the preprocessing phase. This overhead stems from the fact that all known constructions of HSS
and PCFs are, barring some exceptions (cf. Remark 2), restricted to the setting of two participants,
and generating p-party correlations via these primitives requires all pairs of parties to interact.

Remark 2. Nearly all HSS and PCF constructions are restricted to the two-party setting. How-
ever, some exceptions include the p-party HSS scheme from sparse LPN of Dao, Ishai, Jain, and
Lin [DIJL23], which cannot be used to generate correlated randomness due to its imperfect correct-
ness, the 4-party DCR-based HSS scheme of Boyle, Couteau, and Meyer [BCM23], and the 8-party
scheme of Couteau and Kumar [CK24]. We also note that this restriction also applies to pseudorandom
correlation generators (PCGs) [BCG+19b].

Using MKHSS, we show how to construct a multi-party, public-key PCF for Beaver triples. At
a high level, using our multi-party public-key PCF for NC1, p parties can simultaneously broadcast
their public keys on a public channel. Then, any pair of parties can, without any interaction, derive
two-party Beaver triples. Using the two-party shares, all parties can locally aggregate their two-party
Beaver triples to obtain (an arbitrary number of) p-party Beaver triples. Using these precomputed
(and pseudorandom) Beaver triples, the parties can then run any efficient p-party non-cryptographic
protocol to securely compute a target function (e.g., via the GMW protocol [GMW87]).

As a direct corollary of our MKHSS constructions, under DCR or DDH and small exponent
assumption over class group, there exists a p-party protocol securely computing an arithmetic circuit C
with smultiplication gates andm outputs over a ringR with the following communication complexity:

– In the preprocessing phase, the parties communicate p · poly(λ) bits in a single broadcast round.

– In the online phase, the parties communicate p · (2s+m) elements of R.
This yields a quadratic communication improvement over the state-of-the-art [BBC+24] approach
for secure computation in the preprocessing phase. However, we note that our constructions are still
primarily of theoretical interest because our MKHSS constructions are not concretely efficient for
general computations.

Informal Theorem 5. Let C be an arithmetic circuit with n inputs, s multiplication gates, and
m outputs, instantiated over a ring R. Under the DCR assumption or the DDH and short exponent
assumption in class groups, for any number of parties p, there exists a p-party secure computation
protocol for computing C in the preprocessing model, with the following communication complexity:

– In the preprocessing phase: O(p) bits in a single broadcast round.

– In the online phase: p · (2s+m) ring elements.

The protocol is secure against a passive adversary corrupting any strict subset of parties.

Paper organization. We provide an in-depth technical overview in Section 2 capturing the details
of our constructions. In Section 3, we provide the necessary preliminaries related to our constructions.
In Section 4, we provide our formal definition of MKHSS. In Section 4.3, we describe our constructions
of MKHSS under the DDH and small-exponent assumption in the Paillier group or class groups. In
Section 4.4, we describe our construction of MKHSS from DDH. In Sections 5.2 and 6, we provide
detailed constructions of these applications.
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Supplementary material. In Appendix A.4, we provide an alternative construction of MKHSS
solely from the DCR assumption using a different approach. Specifically, this alternative scheme
avoids having to make the DDH and small exponent assumptions in the Paillier group.

2 Technical Overview

In this section, we provide a technical overview of our constructions. We organize the overview into
the following subsections:

– Background. In Section 2.1, we define the notation that we use. Then, in Section 2.2, we describe
the basic template underpinning all existing group-based HSS constructions and provide other
relevant background.

– Challenges. In Section 2.3, we explain the challenges involved in adapting the basic HSS template
into a multi-key HSS construction.

– Construction in the NIDLS framework. In Sections 2.4 and 2.5, we explain the new ideas that
allow us to build MKHSS constructions from DCR and DDH over class groups using the NIDLS
framework of Abram et al. [ADOS22].

– Construction from DDH. In Section 2.6, we describe the challenges involved in adapting the ideas
from the NIDLS framework to the DDH setting. In Section 2.7, we describe how we resolve these
challenges to realize MKHSS from DDH.

2.1 Notation

We briefly provide some relevant notation for this overview, see Section 3 for more details. We let
λ denote the security parameter. We let a ← Alg denote the output of a (possibly randomized)
algorithm Alg and a←$S denote a uniformly random sampling from the set S. Assignment of a value
b to a variable a is denoted a := b. We denote three types of “secret shares” which form the backbone
of existing HSS scheme abstractions [BGI16] (see Section 2.2 for background) as follows:

– Input shares of a message x are denoted by JxK.
– Memory shares of a message x are denoted by ⟨⟨x⟩⟩.
– Subtractive shares of a message x are denoted by ⟨x⟩.6

This notation is used to describe the set of shares of the message x. When referring to a single party’s
share, we write JxKσ, ⟨⟨x⟩⟩σ, and ⟨x⟩σ, where σ ∈ {A,B} is the party identifier (e.g., Alice and Bob’s
subtractive shares of x are denoted ⟨x⟩A and ⟨x⟩B , respectively). We define these share types and
describe how they are used to realize an HSS scheme next.

2.2 Background on HSS from group-based assumptions

Here, we describe a simplified template capturing the basics of existing group-based HSS construc-
tions [BGI16, BCG+17, OSY21, RS21, ADOS22]. Relative to the full constructions, this minimal
template omits some important details in the interest of clarity. Our primary goal here is to cap-
ture the essential components needed to understand our multi-key HSS approach. Because all known
group-based HSS schemes are in the two-party setting, we will call these parties Alice and Bob
throughout this overview.

Instantiating the group. Group-based HSS constructions require an Abelian group G in which
a suitable subgroup indistinguishability assumption holds (e.g., DDH in cyclic groups, DCR in the
Paillier group, or similar assumptions in class groups). We will use g to denote the generator of G.
We will also use a “special” generator h for a suitable subgroup of G in which the discrete logarithm
is computationally easy.7 Later, we will instantiate G from several assumptions using the NIDLS
framework [ADOS22] and describe a separate construction from DDH.

6 Subtractive shares (zA, zB) of a message x are defined over the integers such that x = zA − zB .
7 The Paillier [Pai99] group G = Z∗

N2 is an example of where there exist such a g and h under DCR.
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Correlated setup. All existing HSS schemes require some form of correlated setup process to gen-
erate a common public key and distribute “evaluation keys” to the two parties. More concretely, in
group-based constructions, the setup produces a public key f := g−s and secret shares the secret
key s between Alice and Bob. Following the trusted setup, each party can generate input shares
of a private input x by encrypting it under the public key f with an “ElGamal-style” encryption
over G. Looking ahead, the main challenge in realizing multi-key HSS is replacing the entire trusted
setup process with a common reference string (or even just a common random string). In particular,
while it was shown that it is possible to reduce the correlated setup down to one round of inter-
action [BGI17, ADOS22] in the PKI model (i.e., when all parties know each other’s public keys),
removing this round of interaction has remained an open problem.

Input shares. An input share of a message x (we will define the message space later) under the public
key f consists of two “ElGamal-like” ciphertexts in the group, where the first ciphertext encrypts x ·s
(recall, s is the secret key) and the second ciphertext encrypts x. All operations over the messages are
performed “in the exponent” of the subgroup of G generated by h. An HSS input share of a message
x given to party σ ∈ {A,B} is denoted as JxKσ and defined as:

JxKσ :=
(
(gr, hx·sfr)︸ ︷︷ ︸
Ciphertext 1

, (gr
′
, hxfr′)︸ ︷︷ ︸

Ciphertext 2

)
, (1)

where r, r′←$ZN . Note that all parties get the same ciphertexts; while it is possible to add private
state to the input shares, group-based HSS schemes satisfy the property that at least one component
of the input share is identical across parties.

In addition to input shares, existing HSS schemes define an “intermediate” sharing used during a
computation called a memory share, which we describe next.

Memory shares. A memory share of a message x held by party σ ∈ {A,B} is denoted as ⟨⟨x⟩⟩σ and
is defined as a tuple of secret shares, consisting of subtractive shares of the message x and x · s. In
particular, a memory share is the secret-shared analog of an input share. That is,

⟨⟨x⟩⟩σ :=
(
⟨x · s⟩σ, ⟨x⟩σ

)
. (2)

Using the definition of an input share and a memory share, we can now describe how existing
group-based HSS schemes evaluate functions.

2.2.1 Evaluating functions The template for evaluating functions on the input shares, introduced
by Boyle et al. [BGI16], is to emulate the program via a set of multiplication and addition instructions.
In particular, the idea is to show that it is possible to compute a restricted-multiplication straight-line
(RMS) program [Cle90]—a special model of computation that is known to be sufficiently powerful to
evaluate all branching programs (and the class of functions in NC1).8

In a nutshell, RMS programs are defined to take a set of input values and require maintaining the
following rules. Each input to the program can either be (1) converted into a memory value or (2)
multiplied by a memory value to produce a memory value of the product [Cle90, BGI16]. Moreover,
(3) memory values can be added together to produce a memory value of the sum. In particular, what
an RMS program does not allow is multiplying two memory values together, since that would imply
the ability to compute all functions.

In existing group-based HSS schemes, non-interactively evaluating RMS programs over input
shares boils down to computing (2)—a multiplication between an input share and a memory share.
That is, given an input share of x and a memory share of y, it should be possible for each party
to locally derive a memory share of xy. Once this single requirement is satisfied, meeting the other
requirements becomes relatively straightforward.

The fact that the input and memory shares defined in Equations (1) and (2) enable computing a
memory share of the product is not difficult to show, but requires using one crucial ingredient: the
distributed discrete logarithm (DDLog) procedure [BGI16, OSY21, RS21, ADOS22].

8 See also Section 3 for background on RMS programs.
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Tool: The Distributed Discrete Logarithm. The DDLog procedure enables local conversion of
multiplicative shares to subtractive shares as follows. Given multiplicative shares of any value x in
the group G, where one party holds h⟨x⟩Ag⟨0⟩A and the other party holds h⟨x⟩Bg⟨0⟩B such that9

h⟨x⟩Ag⟨0⟩A · h−⟨x⟩Bg−⟨0⟩B = hx,

the DDLog procedure allows party-σ to obtain a subtractive share ⟨x⟩σ. The details of the distributed
discrete log procedure do not matter for the purposes of this overview, and we will treat it as a black-
box algorithm satisfying the above “share conversion” property. However, it does play a vital role in
computing multiplications between input shares and memory shares in all existing group-based HSS
schemes, as we explain next.

Computing a multiplication in HSS. Computing a multiplication between an input share and a
memory share is done in two steps. The idea is to exploit (1) the additive homomorphism of memory
shares, (2) the additive homomorphism of the ElGamal-style encryption, and (3) the linear decryption
process. First, the parties compute the multiplication “in the exponent” of the group. Then, using
DDLog, the resulting multiplicative shares are converted back to memory shares. In more detail:

Step I: Computing a multiplication “in the exponent.” Given an input share JxKσ and a memory share
⟨⟨y⟩⟩σ, party-σ (for σ ∈ {A,B}) computes:(

(gr)⟨y·s⟩σ · (hx·sfr)⟨y⟩σ , (gr
′
)⟨y·s⟩σ · (hxfr′)⟨y⟩σ

)
=
(
h⟨xy·s⟩σg⟨0⟩σ , h⟨xy⟩σg⟨0⟩σ

)
.

To see the equality, recall that f = g−s.
Notice that each party now holds a multiplicative share of (xy · s, xy), which corresponds to the

party having the correct memory share “in the exponent” of the group. The next step is converting
this back to a subtractive share via the DDLog procedure described above.

Step II: Conversion to memory shares. By applying the DDLog procedure to each component of the
above multiplicative share, the parties locally recover subtractive shares of (xy ·s, xy), i.e., a memory
share of xy. To see this, it suffices to observe that:(

DDLog(h⟨xy·s⟩σg⟨0⟩σ ), DDLog(h⟨xy⟩σg⟨0⟩σ )
)
=
(
⟨xy · s⟩σ, ⟨xy⟩σ

)
= ⟨⟨xy⟩⟩σ.

At this point, the parties hold memory shares of the desired product, and can continue multiplying
other input shares with the newly derived memory share. This enables the computation of RMS
programs, as we briefly explain next.

Computing RMS programs. Observe that if the parties are additionally given memory shares of
1 (e.g., as part of the correlated setup), then they can locally convert any input share into a memory
share by computing a multiplication by 1. All in all, this is now sufficient to evaluate the three
operations required for RMS programs: (1) An input can be converted to a memory value, (2) an
input can be multiplied by a memory value, and (3) any two memory values can be added together
to provide a memory value of the sum.

With the above template for how to construct HSS for RMS programs, we are now ready to list
some of the challenges and pitfalls associated with constructing multi-key HSS.

2.3 Challenges associated with multi-keyness

Before we dive in, we emphasize that the problem of eliminating the correlated setup comes down
to two things. First, the parties need to obtain a memory sharing of 1 under some joint secret key
derived on the fly. Second, they need a way to obtain input shares encrypted under this joint key. If
these two problems were magically resolved, then the computation of RMS programs follows.

In particular, the difficulty lies primarily in getting a “re-encryption” of an HSS input share under
some joint key, without any interaction or correlated setup.10 We call this the problem of synchronizing

9 Note that h is the group element of order N in Z∗
N2 .

10 We note that a common reference string is still allowed in this model; what we must avoid is any setup
that distributes correlated secrets to parties, which also bars solutions in the PKI model.
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input shares. To understand this better, consider two input shares generated as in Equation (1) but
defined under two independent public keys fA := g−sA and fB := g−sB . In particular, consider the
input shares generated by each party independently:

Party-A’s input share:
(
(grA , hx·sAfrA

A ), (gr
′
A , hxf

r′A
A )
)

Party-B’s input share:
(
(grB , hy·sBfrB

B ), (gr
′
B , hyf

r′B
B )
)
.

The problem is that, given the input shares (and public key) of the other party, it is unclear how
the parties can evaluate RMS programs over their independent input shares. While one party, say
Alice, can give Bob a share of her secret key sA, which would then allow the two parties to compute
an RMS program using Alice’s input shares, the multi-key problem arises when trying to compute a
program using both the inputs of Alice and Bob. This is where prior work resorts to an extra round
of communication: the parties first agree on a joint public-key in the first round and then share their
inputs using this joint key in the second round [BGI17, OSY21, ADOS22]. In the multi-key setting,
the question becomes:

How can Alice and Bob non-interactively obtain a
“synchronized” input share under a joint public key?

Interestingly, this question can be partially resolved by leveraging the structure of ElGamal-
style encryption. In particular, given Alice’s public key fA, Bob can compute a joint public key
f := fA · fB = g−(sA+sB). Observe that Alice and Bob can actually interpret their own keys as being
“trivial” memory shares of 1 under the joint secret key s = sA + sB , since (sA, 1) and (sB , 0) form
subtractive shares of (s, 1), satisfying the invariant of Equation (2). Then, for an input share sent by
Alice, Bob can compute a “partially synchronized” input share under the joint public key as:(

(grA , hx·sAfrA
A · (g

rA)−sB ), (gr
′
A , hxf ·rAA · (gr

′
A)−sB )

)
=
(
(grA , hx·sAfrA), (gr

′
A , hxfr′A)

)
,

which defines a valid ciphertext tuple under the joint secret key.
Moreover, given that Alice generated the input share, she can trivially re-encrypt it on her end

under the joint key f := g−(sA+sB) and using the same randomness rA and r′A (reusing the randomness
rA, r

′
A ensures that Alice and Bob obtain the exact same synchronized input share at the end).
This idea almost gives a valid input share under the joint public key. The only issue is that the

“synchronized” share still has Alice’s secret key sA encrypted in the first component. Unfortunately,
while seemingly minor, this is a major obstacle in achieving multi-key HSS. In particular, the above
idea fails to give an encryption of x · (sA + sB) and thus the resulting ciphertexts do not constitute
a valid input share with respect to the joint public key. This prevents the parties from computing
RMS programs (indeed, it is not even possible to convert such a share to a memory share, let alone
compute a multiplication).

Intuitively, the reason why Alice and Bob are able to synchronize the encryption of x (and not
x · sA) is because they can both compute gr

′
A·sB : Alice using her knowledge of r′A and Bob using his

knowledge of sB . Upon closer inspection, this was made possible because both r′A and sB are random,

which means giving out gr
′
A and gsB does not compromise security and makes it possible to compute

(gsB )r
′
A = (gr

′
A)sB à la Diffie–Hellman key exchange [DH76].

In contrast, we run into trouble when doing the same with the encryption of x · sA. Getting an
encryption of x·(sA+sB) seems to require Alice and Bob to compute hx·sB . This seems challenging for
two reasons. First, unlike in the previous case, it is insecure to send hx or hsB since discrete logarithms
are easy over the subgroup generated by h. However, even if we were to use g, Alice cannot send gx

because x is not random and therefore gx leaks information on x.
To get around these challenges, we take inspiration from constructions of both HSS and multi-

key fully-homomorphic encryption (FHE) schemes, and carefully string together several ideas and
observations, which we explain next.

Towards full synchronization. First, we find that we can use a trick described by Abram et
al. [ADOS22] to avoid “explicitly” encrypting x · sA in the context of HSS. This technique was used
by Abram et al. to obtain circular security, while we observe that it gives us an important stepping
stone towards synchronizing input shares. Intuitively, by no longer requiring encryptions of the secret
key to be associated with each input share, it becomes easier to define a synchronized ciphertext.
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Then, we look for inspiration from the multi-key FHE literature. While the techniques therein do
not directly apply to group-based computations, we nonetheless find two key ingredients—“ciphertext
expansion” and “encryption of randomness”—to be useful when adapted to a group-based setting. In
doing so, we rely on what we will informally refer to as “private homomorphism,” which essentially
allows two parties to homomorphically evaluate a function using different inputs, while still arriving at
identical outputs. Private homomorphism appears to be a unique feature of group-based encryption
schemes and does not have an obvious analogue to techniques used to realize multi-key FHE. We
provide a detailed explanation of these ideas in the next section.

2.4 Full synchronization

We first start by describing how we can get a step closer to multi-key HSS by avoiding the need for
the parties to have encryptions of the secret key as part of the input shares and instead only giving
out “implicit” encryptions of the key.

Idea I: Use “flipped” ElGamal. Abram et al. [ADOS22] observe that it is possible to define a
“flipped” ElGamal-like encryption by reversing the role of g and the public key in a ciphertext. A
surprising feature of flipped encryption is that “input-to-memory conversion” automatically yields a
subtractive share of x · s when decrypted with a share of the correct decryption key s. In more detail,
the idea is that if Alice generates her input share as:

JxKA :=
(
(hxgrA , frA

A ), (gr
′
A , hxf

r′A
A )
)
,

then the first (highlighted) component can only be decrypted by computing (hxgrA)sA ·(frA
A ) = hx·sA ,

which corresponds to a decryption of the desired result. (Note that it is still possible to decrypt hx

in the usual way using the second ciphertext present in the input share.)
Now observe that attempting to decrypt the first component using the joint secret key s = sA+sB

we defined earlier, gives11

(hxgrA)s · (frA
A ) = hx·s · grA·sB . (3)

Observe that this is almost what we want, i.e., we obtain hx·s except it is masked by an extra “junk
term” grA·sB . Peikert and Shiehian [PS16] describe a similar “junk term” in the context of multi-
key FHE decryption. To synchronize Alice’s input share under the joint key, parties need to remove
this junk term by computing g−rA·sB . While it is not immediately clear how parties can compute
this, it does seem to remove the challenges we faced with our previous attempt at synchronization
in Section 2.3. In particular, (1) the product −rA · sB is now being computed in the exponent of g
instead of h and (2) the product is between rA and sB , both of which are random.

At this point, it would seem like we have a potential solution for synchronization by following the
same approach we used to synchronize the encryption of x in Section 2.3. Namely, Alice additionally
sends grA so that both parties can compute g−rA·sB . However, this approach is completely insecure,
since in the flipped encryption variant, grA is used to mask hx. In particular, we note that this
issue stems from using flipped ElGamal making our approach for synchronization with the standard
ElGamal formulation no longer apply. In other words, it seems like using flipped ElGamal enables
circumventing the problem of encrypting the secret key but brings us to another apparent impasse:

How can the parties securely remove the
extra junk term from the decryption process?

Idea II: Encrypt the randomness used for encryption. Coming back to the partial synchro-
nization of the message x described in Section 2.3, we recall that it works because (gsB )r

′
A = (gr

′
A)sB .

At its core, this unique homomorphism allows each party to compute a private function using the
public encoding of the other party’s input such that both parties finally end up with the same output.
Intuitively, it appears that synchronization requires exploiting such a property. Can a similar equation
be computed while keeping g−rA private?

We observe that this is indeed possible by exploiting the homomorphism properties of the encryp-
tion scheme: instead of sending grA in the clear to Bob, Alice encrypts grA as (gu, grA · fu

A), where u

11 We note that neither Alice nor Bob can actually carry out this decryption. We are only interested in the
structure of the ciphertext here.
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is fresh randomness sampled for encrypting grA . Now, observe that Alice and Bob can compute an
encryption of g−rA·sB under Alice’s public key fA as follows.

Bob computes:
(
(gu)

−sB , (grA · fu
A)
−sB

)
=
(
g−sB ·u, g−rA·sB · f−sB ·uA

)
.

Alice computes:
(
(fB)

u
, (fB)

rA · (fB)−sA·u
)

=
(
g−sB ·u, g−rA·sB · f−sB ·uA

)
.

Note that Bob exploits the additive homomorphism of the encryption scheme to multiply the en-
crypted message grA with his secret key −sB . On the other hand, Alice, essentially replaces the
generator g with Bob’s public key fB and uses the randomness u to re-encrypt the randomness rA.
This generalizes the idea of having Alice and Bob run private functions on the public encodings of
the other party’s input to arrive at identical outputs.

While we seem to have made progress on our initial goal of computing g−rA·sB in masked form, it
is still unclear if this can help synchronize Alice’s input shares under some joint key. In particular, this
encryption of the junk term can only be decrypted under Alice’s secret key, and this is a requirement
imposed by semantic security.12 Can we nonetheless define the joint key in a way that still enables
decrypting the junk term? Surprisingly, we find that the answer is yes, and we achieve it by exploiting
the linearity of the decryption procedure.

Linearity of decryption. Inspired by the multi-key FHE constructions [LTV12, MW16, PS16], we
define the joint secret key as being a concatenation (rather than a sum) of the two individual keys. The
motivation for doing is quite natural in hindsight: observe that summing the keys completely destroys
the information required to decrypt a ciphertext generated individually under each key. However, in
the concatenated approach, the keys are information-theoretically preserved. This is helpful because it
still allows computing both the “wrong” decryption (masked by the junk term, just using Bob’s key)
and a “correct” decryption of the junk term (just using Alice’s key). Then, consider concatenation of
a “synchronized” ciphertext and flipped ElGamal ciphertext, which we will denote by c, and which
is the form

c :=
(
(g−u·sB , g−rA·sBgsA·sB ·uf−rAA ), (hxgrA , frA

A )
)
.

We can extend the decryption procedure in the natural way so that the former is decrypted just using
Alice’s share sA := (sA, 1, 0, 0) of the concatenated key while the latter is decrypted just using Bob’s
share sB := (0, 0, sB , 1). Then, by viewing decryption as an inner product “in the exponent” with the
decryption key s = (sA, 1, sB , 1) which, by abusing notation we will denote as ⟨c, s⟩, we see that the
junk terms cancel out:

⟨c, s⟩ =(g−u·sB )sA · (g−rA·sBgsA·sB ·uf−rAA )1 · (hxgrA)sB · (frA
A )1 (4)

= g−u·sB ·sA · g−rA·sBgsA·sB ·ugsA·rA · hx·sBgrA·sB · g−sA·rA

= g((((−u·sB ·sA · g���−rA·sBg����sA·sB ·ug���sA·rA · hx·sBg���rA·sB · g���−sA·rA = hx·sB .

Finally, note that when the parties use their shares of the secret key, they obtain a multiplicative
share of hx·sB ; this multiplicative share can then be converted to subtractive shares of x · sB using
the DDLog procedure as in standard HSS constructions.

Stepping back, it is useful to observe that we’ve done nothing “illegal” here. We have simply (1)
transformed public encryptions of a message x into an expanded ciphertext and (2) defined an joint
secret key s with respect to which it decrypts.

In what follows, we show that this approach works to fully synchronize both Alice’s and Bob’s
input shares under the common secret key s = (sA, 1, sB , 1) that is implicitly defined by each party’s
“extended” secret key share, and in turn provides a way to evaluate RMS programs on the joint input.

Defining multi-key HSS input shares. Now that we’ve changed the definition of the secret key, we
need to also update the way in which the HSS input shares are defined, so as to ensure we can still

12 Indeed, suppose that Alice and Bob could obtain multiplicative shares of grA·sB using shares of the joint
secret key s = −(sA + sB). Then, this means that s removes the randomness used to encrypt rA. However,
given that sB is random and independent of sA, this actually means that it was possible to remove the
randomness with a uniformly random secret key, ergo the encryption scheme is not semantically secure.
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compute the decryption as an “inner product in the exponent” using the concatenated secret key.
Doing so is trivial and can be achieved by defining an extended ciphertext of the form:(

(hxgrA , frA
A , g0, g0︸ ︷︷ ︸

Ciphertext 1

), (gr
′
A , hxf

r′A
A , g0, g0︸ ︷︷ ︸

Ciphertext 2

)
)
,

where the extra (highlighted) components enable us to concisely define the decryption as an inner
product “in the exponent” with the concatenated secret key s, as in Equation (4).

2.5 Putting everything together

Here we summarize the construction and show that the parties recover subtractive shares of x and
x ·sA, in addition to x ·sB (as was already shown above). Together, these three values form a complete
HSS memory share of x with respect to the joint secret key s. To wit, we define the synchronized
input shares of Alice’s message x, denoted {{x}}, as the set of four ciphertext vectors (cA1 , c

A
2 , c

B
1 ,

cB2 ) that respectively decrypt to (x · sA, x, x · sB , x) “in the exponent” via an inner product with s:

cA1 = (hxgrA , g−sA·rA , g0, g0), cB1 = (g−u·sB , g−rA·sBgsA·sB ·ugsA·rA , hxgrA , g−sA·rA),

cA2 = (gr
′
A , hxg−sA·r

′
A , g0, g0), cB2 = (gr

′
A , hxg−sA·r

′
A , g0, g0).

First, we note that both Alice and Bob can derive (cA1 , c
A
2 , c

B
1 , c

B
2 ) from an input share of Alice’s

message x (we’ve already shown this above for cB1 and the other cases are easier to derive). Now, given
this set of vectors, it becomes easy for Alice and Bob to recover subtractive shares of (x·sA, x, x·sB , x),
which forms a memory share of x under the concatenated key s. To see this, observe that:〈

cA1 , s
〉
= hx·sAgrA·sA · g−sA·rA · g0 · g0 = hx·sA〈

cA2 , s
〉
= gr

′
A·sA · hxg−sA·r

′
A · g0 · g0 = hx〈

cB1 , s
〉
= g−u·sB ·sA · g−rA·sBgsA·sB ·ugsA·rA · hx·sBgrA·sB · g−sA·rA = hx·sB〈

cB2 , s
〉
= gr

′
A·sA · hxg−sA·r

′
A · g0 · g0 = hx,

where we recall that ⟨·, ·⟩ denotes computing the inner product “in the exponent.”
It then follows that given secret shares of s (which is now equivalent to a memory share of 1),

the parties can obtain multiplicative shares of (hx·sA , hx, hx·sB , hx), which they can locally convert
into subtractive shares of (x · sA, x, x · sB , x) via the DDLog procedure. In turn, this is a valid HSS
memory share of x under the secret key s.

In conclusion, this achieves our starting goal of letting the parties obtain an HSS input share
synchronized under a joint secret key. At a high level, all the invariants required for evaluating RMS
programs are maintained given that: (1) an input share from each party can be converted to a
memory share defined with respect to the joint secret key, (2) an input share can still be multiplied
by a memory share given that we’ve preserved the linear decryption property, and (3) memory shares
remain additively homomorphic.

Tying up loose ends. While we’ve described everything from Alice’s perspective, synchronizing
an input share provided by Bob follows a symmetric sequence of steps. In particular, we highlight
that we describe memory shares as four-tuples (x · sA, x, x · sB , x), which allows multiplying with a
synchronized input share provided by either party (since the corresponding “slot” gets decrypted via
the inner product with the secret key). Once both parties have synchronized their respective shares,
they have all the necessary ingredients to evaluate RMS programs over their joint inputs.

Finally, as mentioned in the beginning of the overview, the above description glosses over several
important details in the interest of clarity. In particular, we need to be careful about what space each
message and secret key is defined in. In order to evaluate RMS programs, we need to ensure that the
computations (multiplication, addition) do not “wrap around” the order of h. Solving this requires
us to (1) define the message space to be integers bounded in absolute value by some bound B and (2)
ensure that we can multiply the messages by the secret key without overflow. However, these points
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are not unique to our constructions and the standard solutions from public-key HSS constructions
(e.g., [BGI16, OSY21, RS21]) apply to our constructions too.

Building multi-key HSS in the NIDLS framework. The non-interactive discrete logarithm
sharing (NIDLS) framework gives us group G, a generator g in which the discrete logarithm is as-
sumed to be computationally intractable, and a generator h (for a subgroup of G) where the discrete
logarithm is efficiently computable. An example of such a group G is the Paillier [Pai99] group Z∗N2 ,
where g is a random generator of Z∗N2 , and h := (N + 1) is a generator for a subgroup of order N .
However, the most important part of the framework is that it also gives an efficient DDLog algorithm
base h. Combined, this gives us all the necessary ingredients to realize multi-key HSS.

Our multi-key HSS construction in the NIDLS framework, presented in Section 4.3, is nearly
identical to the construction overviewed in Section 2.4. The main differences are with respect to setting
HSS parameters so as to ensure correctness, which we do by following prior work. In particular, for
correctness and security, we make the short-exponent assumption (which makes it possible to have
short secret keys that fit in the message space) and make the DDH assumption (over the Paillier
group or over class groups, depending on the NIDLS instantiation).

Informal Theorem 6 (Multi-key HSS from NIDLS). Under the DDH and short-exponent assump-
tions in the Paillier group ZN or class groups, there exists a two-party, multi-key homomorphic secret
sharing scheme for computing any polynomial-size RMS program, with a negligible correctness error.

2.6 Extending the ideas to the DDH setting

We now turn our attention to constructing MKHSS from the DDH assumption over any prime-order
cyclic group G. At first glance it may appear simple to adapt the construction from Section 2.4 to
the DDH setting. It turns out, however, that a new set of ideas is required. The primary roadblock
we face in the DDH setting is that, unlike in the NIDLS framework, there is no DDLog procedure
for large messages. In DDH-hard groups, DDLog is only suitable for computing a distributed discrete
logarithm for small messages and, moreover, has a tuneable 1/poly correctness error [BGI16, DKK18].
This prevents us from using the flipped ElGamal approach directly, since the parties would recover
multiplicative shares of gx·s with no way to obtain subtractive shares of x · s. In Section 2.6.1, we
briefly recall how HSS constructions are realized under DDH. Then, in Section 2.6.2, we highlight the
challenges faced in adapting the ideas in our NIDLS-based construction to the DDH setting.

2.6.1 Background: HSS from DDH via BHHO Here, we give a brief overview of how public-
key HSS can be realized under DDH using the BHHO encryption scheme. We focus on the BHHO-
based variant (rather than ElGamal) because it offers several advantages for realizing multi-key HSS
under DDH, as will become apparent later in Section 2.6.2.

In a nutshell, the BHHO scheme can be seen as a “bit-wise” extension of the ElGamal encryption
scheme and is defined with respect to ℓsk + 1 random generators (g1, . . . , gℓsk , g) from the DDH-hard
group. The secret key s := (s1, . . . , sℓsk) is an ℓsk-length vector of bits and the public key f is defined

as: f :=
∏ℓsk

i=1 g
−si
i . The encryption of a message x under f is then defined as: (gr1, . . . , g

r
ℓsk
, gxfr).

Correspondingly, the BHHO-based HSS input share of a message x is defined as an encryption of
x along with all the encryptions of the x · si, for all i ∈ [ℓsk]:

JxKσ :=
(
gr11 , . . . , gr1ℓsk , g

x·s1fr1 , . . . , gx·sℓsk frℓsk , g
rℓsk+1

1 , . . . , g
rℓsk+1

ℓsk
, gxfrℓsk+1︸ ︷︷ ︸

ℓsk + 1 Ciphertexts

)
.

To compute a multiplication with a memory share, the idea is to first compute the component-
wise multiplication between the ciphertexts encrypting (s1, . . . , sℓsk , 1) · x and the memory share of y,
which consists of subtractive shares of (s, 1) · y. Let sℓsk+1 := 1 for notational convenience. Observe
that, for all i ∈ [ℓsk + 1], we can decrypt x · si using the secret key s by computing:

gx·sifri ·
ℓsk∏
j=1

(grij )sj = gx·si .

It follows that if party-σ is given a memory share of the form (⟨y · s⟩σ, ⟨y⟩σ), they can recover a
multiplicative share of the form g⟨xy·si⟩σ , for all i ∈ [ℓsk + 1], by exploiting the exponent-linear
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decryption property. Then, because xy·si is small, the two parties can recover subtractive shares of xy·
si using the DDLog procedure. Finally, the parties hold subtractive shares of the vector (s1, . . . , sℓsk , 1)·
xy, which corresponds to a memory share under the BHHO secret key.

2.6.2 Recovering the implicit encryptions As discussed in Section 2.3, the fundamental chal-
lenge in the multi-key setting is to non-interactively synchronize HSS input shares under a joint key.
In Section 2.4, we showed that using a flipped encryption helps make the problem tractable: it pro-
vides an implicit encryption of x · sB (when decrypted with Bob’s secret key). Fortunately, we find
that we can emulate the same process under BHHO (and indeed, such a flipped encryption was even
used to prove the circular security of the BHHO scheme [BHHO08]).

Flipped encryption under BHHO. The BHHO ciphertexts allows us to define the analogous
flipped encryption we exploited in the NIDLS framework to realize synchronization. Observe that if
we put the message x “in the wrong place” and encrypt it as:

cti := (gr1, . . . , g
r
i−1, g

xgri , g
r
i+1, . . . , g

r
ℓsk
, fr),

then we have that the decryption procedure—which simply computes an inner product “in the expo-
nent” with the secret key s = (s1, . . . , sℓsk)—produces:

(gx)si · fr ·
ℓsk∏
j=1

(grj)
sj = gx·si ,

which gives us an “implicit” encryption of the i-th bit of s.
With this, we’ve recovered the first stepping stone required for replicating our NIDLS-based

multi-key HSS construction outlined in Section 2.4. We now turn to recovering the other properties
we exploited in the NIDLS-based construction.

Applying the multi-key template. As in the case of the NIDLS construction, using a flipped
encryption of Alice’s input x simplifies computing the product x · sB in the exponent, but comes at
the cost of having to account for, and later negate, the resulting “junk” term. In particular, upon
decrypting cti := (grA1 , . . . , grAi−1, g

xgrAi , grAi+1, . . . , g
rA
ℓsk
, frA

A ) using Bob’s secret key we get:

gx·s
(i)
B · frA

A ·
ℓsk∏
i=1

g
rA·s(i)B
i = gx·s

(i)
B ·

junk term

f−rAB · frA
A .

Recall that our MKHSS construction from Section 2.4 circumvents this issue by computing a
synchronized encryption of the junk term under Alice’s secret key. It then exploits the linearity of
decryption to concatenate the ciphertexts and secret keys such that the junk term gets decrypted by
Alice’s secret key and negates the junk term created by decrypting with Bob’s secret key. Clearly, the
BHHO decryption procedure is also linear, and thus appears amenable to this idea as well. However,
it is not clear how Alice and Bob can compute a synchronized encryption of the junk term under
Alice’s secret key, given that the secret keys are now bits, which complicates exploiting the linear
homomorphism. This is where we need a new set of ideas.

2.7 Recovering full synchronization under BHHO

We revisit the primary goal of synchronization: the flipped encryption cti computed by Alice, when

decrypted using Bob’s secret key, results in gx·s
(i)
B multiplied with a junk term f−rAB · frA

A . Similar to
the MKHSS construction from Section 2.4, since this junk term depends only on the public keys and
randomness rA, we wish to leverage an additional encryption of rA to synchronize to an encryption
of the junk term under Alice’s secret key. As alluded to in Section 2.4, this synchronization requires
each party to compute a private function, using the public encoding of the other party’s input share,
such that both parties arrive at the same synchronized output. The reason why BHHO makes this
difficult is that the public key is defined as an inner product (“in the exponent”) between the secret
key and the group elements (g1, . . . , gℓsk). This provides some intuition as to why our previous attempt
fails: we need to find a way of publicly encoding Alice’s randomness rA such that Bob can privately
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compute the inner product function with his secret key. Another way of seeing this is that we need to
extend the ideas from the NIDLS-based construction from privately computing a product to privately
computing an inner product. We thus focus our attention on the public encoding of rA that can help
the parties synchronize to an encryption of the junk term under Alice’s secret key and ignore the
flipped encryption of the message for the time being.

We observe that Bob already can compute f−rAB ,13 as long as Alice’s encoding additionally includes
(grA1 , . . . , grAℓsk ), since he can evaluate:

ℓsk∏
i=1

grAi
s
(i)
B = f−rAB .

This idea provides a way forward. As a first attempt at using this observation, we let Alice encrypt each
grAi using her public key. That is, she defines her input share to be the list of ℓsk BHHO ciphertexts,
each encrypting the same rA but crucially under different randomness u1, . . . , uℓsk :

gu1
1 gu1

2 · · · gu1

ℓsk
grA1 · f

u1

A

gu2
1 gu2

2 · · · gu2

ℓsk
grA2 · f

u2

A
...

...
. . .

...
...

g
uℓsk
1 g

uℓsk
2 · · · g

uℓsk

ℓsk
grAℓsk · f

uℓsk

A


Given this matrix of group elements, Bob can compute an inner product between each column

and his secret key to obtain the ciphertext vector:

(gs
∗

1 , . . . , gs
∗

ℓsk
, f−rAB · fs∗

A ),

where s∗ =
∑

i s
(i)
B · ui. Observe that this corresponds exactly to an encryption—under Alice’s public

key and with randomness s∗—of the junk term f−rAB we need. Thus, it may appear that we found a
way for Alice to securely encode her randomness rA such that Bob can apply the private inner product
function, defined by his secret key, and compute an encryption of the junk term that is decryptable
under Alice’s secret key.

Unfortunately, we are still left with one small problem. While above we’ve shown how Bob can
hypothetically synchronize, Alice is unable to compute the identical ciphertext computed by Bob on
her end since it requires her to know s∗, which in turn is an inner product of Bob’s secret and random
values sampled by Alice, and hence cannot be given out. Indeed, it’s unclear how such a value could
even be computed non-interactively.

Randomness reuse to the rescue. Observe that the previous approach fails because Alice cannot
receive the output of an arbitrary function of Bob’s secret key. However, she does receive an encoding
of Bob’s secret key, in the form of his public key fB (i.e., the encoding corresponds to the inner
product “in the exponent” with Bob’s secret key), which we show can be used to synchronize. Thus,
putting everything together, we require the following properties from the encoding of rA: (1) it must
preserve the privacy of rA, (2) it must allow Bob to compute an encoding of f−rAB (part of the junk
term) by computing an inner product with his secret key, (3) it must allow Alice to synchronize to
the same encoding of f−rAB using Bob’s public key fB . We observe that the following encoding of rA
simultaneously achieves all these properties:

gu·γ1

1 gu·γ2

1 · · · g
u·γℓsk
1 grA1 · gu·Γ1

gu·γ1

2 gu·γ2

2 · · · g
u·γℓsk
2 grA2 · gu·Γ2

...
...

. . .
...

...

gu·γ1

ℓsk
gu·γ2

ℓsk
· · · g

u·γℓsk

ℓsk
grAℓsk · g

u·Γ
ℓsk

 , (5)

where (γ1, . . . , γℓsk) are uniformly random and Γ = −
∑ℓsk

i=1 s
(i)
A . In particular, observe that the i-th row

of the encoding corresponds to an encryption of grAi under the public key pk
(i)
A = (gγ1

i , . . . , g
γℓsk
i , gΓi ),

13 We focus on f−rA
B , since the other factor of the junk term (i.e., frA

A ) is public and available to both the
parties.
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where all ciphertexts are computed using the same randomness u. Note that reusing the same u does
not violate security since the exponents are never used twice with the same base gi. Specifically,
privacy of rA reduces to the matrix-DDH assumption (which is implied by DDH), and intuitively

follows from the fact that each pk
(i)
A is a “randomized” public key14 corresponding to the same secret

key (s
(1)
A , . . . , s

(ℓsk)
A ). Importantly, computing pk

(i)
A in this way and re-using the randomness u for the

ciphertext in each row of the encoding ensures that the synchronized ciphertext

(f−u·γ1

B , . . . , f
−u·γℓsk

B , f−rAB · f−u·ΓB ),

computed by Bob through an inner-product of his secret key and the rows of the encoding of rA, can
be obtained by Alice too, since she receives fB and knows rA, u, (γ1, . . . , γℓsk), and Γ . This forms
the final synchronized encryption of the junk term, under Alice’s secret key, in our BHHO-based
multi-key HSS construction.

Putting everything together. To recap, Alice generates a BHHO public key pkA = (g1, . . . , gℓsk , fA)

and corresponding secret key sA = (s
(1)
A , . . . , s

(ℓsk)
A ). She then computes ℓsk BHHO public keys, all using

the same secret key (s
(1)
A , . . . , s

(ℓsk)
A ), where the i-th public key pk

(i)
A = (gγ1

i , . . . , g
γℓsk
i , gΓi ). Note that

the j-th component of each public key has the same random value γj .

To share her input x, she computes a BHHO encryption ct and flipped encryptions {cti}ℓski=1 of x
using pkA, and encrypts the randomness used in each flipped encryption cti to obtain the matrix rcti,
as shown in Equation (5). Observe that the i-th row of rcti encrypts the randomness used to compute

cti under the public key pk
(i)
A .

To synchronize, Bob computes an inner product of his secret key (s
(1)
B , . . . , s

(ℓsk)
B ) and the rows

of rcti, to obtain a ciphertext ct′i encrypting the junk term under Alice’s secret key. This inner-
product results in the random value “factoring-out”, leaving fγi

B in the i-th component, which in
turn allows Alice to compute the synchronized ciphertext ct′i using (γ1, . . . , γℓsk , Γ ) and Bob’s public
key. Moreover, as in Section 2.5, the concatenation of the synchronized ciphertext and the flipped

encrpytion, namely ct′i∥ct, is an encryption of x · s(i)B in the exponent, under the concatenated BHHO

secret key (s
(1)
A , . . . , s

(ℓsk)
A , 1, s

(1)
B , . . . , s

(ℓsk)
A , 1). Repeating this for each flipped encryption then allows

Alice and Bob to compute a valid memory share with respect to the concatenated key.

It is then easy to see that this is sufficient for evaluating RMS programs, where we use the
concatenation of the secret keys as in the NIDLS construction. We give the full construction in
Section 4.4, where we prove:

Informal Theorem 7 (Multi-key HSS from DDH). Assume that the DDH assumption holds in any
cyclic group G. Then, there exists a two-party, multi-key homomorphic secret sharing scheme for
computing any polynomial-size RMS program, with 1/poly correctness error.

3 Preliminaries

In this section, we cover the notation that we will use throughout the paper.

General notation. We let N denote the set of natural numbers, Z denote the set of integers, G
denote a finite group, and R denote a finite ring. A reduction modulo t, for any positive integer t,
yields a representative in the range Zt = {−⌊t/2⌋, . . . , ⌊(t− 1)/2⌋}. We denote by poly(·) the set of
all polynomials and by negl(·) any negligible function. We occasionally abuse notation and let poly
denote a fixed polynomial.

Vectors and matrices. We denote a vector v using bold lowercase letters and a matrix A using bold
uppercase letters. The i-th coordinate of a vector v is denoted by v[i]. We will occasionally write
(vi)

n
i=1 to denote the vector (v1, . . . , vn).

Vector group operations. For all g ∈ Gℓ and x ∈ Zℓ, we use ⟨g,x⟩ to denote ⟨g,x⟩ =
∏ℓ

i=1 g
xi
i , where

g = (g1, . . . , gℓ) and x = (x1, . . . , xℓ).

14 This follows from the DDH assumption due to using gi as the base of pk
(i)
A .
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Sampling and assignment. We let x←$S denote a uniformly random sample drawn from a set S. We
let x ← A denote assignment from a randomized algorithm A and x := y denote initialization of x
to the value of y (which may be the output of a deterministic algorithm).

Efficiency. By an efficient algorithm A we mean that A is modeled by a (possibly non-uniform)
Turing Machine that runs in probabilistic polynomial time.

Probability and indistinguishability.We let Pr[E : A] denote the probability of an event E in an experi-
ment defined by executing A. For two probability ensembles {Ai}i and {Bi}i, we use {Ai}i ≡ {Bi}i to
denote that the ensembles are identical, {Ai}i ≈s {Bi}i to denote that the ensembles are statistically
close and {Ai}i ≈c {Bi}i to denote that the ensembles are computationally indistinguishable.

Leftover Hash Lemma. We say a distribution D over a set X is ϵ-uniform if
∑

x∈X

∣∣∣D(x)− 1
|X |

∣∣∣ ≤ ϵ.

We will make use of the following immediate corollary of the leftover hash lemma that explicitly
appears in [BHHO08].

Lemma 1 (Simplified Leftover Hash Lemma [BHHO08, Lemma 2]). Let H be a family of 2-universal
hash functions from a set X to a set Y. Then, the distribution (H,H(x)) where H ←$H and x←$X
is
√
|Y|

4·|X | -uniform on H× Y.

Subtractive Sharing. Let R be a ring. We use ⟨x⟩R ∈ R2 where ⟨x⟩R = (⟨x⟩RA , ⟨x⟩RB ) to denote a
subtractive sharing of x ∈ R such that ⟨x⟩RA−⟨x⟩RB = x. For ease of notation, we use ⟨x⟩ = (⟨x⟩A, ⟨x⟩B)
to denote the subtractive sharing over the integers when R = Z.

Non-Interactive Key Exchange. Here, we provide a basic definition of non-interactive key ex-
change, which will suffice for our applications and constructions.

Definition 1 (Non-Interactive Key Exchange [DH76, CKS08, FHKP13]). Let λ ∈ N be a security
parameter. A non-interactive key exchange (NIKE) scheme consists of algorithms NIKE = (Setup,
KeyGen,KeyDer) with the following syntax:

– Setup(1λ) → crs. The randomized setup algorithm takes as input the security parameter λ and
outputs a common reference string crs.

– KeyGen(crs) → (pk, sk). The randomized key generation algorithm takes as input the CRS crs. It
outputs a public key pk and secret key sk.

– KeyDer(crs, pki, skj)→ K. The deterministic key derivation algorithm takes as input the CRS crs,
a public key pki, and a secret key skj. It outputs a key K ∈ {0, 1}λ.

The above algorithms must satisfy the following properties:

Correctness. For all security parameters λ ∈ N, it holds that:

Pr

 KA = KB :

crs← Setup(1λ)

(pkA, skA)← KeyGen(crs)

(pkB , skB)← KeyGen(crs)

KA ← KeyDer(crs, pkB , skA)

KB ← KeyDer(crs, pkA, skB)

 = 1.

Security. For all efficient adversaries A, there exists a negligible function negl(·) such that:

Pr


b = b′ :

crs← Setup(1λ)

(pkA, skA)← KeyGen(crs)

(pkB , skB)← KeyGen(crs)

K0 ← KeyDer(crs, pkA, skB)

K1←$ {0, 1}λ

b←$ {0, 1}
b′ ← A(crs, pkA, pkB ,Kb)


≤ 1

2
+ negl(λ)

In particular, this security definition for NIKE is known as “CKS-light” security [FHKP13], which
is known to be polynomially equivalent to stronger notions of NIKE.
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3.1 Distributed evaluation of RMS programs

In this section, we present a unifying template for reasoning about distributed evaluation of HSS
input shares, which not only captures HSS evaluation from prior works but will also be useful in
proving the correctness of our constructions. Note that our focus here is only on correctness of HSS
evaluation, assuming both parties already hold shares of all program inputs. How these inputs are
securely shared between the parties will be discussed in subsequent sections.

Restricted Multiplication Straight-line (RMS) programs. We will focus on distributed eval-
uation of Restricted Multiplication Straight-line (RMS) programs [Cle90, BGI16]. An RMS program
is an arithmetic circuit over integers with the restriction that every multiplication is between an
input value and an intermediate value of the computation, called a memory value. Most existing HSS
schemes support evaluating RMS programs. Boyle et al. [BGI16] show that the class of polynomial-
size RMS programs includes the class of polynomial-size branching programs, which is in turn known
to contain the class of NC1 circuits.

Definition 2 (Restricted Multiplication Straight-line Program [Cle90, BGI16]). A restricted mul-
tiplication straight-line (RMS) program P consists of a magnitude bound B ∈ N and an arbitrary
sequence of the following four instructions.

– Convert(Ix)→ Mx : Load the value of the input wire Ix to the memory wire Mx.

– Add(Mx,My)→ Mz : Add the values of the memory wires Mx and My and assign the result to the
memory wire Mz.

– Mult(Ix,My) → Mz : Multiply the value of the input wire Ix by the value of the memory wire My

and assign the result to the memory wire Mz.

– Output(Mz)→ z : Output the value of the memory wire Mz.

If at any step of the execution, the size of a memory value exceeds the bound B, the output of the
program on the corresponding input is defined to be ⊥. The size of an RMS program, denoted by |P |,
is defined as the number of instructions.

Primitives required for distributed evaluation. The distributed, non-interactive evaluation of
RMS programs in group-based HSS schemes rely on two primitives. The first is HSS shares of the
inputs, which satisfy a property we abstract as “exponent-linear decoding.” This property intuitively
captures the decryption process in ElGamal-style public-key encryption schemes instantiated over
various groups (e.g., DDH-hard cyclic groups, the Paillier group, class groups, etc.). The second is
the distributed discrete logarithm algorithm introduced in [BGI16], which serves as the foundation
of all existing group-based HSS constructions. In Lemma 3, we show that these components suf-
fice for distributed evaluation of any RMS program. This framework captures HSS constructions of
Boyle et al. [BGI16] from DDH (the BHHO-based scheme), as well as the HSS constructions by
Abram et al. [ADOS22] based on either the DCR assumption or DDH-like assumptions in Paillier
and class groups. Looking ahead, although inputs in our multi-key HSS constructions are encoded
differently from prior works, they still satisfy the exponent-linear decoding property, which in turn
allows distributed evaluation of RMS programs.

Definition 3 (Exponent-Linear Decoding). Let G be an Abelian group, let H ⊆ G be a finite cyclic
subgroup of order t with generator h and let ℓ ∈ N. We let {{x}} := (c1, . . . , cℓ) ∈ Gℓ×ℓ be an encoding
of an integer x with base-h exponent-linear decoding under the decoding key k = (k1, . . . , kℓ) ∈ Zℓ if
for all i ∈ [ℓ], we have ⟨ci,k⟩ = hx·ki .

Definition 4 (Distributed Discrete Logarithm). Let G be an Abelian group, let H ⊆ G be a finite
cyclic subgroup of order t with generator h, let ε be a real number and Bdl be a positive integer, where
0 ≤ ε < 1 and Bdl < t. An efficient algorithm DDLog is an ε-correct, Bdl-bounded, base-h algorithm
for distributed discrete logarithm, if there exists a negligible function negl(·) such that for all λ ∈ N,
all integers x where |x| ≤ B and all f ∈ G we have

Pr
r ←$ {0,1}λ

[DDLog(f · hx; r)− DDLog(f ; r) ̸≡ x mod t] ≤ ε+ negl(λ).

Instantiations of DDLog. We will consider two classes of DDLog algorithms: (1) the DDLog pro-
cedure of Boyle et al. [BGI16] (and the improved variant of Dinur et al. [DKK18]) that works over
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any finite cyclic group and for polynomial-bounded exponents but has an inverse-polynomial correct-
ness error, and (2) DDLog procedures in the Non-Interactive Discrete Log Sharing (NIDLS) frame-
work [ADOS22] that have negligible correctness error and can support super-polynomially bounded
exponents. We briefly recall the relevant claim from [BGI16] as well as the definition of the NIDLS
framework.

Lemma 2 ([BGI16, Proposition 3.2 and Claim 3.7]). Let G be a finite cyclic group of order p. For
every polynomial poly(·) and for all λ ∈ N, ε > 0, Bdl ∈ N, and g ∈ G, where 1/ε,Bdl ≤ poly(λ) < p,
there exists an ε-correct, Bdl-bounded, base-g algorithm for distributed discrete logarithm.

The NIDLS framework defines a finite Abelian group G = H×K, where the discrete log problem
is easy in the cyclic subgroup H of known order t, and assumed to be computationally intractable
in the subgroup K of unknown order. The framework is equipped with an upper-bound Bnidls on the
order of K and an efficiently sampleable distribution Dnidls over G.

Definition 5 (NIDLS Framework [ADOS22]). The NIDLS framework consists of three efficient al-
gorithms (GGen,Dnidls,DDLog) with the following functionality:

– GGen(1λ)→ crs := (G,H,K, h, t, Bnidls, aux). The randomized group generation algorithm takes as
input the security parameter and outputs a common reference string crs which consists of:

- finite Abelian group G,

- subgroups H and K such that G = H×K,

- generator h and order t of H,

- positive integer Bnidls,

- and auxiliary information aux.

– D(1λ, crs) → (f, ρ). The randomized sampling algorithm takes as input the security parameter
and common reference string, and outputs a group element f ∈ G along with some auxiliary
information ρ.

– DDLog(crs, f) =: s. The deterministic distributed discrete log algorithm takes as input a common
reference string and a group element, and outputs an element s ∈ Zt.

The above functionality needs to satisfy the following properties:

Correctness. For all λ ∈ N and efficient adversaries A, there exists a negligible function negl(·) such
that

Pr

 ⟨s⟩A − ⟨s⟩B = x (mod t) :

crs := (G,H,K, h, t, Bnidls, aux)← GGen(1λ)

(fB , x)← A(1λ, crs)
fA := hx · fB

⟨s⟩A := DDLog(crs, fA)

⟨s⟩B := DDLog(crs, fB)

 ≥ 1− negl(λ).

Security. For all λ ∈ N, it holds that

(crs, f, ρ, fr)

∣∣∣∣∣∣∣
crs := (G,H,K, h, t, Bnidls, aux)← GGen(1λ)

(f, ρ)← Dnidls(1
λ, crs)

r←$ [Bnidls]


≈s

(crs, f, ρ, f ′)

∣∣∣∣∣∣∣
crs := (G,H,K, h, t, Bnidls, aux)← GGen(1λ)

(f, ρ)← Dnidls(1
λ, crs)

f ′←$ ⟨f⟩

.

i.e., the group elements fr and f ′ are statistically indistinguishable. Note that here, ⟨f⟩ denotes the
group generated by the element f .

In this work, we will consider instantiations of the NIDLS framework that have a subgroup H
of large order t > 2λ, since this is required for distributed evaluation of RMS programs. Known
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Distributed Evaluation of RMS Program

Public Parameters. Abelian group G and finite cyclic subgroup H ⊆ G of order t with generator h.
Base-h distributed discrete logarithm algorithm DDLog. PRF F1 with output space {0, 1}λ and a PRF
F2 with output space Zt.

DEval(σ, ekσ, ({{x1}}, . . . , {{xm}}), P ) :

Parse ekσ = (kprf
1 , kprf

2 , ⟨⟨1⟩⟩σ).
For each id ∈ [|P |], evaluate the id-th instruction as follows:

• Convert : Mx ← Ix :

1: Execute the Mult({{x}}, ⟨⟨1⟩⟩σ) instruction to compute ⟨⟨x⟩⟩σ.
• Mult : Mxy ← Ix ·My :

1: Parse {{x}} = (c1, . . . , cℓ).

2: For i ∈ [ℓ] :

2.1: f
(i)
σ :=

〈
ci, ⟨⟨y⟩⟩σ

〉
.

2.2: ⟨zi⟩σ := DDLog(f
(i)
σ ;F1(k

prf
1 , id∥i)) + F2(k

prf
2 , id∥i) mod t.

3: ⟨⟨xy⟩⟩σ := (⟨z1⟩σ, . . . , ⟨zi⟩σ).
• Add : Mx+y ← Mx +My :

1: ⟨⟨x+ y⟩⟩σ := ⟨⟨x⟩⟩σ + ⟨⟨y⟩⟩σ.
• Output : z ← Mz :

1: Parse ⟨⟨z⟩⟩σ = (⟨z1⟩σ, . . . , ⟨zi⟩σ).
2: Return ⟨zℓ⟩σ.

Fig. 1: Distributed evaluation of RMS program.

instantiations of the NIDLS framework with a large subgroup H include the ciphertext space of
Paillier and Damg̊ard–Jurik encryption schemes, the ciphertext space of a variant of the Joye–Libert
cryptosystem described in [ADOS22], and class groups. We refer to Abram et al. [ADOS22] for a
detailed discussion on these instantiations.

Template for distributed evaluation. We conclude this section by describing an algorithm in
Figure 1 for distributed evaluation of RMS programs, using PRFs, a DDLog algorithm and encodings
of inputs that are exponent-linear decodeable. The proof of correctness closely follows that of group-
based HSS constructions in prior works; however, we revisit the details here for completeness.

Lemma 3. Let G be an Abelian group, H ⊆ G be a finite cyclic subgroup of order t with generator h,
DDLog be an ε-correct, Bdl-bounded, base-h algorithm for distributed discrete logarithm, and F1 and
F2 be secure PRFs. Then, for all polynomials poly(·), there exists a negligible function negl(·) such
that for all λ ∈ N, all k = (k1, . . . , kℓ−1, 1) ∈ Zℓ, all kA ∈ Zℓ, all RMS programs P with bound B, all
x1, . . . , xm ∈ Z and {{x1}}, . . . , {{xm}} ∈ Gℓ×ℓ, the algorithm DEval described in Figure 1 satisfies

Pr

 ⟨z⟩A − ⟨z⟩B ̸= P (x1, . . . , xm) :

kprf1 , kprf2 ←$ {0, 1}λ

kB := kA − k

ekσ := (kprf1 , kprf2 ,kσ), ∀σ ∈ {A,B}
⟨z⟩σ := DEval(σ, ekσ, ({{x1}}, . . . , {{xm}}), P ), ∀σ ∈ {A,B}


≤ ε · ℓ · |P |+ negl(λ),

where each |ki| ≤ Bsk for some Bsk ∈ N, each {{xi}} is an encoding of xi with base-h exponent-linear
decoding under k, P (x1, . . . , xm) ̸= ⊥, ℓ ≤ poly(λ), |P | ≤ poly(λ), B ·Bsk ≤ Bdl and B ·Bsk · 2λ < t.

Proof. Observe that for every memory value Mx in the RMS program, party σ computes a share ⟨⟨x⟩⟩σ.
We must show that the output produced by each party is a subtractive sharing of P (x1, . . . , xm). At a
high level, we will show this by proving that DEval maintains the invariant that ⟨⟨x⟩⟩ = (⟨⟨x⟩⟩A, ⟨⟨x⟩⟩B)
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forms a subtractive sharing of x · k, for every memory value Mx. Then, since the last component of
k is 1, the parties obtain a subtractive sharing of the program output upon evaluating DEval.

Note that for Add(Mx,My) instructions, the above invariant holds trivially due to the additive
homomorphism of subtractive sharing.

For Mult(Ix,My) instructions, the exponent-linear decoding property allows party-B to compute

a f
(i)
B ∈ G and party-A to compute f

(i)
A = f

(i)
B · hxy·ki , for each component ki of the decoding key.

The parties can then compute a subtractive sharing of xy · k using DDLog.
Let the output of the correctness experiment be defined as 1 if ⟨z⟩A − ⟨z⟩B = P (x1, . . . , xm) and

defined as 0 otherwise. We will prove that this output is 1 with probability ε · ℓ · |P |+ negl(λ).
We first use a simple hybrid argument to replace the pseudorandom outputs of the PRFs with

uniformly random values.

– Hybrid H0. This hybrid is the output of the experiment, as defined above.

– Hybrid H1. This hybrid is identical to the previous hybrid, except that ⟨zi⟩σ in DEval is computed

as ⟨zi⟩σ := DDLog(f
(i)
σ ; r

(i)
σ ) + r̂

(i)
σ mod t, where r

(i)
σ ∈ {0, 1}λ and r̂

(i)
σ ∈ Zt are the outputs of

truly random functions evaluated at id∥i.

Claim. H0
c≈ H1.

Proof. The claim follows by the pseudorandomness of the PRFs F1 and F2. □

Now that we have uniformly random shares, we will prove that the experiment’s output is 1,
except with a probability of at most ε · ℓ · |P |+ negl(λ). To do so, we first show that if the input for a
multiplication satisfies the invariant, the invariant will also hold for the product with probability at
least 1− ε− negl(λ). Then, we use this to derive a lower bound on the probability that the output of
the experiment is 1 in hybrid H1 above.

Claim. For each multiplication instruction Mult(Ix,My) evaluated in DEval, we have

Pr[⟨⟨xy⟩⟩A − ⟨⟨xy⟩⟩B ̸= xy · k | ⟨⟨y⟩⟩A − ⟨⟨y⟩⟩B = y · k ] ≤ ε · ℓ+ negl(λ).

Proof. Consider any arbitrary i ∈ [ℓ]. Since {{x}} = (c1, . . . , cℓ) is exponent-linear decodable under
k = (k1, . . . , kℓ), we have

hxy·ki = ⟨ci, y · k⟩ = ⟨ci, ⟨⟨y⟩⟩A − ⟨⟨y⟩⟩B⟩ = f
(i)
A ·

(
f
(i)
B

)−1
=⇒ f

(i)
A = hxy·ki · f (i)

B ,

where the second equality follows from the fact that ⟨⟨y⟩⟩A − ⟨⟨y⟩⟩B = y · k.
Let ⟨z′i⟩σ = DDLog(f

(i)
σ ; r

(i)
σ ), where r

(i)
σ is the output of a truly random function. Since P is

B-bounded and P (x1, . . . , xm) ̸= ⊥, we have |xy| ≤ B. Along with the fact that |ki| ≤ Bsk and
B · Bsk ≤ Bdl, it follows from the correctness of DDLog that ⟨z′i⟩A − ⟨z′i⟩B ≡ xy · ki mod t with a

probability of at least 1 − ε − negl(λ). Moreover, since ⟨zi⟩σ = ⟨z′i⟩σ + r̂
(i)
σ (mod t), where r̂

(i)
σ ∈ Zt,

we have ⟨zi⟩A − ⟨zi⟩B ≡ xy · ki mod t, except with a probability of at most ε+ negl(λ).
Conditioned on the event that there was no error in DDLog, ⟨zi⟩A and ⟨zi⟩B are uniformly random

subtractive shares over Zt since r̂
(i)
σ is uniformly random in Zt. This implies that ⟨zi⟩A − ⟨zi⟩B does

not wrap around t with overwhelming probability.
In more detail, since |xy · ki| < B · Bsk, ⟨zi⟩A − ⟨zi⟩B wraps around t only when −t/2 ≤ ⟨zi⟩B ≤

−t/2 + B · Bsk or t/2 − B · Bsk ≤ ⟨zi⟩B ≤ t/2. The size of this interval is 2B · Bsk and since ⟨zi⟩A
is a uniformly random subtractive share over Zt, the probability that ⟨zi⟩A − ⟨zi⟩B wraps around
is at most 2B · Bsk/t < 2 · 2−λ, which is negligible. Thus, it follows that (⟨zi⟩A, ⟨zi⟩B) constitute
a subtractive sharing of xy · ki over the integers except with a probability of at most ε + negl(λ),
where the probability is over the correctness of DDLog as well as the possibility of wrap-around when
converting additive shares over Zt to subtractive shares over integers.

Finally, observe that ⟨⟨xy⟩⟩A−⟨⟨xy⟩⟩B = xy ·k if and only if ⟨zi⟩A−⟨zi⟩B = xy · ki, for every i ∈ [ℓ].
Therefore, each (⟨zi⟩A, ⟨zi⟩B) constitutes a subtractive sharing of xy · ki, except with a probability of
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at most ε + negl(λ), since they are computed with independently sampled randomness. By a union
bound, and the fact that ℓ ≤ poly(λ), we have

Pr[⟨⟨xy⟩⟩A − ⟨⟨xy⟩⟩B ̸= xy · k | ⟨⟨y⟩⟩A − ⟨⟨y⟩⟩B = y · k ] ≤ ε · ℓ+ negl(λ).

□

We will argue that if the invariant is true for memory values corresponding to the output of the
first id− 1 instructions of the RMS program P , then the invariant is true for the memory value that
corresponds to the output of the id-th instruction, except with a probability of at most ε · ℓ+ negl(λ).
In more detail, observe that if the id-th instruction is an addition instruction Add(Mx,My), then it
follows from the additive homomorphism of subtractive sharing that the invariant holds for Mx+y

with probability 1 since ⟨⟨x+ y⟩⟩A − ⟨⟨x+ y⟩⟩B = ⟨⟨x⟩⟩A + ⟨⟨y⟩⟩A − ⟨⟨x⟩⟩B − ⟨⟨y⟩⟩B = x + y. Similarly, if
the id-th instruction is a multiplication instruction Mult(Ix,My), then it follows from our previous
claim that the invariant holds for Mxy except with a probability of at most ε · ℓ + negl(λ). Finally,
if the id-th instruction is a Convert(Ix) instruction, then DEval runs the same steps as for evaluating
Mult(Ix,M1), where ⟨⟨1⟩⟩σ = kσ. Observe that (kA,kB) is, by definition, a subtractive sharing of 1 ·k,
which implies from our previous claim that (⟨⟨x⟩⟩A, ⟨⟨x⟩⟩B) constitutes a subtractive sharing of x · k,
except with a probability of at most ε · ℓ+ negl(λ). Thus, the invariant holds true for the output Mx

of the Convert(Ix) instruction.
Since the last component of the decoding key kℓ = 1, we have ⟨z⟩A − ⟨z⟩B = P (x1, . . . , xm)

in this hybrid when the invariant is true for the memory value Mz corresponding to the output
instruction Output(Mz). The probability that the invariant does not hold for a memory value is at
most ε · ℓ+ negl(λ), since the randomness is freshly sampled for each instruction. It thus follows from
a straightforward union bound and the fact that |P | ≤ poly(λ) that ⟨z⟩A − ⟨z⟩B = P (x1, . . . , xm) and
the output of the experiment is 1 in hybrid H1, except with a probability of at most ε ·ℓ · |P |+negl(λ).
Moreover, since H0

c≈ H1, it follows that the output of the experiment is 1 in hybrid H0, except with
a probability of at most ε · ℓ · |P |+ negl(λ). This concludes the proof. ■

4 Multi-Key Homomorphic Secret Sharing

In this section, we first formalize the notion of multi-key HSS (MKHSS) in Section 4.1. We then
instantiate MKHSS from the NIDLS framework in Section 4.3 and from DDH in Section 4.4.

4.1 Definition

We define multi-key HSS (MKHSS) in Definition 6. An MKHSS scheme allows a party, given a
common reference string, to locally generate a key pair and share its input using its public key. These
shares can then be used with the input shares computed by any other party (generated using its own
public key), to compute subtractive shares of a program’s output, evaluated on the joint inputs. This
ability to compute shares of the input, independent of the other party’s key—indeed, even before
knowing the identity of the other party—is the key property of MKHSS schemes.

Let JxKAA denote Alice’s share of her input x and let JxKAB denote the share of x intended for

other parties. The security of the scheme requires that JxKAB—which can be viewed as a ciphertext
that enables computing on x—preserves privacy of Alice’s input. In contrast, the definition does not
impose any security requirements on Alice’s share JxKAA, since she already knows the input x as well
as the secret key corresponding to the public key used to generate the shares.

We first introduce some additional notation and then proceed with the definition.

Notation. We denote by JxKσ = (JxKσA, JxKσB) an input sharing of a message x generated using party
σ’s HSS public key. Additionally, we occasionally write JxKσ = (Jx1K

σ
, . . . , JxℓK

σ
) to denote a tuple of

input shares of x ∈ Rℓ, where x = (x1, . . . , xℓ). For some party identifier σ ∈ {A,B}, we write 1− σ
as shorthand for the “other party identifier” σ ∈ {A,B} \ {σ}.

Definition 6 (Multi-Key Homomorphic Secret Sharing). A multi-key homomorphic secret sharing
(MKHSS) scheme for a program class P, defined over a ring R, and having a message spaceM⊆ R
consists of four efficient algorithms MKHSS = (Setup,KeyGen,Share,Eval) with the following syntax:
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– Setup(1λ) → crs. The randomized setup algorithm takes as input the security parameter and
outputs a common reference string (CRS) crs.

– KeyGen(crs) → (pk, sk). The randomized key generation algorithm, independently run by each
party, takes as input the CRS crs and outputs a public and private key pair (pk, sk).

– Share(crs, σ, pkσ, x)→ (JxKσA, JxKσB). The randomized share algorithm takes as input the CRS crs,
the party identifier σ ∈ {A,B}, the party’s public key pkσ, and a message x ∈ M. It outputs a
pair of input shares (JxKσA, JxKσB) encoding the message x.

– Eval(crs, σ, skσ, pk1−σ, JxAKAσ , JxBKBσ , P )→ ⟨z⟩Rσ . The deterministic evaluation algorithm takes as
input the CRS crs, the party identifier σ ∈ {A,B}, the party’s secret key skσ, the public key of

another party pk1−σ, two tuples JxAKAσ and JxBKBσ of the party’s input shares (where the tuples are
generated by different parties using Share), and a program description P . It outputs a subtractive
share (over the ring R) of the evaluation result z.

An MKHSS scheme satisfies the following correctness and security properties.

Correctness. An MKHSS scheme is said to be ε-correct, for some ε ∈ [0, 1), if for all λ ∈ N, all
2m-input programs P ∈ P, and all xA,xB ∈Mm, we have

Pr


⟨z⟩RA − ⟨z⟩RB

̸=
P (xA,xB)

:

crs← Setup(1λ)

(pkσ, skσ)← KeyGen(crs), , ∀σ ∈ {A,B}
(JxσKσA, JxσKσB)← Share(crs, σ, pkσ,xσ), ∀σ ∈ {A,B}

⟨z⟩Rσ ← Eval(crs, σ, skσ, pk1−σ, JxAKAσ , JxBKBσ , P ), ∀σ ∈ {A,B}

 ≤ ε+ negl(λ),

where xσ = (x
(1)
σ , . . . , x

(m)
σ ) and the last three steps of the experiment are run for each σ ∈ {A,B}.

Note that we slightly abuse notation by letting Share(crs, σ, pkσ,xσ) denote running Share(crs, σ, pkσ, x
(i)
σ )

separately for each i. If ε = 0, we simply say that the MKHSS is correct.

Security. An MKHSS scheme is said to be secure if for all efficient adversaries A, there exists a
negligible function negl(·) such that for all λ ∈ N, and all σ ∈ {A,B}, we have that

Pr


b′ = b :

crs← Setup(1λ)

(pkσ, skσ)← KeyGen(crs)

(x0, x1, st)← A(crs, pkσ)
b←$ {0, 1}

(JxbK
σ
A, JxbK

σ
B)← Share(crs, σ, pkσ, xb)

b′ ← A
(
JxbK

σ
1−σ, st

)


≤ 1

2
+ negl(λ).

Comparison to public-key HSS. In a public-key HSS scheme (e.g., [BGI16, Definition 2.2]),
the Setup algorithm outputs a public key pk and two private evaluations keys ekA and ekB . Any
party—not necessarily those holding the evaluation keys—can then share their input using pk, which
in turn allows the servers holding the evaluation keys to non-interactively compute on all shared
inputs. Thus, compared to an MKHSS scheme, a public-key HSS scheme allows computing on the
inputs of several parties; but this comes at the cost of requiring a correlated setup or, alternatively,
a PKI [BGI17, OSY21, ADOS22], which implies a two-round sharing protocol in the CRS model.

While an MKHSS scheme and a public-key HSS scheme might initially seem incomparable, it is
not too hard to see that the former implies the latter. Specifically, given an MKHSS scheme MKHSS,
a public-key HSS scheme can be constructed as follows.

– The setup algorithm computes crs using MKHSS.Setup, generates two keys pairs (pkA, skA) and
(pkB , skB) using MKHSS.KeyGen and outputs pk := (crs, pkA, pkB), ekA := skA, and ekB := skB .

– The HSS share of an input x is computed using pk by first computing a subtractive sharing,
⟨x⟩ = (⟨x⟩A, ⟨x⟩B), and then computing MKHSS shares of ⟨x⟩σ using pkσ i.e.,(

J⟨x⟩AKA
A
, J⟨x⟩AKA

B

)
← MKHSS.Share(crs, A, pkA, x)(

J⟨x⟩BKB
A
, J⟨x⟩BKB

B

)
← MKHSS.Share(crs, B, pkB , x).
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Eexsec
A,xA,xB ,0(λ):

crs← Setup(1λ)
foreach σ ∈ {A,B}:

(pkσ, skσ)← KeyGen(crs)(
JxσKσA, JxσKσB

)
← Share(crs, σ, pkσ,xσ)

⟨z⟩Rσ := Eval(crs, σ, skσ, pk1−σ, JxAKAσ , JxBKBσ , P )

b← A(pkA, pkB , JxAKAB , JxBKBA , ⟨z⟩
R
A , ⟨z⟩RB )

return b

Eexsec
A,xA,xB ,1(λ):

crs← Setup(1λ)
foreach σ ∈ {A,B}:

(pkσ, skσ)← KeyGen(crs)(
JxσKσA, JxσKσB

)
← Share(crs, σ, pkσ,xσ)

⟨z⟩RB ←$R
⟨z⟩RA := ⟨z⟩RB + P (xA,xB)
b← A(pkA, pkB , JxAKAB , JxBKBA , ⟨z⟩

R
A , ⟨z⟩RB )

return b

Fig. 2: External security experiment for MKHSS.

Thus, (J⟨x⟩AKA
A
, J⟨x⟩BKB

A
) constitutes the HSS share of x for the server holding ekA and (J⟨x⟩AKA

B
,

J⟨x⟩BKBB) is the HSS share for the server holding ekB . In particular, although party-σ might learn
⟨x⟩σ, the security of MKHSS ensures the privacy of ⟨x⟩1−σ, thereby preserving the privacy of x.

– To evaluate a program P on the shared inputs, the servers use MKHSS.Eval to evaluate a program
P ′ that first reconstructs the inputs and then evaluates P .

This gives a public-key HSS scheme for all programs P for which the corresponding program P ′ can
be evaluated using the MKHSS scheme. Specifically, for MKHSS schemes for polynomial-size RMS
programs—which are the focus of this work—this implies a public-key HSS scheme for polynomial-size
RMS programs.

4.2 External security

We introduce an additional security notion for MKHSS, which will be important for our applications.
The notion strengthens the correctness property of MKHSS by requiring, informally, that the output
shares of any HSS evaluation are indistinguishable from uniformly random subtractive shares of the
output over the ring R.

Definition 7 (External Security of Multi-Key Homomorphic Secret Sharing). An MKHSS scheme
MKHSS = (Setup,KeyGen,Share,Eval) for a program class P, defined over a ring R, is externally
secure if for all λ ∈ N, all 2m-input programs P ∈ P, all xA,xB ∈Mm, and all efficient adversaries
A, there exists a negligible function negl(·) such that

AdvexsecA,xA,xB
(λ) :=

∣∣∣Pr[Eexsec
A,xA,xB ,A(λ) = 1

]
− Pr

[
Eexsec
A,xA,xB ,B(λ) = 1

]∣∣∣ ≤ negl(λ),

where the experiment Eexsec
A,xA,xB ,b(λ) is defined in Figure 2.

Getting external security, generically. We now show a simple transformation for converting any
MKHSS schemeMKHSS = (Setup,KeyGen,Share,Eval) into an MKHSS schemeMKHSS∗ that satisfies
external security. The idea is to use a non-interactive key exchange (NIKE) to derive a common
pseudorandom key, which we use to randomize the output shares. Let NIKE = (Setup,KeyGen,KeyDer)
be a NIKE scheme (cf. Definition 1) and let G be a PRG (note that MKHSS implies the existence
of NIKE, generically [BGI+18]). We describe the transformation to external security in Figure 3; the
main idea is to have MKHSS∗.Eval derive a common pseudorandom string K which is then used to
randomize the output with the help of the PRG.

Claim. The MKHSS scheme described in Figure 3 satisfies Definition 7 (external security).

Proof (sketch). The proof of external security of MKHSS∗ is almost immediate and can be shown with
a simple hybrid argument. First, invoke the security of NIKE to replace K with a fresh random string.
Second, invoke the PRG security to replace G(K) with a fresh random value R. Finally, invoke the
correctness ofMKHSS to conclude that ⟨z⟩RA+R, ⟨z⟩RB+R are distributed as pseudorandom subtractive
shares of P (xA,xB) over the ring R. ■
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External-Security Transformation for MKHSS

Parameters. Let MKHSS = (Setup,KeyGen, Share,Eval) be any MKHSS scheme, let NIKE = (Setup,
KeyGen,KeyDer) be any NIKE scheme, and let G : {0, 1}λ →R be a PRG.

MKHSS∗.Setup(1λ):

1 : crsmkhss ← MKHSS.Setup(1λ)

2 : crsnike ← NIKE.Setup(1λ)

3 : crs := (crsmkhss, crsnike)

4 : return crs

MKHSS∗.KeyGen(crs):

1 : parse crs = (crsmkhss, crsnike)

2 : (pknike, sknike)← NIKE.KeyGen(crsnike)

3 : (pkmkhss, skmkhss)← MKHSS.KeyGen(crsmkhss)

4 : pk∗ := (pknike, pk)

5 : sk∗ := (sknike, sk)

6 : return (pk∗, sk∗)

MKHSS∗.Share(crs, σ, pkσ, x):

1 : parse crs = (crsmkhss, )

2 : (JxKσA, JxKσB)← Share(crsmkhss, σ, pkσ, x)

3 : return (JxKσA, JxKσB)

MKHSS∗.Eval(crs, σ, sk∗σ, pk
∗
1−σ, JxAKAσ , JxBKBσ , P ):

1 : parse crs = (crsmkhss, crsnike)

2 : parse pk∗1−σ = (pknike1−σ, pk
mkhss
1−σ )

3 : parse sk∗σ = (sknikeσ , skmkhss
σ )

4 : ⟨z⟩Rσ := Eval(crs, σ, skmkhss
σ , pkmkhss

1−σ , JxAKAσ , JxBKBσ , P )

5 : K := KeyDer(pknike1−σ, sk
nike
σ )

6 : return ⟨z⟩Rσ +G(K)

Fig. 3: External-security transformation for MKHSS.

4.3 MKHSS in the NIDLS framework

In this section, we construct multi-key HSS in the NIDLS framework. We first recall the relevant
assumptions in the NIDLS framework and the “NIDLS ElGamal” encryption scheme from Abram et
al. [ADOS22]. The encryption scheme instantiates ElGamal over a NIDLS group, and helps simplify
the presentation of our MKHSS construction.

Assumptions. Our construction requires the same assumptions as the HSS scheme presented in
[ADOS22], namely, the Decisional Diffie–Hellman (DDH) assumption and the small exponent as-
sumption over the NIDLS group.

Definition 8 (NIDLS Decisional Diffie–Hellman). The Decisional Diffie–Hellman (DDH) assumption
is said to hold in the NIDLS framework if for every efficient adversary A, there exists a negligible
function negl(·) such that for all λ ∈ N we have

|Pr[A(par, ρ, g, gx, gy, gxy) = 1]− Pr[A(par, ρ, g, gx, gy, gz) = 1]| ≤ negl(λ),

where the probabilities are over the choice of par := (G,H,K, h, t, Bnidls, aux) ← GGen(1λ), (g, ρ) ←
Dnidls(1

λ, par), and x, y, z←$ [Bnidls].

Definition 9 (NIDLS Small Exponent Assumption). The small exponent assumption with length Bsk

is said to hold in the NIDLS framework if for every efficient adversary A, there exists a negligible
function negl(·) such that for all λ ∈ N we have

|Pr[A(par, Bsk, ρ, g, g
x) = 1]− Pr[A(par, Bsk, ρ, g, g

y) = 1]| ≤ negl(λ),

where the probabilities are over the choice of par := (G,H,K, h, t, Bnidls, aux) ← GGen(1λ), (g, ρ) ←
Dnidls(1

λ, par), x←$ [Bnidls], and y←$ [Bsk].
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NIDLS ElGamal encryption.We recall the details of the ElGamal encryption scheme in the NIDLS
framework [ADOS22] in Figure 4. Note that in addition to the standard encryption algorithm, the
scheme also includes a “flipped” ElGamal encryption. As discussed in Section 2, the flipped encryption
of a message x is a ciphertext ct that decrypts to sk · x mod t, where sk is the secret key and t is the
order of the NIDLS subgroup H. The encryption scheme is IND-CPA secure assuming the hardness
of DDH in the NIDLS framework [ADOS22]. However, we note that in the proof of security of our
MKHSS construction, we directly reduce to the NIDLS DDH assumption instead of IND-CPA security
of the encryption scheme to simplify the presentation.

NIDLS ElGamal Encryption [ADOS22]

Public Parameters. Algorithms GGen and Dnidls that realize the NIDLS framework (cf. Definition 5).

EG.Setup(1λ):

1 : par← GGen(1λ)

2 : (g, ρ)←$Dnidls(1
λ, par)

3 : crs := (par, g, ρ)

4 : return crs

EG.KeyGen(crs):

1 : parse Bnidls, g from crs

2 : s←$ [Bnidls]

3 : f := g−s

4 : (pk, sk) := (f, s)

5 : return (pk, sk)

EG.Encrypt(crs, pk, x):

1 : parse h,Bnidls, g from crs

parse pk = f

2 : r←$ [Bnidls]

3 : ct := (gr, fr · hx)

4 : return ct

EG.FlipEncrypt(crs, pk, x):

1 : parse h,Bnidls, g from crs

parse pk = f

2 : r←$ [Bnidls]

3 : ct := (gr · hx, fr)

4 : return ct

EG.Decrypt(sk, ct):

1 : parse ct = (c1, c2)

2 : x := logh(c
sk
1 · c2)

3 : return x

Fig. 4: ElGamal encryption in the NIDLS framework.

NIDLS MKHSS construction. We present our MKHSS construction in the NIDLS framework in
Figure 5. The construction closely follows the scheme presented in the technical overview (cf. Sec-
tion 2). In addition to the MKHSS algorithms, we define two subprocedures that capture synchro-
nization of input shares. The procedure ExpLinEncS allows the party sharing the input to compute a
synchronized input share under the concatenated secret key while ExpLinEncR allows the other party,
receiving the input share, to synchronize. As discussed in Section 2, a key property of our construction
is that both parties obtain identical, “exponent-linear decodable” shares upon synchronization.

Performance analysis. The share of each input sent to the other party consists of six group ele-
ments and synchronizing each input share requires at most four group exponentiations. Note that,
when evaluating each multiplication instruction in DEval (cf. Figure 1), it suffices to use one among
cσ2 and c1−σ2 since the corresponding components in the concatenated secret key (skA, 1, skB , 1) are
equal. Furthermore, since two among the four group elements in c1−σ1 and cσ2 are the identity, evaluat-
ing each multiplication instruction requires eight group exponentiations and four distributed discrete
logarithm computations. Compared to the NIDLS-based HSS construction of Abram et al. [ADOS22],
the MKHSS construction requires communicating two additional group elements per input and has
a computational overhead of 2×. When instantiated over the Paillier group with a 3072-bit modu-
lus N , where each group exponentiation takes approximately 15 milliseconds, this results in a per-
multiplication cost of around 120 to 150 milliseconds. Thus, the MKHSS construction is potentially
practical when implemented, albeit an order of magnitude slower when compared to efficient non-
multi-key HSS schemes [BCG+17].
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NIDLS-based MKHSS

Public Parameters. Let (GGen,Dnidls,DDLog) be the algorithms provided by the NIDLS framework
(cf. Definition 5), let Bsk be a bound for the small exponent assumption. We use the NIDLS ElGamal En-
cryption (cf. Figure 4) instantiated using GGen and Dnidls. Finally, we use DEval (cf. Figure 1) instantiated
using DDLog, and the subroutines ExpLinEncS and ExpLinEncR defined in Figure 6.

Notation. Let 1G = (1G, 1G) where 1G is the identity element in G.

MKHSS.Setup(1λ):

1 : crsenc ← EG.Setup(1λ)

2 : kprf
1 , kprf

2 ←$ {0, 1}λ

3 : crs := (crsenc, k
prf
1 , kprf

2 )

4 : return crs

MKHSS.KeyGen(crs):

1 : parse g from crs

2 : s←$ [Bsk], f := g−s

3 : (epk, esk) := (f, s)

4 : pk := (crs, epk)

5 : sk := (pk, esk)

6 : return (pk, sk)

MKHSS.Share(crs, σ, pkσ, x):

1 : parse crsenc from crs

2 : parse h,Bnidls, g from crsenc

3 : r1, u1 ← [Bnidls]

4 : ct1 := EG.FlipEncrypt(crsenc, epkσ, x; r1)

5 : rct1 := (gu1 , fu1
σ · gr1)

6 : ct2 := EG.Encrypt(crsenc, epkσ, x)

7 : JxKσσ := (ct1, ct2, r1, u1)

8 : JxKσ1−σ
:= (ct1, ct2, rct1)

9 : return (JxKσA, JxKσB)

MKHSS.Eval(crs, σ, skσ, pk1−σ, Jx0K0σ, Jx1K1σ, P ):

1 : parse sσ from skσ and kprf
1 , kprf

2 from crs

2 : parse JxAKAσ =
(
Jx(1)

A K
A

σ
, . . . , Jx(m)

A K
A

σ

)
3 : parse JxBKBσ =

(
Jx(1)

B K
B

σ
, . . . , Jx(m)

B K
B

σ

)
4 : for i ∈ [m]

5 : {{x(i)
σ }} := ExpLinEncS

(
skσ, pk1−σ, Jx

(i)
σ K

σ

σ

)
6 : {{x(i)

1−σ}} := ExpLinEncR
(
skσ, pk1−σ, Jx

(i)
1−σK

1−σ

σ

)
7 : {{x}} :=

(
{{x(1)

A }}, . . . , {{x
(m)
A }}, {{x(1)

B }}, . . . , {{x
(m)
B }}

)
8 : kσ := (sσ, 1, 0, 0) if σ = A else (0, 0,−sσ,−1)

9 : ekσ := (kprf
1 , kprf

2 ,kσ)

10 : return DEval(σ, ekσ, {{x}}, P )

Fig. 5: MKHSS in the NIDLS framework.

ExpLinEncS(skσ, pk1−σ, JxKσσ):

1 : parse JxKσσ = (ct1, ct2, r1, u1)

2 : cσ1 := ct1∥1G if σ = A else 1G∥ct1
3 : ct′ := (fu1

1−σ, f
−sσ·u1
1−σ · fr1

1−σ · f
−r1
σ )

4 : c1−σ
1 := ct′∥ct1 if σ = A else ct1∥ct′

5 : cσ2 := ct2∥1G if σ = A else 1G∥ct2
6 : c1−σ

2 := cσ2

7 : {{x}} :=
(
cA1 , c

A
2 , c

B
1 , c

B
2

)
8 : return {{x}}

ExpLinEncR(skσ, pk1−σ, JxK1−σ
σ ):

1 : parse JxK1−σ
σ = (ct1, ct2, rct1)

2 : parse rct1 = (gu1 , fu1
1−σ · g

r1)

3 : parse ct1 = ( , fr1
1−σ)

4 : ct′ :=
(
(gu1)−sσ ,

(
fu1
1−σ · g

r1
)−sσ · (fr1

1−σ)
−1

)
5 : cσ1 := ct1∥ct′ if σ = A else ct′∥ct1
6 : c1−σ

1 := 1G∥ct1 if σ = A else ct1∥1G

7 : cσ2 := 1G∥ct2 if σ = A else ct2∥1G

8 : c1−σ
2 := cσ2

9 : {{x}} := (cA1 , c
A
2 , c

B
1 , c

B
2 )

10 : return {{x}}

Fig. 6: Exponent-linear encoding algorithms used as subroutines in the NIDLS MKHSS construction.
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Theorem 1. Let t = t(λ) be the order of the subgroup in the NIDLS framework (cf. Definition 5). If
the DDH assumption and the small exponent assumption with length Bsk hold in the NIDLS frame-
work, then the construction described in Figure 5 is an MKHSS scheme for the class of polynomial
sized RMS programs with bound B and message space ZB where B < t/(Bsk ·2λ) and λ is the security
parameter of the MKHSS scheme.

Proof. We first show that the construction satisfies the correctness property and then proceed to
argue its security.

Correctness. Recall that the correctness property requires that parties obtain a subtractive sharing
of the program output upon evaluation.

We first show that for an input x shared by party-σ, where σ ∈ {A,B}, the parties obtain the same
encoding {{x}} when party-σ runs ExpLinEncS on its share JxKσσ and party-(1 − σ) runs ExpLinEncR
on its share JxKσ1−σ. Moreover, we prove that {{x}} is exponent-linear decodable under the decoding
key k = (sA, 1, sB , 1).

Claim. For all integers x ∈ Zt and all σ ∈ {A,B}, we have

{{x}} = ExpLinEncS(skσ, pk1−σ, JxKσσ) = ExpLinEncR(sk1−σ, pkσ, JxKσ1−σ),

where (JxKσA, JxKσB) ← MKHSS.Share(crs, σ, pkσ, x). Moreover, {{x}} is base-h exponent-linear decod-
able under the decoding key k = (sA, 1, sB , 1).

Proof. We consider the case when σ = A for ease of exposition; a similar argument follows for
the case when σ = B. From the description of MKHSS.Share, we have JxKAA = (ct1, ct2, r1, u1) and

JxKAB = (ct1, ct2, rct1), where
ct1 = (gr1 · hx, fr1

A ),

ct2 = (gr2 , fr2
A · h

x),

rct1 = (gu1 , fu1

A · g
r1).

Now, observe that party-B computes ct′ in ExpLinEncR as

ct′ =
(
(gu1)

−sB , (fu1

A · g
r1)
−sB · (fr1

A )−1
)

=
(
fu1

B , f−sA·u1

B · fr1
B · f

−r1
A

)
,

which is identical to ct′ computed by party-A in ExpLinEncS, where the second equality follows
from the fact that fA = g−sA and fB = g−sB . It is then easy to see that both parties obtain
{{x}} = (cA1 , c

A
2 , c

B
1 , c

B
2 ) where

cA1 = (gr1 · hx, fr1
A , g0, g0),

cA2 = (gr2 , fr2
A · h

x, g0, g0),

cB1 = (fu1

B , f−sA·u1

B · fr1
B · f

−r1
A , gr1 · hx, fr1

A ),

cB2 = (gr2 , fr2
A · h

x, g0, g0).

We are left to show that {{x}} is base-h exponent-linear decodable under k = (k1, k2, k3, k4) =
(sA, 1, sB , 1). Observe that ct1 and ct2 are encryptions of x · k1 = x · sA and x · k2 = x under the
public key fA since they are computed using FlipEncrypt and Encrypt respectively. This implies that
⟨cti, (sA, 1)⟩ = hx·ki for each i ∈ {1, 2}. However, for each i ∈ {1, 2}, we have cAi = cti∥(g0, g0), which
implies that

〈
cAi ,k

〉
= ⟨cti, (sA, 1)⟩ = hx·ki . Moreover, since k4 = k2 = 1 and cB2 = cA2 , we have〈

cB2 ,k
〉
=
〈
cA2 ,k

〉
= hx·k2 = hx·k4 . Finally, we have〈

cB1 ,k
〉
= (fu1

B )
sA · f−sA·u1

B · fr1
B · f

−r1
A · (gr1 · hx)

sB · fr1
A

= fr1
B · g

r1·sB · hx·sB

= hx·sB ,

where the third equality follows from the fact that fB = g−sB . In turn, this implies that gr1·sB = f−r1B .
Then, we have that

〈
cB1 ,k

〉
= hx·k3 , which in turn implies that {{x}} is indeed a base-h exponent-linear

decodable under k. □
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To complete the proof of correctness, observe that kA and kB , computed by party-A and party-B
in MKHSS.Eval, form a subtractive sharing of k because kA − kB = (sA, 1, 0, 0) − (0, 0,−sB ,−1) =
(sA, 1, sB , 1) = k.

In sum, it follows that parties run DEval with encodings of the input that are base-h exponent-
linear decodable. Furthermore, we have sA, sB ≤ Bsk by definition, which implies that each component
of k is bounded by Bsk. Since B · Bsk · 2λ < t and DDLog is a (B · Bsk)-bounded base-h algorithm
for distributed discrete logarithm with negligible correctness error, it follows from Lemma 3 that the
MKHSS scheme satisfies the correctness property for all polynomial-size RMS programs P .

Security. The security property requires that the input share JxKσ1−σ of party-(1 − σ), ensures the
privacy of an input x shared using party-σ’s public key pkσ. Recall that the public key pkσ consists
of fσ = g−sσ while the share JxKσ1−σ = (ct1, ct2, rct1) where

ct1 = (gr1 · hx, fr1
σ ),

ct2 = (gr2 , fr2
σ · hx),

rct1 = (gu1 , fu1
σ · gr1),

and r1, r2, u1←$ [Bnidls]. At a high level, ct1 is an encryption of x · sσ, ct2 is an encryption of x and
rct1 is an encryption of the randomness r1 used for computing ct1. Moreover, ct1, ct2 and rct1 are
all encryptions under the public key fσ, computed using independently sampled randomness. Thus,
security of the MKHSS scheme follows from the indistinguishability of the ciphertexts. However, we
note that rct1 is not a valid ciphertext under the NIDLS ElGamal scheme, since we use gr1 instead of
hr1—i.e., it might not be possible to decrypt rct1 and obtain r1 using the secret key sσ. Nevertheless,
this does not pose an issue to argue indistinguishability of rct1 since under the DDH assumption fu1

σ

is indistinguishable from a uniformly random element in the subgroup generated by g.

We now proceed to prove formally prove the above sketch. Consider any efficient adversary A for
the security experiment defined in Definition 6. Let the output of the security experiment be defined
as 1 if A’s output b′ is equal to the challenge bit b; else let the output of the experiment be defined
as 0. We will use a hybrid argument to show that the output of the experiment is 1 with probability
at most 1/2 + negl(λ).

– Hybrid H0. This hybrid consists of the output of the experiment when run with adversary A.

– Hybrid H1. This hybrid is identical to the previous hybrid, except that the secret key sσ is sampled
uniformly at random from [Bnidls] in MKHSS.KeyGen.

Claim. H1 ≈c H0.

Proof. The only difference betweenH0 andH1 is that inH0, the secret key sσ is sampled uniformly
at random from [Bsk] while inH1 it is sampled from [Bnidls]. The indistinguishability ofH0 fromH1

reduces directly to the small exponent assumption with length Bsk (Definition 9). In particular,
note that the MKHSS security experiment can be run using the small exponent assumption’s
challenge since MKHSS.Share only requires the public key fσ. □

– Hybrid H2. This hybrid is identical to the previous hybrid, except that rct1 is computed as
rct1 = (gu1 , gu

′
1 · gr1), where u1, u

′
1←$ [Bnidls] and r1 is the randomness used to compute ct1.

Claim. H2 ≈c H1.

Proof. The only difference between H1 and H2 is that in H1, rct1 = (gu1 , fu1
σ · gr1) while in H2,

rct1 = (gu1 , gu
′
1 · gr1), where u1, u

′
1, sσ ←$ [Bnidls], fσ = g−sσ , and r1 is the randomness used to

compute ct1. Indistinguishability between H1 and H2 can thus be reduced directly to the DDH
assumption in the NIDLS group (cf. Definition 8). □

– Hybrid H3. This hybrid is identical to the previous hybrid, except that rct1 is computed as
rct1 = (gu1 , gu

′
1) where u1, u

′
1←$ [Bnidls].
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Claim. H3
s≈ H2.

Proof. The only difference between H2 and H3 is that, in H2, rct1 = (gu1 , gu
′
1 · gr1) while in H3,

rct1 = (gu1 , gu
′
1) where u1, u

′
1←$ [Bnidls] and r1 is the randomness used to compute ct1. However,

from the definition of the NIDLS framework (cf. Definition 5), we have that gu
′
1 is statistically

close to the uniform distribution over the subgroup generated by g, which in turn implies that
gu

′
1 · gr1 is also statistically close to the uniform distribution over the subgroup generated by g.

It thus follows that H2
s≈ H3. □

– Hybrid H4. This hybrid is identical to the previous hybrid, except that ct1 is computed as ct1 =
(gr1 · hxb , gr

′
1), where r1, r

′
1←$ [Bnidls].

Claim. H4 ≈c H3.

Proof. The only difference between H3 and H4 is that in H3, ct1 = (gr1 · hxb , fr1
σ ) while in H4,

ct1 = (gr1 · hxb , gr
′
1), where r1, r

′
1, sσ ←$ [Bnidls] and fσ = g−sσ . Indistinguishability between H3

and H4 can thus be reduced directly to the DDH assumption in the NIDLS group. □

– Hybrid H5. This hybrid is identical to the previous hybrid, except that ct2 is computed as ct2 =
(gr2 , gr

′
2 · hxb), where r2, r

′
2←$ [Bnidls].

Claim. H5 ≈c H4.

Proof. The only difference between H4 and H5 is that in H4, ct2 = (gr2 · hxb , fr2
σ ) while in H5,

ct2 = (gr2 · hxb , gr
′
2), where r2, r

′
2, sσ ←$ [Bnidls] and fσ = g−sσ . Indistinguishability between H4

and H5 can thus be reduced directly to the DDH assumption in the NIDLS group. □

To complete the proof, observe that in H5 we have JxbK
σ
1−σ = (ct1, ct2, rct1), where ct1 = (gr1 ·

hxb , gr
′
1), ct2 = (gr2 , gr

′
2 ·hxb), and rct1 = (gu1 , gu

′
1), with r1, r

′
1, r2, r

′
2, u1, u

′
1←$ [Bnidls]. Since g

r1 ·hxb

and gr
′
2 · hxb are statistically close to the uniform distribution over the subgroup generated by g, the

probability that the output of the experiment is 1 in H5, is at most 1/2 + negl(λ). It follows that
H0 ≈c H5. Thus, A wins the MKHSS security game with probability of at most 1/2 + negl(λ). ■

Instantiating the NIDLS group in Theorem 1 yields MKHSS schemes based on the DDH and small-
exponent assumptions overs over the Paillier group, a class group, or an extension of the Joye–Libert
group (cf. Section 3.1). In particular, the class group instantiation has transparent setup.

Remark 3 (Necessity of DDH over Paillier group). The security of the NIDLS-based HSS scheme in
Abram et al. [ADOS22] can be reduced to the DCR assumption by instantiating the NIDLS framework
with the ciphertext space of the Damg̊ard–Jurik encryption scheme. Specifically, the Damg̊ard–Jurik
encryption scheme allows for a subgroup H of order t that is exponentially larger than Bnidls, en-
suring that the small-exponent assumption holds unconditionally. Moreover, the security of the HSS
construction reduces to the IND-CPA security of the NIDLS ElGamal encryption scheme, which in
this case is secure under the DCR assumption (see Figure 18 and Lemma 5 for details). This raises
a natural question: Is the MKHSS construction from Figure 5 secure assuming only DCR, when
instantiated with the ciphertext space of the Damg̊ard–Jurik encryption scheme?

However, the DDH assumption over the Damg̊ard–Jurik group seems necessary in this case. Specif-
ically, the security of the MKHSS construction relies on the security of the ciphertexts ct1, ct2 and
rct1 computed in MKHSS.Share. While the security of ct1 and ct2 can be reduced to the IND-CPA
security of the NIDLS ElGamal encryption scheme, and thereby DCR, the security of rct1 requires
the DDH assumption. This is because it is an encryption of gr1 instead of hr1 . In fact, the IND-CPA
security of ciphertexts of the form (gu, fu · gx), where the plaintext x is encoded as the exponent of
g as opposed to h, implies the security of DDH.

31



4.4 MKHSS from DDH

In this section, we construct multi-key HSS from DDH, closely following the construction described
in the technical overview. We first define the DDH assumption and then recall the BHHO encryption
scheme, which we extend slightly to simplify the presentation of our MKHSS construction.

Definition 10 (Decisional Diffie–Hellman Assumption). Let GGen be a group generator such that
GGen(1λ)→ (G, p, g) where G is a cyclic group of prime order p and g is a generator of G. We also
assume the existence of an efficient algorithm to compute over G. The Decisional Diffie–Hellman
(DDH) assumption is said to hold with respect to GGen if for all efficient adversaries, there exists a
negligible function negl(·) such that for all λ ∈ N, we have∣∣Pr[A(1λ,G, p, g, gx, gy, gxy) = 1

]
− Pr

[
A(1λ,G, p, g, gx, gy, gz) = 1

]∣∣ ≤ negl(λ),

where the probabilities are over the choice of (G, p, g)← GGen(1λ) and x, y, z←$Zp.

The following lemma, adapted from Boneh et al. [BHHO08], is an immediate consequence of the
DDH assumption and will simplify the proofs of our constructions.

Lemma 4 (Matrix DDH [BHHO08]). If the DDH assumption holds with respect to GGen, then for
any polynomial poly(·) and any efficient adversary A, there exists a negligible function negl(·), such
that for all λ ∈ N, all ℓ1, ℓ2 ∈ N, where ℓ1, ℓ2 < poly(λ), we have∣∣Pr[A(1λ,G, p, g,gx,gy,gxy) = 1

]
− Pr

[
A(1λ,G, p, g,gx,gy,gz) = 1

]∣∣ ≤ negl(λ),

where the probabilities are over the choice of (G, p, g) ← GGen(1λ), x = (x1, . . . , xℓ1)←$Zℓ1
p , y =

(y1, . . . , yℓ2)←$Zℓ2
p , z = (z1, . . . , zℓ1·ℓ2)←$Zℓ1·ℓ2

p , and where gx = (gx1 , . . . , gxℓ1 ), gy = (gy1 , . . . , gyℓ2 ),
gz = (gz1 , . . . , gzℓ1·ℓ2 ), and gxy = (gx1·y1 , . . . , gxi·yj , . . . , gxℓ1

·yℓ2 ).

BHHO encryption. We recall the details of the BHHO encryption scheme [BHHO08] in Figure 7.
Informally, BHHO is a circular secure variant of the ElGamal encryption scheme. Our description of
the encryption scheme uses G as the message space, which simplifies the presentation of our MKHSS
scheme by allowing us to use different elements in G as the base when encoding secrets in Zp. Similar
to the NIDLS ElGamal scheme discussed in Section 4.3, we extend the BHHO scheme with a “flipped”
encryption algorithm FlipEncrypt. This allows computing an encryption of xsi only using the public
key, where x is the message and si is the i-th bit of the secret key. Specifically, for any ciphertext
ct = (gr1, . . . , g

r
i−1, g

r
i x, g

r
i+1, . . . , g

r
ℓsk
, fr)← FlipEncrypt(crs, pk, i, x) we have

Decrypt(sk, ct) = ⟨ct, sk⟩ = xsi ·
ℓsk∏
j=1

g
rsj
j · fr = xsi .

It can be shown that FlipEncrypt is CPA secure under the DDH assumption. However, to simplify the
presentation, this is implicit in the proof of our MKHSS construction, where the security is directly
reduced to DDH instead of the CPA security of the extended BHHO scheme.

DDH MKHSS construction. We present our MKHSS construction from DDH in Figure 8. The
construction closely follows the description in the technical overview. Here, we also define two sub-
procedures that capture synchronization of input shares (like we did in the NIDLS-based MKHSS
construction).

Performance analysis. The share of each input sent to the other party comprises of Θ
(
ℓsk

3
)
group

elements. Synchronizing each input share requires at most O(ℓsk
3) group exponentiations, while eval-

uating each multiplication instruction requires Θ
(
ℓsk

2
)
group exponentiations and Θ(ℓsk) distributed

discrete logarithm computations. Compared to the DDH-based HSS scheme in [BGI16], the MKHSS
scheme requires communicating Θ(ℓsk) times more group elements per input. The evaluation cost of
the MKHSS scheme is dominated by that of input share synchronization when the program contains
o(ℓsk) multiplication instructions, beyond which it is only a constant factor slower than the HSS
evaluation in [BGI16].
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BHHO Encryption Scheme

Public Parameters. A group generator GGen with respect to which the DDH assumption holds.

BHHO.Setup(1λ):

1 : (G, g, p)← GGen(1λ)

2 : ℓsk := ⌈3 log2 p⌉
3 : g1, . . . , gℓsk ←$G
4 : crs := (G, g, {gi}ℓski=1, p)

5 : return crs

BHHO.KeyGen(crs):

1 : parse {gi}ℓski=1 from crs

2 : s1, . . . , sℓsk ←$ {0, 1}

3 : f :=

ℓsk∏
i=1

g−si
i

4 : pk := (g1, . . . , gℓsk , f)

5 : sk := (s1, . . . , sℓsk , 1)

6 : return (pk, sk)

BHHO.Encrypt(crs, pk, x):

1 : parse p from crs

2 : parse pk = (g1, . . . , gℓsk , f)

3 : r←$Zp

4 : ct := (gr1 , . . . , g
r
ℓsk , f

rx)

5 : return ct

BHHO.FlipEncrypt(crs, pk, i, x):

1 : parse p from crs

2 : parse pk = (g1, . . . , gℓsk , f)

3 : r←$Zp

4 : ct := (gr1 , . . . , g
r
i−1, g

r
i x, g

r
i+1, . . . , g

r
ℓsk , f

r)

5 : return ct

BHHO.Decrypt(sk, ct):

1 : x := ⟨ct, sk⟩
2 : return x

Fig. 7: The BHHO encryption scheme.

Theorem 2. If the DDH assumption holds with respect to the group generator GGen, then for every
polynomial poly(·) and every error bound ε > 0, the construction described in Figure 8 is an ε-correct
MKHSS scheme for the class of RMS programs with bound B and size at most Bsize, and message
space ZB, where 1/ε,Bsize, B ≤ poly(λ) and λ is the security parameter of the MKHSS scheme.

Proof. We first show that the construction satisfies the correctness property and then proceed to
argue its security. We will use ℓct = ℓsk + 1 as a shorthand to denote the length of ciphertexts.

Correctness. The correctness property requires that parties obtain a subtractive sharing of the
program output upon evaluation. In our construction, parties run ExpLinEncS and ExpLinEncR to
obtain an encoding of the input that is exponent-linear decodable (Definition 3) under the decoding

key k = esk
(0)
A ∥esk

(0)
B . The parties then use the DEval algorithm with a trivial subtractive sharing of

k and the DDLog algorithm from [BGI16] to evaluate the RMS program in a distributed manner.
Correctness of the MKHSS construction then immediately follows from the correctness of DEval.

We now proceed to prove that the MKHSS construction has ε-correctness as defined in Definition 6.
We first show that for an input x shared by party-σ, where σ ∈ {A,B}, the parties obtain the same
output {{x}}, when party-σ runs ExpLinEncS on its share JxKσσ and party-(1− σ) runs ExpLinEncR on
its share JxKσ1−σ. Moreover, we prove that {{x}} is exponent-linear decodable under the decoding key

k = esk
(0)
A ∥esk

(0)
B .

Claim. For all integers x ∈ ZB and all σ ∈ {A,B}, we have

{{x}} = ExpLinEncS(skσ, pk1−σ, JxKσσ) = ExpLinEncR(sk1−σ, pkσ, JxKσ1−σ),

where (JxKσA, JxKσB) ← MKHSS.Share(crs, σ, pkσ, x). Moreover, {{x}} is base-g exponent-linear decod-

able under the decoding key k = esk
(0)
A ∥esk

(0)
B .

Proof. We consider the case when σ = A for ease of exposition; a similar argument follows for the

case when σ = B. From the description of MKHSS.Share, we have JxKAA =
(
{cti}ℓsk+1

i=1 , {(ri, ui)}ℓski=1

)
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DDH-based MKHSS

Public Parameters. Let ε be an error bound, Bsize be a bound on the RMS program size, let B be
a magnitude bound, and let GGen be a group generator with respect to which the DDH assumption
holds. We use the BHHO encryption scheme (cf. Figure 7) instantiated using GGen, DEval (cf. Figure 1)
instantiated with an ε/((ℓsk+1) ·Bsize)-correct, B-bounded, base-g DDLog algorithm, and the subroutines
ExpLinEncS and ExpLinEncR defined in Figure 9.

Notation. Let 1G = (1G, . . . , 1G) ∈ Gℓsk+1, where 1G is the identity, and let 0Z = (0, . . . , 0) ∈ Zℓsk+1.

MKHSS.Setup(1λ):

1 : crsenc ← BHHO.Setup(1λ)

2 : kprf
1 , kprf

2 ←$ {0, 1}λ

3 : crs := (crsenc, k
prf
1 , kprf

2 )

4 : return crs

MKHSS.Share(crs, σ, pkσ, x):

1 : parse crsenc from crs

2 : parse g, {gi}ℓski=1, and p from crsenc

3 : parse pkσ = (epk(0)σ , . . . , epk(ℓsk)σ )

4 : for i ∈ [ℓsk] :

5 : ri, ui ←$Zp

6 : cti := FlipEncrypt(crsenc, epk
(0)
σ , i, gx; ri)

7 : for j ∈ [ℓsk] :

8 : rcti,j := Encrypt(crsenc, epk
(j)
σ , grij ;ui)

9 : ctℓsk+1 ← Encrypt(crsenc, epk
(0)
σ , gx)

10 : JxKσσ := ({cti}ℓsk+1
i=1 , {(ri, ui)}ℓski=1)

11 : JxKσ1−σ
:= ({cti}ℓsk+1

i=1 , {rcti,j}1≤i,j≤ℓsk
)

12 : return (JxKσA, JxKσB)

MKHSS.KeyGen(crs):

1 : parse crsenc from crs

2 : parse {gi}ℓski=1, p from crsenc

3 : (epk(0), esk(0))← BHHO.KeyGen(crsenc)

4 : γ := (γ(1), . . . , γ(ℓsk))←$Zℓsk
p

5 : Γ := −⟨γ, esk(0)⟩
6 : for i ∈ [ℓsk] :

7 : epk(i) := (gγ
(1)

i , . . . , gγ
(ℓsk)

i , gΓi )

8 : pk := (crs, epk(0), . . . , epk(ℓsk))

9 : sk := (pk, esk(0),γ)

10 : return (pk, sk)

MKHSS.Eval(crs, σ, skσ, pk1−σ, JxAKAσ , JxBKBσ , P ):

1 : parse crs = (crsenc, k
prf
1 , kprf

2 )

2 : parse esk(0)σ from skσ

3 : parse JxAKAσ = (Jx(1)
A K

A

σ
, . . . , Jx(m)

A K
A

σ
)

4 : parse JxBKBσ = (Jx(1)
B K

B

σ
, . . . , Jx(m)

B K
B

σ
)

5 : for i ∈ [m] :

6 : {{x(i)
σ }} := ExpLinEncS(skσ, pk1−σ, Jx

(i)
σ K

σ

σ)

7 : {{x(i)
1−σ}} := ExpLinEncR(skσ, pk1−σ, Jx

(i)
1−σK

1−σ

σ
)

8 : kσ := esk(0)σ ∥0Z if σ = A else 0Z∥(−esk(0)σ )

9 : ekσ := (kprf
1 , kprf

2 ,kσ)

10 : {{x}} := ({{x(1)
A }}, . . . , {{x

(m)
A }}, {{x(1)

B }}, . . . , {{x
(m)
B }})

11 : return DEval(σ, ekσ, {{x}}, P )

Fig. 8: MKHSS in arbitrary cyclic groups from DDH.

and JxKAB =
(
{cti}ℓsk+1

i=1 , {rcti,j}1≤i,j≤ℓsk
)
, where

cti = (gri1 , . . . , grii−1, g
ri
i · g

x, grii+1, . . . , g
ri
ℓsk
, fri

A )

rcti,j = (g
γ
(1)
A ·ui

j , . . . , g
γ
(ℓsk)

A ·ui

j , gΓA·ui
j · grij )

for each i, j ∈ [ℓsk], and
ctℓsk+1 = (g

rℓct
1 , . . . , g

rℓct
ℓsk

, f
rℓct
A · gx).
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ExpLinEncS(skσ, pk1−σ, JxKσσ):

1 : parse JxKσσ := ({cti}ℓsk+1
i=1 , {(ri, ui)}ℓski=1)

2 : parse f1−σ from pk1−σ

3 : parse γσ = (γ(1)
σ , . . . , γ(ℓsk)

σ ), esk(0)σ from skσ

4 : Γσ := −⟨γσ, esk
(0)
σ ⟩

5 : pk′1−σ := (fγ
(1)
σ

1−σ , . . . , f
γ
(ℓsk)
σ

1−σ , fΓσ
1−σ)

6 : for i ∈ [ℓsk] :

7 : ct′i := Encrypt(crsenc, pk
′
1−σ, f

ri
1−σ · f

−ri
σ ;ui)

8 : cσi := cti∥1G if σ = A else 1G∥cti
9 : c1−σ

i := ct′i∥cti if σ = A else cti∥ct′i
10 : cσℓsk+1 := ctℓsk+1∥1G if σ = A else 1G∥ctℓsk+1

11 : c1−σ
ℓsk+1 := cσℓsk+1

12 : {{x}} := (cA1 , . . . , c
A
ℓsk+1, c

B
1 , . . . , c

B
ℓsk+1)

13 : return {{x}}

ExpLinEncR(skσ, pk1−σ, JxK1−σ
σ ):

1 : parse JxK1−σ
σ

:= ({cti}ℓsk+1
i=1 , {rcti,j}1≤i,j≤ℓsk

)

2 : parse each rcti,j = (ρ
(1)
i,j , . . . , ρ

(ℓsk+1)
i,j )

3 : parse each cti = ( , . . . , , fri
1−σ)

4 : parse (s(1)σ , . . . , s(ℓsk)σ , 1) from skσ

5 : for i ∈ [ℓsk] :

6 : for k ∈ [ℓsk + 1] :

7 : η
(k)
i :=

∏ℓsk
j=1(ρ

(k)
i,j )

−s
(j)
σ

8 : ct′i := (η
(1)
i , . . . , η

(ℓsk+1)
i · f−ri

1−σ)

9 : cσi := cti∥ct′i if σ = A else ct′i∥cti
10 : c1−σ

i := 1G∥cti if σ = A else cti∥1G

11 : cσℓsk+1 := 1G∥ctℓsk+1 if σ = A else ctℓsk+1∥1G

12 : c1−σ
ℓsk+1 := cσℓsk+1

13 : {{x}} := (cA1 , . . . , c
A
ℓsk+1, c

B
1 , . . . , c

B
ℓsk+1)

14 : return {{x}}

Fig. 9: Exponent-linear encoding algorithms used as subroutines in the DDH MKHSS construction.

We will first show that party-A and party-B obtain the same {{x}} = (cA1 , . . . , c
A
ℓsk+1, c

B
1 , . . . , c

B
ℓsk+1).

Observe that both parties compute cAi = cti∥1G, for each i ∈ [ℓsk+1], and compute cBℓsk+1 = ctℓsk+1∥1G.

However, in case of cBi , where i ∈ [ℓsk], each party locally computes a ct′i and sets cBi = ct′i∥cti. We
will argue that ct′i computed by both parties are identical, which will in turn prove that they obtain
the same {{x}}.

Consider any arbitrary i ∈ [ℓsk]. Party-A computes ct′i as

ct′i = Encrypt(crsenc, pk
′
B , f

ri
B · f

−ri
A ;ui)

=

(
f
γ
(1)
A ·ui

B , . . . , f
γ
(ℓsk)

A ·ui

B , fΓA·ui

B · fri
B · f

−ri
A

)
.

On the other hand, party-B computes ct′i as

ct′i =

 ℓsk∏
j=1

(
g
γ
(1)
A ·ui

j

)−s(j)B

, . . . ,

ℓsk∏
j=1

(
g
γ
(ℓsk)

A ·ui

j

)−s(j)B

,

ℓsk∏
j=1

(
gΓA·ui
j · grij

)−s(j)B · f−riA



=


 ℓsk∏

j=1

g
−s(j)B
j

γ
(1)
A ·ui

, . . . ,

 ℓsk∏
j=1

g
−s(j)B
j

γ
(ℓsk)

A ·ui

,

 ℓsk∏
j=1

g
−s(j)B
j

ΓA·ui+ri

· f−riA


=

(
f
γ
(1)
A ·ui

B , . . . , f
γ
(ℓsk)

A ·ui

B , fΓA·ui

B · fri
B · f

−ri
A ,

)

where the third equality follows from the fact that fB =
∏ℓsk

j=1 g
−s(j)B
j . Thus, for each i ∈ [ℓsk], both

parties compute the same ct′i and hence obtain identical outputs {{x}}.
We are left to show that {{x}} is base-g exponent-linear decodable under

k = (k1, . . . , k2ℓsk+2) = esk
(0)
A ∥esk

(0)
B = (s

(1)
A , . . . , s

(ℓsk)
A , 1, s

(1)
B , . . . , s

(ℓsk)
B , 1).

Observe that cti is an encryption of gx·s
(i)
A under the public key epk

(0)
A for each i ∈ [ℓsk], since they are

computed using FlipEncrypt. Similarly, ctℓsk+1 is an encryption of gx under the public key epk
(0)
A since

it is computed using Encrypt. This implies that
〈
cti, esk

(0)
A

〉
= gki for each i ∈ [ℓsk + 1]. However,
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since cAi = cti∥1G, we have 〈
cAi ,k

〉
=
〈
cti, esk

(0)
A

〉
= gx·ki ,

for each i ∈ [ℓsk]. Moreover, since k2ℓsk+2 = kℓsk+1 = 1 and cBℓsk+1 = cAℓsk+1, we have
〈
cBℓsk+1,k

〉
=〈

cAℓsk+1,k
〉
= gx.

Finally, for each i ∈ [ℓsk] we have
〈
cBi ,k

〉
=
〈
ct′i, esk

(0)
A

〉
·
〈
cti, esk

(0)
B

〉
. Here,

〈
ct′i, esk

(0)
A

〉
=

 ℓsk∏
j=1

f
γ
(j)
A ·ui·s(j)A

B

 · fΓA·ui

B · fri
B · f

−ri
A

= f−ΓA·ui

B · fΓA·ui

B · fri
B · f

−ri
A

= fri
B · f

−ri
A ,

where the second equality follows from the fact that ΓA = −
∑ℓsk

j=1 γ
(j)
A · s

(j)
A . Moreover, we have

〈
cti, esk

(0)
B

〉
=

 ℓsk∏
j=1

g
ri·s(j)B
j

 · gx·s(i)B · fri
A = gx·s

(i)
B · f−riB · fri

A ,

where the second equality follows from the fact that fB =
∏ℓsk

j=1 g
−s(j)B
j . It follows that〈

cBi ,k
〉
=
〈
ct′i, esk

(0)
A

〉
·
〈
cti, esk

(0)
B

〉
= gx·s

(i)
B .

Thus, {{x}} is indeed base-g exponent-linear decodable under k. □

In sum, it follows from the above claim that parties run DEval with encodings of the input that
are base-g exponent-linear decodable. Additionally, observe that kA and kB , computed by party-A

and party-B in MKHSS.Eval, form a subtractive sharing of k because kA − kB =
(
esk

(0)
A ∥0Z

)
−(

0Z ∥ − esk
(0)
B

)
= esk

(0)
A ∥esk

(0)
B = k. Let ε′ = ε/((ℓsk + 1) · Bsize). Since B, Bsize and 1/ε are all

bounded by poly(λ) and ℓsk is polynomial in λ, we have ε′ is polynomial in λ, which in turn implies
from Lemma 2 that there exists an ε′-correct, B-bounded base-g algorithm for distributed discrete

logarithm, as required by Figure 8. Furthermore, we have s
(i)
A , s

(i)
B ≤ 1 for each i ∈ [ℓsk], and so it

follows from Lemma 3 that the parties obtain a subtractive sharing of the program output upon
MKHSS evaluation, except with a probability of at most ε′ · Bsize · (ℓsk + 1) + negl(λ) = ε + negl(λ).
Thus, the MKHSS scheme has ε-correctness.

Security. The security property requires that the input share JxKσ1−σ of party-(1 − σ), ensures the
privacy of an input x shared using party-σ’s public key pkσ. Recall that the public key pkσ consists

of pkσ = (epk(0)σ , . . . , epk(ℓsk)σ ) where

epk(0)σ = (g1, . . . , gℓsk , fσ),

epk(i)σ =

(
g
γ(1)
σ

i , . . . , gγ
(ℓsk)
σ

i , gΓσ
i

)
, ∀i ∈ [ℓsk].

while the share JxKσ1−σ =
(
{cti}ℓsk+1

i=1 , {rcti,j}1≤i,j≤ℓsk
)
where

cti = (gri1 , . . . , grii−1, g
ri
i · g

x, grii+1, . . . , g
ri
ℓsk
, fri

σ )

rcti,j = (g
γ(1)
σ ·ui

j , . . . , gγ
(ℓsk)
σ ·ui

j , gΓσ·ui
j · grij ),

for each i, j ∈ [ℓsk], and
ctℓsk+1 = (g

rℓct
1 , . . . , g

rℓct
ℓsk

, f
rℓct
σ · gx).

As described in MKHSS.Share, each cti is an encryption of gx·s
(i)
σ using randomness ri and each

rcti,j is an encryption of grij . To argue security, we will first show that each rcti,j is indistinguishable
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from a tuple of ℓsk + 1 random group elements, despite using the same randomness ui to compute
rcti,1, . . . , rcti,ℓsk . This allows sampling rcti,j independently of cti which, in turn, allows leveraging the
security of the encryption scheme to argue the indistinguishability of cti. However, before we argue
the indistinguishability of rcti,j , we will prove that the public keys epk(0)σ , . . . , epk(ℓsk)σ can each be
sampled independently.

We now proceed to prove the security of the MKHSS scheme. Consider any efficient adversary
A for the security experiment defined in Definition 6. Let the output of the security experiment be
defined as 1 if A’s output b′ is equal to the challenge bit b; else let the output of the experiment be
defined as 0. We will use a hybrid argument to show that the output of the experiment is 1 with
probability of at most 1/2 + negl(λ).

– Hybrid H0. This hybrid is the output of the experiment when run with adversary A.

– Hybrid H1. This hybrid is identical to the previous hybrid, except that epk(i)σ is computed as

epk(i)σ =
(
gηi

1 , . . . , gηi

ℓsk
, fηi

σ

)
for each i ∈ [ℓsk] where η1, . . . , ηℓsk are uniformly random over Zp.

Claim. H0
c≈ H1.

Proof. In H0, the public key pkσ is of the form

epk(0)σ = (g1, . . . , gℓsk , fσ)

epk(i)σ =

(
g
γ(1)
σ

i , . . . , gγ
(ℓsk)
σ

i , gΓσ
i

)
, ∀i ∈ [ℓsk],

while in this hybrid, pkσ is of the form

epk(0)σ = (g1, . . . , gℓsk , fσ)

epk(i)σ =
(
gηi

1 , . . . , gηi

ℓsk
, fηi

σ

)
, ∀i ∈ [ℓsk],

where (γ
(1)
σ , . . . , γ

(ℓsk)
σ ) and (η1, . . . , ηℓsk) are uniformly random over Zℓsk

p . Note that the last compo-

nent of each epk(i)σ is computed similarly in both hybrids—namely as the inner product of the first

ℓsk elements of epk(i)σ with esk(0)σ . The ciphertexts too are computed identically using the corre-
sponding public keys in both hybrids. Thus, the only difference in the hybrids is in the distribution
of the first ℓsk elements of each epk(i)σ .

We will argue that H0
c≈ H1 using a hybrid argument. Indistinguishability of H0 and H1 follows

from Lemma 4, since the first ℓsk columns of epk(i)σ in H0 and H1 are each indistinguishable from
a uniformly random matrix in Gℓsk×(ℓsk+1).

• Hybrid H0.0. This hybrid is identical to H0.

• Hybrid H0.1. This hybrid is identical to the previous hybrid, except that each epk(i)σ is com-

puted as epk(i)σ =
(
gη

(1)
i , . . . , gη

(ℓsk)

i , g−
∑ℓsk

j=1 η
(j)
i ·s

(j)
σ

)
, where (η

(1)
i , . . . , η

(ℓsk)
i )←$Zℓsk

p are sampled

uniformly random at random.

The only difference between the two hybrids is that in H0.0, the first ℓsk elements of epk(i)σ are

of the form

(
g
γ(1)
σ

i , . . . , gγ
(ℓsk)
σ

i

)
, where γ

(j)
σ is uniformly random over Zp, for each j ∈ [ℓsk], while

in H0.1 they are sampled uniformly at random from G. It thus follows from Lemma 4 (Matrix
DDH) that H0.0

c≈ H0.1.

• Hybrid H0.2. This is identical to H1.

The only difference between the two hybrids is that in H0.1, the first ℓsk elements of epk(i)σ are
sampled uniformly at random from G while in H0.2 they are of the form

(
gηi

1 , . . . , gηi

ℓsk

)
, where

ηi is uniformly random over Zp. It thus follows from Lemma 4 that H0.1
c≈ H0.2.

Consequently, we have H0.0
c≈ H0.2, which in turn implies that H0

c≈ H1. □
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– Hybrid H2. This hybrid is identical to the previous hybrid, except that fσ ←$G is sampled uniformly
at random in MKHSS.KeyGen.

Claim. H1
s≈ H2.

Proof. The primary difference between the two hybrids is that in H1, we have

epk(0)σ =
(
gα1 , . . . , gαℓsk , g

∑ℓsk
j=1 αi·s(j)σ

)
while in H2 we have

epk(0)σ = (gα1 , . . . , gαℓsk , fσ) ,

where α = (α1, . . . , αℓsk)←$Zℓsk
p and fσ ←$G. Note that each epk(i)σ is computed identically from

epk(0)σ in both hybrids. Similarly, given a public key pk, the ciphertexts too are computed in the
same manner in both hybrids.

We will show that H1
s≈ H2 from the leftover hash lemma (cf. Lemma 1). In more detail, let

Hα(s) := −⟨α, s⟩ for any α ∈ Zℓsk
p and s ∈ {0, 1}ℓsk . The family of hash functions H = {Hα} from

the set X = {0, 1}ℓsk to the set Y = Zp is 2-universal, which implies that (α,−⟨α, s⟩) is 1
p -uniform

in Zℓsk+1
p from Lemma 1 since √

p

4 · 2ℓsk
≤
√

p

4 · p3
=

1

2 · p
<

1

p
,

where the second equality follows from the fact that ℓsk = ⌈3 log2 p⌉. The only difference between

the two hybrids is that, in H1 we have fσ = gHα(esk(0)σ ) while in this hybrid, fσ is uniformly random

over G. This implies that H1
s≈ H2 since

(
α, Hα(esk

(0)
σ )
)
is 1/p-uniform over Zℓsk+1

p , and 1/p is

negligible. □

– Hybrid H3. This hybrid is identical to the previous hybrid, except that epk(i)σ ←$Gℓsk+1 is sampled
uniformly at random, for each i ∈ [ℓsk] in MKHSS.KeyGen.

Claim. H2
c≈ H3.

Proof. In both hybrids, epk(0)σ = (g1, . . . , gℓsk , fσ) is sampled uniformly at random from Gℓsk+1.
However, in H2 we have

epk(i)σ =
(
gηi

1 , . . . , gηi

ℓsk
, fηi

σ

)
,

for each i ∈ [ℓsk] where η1, . . . , ηℓsk are uniformly random over Zp. On the other hand, in H3, each

epk(i)σ is sampled uniformly at random from Gℓsk+1. Note that any differences in the ciphertexts
rcti,j only stem from the differences in the public keys. The ciphertexts are otherwise computed
identically using the corresponding public keys in both hybrids. Thus, it follows from Lemma 4
that the two hybrids are indistinguishable. □

– Hybrid H4. This hybrid is identical to the previous hybrid, except that rcti,j ←$Gℓsk+1 is sampled
uniformly at random for each i, j ∈ [ℓsk] in MKHSS.Share.

Claim. H3
c≈ H4.

Proof. The only difference between the two hybrids is that inH3, (rcti,1, . . . , rcti,ℓsk) are encryptions
computed using the same randomness ui while in H4 they are sampled uniformly at random. In
more detail, in H3,

rcti,j =
(
gγ

(1)
j ·ui , . . . , gγ

(ℓsk)

j ·ui , gγ
(ℓsk+1)

j ·ui · grij
)
,

for each i, j ∈ [ℓsk] where
(
γ
(1)
j , . . . , γ

(ℓsk+1)
j

)
is uniformly random over Zℓsk+1

p , for each j ∈ [ℓsk] and

(u1, . . . , uℓsk) is uniformly random over Zℓsk
p . On the other hand, in case ofH4, all rcti,j are uniformly

random over Gℓsk+1. It thus follows from Lemma 4 that the two hybrids are indistinguishable. □
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– Hybrid H5. This hybrid is identical to the previous hybrid, except that cti←$Gℓsk+1 is sampled
uniformly at random for each i ∈ [ℓsk + 1] in MKHSS.Share.

Claim. H4
c≈ H5.

Proof. The only difference between the two hybrids is that in H4,

cti = (gα1·ri , . . . , gαi−1·ri , gαi·ri · gxb , gαi+1·ri , . . . , gαℓsk+1·ri)

for each i ∈ [ℓsk + 1] where (α1, . . . , αℓsk+1) and (r1, . . . , rℓsk+1) are uniformly random over Zℓsk+1
p ,

while inH5, each cti is uniformly random over Gℓsk+1. Indistinguishability of the two hybrids follows
directly from Lemma 4. □

To complete the proof, observe that in H5, JxbK
σ
1−σ =

(
{cti}ℓsk+1

i=1 , {rcti,j}1≤i,j≤ℓsk
)
where each cti

and rcti,j is sampled uniformly at random from Gℓsk+1. Thus, JxbK
σ
1−σ is independent of xb which

implies that the output of the experiment in H5 is 1 with a probability of at most 1/2. It follows
from our argument above that H0 ≈c H5, which implies that A wins the MKHSS security game with
a probability of at most 1/2 + negl(λ). ■

5 Applications

In this section, we describe direct applications of our MKHSS constructions.

5.1 Sublinear, two-round secure computation

In this section, we discuss how MKHSS can be applied to achieve sublinear, two-round, two-party
secure computation protocols. Sublinear here means that the communication cost is bounded by
a fixed polynomial in the total length of the inputs, outputs and the security parameter, but is
independent of the circuit evaluated. We refer the reader to Goldreich [Gol06] for the standard security
definitions of two-party secure computation.

Secure computation from DCR and NIDLS. An MKHSS scheme with negligible correctness
error immediately implies a sublinear two-round secure computation protocol, as outlined in Section 1.
Consequently, we obtain the following corollary of Theorems 1 and 6.

Corollary 1 (Sublinear protocols for RMS programs). There exists a sublinear two-round, two-party,
secure computation protocol for evaluating polynomial-size RMS programs in the common reference
string model and with semi-honest security, under either (1) the DCR assumption, or (2) the DDH
and small exponent assumptions in the NIDLS framework.

Secure computation from DDH. In contrast to MKHSS with a negligible correctness error, our
DDH-based construction of MKHSS does not immediately imply a secure computation protocol, since
it has noticeable correctness error. Fortunately, we can obtain a similar result using the same tech-
niques as the ones used by Boyle, Gilboa, and Ishai [BGI17] to realize a sublinear, secure computation
protocol from DDH-based HSS (which also has a noticeable correctness error).

In more detail, adopting the same approach as sketched in Section 1, which simply reconstructs
the output in the second round of the protocol, leads to a security issue: learning that the output has
an error leaks information about the inputs and the secret keys of the MKHSS scheme. The primary
challenge in constructing the secure computation protocol is handling this leakage.

The template for leakage-resilience. We describe the template used by Boyle et al. [BGI17] to derive
an analogous theorem for DDH-based HSS [BGI17, Theorem 4.14]. In particular, their template is
general and does not exploit specific properties of the underlying DDH-based HSS scheme, making it
also apply to our DDH-based MKHSS scheme.

As a first step, the idea is to use a simulatable, Las Vegas DDLog algorithm described in Boyle
et al. [BGI17] to instantiate DEval, which limits the leakage to a bounded number γ of intermediate
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memory values within the computation of the RMS program and/or the bits of the secret key. Note
that this does not affect the correctness or the security of the MKHSS scheme.

Next, to ensure security despite the leakage on intermediate values of the computation, the idea
is to replace the MKHSS evaluation of the circuit C with an evaluation of a leakage-resilient circuit
C ′ computing the same function. In a nutshell, C ′ emulates the execution of a multi-party secure
computation protocol of C, which guarantees correctness and security against (up to) γ corruptions.
This means that privacy of the inputs is preserved when up to γ intermediate values of C ′ (which
correspond to the views of at most γ parties in the emulated multi-party protocol) are leaked.

Finally, to deal with the leakage on the bits of the secret key, each party needs to sample a suf-
ficiently long BHHO secret key, such that leaking γ bits continues to ensure security of the MKHSS
input shares. Intuitively, this is secure because of the leakage-resilience property of the BHHO en-
cryption scheme [NS09].

We refer to Boyle et al. [BGI17] for full details on these different components and how they
transform a leaky evaluation into a secure two-party protocol. Using the leakage-resilience template,
we obtain the following corollary of Theorem 2.

Corollary 2 (Sublinear protocols for NC1). Under the DDH assumption, there exists a sublinear two-
round, two-party, secure protocol for evaluating NC1 circuits in the common reference string model
and with semi-honest security.

Note that Corollary 2 only gives a secure computation protocol for NC1 circuits C, as opposed to
all RMS programs, because we require that the MKHSS scheme supports evaluation of the leakage
resilient version of C. As discussed in Boyle et al. [BGI17], it is not known if RMS programs (or even
branching programs) can be evaluated in a leakage-resilient manner using an RMS program.

5.2 Attribute-based non-interactive key exchange

An intriguing application of MKHSS is the ability to perform policy-based key-exchange. In particular,
two parties, Alice and Bob, each have secret attributes xA and xB , respectively. For a public predicate
C, Alice and Bob obtain the same secret key if and only if C(xA, xB) = 0 (the predicate is satisfied),
and independently distributed keys otherwise. In this process, nothing about Bob’s secret attribute
is leaked to Alice, as from her perspective she always receives a random key, and vice versa.

Kolesnikov et al. [KKL+16] present an interactive solution for this problem using using garbled
circuits and supporting general predicates.15 Many related notions of attribute-based key-exchange
also exist, including witness-authenticated key exchange (see the overview of Melissaris [Mel22]).
We also note that attribute-based key exchange generalizes the widely-used notion of password-
authenticated key exchange, where the predicate essentially checks that Alice and Bob hold the same
secret attribute (or password).

To the best of our knowledge, we construct the first attribute-based non-interactive key-exchange
(ANIKE) protocol for NC1 predicates in the standard model. In particular, we show that MKHSS for
polynomial-size RMS programs implies ANIKE with predicates from the same function class.

We present a universally composable (UC) corruptible ideal functionality for attribute-based non-
interactive key exchange, which we then instantiate using MKHSS. This is a more desirable security
guarantee for key exchange than a weaker property-based definition, since it composes with other
primitives (key exchange is often used as a building block in larger protocols).

The ideal functionality is defined as follows. In the initialization phase (which happens once),
the functionality receives an attribute x from every party. The adversary is assumed to statically
corrupt an arbitrary subset of these parties. In the key exchange phase (which is repeatable), and
instantiated between a pair of parties Alice and Bob, the functionality receives a request from Alice
and Bob, which consists of a predicate, and outputs a fresh key to each party. If repeated with the
same predicate, the functionality outputs the same keys deterministically. The pair of keys output
by the functionality are defined as follows, depending on whether the parties are honest or corrupted
and whether the predicate is satisfied.

First we consider the case where both parties are honest:

– If Alice and Bob’s attributes satisfy the predicate, the functionality samples a fresh key k which
it sends to both parties.

15 They define attribute-based key exchange in a client-server model, which is equivalent to our notion.
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– If their attributes do not satisfy the predicate, the functionality independently samples two keys
kA and kB , then sends kA to Alice and kB to Bob.

Second, we consider the case where one of the parties is corrupted:

– If both parties’ attributes satisfy the predicate, the adversary gets to specify the key k, which the
functionality sends to both parties.

– If their attributes do not satisfy the predicate, the functionality samples a uniformly random key
to send to the uncorrupted party.

We refer to Functionality 1 for the full specification and define the algorithms, properties, and key
exchange protocol that we will instantiate in Definition 11.

Attribute-Based Non-Interactive Key Exchange Protocol

crs← Setup(1λ)

Alice(crs, xA) Bob(crs, xB)

(peA, stA)← AttrKeyGen(crs, xA) (peB , stB)← AttrKeyGen(crs, xB)

peA peB

k ← AttrKeyDer(A, stA, peB , C) k ← AttrKeyDer(B, stB , peA, C)

Fig. 10: The ANIKE protocol using the algorithms specified in Definition 11.

Definition 11 (Attribute-Based Non-interactive Key Exchange). An attribute-based non-interactive
key exchange (ANIKE) protocol with attribute space X consists of three efficient algorithms (Setup,
AttrKeyGen,AttrKeyDer), which are used to instantiate the two-party protocol described in Figure 10,
and which have the following syntax:

– Setup(1λ) → crs. The randomized setup algorithm takes as input the security parameter and
outputs a common reference string (CRS) crs.

– AttrKeyGen(crs, x)→ (stσ). The randomized attribute encoding algorithm takes as input the CRS
crs and an attribute x ∈ X . It outputs a public encoding pe and private state st.

– AttrKeyDer(σ, stσ, pe1−σ, C) → k. The deterministic key derivation algorithm takes as input the
party identifier σ ∈ {A,B}, the CRS crs, the party’s secret state stσ, the other party’s public
encoding pe1−σ, and a circuit C describing the predicate. It outputs a key k.

Security. We say that the ANIKE protocol is secure if it realizes the corruptible ideal functionality
described in Functionality 1 against a semi-honest adversary assuming an authenticated channel.

Construction. Our construction is parameterized by an MKHSS scheme supporting polynomial-size
RMS programs. We assume, without loss of generality, that the MKHSS message spaceM is a finite
field F, such that |F| ≥ 2λ. Such a setup can always be achieved by working in the field extension of
F2.

Remark 4. For simplicity, in our construction, we let the algorithm AttrKeyGen be parameterized by
a party identifier σ ∈ {A,B}. This allows us to construct AttrKeyGen “asymmetrically” by having
it be defined differently depending on whether Alice or Bob runs it. This change is without loss of
generality, since the party-agnostic version of AttrKeyGen can be recovered by having the parties play
both roles simultaneously and agree on their respective roles in the key-derivation phase.

To encode her attribute xA, Alice maps it into the field F. She also samples a PRF key K which
will be used to generate pseudorandom shifts ∆A ∈ F in the key derivation phase. Specifically, these
shifts are used to ensure the derived keys are uniformly random when the predicate C is unsatisfied.
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Functionality Fanike

Parties. The functionality is parameterized by a set of parties and an adversary A that statically corrupts
an arbitrary subset of the parties.

Procedure. The functionality aborts if it receives any incorrectly formatted messages.

– One-time initialization phase.

1: Receive a message (Init, idσ, x) containing an attribute x from every party with identifier σ.

2: Initialize a lookup table of generated keys T .

3: Send ready to A.

– Repeatable key exchange phase between Alice and Bob.

1: Receive a message (KeyAgree, idB , C) from Alice and a message (KeyAgree, idA, C) from Bob,
where C is a circuit describing a predicate.

2: Receive a message from A, which is either empty, contains a key and an identifier σ ∈ {idA, idB},
or contains two keys and both identifiers.

3: If (idA, idB , C) ∈ T :

3.1 Set (kA, kB) := T [(idA, idB , C)].

4: Else if A sent an empty message, i.e., the Alice and Bob are both honest:

4.1 If C(xA, xB) = 0: sample kA uniformly and set kB = kA.

4.2 Else if C(xA, xB) = 1: sample kA, kB uniformly and independently.

5: Else if A sent kσ, i.e., party-σ is corrupted and party σ ∈ {A,B} \ {σ} is honest:
5.1 If C(xA, xB) = 0: set kσ := kσ.

5.2 Else if C(xA, xB) = 1: sample kσ uniformly.

6: If A sent kA and kB , i.e., both parties are corrupted:

6.1 Do nothing.

7: Set T [(idA, idB , C)] = (kA, kB).

8: Output kA to Alice and kB to Bob.

Functionality 1: Corruptible ideal functionality for attribute-based non-interactive key exchange.

Alice then samples MKHSS keys (pkA, skA) and computes shares (JKA∥xAKAA, JKA∥xAKAB) of

KA∥xA. Her public encoding consists of her MKHSS public key pkA and Bob’s share JKA∥xAKAB ,
while her private encoding consists of her MKHSS secret key skA and her own share JKA∥xAKAA. Bob
encodes his attribute xB analogously.

Given her own private encoding and Bob’s public encoding, Alice now holds her MKHSS secret key
skA, Bob’s MKHSS public key pkB , and her shares JKA∥xAKAA and JKB∥xBKBA . She homomorphically
evaluates the program PC , where PC is defined as:

PC(KA||xA,KB ||xB) = FKA
(Aid∥Bid∥C)︸ ︷︷ ︸

∆A

·FKB
(Aid∥Bid∥C)︸ ︷︷ ︸

∆B

·C(xA, xB).

That is, PC computes the predicate C(xA, xB) and then multiplies the result by ∆A · ∆B , derived
from the PRF. Bob symmetrically evaluates his shares for the same program PC using his MKHSS
secret key skB and Alice’s MKHSS public key pkA. Thus, if C(xA, xB) = 0, Alice and Bob end up
with subtractive shares of 0, i.e., the same key. On the other hand, if C(xA, xB) ̸= 0, Alice and Bob
end up with shares of ∆A ·∆B , i.e., independent pseudorandom keys.

We refer to Figure 11 for a formal description of our construction.

Theorem 3. Assuming the existence of an MKHSS scheme MKHSS for polynomial-size RMS pro-
grams and the existence of PRFs in NC1, the construction described in Figure 11 is an attribute-based
non-interactive key exchange supporting predicates described by polynomial-size RMS programs.
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Attribute-Based Non-Interactive Key Exchange from MKHSS

Public Parameters. Let MKHSS = (Setup,KeyGen, Share,Eval) be an MKHSS scheme with external
security (cf. Definition 7) for polynomial-size RMS programs defined over the finite field F, where |F| ≥ 2λ.
Let F : {0, 1}λ ×{0, 1}⋆ → F be a PRF. Let FK : {0, 1}⋆ → F be a PRF with keys sampled from {0, 1}λ,
such that Fk(x) is computable by a polynomial-size RMS program over F.

The evaluated program. Define PC to be the program that, on input KA∥xA,KB∥xB outputs
FKA(Aid∥Bid∥C) · FKB (Aid∥Bid∥C) · C(xA, xB), where C is the attribute predicate.

NIKE.Setup(1λ):

1 : crs← MKHSS.Setup(λ)

2 : return crs

NIKE.AttrKeyGen(crs, σ, x):

1 : K ←$ {0, 1}λ

2 : (pk, sk)← MKHSS.KeyGen(crs)

3 : (JK∥xKσA, JK∥xKσB)← MKHSS.Share(crs, σ, pk, (K∥x))
4 : pe := (pk, JK∥xKσ1−σ)

5 : st := (sk, JK∥xKσσ)
6 : return (pe, st)

NIKE.AttrKeyDer(σ, stσ, pe1−σ, C):

1 : parse pe1−σ = (pk1−σ, JK1−σ∥x1−σK1−σ
σ )

2 : parse stσ = (skσ, JKσ∥xσKσσ)

3 : k ← MKHSS.Eval(crs, σ, skσ, pk1−σ, JKA∥xAKAσ , JKB∥xBKBσ , PC)

4 : return k

Fig. 11: Attribute-based non-interactive key exchange from MKHSS.

Proof. We show that Figure 11 securely realizes the functionality Fanike described in Functionality 1
by constructing a simulator which simulates the view of the corrupted party and interacts with Fanike

on behalf of the ideal adversary.

– Initialization phase. For every corrupted party, the simulator obtains their attribute x and sends
it to Fanike on behalf of the ideal adversary.

We now emulate a key derivation phase between two parties, Alice and Bob.

– Case 1: Both parties are honest. By correctness of MKHSS, we have that

kA − kB = PC(∆A∥xA, ∆B∥xB) = C(xA, xB) ·∆A ·∆B ∈ F.

Thus, if C(xA, xB) = 0, we have that kA = kB , with all but negligible probability. Moreover, the
tuple (kA, kB) is computationally indistinguishable from a uniformly random tuple (kA, kB) ∈
F × F subject to kA = kB , by the external security Definition 7. As such, when the predicate is
satisfied, kA and kB matches the output of the ideal functionality.

On the other hand, if C(xA, xB) ̸= 1, we have kA = kB +C(xA, xB) ·∆A ·∆B , where ∆A and ∆B

are the secret pseudorandom shifts output by the PRF evaluated under independent keys (by the
correctness of MKHSS and the definition of the evaluated program PC).

We proceed to show that (kA, kB) is computationally indistinguishable from a random tuple via
a simple hybrid argument:

• Hybrid H0. This hybrid consists of the tuple (kA, kB), as computed using AttrKeyDer by each
party in Figure 11.
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• Hybrid H1. In this hybrid, we replace kB with a uniformly random key and set kA = kB +
C(xA, xB) ·∆A ·∆B . This hybrid is computationally indistinguishable from the previous one
by the external security of MKHSS.

• Hybrid H2. In this hybrid, we sample (kA, kB) as a uniformly random tuple over F× F. This
hybrid is computationally indistinguishable from the previous one by the pseudorandomness
of ∆A · ∆B (which are generated internally using the PRF). To see this, it suffices to note
that, in H1, we already have that kB is computationally indistinguishable from a random field
element conditioned on kA, since we can view ∆A ·∆B as being a uniformly random element.

At this point, it suffices to note that H2 is distributed identically to the output of the ideal
functionality when the predicate is not satisfied. This concludes the proof for the case where both
parties are honest.

– Case 2: Alice is corrupted. The simulator computes (pkB , skB) ← MKHSS.KeyGen(crs) and

(J0KAB , J0KBB) ← MKHSS.Share(crs, B, pkB ,0), to define peB := (pkB , J0KBA), where 0 := 0λ+|x|.
The simulated view of Alice consists of crs and peB . Eventually, the simulator recovers xA and

stA = (skA, JKA∥xAKAA). It computes kA := MKHSS.Eval(crs, A, skA, pkB , JKA∥xAKAA, J0KBA) and
sends kA to the functionality on behalf of the ideal adversary. The functionality outputs kA to
Alice and kB to Bob. By the security of MKHSS and a straightforward hybrid argument, the joint
distribution of Bob’s message and the output of both parties in the real world is indistinguishable
from the simulation of Bob’s message and the output of the ideal functionality.

– Case 3: Bob is corrupted. This case follows by symmetry.

■

Corollary 3. Assuming the existence of PRFs in NC1, there exists an attribute-based non-interactive
key exchange supporting predicates described by polynomial-size RMS programs under either (1) the
DCR assumption or (2) the DDH and small exponent assumptions in the NIDLS framework.

6 Public-Key PCFs from MKHSS and Applications

Practical secure computation protocols are realized in the preprocessing model [DPSZ12]: During
an “offline” preprocessing phase, the computing parties generate a large amount of pseudorandom
correlations that are independent of any function. Then, during an online phase, the parties use the
stored correlations to compute a function over their inputs in a secure protocol. The advantage of
this model is that it pushes the bulk of the communication and computation costs of the function-
dependent online phase to the preprocessing phase. Pseudorandom correlation generators (PCGs) and
functions (PCFs) push this model of secure computation to the limit by allowing parties to locally
expand a short key into a virtually unbounded amount of correlated randomness. However, traditional
approaches still require the parties to run an interactive protocol to generate their key.

Public-key PCFs. A public-key PCF (PK-PCF) is a PCF equipped with a non-interactive key dis-
tribution protocol. Public-key PCFs were originally introduced in the work of Orlandi et al. [OSY21]
and formalized in the recent work of Bui et al. [BCM+24]. PK-PCFs are motivated by their direct
application to secure computation in the preprocessing model.

Let Y be a correlation such that a secure access to random samples from Y enables efficient
information-theoretic two-party computation (typically, Y can sample an oblivious transfer correla-
tion, Beaver triples, authenticated Beaver triples, or other types of correlated randomness, depend-
ing on the application at hand). A PK-PCF for Y induces the following appealing template for
communication-efficient secure two-party computation:

Non-interactive preprocessing. Ahead of time, all participants Pi of a secure computation
network upload their PK-PCF public key pki to some public bulletin board.
Fast, online secure computation. Whenever two parties Pi and Pj want to securely compute
a function, they can retrieve each other’s public keys, non-interactively derive correlated PCF
keys, and generate as many pseudorandom samples from Y as they need to enable a fast online
phase for a two-party protocol in the correlated randomness model (e.g., GMW [GMW87] or
SPDZ [DPSZ12]).
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In this section, we construct PK-PCFs for all correlations computable by RMS programs over
a finite ring. As another application of our construction, in Section 6.3, we show a protocol for
generating multi-party correlations with quadratic improvement in communication relative to the
prior constructions of PCFs.

6.1 Background: Public-key pseudorandom correlation functions

In this section, we provide some background and a formal definition of PK-PCFs, following the
formalization of Bui et al. [BCM+24].

The standard PCF (and PK-PCF) definition requires the correlation to be “reverse sampleable”
which, roughly speaking, means that given any (possibly adversarially generated) share of the target
correlation, the other (honest) share can be efficiently sampled. We note that all additive correlations,
which will be the target of our constructions, are reverse sampleable.

Remark 5 (Notation). In this section, we will identify the two parties using indices 0 and 1, instead
of letters A and B as we did in previous sections. This simplifies notation when we define multi-party
PCFs in Section 6.3.

Definition 12 (Reverse-Sampleable Correlation). Let λ be a security parameter and n = n(λ) ∈
poly(λ) be an output length. Define two efficient algorithms Y and RSample with the following syntax:

– Y(1λ) → (y0, y1). The randomized correlation sampling algorithm takes as input the security
parameter and outputs a pair (y0, y1) ∈ {0, 1}n × {0, 1}n defining a correlation.

– RSample(1λ, σ, yσ)→ y1−σ. The deterministic reverse-sampling algorithm takes as input the secu-
rity parameter, an index σ ∈ {0, 1}, and a string yσ ∈ {0, 1}n. It outputs a string y1−σ ∈ {0, 1}n.

We say that Y defines a reverse-sampleable correlation if for all σ ∈ {0, 1}, it holds that:(y0, y1)

∣∣∣∣∣∣∣ (y0, y1)← Y(1λ)

 ≈s

(y0, y1)

∣∣∣∣∣∣∣
(ŷ0, ŷ1)← Y(1λ)

yσ := ŷσ

y1−σ ← RSample(1λ, σ, yσ)

.

ExpprA,N,0(λ):

crs← pkPCF.Setup(1λ)
(pkσ, skσ)← pkPCF.KeyGen(crs, σ), ∀σ ∈ {0, 1}
foreach i ∈ [N ]:
xi ←$ {0, 1}n

(y0
i , y

1
i )← Y(1λ)

b← A(pk0, pk1, (xi, y
0
i , y

1
i )i∈[N ])

return b

ExpprA,N,1(λ):

crs← pkPCF.Setup(1λ)
(pkσ, skσ)← pkPCF.KeyGen(crs, σ), ∀σ ∈ {0, 1}
kσ := pkPCF.KeyDer(crs, σ, pk1−σ, skσ), ∀σ ∈ {0, 1}
foreach i ∈ [N ]:
xi ←$ {0, 1}n

yσ
i := pkPCF.Eval(crs, σ, kσ, xi), ∀i ∈ {0, 1}

b← A(pk0, pk1, (xi, y
0
i , y

1
i )σ∈[N ])

return b

Fig. 12: Pseudorandom Y-correlated outputs for a weak PK-PCF.

Definition 13 (Public-Key Pseudorandom Correlation Function [BCM+24]). Let λ be a security
parameter, Y be a reverse-sampleable correlation with output length n = n(λ) ∈ poly(λ), and λ ≤
m = m(λ) ∈ poly(λ) be an input length. A Public-Key Pseudorandom Correlation Function (PK-
PCF) for Y is defined by a tuple of algorithms pkPCF = (Setup,Gen,KeyDer,Eval) with the following
functionality:

– pkPCF.Setup(1λ)→ crs. The randomized setup algorithm takes as input the security parameter λ
and outputs a common reference string (CRS) crs.

– pkPCF.KeyGen(crs, σ) → (pkσ, skσ). The randomized key generation algorithm takes as input the
CRS crs and a party identifier σ ∈ {0, 1}. It outputs a public and secret key pair (pkσ, skσ) for
the party.
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ExpsecA,N,σ,0(λ):

crs← pkPCF.Setup(1λ)
(pkσ̂, skσ̂)← pkPCF.KeyGen(crs, σ̂), ∀σ̂ ∈ {0, 1}
k1−σ := pkPCF.KeyDer(crs, σ, pkσ, sk1−σ)

foreach i ∈ [N ]:
xi ←$ {0, 1}n

y1−σ
i := pkPCF.Eval(crs, 1− σ, k1−σ, xi)

b← A(pk0, pk1, σ, skσ, (xi, y
1−σ
i )i∈[N ])

return b

ExpsecA,N,σ,1(λ) :

crs← pkPCF.Setup(1λ)
(pkσ̂, skσ̂)← pkPCF.KeyGen(crs, σ̂), ∀σ̂ ∈ {0, 1}
kσ := pkPCF.KeyDer(crs, σ, pkσ, sk1−σ)

foreach i ∈ [N ]:
xi ←$ {0, 1}n

yσ
i := pkPCF.Eval(crs, σ, kσ, xi)

y1−σ
i ← RSample(1λ, σ, yσ

i )

b← A(pk0, pk1, σ, skσ, (xi, y
1−σ
i )i∈[N ])

return b

Fig. 13: Security of game for a weak PK-PCF. Here, RSample is as defined in Definition 12.

– pkPCF.KeyDer(crs, σ, pk1−σ, skσ)→ kσ. The deterministic key derivation algorithm takes as input
the CRS crs, a party identifier σ ∈ {0, 1}, the public key pk1−σ of another party, and the secret
key skσ of this party. It outputs an evaluation key kσ for this party.

– pkPCF.Eval(crs, σ, kσ, x) → yσ. The deterministic evaluation algorithm takes as input the CRS,
the party identifier σ ∈ {0, 1}, an evaluation key kσ, and an input x ∈ {0, 1}m. It outputs a string
yσ ∈ {0, 1}n.

We say that pkPCF = (KeyGen,Eval) is a PK-PCF for the reverse-sampleable correlation Y, if the
following two properties hold:

Correctness / Pseudorandom Y-correlated outputs. For every σ ∈ {0, 1}, all efficient adversaries A,
and all N = N(λ) ∈ poly(λ), there exists a negligible function negl(·) such that:

AdvprA,N (λ) :=
∣∣∣Pr[ExpprA,N,0(λ) = 1]− Pr[ExpprA,N,1(λ) = 1]

∣∣∣ ≤ negl(λ),

where ExpprA,N,b(λ), for b ∈ {0, 1}, is as defined in Figure 12. In particular, the adversary is given
access to N samples.

Security. For all σ ∈ {0, 1}, and all efficient adversaries A, there exists a negligible function negl(·)
such that:

AdvsecA,N,σ(λ) :=
∣∣Pr[ExpsecA,N,σ,0(λ) = 1]− Pr[ExpsecA,N,σ,1(λ) = 1]

∣∣ ≤ negl(λ),

where ExpsecA,N,σ,b(λ), for b ∈ {0, 1}, is as defined in Figure 13 (again, with the adversary given N
samples).

Remark 6 (Weak vs. Strong PCFs). We remark that, contrary to pseudorandom functions, the default
notion of a PCF is a weak PCF, where the inputs are chosen uniformly at random. A PCF (as defined
in Definition 13) can be generically converted to a strong PCF using a random oracle.

6.2 Public-key PCFs from MKHSS

In this section, we provide a construction of a PK-PCF for any additive correlations computable by
RMS programs (which includes the class NC1). We start by defining additive correlations:

Definition 14 (Additive Correlation). Let λ be a security parameter, and let ny = ny(λ) ∈ poly(λ)
be an input length and nz = nz(λ) ∈ poly(λ) be an output length. We say that Y (as defined in Defini-
tion 12) is an additive correlation over a ring R defined by a function family {Cλ : Rny ×Rny → Rnz}λ∈N
if Y(1λ) outputs pairs of samples ((y0, z0), (y1, z1)), where (yσ, zσ) ∈ Rny×Rnz are uniformly random
conditioned on z0 + z1 = Cλ(y0, y1) We will drop the subscript λ when clear from context.

Remark 7. Additive correlations are naturally reverse-samplable. To see this, observe that given
(yσ, zσ), it is possible to efficiently sample y1−σ ← Rny , and set z1−σ := C(y0, y1)− zσ.

We present our PK-PCF construction for correlations computable by RMS programs in Figure 14.
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Public-Key PCF from MKHSS

Public Parameters. Let MKHSS = (Setup,KeyGen, Share,Eval) be an externally secure MKHSS scheme
for polynomial-size RMS programs defined over a ring R. Let nk = nk(λ) and nx = nx(λ) be polynomials
denoting the PRF key length and output length, respectively. Let Fk : Rm → Rnx be a PRF with keys
sampled from Rnk , such that Fk(x) is computable by a polynomial-size RMS program over R. Let Y be
an additive correlation over a ring R defined by a correlation circuit C computable by polynomial-size
RMS programs.

The evaluated program. For all vectors x ∈ Rm, define the program Px : Rnk × Rnk → R to be
the polynomial-size RMS program that, on input k0, k1 ∈ Rnk , computes yσ := Fkσ (x) ∈ Rnx , for all
σ ∈ {0, 1}, and outputs C(y0,y1).

pkPCF.Setup(1λ):

1 : crs← MKHSS.Setup(λ)

2 : return crs

pkPCF.KeyDer(crs, σ, skpcfσ , pkpcf1−σ):

1 : return kσ := (skpcfσ , pkpcf1−σ)

pkPCF.KeyGen(crs, σ):

1 : k ←Rnk

2 : (pk, sk)← MKHSS.KeyGen(crs)

3 : (JkKσ0 , JkKσ1 )← MKHSS.Share(crs, σ, pk, k)

4 : pkpcfσ := (pk, JkKσ1−σ)

5 : skpcfσ := (sk, JkKσσ, k)

6 : return (pkpcfσ , skpcfσ )

pkPCF.Eval(crs, σ, kσ,x):

1 : parse kσ := ((skσ, JkσKσσ, kσ), (pk1−σ, Jk1−σK1−σ
σ ))

2 : yσ := Fkσ (x)

3 : zσ := MKHSS.Eval(crs, σ, skσ, pk1−σ, JkσKσσ, Jk1−σK1−σ
σ , Px)

4 : return (yσ, zσ)

Fig. 14: Public-key PCF from MKHSS.

6.2.1 Security analysis We now turn to the security analysis of the PK-PCF from Figure 14.

Theorem 4 (Security of PK-PCF). Assuming the existence of an externally-secure MKHSS scheme
MKHSS for polynomial-size RMS programs over a finite ring R and the existence of PRFs in NC1,
the construction described in Figure 14 is a PK-PCF for arbitrary additive correlations described by
polynomial-size RMS programs over R.

Pseudorandomness. Consider the following sequence of hybrid games.

– Hybrid H0. This hybrid game consists of the pseudorandomness experiment Epkpr
A,N,0.

– Hybrid H1. In this hybrid game, the outputs (z0, z1) are computed by first sampling z1←$R, and
then setting z0 := z1 + Px(k0, k1).

Claim. H1 ≈c H0 assuming the external security of MKHSS.

Proof. An efficient distinguisher immediately contradicts the external security of MKHSS. □

– Hybrid H2. In this hybrid game, the challenger is given oracle access to Fkσ
(·), for all σ ∈ {0, 1}.

Instead of computing Fkσ using kσ, the challenger obtains the PRF evaluation by querying the
respective oracles. Then, the challenger samples z1←$R, and set z0 := z1 + C(y0,y1).

Claim. H2 ≈s H1.
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Proof. By definition of Px in Figure 14, the output distribution is identical to that of H1. □

– Hybrid H3. This hybrid game proceeds as H2, except that the key k in pkPCF.KeyGen is replaced
by 0. That is, pkPCF.KeyGen computes (JkKσ0 , JkKσ1 )← MKHSS.Share(crs, σ, pk, 0).

Claim. H3 ≈c H2 assuming the security of MKHSS.

Proof. The claim follows immediately by the security of MKHSS. □

– Hybrid H4. This hybrid game proceeds as H3, except that the PRF oracles Fkσ , for σ ∈ {0, 1},
are replaced with random oracles Hσ. Hence, yσ is computed as yσ := Hσ(x), for all σ ∈ {0, 1}.

Claim. H4 ≈c H3 assuming the security of the PRF.

Proof. The claim follows from the standard PRF security property (note that we can apply the
PRF security since the shares (JkσKσ0 , JkσKσ1 ) do not depend on the PRF key kσ anymore). □

– Hybrid H5. In this hybrid game, the challenger samples yσ ←$Rny , for all σ ∈ {0, 1}.

Claim. H5 ≈s H3.

Proof. Observe that the probability of any two inputs x to the random oracle Hσ colliding is
negligible, hence H5 is statistically indistinguishable from H4. □

At this point, it suffices to note that H5 is equivalent to the experiment Epkpr
A,N,1, concluding the proof.

Security. We now turn to proving the security of our PK-PCF. We proceed as above via a sequence
of hybrid games.

– Hybrid H0. This hybrid game consists of the security experiment Epksec
A,N,0.

– Hybrid H1. In this hybrid game, the challenger computes z1−σ by first computing

zσ ← MKHSS.Eval(crs, σ, skσ, pk1−σ, JkσKσσ, Jk1−σK1−σσ , Cx)

and then setting z1−σ := zσ + (−1)1−σCx(y0,y1).

Claim. H1 ≈c H0 assuming the correctness of MKHSS.

Proof. The claim follows directly from the correctness property of MKHSS. □

Hybrid H2. This hybrid game is identical to H1 except that pkPCF.KeyGen outputs:

(Jk1−σK1−σ0 , Jk1−σK1−σ1 )← MKHSS.Share(crs, 1− σ, pk, 0).

Claim. H2 ≈c H1 assuming the security of MKHSS.

Proof. The claim follows directly from the security property of MKHSS. □

– Hybrid H3. In this hybrid game, the challenges is given oracle access to Fk1−σ
. The challenger

uses this oracle access to compute y1−σ := Fk1−σ
(x) ∈ Rnx .

Claim. H3 ≈s H2.

Proof. By definition of Px, the output distribution is identical to that of H2. □
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– Hybrid H4. This hybrid game is identical to H3 except that the oracle for Fk1−σ
is now replaced

with a random oracle H. Hence, y1−σ is computed as y1−σ := H(x).

Claim. H4 ≈c H3 assuming the security of the PRF.

Proof. The claim follows from the security of the PRF. In particular, note that we can apply the
PRF security since the shares (Jk1−σK1−σ0 , Jk1−σK1−σ1 ) do not depend on k1−σ anymore. □

– Hybrid H5. In this hybrid game, the challenger samples y1−σ ←$Rny .

Claim. H5 ≈s H4.

Proof. Observe that the probability of any two inputs x to H colliding is negligible, hence this
hybrid is statistically indistinguishable from H4. □

At this point, it suffices to note that Epksec
A,N,1 uses the natural reverse-sampling algorithm for additive

correlations. This concludes the proof.

Remark 8 (On strong PK-PCFs). We note that because we use a standard PRF in our construction,
our PK-PCF can be shown to be a strong PCF. Alternatively, we can substitute the PRF for a weak
PRF and follow the same proof.

6.3 Multi-party computation with silent preprocessing

Building upon the PK-PCF introduced in Section 6.2, we introduce a multi-party PK-PCF for gen-
erating Beaver triple correlations, and discuss the direct implications to secure computation. We
note that we can only support degree-2 correlations (e.g., Beaver triples) in the multi-party setting
when using two-party PCFs as a building block. The same limitation applies to prior constructions
of multi-party correlation generators from two-party building blocks [BCG+19b].

Defining multi-party PK-PCFs. We start by introducing the notion of multi-party PK-PCF
(Definition 15). Our definition generalizes the notion of PK-PCF to more than two parties in a
natural way. Note that for simplicity, we “absorb” the key derivation procedure into MKHSS.Eval.
That is, in our formal definition, MKHSS.Eval directly takes as input the secret key ski of a party and
the public keys (pkj)j ̸=i of the other parties. This is without loss of generality, as we can always define
KeyDer to output ki := (ski, (pkj)j ̸=i). Indeed, we note that this is exactly what our MKHSS-based
PK-PCF construction in Figure 14 does.

Definition 15 (Multi-Party Public-Key Pseudorandom Correlation Function). A multi-party PK-
PCF for a p-party correlation Y is defined by a tuple of algorithms mpkPCF = (Setup,KeyGen,Eval),
with the following template:

– mpkPCF.Setup(1λ)→ crs. The randomized setup algorithm takes as input the security parameter
and outputs a common reference string (CRS) crs.

– mpkPCF.KeyGen(crs, i)→ (pki, ski). The randomized key generation algorithm takes as input the
CRS and an index i ∈ [p], outputs a pair (pki, ski) of public and private mpkPCF keys.

– mpkPCF.Eval(crs, i, ski, (pkj)j ̸=i, x) → yi. The deterministic evaluation algorithm takes as input
an index i, the secret key ski, the public keys (pkj)j ̸=i, and an input x ∈ {0, 1}n. It outputs a
string yi.

A multi-party PK-PCF must satisfy the following pseudorandomness and security properties:

Correctness / Pseudorandom Y-correlated Outputs. For all efficient adversaries A, and all N =
N(λ) ∈ poly(λ), there exists a negligible function negl such that for all sufficiently large λ,

Advmpkpr
A,N (λ) :=

∣∣∣Pr[Empkpr
A,N,0(λ) = 1]− Pr[Empkpr

A,N,1(λ) = 1]
∣∣∣ ≤ negl(λ),

where Empkpr
A,N,b(λ), for b ∈ {0, 1}, is as defined in Figure 15.
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Empkpr
A,N,0(λ):

crs← mpkPCF.Setup(1λ)
(x1, . . . , xN )← ({0, 1}n)N
foreach i ∈ [p]:
(pki, ski)← mpkPCF.KeyGen(crs, i)
foreach j ∈ [N ]:

yi,j ← mpkPCF.Eval(crs, i, ski, (pkℓ)ℓ ̸=i, xj)

b← A((pk1, . . . , pkp), (x1, . . . , xN ), (yi,j)i≤p,j≤N )
return b

Empkpr
A,N,1(λ):

crs← mpkPCF.Setup(1λ)
(x1, . . . , xN )← ({0, 1}n)N
foreach i ∈ [p]:
(pki, ski)← mpkPCF.KeyGen(crs, i)

foreach j ∈ [N ]:

(y1,j , . . . , yp,j)← Y(1λ)
b← A((pk1, . . . , pkp), (x1, . . . , xN ), (yi,j)i≤p,j≤N )
return b

Fig. 15: Pseudorandomness of a multi-party public-key PCF for a p-party correlation Y.

Empksec
A,N,0(λ, i

∗):

crs← mpkPCF.Setup(1λ)
(x1, . . . , xN )← ({0, 1}n)N
foreach i ∈ [p]:
(pki, ski)← mpkPCF.KeyGen(crs, i)
foreach j ∈ [N ]:
yi,j ← mpkPCF.Eval(crs, i, ski, (pkℓ)ℓ̸=i, xj)

b← A((pk1, . . . , pkp), ski∗ , (xj)j≤N , (yi,j)i̸=i∗,j≤N )
return b

Empksec
A,N,1(λ, i

∗):

crs← mpkPCF.Setup(1λ)
(x1, . . . , xN )← ({0, 1}n)N
foreach i ∈ [p]:
(pki, ski)← mpkPCF.KeyGen(crs, i)
foreach j ∈ [N ]:
yi,j ← mpkPCF.Eval(crs, i, ski, (pkℓ)ℓ ̸=i, xj)

yi∗,j ← RSample(1λ, i∗, (yi,j)i̸=i∗)

b← A((pk1, . . . , pkp), ski∗ , (xj)j≤N , (yi,j)i̸=i∗,j≤N )
return b

Fig. 16: Security of a multi-party public-key PCF for a p-party correlation Y.

Security. There exists an efficient algorithm RSample : (1λ, i∗, (yi)i ̸=i∗) 7→ yi∗ such that for every
efficient adversary A, N = N(λ) ∈ poly(λ), and every i∗ ∈ [p], there exists a negligible function negl
such that for all sufficiently large λ,

Advmpkpr
A,N (λ, i∗) :=

∣∣∣Pr[Empkpr
A,N,0(λ, i

∗) = 1]− Pr[Empksec
A,N,1 (λ, i

∗) = 1]
∣∣∣ ≤ negl(λ),

where Empksec
A,N,b (λ, i

∗), for b ∈ {0, 1}, is as defined in Figure 16.

Construction. We construct a multi-party PK-PCF for the p-party Beaver triple correlation over a
ring R. Let B denote the p-party correlation that, on input λ, samples p uniformly random triples
(ai, bi, ci)←$R3 conditioned on (

∑
i ai)·(

∑
i bi) =

∑
i ci. We represent our construction on Figure 17.

At a high level, the construction of Figure 17 is a direct extension of the PK-PCF construction
from Figure 14. In particular, the generalization from two parties to p parties is fairly straightforward.
In a little more detail, our multi-party PK-PCF is realized as follows:

– Each party Pi generates an MKHSS keys pair (pkmkhss
i , skmkhss

i ), samples a PRF key ki, and shares

ki into (JkKσ0 , JkKσ1 ) using MKHSS.Share, for each σ ∈ {0, 1}. Then, Pi sets: ski := (sk, JkK01, JkK11, k)
and pki := (pk, JkK00, JkK10).

– On input x, each party Pi defines (ai, bi) := Fki
(x).

– Finally, each pair of parties Pi, Pj , using their MKHSS shares of ki and kj , computes additive
shares of Fki

(x) · Fkj
(x). Each party Pi aggregates all the shares computed in this way into ci.

By correctness of the MKHSS scheme, it holds that:

∑
i

ci =
∑
i,j

Fki(x) · Fkj (x) =

(∑
i

ai

)
·

(∑
i

bi

)
.

Theorem 5 (Security of multi-party PK-PCF). Assuming the existence of an externally-secure
MKHSS scheme MKHSS for polynomial-size RMS programs and a PRF in NC1, the construction
described in Figure 17 is a multi-party PK-PCF for Beaver triple correlations.
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Multi-Party Public-key PCF from MKHSS

Public Parameters. Let MKHSS = (Setup,KeyGen, Share,Eval) be an MKHSS scheme for polynomial-
size RMS programs defined over a ring R. Let Fk : Rm → R2 be a PRF with keys sampled from Rnk ,
such that Fk(x) is computable by a polynomial-size RMS program over R.

The evaluated program. For all vectors x ∈ Rm, define Px : Rnk ×Rnk →R to be the function that,
on input k0, k1 ∈ Rnk , computes (aσ, bσ) := Fkσ (x), for all σ ∈ {0, 1}, and outputs a0b1 + a1b0.

mpkPCF.Setup(1λ):

1 : crs← MKHSS.Setup(λ)

2 : return crs

mpkPCF.KeyGen(crs, i):

1 : k←$Rnk

2 : (pk, sk)← MKHSS.KeyGen(crs)

3 : foreach σ ∈ {0, 1} :
4 : (JkKσ0 , JkKσ1 )← MKHSS.Share(crs, σ, pk, k)

5 : pki := (pk, JkK00, JkK10)
6 : ski := (sk, JkK01, JkK11, k)
7 : return (pki, ski)

mpkPCF.Eval(crs, i, ski, (pkj)j ̸=i,x):

1 : (ai, bi) := Fki(x)

2 : parse ski = (sk, JkiK01, JkiK
1
1, ki)

3 : ci := ai · bi
4 : foreach j ∈ [p] \ {i} :

5 : parse pkj = (pk, JkjK00, JkjK
1
0)

6 : if j > i then σ := 0 else σ := 1

7 : ci := ci +MKHSS.Eval(crs, σ, ski, pkj , JkiK
σ
1 , JkjK

1−σ
0 , Px)

8 : return (ai, bi, ci)

Fig. 17: Multi-party Public-key PCF.
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Proof (sketch). The proof is essentially identical to the proof of Theorem 4. ■

Application to secure computation. A multi-party PK-PCF for the p-party Beaver triple correla-
tion immediately implies a p-party semi-honest secure computation protocol for a general arithmetic
circuit C over R in the silent preprocessing model (see Boyle et al. [BCGI18, BCG+19a, BCG+19b,
BCG+20a] for discussions on this model):

Preprocessing phase. Each party Pi runs (pki, ski)← mpkPCF.KeyGen(i) and broadcasts pki.

Silent expansion. For each multiplication gate in C, each party Pi computes (ai, bi, ci) :=
pkPCF.Eval(crs, i, ski, (pkj)j ̸=i,x), where x is a fresh common randomness.

Online phase. The parties run the information-theoretic GMW protocol, consuming one Beaver
triple for each multiplication gate computed in the preprocessing phase.

The fact that GMW can be securely instantiated using the correlated pseudorandomness generated
by a (multi-party, public key) PCF follows from the fact that the latter suffices to instantiate a
corruptible functionality for generating correlated randomness, and GMW is provably secure given
ideal access to a corruptible correlated randomness functionality. We refer the reader to Boyle et
al. [BCG+19b] for more detailed discussion about this approach. Then, plugging in our construction
of (statistically correct) MKHSS from DCR or class group assumptions, we get the following corollary:

Corollary 4. Assume either the DCR assumption or the DDH assumption over class groups. For
any polynomial number of parties p, for any polynomial-size arithmetic circuit C with n inputs, s
multiplication gates, and m outputs over a ring R, there exists a p-party protocol securely computing
C in the preprocessing model against an adversary passively corrupting up to p − 1 parties with the
following communication:

– In the preprocessing phase, the parties communicate p ·poly(λ) bits in a single round of broadcast.

– In the online phase, the parties communicate p · (2s+m) elements of R.

Previously, the best-known multi-party protocols with silent preprocessing (under assumptions not
known to imply spooky encryption) were constructed using either HSS (from DCR or DDH over class
groups [OSY21, RS21, ADOS22]), programmable 2-party PCGs (from ring-LPN [BCG+20b], or quasi-
abelian syndrome decoding [BCCD23]). All these approaches incurred a quadratic communication
overhead Ω̃(p2) · poly(λ) in the number of parties p, in the preprocessing phase. Our construction is
the first to achieve p · poly(λ) communication overhead in the preprocessing phase, which is quasi-
optimal.
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Supplementary Material

A Alternative Construction of Multi-Key HSS from DCR

In this section, we provide an alternative MKHSS for NC1 computations from DCR. This alternative
construction has the benefit of not needing the DDH assumption over the Paillier group and avoiding
the short exponent assumption, and providing a different path to realizing MKHSS. In particular,
unlike our construction in Section 4, this alternative construction does not require “expanding” the
input shares and secret keys. Moreover, it provides a path to an implementable (albeit concretely slow)
MKHSS construction, as we explain later. We note that the lack of ciphertext and key expansion is
potentially of independent interest given that all known multi-key FHE scheme (and all our MKHSS
scheme from Section 4) have a quadratic blowup in the number of parties. Our alternative construction
thus proves that this expansion is not inherent to “multi-keyness.” However, we stress that our MKHSS
construction still only works with two parties and still has a ciphertext size blowup relative to the
non-multi-key HSS from DCR [OSY21]. Albeit this blowup comes from larger parameters and not
from needing having more ciphertexts, in contrast to Section 4.3.

A.1 Overview of the alternative approach

In this section, we provide a brief overview of the main ideas behind our alternative approach to
realizing multi-key HSS from DCR. In particular, we describe how we overcome the synchronization
barriers described in Section 2 when using the Paillier–ElGamal encryption scheme.

First, in Appendix A.2 we explain how the parties can derive a common public key via the
Diffie–Hellman protocol, and subtractive shares of the corresponding secret key. In contrast to the
construction in Section 4, this approach synchronizes both the ciphertexts and the keys (instead of
simply expanding the secret keys).

Second, in Appendix A.3, we explain how the two parties can locally use their derived keys to
synchronize their respective input shares under their joint public key. This turns out to be more chal-
lenging, requiring some careful modifications to the original DCR-based HSS construction. However,
in contrast to our constructions from Section 4, the parties no longer need to encrypt the “junk term,”
which reduces the number of ciphertexts in each input share.

A.2 Synchronizing keys

One trivial way for the parties to obtain a joint public key is to just perform a Diffie–Hellman key
exchange. That is, the parties derive the common key f := g−sA·sB , given only each others’ public
keys fA := g−sA and fB := g−sB . Here, g is a generator for a hidden-order subgroup of Z∗N2 (e.g., the
subgroup of quadratic residues). But how can the parties then obtain secret shares of the resulting
secret key?

In retrospect, generating subtractive shares of the joint secret key (defined by multiplying the
individual secret keys) is straightforward to achieve using existing tools. We show that we can use a
minimal form of “non-interactive computation” [BM90, OSY21, CZ22], formalized as non-interactive
multiplication (NIM) by Boyle et al. [BDSS25], which allows two parties to locally obtain subtractive
secret shares of sA · sB using only their respective public keys. In particular, NIM can be seen as
multi-key HSS for multiplication (or constant-degrees polynomials), which we then “bootstrap” into
a multi-key HSS scheme supporting the computation of RMS programs.

Constructing NIM from DCR. At a high level, a NIM scheme allows Alice and Bob to gen-
erate shares of the multiplication of their respective inputs by exchanging one simultaneous mes-
sage (or making these messages part of their respective MKHSS public keys, for example). A NIM
scheme from the DCR assumption can be realized by following the blueprint laid out in several recent
works [OSY21, ARS24, BCM+24] (we sketch the construction in Appendix A.4.1). Then, given a
NIM scheme, Alice and Bob can locally derive subtractive shares of the joint secret key s = sA · sB
(defined over the integers) using just the public key of the other party, which is exactly a share of the
joint secret key they require.



A.3 Synchronizing input shares

We now explain how we overcome the challenges associated with synchronizing the HSS input shares.
We focus on explaining how Alice and Bob can synchronize an HSS input generated by Alice under
her public key pkA (synchronizing Bob’s input follows by reversing roles).

Using Paillier–ElGamal along with the “flipped” encryption trick we described in Section 2, an
input share of a message x under Alice’s public key is of the form:(

((N + 1)xgrA , frA
A ), (gr

′
A , (N + 1)xf

r′A
A )
)
.

In particular, (N + 1) is the generator of the subgroup of Z∗N2 in which computing the discrete
logarithm is easy. This makes it possible to compute the DDLog efficiently base-(N + 1).

Recall that the goal of synchronization in MKHSS is to take an HSS input share of x generated
under Alice’s public key and transform it into an HSS input share under the joint key derived by
Alice and Bob. In this case, Alice and Bob need to locally obtain an input share of the form:(

((N + 1)xgrA , frA), (gr
′
A , (N + 1)xfr′A)

)
,

where f := g−s is the synchronized common public key and s := sA · sB is the joint secret key.

Towards synchronization. First, we note that Alice can trivially synchronize her own share by
simply re-encrypting x under the joint public key f and reusing the same randomness rA, r

′
A she used

to generate the original share. By doing so, Alice obtains a new HSS input share of the form:

JxKA :=
(
((N + 1)x · grA , frA), (gr

′
A , (N + 1)xfr′A)

)
, (6)

which is distributed exactly as an input share under the joint public key f .
Now, we try and let Bob synchronize by computing((
(N + 1)x · grA , (frA

A )sB
)
,
(
gr

′
A , ((N + 1)xf

r′A
A )sB

))
=
((

(N + 1)x · grA , frA
)
, (gr

′
A , (N + 1)x·sBfr′A

))
.

As already pointed out in Section 2, this “natural” approach to synchronization does not yield the
desired encryption of x (the second component is an encryption of x · sB and not an encryption of x).
While we resolve this in our other constructions by expanding the secret keys and having Alice provide
an additional encryption of the “junk term,” we find a much simpler approach for synchronizing when
using Paillier–ElGamal.

Specifically, our idea is to change the space from which the secret keys are sampled. Rather than
sampling sσ from the set {1, . . . , N}, we instead sample the secret keys from the set

{N + 1, 2N + 1, 3N + 1, . . . , (N − 1)N + 1},

which guarantees that all sampled secret keys satisfy sσ ≡ 1 mod N . Observe that because the
secret keys are sampled over the integers, this requirement can be easily satisfied by first sampling
s′σ ←$ {1, . . . , N − 1} and then defining sσ := s′σ · N + 1 ∈ Z. While at first glance this may appear
to be an odd choice for sampling the secret keys, it turns out to be just the trick for “automatically”
canceling out the junk term created by Bob’s attempt at synchronization (and does not harm security,
as we will show later).

Specifically, using the fact that the secret key is congruent to 1 mod N and the fact that (N + 1)
has order N in Z∗N2 , we get that (N + 1)sB = (N + 1) ∈ Z∗N2 . This property allows Bob to then
synchronize the encryption of the message x as above because ((N +1)xfrA

A )sB = (N +1)xfrA , which
is a proper encryption of x under public key f with randomness rA, and matches Alice’s synchronized
encryption of x computed in Equation (6).

The high level intuition for why sampling the key in this way does not impact security is the
following. First, observe that the public key g−s in Paillier–ElGamal, computed with a secret key
s←$ [N ], is close to a random subgroup element generated by g. Then, because g has order ϕ(N)/4, a
public key g−s

′
computed with s′ := N ·s, is statistically close to g−s, since s mod ϕ(N) is statistically
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close to s ·N mod ϕ(N). As such, the new sampling results in a public key that is statistically close
to a standard Paillier–ElGamal public key.

Achieving full synchronization. We are now in a situation where, on the one hand, we need to
sample the secret keys sA and sB such that sA (mod N) ≡ sB (mod N) ≡ 1 (mod N) in order to
allow Bob to locally synchronize the encryption of x. On the other hand, we wish to maintain the
ability to compute multiplicative shares of (N + 1)x·s, using the “flipped” decryption trick, without
the secret key being canceled out by the order of the group.

Despite these two requirements appearing mutually exclusive, our next insight allows us to have
our cake and eat it too. Instead of encrypting messages exclusively in Z∗N2 , we can encrypt them both
in Z∗N2 and in Z∗Nw+1 , for some w > 2, by using the generalized Paillier–ElGamal encryption scheme
of Damg̊ard and Jurik [DJ03]. In Z∗Nw+1 , the group element (N +1) has order Nw, which allows us to
encrypt x separately in Z∗N2 and then duplicate this in Z∗Nw+1 , such that (N+1)x·s ∈ Z∗N2 ≡ (N+1)x

and (N+1)x·s ∈ Z∗Nw+1 ≡ (N+1)x·s (mod Nw), for sufficiently large w so that x·s does not exceed Nw.
This allows us to satisfy both requirements. Additionally, we note that we are not limited to sampling
a short secret key s, and so our construction does not necessitate making the short-exponent discrete
logarithm assumption (in contrast to our constructions from the NIDLS framework in Section 4.3).

A.4 Alternative construction of MKHSS from DCR

In this section, we present the full MKHSS construction from DCR. Our construction uses two building
blocks: NIM and the Damg̊ard–Jurik encryption scheme, which we describe in Appendix A.4.1.

A.4.1 Building blocks Here, we describe the two building blocks that we use in our construction.

Damg̊ard–Jurik–ElGamal encryption scheme. We first recall the Damg̊ard–Jurik “ElGamal”
encryption scheme in Figure 18. The scheme is proven secure under the DCR assumption [DJ03] (see
also [CS02, BCP03]). For convenience, we extend the scheme to support the “flipped” encryptions
via a FlipEncrypt algorithm.

For completeness, we prove the security of the extended DJEG encryption scheme presented in
Figure 18.

Assumption 1 (Decisional Composite Residuosity (DCR) Assumption). Let GenPQ be a randomized
algorithm that, on input the security parameter λ, outputs two distinct, sufficiently large, random safe
primes p and q. The DCR assumption states that:

(N, g0)

∣∣∣∣∣∣∣
(p, q)← GenPQ(1λ)

N := pq

g0←$Z∗N2

 ≈c

(N, g1)

∣∣∣∣∣∣∣∣∣∣
(p, q)← GenPQ(1λ)

N := pq

g0←$Z∗N2

g1 := gN0

.

Lemma 5. Let λ be a security parameter. If the DCR assumption holds, then the encryption scheme
presented in Figure 18 satisfies the standard notion of semantic security (i.e., CPA-security).

Proof. The proof of semantic security follows a similar proof made in [BCCS24, Section 4.4] and
proceeds with a simple hybrid argument. Here, we adapt the proof to the generalized Damg̊ard–
Jurik–ElGamal setting.

– Hybrid H0. This hybrid consist of a ciphertext (c0, c1) as generated by DJEG.Encrypt in Figure 18.

– Hybrid H1. In this hybrid, we change how the randomness r is sampled in DJEG.Encrypt, and
sample r uniformly from {0, 1, . . . , Nw+1} instead of {0, 1, . . . , N}.

Claim. H1 ≈s H0.

Proof. This hybrid is statistically close to the previous one by the fact that g and f have order
ϕ(N)/4, which is coprime to N . We note that we implicitly use the fact that GenPQ outputs safe
primes making g, as sampled in Figure 18, a generator for the subgroup of order ϕ(N)/4 with
overwhelming probability. □
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– Hybrid H2. In this hybrid, we change how the public key f is sampled in DJEG.KeyGen by sampling
f as a uniformly random 2N -th residue. That is, f := (g′)2N ∈ Z∗N2 , where g′←$Z∗N2 .

Claim. H2 ≈s H1.

Proof. By the definition of g = (g0)
2N , it is a generator for the subgroup of the 2N -th residues

with overwhelming probability (again, using the fact that N is a composite of safe primes). Then,
it suffices to note that in H1 we have f = gs, which is a uniformly random 2N -th residue when
g is a generator for the subgroup of 2N -th residues and s is sampled uniformly from ZN . □

– Hybrid H3. In this hybrid, we change how the public key f is sampled in DJEG.KeyGen by sampling
f as a uniformly random square from Z∗N2 .

Claim. H3 ≈c H2 assuming DCR.

Proof. The claim follows from a direct reduction to the DCR assumption. Notice that f is sampled
as a 2N -th residue in H2 and a random square of Z∗N2 in H3. The reduction thus has at most a
factor of two loss in advantage in the DCR game. □

Remark 9. We note that, thanks to CRT decomposition, ZNw·ϕ(N) is isomorphic to ZNw ×Zϕ(N)

because N is coprime to ϕ(N). Using this, any element c in Z∗Nw+1 can be written as c = (1 +
N)agb mod Nw+1, for some (a, b) ∈ ZNw × Zϕ(N)/4, since all elements in Z∗Nw·ϕ(N) can be

decomposed into this form. Moreover, for a random c, with overwhelming probability 1− p+q−1
N ,

we have that a ̸= 0 and coprime to N .

– Hybrid H4. In this hybrid, the ciphertext elements c0 and c1 are sampled as uniformly random
elements of Z∗Nw+1 .

Claim. H4 ≈s H3.

Proof. We claim that, in hybridH3, (c0, c1) is already statistically close to the uniform distribution
over Z∗Nw+1 ×Z∗Nw+1 . To see this, we first note that g generates a subgroup of order ϕ(N)/4 and,
therefore, the element c0 statistically reveals only the value r0 = r mod ϕ(N)/4. Moreover, using
Remark 9, c1 can be rewritten as follows:

c1 = (1 +N)x · fr = (1 +N)ar1+x mod Nw

· gb·r0 mod ϕ(N)/4 mod Nw+1,

where r0 = r mod ϕ(N)/4 and r1 = r mod Nw. Then, conditioned on r0, r1 is statistically close
to a uniformly random element by the fact that N and ϕ(N) are coprime. By the above, we
have that ar1 + x mod Nw is statistically close to a uniformly random element of ZNw given r0
(recall that a is coprime to N , with overwhelming probability). Combined, we have that (c0, c1)
are statistically close to a uniformly random tuple of elements sampled from Z∗Nw+1 . □

We have now concluded the proof of semantic security for the DJEG scheme when the ciphertext is
generated using DJEG.Encrypt. We note that a very similar hybrid argument applies to proving that
ciphertexts output by the “flipped” encryption DJEG.FlipEncrypt are computationally indistinguish-
able from uniform under the DCR assumption. A little more formally, starting with H3, the element
f is distributed identically to g (both are random squares in Z∗N2) which enables interchanging them
in c0 and c1. This concludes the proof. ■

Non-interactive multiplication. Here, we sketch non-interactive multiplication (NIM), as defined
by Boyle, Devadas, and Servan-Schreiber [BDSS25]. We define the NIM syntax to be role-agnostic
(following Remark 4), which simplifies the presentation in the MKHSS construction.

Definition 16 (Non-Interactive Multiplication; Adapted from [BDSS25]). Let λ be a security param-
eter, R be a finite ring. A non-interactive multiplication (NIM) scheme consists of three algorithms
NIM = (Setup,Encode,Decode) with the following syntax:
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Damg̊ard–Jurik–ElGamal Encryption Scheme [DJ03]

Public Parameters. A generator GenPQ with respect to which the DCR assumption holds.

DJEG.Setup(1λ):

1 : (p, q)← GenPQ(1λ)

2 : N := pq

3 : g0 ←$Z∗
N2

4 : g := (g0)
2N ∈ Z∗

N2

5 : return crs := (N, g)

DJEG.KeyGen(crs):

1 : parse crs = (N, g)

2 : s←$ [N ]

3 : f := gs

4 : (pk, sk) := (f, s)

5 : return (pk, sk)

DJEG.Encrypt(crs, pk, x, w):

1 : parse crs = (N, g)

2 : parse pk = f

3 : r←$ {0, 1, . . . , N}
4 : c0 := gr mod Nw+1

5 : c1 := (N + 1)xfr mod Nw+1

6 : return ct := (c0, c1)

DJEG.FlipEncrypt(crs, pk, x, w):

1 : parse crs = (N, g)

2 : parse pk = f

3 : r←$ {0, 1, . . . , N}
4 : c0 := (N + 1)xgr mod Nw+1

5 : c1 := fr mod Nw+1

6 : return ct := (c0, c1)

DJEG.Decrypt(sk, ct):

1 : parse ct = (c0, c1)

2 : c′ := c1/(c0)
sk

3 : x :=
c′ − 1

Nw

4 : return x

Fig. 18: The DJEG encryption scheme.

– Setup(1λ) → crs. The randomized setup algorithm takes as input the security parameter and
outputs a common reference string crs.

– Encode(crs, x) → (peσ, stσ). The randomized encoding algorithm takes as input the CRS crs and
a ring element x ∈ R. It outputs a public encoding peσ and secret state stσ.

– Decode(crs, pe1−σ, stσ)→ ⟨z⟩σ. The deterministic decoding algorithm takes as input the CRS crs,
another party’s public encoding pe1−σ, and secret state stσ. It outputs a subtractive secret share
of z.

The above functionality must satisfy correctness and security, which are defined as follows:

Correctness. For all security parameters λ ∈ N and every pair of elements x, y ∈ R, a NIM scheme
is said to be correct if there exists a negligible function negl(·) such that:

Pr

 ⟨z⟩A − ⟨z⟩B = xy :

crs← Setup(1λ)

(peA, stA)← Encode(crs, x)

(peB , stB)← Encode(crs, y)

⟨z⟩A := Decode(crs, peB , stA)

⟨z⟩B := Decode(crs, peA, stB)

 ≥ 1− negl(λ).

Security. A NIM scheme is said to be secure if for all efficient adversaries A, there exists a negligible
function negl(·) such that for all λ ∈ N, and all σ ∈ {A,B}, we have that

Pr

 b′ = b :

crs← Setup(1λ)

(x0, x1, st)← A(crs)
b←$ {0, 1}

(peσ, stσ)← Encode(crs, xb)

b′ ← A (peσ, st)

 ≤
1

2
+ negl(λ),

where x0, x1 ∈ R.
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Sketch: Constructing NIM from DCR. Here, we briefly sketch the construction of NIM from the
DCR assumption from Boyle et al. The scheme is essentially a simplification of non-interactive
VOLE [OSY21] from the DCR assumption. In a nutshell, the idea is to first compute the multi-
plication “in the exponent” of the group and then compute the DDLog to obtain subtractive shares
over the integers.

NIM from DCR. Let N be a suitable composite modulus and let g and h be random generators of
Z∗N2 that are part of the CRS. The protocol is instantiated over the ring R = Zℓ, where for correctness

we need ℓ < 2−λ ·
√
N . The high level idea behind the NIM construction is to have:

– Alice’s public encoding consist of a Pedersen-like commitment grAhx to her element x and

– Bob’s public encoding consist of an encryption (grB , (N + 1)yhrB ) of his element y,

where rA and rB are random elements of ZN .
Then, given Alice’s encoding peA := grAhx, Bob derives ZB := (grAhx)−rB = g−rArBh−xrB .

Similarly, given Bob’s encoding peB := (grB , (N + 1)yhrB ), Alice derives ZA := (grB )rA · ((N +
1)yhrB )x. It’s not hard to see that ZA and ZB form multiplicative shares of (N + 1)xy mod N since:

ZA · ZB = ((grB )rA · ((N + 1)yhrB )x) · (grAhx)−rB

= (grArB · (N + 1)xyhxrB ) · (g−rArBh−xrB )

= (N + 1)xy.

Therefore, by applying the DDLog procedure to ZA and ZB , the parties recover subtractive shares
of xy mod N . Moreover, because x, y < 2−λ ·

√
N , we have that, with all but negligible probability,

the shares ⟨xy⟩A and ⟨xy⟩B are subtractive shares over the integers, by the correctness of the DDLog
algorithm.

A.4.2 Alternative MKHSS construction We present the alternative MKHSS construction in
Figure 19. Each party samples a secret key sσ ←$ {i ·N + 1 | 1 ≤ i ≤ N − 1} such that sσ ≡ 1 mod N .
The public key pkσ of each party consists of the group element fσ := g−sσ and public NIM encoding
of sσ. Alice and Bob then synchronize their keys and respective input shares as described in the
overview. In particular, because the input shares are nearly identical to the input shares in the
Paillier–ElGamal constructions of (non-multi-key) HSS [OSY21, RS21], the correctness of evaluation
for computing RMS programs is almost immediate. Moreover, security reduces to the semantic security
of the Damg̊ard–Jurik encryption scheme and the NIM scheme.

Concrete performance estimates. We note that the construction in Figure 19 is potentially
implementable. Finding ways to further optimize it is an interesting direction for future work. As an
immediate optimization, we make the short exponent assumption and sample the keys from a shorter
space, allowing us to work in the group Z∗N4 instead of Z∗N6 . Then, the main overhead of Figure 19 is
exponentiation in Z∗N4 . Each RMS multiplication in our construction requires two exponentiations:
one exponentiation in Z∗N4 and one in Z∗N2 , which require roughly 60 milliseconds and 15 milliseconds
on high-end hardware, respectively, when using a 3072-bit modulus N . Therefore, we can expect each
multiplication to take between 75 and 100 milliseconds. This results in roughly 10 multiplications per
second. In contrast, (non-multi-key) HSS can achieve upwards of 100 multiplications per second on
high-end hardware [BCG+17], making our construction an order of magnitude slower.

Theorem 6. Let λ is the security parameter and let N = N(λ) be the output of GGen as defined in
Figure 18. If the DCR assumption holds, then the construction described in Figure 19 is an MKHSS
scheme for the class of polynomial sized RMS programs with bound B < 2−λ ·N and message space
ZB.
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Alternative Construction of MKHSS from DCR

Public Parameters. Let Ssk := {i ·N +1 | 1 ≤ i ≤ N −1} be the secret key space and let B be a bound
on the message space. Let NIM = (Setup,Encode,Decode) be a NIM scheme. We will use the algorithms
ExpLinEncS and ExpLinEncR defined in Figure 20.

MKHSS.Setup(1λ, w):

1 : (N, g)← DJEG.Setup(1λ)

2 : crsnim ← NIM.Setup(1λ)

3 : kprf
1 , kprf

2 ←$ {0, 1}λ

4 : crs := (N, g, crsnim, k
prf
1 , kprf

2 )

5 : return crs

MKHSS.KeyGen(crs):

1 : parse (N, g, crsnim) from crs

2 : s←$Ssk, f := g−s

3 : (pe, st)← NIM.Encode(crsnim, s)

4 : pk := (pe, f)

5 : sk := (st, s)

6 : return (pk, sk)

MKHSS.Share(crs, σ, pkσ, x):

1 : parse crs = (N, g, crsnim)

2 : parse pkσ = (peσ, fσ)

3 : r, r′ ←$ZN

4 : ct← DJEG.FlipEncrypt(fσ, x, 5; r)

5 : ct′ ← DJEG.Encrypt(fσ, x, 1; r
′)

6 : JxKσσ :=
(
(x, r, r′), (ct, ct′)

)
7 : JxKσ1−σ := (ct, ct′)

8 : return (JxKσA, JxKσB)

MKHSS.Eval(crs, σ, skσ, pk1−σ, JxAKAσ , JxBKBσ , P ):

1 : parse (crsnim, k
prf
1 , kprf

2 ) from crs

2 : parse skσ = (stσ, sσ)

3 : parse pk1−σ = (pe1−σ, f1−σ)

4 : f := (f1−σ)
sσ

5 : ⟨z⟩σ := NIM.Decode(crsnim, pe1−σ, stσ)

6 : kσ := (⟨z⟩σ, 1) if σ = A else kσ := (⟨z⟩σ, 0)
7 : for i ∈ [m] :

8 : {{x(i)
σ }} := ExpLinEncS(skσ, pk1−σ, Jx

(i)
σ K

σ

σ)

9 : {{x(i)
1−σ}} := ExpLinEncR(skσ, pk1−σ, Jx

(i)
1−σK

1−σ

σ
)

10 : ekσ := (kprf
1 , kprf

2 ,kσ)

11 : {{x}} := ({{x(1)
A }}, . . . , {{x

(m)
A }}, {{x(1)

B }}, . . . , {{x
(m)
B }})

12 : return DEval(σ, ekσ, {{x}}, P )

Fig. 19: Alternative Construction of MKHSS from DCR.

ExpLinEncS(skσ, pk1−σ, JxKσσ):

1 : parse JxKσσ =
(
(x, r, r′), ( , )

)
2 : parse skσ := ( , sσ)

3 : parse pk1−σ = ( , f1−σ)

4 : (c0, c1) := DJEG.FlipEncrypt(f1−σ, x, w; r)

5 : (c′0, c
′
1) := DJEG.Encrypt(f1−σ, x, 2; r

′)

6 : {{x}} := ((c0, (c1)
sσ ), (c′0, (c

′
1)

sσ ))

7 : return {{x}}

ExpLinEncR(skσ, pk1−σ, JxK1−σ
σ ):

1 : parse JxK1−σ
σ =

(
(c0, c1), (c

′
0, c

′
1)
)

2 : parse skσ = ( , sσ)

3 : {{x}} := ((c0, (c1)
sσ ), (c′0, (c

′
1)

sσ ))

4 : return {{x}}

Fig. 20: Exponent-linear encoding algorithms used as subroutines in the DCR-based MKHSS construction.
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Proof. We prove correctness and privacy in turn.

Correctness. Recall that the correctness property requires that parties obtain a subtractive sharing
of the program output upon evaluation.

We first prove that the encoding {{x}} derived by the parties in MKHSS.Eval is (1) the same for
both parties and (2) exponent-linear decodable.

Claim. For all integers x ∈ ZN and all σ ∈ {A,B}, we have

{{x}} = ExpLinEncS(skσ, pk1−σ, JxKσσ) = ExpLinEncR(sk1−σ, pkσ, JxKσ1−σ),

where (JxKσA, JxKσB) ← MKHSS.Share(crs, σ, pkσ, x). Moreover, {{x}} is base-(N + 1) exponent-linear
decodable under the decoding key k = (sA · sB , 1).

Proof. We consider the case where σ = A; a symmetric argument follows for the case where σ = B.
By inspecting MKHSS.Share, we have JxKAA = ((x, r, r′), (ct, ct′)) and JxKAB = (ct, ct′), where

ct = ((N + 1)x · gr, fr
A) and ct′ = (gr

′
, (N + 1)x · fr′

A ).

Party-A computes {{x}} in ExpLinEncS as

{{x}} =
(
((N + 1)x · gr, (fr

B)
sA), (gr

′
, ((N + 1)x · fr′

B )sA)
)
∈ (Z∗N6)2 × (Z∗N2)2

=
(
((N + 1)x · gr, fr), (gr

′
, (N + 1)x·sA · fr′·sA

B )
)

=
(
((N + 1)x · gr, fr), (gr

′
, (N + 1)x · fr′)

)
,

where the third equality follows from the fact that sA ≡ 1 (mod N) and (N +1) has order N in Z∗N2 .
Now, observe that party-B computes {{x}} in ExpLinEncR as

{{x}} =
(
((N + 1)x · gr, (fr

A)
sB ), (gr

′
, ((N + 1)x · fr′

A )sB )
)
∈ (Z∗N6)2 × (Z∗N2)2

=
(
((N + 1)x · gr, fr), (gr

′
, (N + 1)x·sB · fr′·sB

A )
)

=
(
((N + 1)x · gr, fr), (gr

′
, (N + 1)x · fr′)

)
.

Therefore, both parties obtain the same encoding {{x}}.
We are left to show that {{x}} = (c0, c1) is base-(N + 1) exponent-linear decodable under k =

(k1, k2) = (sA · sB , 1). Observe that

⟨c0,k⟩ = ((N + 1)x · gr)sA·sB · fr = (N + 1)x·sA·sB · gr·sA·sB · g−sA·sB ·r = (N + 1)x·sA·sB ∈ Z∗N6

⟨c1,k⟩ = ((gr
′
)sA·sB · (N + 1)x · fr′ = gr·sA·sB · (N + 1)x · g−sA·sB ·r = (N + 1)x ∈ Z∗N2 ,

which proves that {{x}} is base-(N +1) exponent-linear decodable. In particular, sA · sB ≤ ((N − 1) ·
N)2 < N4. Furthermore, because x ≤ N , we have that x · sA · sB does not overflow modulo N5. □

Finally, to complete the proof of correctness, it suffices to note that by the correctness of NIM,
the parties obtain subtractive shares of sA ·sB , and so kσ is a subtractive share of k as defined above.

In sum, it follows that parties run DEval with encodings of the input that are base-(N + 1)
exponent-linear decodable. Finally, since B < 2−λ · N and DDLog is a B-bounded (resp. (B · N4)-
bounded) base-(N+1) algorithm for distributed discrete logarithm with negligible correctness error in
Z∗N2 (resp. Z∗N6), it follows from Lemma 3 that the MKHSS scheme satisfies the correctness property
for all polynomial-size RMS programs P .

Security. Recall that the security property requires that the input share JxKσ1−σ of party-(1 − σ),
ensures the privacy of an input x shared using party-σ’s public key pkσ.

Consider any efficient adversary A for the security experiment defined in Definition 6. Let the
output of the security experiment be defined as 1 if A’s output b′ is equal to the challenge bit b; else
let the output of the experiment be defined as 0. We will use a hybrid argument to show that the
output of the experiment is 1 with probability of at most 1/2 + negl(λ).
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– Hybrid H0. This hybrid consists of the output of the experiment when run with adversary A when
the challenge bit is b = 0.

– Hybrid H1. This hybrid game is identical to the previous hybrid, except that the secret key sσ is
sampled uniformly at random from [N ] in MKHSS.KeyGen, which matches the distribution of the
secret key in the DJEG encryption scheme.

Claim. H1 ≈s H0.

Proof. Note that in H0 the public key is computed as f = gN ·ig for some i ∈ [N − 1] while in
H1 it is computed as gi for i ∈ [N ]. Because g has order ϕ(N)/4, and for a random i ∈ [N − 1], i
(mod ϕ)(N)/4 is statistically close to i ·N mod ϕ(N)/4 (since ϕ(N) is co-prime to N), it follows
that gi and (gN )i are both statistically close to the uniform distribution. To conclude the proof,
it suffices to note that (gN )i · g is also close to uniform. □

– Hybrid H2. In this hybrid game, pe is replaced with an encoding of zero. That is, (peσ, ) ←
NIM.Encode(crsnim, 0).

Claim. H2 ≈c H1 assuming the security of NIM.

Proof. The claim follows immediately from the security of the NIM scheme. □

– Hybrid H3. In this hybrid game, we replace the DJEG encryptions with encryptions of x1.

Claim. H3
s≈ H2 by the semantic security of the DJEG encryption scheme.

Proof. The claim follows by a straightforward hybrid argument replacing the two encryptions of
x0 with encryptions of x1 and invoking the semantic security of the DJEG scheme. □

– Hybrid H4. In this hybrid game, we reverse the changes made in H2 and encode the secret key s
using the NIM scheme.

Claim. H4 ≈c H3 assuming the security of NIM.

Proof. The claim follows immediately from the security of the NIM scheme. □

– Hybrid H5. In this hybrid game, we reverse the changes made in H1 and sample the secret key
as in the construction.

Claim. H5 ≈c H4.

Proof. The proof follows the same argument used to prove that H1 ≈c H0. □

To complete the proof, observe that H5 is exactly the output of the experiment when the challenge
bit b = 1. Since we’ve shown that H0 ≈c H5, it follows that A wins the MKHSS security game with
probability of at most 1/2 + negl(λ). ■
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