
CRYPTANALYSIS OF A NONLINEAR FILTER-BASED STREAM CIPHER

TIM BEYNE AND MICHIEL VERBAUWHEDE

Abstract. It is shown that the stream cipher proposed by Carlet and Sarkar in ePrint report

2025/160 is insecure. More precisely, one bit of the key can be deduced from a few keystream
bytes. This property extends to an efficient key-recovery attack. For example, for the proposal

with 80 bit keys, a few kilobytes of keystream material are sufficient to recover half of the

key.

Carlet and Sarkar [1] have recently proposed a stream cipher based on the nonlinear filter
model. The filter function is based on the Maiorana-McFarland construction and the majority
function. The authors propose several concrete instances with key sizes ranging from 80 to
256 bits. The parameters are chosen to ensure security against attacks that can use up to 264

keystream bits per initialization vector and per key.
This note shows that this proposal is insecure if the attacker can insert a difference in the

initialization vector, which is a standard assumption in the analysis of stream ciphers. The data-
and time-complexity of the attack are practical. It exploits two weaknesses of the design: (1) the
initialization is far too weak (2) although the filter function has good cryptanalytic properties,
this does not carry over to the sum of two consecutive outputs of the filter function.

A single bit of the key can be recovered with high probability given two keystream bits for
a handful of IV pairs. A similar approach recovers three other bits of the key. For a full key-
recovery attack (with negligible time-complexity), a few kilobytes of keystream material are
sufficient. An implementation for the parameter set with 80-bit keys can be found at the end
of this note.

The attack combines a truncated differential over the initialization phase with a weakness of
the sum of two filter functions for consecutive states. The latter aspect is analyzed in Section 1.
The analysis of the initialization phase is contained in Section 2. Section 3 works out a full key
recovery attack. This note assumes that the reader is already familiar with the specification of
the cipher, which can be found in [1].

1. Analysis of the filter function for consecutive states

Let maj : Fm
2 → F2 denote the majority function on m bits. The filter function f : Fm

2 ×Fm
2 ×

F2 → F2 of the stream cipher is the following variant of the Maiorana-McFarland construction:

f(x, y, w) = x · y +maj(x) + w ,

where x · y is the dot product between x and y. The values of x, y and w are taken from the
current linear-feedback shift register state as illustrated in Figure 1. Here, l is the length of the
state, and k is the key length. The filter function f has good linear and differential properties
— the latter only if the difference on either x or y is nonzero. For this reason, our attack is
based on sums of two consecutive keystream bits rather than on individual keystream bits. It
can be interpreted as a differential-linear attack.

Tim Beyne is supported by the Research Foundation – Flanders (FWO) with reference � 1274724N. This

work was partially supported by the Research Council KU Leuven, C16/18/004 through the C1 on New Block

Cipher Structures. In addition, this work was supported by CyberSecurity Research Flanders with reference
number VR20192203.

1

2 TIM BEYNE AND MICHIEL VERBAUWHEDE

l − 2kl − 2k +m

y

l − kl − k +m

xw

Figure 1. Layout of the variables x, y and w relative to the current state.

1.1. Filter function for consecutive states. The sum of two filter functions evaluated at
consecutive states does not have good linear and differential properties. This can be exploited
in a state recovery attack. However, to reduce the cost of the attack, we propose an additional
truncated differential attack on the initialization phase in Section 2.

Let (x, y, w) and (x′, y′, w′) be inputs to the filter function f for two consecutive states related
by a linear-feedback shift register in Fibonacci mode. With this notation, the sum of the two
output bits is equal to

f(x, y, w) + f(x′, y′, w′) = x · y + x′ · y′ +maj(x) + maj(x′) + w + w′ .

The issue is that x and x′, as well as y and y′, are related by a shift. In particular, let s
denote the state of the linear-feedback shift register, so that x = (sl−k+m−1, . . . , sl−k) and
y = (sl−2k+m−1, . . . , sl−2k) as shown in Figure 1. Since x′ = (sl−k+m, . . . , sl−k−1) and y′ =
(sl−2k+m, . . . , sl−2k−1), it follows that

x · y + x′ · y′ = sl−ksl−2k + sl−k+msl−2k+m .

This is a quadratic function in only two variables. To deal with the majority function, let
g : Fm−1

2 → F2 be the Boolean function defined by

g(x) =

{
1 if wt(x) = ⌈m/2⌉ − 1 ,

0 else .

Importantly, this is a strongly unbalanced function. The majority function then satisfies

maj(x) + maj(x′) = (sl−k + sl−k+m) g(sl−k+m−1, . . . , sl−k+1) .

Combining the results above with w = sl−k+m and w′ = sl−k+m+1 yields

f(x, y, w) + f(x′, y′, w′) = sl−ksl−2k + sl−k+m(sl−2k+m + 1) + sl−k+m+1

+ (sl−k + sl−k+m) g(sl−k+m−1, . . . , sl−k+1) .

This is a function inm+4 variables but, because g is strongly unbalanced, it is mostly determined
by the five variables sl−2k, sl−2k+m, sl−k, sl−k+m and sl−k+m+1. For brevity, denote this
function by q : F5

2 → F2, so that the sum of consecutive keystream bits is equal to

q(sl−2k, sl−2k+m, sl−k, sl−k+m, sl−k+m+1) + (sl−k + sl−k+m) g(sl−k+m−1, . . . , sl−k+1) .

Let h : Fm+4
2 → F2 denote the function mapping the vector with coordinates sl−2k, sl−2k+m,

sl−k, sl−k+m, sl−k+m+1 and sl−k+m−1, . . . , sl−k+1 (in that order) to the above expression.

1.2. Differential properties of q. By direct computation, or by general properties of quadratic
functions, one can see that the probability of every nontrivial differential for q is 1/2, except
when the input difference is 00001. For the latter difference, the output difference is one with
probability one.

CRYPTANALYSIS OF A NONLINEAR FILTER-BASED STREAM CIPHER 3

1.3. Differential properties of g. Assume that m is odd. A combinatorial argument shows
that if wt(a) is odd, then the probability of the differential (a, 1) for g is equal to

1

2m−2

(
m− 1
m−1
2

)
.

If wt(a) is even, then the probability is

1

2m−2

(
m− 1
m−1
2

)
− 1

2m−2

(
wt(a)
wt(a)

2

)(
m− 1− wt(a)

m−1−wt(a)
2

)
.

For large enough m, this probability is any case much smaller than 1/2. In particular,

1

2m−2

(
m− 1
m−1
2

)
∼ 1√

π
8 (m− 1)

.

For example, for m = 37 and wt(a) = 20, the probability is approximately 19.5% (see Section 2).

1.4. Differential properties of h. For the function h : Fm+4
2 → F2 that maps part of the

linear-feedback shift register state to the sum of two consecutive keystream bits, one can compute
the probabilities of differentials from those of q and g. For input differences of the form 00001 ∥ a
with a in Fm−1

2 , the output difference is one with high probability. For other input differences,
one expects that output differences zero and one occur with equal probability.

Let p be the probability that the output difference of g is equal to one. There are two
differential characteristics, and no nontrivial quasidifferential trails [2]. Hence, the probability
that the output difference of h is one equals

1− p+
p

2
= 1− p

2
.

Explicitly, if wt(a) is odd, then

1− 1

2m−1

(
m− 1
m−1
2

)
.

If wt(a) is even, then

1− 1

2m−1

(
m− 1
m−1
2

)
+

1

2m−1

(
wt(a)
wt(a)

2

)(
m− 1− wt(a)

m−1−wt(a)
2

)
.

In both cases, if m is large enough, then this probability is close to one.

2. Analysis of the initialization phase

The initialization phase is based on a nonlinear-feedback shift register and consists of 2k
rounds. The key and initialization vector are placed in the state as indicated in Figure 2. The
feedback function is the sum of the feedback of the linear-feedback shift register, and the output
of the filter function. The analysis below shows that probability-one truncated differentials
can be constructed for the entire initialization phase. These truncated differentials result in a
constant (but key dependent) difference on some of the state bits. If the difference is of the form
discussed in Section 1.4, then this can be detected using a few samples.

l − 2kl − 2k +ml − kl − k +m

key IV

Figure 2. Initial state, with the first l − 2k bits equal to a public constant.

4 TIM BEYNE AND MICHIEL VERBAUWHEDE

The following analysis uses the parameters l = 163, k = 80 and m = 37 with feedback
polynomial x163 + x7 + x6 + x3 +1 as an example. The attack also affects the other parameters
from [1, Tables 1 and 2]. To recover the highest key bit, a difference is introduced in the highest
bit of the initialization vector, as illustrated in Figure 3. Recovery of other key bits is discussed
in Section 3.

l − 2kl − 2k +ml − kl − k +m

Figure 3. Input difference in the highest bit (red) of the initialization vector.
The hatched bits indicate the tap positions of the linear-feedback shift register.
Dark areas correspond to the inputs of the nonlinear feedback function.

2.1. First l−k initialization rounds. In the first k−m rounds, the difference simply moves to
the right because the feedback function is inactive. In round k−m+1, a difference is introduced
at the input of the filter function — specifically, in the part denoted by y in Figure 1. Since
f(x, y + a,w) = f(x, y, w) + a · x, the feedback function introduces a difference Kk−1 equal to
the highest key bit. In the next round, the same difference is once again introduced because the
key shifts along with the difference on the initialization vector. In particular, if Kk−1 = 0, then
no difference is introduced for an additional m+ l − 2k rounds.

l − 2kl − 2k +ml − kl − k +m

Figure 4. State difference after k −m initialization rounds.

2.2. Final 3k− l initialization rounds. After l−k rounds, the nonzero difference bit reaches
the highest bit of the state as shown in Figure 5a. In the next k − m rounds, the feedback
function introduces differences in a deterministic manner. The result is shown in Figure 5b. For
the remaining m + 2k − l rounds, the differences that are introduced will be truncated. The
resulting difference, with truncated differences lightly colored in red, is shown in Figure 5c.

2.3. Recovering the highest bit of the key. After the 2k initialization rounds, the pro-
duction of keystream bits begins. To use the high-probability differential from Section 1.4, the
input difference of the function h : Fm+4

2 → F2 that maps part of the state to the sum of two
consecutive keystream bits should be of the form 00001 ∥ a for a nonzero difference a.

For the concrete parameters above, this happens after three linear-feedback shift register
clocks. The difference a then satisfies wt(a) = 20. Hence, the difference on the sum of the third
and fourth keystream bits is equal to one with probability

1− 1

236

(
36

18

)
+

1

236

(
20

10

)(
16

8

)
≈ 0.903 .

This holds wheneverK79 = 0. Otherwise, the probability is close to 1/2 (as verified by additional
analysis, or experimentally). Distinguishing between these cases with high success probability
and low false-positive probability requires less than 80 keystream bits — e.g. four keystream
bits for ten IV pairs.

CRYPTANALYSIS OF A NONLINEAR FILTER-BASED STREAM CIPHER 5

l − 2kl − 2k +ml − kl − k +m

(a) State difference after l − k initialization rounds.

l − 2kl − 2k +ml − kl − k +m

(b) State difference after l −m initialization rounds.

l − 2kl − 2k +ml − kl − k +m

(c) State difference after 2k initialization rounds.

Figure 5. State differences during the final 3k − l initialization rounds.

3. Key recovery

The attack from Section 2.3 can be extended to a full key-recovery attack. This section works
this out for the parameters l = 163, k = 80 and m = 37. In this case, 40 bits of the key are
recovered with negligible computational cost.

3.1. Recovering four key bits. The analysis from Section 2 allows recovering the highest bit
of the key. Additional key bits can be recovered using the same approach, but by inserting a
difference in lower bits of the initialization vector. The following table gives an overview of the
number of clocks required and the corresponding differential probability.

Difference in Condition Clocks Probability

IV79 K79 = 0 3 0.903
IV78 K78 = 0 2 0.903
IV77 K77 = 0 1 0.903
IV76 K76 = 0 0 0.903

Additional key bits can be recovered, but this requires some additional analysis because the
third and fourth bit of the input difference of h are not uniquely determined when more than
six clocks are required. Another approach is to inject a difference in two bits of the initialization
vector.

3.2. Recovering additional bits of the key. The following method can be used to recover 36
additional key bits. It assumes that at least one of the bits K79, K78 and K77 is zero. There are
ways to get around this restriction with little additional cost, but the discussion below focuses
on this case for simplicity.

If K80−i = 0 for i in {1, 2, 3}, then one can detect a difference on the sum of consecutive
keystream bits after 12− i additional clocks to recover 36 key bits. This requires introducing a
difference in IV80−i. The main observation is that the input difference of h depends on part of
the IV. Specifically, it is of the following form:

000 ∥ ℓi + ε1 ∥ ℓi + ε2 + 1 ∥ a .

6 TIM BEYNE AND MICHIEL VERBAUWHEDE

If the bits IV3−i, . . . , IVm+2−i are fixed, then ℓi is an affine function of the key up to addition
by the majority function of part of the key:

ℓi = c3−i +K77−i +K76−i + f(Km+2−i,...,3−i, IVm+2−i,...,3−i,Km+3−i)

= c3−i +K77−i +K76−i +Km+3−i +maj(Km+2−i,...,3−i) +

m+2−i∑
j=3−i

IVjKj .

The weight of a is 22 if ℓi = ε0 and 23 otherwise. Here, the variables εj with j in {0, 1, 2} are
unbalanced functions of the state after 127− j clocks. Specifically,

εj = maj(sl−k+m+j , . . . , sl−k−1+j) + maj((sl−k+m+j , . . . , sl−k−1+j) + δj+1) ,

where δj+1 is the j + 1st standard basis vector. By determining the value of ℓi for 37 linearly
independent choices of (IV2−i, . . . , IVm+2−i), one can recover 36 bits of the key by solving a
system of linear equations — the variable maj(Km+2−i,...,2−i) can be eliminated.

The data-complexity is determined by the probability that the difference between the sum of
the two consecutive keystream bits is equal to one. Since ε0, ε1 and ε2 are biased towards zero,
the probability is significantly higher for ℓi = 0 than for ℓi = 1. As before, if the input difference
is 00001 ∥ a, then the probability that the output difference of h is one is equal to 0.903 for
wt(a) = 22 and 0.868 for wt(a) = 23 respectively. For other input differences, the probability
is close to 1/2. A rough estimate of the probabilities can be derived from the distribution of
(ε0, ε1, ε2) for a uniform random state, assuming these values are independent of the input of
h. This yields probabilities 0.82 if ℓi = 0 and 0.53 if ℓi = 1.

Table 1. Distribution of (ε0, ε1, ε2) if the state is uniform random.

ε0 ε1 ε2 Probability

0 0 0 0.753
0 0 1 0.049
0 1 0 0.033
0 1 1 0.033
1 0 0 0.049
1 0 1 0.017
1 1 0 0.033
1 1 1 0.033

3.3. Cost estimate. Recovering the 36 additional key bits requires 37N pairs of initialization
vectors, and 13 − i keystream bits for each. Here, N is the number of pairs necessary to
distinguish between events with probabilities 0.82 and 0.53. There is a trade-off between N and
the time required to solve a system of linear equations with some errors. A few kilobytes of
keystream material are sufficient.

References

[1] Claude Carlet and Palash Sarkar. The nonlinear filter model of stream cipher redivivus. Cryptology ePrint

Archive, Paper 2025/160, 2025.

[2] Tim Beyne and Vincent Rijmen. Differential cryptanalysis in the fixed-key model. In Yevgeniy Dodis and
Thomas Shrimpton, editors, Advances in Cryptology - CRYPTO 2022 - 42nd Annual International Cryp-

tology Conference, CRYPTO 2022, Santa Barbara, CA, USA, August 15-18, 2022, Proceedings, Part III,
volume 13509 of Lecture Notes in Computer Science, pages 687–716. Springer, 2022.

CRYPTANALYSIS OF A NONLINEAR FILTER-BASED STREAM CIPHER 7

Appendix A. Implementation for k = 80

from functools import partial

This code only works for the following parameters:

(L, k, m) = (163, 80, 37)

Any constant

c = [1, 1, 1]

Primitive polynomial for LFSR

x = polygen(GF(2))

f = x^163 + x^7 + x^6 + x^3 + 1

bound = ceil(m / 2)

M = companion_matrix(f.reverse(), format = ’bottom’)

def lfsr(x):

return M*x

def filter(state):

w = state[L - k + m]

x = state[L - k : L - k + m]

y = state[L - 2*k : L - 2*k + m]

maj = 1 if x.list().count(1) >= bound else 0

return x * y + maj + w + 1

def full_init(key, iv, c):

state = vector(GF(2), c + iv + key)

for _ in range(2*k):

f = filter(state)

state = lfsr(state)

state[-1] += f

return state

def get_data(key, iv, l):

state = full_init(key, iv, c)

res = [filter(state)]

for _ in range(l - 1):

state = lfsr(state)

res.append(filter(state))

return res

def get_keybit(f, i):

assert(i >= 76 and i < 80)

t = i - 76

count = 0

for _ in range(32):

iv = [randrange(2) for _ in range(k)]

data1 = f(iv, t+2)

iv[i] ^^= 1

8 TIM BEYNE AND MICHIEL VERBAUWHEDE

data2 = f(iv, t+2)

if data1[t] + data1[t+1] + data2[t] + data2[t+1]:

count += 1

return 0 if count >= 24 else 1

def get_more_keybits(f, i):

t = 80 - i

assert(t >= 1 and t < 4)

res = []

Lower data possible if we try to correct errors (LPN/decoding problem),

around 308 IV pairs

for j in range(m):

count = 0

for _ in range(93):

iv = [randrange(2) for _ in range(k)]

for l in range(m):

iv[3-t+l] = 1 if l == j else 0

data1 = f(iv, 11-t+2)

iv[i] ^^= 1

data2 = f(iv, 11-t+2)

if data1[-1] + data1[-2] + data2[-1] + data2[-2]:

count += 1

key_eq = vector(GF(2), 80, {77 - t : 1, 76 - t : 1, m + 3 - t : 1, 3 - t + j : 1})

res.append((key_eq, GF(2)(c[2]) if count >= 62 else GF(2)(c[2])+1))

final_res = []

for i in range(36):

final_res.append((res[i][0] + res[-1][0], res[i][1] + res[-1][1]))

return final_res

def key_recovery(bit):

key = [randrange(2) for _ in range(k)]

key[bit] = 0

for i in range(76, k):

print(i, key[i] == get_keybit(partial(get_data, key), i))

res = get_more_keybits(partial(get_data, key), bit)

keyv = vector(GF(2), key)

print(all(eq*keyv == c for eq, c in res))

key_recovery(79)

key_recovery(78)

key_recovery(77)

COSIC, KU Leuven
Email address: name.lastname@esat.kuleuven.be

