
Constructing Quantum Implementations with
the Minimal T -depth or Minimal Width and

Their Applications

Zhenyu Huang1,2⋆, Fuxin Zhang1,2, and Dongdai Lin1,2

1 State Key Laboratory of Cyberspace Security Defense, Institute of Information
Engineering, Chinese Academy of Sciences, China

2 School of Cyber Security, University of Chinese Academy of Sciences, China
{huangzhenyu, zhangfuxin, ddlin}@iie.ac.cn

Abstract. With the rapid development of quantum computers, opti-
mizing the quantum implementations of symmetric-key ciphers, which
constitute the primary components of the quantum oracles used in quan-
tum attacks based on Grover and Simon’s algorithms, has become an
active topic in the cryptography community. In this field, a challenge is
to construct quantum circuits that require the least amount of quantum
resources. In this work, we aim to address the problem of construct-
ing quantum circuits with the minimal T -depth or width (number of
qubits) for nonlinear components, thereby enabling implementations of
symmetric-key ciphers with the minimal T -depth or width. Specifically,
we propose several general methods for obtaining quantum implementa-
tion of generic vectorial Boolean functions and multiplicative inversions
in F2n , achieving the minimal T -depth and low costs across other metrics.
As an application, we present a highly compact T -depth-3 Clifford+T
circuit for the AES S-box. Compared to the T -depth-3 circuits presented
in previous works (ASIACRYPT 2022, IEEE TC 2024), our circuit has
significant reductions in T -count, full depth and Clifford gate count.
Compared to the state-of-the-art T -depth-4 circuits, our circuit not only
achieves the minimal T -depth but also exhibits reduced full depth and
closely comparable width. This leads to lower costs for the DW-cost
and T-DW-cost. Additionally, we propose two methods for constructing
minimal-width implementations of vectorial Boolean functions. As appli-
cations, for the first time, we present a 9-qubit Clifford+T circuit for the
AES S-box, a 16-qubit Clifford+T circuit for a pair of AES S-boxes, and
a 5-qubit Clifford+T circuit for the χ function of SHA3. These circuits
can be used to derive quantum circuits that implement AES or SHA3
without ancilla qubits.

Keywords: Quantum Circuit, T -depth, Width, AES, SHA3

⋆ corresponding author

1 Introduction

In recent years, the potential arrival of a large-scale quantum computer has
led to heightened examination of the post-quantum security of cryptographic
primitives. It is well known that if large-scale quantum computers are ever built
Shor’s algorithm [48] will completely break many widely employed public-key
schemes such as RSA, DSA, and ECC. For symmetric-key schemes, Grover’s
algorithm [24], which provides a quadratic speedup for unstructured database
search, can be used to perform quantum key search attacks to block ciphers and
quantum pre-image attacks to hash functions. Additionally, various quantum
attacks on symmetric-key schemes have been developed using Simon’s period-
finding algorithm, under different attack scenarios. The first scenario involves at-
tackers having access to keyed quantum oracles [11,32], while the second scenario
allows only classical queries and offline quantum computations [10, 17, 26]. Fur-
thermore, quantum attacks stemming from dedicated cryptanalytic techniques
are extensively investigated [12–14,25,27,33,41].

To precisely estimate the complexities of these attacks, the quantum circuits
implementing them should be constructed using a basic quantum gate set, such
as the Clifford+T gate set, which is a commonly used universal fault-tolerant
gate set. For the quantum attacks to symmetric-key cipher based on Grover’s and
Simon’s algorithm, primary components for the attack circuits are the quantum
circuits that implement these ciphers. Optimizing these quantum circuits can re-
duce the attack complexities, and provide the designers with precise insights into
the costs for evaluating security margins. Moreover, in the National Institute of
Standards and Technology (NIST)’s call for proposals for post-quantum cryp-
tography standards, the gate complexities of the quantum attacks to AES and
SHA3 are used as different baselines to categorize the different security levels for
the post-quantum public-key schemes, with a suggested attack scenario that the
depth of the attack circuit is limited by a MAXDEPTH [44, 45]. For these reasons,
synthesizing and optimizing quantum circuits for various ciphers, especially for
AES, is receiving significant attention in our community.
Related Work. In [23], Grassl et al. presented the first quantum circuit for
AES, where reducing the width (the number of qubits) of the circuit is their pri-
mary optimization goal. Then slight improvement on the width and Toffoli-count
of the quantum circuit for AES was provided in [2]. In [34], quantum circuits for
the AES S-box derived from efficient classical circuits were presented, resulting
in a substantial improvement to the AES circuit. At ASIACRYPT 2020, Zou
et al. presented further optimized quantum circuits for the AES S-box and an
improved zig-zag structure. Based on these, they presented a quantum circuit for
AES-128 with width 512 [56]. As depth and T -depth are important cost metrics
which determine the runtime of the quantum circuits, at EUROCRYPT 2020,
Jaques et al. investigated the optimization of depth and T -depth, and presented
a shallow quantum circuit for AES [31]. At ASIACRYPT 2022 [28], Huang and
Sun proposed some general techniques for designing in-place quantum circuits
and low T -depth quantum circuits, by which they improved the quantum circuits
presented in [31] and [56]. At ASIACRYPT 2023 [39], Liu et al. proposed two

2

methods to optimize the T -depth-4 circuit for the AES S-box proposed in [28],
and together with a modified pipeline structure, they further improved the quan-
tum circuits for AES. Recently, the individual works in [47, 54] both achieved
similar results by reducing the depth of the CNOT circuit for MixColumn of
AES and the T -depth of the AES encryption oracle. Additionally, there are
other works focused on optimizing the quantum circuits for AES [30,36,37], and
some works exploring the quantum implementation for other schemes [4, 5, 31].

Although many previous works investigated reducing the quantum resources
of the quantum circuits for AES and other schemes, constructing quantum cir-
cuits that achieve the theoretical minimum for a certain metric, particularly
width or T -depth, has not been thoroughly discussed, and efficient general ap-
proaches to this problem are still lacking. For the implementation of AES, the
only known result regarding the minimal-width circuit was presented in [23],
where it was announced that a 9-qubit in-place quantum circuit for the AES S-
box with no more than 9695 T gates and 12631 Clifford gates can be found, but
the implementation of the circuit was not presented in detail. For the minimal-
T -depth implementations, in [28], an out-of-place quantum circuit for the AES
S-box with T -depth 3 was achieved using heuristic techniques, and it was later
improved through manual optimizations in [54].

Our Contributions. We present a general algorithm for converting an AND-
depth-s classical circuit to a highly compact out-of-place quantum circuit with
T -depth s. Our algorithm ensures that the number of ancilla qubits required for
applying each T -layer is theoretically minimal. Based on this algorithm, we can
resolve the problem of constructing out-of-place quantum circuits with minimal
T -depth by constructing classical circuits with minimal AND-depth.

We introduce a general approach, termed the Top-down approach, which
enables the construction of minimal AND-depth classical circuits for vectorial
Boolean functions based solely on their algebraic normal forms. As an applica-
tion, we construct a classical circuit implementing the AES S-box with AND-
depth 3 and AND-count 76. Compared to the AND-depth-3 classical circuit
given in ASIACRYPT 2022, this circuit reduces the AND-count from 78 to 76.

We further investigate implementing multiplicative inversions in F2n , by us-
ing a new concept called the parallel addition chain. We present some generic
results for implementing multiplicative inversions in F2n and F22m with mini-
mal AND-depth. As an application, we construct a classical circuit for the AES
S-box with AND-depth 3 and AND-count 42. Furthermore, by using our con-
version algorithm, we achieve a highly compact T -depth-3 circuit for the AES
S-box. Compared to the T -depth-3 circuit presented in [54], this circuit reduces
the T -count by 36%, width by 25%, and other gate-counts by 28%.

We propose two methods to construct the in-place quantum circuits for vec-
torial Boolean functions with width achieving theoretical minimum. The first one
combines the method for finding MCT decompositions of permutations proposed
in [35] with the Clifford+T decompositions of MCT gates introduced in [1]. As
an application, we present, for the first time, a 9-qubit Clifford+T circuit for the
AES S-box. Compared to the T -count and Clifford gate-count reported in [23],

3

our circuit achieves a reduction of 59% in the T -count and 41% in the Clifford
gate-count. The second method is a SAT-based method, which can efficiently
obtain the minimal-width circuits for 4-bit S-boxes and some 5-bit S-boxes. As
an application, we present, for the first time, a 5-qubit Clifford+T circuit for
the χ function of SHA3. This circuit uses 49 T gates, decomposed from 7 Toffoli
gates, and this Toffoli count closely approaches the theoretical minimum of 5
(without width restrictions).

2 Preliminaries

For an n-qubit quantum system, its state, typically written as |u⟩, can be de-
scribed by a unit vector in C2n . A quantum algorithm operates on the state
of an n-qubit system by applying a series of unitary transformations and mea-
surements, where a unitary transformation is a linear map U over C2n with
UU † = U†U = I. A quantum circuit is a widely used model for quantum com-
putation. The building blocks of a quantum circuit are quantum gates, which
are basic unitary transformations operating on a small number of qubits.

In this work, we are mainly concerned with the quantum circuits that can
implement vectorial Boolean functions. More specifically, for a given vectorial
Boolean function F , our goal is to construct a quantum circuit capable of produc-
ing |F(x)⟩ as a component of its output when the input is in the computational
basis |x⟩. This circuit often requires some ancilla qubits as intermediate storage
space, which should be returned to their initial states (usually |0⟩) at the end
of the circuit. There are the following two types of quantum circuits that can
implement F . Here |0⟩ denotes possible ancilla qubits initialized as |0⟩.

1) A circuit that maps |x⟩|y⟩|0⟩ to |x⟩|y ⊕F(x)⟩|0⟩. It is called an out-of-place
circuit for F .

2) A circuit that maps |x⟩|0⟩ to |F(x)⟩|0⟩, if F is invertible. It is called an
in-place circuit for F .

Sometimes (for example, for implementing the AES S-box in SubBytes), we only
need an out-of-place implementation that works when |y⟩ = |0⟩, which means it
maps |x⟩|0⟩|0⟩ to |x⟩|F(x)⟩|0⟩. Here, using the terminology introduced in [28],
we refer to this circuit as a C0-circuit for F . Meanwhile, an out-of-place circuit
that works for any |y⟩ is called a C∗-circuit for F .

For synthesizing a quantum circuit, a commonly used universal fault-tolerant
gate set is the Clifford+T gate set, which contains the Clifford gates and the T
gate. The Clifford gates used to implement vectorial Boolean functions usually
include the Hadamard gate H, the Phase gate S, the CNOT gate, and the Pauli-
X gate, which is referred to as the NOT gate in this paper.

A typical way to obtain a Clifford+T implementation for a vectorial Boolean
function is first obtaining its NCT implementation, which is a quantum circuit
composited by gates in the gate set {NOT, CNOT, Toffoli}, then decomposing
each Toffoli gate into a Clifford+T sub-circuit.3 An NCT circuit can be also
3 Different Clifford+T circuits for the Toffoli gate are presented in Appendix A

4

seen as a classical reversible circuit, since the CNOT and the Toffoli gate are
reversible versions of the classical XOR and AND gate.

In some cases, the functionality of a classical AND gate can be implemented
by a quantum AND gate (QAND), which maps |a⟩|b⟩|0⟩ to |a⟩|b⟩|ab⟩. Compared
to the Toffoli gate, which maps |a⟩|b⟩|c⟩ to |a⟩|b⟩|c⊕ ab⟩, the quantum AND
gate only works when the target qubit is |0⟩, hence can be seen as a C0-circuit
for bitwise multiplication. As shown in [31], QAND can be implemented by a
Clifford+T circuit with T -depth 1 and width 4, while QAND† can be imple-
mented without T gates by using a measurement. In comparison, the T -depth-1
Clifford+T implementation for the Toffoli gate has width 7. Readers can refer
to Appendix A for the specific implementations of QAND and QAND†. By us-
ing this implementation for QAND†, as in [28, 39, 54], the Clifford+T circuits
presented in this work may contain measurements.
Quantum Circuit Complexity. The complexity of a quantum circuit can be
measured by various metrics, such as width, gate-count, and depth. The width
of a quantum circuit is defined as the number of qubits used in the circuit,
including the ancilla qubits. It can intuitively indicate whether the quantum
circuit can be performed on a certain quantum computer. The gate-count of a
quantum circuit is the total number of gates used in the circuit. It quantifies the
computational complexity of a quantum circuit, and provides insights into the
potential execution time of a quantum circuit. For a Clifford+T circuit, since
the high cost of the fault-tolerant implementation of a T gate, T -count, the total
number of T and T † gates, is a much more significant metric.

In this work, we assume parallel quantum gates are allowed when they are
acting on different qubits. In this case, the runtime of a quantum circuit is
primarily determined by its depth, also referred to as full depth or overall depth.
For a Clifford+T circuit, its runtime is dominated by its T -depth. There are two
equivalent definitions for the depth (T -depth) of a circuit:

1) the maximum number of gates (T and T † gates) on its all critical paths;
2) the minimum number of layers for parallel applications of gates (T and T †

gates) in the circuit.

The first definition can be used to fast calculate the depth (T -depth) of a given
circuit. In contrast, the second definition is more commonly seen and more ap-
propriate for quantum computation, since actually we want to know how to
parallelize the gates in each layer, which indicates how the qubits are manip-
ulated at each stage. Note that, there are different ways of parallelizing gates
in each layer, leading to different numbers of layers. In most cases, when the
number of T -layers equals the T -depth, the number of all layers will not equal
the full depth.

Besides these basic metrics, some other composite metrics were also consid-
ered in previous works [28, 31, 39]. Denote the width, depth, and gate-count of
a circuit as W,D,G respectively. The DW-cost, defined as D · W , is a metric
which can indicate the total cost for quantum error correction [31]. G · D and
W ·D2 are metrics that indicate the gate-count and DW-cost for parallel Grover

5

search under a depth limit, which is a suggested scenario for estimating the costs
of quantum attacks in NIST’s call for proposals for post-quantum cryptography
standards. For these metrics, we can also choose to count only T gates towards
gate-count and depth.

For implementing a vectorial Boolean function, a Clifford+T implementa-
tion is always obtained from an NCT implementation by decomposing Toffoli
gates. For the NCT implementations, there are theoretical lower bounds for their
width and the Toffoli-depth. These bounds can be seen as the lower bounds for
the Clifford+T implementations generated from NCT implementations. In this
paper, we aim to construct Clifford+T implementations that reach these lower
bounds while simultaneously optimizing other metrics. Note that, linear vectorial
Boolean functions can be implemented in-place by CNOT gates, and these imple-
mentations obviously have the minimal width and T -depth 0. Since such CNOT
implementations have been sufficiently discussed in previous works [28,47,52,54],
in this work, we focus on the above implementation problem for nonlinear vec-
torial Boolean functions.

2.1 Tools for Resource Estimation

The resource estimators in Q# [40] and ProjectQ [50] were widely used in pre-
vious works for quantum resource estimation [28,31,39,54]. Unfortunately, both
of them have some errors in the value of width when they automatically combine
small sub-circuits into an entire one. One more disadvantage for ProjectQ is that
it cannot obtain the T -depth of a given Clifford+T circuit.

To achieve correct values of all metrics, we developed a quantum resource
estimator based on Python. Given a Clifford+T circuit expressed by a sequence
of specific gates and measurements in the QASM format, the estimator first
optimizes the circuit by identifying simple cancellations (cancel two consecu-
tive gates that are the inverse of each other, and replace two consecutive T
gates by an S gate), then outputs the values of various metrics along with
the layer structure of the optimized circuit. In the output layer structure, the
number of T layers is equal to the T -depth, and by this structure, one can
know how to parallelize these gates. We also developed an NCT version of
the estimator. Unless stated otherwise, the costs of the circuits presented in
the following sections are obtained using this resource estimator. Moreover, the
specific layer structures of all these quantum circuits are available at https:
//github.com/hzy-cas/Minimal_T-depth_Width.

3 Implementing Nonlinear Functions with the Minimal
T -depth

Given a vectorial Boolean function F , we consider the problem of implementing
F with the minimal T -depth. In the following of this paper, for simplicity, when
we say a Boolean function, we mean a vectorial Boolean function.

6

https://github.com/hzy-cas/Minimal_T-depth_Width
https://github.com/hzy-cas/Minimal_T-depth_Width

Since the minimal T -depth of out-of-place implementations is always not
bigger than the minimal T -depth of in-place implementations (for some sim-
ple functions, these two T -depths may be equal), we focus on the out-of-place
implementations for F . For constructing an out-of-place implementation, a com-
monly used approach is first constructing a circuit C0, which maps |x⟩|y⟩|0⟩ to
|x⟩|y ⊕F⟩|g(x)⟩ with some garbage output |g(x)⟩, then performing uncomputa-
tion to erase the garbage output. Here uncomputation can be implemented by
the reverse circuit of C0 with deleting some gates involving the second register.
In what follows, we refer to C0 as a forward circuit for F , and the circuit for
uncomputation as a backward circuit for F .

By combining the forward and backward circuits, one can obtain an out-of-
place circuit for F (without garbage outputs). Therefore, to achieve an out-of-
place implementation with the minimal T -depth, a critical step is constructing a
forward circuit with the minimal T -depth. Our strategy is first finding a forward
NCT circuit with the minimal Toffoli-depth, then decomposing each Toffoli gate
into a T -depth-1 Clifford+T sub-circuit. In some forward NCT circuit, the target
qubits of Toffoli gates are all initialized as |0⟩, hence these Toffoli gates can be
replaced by QAND gates. In this case, by using QAND† gates instead of Toffoli
gates in the backward circuit, we can obtain a backward circuit without T gates,
and the entire out-of-place circuit will have the same T -depth as the forward part.

According to Theorem 1 of [28], if we have a classical circuit that implements
F with AND-depth s, then with sufficient ancilla qubits, we can construct a
Toffoli-depth-s forward circuit for F , deriving a T -depth-s forward circuit for
F . For the AND-depth of the classical circuit implementing a Boolean function,
there is a well-known result.

Lemma 1. Let F = (f1(x1, x2, . . . , xn), . . . , fm(x1, x2, . . . , xn)) be a Boolean
function with maxi(deg(fi)) = D. Let d be the AND-depth for a classical circuit
that implements F . Then d ≥ ⌈log2(D)⌉ and there is a classical circuit that
implements F with AND-depth ⌈log2(D)⌉.

Proof. With one AND layer, we can at most double the highest degree of all
achieved polynomials, thus we have the bound ⌈log2(D)⌉ for the number of AND
layers. For constructing a classical implementation with AND-depth ⌈log2(D)⌉,
we can construct monomials with degrees in the range [2k + 1, 2k+1] in the k-th
AND layer, based on the monomials with degrees in the range [2k−1+1, 2k]. After
⌈log2(D)⌉ AND layers, all monomials with degree ≤ D have been generated.
Then we can construct all fi’s from these monomials by using some XOR and
NOT gates. ⊓⊔

Based on a classical circuit that implements F with AND-depth ⌈log2(D)⌉, we
can derive a forward NCT circuit for F with Toffoli-depth ⌈log2(D)⌉, resulting in
a Clifford+T implementation with T -depth ⌈log2(D)⌉. In this paper, a minimal
T -depth Clifford+T circuit for F means a Clifford+T implementation having
this T -depth, and our goal is constructing a minimal T -depth implementation
with low width and low gate-count.

7

According to the above discussions, the process for constructing a minimal
T -depth implementation can be divided into two steps.
1) Construct a classical minimal AND-depth implementation.
2) Convert it to a Clifford+T circuit with the T -depth being equal to this min-

imal AND-depth.
The proof of Lemma 1 induces an approach for the first step, but the AND-
count of the obtained classical circuit is too large for most instances. For the
second step, if a straightforward conversion is adopted, the resulting quantum
circuit will have a large width. In the following sections, we first consider how
to improve the converting step.

3.1 Constructing a Compact T -depth-s Quantum Circuit from an
AND-depth-s Classical Circuit

In [28], Huang and Sun introduced a way to convert an AND-depth-s classical
circuit that implements a Boolean function F into a T -depth-s forward circuit
for F . Its main steps can be outlined as follows. First calculate the AND-depth
of all gates and regroup gates by their AND depths. Then, for converting the
AND gates with the same AND-depth to parallelized Toffoli (or QAND) gates,
copy their common inputs to new allocated qubits. Finally, decompose Toffoli
(or QAND) gates into T -depth-1 Clifford+T sub-circuits.

For this conversation, we can observe that the T -count and T -depth of the
obtained circuit are determined by the AND-count and AND-depth of the orig-
inal classical circuit. To reduce the width, gate-count, and depth of the circuit,
we should focus on reconstructing the CNOT sub-circuits that generate the in-
puts of the parallelized Toffoli (or QAND) gates. Here we propose a general
algorithm for this problem. For simplicity, we assume the given classical circuit
does not contain NOT gates. If it does, we only need to add some NOT gates
after the resulting CNOT circuits to modify the constant terms of the algebraic
expressions computed by these CNOT circuits.

For a classical circuit, denote its inputs as Boolean variables x1, x2, . . . , xn,
and the output of each AND gate as a new x variable. By this manner, the inputs
of all AND gates and the outputs of the circuit can be written as linear functions
w.r.t. these x variables. Then preparing the inputs of the AND gates, which have
the same AND-depth, based on previous outputs, can be seen as generating a
sequence of linear functions {T1, T2, . . . , Tm} from a given sequence of linear
functions {L1, L2, . . . , Lt}. For this process, we have the following lemma (the
proof can be found in the Appendix B).
Lemma 2. Let {L1, L2 . . . , Lt} and {T1, T2 . . . , Tm} be two sequences of linear
functions with respect to Boolean variables x1, x2, . . . , xn. Suppose the rank of
L1, L2, . . . , Lt is n, and the rank of T1, T2, . . . , Tm is k. If |L1, L2, . . . , Lt⟩ is
the input of a t-qubit register, then to output the state |T1, T2, . . . , Tm⟩ using a
CNOT circuit, m − k − (t − n) additional qubits are necessary and sufficient.
Additionally, if m− k − (t− n) < 0, it means no additional qubits are required.
Instead, t− n−m+ k qubits can be returned to |0⟩.

8

Based on this lemma, we can calculate the minimal width of the CNOT
sub-circuit between two Toffoli layers. Once the minimal width of a CNOT sub-
circuit is determined, we can identify its input state |S1⟩, output state |S2⟩,
and a Boolean matrix M that maps |S1⟩ to |S2⟩. Furthermore, we can apply
the state-of-the-art CNOT circuit optimization algorithms to find a compact
CNOT sub-circuit that implements M . Finally, by combining all these CNOT
sub-circuits with different Toffoli layers, we obtain the desired final circuit. We
propose an algorithm called ClassicalToQuantum, which automatically imple-
ments these processes, hence can convert an AND-depth-s classical circuit to
a forward Toffoli-depth-s NCT circuit with the optimal width and low CNOT-
count. The specific steps with detailed explanations of this algorithm are given
in the Appendix C. Here we present some new compact quantum circuits for
the AES S-box [21] to demonstrate the effectiveness of this algorithm.

We take Boyar and Peralta’s AND-depth-4 classical circuit [15] for the AES
S-box as the input of ClassicalToQuantum. In [28], the first T -depth-4 quantum
circuit for the AES S-box was designed based on this classical circuit. With
manual optimizations, some T -depth-4 implementations with lower width and
CNOT-count are given in [39, 54]. Using this input, ClassicalToQuantum can
output a forward NCT C0-circuit for the AES S-box with Toffoli-depth-4 and
the optimal width 66. It can be easily extended to an entire C0-circuit (including
uncomputation). We can utilize the method proposed in [28] to convert it to a
C∗-circuit by adding some CNOT gates. Table 1 compares the costs of these two
circuits with the NCT circuits presented in [39]. Note that, these out-of-place
circuits have Toffoli-depth 8, since they include the Toffoli-depth-4 backward
circuits. We can illustrate that our circuits have lower costs for all critical metrics.

Table 1. Comparison of different out-of-place NCT circuits (including uncomputation)
originated from Boyar and Peralta’s AND-depth-4 classical circuit for the AES S-box.

Type #NOT #CNOT #Toffoli Toffoli-depth Full Depth Width Source

C∗ 4 312 68 8 78 90 [39]
C∗ 4 368 68 8 105 76 [39]

C0/C∗ 4 227/240 60 8 60 66 This work

By using QAND/QAND† gates instead of Toffoli gates in the NCT C0-circuit,
we can obtain a Clifford+T C0-circuit for the AES S-box. Note that, to obtain a
Clifford+T C∗-circuit, we should slightly modify the last CNOT sub-circuit that
generates the circuit outputs, as the target qubits of the QAND gate cannot be
the same qubits used for the outputs (thus requiring additional ancilla qubits).
The comparison of our Clifford+T circuits with the Clifford+T circuits presented
in [39,54] is shown in Table 2.

Remark 1. Some values presented in Table 2 and Table 3 (in Section 4.2) are
slightly different from those presented in [39,54]. The reason is that we utilize a
more compact Clifford+T implementation for QAND†, correct an error regarding

9

the width of the C∗ Clifford+T circuits (where the output qubits cannot serve as
target qubits for QAND gates), account for the worst-case scenario for QAND†

(where measurement results consistently yield 1), and fully consider the impact
of measurement feedback on the depth of QAND† (since conditioned operations
on the first two qubits cannot be applied before the measurement on the third
qubit).

Table 2. Comparison of different out-of-place Clifford+T circuits (including uncom-
putation) for the AES S-box, where #M means the number of measurements.

Type #CNOT #1qClifford #T #M T -depth Full Depth Width Source

C0/C∗ 618/608 220 136 34 4 109 99/107 [39]
C0/C∗ 527/554 206/238 136 26/34 4 95/90 84/92 [54]
C0/C∗ 525/539 206/238 136 26/34 4 93/92 84/92 This work

The above instances demonstrate that, given a classical implementation with
AND-depth s, our algorithm can construct a highly compact Clifford+T imple-
mentation with T -depth s. Therefore, using this algorithm, to achieve a minimal
T -depth implementation with low costs for other metrics, we can focus on con-
structing a minimal AND-depth classical circuit with low AND-count.

3.2 Constructing Classical Circuits with the Minimal AND-depth

Let F = (f1, f2, . . . , fn) be a Boolean function with maxi{deg(fi)} = D. As
mentioned before, the proof of Lemma 1 induces a straightforward approach for
constructing a minimal AND-depth classical circuit for F . That is first construct-
ing all monomials with degree ≤ D by ⌈log2(D)⌉ AND-layers, then generating all
fi’s by XOR and NOT gates. For some Boolean functions with simple ANFs, this
straightforward approach can yield an implementation with low AND-count. The
following example shows how to construct a classical circuit for the χ function
of SHA3 [7] with AND-depth 1 and AND-count 5 by this approach.

Example 1. (A T -depth-1 circuit for the χ function of SHA3) The χ
function of SHA3 is (f1, f2, f3, f4, f5) = (x1 + (x2 + 1)x3, x2 + (x3 + 1)x4, x3 +
(x4 + 1)x5, x4 + (x5 + 1)x1, x5 + (x1 + 1)x2). Apparently, with 5 multiplications
x2 · x3, x3 · x4, x4 · x5, x5 · x1, x1 · x2, which can be applied by 5 AND gates
in one AND-layer, we can generate all the quadratic monomials occurring in
these fi’s. Then, using 10 XOR gates, we can construct f1, f2, f3, f4, f5 from
x1, x2, x3, x4, x5, x2x3, x3x4, x4x5, x5x1, x5x2. This classical circuit can be easily
converted to an out-of-place Clifford+T circuit that implements the χ function
with T -depth 1, T -count 20, and width 20.

For complex problems, the circuit obtained through this straightforward ap-
proach will have a large AND-count. In [8], Bilgin et al. presented a SAT-based

10

method to minimize the AND-depth and AND-count of the classical implemen-
tations. They showed that most Boolean functions with 4 variables can be im-
plemented with the minimal AND gate count and AND depth by their method.
However, for large Boolean functions, this method could not ensure the output
circuit has the minimal AND-depth. In the following, we propose a new general
approach to construct classical implementations having the minimal AND-depth
and low AND-count.

First, we introduce some new notations and terminologies. Let Mk, where
k ≥ 1, denote the set of Boolean polynomials with degree in the range [2k−1 +
1, 2k], and M0 denote the set of all affine polynomials. In other words, Mk con-
sists of polynomials whose classical implementations have the minimal AND-
depth k. Moreover, we use M≤k to denote ∪k

i=0Mi. Let f ∈ Md. Suppose
M = {M1,M2, . . . ,Ms} are all monomials contained in f . The i-th m-layer
of f , denoted as MLi(f), is the sum of all monomials in M∩Mi. Obviously, we
have f = MLd(f) +MLd−1(f) + · · ·+ML0(f).

For f ∈ Md, if there are f1 ∈ Ms and f2 ∈ Mt such that f = f1 · f2 and
s, t < d, we say f is depth-decreasing factorable, and f1, f2 are depth-decreasing
factors of f . Apparently, all monomials with degrees higher than one are depth-
decreasing factorable. A max-depth cover of f is a set of depth-decreasing fac-
torable Boolean polynomials C = {C1, C2, . . . , Ck} ⊆ Md such that

f = C1 + C2 + · · ·+ Ck +R, (1)

for some R ∈ M≤d−1. From (1), we know that
∑

i Ci = MLd(f). Since Ci

is depth-decreasing factorable, we have Ci = Di,1 · Di,2 for some Di,1, Di,2 ∈
M≤d−1. Here D1,1, D1,2, . . . , Dk,1, Dk,2 are called the factors of the max-depth
cover, and k is called the size of the max-depth cover. Unless otherwise stated,
‘cover’ refers to a max-depth cover in the following.

Let F = (f1, f2, . . . , fm) be a Boolean function with all fi ∈ Md. For
any fi, suppose we can find a max-depth cover {Ci

1, C
i
2, . . . , C

i
ki
} of fi, and

Di
1,1, D

i
1,2, . . . , D

i
ki,1

, Di
ki,2

are the factors of this cover. Then by applying k1 +
k2 + · · · + km AND gates in one AND layer, we can generate all these covers
from their factors. Obviously, if we can construct an AND-depth-(d− 1) circuit
that can generate these factors and the remainders R1, R2, . . . , Rm, then we can
derive an AND-depth-d circuit that can generate F . Then the original problem
is induced to the problem of constructing an AND-depth-(d− 1) circuit for the
Boolean function

F1 = (R1, D1
1,1, D

1
1,2, . . . , D

1
k1,1, D

1
k1,2, . . . , R

m, Dm
1,1, D

m
1,2, . . . , D

m
km,1, D

m
km,2).

This provides a recursive approach, which is called the Top-down approach, to
construct an AND-depth-d circuit for F . In each iteration of the approach we
only need to find the max-depth covers of the input polynomials. Algorithm 1
presents the specific steps of the Top-down approach.

From Algorithm 1, we know that the AND-count of the final circuit is∑d
s=1 |CAs|, and in each iteration (Step 2-11), CAs contains | ∪i Ci| AND gates.

11

Algorithm 1: Top-down approach
input : A Boolean function F = (f1, f2, . . . , fm) with at least one fi ∈ Md

output: A classical circuit that implements F with AND-depth d
1 H ← {f1, f2, . . . , fm};
2 for s from d to 1 do
3 CAs ← ∅, CXs ← ∅, G ← H ∩Ms, H = H \ G;
4 for each gi in G do
5 Find a max-depth cover Ci = {C1, C2, . . . , Ck} of gi;
6 Let R be the remainder and {D1

1, D
2
1, . . . , D

1
k, D

2
k} be the factors of Ci;

7 Add the AND gates that generate C1, C2, . . . , Ck into CAs;
8 Add the XOR gates that generate C1 + C2 + . . .+ Ck into CXs;
9 H ← H∪ {D1

1, D
2
1, . . . , D

1
k, D

2
k, R};

10 end
11 end
12 Construct CX0, which is the set of XOR and NOT gates that generate the

polynomials in H ; /* Here H only contains affine polynomials */
13 return {CX0,CA1,CX1, . . . ,CAd,CXd}

Hence, the total AND-count of the obtained circuit is primarily determined by
the sizes of the obtained covers.

A trivial max-depth cover of a Boolean polynomial f is the set of the mono-
mials that are in MLd(f). Its size provides an upper bound for the sizes of
covers of f . It is easy to see that the straightforward approach introduced ear-
lier is equivalent to consistently using trivial max-depth covers in the Top-down
approach. Actually, covers with smaller sizes exist for many Boolean polynomi-
als. For example, if two monomials in MLd(f) have a common factor in Md−1,
then f has a nontrivial cover.

Example 2. Let f = x1x2x3x4x5x6+x1x2x3x4x5+x1x2x3x4x6+x1x3x4x5x6+
x1x2x4x5x6 + x1x2x3x5x6 + x2x3x4x5x6 + r, where r is a Boolean polynomial
with degree less than 5. It is easy to check that

C = {(x1x2x3 + x2x3 + x1x2 + x1x3) · (x4x5x6 + x4x5 + x4x6 + x5x6)}

is a max-depth cover of f . Since it contains only one polynomial, its size is 1.

Methods for finding covers. We propose two methods to find covers with
small size. The first one is a greedy method. From a cover C = {C1, C2, . . . , Ck}
of f , we want to use C1+C2+ · · ·+Ck to generate G = MLd(f). Our strategy is
using C1 to generate a sufficiently large part of G. Let M be the set of monomials
involved in G. We begin with two sets S1 = {p1} and S2 = {q1}, where p1 and q1
are the depth-decreasing factors of a monomial in M∩Md. Then S1 is updated
as follows. If there is a p, which is the depth-decreasing factor of a monomial
in M, satisfying that (

∑
pi∈S1

pi + p)(
∑

qj∈S2
qj) contains more monomials in

M than (
∑

pi∈S1
pi)(

∑
qj∈S2

qj), we add p into S1. Similarly, we can update S2.
If S1 and S2 cannot be updated, set C1 = D1

1 · D1
2 with D1

1 =
∑

pi∈S1
pi and

12

D1
2 =

∑
qj∈S2

qj . Then let G = G − C1, and find C2 similarly. For example, we
can easily construct the cover in Example 2 by this method. Sometimes, we can
update S1 (or S2) by adding p (or q) such that we can generate new monomials
in ML≤d−1(f).

The second method is a SAT-based method. According to Equation (1), we
can encode the problem of determining whether there is a max-depth cover of
f ∈ Md with size k, into the following relation.

f +

k∑
i=1

D1
i · D2

i + R = 0. (2)

Here D1
i ,D

2
i ,R are Boolean polynomials that contain all monomials in M≤d−1,

and have different Boolean variables as their coefficients. Then, from the con-
straint that the coefficients of monomials (∈ Md) contained in f +

∑k
i=1 D

1
i ·D2

i

should all equal zero, we can generate a set of Boolean polynomial equations
for the coefficient variables of D1

i ,D
2
i (1 ≤ i ≤ k). We denote these equations as

EQNc(f, d, k).
By setting k from 1 to K − 1, where K is the size of the trivial max-depth

cover of f , we attempt to solve EQNc(f, d, k) using an off-the-shelf SAT-solver.
If the solver returns SAT for some k, then we can obtain a max-depth cover of f
with size k.

Improving techniques. The following three techniques can be used to improve
Algorithm 1: (1) Perform Gaussian elimination on G to eliminate MLs(gi) in
some gi; (2) Change G to different invertible linear combinations of the original
polynomials to find covers with smaller sizes; (3) Simultaneously find a cover of
f along with covers for its factors and remainder. Detailed descriptions of these
techniques can be found in Appendix D.

Application in implementing the AES S-box. We show how to construct a
minimal AND-depth circuit for the AES S-box by the Top-down approach. Let
(f1, f2, . . . , f8) be the Boolean function corresponding to the AES S-box. It is
well known that deg(fi) = 7 and fi ∈ M3 for 1 ≤ i ≤ 8, hence our target circuit
has AND-depth 3.

First, for any fi, with the SAT-based method, we can find that it has a
cover with size 1. Based on this result, we can combine the second and the third
improving techniques as follows. Change the input polynomials as all possible
invertible linear combinations of f1, f2, . . . , f8. Suppose g1, g2, . . . , g8 are the new
input polynomials. For each gi, attempt to simultaneously find its cover and
covers of the corresponding factors and remainders by the SAT-based method.
Here we set the size of the cover of gi to 1, and the sizes of the covers of the
two factors and one remainder as 1, 1, 3 respectively. We can successfully find a
set of new input polynomials {ḡ1, ḡ2, . . . , ḡ8} such that the SAT-solver returns
SAT. Therefore, we can generate the size-1 covers of ḡ1, ḡ2, . . . , ḡ8 by applying
8 AND gates in the third AND-layer, and generate the covers of the factors
and remainder for each ḡi by applying 1 + 1 + 3 = 5 AND gates in the second

13

AND-layer, resulting in a total AND-count 8 × 5 = 40 for the second AND-
layer. Finally, we considered the iteration with input polynomials in M1. After
performing Gaussian elimination, the rank of the first m-layer (i.e. the quadratic
parts) of these input polynomials is 28, which implies that at least 28 AND
gates are required to generate these polynomials. Therefore, we can use the trivial
covers, which contains 28 quadratic monomials, for this iteration. In summary, we
construct a AND-depth-3 circuit 4 with AND-count being equal to 8+40+28 =
76. Compared to the AND-depth-3 circuit proposed in [28], which has 78 AND
gates, our circuit reduces the AND-count by 2.

Note that the AND-depth-3 circuit proposed in [28] was achieved by applying
some heuristic modification on Boyar and Peratal’s AND-depth-4 circuit, which
was constructed by utilizing the algebraic property of the multiplicative inversion
in F28 . In comparison, the Top-down approach is a general approach, which can
be applied with only knowing the ANF of the Boolean function. This leads to
the subsequent section. Considering the multiplicative inversion in F2n , which is
commonly used in cryptography, we aim to develop a specific method that can
construct a minimal AND-depth implementation with lower AND-count.

4 Implementing the Multiplicative Inversion in F2n

For an element α ∈ F2n , we denote its multiplicative inverse, as α−1 (where
α−1 = 0 if α = 0). Suppose {β1, β2, . . . , βn} is a basis of F2n over F2. α can be
expressed as x1β1 + x2β2 + · · · + xnβn, where each xi ∈ F2. Then α−1 can be
written as f1(x1, x2, . . . , xn)β1+f2(x1, x2, . . . , xn)β2+ · · ·+fn(x1, x2, . . . , xn)βn

for some Boolean polynomials f1, f2, . . . , fn. The problem of implementing the
multiplicative inversion in F2n , or simply the inversion in F2n , is to implement
the Boolean function F (n)

inv = (f1, f2, . . . , fn). A property of F (n)
inv is that at least

one of its coordinate functions has algebraic degree n−1. A proof of this property
can be found in Appendix E. Then, according to Lemma 1, we have the following
theorem.

Theorem 1. The minimal AND-depth for implementing the inversion in F2n

is ⌈log2(n− 1)⌉.

As our method for implementing inversion will involve implementing multi-
plications in various F2k , we first introduce the following lemma about multipli-
cation implementations, whose proof can be found in Appendix F.1.

Lemma 3. If k = 2rs, for some positive number r and odd number s, then the
multiplication of two elements in F2k can be implemented by one AND layer and
3rs2 AND gates.

In the following paragraphs of this section, we always assume that the multi-
plication in F2k is implemented by one AND layer. Moreover, for k = 2rs, we
denote this AND-count 3rs2 as ω(k).
4 This circuit is available at https://github.com/hzy-cas/Minimal_T-depth_Width.

14

https://github.com/hzy-cas/Minimal_T-depth_Width

4.1 Parallel Addition Chain

Let α ∈ F2n . Note that, if α ̸= 0, α2n−2 ·α = α2n−1 = 1, and if α = 0, α2n−2 = 0,
which means α−1 = α2n−2. Therefore computing α−1 is equivalent to computing
the exponentiation α2n−2.

There is a connection between the procedure of computing α2n−2 and the
addition chain of n−1. For a number k, its addition chain is a sequence 1 = a0 <
a1 < a2 < · · · < ar = k, with the property that for all s = 1, 2, . . . , r, as = ai+aj
for some i ≤ j < s. The number r is called the length of the addition chain. We
use an example to illustrate such connection.

Let α ∈ F26 , then α−1 = α26−2 = α62. We can use two kinds of operations,
squaring and multiplication, to compute α62. For example, we sequentially com-
pute α2, α3 = α · α2, α6 = (α3)2, α7 = α6 · α, α28 = ((α7)2)2, α31 = α28 · α3,
α62 = (α31)2. If we express these exponents by their binary expressions, which
are denoted by binary strings with 2 as their subscript, then the change of these
exponents can be illustrated by the following steps.

12(1)
∧2−−→102(2)

×−→112(3)
∧2−−→1102(6)

×−→ 1112(7)
∧4−−→111002(28)

×−→111112(31)
∧2−−→1111102(62)

Note that, with a polynomial basis {1, β, β2, . . . , β5} of F26 , the squaring oper-
ation for α = a1β

5 + a2β
4 + · · ·+ a4β + a5 corresponds to compute some linear

combinations of these ai’s, while with a normal basis {β, β2, . . . , β25} of F26 ,
the squaring operation for α = a1β + a2β

2 + · · · + a4β
24 + a5β

25 corresponds
to reordering these ai’s. In both cases, implementing the squaring operations
does not need AND gates. Since we focus on reducing AND-count, the steps
corresponding to squaring can be ignored in the above chain. Moreover, we can
observe that, in the above steps, squaring corresponds to appending a zero at
the end of a binary number, and this does not change the Hamming weights
of this binary number. For a binary number k, its Hamming weight, denoted as
HW(k), is the number of ones that occur in k. Then the change for the Hamming
weights of these binary numbers can be illustrated by an addition chain for 5:
1 → 2 → 3 → 5. This chain has length 3, which implies that 3 multiplications
in F26 are applied in the corresponding process for computing α−1.

Let α ∈ F2n . Suppose we have an addition chain for n − 1 with length r.
We can construct the following procedure for computing α2n−2. If a = b +
c in the chain, then we can obtain α2a−1 (the binary expression of 2a − 1 is
a continuous 1’s) from α2b−1 and α2c−1 by first squaring α2b−1 for c times,
resulting in α2b+c−2c , then computing α2b+c−2c · α2c−1 = α2b+c−1. In this way,
we can obtain α2n−1−1 with r multiplications in F2n . Finally, we square α2n−1−1

and achieve α2n−2. Obviously, from this procedure, we can construct a circuit
that computes α−1 with AND-depth r and AND-count ω(n)r.

However, based on the above approach, sometimes, even from a shortest
addition chain for n − 1, we cannot obtain a minimal AND-depth circuit for
inversion in F2n . For example, the shortest addition chain for 7 has length 4, but
inversion in F28 can be implemented with AND-depth 3, according to Theorem 1.

15

In order to better characterize the AND-depth, we introduce a new concept called
the parallel addition chain.

A parallel addition chain for n with length d and width w, is defined by
a matrix A = (ai,j)w×(d+1) whose entries are non-negative integers, with the
following properties:

1) a1,1 = 1, as,d+1 = n for some 1 ≤ s ≤ k, and ai,d+1 = 0 for any i ̸= s;
2) For any row, suppose its nonzero entries are ai,j1 , ai,j2 , . . . , ai,jt with j1 <

j2 < · · · < jt, then ai,j1 < ai,j2 < · · · < ai,jt .
3) Suppose ai,s is the first nonzero entry in a row where i > 1. Then ai,s = ak,s

for some k ̸= i. (This means the subsequent operations share the same input)
4) Suppose ai,j is a nonzero entry in a row, but not the first nonzero element.

Then ai,j = ai,p + as,q where s ̸= i, p < j, and q < j.

Example 3. The following matrix is a parallel addition chain for 7. It corresponds
to a procedure for computing 7 with 3 addition layers.

A =

[
1 2 4 7
1 0 3 0

] C1 : 1
+1−−→ 2

+2−−→ 4
+3−−→
C2

7

C2 : 1 −−→ 1
+2−−→
C1

3

Here, 3 (∈ C2) is obtained by adding 1 (∈ C2) and 2 (∈ C1). 7 (∈ C1) is obtained
by adding 4 (∈ C1) and 3 (∈ C2). Based on this parallel addition chain, we can
construct the following procedure for computing α−1 ∈ F28 .

α
∧2−−→ α102 ×α1

−−−→ α112 ∧4−−→ α11002 ×α112
−−−−−→ α11112 ∧16−−→ α111100002 ×α11102

−−−−−→ α111111102

α102 −−−→ α102 −−→ α102 ×α11002
−−−−−→ α11102

This procedure corresponds to an AND-depth-3 circuit for the inversion in F28 .

For a parallel addition chain A for n with length d and width w, the nonzero
entries in the same column can be generated in parallel, hence we have a depth-d
procedure for computing n. Moreover, if the number of nonzero entries in A is
m, then the addition count for the whole procedure is m − w. This procedure
corresponds to a classical circuit that implements the inversion in F2n+1 with
AND-depth d and AND-count (m−w)ω(n). Obviously, the minimal length of the
parallel addition chains for n is ⌈log2(n)⌉. Following the Itoh-Tsujii algorithm [29]
for inversion, we can construct a parallel addition chain for n with the minimal
length.

Lemma 4. For any n, there is a parallel addition chain for n with the minimal
depth ⌈log2(n)⌉ and involving HW(n) + ⌊log2(n)⌋ − 1 additions.

Proof. Suppose HW(n) = 1, then n = 2k for some k, and ⌊log2(n)⌋ = ⌈log2(n)⌉ =
k. In this case, [1, 2, 22, · · · , 2k−1, 2k] is a parallel addition chain for n. This chain
has length k = ⌈log2(n)⌉ and addition-count k = HW(n) + ⌊log2(n)⌋ − 1

16

Now suppose HW(n) = m > 1. We can write n as 2km + 2km−1 + · · · + 2k1 ,
where ⌊log2(n)⌋ ≥ km > km−1 > · · · > k1 ≥ 0. Then we can construct the
following parallel addition chain for n. 1 2 · · · 2k1 2k1+1 · · · 2k2 2k2+1 · · · 2k3 · · · 2km 0

0 0 · · · 2k1 0 · · · 0
∑2

i=1 2
ki · · · 0 · · · 0

∑m
i=1 2

ki


The length of this chain is km +1 = ⌊log2(n)⌋+1 = ⌈log2(n)⌉, and the addition
count is km +HW(n)− 1 = HW(n) + ⌊log2(n)⌋ − 1. ⊓⊔

From this lemma, we can induce the following result about implementing the
inversion in F2n with the minimal AND-depth.

Theorem 2. There is a classical circuit implementing the inversion in F2n with
AND-depth ⌈log2(n− 1)⌉ and AND-count ω(n)(HW(n− 1)+ ⌊log2(n− 1)⌋− 1).

In the following, we show that the AND-count of the circuit derived from a
parallel addition chain can be reduced for some instances. In a parallel addition
chain, we may compute the addition of a number and itself. This corresponds to
the multiplication of αa and αb with HW(a) = HW(b). Sometimes, we can signif-
icantly reduce the AND-counts for implementing αa ·αb and the multiplications
of αa+b and other elements.

Lemma 5. Suppose n = 2s for some integer s. Let a, b be two integers with
b = a2s. Then the multiplication of αa and αb in F2n can be implemented by
one AND layer, and ω(s) AND gates. Moreover, the multiplication result αa+b

is in F2s hence the the multiplication of αa+b and any element in F2n can be
implemented by one AND layer and 2ω(s) AND gates.

Proof. Since n = 2s, αa can be expressed as a1β1 + a2β2, where a1, a2 ∈ F2s ,
and {β1, β2} is a basis of F2n over F2s . Since a2

s

i = ai, we have αb = (αa)2
s

=

a1β
2s

1 + a2β
2s

2 . Then αa · αb = a21β
2s+1
1 + a22β

2s+1
2 + a1a2(β

2s

1 β2 + β2s

2 β1). As
we mentioned before, implementing a21 and a22 does not cost AND gates, and
implementing a1a2 requires one AND layer and ω(s) AND gates. This proves
the first conclusion. Moreover, we have αa+b = (αa)2

s+1. Let T = αa, then
(T 2s+1)2

s

= T 22s+2s = T 2nT 2s = T · T 2s = T 2s+1, which implies αa+b is an
element in F2s . For any element r ∈ F2n , it can be expressed as r1β1+r2β2. Then
αa+b·r = αa+br1β1+αa+br2β2, which means only two parallelized multiplications
in F2s are required to compute αa+b · r. This proves the lemma. ⊓⊔

Compared to the implementation from Lemma 3, which requires 3s2 AND gates
for n = 2s, this implementation reduces the AND-count for the multiplication
of two powers by 2/3, and the AND-count for the subsequent multiplication by
1/3.

Example 4. (Implementing the RAIN-128 S-box) We consider the S-box
of the MPC-friendly block cipher RAIN-128 proposed in CCS 2022 [22], which

17

is the inversion in F2128 . According to Theorem 2, to obtain an AND-depth 7
implementation, we can construct the following parallel addition chain for 127:

A =

[
1 2 4 8 16 32 64 127
1 0 3 7 15 31 63 0

]
,

which induces an AND-depth-7 classical circuit using 37 · 12 = 26244 AND
gates. Since 128 = 2 · 64, to apply Lemma 5, we can set the power production
corresponding to 64 = 32 + 32 as α(232−1)264 · α(232−1) = β, then this step can
be implemented by 36 = 729 AND gates. Moreover, β is in F264 , hence the
power production (β)2

32 · (α(232−1)264 · α(231−1)2) = α2128−2, which corresponds
to 127 = 64+63, can be implemented by 2·36 = 1458 AND gates. In this way, we
can reduce the AND-count to 24057. Furthermore, using ClassicalToQuantum,
we can obtain an NCT forward implementation with the minimal Toffoli-depth
7 and Toffoli-count 24057.

Remark 2. Implementing the inversion in F2n is also important for applying
Shor’s algorithm to attack binary elliptic curve schemes [5]. For example, to
attack the binary elliptic curves recommended by NIST’s Federal Information
Processing Standards 186-4 [43], implementations for n = 163, 233, 283, 409, 571
are required. Based on Theorem 2, we can construct the minimal-T -depth im-
plementations for these values of n.

4.2 Implement the Multiplicative Inversion in F22m

In this section, we further investigate optimizing the implementation of inversion
in F22m , when m satisfies the following property: let m − 1 =

∑s
i=1 2

ki with
0 ≤ k1 < k2 < · · · < ks and s ≥ 2, and assume ks > ⌈log2(

∑s−1
i=1 2ki)⌉.

Here we use the tower field architecture of F22m [15, 16]. For α ∈ F22m , we
have α−1 = (α · α2m)−1α2m . Let b = α · α2m = α2m+1 , then α−1 = b−1 · α2m .
Note that b2

m−1 = α(2m+1)(2m−1) = α22m−1 = 1, which implies b ∈ F2m . With
a normal basis {β, β2m} of F22m over F2m , α can be written as a0β

2m + a1β ,
where a0, a1 ∈ F2m . Then we have

α2m = a1β
2m + a0β, b = α · α2m = a0a1β

2m+1

+ (a20 + a21)β
2m+1 + a0a1β

2

and
α−1 = b−1a1β

2m + b−1a0β.

This means we can compute α−1 by the following three steps:

(1) Compute b. The only nonlinear operation for computing b is computing a0a1,
hence it can be implemented by one AND layer and ω(m) AND gates.

(2) Compute b−1. Since b ∈ F2m , this step can be implemented by ⌈log2(m−1)⌉
AND layers.

(3) Compute b−1a1 and b−1a0 simultaneously, then obtain α−1 by applying some
linear operations. This step can be implemented by one AND layer.

18

The circuit obtained by these three steps will have AND-depth ⌈log2(m−1)⌉+2,
which is higher than the minimal AND-depth ⌈log2(2m− 1)⌉. In the following,
we show that we can reduce the AND-depth by modifying the above process.

According to Section 4.1, the problem of computing b−1 ∈ F2m with the
minimal AND-depth can be converted to finding a parallel addition chain for
m−1. Suppose in a parallel addition chain Aw×(d+1) for m−1 with the minimal
length d, m− 1 is obtained by computing m1 +m2. Without loss of generality,
assume m1 is in the d-th column. If m2 is in a different column, which means
the two rows containing m1 and m2 are as follows,[

· · · ∗ · · · m1 m− 1
· · · m2 · · · 0 0

]
,

then m2 is obtained before m1. Note that, in this chain the step of obtaining a
number k corresponds to a step of computing bs(k) by a multiplication in F2m ,
where s(k) is a binary number with HW(s(k)) = k. Since we have already ob-
tained bs(m2) before computing bs(m1), we can compute bs(m1), bs(m2)a1, bs(m2)a0
in parallel. Then we compute bs(m1) · bs(m2)a1 = b−1a1 and bs(m1) · bs(m2)a0 =
b−1a0 in parallel.

By this strategy, the above Step (2) and (3) can be implemented by ⌈log2(m−
1)⌉ AND layers, and the whole procedure can be implemented by ⌈log2(m−1)⌉+1
AND layers. It is easy to prove that ⌈log2(2m−1)⌉ = ⌈log2(2m−2)⌉ = ⌈log2(m−
1)⌉+1, which means this implementation has the minimal AND-depth. We refer
to the above strategy as the merging strategy, since it merges two steps. Note
that, compared to the original strategy, which first computes bs(m1) · bs(m2) =
bs(m−1), then simultaneously computes bs(m−1) ·a1 and bs(m−1) ·a2, the merging
strategy needs one more multiplication in F2m .

Example 5. We show how to compute α−1 ∈ F224 by the merging strategy. In
a parallel addition chain, an addition corresponds to a multiplication of two
powers. Here we use the symbol “⊞” to denote an extension version of addition,
which corresponds to the multiplication of a power and a given element. Suppose
we have already achieved b ∈ F212 by Step (1), which requires one multiplication
in F212 . Based on A1, which is a parallel addition chain for 11 with length 4, we
can construct an extended parallel chain A2.

A1 =

[
1 2 4 8 11
0 2 3 0 0

]
⇒ A2 =

1 2 4 8 11 ⊞ a1

0 2 3 3⊞ a0 11⊞ a0

0 0 3 3⊞ a1 0


A2 corresponds to the following procedure for computing b−1a1 = b4094a1 and
b−1a0 = b4094a0.

b
∧2−−→ b2

×b1−−→ b3
∧4−−→ b12

×b3−−→ b15
∧16−−→ b240

×b15−−−→ b255
∧16−−→ b4080

×b14a1−−−−−→ b4094a1

b3
∧2−−→ b6

×b1−−→ b7
∧2−−→ b14

×a0−−−→ b14a0 −→ b14a0
×b4080−−−−→ b4094a0

b14
×a1−−−→ b14a1

19

Then, the whole procedure for computing α−1 has 5 multiplication layers, and
involves 9 multiplications in F212 .
Theorem 3. Let m − 1 =

∑s
i=1 2

ki with 0 ≤ k1 < k2 < · · · < ks and s ≥ 2. If
ks > ⌈log2(

∑s−1
i=1 2ki)⌉, then α−1 ∈ F22m can be implemented by a classical circuit

with the minimal AND-depth ⌈log2(2m − 1)⌉ and AND-count ω(m)(HW(m −
1) + ⌊log2(m− 1)⌋+ 3).
Proof. Let b ∈ F2m be the element obtained from Step (1). Now we consider the
implementation of b−1. If s = 2, we have the following parallel addition chain A
for m− 1 with the minimum length.

A =

 1 2 · · · 2k1 2k1+1 · · · 2k2 0

0 0 · · · 2k1 0 · · · 0 m− 1

 .

If s > 2, according to the proof of Lemma 4 and the property that ks >

⌈log2(
∑s−1

i=1)ki⌉, we have the following parallel addition chain A for m− 1 with
the minimum length.

A =

 1 2 · · · 2k1 2k1+1 · · · 2k2 2k2+1 · · · 2ks−1 2ks−1+1 · · · 2ks 0

0 0 · · · 2k1 0 · · · 0
∑2

i=1 2
ki · · · 0

∑s−1
i=1 2ki · · · 0 m− 1

 .

Note that, in both cases, m−1 is obtained by adding 2ks and
∑s−1

i=1 2ki , and 2ks

and
∑s−1

i=1 2ki are not in the same column. Therefore we can apply the merging
strategy, and implement α−1 by ⌈log2(2m − 1)⌉ AND layers. Now we give the
AND-count. Since A involves HW(m− 1) + ⌊log2(m− 1)⌋ − 1 additions, which
corresponds to HW(m − 1) + ⌊log2(m − 1)⌋ − 1 multiplications in F2m . Then
the whole procedure will involve 1 + (HW(m − 1) + ⌊log2(m − 1)⌋ − 1) + 3 =
HW(m−1)+⌊log2(m−1)⌋+3 multiplications in F2m , which cost ω(m)(HW(m−
1) + ⌊log2(m− 1)⌋+ 3) AND gates. ⊓⊔

Application in implementing the AES S-box. The nonlinear part of the
AES S-box is the inversion in F28 . Note that, 4 − 1 = 21 + 20, hence we can
apply the merging strategy. A minimal AND-depth implementation of the AES
S-box can be constructed based on the following extended addition chain.

A1 =

[
1 2 3
1 0 0

]
⇒ A2 =

1 2 3⊞ a1

1 1⊞ a0 3⊞ a0

1 1⊞ a1 0


Let b ∈ F24 be the element obtain by Step (1). Then, in A2, the addition,
which obtains 2, corresponds to a multiplication of ba1 and ba2 , where a1, a2
are two integer satisfying HW(a1) = HW(a2) = 1. Note that, b and b4 satisfy
the assumption of Lemma 5. There we can design the computation procedure
corresponding to A2 as follows.

b
∧4−−→ b1002

×b1−−→ b1012
∧2−−→ b10102

×b1002a1−−−−−−→ b11102a1 = b−1a1

b1002
×a0−−−→ b1002a0 → b1002a0

×b10102−−−−−→ b11102a0 = b−1a0

b1002
×a1−−−→ b1002a1 → b1002a1

(3)

20

In this procedure, b1002 · b costs 3 AND gates. Moreover, we have b10102 ∈ F22 ,
hence b10102 · b1002a1 and b1002a0 · b10102 cost 6 AND gates respectively. Based on
this procedure, we can construct a classical circuit the implements the AES S-box
with 3 AND layers and a total of 9+3+2·9+2·6 = 42 AND gates. In Appendix G,
we present this classical circuit. Compared to the AND-depth-3 circuit proposed
in [28], which has 78 AND gates, this implementation reduces the AND-count by
about 46%. Furthermore, by applying ClassicalToQuantum, we achieve a highly
compact T -depth-3 quantum circuit for the AES S-box. Table 3 compares this
circuit with the T -depth-3 circuit proposed in [28,54]. Moreover, in Appendix H,
we present the costs of the Grover Oracle and Encryption Oracle for AES when
using our new T -depth-3 S-box.

Table 3. Comparison of different out-of-place Clifford+T circuits (including uncom-
putation) for the AES S-box with T -depth 3.

Type #CNOT #1qClifford #T #M T -depth Full Depth Width Source

C0/C∗ 1396/1398 494 312 78 3 119 218/226 [28]
C∗ 1110 448 264 66 3 92 129 [54]

C0/C∗ 827/856 266/298 168 34/42 3 85/87 89/97 This work

5 Implementing Nonlinear Functions with the Minimal
Width

In this section, we consider implementing Boolean functions with the minimal
number of qubits. For a Boolean function F with n variables, if it is invertible,
it can be seen as a permutation P on Fn

2 . If the corresponding P is an even
(odd) permutation, we say F is even (odd). A well-known result for the minimal
number of qubits required for implementing an invertible Boolean function F
in-place by NCT gates is as follows.
Lemma 6. [46] When n ≥ 4, if F is even, the minimal number of qubits
required to implement F by NCT gates is n. If F is odd, the minimal number of
qubits required to implement F in-place by NCT gates is n+ 1.

Suppose we already have an NCT circuit with this minimal width, then by
decomposing the Toffoli gates into Clifford+T sub-circuits without using ancilla
qubits, we can obtain a Clifford+T circuit for F with the same width. In this
paper, we only consider the strategy of constructing Clifford+T implementations
originated from NCT implementations, hence in the following, when we say a
minimal-width Clifford+T implementation, we mean an n-qubit ((n+1)-qubit)
Clifford+T circuit for an even (odd5) F .
5 If we use some different gate sets, for example, the Clifford+ZN gate set, which

includes the N th roots of the Pauli-Z gate, we can construct an n-qubit implemen-
tation for an odd F [9]

21

Note that, this minimal-width implementation is an in-place implementation
for F , and exists only when F is invertible. If F is non-invertible, it can only
be implemented by an out-of-place circuit. In this case, we can equivalently con-
sider the problem of finding a minimal-width implementation for the invertible
Boolean function: (x, y) → (x, y⊕F(x)). Therefore, in the following, we suppose
F is invertible, and consider the problem of finding a minimal-width in-place
Clifford+T circuit for F .

In [46], Lemma 6 was proven constructively, and one can derive a minimal-
width implementation from the proof. However, the gate-count for the resulting
circuit would be quite large. For this reason, we aim to explore methods that
can construct minimal-width implementations with low gate-count.

5.1 Method Based on MCT Implementations

A multiple controlled Toffoli (MCT) gate with k control qubits, denoted as CkX,
is a gate that maps |x1, x2, · · · , xk⟩|xk+1⟩ to |x1, x2, · · · , xk⟩|xk+1 ⊕ x1x2 · · ·xk⟩,
for any x1, x2 . . . , xk+1 ∈ F2. Clearly, the C0X, C1X, and C2X gates are the
NOT, CNOT, and Toffoli gates respectively. We introduce a method for con-
structing the minimal-width implementation based on the MCT implementa-
tions of Boolean functions. To implement an n-bit invertible Boolean function
F , this method involves the following three steps.

1) Implement F by MCT gates without using any ancilla qubit.
2) Decompose each MCT gate into NCT gates with at most one ancilla qubit.
3) Decompose each Toffoli gate into a 3-qubit Clifford+T sub-circuit, then as-

semble all sub-circuits.

Here the first step is constructing an n-qubit MCT implementation for F . For
this problem, a trivial solution is decomposing the corresponding permutation
into exchanges, then based on the Gray code, further decomposing each exchange
into the composition of exchanges that swap two elements having one bit differ-
ence [42], which can be implemented by a Cn−1X gate and some NOT gates.
However, the number of Cn−1X gates of the obtained circuit is too large, result-
ing in a minimal-width implementation with a substantial gate-count. In [35], Lee
et al. proposed a tensor decomposition-based method to obtain compact MCT
implementations of invertible Boolean functions. The idea of their algorithm can
be described as follows. Let UF be the 2n×2n permutation matrix corresponding
to F . Try to find some M1,M2, . . . ,Mk such that MkMk−1 · · ·M1UF can be de-
composed as Un−1⊗ I2, where Un−1 is a permutation matrix of order 2n−1, I2 is
the identity matrix of order 2, and Mi is the permutation matrix corresponding
to an MCT gate on some of the input n qubits. Then by recursively decomposing
Un−1, one can obtain an n-qubit MCT implementation of F . Their experiments
show that their algorithm can efficiently obtain a compact MCT circuit for F
with n ≤ 8.

After obtaining an n-qubit MCT implementation, we need to decompose each
MCT gate into NCT gates. Here we introduce the decomposition presented by

22

in [6]. We will involve two kinds of ancilla qubits, the clean ones, which are
initialized to |0⟩, and the dirty ones, which are initialized to some state |x⟩.

Lemma 7. [6] Suppose p and q are two integers such that p+ q = m+1. Then
with one dirty ancilla qubit, one can implement a CmX gate by two CpX gates
and two CqX gates, while with one clean ancilla qubit, one can implement a
CmX gate by two CpX gate and one CqX gate.

Lemma 8. [6] A CmX gate with m ≥ 3 can be implemented by 4(m−2) Toffoli
gates with m− 2 dirty ancilla qubits.

In Appendix I, we illustrate how to decompose C7X and C5X according to
Lemma 7 and 8, respectively. By combing the circuits obtained from Lemma 7
and 8, we can easily obtain an NCT implementation for the CmX gate with m ≥
3 by using one ancilla qubit. Note that, a Cn−1X gate on n qubits corresponds to
an odd permutation, since it only exchanges two elements in Fn

2 . Therefore, the
NCT implementation for Cn−1X obtained in this way has the minimal width.

Now consider the n-qubit MCT implementation obtained. When F is odd,
we can decompose each CmX (m ≤ n − 1) with one clean ancilla qubit, and
obtain an (n + 1)-qubit NCT implementation. When F is even, the tensor
decomposition-based method ensures that the resulting MCT circuit does not
contain the Cn−1X gate for the majority of cases. Therefore, we can decompose
each CmX (m ≤ n − 2) with one dirty ancilla qubit, and this will induce an
n-qubit NCT implementation.

After obtaining the minimal-width NCT implementation, our next step is
decomposing Toffoli gates and assembling small Clifford+T sub-circuits. In [1],
Abdessaied et al. presented a method to reduce the T -depth of the Clifford+T
implementation for an MCT gate based on the the symmetric and cascade struc-
ture of the Toffoli sequence implementing this MCT gate. They proved that a
CmX gate with m ≥ 5 can be implemented with one clean ancilla qubit and
T -depth 6(m − 2) + 2. Here we adopt their method, and utilize our quantum
resource estimator to further improve the circuit. We found that some CmX can
be implemented by lower T -depth than the bound given in [1], due to the can-
cellation of gates and the unpredictable parallelization of T gates. For example,
we found that C7X can be implemented by T -depth 29, which is 3 less than 32
obtained from [1]. Finally, from these compact Clifford+T circuits for CmX, we
can derive a minimal-width Clifford+T circuit for F .

5.2 A SAT-based Method

In this section, we propose a SAT-based method to find the minimal-width NCT
implementation. Once we obtain the NCT implementation, we can obtain the
minimal-width Clifford+T implementation by decomposing Toffoli gates.

Suppose F is an invertible Boolean function with n variables. Let w = n+1
if F is odd, and w = n otherwise. We consider the following decision problem:
whether there exists an NCT circuit that implements F with width w and Toffoli-
count k. We can encode this decision problem into a SAT problem, then solve

23

this SAT problem by an off-the-shelf SAT solver. If the solver returns SAT, we can
obtain a minimal-width NCT implementation with Toffoli-count k. If the solver
returns UNSAT, we should increase k by one and solve the decision problem for
this new k. Here the critical problem is how to design an encoding scheme,
which can convert the decision problem into a SAT problem that can be solved
efficiently. In the following, we present our encoding scheme.

Due to the difficulty of solving large-scale SAT problems in practice, here
we focus on the problem with n ≤ 5. As some SAT-based algorithms for opti-
mizing the multiplicative complexity of classical circuits [20, 51], we divide the
entire NCT circuit into different affine layers and nonlinear layers. If F can be
implemented by k Toffoli gates, then F can be written as

Sk ◦ Tk ◦ Sk−1 ◦ · · · ◦ S2 ◦ T2 ◦ S1 ◦ T1 ◦ S0, (4)

where Si is an invertible affine function corresponding to a circuit consisting of
CNOT and NOT gates, and Ti is an invertible nonlinear function corresponding
to a certain Toffoli gate. Let Ti,j,k denote the function corresponding to the
Toffoli gate with the i-th and j-th wires being the controlled wires and the k-th
wire being the target wire. Note that, for any i, j, k, we can find a set of rewire
operations, denoted by R, such that Ti,j,k = R◦T1,2,3 ◦R−1. Moreover, since the
swap operation can be implemented by 3 CNOT gates, R can be implemented
by a CNOT circuit. This means, Ti,j,k = L′ ◦ T1,2,3 ◦ L′−1 for some invertible
linear function L′. Then, by substituting each Ti with this expression in (4), we
can deduce that

F = Lk ◦ T1,2,3 ◦ Lk−1 ◦ · · · ◦ L2 ◦ T1,2,3 ◦ L1 ◦ T1,2,3 ◦ L0, (5)

for some invertible affine functions L0, . . . ,Lk. In this way, we fix the the Toffoli
gates, thus exclude numerous equivalent solutions within the solution space.

Now suppose the input state of the circuit is a computational basis state
|x1, x2, · · · , xn⟩ with xi ∈ F2, then after each Li and T1,2,3, the state on a wire
can be represented as a Boolean function w.r.t. {x1, x2, . . . , xn}. We denote the
ANF (algebraic normal form) of the quantum state on the i-th wire before Lj ,
as Ai,j (1 ≤ i ≤ w, 0 ≤ j ≤ k), and denote the ANF of the quantum state on
the i-th wire after Lj as Bi,j (1 ≤ i ≤ w, 0 ≤ j ≤ k). Then we have the following
relations.

• ∀i ∈ {1, . . . , w}, ∀j ∈ {0, . . . , k}, Bi,j = c
(j)
1,iA1,j + · · · + c

(j)
w,iAw,j + d

(j)
i , for

some Boolean variables c(j)1,i , . . . , c
(j)
w,i and d

(j)
i . These encode the affine layers.

• ∀j ∈ {1, . . . , k}, A3,j = B3,(j−1) + B1,(j−1) · B2,(j−1), and Ai,j = Bi,(j−1) if
i ̸= 3. These encode the Toffoli layers.

• ∀i ∈ {1, . . . , n}, Ai,0 = xi, Bi,k = fi(x1, x2, . . . , xn). These encode that the
inputs and outputs of circuits.

• If w = n + 1, Aw,0 = 0 and Bw,k = 0. These encode that the ancilla qubit
(for odd F), is in the state |0⟩ at the beginning and the end of the circuit.

24

The next step is generating Boolean polynomial equations from these relations.
Here we use the technique proposed in [53], which can accelerate the subsequently
SAT-problem solving process as announced. Specifically, in these relations, we
replace Ai,j and Bi,j by Boolean polynomials that contain all 2n monomials
with distinct Boolean variables as their coefficients, then compare the monomial
coefficients of the two polynomials on both sides of these relations and generate
equations about the coefficient variables. After obtaining the Boolean polynomial
equations, we can use an ANF-to-CNF converter, such as Bosphorus [19], to
convert them into a CNF, which is the canonical input of a SAT solver.
Meet-in-the-Middle. Since a quantum circuits is reversible, we can divide
the entire circuit into two parts. The forward part transforms (x1, x2, . . . , xn) to
(g1, g2, . . . , gn), while the backward part transforms (f1, f2, . . . , fn) to (g1, g2, . . . ,
gn), where gi is a Boolean function with 2n Boolean variables as its coefficients.
In this way, we can use the determination of fi to reduce the search space, which
can greatly increase the efficiency of our method. Note that, to ensure this strat-
egy works, we should add the equations: ∀j ∈ {0, . . . , k}, det(c(j)s,t)w×w = 1, to
guarantee that each affine layer remains invertible.

Experiments show that our method can efficiently find a minimal-width NCT
circuit for F with n ≤ 4, and the circuit achieved can also have the minimal
Toffoli-count. When n = 5 and F is even, this method can find the minimal-width
NCT circuits for certain practical problems (see Section 5.3) in a reasonable time.

Remark 3. Compared to the SAT-based methods recently proposed in [18, 38],
our method is based on a new encoding scheme for a different decision problem.
Specifically, our encoding scheme applies several techniques to accelerate the
subsequent solving process, enabling our method to efficiently construct circuits
for certain 5-bit S-boxes.

5.3 Applications in Implementations of AES and SHA3

Implementing the AES S-box with 9 qubits. The AES S-box corresponds
to an odd permutation on F8

2, hence its NCT implementation has the minimal
width of 9. In [23], Grassl et al. mentioned a method to obtain a 9-qubit NCT
implementation based on the stabilizer chains of permutation groups, but only
upper bounds for the numbers of T gates and Clifford gates were given.

We demonstrate how to construct a 9-qubit NCT circuit and a 9-qubit
Clifford+T for the AES S-box by using the methods introduced before. We first
apply the tensor decomposition-based method to find an 8-qubit MCT imple-
mentation. That is finding some MCT gates, which corresponding permutations
M1,M2, . . . ,Ms on F8

2, such that M1 ◦M2 ◦ · · · ◦Ms = PAES . To further improve
our implementation, we attempt to find consecutive Mj ,Mj+1, · · · ,Mj+k such
that P = Mj◦Mj+1◦· · ·◦Mj+k is a permutation on F4

2 or an even permutation on
F5
2, which means the NCT circuit for P has minimal-width ≤ 5. For such P, by

using our SAT-based method, we can get a minimal-width NCT implementation
with smaller Toffoli-count.

25

To obtain a 9-qubit NCT circuit for the AES S-box, we decompose all MCT
gates into NCT gates according to Lemma 7 and Lemma 8. Then we utilize our
quantum resource estimator to identify simple cancellations of consecutive gates
and obtain the layer structure of the optimized 9-qubit NCT circuit.In Table 4,
we present the costs of this NCT circuit.

Table 4. Costs of the 9-qubit NCT circuit for the AES S-box.

#NOT #CNOT #Toffoli Width Toffoli-depth Full Depth

233 885 833 9 793 1594

To achieve a 9-qubit Clifford+T circuit, we can use the optimized Clifford+T
decomposition for each MCT gate, then assemble these Clifford+T sub-circuits
by our quantum resource estimator. In the assembling process, 262 T gates, 162
CNOT gates, and 374 1-qubit Clifford gates can be eliminated by simple cancel-
lation. We also employ the quantum circuit optimizer T-par, as proposed in [3],
for further optimization. Using T-par, we can obtain a new circuit with reduced
T -depth and T -count, although it incurs higher costs in other metrics. In this
way, we achieve two 9-qubit Clifford+T circuits for the AES S-box, whose costs
are presented in Table 5. This is the first time that detailed Clifford+T circuits,
with their layer structures, for the AES S-box are presented, achieving the min-
imal width 9. Based on these circuits, we can induce a 276-qubit Clifford+T
implementations for AES with T -depth being 12740 or 15010.

Table 5. Costs of different 9-qubit Clifford+T circuits for the AES S-box.

#Clifford (CNOT, 1qClifford) #T Width T -depth Full Depth Source

≤ 12631(- , -) ≤ 9295 9 - - [23]
7465 (6028, 1437) 3783 9 1501 7180 This work

13008 (10633, 2375) 3447 9 1274 9954 This work (T-par)

Implementing a pair of AES S-boxes with 16 qubits. In one round of AES
encryption, one needs to apply 16 S-boxes in ByteSub of the round function and
4 S-boxes in SubByte of key expansion. If we group every two S-boxes into a
pair, there are 8 pairs of S-boxes in ByteSub and 4 pairs of S-boxes in SubByte.
For a pair of AES S-boxes (X1, X2) → (S1(X1), S2(X2)), it can be seen as an
even permutation on F216 , hence should have a 16-qubit NCT implementation.
To construct a such minimal-width circuit, we can use a qubit allocated for
implementing S2 as the dirty ancilla qubit when implementing S1, and vice versa.
By this trick, we can easily achieve a 16-qubit circuit for a pair of AES S-boxes,
based on our 8-qubit MCT circuit for the AES S-box. Here we should decompose
each MCT gate by using one dirty ancilla qubit. Table 6 presents the costs
of the corresponding 16-qubit NCT implementation and 16-qubit Clifford+T

26

implementation. Apparently, these 16-qubit Clifford+T circuits can easily lead
to 256-qubit Clifford+T implementation for AES with T -depth being 29490 or
27740, which achieves the theoretical minimum width.

Table 6. Costs of the 16-qubit quantum circuits for a pair of AES S-boxes.

Type #NOT #CNOT #Toffoli Width Toffoli-depth Full Depth

NCT 502 1770 2140 16 1714 2990

Type #1qClifford #CNOT #T Width T -depth Full Depth

Clifford+T 3628 14786 9008 16 2949 15253
Clifford+T (T-par) 5066 23976 8360 16 2774 18883

Implementing the χ function of SHA3 with 5 qubits. For SHA3, its only
nonlinear component is the χ function. It corresponds to a 5-bit even permuta-
tion, therefore its NCT implementation has the minimal width 5. By utilizing
the proposed SAT-based method, we can achieve a 5-qubit NCT implementa-
tion with Toffoli-count 7. It is easy to prove that without any constraint on
the width, the minimal number of Toffoli gates required for implementing the χ
function is 5. Therefore, this NCT circuit not only achieves the minimal width
but also has an almost minimal Toffoli-count. Furthermore, we can decompose
all Toffoli gates to obtain a 5-qubit Clifford+T implementation. Then, for the
first time, we obtain the quantum circuits for the χ function that achieving the
minimal width 5. In Table 7, we present the costs of our circuits, and compare
our Clifford+T circuit with the out-of-place circuit6 from [49].

Table 7. Costs of the 5-qubit quantum circuits for the χ function of SHA3.

Type #NOT #CNOT #Toffol Width Toffoli-depth Full Depth Source

NCT 12 0 7 5 7 10 This work

Type #CNOT #1qClifford #T Width T -depth Full Depth Source

Clifford+T
79 24 70 12 30 103 [49]
49 24 49 5 21 66 This work

6 Conclusions

We resolve the problem of constructing an out-of-place circuit with the mini-
mal T -depth in two steps. First, we propose an algorithm for achieving an ef-
ficient T -depth-s quantum circuit from an AND-depth-s classical circuit. Then,
we present a general approach for addressing the problem of constructing clas-
sical circuits with the minimal AND-depth. In particular, we introduce a new
6 In [49], only a circuit mapping |x1, . . . , x5⟩|0⟩ to |χ(x1, . . . , x5)⟩|x1, x2⟩ was given.

Here copy and uncomputation are added to obtain an out-of-place implementation.

27

concept called the parallel addition chain, which helps us design the minimal
AND-depth circuit for the multiplicative inversion in F2n . Based on these, we
achieve a highly compact T -depth-3 circuit for the AES S-box. We propose
an MCT decomposition-based method and a SAT-based method for construct-
ing the minimal-width Clifford+T circuits for Boolean functions. As applica-
tions, we achieve a 9-qubit Clifford+T circuit for the AES S-box, and a 5-qubit
Clifford+T circuit for the χ function of SHA3, by which the minimal-width cir-
cuits for AES and SHA3 can be constructed. As all the methods and techniques
developed in this paper are general, they can be utilized to derive quantum
circuits for diverse symmetric-key ciphers with low costs of quantum resources.
At https://github.com/hzy-cas/Minimal_T-depth_Width, new applications,
including compact minimal-T-depth and minimal-width circuits for the S-boxes
of SKINNY and ASCON, are presented to demonstrate the versatility of our
approaches. Moreover, our methods for constructing low AND-depth and AND-
count circuits may potentially be used in constructing low-latency and low-cost
masking in masked hardware implementations, and reducing the latency and
throughput in FHE, MPC, or ZK evaluation of a cipher.

References
1. Abdessaied, N., Amy, M., Soeken, M., Drechsler, R.: Technology mapping of re-

versible circuits to Clifford+T quantum circuits. In: 46th IEEE International Sym-
posium on Multiple-Valued Logic, ISMVL 2016, Sapporo, Japan, May 18-20, 2016.
pp. 150–155. IEEE Computer Society (2016)

2. Almazrooie, M., Samsudin, A., Abdullah, R., Mutter, K.N.: Quantum reversible
circuit of AES-128. Quantum Inf. Process. 17(5), 112 (2018)

3. Amy, M., Maslov, D., Mosca, M.: Polynomial-time T -depth optimization of
clifford+T circuits via matroid partitioning. IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst. 33(10), 1476–1489 (2014)

4. Amy, M., Matteo, O.D., Gheorghiu, V., Mosca, M., Parent, A., Schanck, J.M.:
Estimating the cost of generic quantum pre-image attacks on SHA-2 and SHA-3.
In: SAC 2016. LNCS, vol. 10532, pp. 317–337. Springer (2016)

5. Banegas, G., Bernstein, D.J., van Hoof, I., Lange, T.: Concrete quantum crypt-
analysis of binary elliptic curves. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2021(1), 451–472 (2021)

6. Barenco, A., Bennett, C.H., Cleve, R., Divincenzo, D.P., Margolus, N., Shor, P.,
Sleator, T., Smolin, J., Weinfurter, H.: Elementary gates for quantum computation.
Physical Review A 52(5) (1995)

7. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Keccak. In: Johansson, T.,
Nguyen, P.Q. (eds.) Advances in Cryptology - EUROCRYPT 2013, 32nd Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, Athens, Greece, May 26-30, 2013. Proceedings. Lecture Notes in Computer
Science, vol. 7881, pp. 313–314. Springer (2013)

8. Bilgin, B., De Meyer, L., Duval, S., Levi, I., Standaert, F.X.: Low AND depth and
efficient inverses: a guide on S-boxes for low-latency masking. IACR Transactions
on Symmetric Cryptology 2020(1), 144–184 (2020)

9. Biswal, L., Bhattacharjee, D., Chattopadhyay, A., Rahaman, H.: Techniques for
fault-tolerant decomposition of a multicontrolled toffoli gate. Physical Review A
100(6), 062326 (2019)

28

https://github.com/hzy-cas/Minimal_T-depth_Width

10. Bonnetain, X., Hosoyamada, A., Naya-Plasencia, M., Sasaki, Y., Schrottenloher,
A.: Quantum attacks without superposition queries: The offline Simon’s algorithm.
In: ASIACRYPT 2019, Kobe, Japan, December 8-12, 2019, Proceedings, Part I.
pp. 552–583 (2019)

11. Bonnetain, X., Leurent, G., Naya-Plasencia, M., Schrottenloher, A.: Quantum lin-
earization attacks. In: Advances in Cryptology - ASIACRYPT 2021, Singapore,
December 6-10, 2021, Proceedings, Part I. pp. 422–452 (2021)

12. Bonnetain, X., Naya-Plasencia, M., Schrottenloher, A.: On quantum slide attacks.
In: SAC 2019. pp. 492–519 (2019)

13. Bonnetain, X., Naya-Plasencia, M., Schrottenloher, A.: Quantum security analysis
of AES. IACR Trans. Symmetric Cryptol. 2019(2), 55–93 (2019)

14. Bonnetain, X., Schrottenloher, A., Sibleyras, F.: Beyond quadratic speedups in
quantum attacks on symmetric schemes. In: Dunkelman, O., Dziembowski, S. (eds.)
Advances in Cryptology - EUROCRYPT 2022 - 41st Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, Trondheim,
Norway, May 30 - June 3, 2022, Proceedings, Part III. Lecture Notes in Computer
Science, vol. 13277, pp. 315–344. Springer (2022)

15. Boyar, J., Peralta, R.: A small depth-16 circuit for the AES s-box. In: Gritzalis,
D., Furnell, S., Theoharidou, M. (eds.) IFIP International Information Security
Conference. pp. 287–298. Springer (2012)

16. Canright, D.: A very compact s-box for AES. In: International Workshop on Cryp-
tographic Hardware and Embedded Systems. pp. 441–455. Springer (2005)

17. Chailloux, A., Naya-Plasencia, M., Schrottenloher, A.: An efficient quantum col-
lision search algorithm and implications on symmetric cryptography. In: ASI-
ACRYPT 2017, Hong Kong, China, December 3-7, 2017, Proceedings, Part II.
pp. 211–240 (2017)

18. Chen, J., Liu, Q., Fan, Y., Wu, L., Li, B., Wang, M.: New sat-based model for
quantum circuit decision problem: Searching for low-cost quantum implementation.
IACR Commun. Cryptol. 1(1), 31 (2024)

19. Choo, D., Soos, M., Chai, K.M.A., Meel, K.S.: Bosphorus: Bridging ANF and
CNF solvers. In: Teich, J., Fummi, F. (eds.) Design, Automation & Test in Europe
Conference & Exhibition, DATE 2019, Florence, Italy, March 25-29, 2019. pp.
468–473. IEEE (2019)

20. Courtois, N., Mourouzis, T., Hulme, D.: Exact logic minimization and multiplica-
tive complexity of concrete algebraic and cryptographic circuits. Int. J. Adv. Intell.
Syst 6(3), 165–176 (2013)

21. Daemen, J., Rijmen, V.: AES proposal: Rijndael (1999)
22. Dobraunig, C., Kales, D., Rechberger, C., Schofnegger, M., Zaverucha, G.: Shorter

signatures based on tailor-made minimalist symmetric-key crypto. In: Yin, H.,
Stavrou, A., Cremers, C., Shi, E. (eds.) Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2022, Los Angeles,
CA, USA, November 7-11, 2022. pp. 843–857. ACM (2022)

23. Grassl, M., Langenberg, B., Roetteler, M., Steinwandt, R.: Applying grover’s al-
gorithm to AES: quantum resource estimates. In: Takagi, T. (ed.) Post-Quantum
Cryptography - PQCrypto 2016. LNCS, vol. 9606, pp. 29–43. Springer (2016)

24. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Miller,
G.L. (ed.) Proceedings of the Twenty-Eighth Annual ACM Symposium on the
Theory of Computing, 1996. pp. 212–219. ACM (1996)

25. Hosoyamada, A., Sasaki, Y.: Finding hash collisions with quantum computers by
using differential trails with smaller probability than birthday bound. In: EURO-
CRYPT 2020, Part II. vol. 12106, pp. 249–279. Springer

29

26. Hosoyamada, A., Sasaki, Y.: Cryptanalysis against symmetric-key schemes with
online classical queries and offline quantum computations. In: CT-RSA 2018, Pro-
ceedings. pp. 198–218 (2018)

27. Hosoyamada, A., Sasaki, Y.: Quantum Demiric-Selçuk Meet-in-the-Middle At-
tacks: Applications to 6-Round Generic Feistel Constructions. In: SCN 2018. pp.
386–403 (2018)

28. Huang, Z., Sun, S.: Synthesizing quantum circuits of AES with lower T -depth and
less qubits. In: Agrawal, S., Lin, D. (eds.) Advances in Cryptology - ASIACRYPT
2022. Lecture Notes in Computer Science, vol. 13793, pp. 614–644. Springer (2022)

29. Itoh, T., Tsujii, S.: A fast algorithm for computing multiplicative inverses in gf
(2m) using normal bases. Information and computation 78(3), 171–177 (1988)

30. Jang, K., Baksi, A., Kim, H., Song, G., Seo, H., Chattopadhyay, A.: Quantum
analysis of aes. Cryptology ePrint Archive (2022)

31. Jaques, S., Naehrig, M., Roetteler, M., Virdia, F.: Implementing Grover oracles
for quantum key search on AES and lowmc. In: Advances in Cryptology - EURO-
CRYPT 2020. LNCS, vol. 12106, pp. 280–310. Springer (2020)

32. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmet-
ric cryptosystems using quantum period finding. In: Advances in Cryptology -
CRYPTO 2016 Proceedings. pp. 207–237. Springer (2016)

33. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Quantum differential
and linear cryptanalysis. IACR Trans. Symmetric Cryptol. 2016(1), 71–94 (2016)

34. Langenberg, B., Pham, H., Steinwandt, R.: Reducing the cost of implementing
AES as a quantum circuit. IACR Cryptol. ePrint Arch. p. 854 (2019), https:
//eprint.iacr.org/2019/854

35. Lee, H., Jung, K.C., Han, D., Kim, P.: An algorithm for reversible logic circuit
synthesis based on tensor decomposition. CoRR abs/2107.04298 (2021), https:
//arxiv.org/abs/2107.04298

36. Li, Z., Gao, F., Qin, S., Wen, Q.: New record in the number of qubits for a quantum
implementation of AES. Frontiers in Physics 11, 1171753 (2023)

37. Lin, D., Xiang, Z., Xu, R., Zhang, S., Zeng, X.: Optimized quantum implementation
of AES. Cryptology ePrint Archive (2023)

38. Lin, D., Yang, C., Xu, S., Tian, S., Sun, B.: On the construction of quantum
circuits for s-boxes with different criteria based on the SAT solver. IACR Cryptol.
ePrint Arch. p. 565 (2024), https://eprint.iacr.org/2024/565

39. Liu, Q., Preneel, B., Zhao, Z., Wang, M.: Improved quantum circuits for AES:
Reducing the depth and the number of qubits. In: Guo, J., Steinfeld, R. (eds.)
Advances in Cryptology – ASIACRYPT 2023. pp. 67–98. Springer Nature Singa-
pore, Singapor (2023)

40. Microsoftt Q#: Quantum development, https://devblogs.microsoft.com/
qsharp/

41. Naya-Plasencia, M., Schrottenloher, A.: Optimal merging in quantum k-xor and
k-xor-sum algorithms. In: EUROCRYPT 2020, Part II. vol. 12106, pp. 311–340.
Springer

42. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press (2016)

43. NIST: Digital signature standard (2013), available at https://csrc.nist.rip/
publications/detail/fips/186/4/final

44. NIST: Submission requirements and evaluation criteria for the post-quantum cryp-
tography standardization process (2016), available at https://csrc.nist.gov/
projects/post-quantum-cryptography

30

https://eprint.iacr.org/2019/854
https://eprint.iacr.org/2019/854
https://arxiv.org/abs/2107.04298
https://arxiv.org/abs/2107.04298
https://eprint.iacr.org/2024/565
https://devblogs.microsoft.com/qsharp/
https://devblogs.microsoft.com/qsharp/
https://csrc.nist.rip/publications/detail/fips/186/4/final
https://csrc.nist.rip/publications/detail/fips/186/4/final
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography

45. NIST: Post-quantum cryptography: Digital signature schemes (2022), avail-
able at https://csrc.nist.gov/Projects/pqc-dig-sig/standardization/
call-for-proposals

46. Shende, V.V., Prasad, A.K., Markov, I.L., Hayes, J.P.: Synthesis of reversible logic
circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 22(6), 710–722
(2003)

47. Shi, H., Feng, X.: Quantum circuits of AES with a low-depth linear layer and a
new structure. In: Advances in Cryptology - ASIACRYPT 2024. LNCS, vol. 15491,
pp. 358–395. Springer (2024)

48. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

49. Song, G., Jang, K., Seo, H.: Improved low-depth SHA3 quantum circuit for fault-
tolerant quantum computers. IACR Cryptol. ePrint Arch. p. 211 (2023), https:
//eprint.iacr.org/2023/211

50. Steiger, D.S., Häner, T., Troyer, M.: Projectq: an open source software framework
for quantum computing. Quantum 2, 49 (2018)

51. Stoffelen, K.: Optimizing S-box implementations for several criteria using SAT
solvers. In: International Conference on Fast Software Encryption. pp. 140–160.
Springer (2016)

52. Xiang, Z., Zeng, X., Lin, D., Bao, Z., Zhang, S.: Optimizing implementations of
linear layers. IACR Trans. Symmetric Cryptol. 2020(2), 120–145 (2020)

53. Zhang, F., Huang, Z.: Optimizing S-box implementations using SAT solvers: Re-
visited. Cryptology ePrint Archive (2023)

54. Zhang, M., Shi, T., Wu, W., Sui, H.: Optimized quantum circuit of AES with
interlacing-uncompute structure. IEEE Transactions on Computers (2024)

55. Zhu, C., Huang, Z.: Optimizing the depth of quantum implementations of linear
layers. In: Deng, Y., Yung, M. (eds.) Information Security and Cryptology - 18th
International Conference, Inscrypt 2022, Beijing, China, December 11-13, 2022,
Revised Selected Papers. Lecture Notes in Computer Science, vol. 13837, pp. 129–
147. Springer (2022)

56. Zou, J., Wei, Z., Sun, S., Liu, X., Wu, W.: Quantum circuit implementations of
AES with fewer qubits. In: Advances in Cryptology - ASIACRYPT 2020. pp. 697–
726. Springer (2020)

31

https://csrc.nist.gov/Projects/pqc-dig-sig/standardization/call-for-proposals
https://csrc.nist.gov/Projects/pqc-dig-sig/standardization/call-for-proposals
https://eprint.iacr.org/2023/211
https://eprint.iacr.org/2023/211

Appendix

A Clifford+T Implementations for Toffoli, QAND, and
QAND†

|a⟩ T T † |a⟩

|b⟩ T T † T † |b⟩

|c⟩ H T T H |c⊕ ab⟩

Fig. 1. A Clifford+T implementation of the Toffoli gate with width 3 and T -depth 3.

|a⟩ T |a⟩

|b⟩ T |b⟩

|c⟩ H T H |c⊕ ab⟩

|0⟩ T |0⟩

|0⟩ T † |0⟩

|0⟩ T † |0⟩

|0⟩ T † |0⟩

Fig. 2. A Clifford+T implementation of the Toffoli gate with width 7 and T -depth 1.

|a⟩ T † |a⟩

|b⟩ T † |b⟩

|0⟩ H T H S |ab⟩

|0⟩ T |0⟩

Conditioned on the measurement result being |1⟩

|0⟩ or |1⟩

|a⟩ |a⟩
|b⟩ H H |b⟩

|ab⟩ H X |0⟩

(a) Quantum AND gate (b) Quantum AND† gate

Fig. 3. The quantum AND gate together with its adjoint. This implementation for
QAND† is from the latest eprint version of [31].

Remark 4. Note that, in this QAND† implementation, the conditioned CNOT
and X gates should be applied after the measurement on the third qubit. To

32

ensure correct full depth, one must prevent this CNOT from being moved forward
during resource estimation. This can be achieved by setting a 3-qubit barrier after
the measurement (as we did in our Clifford+T circuits in the QASM format) or
by using a 3-qubit operation instead of this measurement (as we did when using
ProjectQ).

B The Proof of Lemma 2

Lemma 2 can be easily deduced from the result of the following lemma.

Lemma 9. Let |x1, x2, . . . , xn⟩ be the input of an n-qubit quantum register,
where each xi is a Boolean variable. Suppose L1(x1, . . . , xn), L2(x1, . . . , xn), . . . ,
Lm(x1, . . . , xn) are m linear functions, and the rank of L1, L2, . . . , Lm is k.Then
to output the state |L1, L2, . . . , Lm⟩ using a CNOT circuit, m − k additional
qubits are necessary and sufficient.

Proof. We denote the coefficient vector of each Li as ai = (ai1, ai2, . . . , ain).
Since k ≤ n, we consider two cases: k = n and k < n.

If k = n, to store |L1, L2, . . . , Lm⟩, we need at least m− n additional qubits.
With m− n additional qubits, using CNOT gates to output |L1, L2, . . . , Lm⟩ is
equivalent to transforming

1 0 · · · 0
0 1 · · · 0

. . .
0 0 · · · 1
0 0 · · · 0
...
0 0 0 0


to A =



a11 a12 . . . a1n

a11 a12 . . . a1n

...
an1 an2 . . . ann

a(n+1)1 a(n+1)2 . . . a(n+1)n

...
am1 am2 . . . amn


by applying row addition operations. This can be addressed by performing Gaus-
sian elimination to A.

If k < n, without loss of generality, suppose {L1, L2, . . . , Lk} is the maximal
linearly independent set for {L1, L2, . . . , Lm}. Assume with s additional qubits
where s < m − k, we can output {L1, L2, . . . , Lm}. It means that by applying
row addition operations to the matrix

U =



1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · 0
...

...
. . .

...
0 0 0 0


(n+s)×n

,

33

we can obtain a1,a2, . . . , am from the rows of U . Note that rank(U) = n, indi-
cating that, after row addition operations, there will always be s rows that are
linearly dependent on others. However, within the set {ai}1≤i≤m, there are m−k
vectors that are linearly dependent on others, leading to a contradiction. This
implies we need at least m − k additional qubits. Now suppose we have m − k
additional qubits. Obviously, we can find n − k unit vectors ei1 , ei2 , . . . , ein−k

such that the matrix V = (a1, . . . , am, ei1 , . . . , ein−k
)T has rank n. Then, by

some row addition operations, we can transform V into the identity matrix with
order n + m − k. These row addition operations induce a CNOT circuit that
outputs |L1, L2, . . . , Lm⟩ as part of its final state. This proves the lemma. ⊓⊔

34

C The Algorithm ClassicalToQuantum

Algorithm 2: ClassicalToQuantum
input : An n-bit input and m-bit output classical circuit C for a Boolean

function F with AND-depth s and under its algebraic expression
form.

output: A forward C0-circuit for F with Toffoli-depth s.
1 Set a = 0, dim = n;
2 B1,B2, . . . ,Bs,R be the output of ExtractLinear(C) ; /* Extract the

linear expressions */
3 Let w and wa be the outputs of MinWidth(n,B1,B2, . . . ,Bs,R);
4 Set S0 = (x1, x2, . . . , xn,0)w, where 0 denotes some zeros; /* (·)w means a

sequence containing w elements */
5 for i from 1 to s− 1 do
6 Let gi = |Bi|/2, ai = |Bi| − rank(Bi) ; /* ai + gi: number of ancilla

qubits required in this layer */
7 if |0∈Si−1 | ≥ gi + ai then
8 Si = ((Si−1 \ 0)∗,Bi,0)w, where (Si−1 \ 0)∗ are |Si−1 \ 0| − rank(Bi)

elements selected from Si−1 \ 0 such that rank(Si) = dim;
9 end

10 else
11 Si = ((Si−1 \ 0)#,Bi,0)w, where (Si−1 \ 0)# are dim− rank(Bi)

elements selected from Si−1 \ 0 such that rank(Si) = dim
12 end
13 w0 = |Si \ 0|
14 Find an in-place CNOT circuit Ci that maps |Si−1⟩ to |Si⟩ with the input

and output wires labeled as {y1, y2 . . . , yw}.
15 Ti = {Toffoliw0−2gi,w0−2gi+1,w0+1, . . . ,Toffoliw0−1,w0,w0+gi} ;
16 Xi = (xdim+1, xdim+2, . . . , xdim+gi), Si = (Si \ 0, Xi,0)w, dim = dim+ gi;
17 end
18 gs = |Bs|/2, Ss = (S∗

s−1,Bs,0)w, where S∗
s−1 are w − gs − |Bs| elements

selected from Ss−1 such that rank(Ss) = dim;
19 Find an in-place CNOT circuit Cs that maps |Ss−1⟩ to |Ss⟩ with the input

and output wires labeled as {y1, y2 . . . , yw};
20 Ts = {Toffoliw−3gs+1,w−3gs+2,w−gs+1, . . . ,Toffoliw−gs−1,w−gs,w} ;
21 Xs = (xdim+1, xdim+2, . . . , xdim+gs), dim = dim+ gs, w = w + wa;
22 Ss = (S∗

s−1,Bs, Xs,0)w, Ss+1 = (S∗
s−1,Bs, X

∗
s ,R)w, where X∗

s are elements
selected from Xs such that rank(Ss+1) = dim;

23 Find an in-place CNOT circuit Cs+1 that maps |Ss⟩ to |Ss+1⟩ with the input
and output wires labeled as {y1, y2 . . . , yw};

24 return {C1,T1,C2,T2, . . . ,Cs,Ts,Cs+1}.

Here we explain the main steps of Algorithm 2:

• Function ExtractLinear is used to obtain {B1,B2, . . . ,Bs,R}, which are s
sequences of linear expressions corresponding to the inputs of AND gates

35

Function: ExtractLinear
input : A n-bit input classical circuit C with AND-depth s and under its

algebraic expession form.
output: s sequences of linear functions, which correspond to the inputs of

AND gates with different AND-depth, and a linear function
corresponding to the circuit outputs.

1 Calculate the AND-depth of each gate, and regroup them into different sets:
L0, . . . ,Ls,A1, . . . ,As, where Li consists of XOR gates with AND-depth i,
and Ai consists of AND gates with AND-depth i ;

2 Set the circuit inputs as {x1, . . . , xn}, N = n, vars = {x1, . . . , xn};
3 for i from 1 to s do
4 Set Bi = ∅, gi = |Ai|, vars0 = ∅;
5 for j from 1 to gi do
6 Let Gj be the j-th AND gate in Ai;
7 For the two input nodes of Gj , compute their linear expressions w.r.t.

vars based on the algebraic expressions in Li−1, then append these
two linear expressions to Bi ;

8 Set the value of the output node of Gj to be xN+j ;
9 vars0 = vars0 ∪ {xN+j};

10 vars = vars ∪ vars0;
11 N = N + |vars0|;
12 Set R to be the sequence containing the linear expressions for the circuit

outputs w.r.t. vars;
13 return {B1,B2, . . . ,Bs,R}.

in s AND layers and a sequence of linear expressions corresponding to the
circuit outputs. Suppose there are gi AND gates with AND-depth i, then
the gi outputs of these AND gates are denoted as

Xi = {xn+g1+···+gi−1+1, . . . , xn+g1+···+gi−1+gi}.

Hence, after the i-th AND layer, the dimension of the linear space increases
by gi.

• Function MinWidth outputs w, the number of qubits required to implement
the first s AND layers, and wa, the number of extra qubits required to store
some output bits. Lemma 2 guarantees that w and wa are minimal if we
don’t increase the Toffoli-count of the forward circuit7. In these w qubits,
k = rank(R′) = m − wa target qubits of the last Toffoli layer are used to
store k output bits after applying the last CNOT sub-circuits. In this way, we
don’t need to apply the reverse of these k Toffoli gates in the uncomputation
process, hence can reduce the Toffoli-count by k. Obviously, the width of the
entire circuit is w + wa.

7 Sometimes, we can clean up the target qubits of some previous Toffoli gates, by
adding some additional Toffoli gates in the subsequent Toffoli layer, hence obtain
some clean ancilla qubits.

36

Function: MinWidth
input : a number n, and s+ 1 sequences of linear functions B1,B2, . . . ,Bs,R

w.r.t N variables x1, x2 . . . , xN .
output: w, the number of qubits required for implementing the first s AND

layers, and wa, the number of extra qubits used to store some output
bits.

1 Set w = n, c = 0 ; /* w is the number of used qubits, c is the number
of qubits that can be returned to |0⟩ */

2 for i = 1 to s− 1 do
3 ai = |Bi| − rank(Bi), bi = |Bi|/2; /* ai + bi qubits are required to

store the inputs and outputs of the i-th AND layer */
4 if c < ai + bi then w = w + ai + bi − c;
5 c = w −

∑i
j=1 bj − n;

6 g = |Bs|/2, k = N − g;
7 Let R′ be the sequence of linear functions (including zero functions) obtained

from R by removing all terms involving the variables x1, x2, . . . , xk;
8 as = |Bs| − rank(Bs), w = w + rank(R′); /* rank(R′) new allocated

qubits are required to store a part of the final outputs */
9 if c+ rank(R′) < as + g then w = w + as + g − c− rank(R′);

10 wa = |R| − rank(R′);
11 return w, wa

• Ci in Step 14 is the CNOT sub-circuit that generates |Bi⟩ based on a sequence
of linear expressions Si−1. Step 5-13 are constructing the input |Si−1⟩ and
the output |Si⟩ of Ci. At this point, the dimension of the linear space is
dim = n+g1+· · ·+gi−1, and Si−1 has the full rank. After determining |Si−1⟩
and |Si⟩, we can construct an invertible Boolean matrix that maps |Si−1⟩ to
|Si⟩. We call this matrix the state transform matrix. Finding an efficient Ci

is equivalent to finding an efficient CNOT circuit that implements the state
transform matrix, and this can be addressed by some existing algorithms.
For example, the heuristic algorithm proposed in [52]. Sometimes, after Ci,
some previously used qubits are restored to |0⟩, and these qubits will be used
to store the outputs of the following AND gates.

• After executing Ci, the 2gi inputs of the gi AND gates with AND-depth i are
all stored in 2gi different qubits. Then, we can obtain the gi AND outputs
by applying gi Toffoli gates in parallel. These outputs are stored in all qubits
previously taking the state |0⟩.

• The process for generating the input of the last AND layer and the circuit
output is a little different. As we mentioned before, we use k = rank(R′)
target qubits of the last Toffoli layer Ts to store k output bits. We should
ensure that these k qubits are not involved in {C1,T1,C2, . . . ,Ts−1}, since
uncomputation will return the qubits involved in {C1,T1,C2, . . . ,Ts−1} to
their initial states. Finally, the algorithm returns a forward NCT circuit for
F . With this forward circuit, we can construct an entire out-of-place circuit

37

for F : {C1,T1, . . . ,Cs,Ts,Cs+1,T
∗
s,C

†
s, . . . ,T

†
1,C

†
1}. Here T∗

s is a part of T†
s,

which cleans up the qubits that are not used to store the final output.
• The quantum state before and after each sub-circuit can be illustrated as

follows. Here X0 denotes x1, . . . , xn, X∗
s is a subset of Xs, and S∗

i is a subset
of Si.

|S0⟩w
C1−→ |S∗

0 ,B1, 0⟩w
T1−→ |S1⟩w = |B1, X

∗
0 , X1, 0⟩w

C2−→ |S∗
1 ,B2, 0⟩w

T2−→ |S2⟩w =

|B2, S
∗
1 , X2, 0⟩w

C3−→ · · · Cs−→ |S∗
s−1,Bs, 0⟩w

Ts−→ |S∗
s−1,Bs, Xs, 0⟩w

Cs+1−→ |S∗
s−1,Bs, X

∗
s ,R⟩w

A SageMath implementation for this algorithm is available at https://
github.com/hzy-cas/Minimal_T-depth_Width. Its outputs are the state trans-
form matrices and the algebraic forms of each Toffoli layer. From these state
transform matrices, one can construct the corresponding CNOT sub-circuits by
using the heuristic algorithm proposed in [52] or the SAT-based method pro-
posed in [28]. The depth of these CNOT sub-circuits can be further reduced
by using the method proposed in [55]. Note that, if the outputs of an obtained
CNOT sub-circuit form a permutation of the rows of the state transform matrix,
we should renumber the qubits for the subsequent sub-circuits.

D Improving Techniques for the Top-down Approach

(1) Performing Gaussian elimination. Before Step 4 of Algorithm 1, we can
perform Gaussian elimination on G = {g1, g2, . . . , gm} ⊆ Ms by regarding dis-
tinct monomials as distinct variables. Through this process, we can simplify these
gi’s, and identify linear dependencies among MLs(g1),MLs(g2), . . . ,MLs(gm).
If a MLs(gk) can be written as the linear combination of some other MLs(gi)’s,
then after Gaussian elimination, gk is converted into a polynomial in M≤s−1.
This technique can improve the efficiency of finding covers, and prevent the case
that the cover of gk includes polynomials not present in other covers, which leads
to a higher AND-count.
(2) Using linear combinations of input polynomials. In Algorithm 1, we
find the max-depth cover Ci of each gi ∈ G individually. Actually, ∪iCi forms a
max-depth cover of G. A max-depth cover of a polynomial set G is defined to be
a set of Boolean polynomials C = {C1, C2, . . . , Ck} satisfying the condition that
for any gi ∈ G there is a subset of C that serves as a cover of gi. Obviously, if
we can find a cover C of G with |C| < | ∪i Ci|, we can construct a circuit with
lower AND-count. For example, let G = {g1, g2} = {x1x3 + x2x4, x1x4 + x2x3}.
Then {(x1 + x2)(x3 + x4), x1x3, x2x4} is a cover of G, since {x1x3, x2x4} is a
cover of g1, and {(x1 + x2)(x3 + x4), x1x3, x2x4} is a cover of g2. In contrast, if
we individually find the minimal-size covers of g1 and g2, we can not obtain a
cover of G with size 3.

To directly find a cover of G, we can modify the SAT-based method intro-
duced before. For each gj , we have the relation gj +

∑k
i=1 aj,iD

1
i · D2

i + Rj = 0,

38

https://github.com/hzy-cas/Minimal_T-depth_Width
https://github.com/hzy-cas/Minimal_T-depth_Width

where D1
i ,D

2
i ,Rj are defined as Equation (2), and aj,i is a Boolean variable indi-

cating whether D1
i · D2

i is chosen as an element in the cover of gj . Nevertheless,
this encoding way will increase the degree of the equations, which significantly
reduces the efficiency of the subsequent solving process.

Here, we consider an alternative approach. Suppose G = {g1, g2, . . . , gm} ⊆
Ms. We assume MLs(g1),MLs(g2), . . . ,MLs(gm) are linearly independent, oth-
erwise, we can apply the technique of performing Gaussian elimination on G.
Let G′ = {L1(g1, . . . , gm), . . . , Lm(g1, . . . , gm)}, where L1, L2, . . . , Lm are m in-
dependent linear functions. Then a cover of G′ can be converted into a cover of
G. To find a cover of G′, we still individually find a cover of each polynomial
in G′. By considering all possible L1, L2, . . . , Lm, we can obtain a cover of G
with lower size. For the above example, let G′ = {g′1 = g1 + g2, g

′
2 = g2}, then

{(x1 + x2)(x3 + x4)} is a cover of g′1, and {x1x4, x2x3} is a cover of g′2. From
these two covers, we can construct a cover of G with size 3.
(3) Finding covers of two m-layers. Suppose C1 and C2 are two covers of
f , and they have the same size. It is obvious that the sizes of the covers for
the factors and remainders of C1 and C2 may be different. Therefore, to reduce
the total AND-count, we can consider simultaneously finding a cover of f and
covers of the corresponding factors and remainder. For the SAT-based method,
we can set the sizes of these covers to be different values, then solve the following
equations, 

EQNc(f, d, k)

EQNc(D
1
1, d− 1, t1),EQNc(D

2
1, d− 1, t2)

· · ·

EQNc(D
1
k, d− 1, t2k−1),EQNc(D

2
k, d− 1, t2k)

EQNc(R, d− 1, t2k+1)


. (6)

Here D1
j ,D

2
j ,R are defined as in Equation 2.

E The Degree of the Boolean Function Corresponding to
the Multiplicative Inversion in F2n

For a number m, its 2-Hamming weight is defined as the number of 1’s in its
binary expression.

Lemma 10. Suppose {β1, β2, . . . , βn} is a basis of F2n over F2, and X =
x1β1 + x2β2 + · · · + xnβn is an element in F2n . Let F (X) be an univariate
polynomial about X with deg(F) < 2n. Assume the largest 2-Hamming weight of
the degrees of terms in F (X) is d. If we represent F (X) as f1(x1, x2, . . . , xn)β1+
f2(x1, x2, . . . , xn)β2+ · · ·+ fn(x1, x2, . . . , xn)βn, then deg(fi) ≤ d for 1 ≤ i ≤ n.
Moreover, deg(fs) = d for some s.

Proof. For any k, X2k = x1β
2k

1 +x2β
2k

2 + · · ·+xnβ
2k

n . Since β2k

1 , β2k

2 , . . . , β2k

n are
fixed elements in F2n , we have (β2k

1 , β2k

2 , . . . , β2k

n) = (β1, β2, . . . , βn)B, where B

39

is an n× n matrix over F2. Then

X2k = (β1, β2, . . . , βn)B(x1, x2, . . . , xn)
T

Hence X2k can be written as L1(x1, x2, . . . , xn)β1 +L2(x1, x2, . . . , xn)β2 + · · ·+
Ln(x1, x2, . . . , xn)βn, for some linear functions L1, L2, . . . , Ln.

Consider the term X2t1+2t2+···+2td whose degree has the largest 2-Hamming
weight d. Since X2t1+2t2+···+2td = X2t1X2t2 · · ·X2td , it obvious that, if we
represent X2t1+2t2+···+2td as g1(x1, x2, . . . , xn)β1 + g2(x1, x2, . . . , xn)β2 + · · · +
gn(x1, x2, . . . , xn)βn, we have deg(g1), deg(g2), . . . , deg(gn) ≤ d. Similarly, for
other terms, the total degrees of the corresponding multivariate polynomials are
all bounded by d, and f1, f2, . . . , fn are sums of these multivariate polynomials,
hence have total degrees not bigger than d.

Now we prove at least one fs has total degree d. Assume deg(fi) < d for
all 1 ≤ i ≤ n. We have the following relation between {X,X2, . . . , X2n−1} and
{x1, x2, . . . , xn}:

A


x1

x2

...
xn

 =


X
X2

...
X2n−1

, where A =


β1 β2 · · · βn

β2
1 β2

2 · · · β2
n

...
... · · ·

...
β2n−1

1 β2n−1

2 · · · β2n−1

n

 .

Obviously, A is invertible, otherwise we can obtain a univariate polynomial
which has degree 2n−1, but vanishes for all 2n points in F2n , which leads to a
contradiction. Hence (x1, x2, . . . , xn)

T = A−1(X,X2, . . . , X2n−1

)T . This means
xi = ti,1X + ti,2X

2 + ti,nX
2n−1 , for some fixed elements ti,j , ti,2, . . . , ti,n ∈ F2n .

Then, a monomial xi1xi2 · · ·xik with total degree k is equal to

T (X) = (

n∑
j=1

ti1,jX
2j−1

)(

n∑
j=1

ti2,jX
2j−1

) · · · (
n∑

j=1

tik,jX
2j−1

)

It is easy to see that the degrees of terms in T (X) have 2-Hamming weight not
larger than k. In this way, since deg(fi) < d, we can convert fi(x1, x2, . . . , xn)
into some gi(X) having the property that the degrees of terms in gi(X) have 2-
Hamming weight less than d. Furthermore, since F (X) = f1β1+f2β2+· · ·+fnβn,
the degrees of terms in F (X) should have 2-Hamming weight less than d, a
contradiction. This proves that at least one fs has total degree d. ⊓⊔

We should notice that in Lemma 10, some fi may have degree less than d.

Example 6. Let X ∈ F22 and X = x1β+ x2, where β is a root of the irreducible
polynomial y2 + y + 1 over F2. Obviously, f(X) = X3 + X2 has 2-Hamming
weight 2. We can easily deduce that f(X) can be represented as x1β + x1x2.
Then the first coordinate Boolean polynomial x1 has degree 1, which is less than
the 2-Hamming weight of f(X).

40

Now suppose {β1, β2, . . . , βn} is a basis of F2n over F2. Let X = x1β1 +
x2β2 + · · ·+ xnβn be an element in F2n . Since

X−1 = X2n−2 = X2n−1+2n−2+···+2,

its degree has 2-Hamming weight n − 1. According to Lemma 10, if we write
X−1 as f1(x1, x2, . . . , xn)β1+f2(x1, x2, . . . , xn)β2+ · · ·+fn(x1, x2, . . . , xn), then
deg(fi) ≤ n − 1, for all 1 ≤ i ≤ n, and deg(fs) = n − 1 for some s. This gives
the degree of the Boolean function corresponding to the multiplicative inversion
in F2n .

F The AND-count for Implementing the Multiplication
in F2n

F.1 The Proof of Lemma 3

Lemma 3. If k = 2rs, for some positive number r and odd number s, then
the multiplication in F2k can be implemented by one AND layer and 3rs2 AND
gates.

Proof. For two elements a = a1β1+a2β2+· · · anβk and b = b1β1+b2β2+· · · bkβk

in F2k . A trivial way to implement a · b is first simultaneously implementing aibj
for all 1 ≤ i, j ≤ k, then using XOR gates to achieve the final output. This
requires 1 AND layer and k2 AND gates

If k = 2s, then a, b ∈ F22s can be expressed as a = a1γ1 + a2γ2, and
b = b1γ1 + b2γ2, where a1, a2, b1, b2 ∈ F2s and {γ1, γ2} is a basis of F22s over
F2s . We have a · b = a1b1γ

2
1 + (a1b2 + a2b1)γ1γ2 + a2b2γ

2
2 . Apparently, from

a1b1, (a1 + a2)(b1 + b2), a2b2, we can construct a1b2 + a2b1 by linear operations,
and subsequently, construct a · b by linear operations. Therefore, we only need
3 multiplications in F2s . If we implement the multiplication in F2s by the above
trivial way, then the 3 multiplications in F2s can be implemented by one AND
layer and 3s2 AND gates. By this technique, we reduce the AND-count from
(2s)2 to 3s2. Furthermore, if s = 2t for some t, then we can apply the above
technique again and further reduce the number of AND gates. Recursively, we
can prove the lemma. ⊓⊔

F.2 A Generalization of Lemma 5

Suppose b = a2st and n = sk for some integers s, t, and k. Then αa can be
expressed as α1β1+α2β2+ · · ·+αkβk, where each αi ∈ F2s and {β1, β2, . . . , βk}
is a basis of F2n over F2s .

Since α2st

i = αi, we have αb = (αa)2
st

= α2st

1 β2st

1 +α2st

2 β2st

2 + · · ·+α2st

k β2st

k =

α1β
2st

1 + α2β
2st

2 + · · · + αkβ
2st

k = L1(α1, . . . , αk)β1 + L2(α1, . . . , αk)β2 + · · · +

41

Lk(α1, . . . , αk)βk, for some linear polynomials L1, L2, . . . , Lk. Therefore, αa · αb

is equal to

(α1β1 + · · ·+ αkβk)(L1(α1, . . . , αk)β1 + · · ·+ Lk(α1, . . . , αk)βk)

= G1(α1, . . . , αk)β1 + · · ·+Gk(α1, . . . , αk)βk,

where G1, G2, . . . , Gk are some quadratic polynomials. Obviously, if we have
already obtain α2

i , αiαj for all 1 ≤ i ̸= j ≤ k, then we can generate αa · αb

by some linear operations. Note that, generating α2
i does not need AND gates,

and we need k(k−1)/2 multiplications in F2s to generate all αiαj ’s. Apparently,
these multiplication can be implemented by one AND layer. Therefore, we have
the following Lemma.

Lemma 11. If n = sk and α is an element in F2n . Then the multiplication of
αa and αb, with b = a2st for some t, can be implemented by one AND layer and
ω(s)(k(k − 1)/2) AND gates.

It is easy to see that, for any n, we can set s = 1 to obtain an implementation
of αa · αa2t with one AND layer and n(n− 1)/2 AND gates, which reduces the
AND gates by a ratio of n+1

2n compared to the trivial implementation. With s
increasing, this technique can reduce more AND gates.

42

G A Classical Circuit for the AES S-box with
AND-depth-3, AND-count 42, and XOR-count 88

For this circuit, the inputs are X0, X1, . . . , X7, and the outputs are Y0, Y1, . . . , Y7.

Linear Layer 1:
L0 = X0 + X3, L1 = X0 + X6, L2 = X0 + X5, L3 = L0+L2, L4 = L1+L3,
L5 = X4 + L4, L6 = X5 + L5, L7 = X7 + L6, L8 = X1 + X2, L9 = X7 + L8,
L10 = X3 + L9, L11 = L4+L10, L12 = L2+L11, L13 = L1+L12, L14 = L7+L9,
L15 = X1+L0, L16 = L5+L15, L17 = X7+L16, L18 = L9+L17, L19 = L14+L16

AND Layer 1:
M0 = L7 · L11, M1 = X7 · L10, M2 = L9 · L12, M3 = L13 · L17, M4 = L4 · L6,
M5 = L0 · L16, M6 = L1 · L18, M7 = L2 · L14, M8 = L3 · L19,

Linear Layer 2:
L20 = X2 + M0, L21 = L1+M2, L22 = L15 + M4, L23 = L22 + M6, L24 =
L20 + L21, L25 = L23 + L24, L26 = M1+M3, L27 = L23 + L26, L28 = L25 + L27,
L29 = L18 + M5, L30 = X0 + M7, L31 = L21 + M8, L32 = L29 + M6, L33 =
L31+L32, L34 = L25+L33, L35 = L30+M3, L36 = L32+L35, L37 = L27+L36,
L38 = L34 + L37, L39 = L33 + L36,

AND Layer 2:
M9 = L33 ·L34, M10 = L36 ·L37, M11 = L38 ·L39, M12 = L11 ·L33, M13 = L10 ·L36,
M14 = L12 ·L34, M15 = L13 ·L37, M16 = L4 ·L39, M17 = L0 ·L27, M18 = L1 ·L38,
M19 = L2 ·L25, M20 = L3 ·L28, M21 = L7 ·L33, M22 = X7 ·L36, M23 = L9 ·L34,
M24 = L17 ·L37, M25 = L6 ·L39, M26 = L16 ·L27, M27 = L18 ·L38, M28 = L14 ·L25,
M29 = L19 · L28,

Linear Layer 3:
L40 = M10 + M11, L41 = L28 + L40, L42 = L27 + M9, L43 = L42 + M10,
L44 = L41 + L43, L45 = M19 + M20, L46 = M17 + M20, L47 = L46 + M18,
L48 = L47 + M14, L49 = L45 + M15, L50 = L47 + L49, L51 = L48 + L50,
L52 = L46 + M16, L53 = L52 + M12, L54 = L45 + M13, L55 = L52 + L54,
L56 = L53 + L55, L57 = M28 + M29, L58 = M26 + M29, L59 = L58 + M27,
L60 = L59 + M23, L61 = L57 + M24, L62 = L59 + L61, L63 = L60 + L62,
L64 = L58 + M25, L65 = L64 + M21, L66 = L57 + M22, L67 = L64 + L66,
L68 = L65 + L67,

AND Layer 3:
M30 = L41·L53, M31 = L44·L55, M32 = L43·L56, M33 = L41·L48, M34 = L44·L50,
M35 = L43·L51, M36 = L41·L65, M37 = L44·L67, M38 = L43·L68, M39 = L41·L60,
M40 = L44 · L62, M41 = L43 · L63,

Affine Layer:

43

L69 = M30 + M32, L70 = L69 + M39, L71 = M37 + M38, L72 = L71 + M35,
L73 = M36 + M38, L74 = M40 + M41, L75 = L72 + L74, Y0 = L70 + M41,
Y1 = L69+L73, Y2 = L72+M34, Y3 = L73+Y0, Y7 = L75+M33, L76 = L71+Y3,
L77 = L76+Y7, L78 = M32+Y2, L79 = L78+Y0, Y4 = L74+L76, Y5 = L79+M31,
Y6 = L77 + Y1, Y1 = Y1 + 1, Y2 = Y2 + 1, Y6 = Y6 + 1, Y7 = Y7 + 1

H The Costs of the Grover Oracle and Encryption Oracle
for AES

We present the costs of the Grover Oracle and Encryption Oracle for AES based
on our new T -depth-3 AES S-box circuit. In these tables, as in [54], the widths
and T -depths are from manual estimation, and the values of other metrics are
from the resource estimator of ProjectQ (The ProjectQ codes are available at
https://github.com/hzy-cas/Minimal_T-depth_Width). The full depths pre-
sented here are slightly different from those presented in [54]. The reason is that
in their ProjectQ code for QAND†, the conditioned CNOT gate can be applied
before the measurement, hence will induce a wrong full depth. We modified this
by replacing the measurement with a Toffoli gate during resource estimation.

Table 8. The Costs of Grover Oracles based on the Pipeline Structure.

#CNOT #1qClifford #T #M T -depth Full Depth Width Source

456040 179200 105600 26400 60 1802 3796 [54]
353160 119200 67200 16800 60 1782 3156 This work

Table 9. The Costs of Encryption Oracles based on the Interlacing-Uncompute Struc-
ture.

#CNOT #1qClifford #T #M T -depth Full Depth Width Source

364360 144584 84480 21120 33 1078 4128 [54]
281896 96584 53760 13440 33 1066 3104 This work

44

https://github.com/hzy-cas/Minimal_T-depth_Width

I Implementing C7X and C5X according to Lemma 7
and Lemma 8

=

dirty

=

clean

Fig. 4. Implementing a C7X gate with one ancilla qubit.

=

Fig. 5. Implementing a C5X gate with three dirty ancilla qubits.

45

	Constructing Quantum Implementations with the Minimal T-depth or Minimal Width and Their Applications

