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Abstract. Early stopping agreement protocols guarantee termination
based on the actual number of malicious parties, f ≤ t, encountered
during execution, rather than assuming the worst-case scenario of t < n
many corruptions. The lower bound on the round complexity for such
protocols is known to be min{f +2, t+1} many rounds. In this work, we
substantially improve the state of the art for cryptographic early stopping
protocols in the honest majority setting where t < n/2. In this scenario,
the best known protocol due to Elsheimy, Loss, and Papamanthou (ASI-
ACRYPT ‘24) achieves a round complexity of (1+ϵ)·f for some constant
0 < ϵ < 1. We begin by introducing an improvement to the Elsheimy et
al. approach which can be used to obtain the first polynomial-time early
stopping agreement protocols in the t < n/2 corruption regime which
achieve a complexity of f + O(

√
f). We then instantiate our generic

framework with refined components to obtain a very concretely efficient
protocol with a round complexity of only f + 6⌈

√
f⌉ + 6 and polyno-

mial communication complexity. Finally, we show that it is possible to
come within one round of the optimal round complexity by presenting a
broadcast protocol based on the exponential information gathering ap-
proach, which achieves a round complexity of min{f + 3, t + 1}, albeit
with exponential communication complexity.

1 Introduction

Byzantine Agreement (BA) is a fundamental problem, first introduced in the
seminal work of Lamport, Shostak, and Pease in the 1980s [1]. In the BA prob-
lem, n parties, each starting with a value from {0, 1}, aim to reach agreement
on a single value despite the presence of up to t < n/2 Byzantine (malicious)
parties. The protocol must satisfy two key properties: Agreement, which ensures
that all honest parties decide on the same value, and Validity, which guarantees
that if all honest parties start with the same value, they must agree on that
value. A common metric to measure the efficiency of a BA protocol is its round
complexity, i.e., the number of synchronous communication rounds required to
reach termination for all honest parties. A fundamental result by Dolev et al. [2]
establishes a lower bound on round complexity for the problem BA. Letting t
denote an upper bound on the number of corrupted parties that a BA protocol
Π can tolerate, their bound states that, for any execution where f ≤ t parties
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are actually corrupted min{f +2, t+1} rounds are necessary for Π to terminate
in the worst case. For executions where f ≪ t, this lower bound leaves open the
exciting possibility of an early stopping BA protocol Π that terminates within
a short amount of O(f) = o(t) many rounds.

In the information-theoretic setting with t < n/3, Abraham and Dolev [3]
gave an optimal early stopping protocol with polynomial communication com-
plexity and round complexity min{f + 2, t+ 1}. By comparison, in the authen-
ticated setting with t < n/2 malicious corruptions, no optimal solution has yet
been proposed. The earliest attempt was by Perry and Toueg in 1985 [4], which
achieved a sub-optimal round complexity of 2 ·min{f +2, t+1}. More recently,
progress has been made by Elsheimy, Loss, and Papamanthou (ELP24) [5], who
showed a protocol with round complexity (1 + ϵ) · f , where 0 < ϵ < 1 is a con-
stant. An important open question is whether it is possible to further narrow
the gap toward the optimal round complexity. In this work, we improve signifi-
cantly upon both of these works for the setting with t < n/2 corrupted parties
as follows.

– Building on the ideas of Elsheimy et al. we show a generic approach of
achieving early stopping BA in f + O(

√
f) many rounds with polynomial

complexity. In a second step, we instantiate our generic compiler with new
and ameliorated components, which leads to an early stopping protocol with
a round complexity of f + 6

√
f + 6.

– While our polynomial-communication protocol achieves, for the first time,
early stopping round complexity with a leading coefficient of 1, it leaves open
a vexing gap to the aforementioned min{f+2, t+1} lower bound. By relying
on the exponential information gathering (EIG) paradigm, we show that it
is indeed possible to approach this bound up to one round. However, find-
ing a trivial solution for an early stopping protocol, even with exponential
communication, is not straightforward. Our protocol, while incurring expo-
nential complexity, serves as a feasibility result and an important starting
point for future endeavors in this direction.

In the following sections, we describe our results in more detail.

1.1 Early Stopping with Polynomial Complexity and O(
√
f)

Overhead

We start by giving a recap and overview of the approach of Elsheimy et al. [5]
which will be instructive to explain our contribution.
Recap: The Approach of Elsheimy et al. The early stopping BA in ELP24
runs in iterations. Each iteration runs for d+ 5 rounds, where d is a predefined,
but arbitrarily tunable parameter. Their protocol guarantees that at the end
of each iteration, honest parties either agree on a common output or that they
collectively detect an additional d malicious parties. Once no malicious parties
are left to detect, the honest parties therefore agree and eventually are able to
terminate from the protocol. It is easy to see that this happens at the latest after
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⌊f/d⌋ + O(1) = f/d + O(1) iterations, which implies a total round complexity
of (d+ 5) · (f/d+ O(1)) = f + 5f/d+ O(d) rounds, which can be simplified to
(1 + ϵ) · f , whenever f = Ω(1) and d is a constant.
Achieving the optimal early stopping round complexity of min {f + 2, t+ 1} re-
quires a protocol to eliminate one malicious party per round on average for each
iteration in which the protocol does not terminate. As explained above, however,
the ELP24 protocol eliminates one party only every 1+5/d rounds on average for
every round where the adversary is able to prevent the termination of honest par-
ties. This rate of detection is inherited from the protocol’s internal components,
which we will explain in more detail below. An intriguing question is therefore
whether it is helpful to increase the parameter d and improve this rate. While
this does indeed help to bring down the necessary number of iterations ⌊f/d⌋
to detect f parties, the round complexity of each single iteration grows. Thus,
prior to the final iteration of the protocol, the remaining number of undetected
malicious parties may be very small compared to the iteration’s length. In this
case, the final iteration wastes many rounds during which no further malicious
parties can be detected. For example, with f = 0 and d = log n, ELP24 already
performs worse than Perry and Toueg [4] for n ≥ 4.

Iterations of Dynamic Length. As explained above, setting d as a fixed
parameter in the approach of ELP24 seems to lead to an inherent dilemma:
choosing d too small leads to a poor average rate of detected malicious parties
per round, whereas a large choice of d can incur a steep penalty toward the end
of the protocol when only few malicious parties remain undetected. To overcome
this limitation of the ELP24 approach, we propose to set d dynamically instead
of as a fixed parameter. However, choosing the correct rule for setting d in each
iteration turns out to be tricky. To see why, it is instructive to begin with a simple
strawman approach where, initially, d = 1 and is then doubled during every
subsequent iteration. Note that this means that the duration of iteration k will be
2k−1+5 rounds when directly using the protocol components of ELP24. At first
glance, this approach indeed leads to a much lower number of only about log2(f)
iterations until all honest parties have been detected. Unfortunately, however it
drastically overshoots in a scenario where at the end of the penultimate iteration
k of the protocol, all malicious parties have been detected, but honest parties
are still in disagreement. Note that due to the doubling rule, we have that k ≈
log2(f)− 1. Thus, the final iteration k+1 = log2(f) of the protocol will run for
2k + 5 = f + 5 rounds without detecting even a single malicious party more.

A Balanced Approach. From the above, it is evident that a more nuanced rule
for dynamically setting d is needed. Ideally, we would like to find a way to balance
the number of iterations against the duration of the final iteration as much
as possible. As we will now explain, incrementing d by 1 for every subsequent
iterations achieves exactly this.3 To see why this is true, let us first see how many
iterations it will require the ELP24 approach to eliminate all malicious parties.

3 As it turns out, incrementig d by 2 every iteration yields a slightly better round
complexity, but this is not relevant for the ensuing discussion.
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To make the dependency of d on the iteration number explicit, we will denote
the choice of d associated with iteration k as dk below. In line with the approach
of incrementing by one in each iteration, we get dk = k for each iteration and a
length of k + 5 for each iteration k. Thus, we can see that in ⌈

√
2f⌉ iterations,

the ELP24 approach eliminates
∑⌈

√
2f⌉

k=1 dk =
∑⌈

√
2f⌉

k=1 k ≥ f many corrupted
parties from the protocol. On the other hand, the length of iteration ⌈

√
2f⌉+ 1

is only (⌈
√
2f⌉+1)+5. As only one further iteration is required in ELP24 after

eliminating the last malicious party, the total number of rounds in the protocol
can be computed as

∑⌈
√
2f⌉+1

k=1 (dk + 5) =
∑⌈

√
2f⌉

k=1 (k + 5) = f +O(
√
f).

1.2 Ameliorating the Round Complexity

In the previous section, we have described our approach for designing an early
stopping protocol with f+O(

√
f) round complexity and polynomial computation

complexity. While this settles the question of obtaining a leading coefficient of 1
in the round complexity of early stopping BA for the t < n/2 setting, the hidden
constant inside the O(

√
f) turns out to be quite large, i.e, ≈ 10. Following the

initial motivation of ELP24 of reducing the leading coefficient from 2 to (1+ϵ), we
show several subtle modifications to the ELP24 approach as well as its internal
components. Taken together, these improvements result in a far more round-
efficient protocol with a round complexity of only f + 6⌈

√
f⌉ + 6. We discuss

these optimizations in more detail below.
Reducing the Number of Iterations in ELP24. Before diving into the
internal components of ELP24, we first show a way of reducing the number of
iterations needed for terminating safely in ELP24 by one. While this may, at first,
sound like an incremental improvement, recall that the final iteration k in our
above approach is by far the most round-expensive one, as we have incremented
dk to size about

√
2f at this point. Thus, avoiding it saves about that many

rounds.
As previously discussed, once all malicious parties have been identified and

eliminated in iteration k, the honest parties in ELP24 will be in agreement by the
end of iteration k+1. Moreover, they will remain in agreement for all subsequent
iterations of the protocol. To not have to keep running the protocol indefinitely,
however, ELP24 uses a detection mechanism that indicates agreement for all
honest parties at most one iteration after they have first reached it. In the above
scenario, this implies that agreement is detected at the end of iteration k+2 by
all honest parties at the latest. Any honest party that detects agreement sends
a signed termination message to all parties. Once t + 1 of these messages have
been collected for a single bit b, an honest party forwards these messages and
terminates the protocol. Since all honest parties sign only the value they detected
agreement on, this rule yields a safe way of breaking from the infinite sequence of
iterations within roughly two iterations after detecting the last malicious party.

We optimize this termination strategy as follows. Recall that at the end of
any iteration k where parties do not agree, dk malicious parties are commonly
detected. Conversely, if an honest party Pi observes that fewer than dk parties
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have been commonly detected, it can conclude that honest parties are in agree-
ment at the end of iteration k. Thus, from the above discussion, Pi knows that
the agreement detection mechanism will be triggered for all honest parties by the
end of iteration k+1. Therefore, we can avoid running the protocol for iteration
k + 2 entirely.

Recap: Graded Consensus from Correct-Or-Detect Broadcast. The
ELP24 protocol is constructed using several components, with its core build-
ing block being the Correct-Or-Detect (CoD) Broadcast protocol introduced by
Fitzi and Nielsen [6]. The CoD protocol operates in two modes: "Correct" (de-
noted as C) and "Detect" (denoted as D). If an honest party terminates in mode
C, all parties agree on the sender’s value. If an honest parties terminates in mode
D, all honest parties detect a common set of at least d corrupted parties. How-
ever, there is no consensus among the parties in which mode they terminate or
who the common parties are.
ELP24 now show how to build a graded consensus protocol as follows: each party
Pi uses CoD to broadcast its input. It then observes the outputs of the CoD
instances of all other parties. If Pi observes t+ 1 instances terminate on value b
in mode C, it outputs b and grade gi = 1. On the other hand, for grade gi = 0,
Pi simply takes the majority bit over all instances of eligible parties (regardless
of what mode they terminate in). Recall that honest parties agree on the output
bit b of any instance in which at least one honest party Pi terminated in mode
C. Therefore, it immediately follows that if an honest party Pi observes t + 1
C-instances with bit b and outputs b with grade gi = 1, all other honest parties
also output bit b, albeit with grade 0. On the other hand, if parties disagree
on the output bit b, this implies that at least one of the CoD instances must
have terminated in mode D for all of the honest parties. Thus, d new malicious
parties can be commonly identified and excluded from further participating in
the overall protocol, as we describe below. The above graded consensus protocol
runs in d+ 4 rounds (where the round complexity is directly inherited from the
Fitzi-Nielsen CoD construction).
Recap: From Graded Consensus to BA. Finally, to achieve Byzantine agree-
ment, ELP24 runs the above graded consensus protocol in iterations as already
described in the sections above. In each iteration k, parties use as input the
output bit b from the previous iteration k − 1 and update their lists of faulty
parties based on the detections from the previous iteration.
To permanently exclude commonly detected malicious parties from further par-
ticipation in the protocol, ELP24 again relies on the ideas of Fitzi and Nielsen.
At the beginning of each iteration k, honest parties run protocol Πk

PoP (Fig. 2)
before invoking CoD. Πk

PoP consists of a single round where all currently unde-
tected parties obtain a "proof of participation" (PoP) which effectively acts as
a participation token for the current iteration k. Any commonly detected party,
on the other hand, will not obtain a PoP and is thus banned from participating
in further iterations. This ensures that honest parties can produce valid PoPs,
enabling their continued participation, while detected corrupted parties cannot,
effectively excluding them from future rounds. Πk

PoP turns out to be very simple:
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a party Pi sends to Pj a signature on the tuple (j, k) for any party Pj which
it has not detected. Pj collects t+ 1 such signatures as a proof of participation
for iteration k. Since parties are required to attach their PoP for iteration k to
all protocol messages they send in iteration k, this guarantees that commonly
detected parties are banned from participating in subsequent iterations.
When a party Pi observes grade gi = 1 for bit b in iteration k, it is confident that
agreement has been reached, since all other honest parties have the same output,
albeit with grade 0. Now, all honest parties use bit b in the next iteration k + 1
and it immediately follows that all honest parties will output bit b with grade 1
in iteration k + 1 and all future iterations. To break from the iteration loop, a
party that has observed grade 1 on an output bit b sends a signed termination
message for bit b and continues to run in the next iteration. Upon receiving t+1
termination messages for the same value, it forwards these messages in the next
round and terminates. In the above scenario, this ensures that all honest parties
terminate by the end of iteration k + 1.
ELP24 uses CoD [6] as a black-box, which detects d malicious parties in d + 4
rounds. Combining it with ΠPoP adds an extra round, leading to a total of d+5
rounds to detect and eliminate d malicious parties.

Graded Consensus with Improved Detection Rate. To further improve
the round complexity of our protocol, we revisit the CoD protocol of Fitzi and
Nielsen. Their protocol, which remains secure against any number of t < n
malicious faults and runs in d + 4 round to detect d malicious parties, is a
variation of the classic Dolev-Strong protocol. The key idea of their protocol
is for a sender to send a signature on 1 in the first step on input 1 and send
no message throughout the entire protocol on input 0. In any round r such that
d+1 ≥ r ≥ 2, a party Pi that is not the sender will output 1 in mode C from the
protocol if it receives a nested chain of signatures on 1 from r distinct parties,
including the sender. Upon receiving such a chain in round in round r for the
first time, Pi extends the chain to length r + 1 by adding its own signature to
it and forwarding it to all parties so that they can accept it by round r + 1.
Moreover, Pi adds the first r − 1 parties to its list Fi of detected malicious
parties. This rule of detection is sound since any of these parties should have
sent Pi the signature chain in an earlier round by the protocol’s instructions, but
failed to do so. The final three rounds of the protocol are somewhat more subtle
and we do not explain them in detail here. At an abstract level, they ensure
that parties agree on the output bit in case an honest party outputs in mode C
whereas all honest parties detect d common malicious parties in case an honest
party outputs in mode d. One important aspect (and source of inefficiency) of the
protocol lies with the fact that parties must wait until the end of round d+4 to
determine that the sender (honestly) sent 0 by abstaining from sending anything.
In ELP24, a further round is lost without detecting additional malicious parties
by running protocol Πk

PoP to issue PoPs for participating in the next iteration k of
the protocol. Our graded consensus protocol significantly improves on these two
sources of inefficiency. First, we leverage the honest majority setting available to
our protocol to detect early that a sender is not sending anything. This helps our
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protocol to waste fewer rounds toward the end and detect d parties in only d+2
rounds. At the same time, we show that it is possible to run Πk

PoP for iteration k
in parallel with the first round of the graded consensus for this iteration without
harming security, while retaining a detection rate of d parties per d+ 2 rounds.

1.3 A Broadcast Protocol with Nearly Optimal Round Complexity

The final part of our paper presents a broadcast protocol with a round complexity
of min(f + 3, t + 1), based on the Exponential Information Gathering (EIG)
paradigm. This work follows in the footsteps of the foundational early-stopping
agreement protocols proposed in [7] for the t < n/4 setting and [3] for the t < n/3
setting, both of which achieve an optimal round complexity of min(f+2, t+1) for
the Byzantine agreement problem. We proceed by providing a general overview
of their solutions and then outlining the main idea behind our protocol.

Overview of [7] and [3]. Both protocols use a similar solution framework that
starts with the EIG model [1]. The EIG framework revolves around constructing
a tree-like structure to store and send information among parties. Each party
begins by constructing its own EIG tree, where the root node represents the
value to be eventually determined and output by the parties. The children of
the root node store the first messages received from other parties, representing
the parties’ initial inputs, including the input of the party itself. As the proto-
col progresses over multiple rounds, newly received messages are stored as leaf
nodes in the tree and will be forwarded in the next round. This process goes on
for t + 1 rounds. Each party then computes the final value of the root node by
applying a deterministic resolving function, typically the majority function in
the t < n/3 and t < n/4 settings, recursively from leaves up to the root. That is
a node’s final value is v if majority of its children has final value v. Ultimately,
each party outputs the computed value of the root node. A key limitation of
solutions based on the EIG framework is their inherently exponential communi-
cation complexity, as messages exchanged during the t+ 1 rounds grow rapidly
in every round. To achieve early stopping round complexity, these protocols in-
troduce rules that allow parties to prune certain branches of the EIG tree and
stop reporting information on those branches. These rules take advantage of the
fact that parties can often predict the final values of some nodes well before the
protocol completes, and thus, can stop reporting information on the tree in a
number of rounds that’s proportional to the exact number of malicious parties
in the system, f ≤ t. In cases where t < n/3 or t < n/4, early stopping highly
depends on the majority function as every node at any level in the tree contains
an honest majority. However, for the more challenging t < n/2 setting, this
property no longer holds, complicating the early stopping rules. Finally, to get
polynomial communication complexity, both [7] and [3] incorporate a final step
called cloture voting. The core idea is that their early-stopping EIG protocol
ensures termination within a constant number of rounds, c, if all honest parties
begin with the same initial value, achieving validity. If the protocol does not
terminate within c rounds, ensuring validity is no longer necessary, and parties
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can terminate quickly with a default value. To achieve this, a new EIG protocol
is initiated in each subsequent round, where parties effectively "debate" whether
to continue or terminate. Of course, additional coordination is required between
these different EIG protocols.

Our Approach and Restrictions. In our early-stopping protocol, we designed
new rules that move away from relying on the majority value of a node’s children.
In the t < n/2 setting, each honest node is guaranteed to have at least n−f−|σ|
honest children, where |σ| represents the depth of the node. However, as a node
appears deeper in the tree, it may have fewer than t honest children. As a result,
the deterministic function used at the end of the protocol to compute the final
value for each node cannot depend on a simple majority, requiring a different
approach. Our protocol follows a 1-biased strategy: a party sends a message if
its value is 1 but remains silent if its initial value is 0. Consequently, the early
stopping rules are also 1-biased, requiring fewer children of a node σ with value 1
to predict that σ will take the value 1, compared to predicting 0. To determine the
final output, we similarly apply the resolving function from the leaves up to the
root. This function assigns a node the value 1 if it has at least t+1−|σ| children
with value 1; otherwise, it assigns 0. To address the exponential communication
complexity, the cloture voting idea does not directly apply, as our protocol does
not guarantee termination in a constant number of rounds when validity holds.
Instead, a different method must be integrated into our EIG protocol to mitigate
such communication.

1.4 Related Work

The study of Byzantine agreement has a rich history, beginning with the foun-
dational work of Shostak, Pease, and Lamport [1]. One of the earliest milestones
in this area was achieved by Dolev and Strong [8], who proved that any protocol
designed to tolerate t < n malicious parties must operate for at least t+1 rounds.
This lower bound was later improved upon by Dolev et al. [9], who established
that when the number of actual corruptions, f , is considerably smaller than t,
the required rounds reduce to min(f + 2, t + 1). This result sparked significant
interest in developing early stopping protocols, which aim to terminate more
efficiently when fewer faults occur.

The first early stopping protocol in the information-theoretic setting with
optimal resilience of t < n/3 was introduced by Berman et al. [10], based on the
EIG paradigm. As expected, this protocol incurred an exponential communica-
tion overhead, similar to our EIG-based protocol. A follow-up work by Garay and
Moses tackled this issue and proposed a protocol with polynomial communica-
tion complexity [11,12], relying on the cloture voting technique discussed earlier
in the technical overview. However, their protocol featured a slightly suboptimal
early stopping round complexity of min(f + 5, t + 1). A major breakthrough
was achieved by Abraham and Dolev [3], who introduced the first protocol that
attained polynomial communication, optimal resilience, and an optimal round
complexity of min(f + 2, t+ 1).
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While early stopping protocols have been extensively studied in the information-
theoretic setting, progress in the authenticated setting with optimal resilience
of t < n/2 has been comparatively limited. Notable contributions include the
protocol by Perry and Toueg [4], which achieved polynomial communication and
a round complexity of min(2f + 4, 2t + 2), as well as the recent protocol by
Elsheimy, Loss, and Papamanthou (ELP24) [5], which achieves a round com-
plexity of (d+ 5) · (⌊f/d⌋+ 2) + 2, where d is a predetermined constant.

Other works [13,14,15] have explored early stopping protocols under weaker
adversarial models, such as omission or crash failures. Additionally, recent stud-
ies [16,17] have addressed the early stopping problem in the dishonest majority
setting (t < (1 − ϵ)n). The work in [16] provides a protocol for ϵ = 0 with a
round complexity of O(min{f2, t}), whereas [17] presents a solution for ϵ > 0
with a round complexity of O(f, t2), where the leading coefficient of f is at least
4 for ϵ = 1/2.

For randomized protocols, it has been established that they can achieve an ex-
pected constant number of rounds in both the information-theoretic setting [18]
and the authenticated setting [19,20,21,22]. Additionally, they can achieve ter-
mination in a round complexity O(λ) which is independent of the number of
parties. However, the failure probability of such protocols is at least O(λ−λ) [23].
This dependency complicates direct comparisons between randomized and early
stopping protocols, as the latter may require significantly fewer rounds when
the number of corruptions, f , is small. For instance, consider the setting with
t < n/2, f = 4 and λ = 128. The best known randomized protocol [24] in
this setting always requires 3/2 ·128 = 192 rounds to terminate with probability
1−2−λ for all honest parties. By comparison, our polynomial early-stopping pro-
tocol runs for only 4+6 · ⌈

√
4⌉+6 = 4+12+6 = 22 rounds. For t < n/2 · (1− ϵ),

the randomized protoccol of Ghinea et al. [25] achieves tight worst-case running
times with respect to the aforementioned optimal failure probability O(λ−λ).
However, when t = 0.49n, the running time of their protocol will only improve
over that of [24] when the probability of failure is required to be less than ap-
proximately 2−200. At this point, the protocol already has to run for nearly 300
rounds.

1.5 Paper Organization

Section 2 provides the necessary definitions and describes our network model.
In Section 3.1, we introduce a generalized framework for the ELP24 Byzan-
tine agreement protocol, incorporating the dynamic parameter d improvement
and the modified termination rule. We then prove its correctness and analyze
its round complexity. Section 3.2 instantiates this general framework using our
newly proposed d-Detecting Graded Broadcast construction, with detailed cor-
rectness proofs deferred to Appendix A. Section 4 presents our Broadcast proto-
col, which is based on the EIG paradigm and integrates our early stopping rules,
with correctness proofs provided in Appendix B.
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2 Preliminaries

We begin by introducing the model as well as basic definitions.

Network and Setup Assumptions. We assume a a fully connected network
of pairwise, authenticated channels between n parties {P1, . . . , Pn} = P. We
consider the synchronous network model where all parties have access to a syn-
chronized clock and there is a known upper bound ∆ on the message delays of
honest parties. This allows parties to run protocols in a round-by-round fashion
where rounds are of length ∆ and any message that is sent by an honest party
at the beginning of a round are delivered by the end of that round to all hon-
est parties. Parties are assumed to have established a public key infrastructure
(PKI) of a digital signature scheme that provides an efficient signing routine Sign
and an efficient verification routine Verify. Every party Pi is associated with a
public key pki that is known to all parties and where (only) Pi knows the corre-
sponding secret key ski. This allows a party Pi to create a signature sig(m) on
message m using its secret key ski via sig(m) := Sign(ski,m). sig(m) can then
be efficiently verified by running Verify(pki, sig(m),m). We refer to a signature
sig(m) as valid if Verify(pki, sig(m),m) = 1. For ease of notation, we use the ab-
breviated notation ⟨m⟩i to refer to tuples (m, sign(m, ski)) throughout the paper.

Adversary Model. We consider an adaptive, computationally-bounded Byzan-
tine adversary that can corrupt up to t < n/2 parties at any point of a protocol
execution. A corrupt (or malicious) party Pi is under full control of the adver-
sary and may deviate arbitrarily from the protocol. In particular, the adversary
learns Pi’s signing key ski, which allows it to sign messages on Pi’s behalf. In
addition, we allow the adversary to delete (or replace with its own) any unde-
livered messages of a newly corrupted party Pi that Pi sent while it was still
honest. We denote the set of corrupted parties as C and the set of uncorrupted
(or honest) parties as H.

Next, we give formal definitions to the Byzantine Agreement problem, and
other key subroutines.

Definition 1 (Byzantine Agreement). Let Π be a protocol executed among
parties P1, ..., Pn, where each party Pi holds an input vi ∈ {0, 1} and outputs a
value yi ∈ {0, 1} upon terminating. A protocol Π achieves Byzantine Agreement,
if the following properties hold whenever at most t parties are corrupted.

– Validity: If every honest party Pi inputs vi = v, then all honest parties output
yi = v;

– Consistency: All honest parties output the same value v.
– Termination: Every honest party terminates.

We also define the sender centric variant of this problem, which is known as
Byzantine broadcast.
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Definition 2 (Byzantine Broadcast). Let Π be a protocol executed among
parties P1, ..., Pn, where a designated sender Ps holds an input v ∈ {0, 1} and all
parties Pi output a value yi ∈ {0, 1} upon terminating. A protocol Π achieves
Byzantine Broadcast, if the following properties hold whenever at most t parties
are corrupted.

– Validity: If the sender is honest and inputs v, then all honest parties output
yi = v;

– Consistency: All honest parties output the same value v.
– Termination: Every honest party terminates.

Next, we define the d-detecting graded broadcast. A designated sender starts
with an initial value, and each honest party Pi inputs a faulty list, Fi. Malicious
parties that appear in the initial faulty lists of all honest parties are excluded
from the protocol. Additionally, any malicious parties identified during execution
are added to each party’s updated faulty list F ∗

i which is part of Pi’s output. It
ensures that either (1) all honest parties agree on the sender’s value or (2) that
d additional malicious parties are added to the intersection of honest parties’
updated output list F ∗

i , i.e., are commonly detected. Here, additional means that
none of these d parties where in the intersection of the honest parties’ initial
input lists Fi, i.e., they were newly detected during the protocol’s execution.
Since parties do not know which scenario they are in, they additionally output a
grade indicating their confidence in their output. If any party Pi outputs the high
grade gi = 1, then agreement is implied for all other honest parties. However,
another honest party Pj might not be aware of being in agreement, as it may
have output gj = 0.

Definition 3 (d-Detecting Graded Broadcast). Let Πd be a protocol
parametrized by an integer d where all parties input a list Fi ⊂ P and the des-
ignated sender Ps ∈ P additionally inputs vs ∈ {0, 1}. Each party Pi outputs a
value yi ∈ {0, 1}, a grade gi ∈ {0, 1}, and an updated list F ∗

i s.t. Fi ⊂ F ∗
i ⊂ P.

Πd achieves d-Detecting Graded Broadcast if the following properties hold when-
ever at most t parties are corrupted and for all honest parties Pi, Fi contains
only corrupted parties:

– Graded Validity: In all compliant executions, if the sender Ps is honest, and
the input value vs = v, then for all honest parties Pi, yi = v and gi = 1.

– Graded Consistency: If two honest parties Pi and Pj output gi = gj = 1,
respectively, then yi = yj

– Soundness: Every honest party Pi outputs a faulty list F ⋆
i that consists only

of corrupted parties.
– Termination: Every honest party terminates.
– d-Detection: If two honest parties Pi and Pj output yi = 1 and yj = 0,

respectively, then an additional d common parties are added to the faulty
lists of all honest parties, i.e.,

∣∣∣⋂Pj∈H (F ⋆
i \ Fi)

∣∣∣ ≥ d.

The d-Detecting Graded Consensus problem is the consensus counterpart
of the previously defined broadcast problem. In this setting, each honest party
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inputs both an initial value and a faulty list. Similarly, it guarantees that either
all honest parties reach agreement on the same value or they collectively identify
at least d malicious parties.

Definition 4 (d-Detecting Graded Consensus). Let Πd be a protocol
parametrized by an integer d where every party Pi inputs a list Fi ⊂ P and
a bit vi ∈ {0, 1}. Each party Pi outputs a value yi ∈ {0, 1}, a grade gi ∈ {0, 1},
and an updated list F ∗

i s.t. Fi ⊂ F ∗
i ⊂ P. Πd achieves d-Detecting Graded Con-

sensus if the following properties hold whenever at most t parties are corrupted
and for all honest parties Pi, Fi contains only corrupted parties:

– Graded Validity: If all honest parties Pi have the same input value vi = v,
then for all honest parties Pi, yi = v and gi = 1.

– Graded Consistency: If two honest parties Pi and Pj output gi = gj = 1,
respectively, then yi = yj

– Soundness: Every honest party Pi outputs a faulty list F ⋆
i that consists only

of corrupted parties.
– Termination: Every honest party terminates.
– d-Detection: If two honest parties Pi and Pj output yi = 1 and yj = 0,

respectively, then an additional d common parties are added to the faulty
lists of all honest parties, i.e.,

∣∣∣⋂Pj∈H (F ⋆
i \ Fi)

∣∣∣ ≥ d.

3 Early-Stopping Byzantine Agreement Protocols

In this section, we introduce a generalized Byzantine Agreement (BA) protocol
based on the one proposed in [5], significantly reducing the round complexity
from (d+5)·(⌊f/d⌋+2)+2, where d is a fixed constant, to f+(4+c)⌈

√
f⌉+(4+c),

where c represents the difference between the number of rounds in an itera-
tion and the maximum number of faulty parties that can be detected per iter-
ation. This improvement achieves a leading coefficient of 1, bringing the round
complexity more closely with the optimal early stopping round complexity of
min(f+2, t+1). We begin by introducing an the optimization techniques, which
reduces the round complexity, and then proof the correctness and round com-
plexity of the generalized framework.

3.1 Early-Stopping Protocol in f + O(
√
f) rounds

For the generalized framework (Fig.1), we closely follow the Byzantine Agree-
ment protocol described in [5], which runs in consecutive iterations. Each party
inputs vi ∈ {0, 1}, and outputs yi ∈ {0, 1}. In each iteration k, each party
invokes a dk-Detecting Graded Agreement protocol, Πdk-GDA, as a subroutine,
where dk is set in each iteration k as explained below. Parties determine whether
to send termination messages based on the subroutine’s output; (yGDAi , gi). If a
party outputs grade gi = 1 from Πdk-GDA, it sends a termination message. Upon
receiving t+ 1 termination messages with the same value, it terminates.
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This is different from the approach in [5], which uses a constant value for d
across all iterations. Instead, our protocol starts with d1 = 1 and increases dk
by 2 in each subsequent iteration k. This results in a BA protocol, ΠBA, with a
round complexity of f +(4+ c)⌈

√
f⌉+(4+ c) as proven in Lemma 7, given that

Πk
d-GDA runs in d+ c rounds for all values of d.

Protocol ΠBA

– Input and Initialization: Let vi denote Pi’s input. Pi sets halti :=
false, yi, yGDAi :=⊥,sendTerm :=⊥, Fi := ∅, d1 = 1, and k = 1.

– While halti = false do (we refer to the following as iteration k):
• Pi runs protocol Πdk-GDA with input (vi, Fi)
• When Πdk-GDA terminates with output (yGDAi , gi, F

⋆
i ), Pi does as

follows:
∗ Pi updates the input of next iteration by setting vi := yGDAi

and Fi = F ⋆
i .

∗ If gi = 1 or |F ⋆
i | − |Fi| < dk, Pi sets sendTerm = yGDAi and, if

it hasn’t been sent already, sends ⟨terminate, sendTerm⟩i to all
parties in the next round.

∗ Pi sets k = k + 1 and dk := 1 + 2(k − 1).
– Output Determination: Once Pi receives t+1 ⟨terminate, v⟩i in some

round r, it sets yi = v, forwards these messages in round r + 1, and
continue participating in the protocol for round r + 1. At the end of
round r + 1, it terminates.

Fig. 1. Code of ΠBA for party Pi.

In summary, in ΠBA, each party to start with an input value vi ∈ {0, 1} and
outputs a value yi ∈ {0, 1}. The protocol runs in iterations, with each iteration
k invokes Πdk-GDA. Each party inputs the tuple (vi, Fi) to Πdk-GDA during each
iteration. Based on the grade gi and the number of newly added faulty parties
determined by Πdk-GDA, each party Pi decides whether termination is safe. If Pi

outputs gi = 1, it ensures that all other honest parties Pj output the same value
yGDAi

= yGDAj
, as guaranteed by the graded consistency property of Πdk-GDA.

In this case, Pi sends a termination message ⟨terminate, yGDAi
⟩i to all parties.

Similarly, if fewer than dk new malicious parties are added to Pi’s faulty list, Pi

ensures that parties have agreement from the dk-detection property and sends
the termination message ⟨terminate, yGDAi⟩i. On the other hand, if Pi outputs
gi = 0, it indicates that termination is not yet safe, and additional iterations
are needed. In such cases, Pi updates its input for the next iteration using the
output value yGDAi

from Πdk-GDA, setting vi = yGDAi
and updating its faulty list

as Fi = F ⋆
i .

Upon receiving t + 1 termination messages with the same value, a party
forwards these messages in the next round, sets its output to that value, and
terminates. Each iteration k consists of dk+c rounds, corresponding to the round
complexity of Πdk-GDA. Thus, the overall round complexity of ΠBA depends on
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the number of iterations required. We prove in Lemma 2 that the number of
iterations is a function of f . Finally, we prove that ΠBA, based on Πdk-GDA,
achieves Byzantine agreement as defined in Definition 2 and achieves a total
round complexity of f + (4 + c)⌈

√
f⌉+ (4 + c).

We proceed by first proving that that honest parties are never included in
the faulty lists of other honest parties in any iteration. From this point forward,
we assume this lemma holds indefinitely. We then proceed with proving the
correctness of ΠBA in figure 1.

Lemma 1. At the beginning of every iteration k of ΠBA, the faulty list Fi of
every honest party Pi contains only corrupted parties.

Proof. In the first iteration k = 1, the faulty lists of all honest parties are empty,
so the lemma holds trivially. For subsequent iterations k > 1, each party updates
its Fi based on the output of Πdk-GDA. According to the soundness property of
Πdk-GDA, no honest party Pi is included in the Fj of any other honest party Pj

in any of these iterations. Thus the claim follows by a simple induction. ⊓⊔

Lemma 2. If no honest party has sent a termination message in the first round
of iteration k or earlier, then no honest party terminates in any round in iteration
k or earlier.

Proof. According to the protocol, a party sends a termination message only
after setting sendTerm, which is determined by the output of Πdk-GDA in the
final round of an iteration. This means a party can only send a termination
message in the first round of an iteration, not in any subsequent rounds. By
assumption, no honest party sends a termination message in the first round
of iteration k or any earlier iteration. As per the protocol, an honest party
terminates only if it receives at least t+1 termination messages. However, since
there are at most t malicious parties, the adversary cannot produce t + 1 valid
termination messages without forging signatures. Consequently, no honest party
can terminate in iteration k or any earlier iteration.

Lemma 3. For all dk ∈ N and dk ≥ 1, let Πdk-GDA be a dk-Detecting Graded
Agreement protocol as per Definition 4. Assume that no honest party has sent
a termination message by the beginning of iteration k. If all honest parties Pi

have the same input value vi = v in iteration k, then by the end of iteration k,
all honest parties set gi = 1 and terminate with that value within two subsequent
rounds.

Proof. By assumption, no honest party has sent a termination message by the
beginning of iteration k, and thus, no honest party has terminated or will ter-
minate by the end of iteration k according to Lemma 2. Let each honest party
Pi have vi = v. By Lemma 1, the faulty list Fi of every honest party Pi contains
only corrupted parties. Consequently, all honest parties invoke Πdk-GDA with the
same input value v in the first round of iteration k. From the graded validity
of Πk

dk-GDA, every honest party outputs yGDAi = v and gi = 1 by the end of
iteration k. Since gi = 1, each honest party sets yi := v and sendTerm := v. In
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the next round (the first round of iteration k+1), each honest party broadcasts
⟨terminate, v⟩i. By the end of this round, every honest party receives at least
t+ 1 termination messages of the form ⟨terminate, v⟩i. In the subsequent round,
they forward these t+ 1 messages and terminate. Since there are at most t ma-
licious parties, the adversary cannot collect t + 1 termination messages with a
conflicting value to cause disagreement. ⊓⊔
Corollary 1. For all d ∈ N and d ≥ 1, let Πd-GDA be a d-Detecting Graded
Agreement protocol as per Definition 4. Then, ΠBA achieves validity per Defini-
tion 2

Proof. Assume all honest parties have the same initial value (vi = v) in iteration
1. According to Lemma 3, where k = 1, every honest party Pi terminates with
yi = v in the 2nd round of iteration 2. ⊓⊔
Lemma 4. Let the termination message ⟨terminate, v⟩j be the first termination
message sent by some honest party in iteration k, then all honest parties send
⟨terminate, v⟩ by the first round of iteration k + 1 at the latest. Furthermore, no
honest party Pi sends a termination message of the form ⟨terminate, v′⟩i with
v′ ̸= v in iterations k or k + 1.

Proof. According to the protocol, a party sends a termination message only after
setting sendTerm, which is determined by the output of Πdk-GDA in the final
round of an iteration. This means a party can only send a termination message
in the first round of an iteration. As Pj is the first honest party to send the
termination message in iteration k, which occurs in the first round, no honest
party has terminated in an earlier iteration according to Lemma 2. According to
the protocol, Pj sends a termination message ⟨terminate, v⟩j if it either outputs
gj = 1 or detects fewer than dk−1 malicious parties at the end of iteration k− 1.
By the graded consistency and dk−1-detection properties of Πk

dk−1-GDA, every
honest party Pi outputs yGDAi = v at the end of iteration k−1. As a result, each
honest party updates its input value for the next iteration to vi := v. This means
that if any other honest party sends a termination message in the first round
of iteration k, it will also be on v. During iteration k, if any honest party Pi

receives t+1 termination messages on v in round r ≤ dk + c− 2, it sets yi := v,
forwards these messages in the next round, and terminates. All other honest
parties receive these t+1 termination messages in the next round and terminate
by the end of round r + 1 ≤ dk + c− 1 of iteration k. On the other hand, if no
honest party receive such termination messages in round r ≤ dk + c− 2, then all
honest parties participate in Πdk-GDA till the end of round dk+c, as every honest
party participates in one more round after receiving these termination messages
in round r. From graded validity of Πdk-GDA, every honest party Pi outputs
yGDAk

= v in iteration k with grade gk = 1. Thus, every honest party sends
a termination message ⟨terminate, v⟩i in the next round(first round of iteration
k + 1) and not on a different value. ⊓⊔
Lemma 5. Let Pj be the first honest party to send the termination message
⟨terminate, v⟩j in iteration k. Then, all honest parties will terminate with yi = v
no later than the second round of iteration k + 1.
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Proof. From Lemma 4, every honest party Pi sends a termination message
⟨terminate, v⟩i by iteration the first round of iteration k + 1 at the latest. By
the end of round 1, every honest party has received at least t + 1 termination
messages on v, forwards these messages in the subsequent round, and terminates
with yi = v. From Lemma 4, no honest party sends a termination message on a
conflicting value v′ ̸= v. Since there are at most t malicious parties, the adver-
sary cannot create a conflicting termination certificate for any value v′ ̸= v and
lead honest parties to terminate with value v′. ⊓⊔

Lemma 6. For all d ∈ N, d ≥ 1, let Πd-GDA be a d-Detecting Graded Agreement
protocol as per Definition 4. Then, ΠBA achieves consistency per Definition 2.

Proof. Assume that Pi is the first honest party to set yi := v during some round
r of an iteration, say iteration k. We prove that every other honest party, denoted
as Pk, also outputs v. For Pi to set yi := v, it must have collected at least t+ 1
messages of the form ⟨terminate, v⟩j by the end of round r − 1. Among these
t + 1 messages, at least one must have come from an honest party, say Pj in
some iteration k′ ≤ k. From Lemma 5, all honest parties will terminate with
yi = v no later than the second round of iteration k′ + 1. ⊓⊔

Finally, we prove the round complexity of ΠBA.

Lemma 7. Let c ∈ N and for all d ∈ N, d ≥ 1, let Πd-GDA be a d-Detecting
Graded Agreement protocol as per definition 4, which runs in d+c rounds. Then,
ΠBA terminates in f + (4 + c)⌈

√
f⌉+ (4 + c) rounds.

Proof. If any honest party sends a termination message in iteration k, then from
Lemma 5, all honest parties terminate in iteration k + 1 at the latest. So as-
sume that no honest party sent a termination message so far. In each iteration
k, honest parties Pi and Pj either: (1) output the same value from protocol
Πdk-GDA, i.e., yGDAi = yGDAj , or (2) detect at least dk additional malicious parties
according to the dk-detection property of Πdk-GDA. If the former, both Pi and
Pj start iteration k + 1 with the same value and terminate two rounds after
iteration k + 1, according to Lemma 3. Thus, in the worst case, the adversary
keeps delaying the agreement on the output of Πdk-GDA. In the first iteration,
the value of d1 is set to 1 and increases by 2 in each subsequent iteration.
Hence, in the k-th iteration, dk = 1+2(k− 1). To eliminate f malicious parties,
the maximum number of iterations, denoted by s, must satisfy the total sum:∑s

k=1 dk =
∑s

k=1 (1 + 2(k − 1)) = f . Thus,
∑s

k=1 (1 + 2(k − 1)) = s(s+ 1)− s,
and s2 = f . Therefore, there are at most ⌈

√
f⌉ iterations required to eliminate

all malicious parties. By iteration ⌈
√
f⌉+1, every honest party outputs the same

value from Πdk-GDA due to the dk-detection property. Furthermore, since they
detect less than d⌈

√
f⌉+1 parties, each honest party sends a termination message

⟨terminate, v⟩j in the first round after iteration ⌈
√
f⌉ + 1 to all other parties.

Consequently, each party receives at least t + 1 termination messages with the
same value, it forwards them in the subsequent round and terminates. Note that
each iteration k runs for dk + c rounds. Thus, the overall round complexity is
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computed as:

Complexity = Σ
⌈
√
f⌉+1

k=1 (1 + 2(k − 1)) + c · (⌈
√
f⌉+ 1) + 2.

= Σ
⌈
√
f⌉+1

k=1 1 +Σ
⌈
√
f⌉+1

k=1 2(k − 1) + (c+ 1)⌈
√

f⌉+ (c+ 3)

= 2Σ
⌈
√
f⌉

j=0 j + (c+ 1)⌈
√
f⌉+ (c+ 3)

= (⌈
√
f⌉+ 1)(⌈

√
f⌉) + (c+ 1)⌈

√
f⌉+ (c+ 3), (as ⌈

√
f⌉ ≤

√
f + 1)

≤ (
√

f + 1)2 + (c+ 2)⌈
√
f⌉+ (c+ 3)

≤ f + (c+ 4)⌈
√
f⌉+ (c+ 4)

⊓⊔

We sum up Corollary 1, and Lemmata 6, and 7 into Theorem 1 as follows:

Theorem 1. Let c ∈ N and for all d ∈ N, d ≥ 1, let Πk
d-GDA be a d-Detecting

Graded Agreement protocol as per Definition 4 which runs in d+c rounds. Then,
ΠBA achieves Byzantine agreement as per Definition 2. Furthermore, ΠBA ter-
minates in f + (c+ 4)⌈

√
f⌉+ (c+ 4) rounds.

3.2 Early-Stopping Protocol in f + 6⌈
√
f⌉ + 6 rounds

To achieve f +6⌈
√
f⌉+6, we introduce a new Πk

d-GDB protocol that is capable of
detecting d malicious parties within d+2 rounds. As discussed previously, Πk

d-GDB

uses the Proof of Participation protocol (Πk
PoP) [6] as a subroutine. This section

an overview of the Πk
PoP protocol as well as relevant definitions, and followed by

the construction of the new Πk
d-GDB. Subsequently, we use the graded broadcast

to design the graded consensus protocol, Πk
d-GDA. Finally, we instantiate the BA

protocol in Fig. 1 with Πk
d-GDA, and prove its round complexity. Note, all our

protocols are parameterized by k, which represents the iteration in which they
were invoked. This is essential as k must be passed to Πk

PoP, which is invoked by
Πk

k-GDB.
Next, we define Proofs of Participation (PoP), which a party attaches to its

messages to prove its honesty and remain participating in the protocol.

Definition 5 (Proof of Participation). A k-proof of participation (k-PoP)
PoPk

i for a party Pi ∈ P and an integer k is a collection of t + 1 signatures of
the form ⟨Pi, k⟩jl , from distinct signers Pj1 , . . . , Pjt+1

∈ P. We say that PoPk
i

is valid if for all l ∈ [t + 1], ⟨Pi, k⟩jl is valid with respect to pkjl . Further, we
assume that the empty string constitutes a valid choice for PoP1

i , for all i ∈ [n].

We modify the signature chain definition from [5] to incorporate PoPs. Each
signature in the chain is valid only if it includes a valid PoP and is correctly
signed with the party’s secret key.
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Definition 6 (Signature Chain with PoP). Let m ∈ {0, 1}∗, let i ∈ [n],
k ∈ N and, for all i, let PoPk

i be the k-PoP of party Pi as per Definition 5. We
write ⟨m⟩σ to denote the nested term ⟨. . . ⟨⟨m,PoPk

j1⟩j1 ,PoP
k
j2⟩j2 , . . . ,PoP

k
jl
⟩jl ,

where j1, . . . jl are distinct values in [n], and σ is the ordered sequence of these
values, i.e., σ = j1, . . . jl. We then refer to ⟨m⟩σ as a k-signature chain of length
l. The expression ⟨m⟩σ is said to be valid if, for all l, the signature with respect
to pkjl is valid and the proof of participation PoPk

jl is valid.

3.2.1 Proof of Participation (Πk
PoP)

The Proof of Participation protocol, Πk
PoP, enables each party to collect a list

of honesty proofs for each party Pi ∈ P, referred to as PoPk
i , where k ∈ [n]

represents the iteration in which the protocol is invoked. A PoPk is considered
valid if it includes t + 1 valid signatures from distinct parties Pj ∈ P, in the
form ⟨Pi, k⟩j . To generate this list of proofs, each party Pi executes Πk

PoP using
its current view of faulty parties, denoted as Fi, as input. In the first round
of Πk

PoP, each party broadcasts a PoPk message, ⟨Pj , k⟩i, for each party Pj not
included in Fi. Upon receiving at least t+1 such messages for party Pj , a party
Pi aggregates them to construct a PoPk

j proof.

Protocol Πk
PoP

– Input and Initialization: Let Fi denote Pi’s input.
Pi sets {PoPk

j :=⊥}j∈[n]

– Round 1:
• For each party Pj /∈ Fi , party Pi sends ⟨Pj , k⟩i to all parties.

– Output Determination: If Pi receives valid signatures ⟨Pj , k⟩l from
at least t+ 1 distinct parties, Pi aggregates these messages into PoPk

j .
Pi then outputs the set of PoPs PoPk := {PoPk

j }j∈[n], and terminates.

Fig. 2. Code of ΠPoP for party Pi.

Next, we define the two primary properties of Πk
PoP in Lemma 8 and Lemma 9.

Lemma 8. Assume no honest party Pj is in the faulty list Fi of any other honest
party Pi. Then, each honest party Pi outputs a valid proof of participation PoPk

j

for each honest party Pj.

Proof. There are at most t < n/2 malicious parties. Each honest party Pi sends
⟨Pj , k⟩i for every honest party Pj /∈ Fi. As per assumption, every honest party
Pi will receive at least t + 1 messages of ⟨Pj , k⟩l for every honest party Pj .
Consequently, every honest party sets PoPk

j to the aggregation of those received
messages. ⊓⊔

Lemma 9. Assume there exists some party Pj such that Pj ∈ Fi for all honest
parties Pi ∈ P. Then, no party outputs a valid proof of participation PoPk

j .
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Proof. There are at most t < n/2 malicious parties. No honest party will send
⟨Pj , k⟩i for party Pj ∈ Fi. Thus, every party can collect at most t < n/2 such
messages, which are not enough to form PoPk

j without forging signatures. ⊓⊔

3.2.2 d-Detecting Graded Broadcast

To construct the improved Πk
d-GDB protocol, we depart from the black-box use

of the CoD protocol [6], as described in [5]. Instead, we design a new protocol
that integrates the Dolev-Strong protocol with a two-round graded broadcast
protocol [18]. This approach enables the construction of a d-detecting graded
broadcast protocol with guarantees similar to those of the CoD protocol in [5],
but achieved in only d+ 2 rounds while detecting d faulty parties, compared to
d+ 5 rounds and detection of d faulty parties in their approach.

Overall, Πk
d-GDB (see Fig. 3) is a variant of graded broadcast protocols [18].

However, unlike traditional graded broadcast protocols, Πk
d-GDB enables honest

parties to output not only the broadcast value and a grade but also a list of
detected malicious parties. The protocol is parameterized by predefined values
d, and k, where d influences the number of protocol rounds; d+2 rounds, as well
as the number of detected malicious parties, and k indicates the phase in which
Πk

d-GDB is invoked. The round complexity of Πk
d-GDB differs from typical graded

broadcast protocols in the literature, which generally require only 2 or 3 rounds.
In Πk

d-GDB, there is a designated sender with input value vs ∈ {0, 1}. Each
party has input faulty list Fi. Each party outputs a value yi ∈ {0, 1}, a grade
gi ∈ {0, 1}, and an updated list of identified malicious parties F ⋆

i ⊂ P. In the first
round, all parties run protocol Πk

PoP to obtain list of valid k-PoP, including its
own. Every party tags along its k-PoP when sending a message and only accepts
messages from parties if they tag along their valid k-PoP. Thus, only parties Pi

with a valid k-PoP PoPk
i are allowed to actively participate in the d first rounds

of the protocol. (As we explain below, they can still participate passively, i.e.,
by sending nothing.). Concurrently, the designated sender Ps sends his value to
parties only if it is vs = 1 in the first round; otherwise, he refrains from sending
anything. Note, as we run Πk

PoP in the first round, party Ps can not include PoPk
s

along with its message. Thus, we let the receiving parties in the 2nd round to
decide on whether to accept the sender’s message based on the output of Πk

PoP.
Specifically, if PoPk

s ̸=⊥, party Pi constructs a message by concatenating the
sender’s message, the sender’s PoP PoPk

s , and Pi’s PoP PoPk
i , both generated

by Πk
PoP, and forwards it to all other parties in the second round. Thereafter,

if an honest party receives a valid chain on 1, it appends its PoPk
i , signs it and

forwards to all parties in the next round. To reduce the round complexity of the
CoD protocol [6], we eliminate the need for two additional passive rounds (from
d+ 3 to d+ 4) previously required for agreement on 0. Instead, we introduce a
proactive measure where parties send a ⟨Vote0,Nomsg,PoPk

i ⟩ message in round
d + 1 if they have not received any chains on 1 prior to this round. In round
d + 1 , each party either sends its vote on 0as ⟨Vote0,Nomsg,PoPk

i ⟩, or on a
valid chain for 1 received earlier, by sending ⟨Vote1, ⟨1⟩σ,PoPk

i ⟩. In round d+2,
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if a party receives a set of t + 1messages of the form ⟨Vote1, ⟨1⟩σ,PoPk
i ⟩ in the

previous round, it forms the set S1 from these messages and sends it to all parties.
Otherwise, if it receives t+ 1messages of the form ⟨Vote0,Nomsg,PoPk

i ⟩ and no
vote on 1, it forms the set S0 from these messages and sends it to all parties.
By the end of round d + 2, each party decides on its grade and output based
on the number of sets S1 and S0 it receives, with priority given to S1. Finally,
if the designated sender is honest, we ensure that all honest parties output the
same value with grade g = 1. Otherwise, if the outputs differ among parties,
we guarantee that all honest parties detect at least the same set of d malicious
parties by the end of round d+1. Note that parties invoke Πk

PoP in round d+2,
ensuring that the detected d malicious parties cannot obtain a valid PoPk+1

to participate in subsequent rounds. Finally we state the main Lemma for this
section and defer the proof to the appendix.

Lemma 10. Πk
d-GDB achieves d-Detecting Graded Broadcast as per Definition 3

and terminates in d+ 2 rounds.

3.2.3 d-Detecting Graded Agreement

The protocol Πk
d-GDA is an extension of the d-Graded Detecting Broadcast (GDB),

that achieves Byzantine agreement instead of Byzantine Broadcast. In this pro-
tocol, each honest party Pi has an input value vi and outputs both a final decision
value and a list of detected malicious parties. Specifically, Πk

d-GDA ensures that
either all honest parties output the same value yi, or at least d malicious parties
are identified, thereby achieving d-detection.

Each party Pi begins with an input vi ∈ {0, 1}⋆, and an initial faulty list Fi.
The outputs include a value yi ∈ {0, 1}⋆, a grade gi ∈ {0, 1}, and an updated
list of identified malicious parties F ⋆

i ⊂ P. In the first round, each party Pi

invokes Πk
d-GDB with the input tuple (vi, Fi). For simplicity, we denote Πk,j

d+1-GDB

as the instance of Πk
d-GDB where Pj is the sender. Each party stores the out-

put (yi,j , g
j
i , F

j
i ) from all completed instances of Πk,j

d-GDB for each Pj ∈ P. To
determine the final output yi and grade gi, a party Pi considers the results of
all Πk,j

d-GDB instances. If there exists a bit v ∈ {0, 1} such that for at least t + 1

instances Πk,j
d-GDB, gji = 1, Pi outputs gi = 1. To set the final value yi, Pi outputs

the majority value among yi,j from the Πk,j
d-GDB instances. The majority value is

guaranteed to align with the grading rules, as proven in Lemma 11. If an honest
party Pi outputs yi = v and gi = 1, then every honest party Pj outputs yi = v.

Finally, similar to Πk
d-GDB, each party Pi forms the updated faulty list F ⋆

i by
taking the union of all faulty lists output by the Πk,j

d-GDB instances, along with
the parties in its initial faulty list Fi. The protocol terminates in d + 2 rounds
as it just runs Πk

d-GDB without any additional rounds.
In the following lemma, we prove the correctness of Πk

d-GDA per Definition 4.
For space restrictions, the proof of this lemma can be found in the appendix.
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Protocol Πk
d-GDB

– Input and Initialization: If Pi = Ps, let vi, and Fi denote P ′
i s input.

Otherwise, let Fi denote Pi’s input.
Pi sets F ⋆

i := ∅, yi, vtemp, {PoPk
i }i∈[n] = ⊥ gi := 0.

– Round 1 (Pi = Ps):
• If the sender’s initial value is vs = 1, it sets vtemp := ⟨1⟩s, and

sends ⟨1⟩s to all parties. (Otherwise, it does nothing.)
• Party Pi runs Πk

PoP on input F ⋆
i . Let {PoPk

i }i∈[n] denote the output.
– Round 2 (Pi ̸= Ps):

• If Pi received ⟨1⟩s from the sender in round 1 and PoPk
s ̸=⊥, Pi sets

vtemp := ⟨1⟩s, constructs message ⟨⟨1⟩s,PoPk
s ,PoP

k
i ⟩i and sends it

to all parties.
– For any round r > 2 (Pi ̸= Ps):

• If Pi received a valid signature chain of the form ⟨1⟩σj of length
r−1 in round r−1, it appends to the chain its signature and PoPk,
i.e., it computes m := ⟨⟨1⟩σjPoP

k
i ⟩i and sends m to all parties.

Furthermore, it sets vtemp = ⟨1⟩σj if not already set.
• If Pi received a valid signature chain ⟨1⟩σj of length r, for ⟨1⟩σj =

⟨. . . ⟨⟨1,PoPk
s ⟩s . . .PoPk

l ⟩lPoPk
j ⟩j , Pi adds every party in Ps, . . . , Pl

in the signature chain to F ⋆
i .

– Round d+ 1:
• If vtemp ̸= ⊥, it sends ⟨vote1, vtemp,PoP

k
i ⟩i to all parties. Otherwise,

it sends ⟨vote0,Nomsg,PoPk
i ⟩i to all parties.

– Round d+ 2:
• If Pi received a message of the form ⟨vote1, ⟨1⟩σ,PoPk

j ⟩j in round
d + 1, where ⟨1⟩σ is a valid chain, Pi adds ⟨vote1, ⟨1⟩σ,PoPk

j ⟩j to
set S1. If |S1| ≥ t+ 1, Pi sends ⟨S1⟩i to all parties.

• If Pi did not receive ⟨vote1, ⟨1⟩σ,PoPk
j ⟩j in round d+ 1, such that

⟨1⟩σ is a valid chain, it adds all received messages in round d + 1
of the form ⟨vote0,Nomsg,PoPk

j ⟩j to set S0. If |S0| ≥ t+1, it sends
⟨S0⟩i to all parties.

• If Pi set vtemp := ⟨1⟩σj in round d, and did not receive at least t+1
messages of the form ⟨vote1, ⟨1⟩α,PoPk

l ⟩l in round d+1, it adds Pj

to F ⋆
i .

• Pi sets F ⋆
i = F ⋆

i ∪ Fi.
– Output Determination:

• If Pi = Ps, then Pi sets yi := vs, gi := 1, and terminates.
• Else, if Pi received at least t + 1 messages of the form ⟨Sb⟩j and

did not not receive ⟨S1−b⟩j in round d+2, it sets yi = b and grade
gi = 1.

• Else, if Pi received less than t+ 1, but at least one message of the
form ⟨S1⟩j , it sets yi = 1 and gi = 0.

• Else, it sets yi = 0 and gi = 0.
• Pi outputs yi, gi, F ⋆

i and terminates.

Fig. 3. Code of Πk
d-GDB for party Pi.
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Protocol Πk
d-GDA

– Input and Initialization: Let vi, and Fi denote Pi’s input. Pi sets
yi := vi, gi := 0, Hi, F

⋆
i := ∅, and yi,j , ii,j := ⊥ for j ∈ [n].

– Rounds r = 1 to d+2: Party Pi invokes Πk
d-GDB on input (vi, Fi). For

all j ∈ [n], denote the instance of Πk
d-GDB in which Pj is the sender as

Πk,j
d-GDB and denote (yi,j , g

j
i , F

j
i ) as the output.

– Output Determination:
• Party Pi accumulates the faulty lists of all instances of Πj

d-MCoD

along with the input Fi as F ⋆
i =

⋃
j∈[n] F

j
i ∪ Fi.

• If there exists v ∈ {0, 1} and at least t + 1 instances of Πk,j
d+1-GDB

that terminate with gji = 1 and output yi,j = v, then Pi sets the
grade gi := 1.

• Pi sets yi := v, where v is the the majority bit among values yi,j
output.

• Party Pi outputs yi, gi, F
⋆
i and terminates.

Fig. 4. Code of Πk
d-GDA for party Pi.

Lemma 11. Πk
d-GDA achieves d-Detecting Graded Agreement as per Definition

4 and terminates in d+ 2 rounds.

3.3 Byzantine Agreement Protocol Instantiation

Finally, to achieve optimal round complexity, we instantiate the BA protocol in
Fig.1 using Πk

d-GDA from Fig.4. We conclude this section by proving the following
main theorem.

Theorem 2. Assume a PKI setup and t < n/2. Let Πk
d-GDA be the d-Detecting

Graded Agreement protocol in Fig. 4. Then, ΠBA achieves Byzantine agreement
as per Definition 2. Furthermore, ΠBA terminates in f + 6⌈

√
f⌉+ 6 rounds.

Proof. Validity and agreement follow from Lemmata 1 and 6. For complexity,
note that each iteration runs for d + 2 rounds and we eliminate d parties per
iteration. Thus, c = 2. From Lemma 7, ΠBA terminates in f +6⌈

√
f⌉+6 rounds.

⊓⊔

4 Early Stopping Broadcast in min{f + 3, t + 1}

In this section, we introduce our early-stopping Byzantine broadcast protocol.
We begin by discussing key definitions and primitives required for the proto-
col, and then proceed to describe its construction. Note that the network and
setup assumptions, and adversary model remain consistent with those defined
in Section 2.
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4.1 EIG Preliminaries

For the EIG tree notation, we use a notation similar to the one described in [3].

Exponential Information Gathering Let Σr denote set of all possible strings
of length r of elements from [n] without repetition, and define Σ =

⋃
1≤j≤t+1 Σj .

An Exponential Information Gathering tree (see Fig. 5) is a data structure where
each node represents an element in Σ, and edges connect a node to the node
representing its longest proper prefix. Since this section focuses on the broadcast
problem, we set Σ1 = s, where Ps is the designated sender and s is the root node
of the EIG tree. The root is located at depth 1, and the depth of any other node
is defined inductively as one greater than the depth of its parent. A node at
depth d has n− d children, meaning the root has n− 1 children. The sequence
of labels along the path from the root to a specific node uniquely identifies the
path. We use the Greek letter σ to denote such a sequence of labels. Each string
σ in Σ represents up to t+ 1 distinct party names and corresponds uniquely to
a path in the EIG tree. The last node in the path σ is denoted by σ̂. To refer
to a child of node σ̂, we use σ̂q, where σq is the sequence σ concatenated with
q ∈ [n]. We use depth of a node σ̂ to refer to the number of edges on the path
from the root node to σ̂. Similarly, we use height to denote the number of edges
on the longest path from σ̂ to a leaf node. The length of a path σ, denoted by
|σ|, matches the depth of node σ̂. Additionally, the notation σ̂1 < σ̂2 indicates
that σ̂1 and σ̂2 lie on the same path in the EIG tree, with |σ1| < |σ2|. For two
sequences σ and σ′, we write σ′ ⊂ σ if σ′ is a proper prefix of σ, and σ′ ⊆ σ if
σ′ is a prefix of σ (possibly equal to σ). Finally, each node σ̂ in the EIG tree is
associated with two variables during the protocol’s execution: (1) val(σ̂, i) = v,
representing the initial value stored at node σ̂ in Treei, and (2) val⋆(σ̂, i) = v,
representing the final value stored at node σ̂ at the protocol’s conclusion. It is
important to note that the final value val⋆(σ̂, i) may be equal to the initial value
val(σ̂, i).

Next, we define the compound signature chain, a key component used in the
broadcast protocol. Unlike the signature chain in Definition 6, which consists
solely of nested signatures, the compound signature chain allows for a combina-
tion of signed messages and nested signatures. Then, we describe the protocol
construction and the early resolve rules.

Definition 7 (Compound Signature Chain). Let m ∈ {0, 1}∗ and l ∈ N.
Let j1, . . . , jl be distinct values in [n], and let σl be ordered sequence of these l val-
ues, i.e., σl = j1, . . . jl. A compound signature chain on message m, cSig(m,σl),
is recursively defined as follows:

– cSig(m, j1): A tuple of a message m and a signature by party Pj1 on m,
represented in the form ⟨m⟩σ1

.
– cSig(m,σl): A tuple taking one of the two following forms:

1. The tuple ⟨cSig(m,σl−1), ⟨resolvem, prefixl−1⟩jl⟩, where jl /∈ σl−1 and
prefixl−1 is some prefix of σl−1.
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Fig. 5. EIG graph representation for n = 5 parties, and t = 2 malicious parties. We
set party P1 to be the designated sender. The root node is at depth d = 1, and each
node at depth d has n − d children. The graph represents the EIG tree by the end of
round t+ 1.

2. ⟨cSig(m,σl−1)⟩jl , where jl /∈ σl−1.

We recursively define a compound signature chain as valid if either it is of
the form cSig(m, j1) = ⟨m⟩j1 and the signature is valid with respect to public
key pkj1 or if it is a syntactically correct (in the above sense) tuple of the form
cSig(m,σl), where cSig(m,σl−1) is valid, and signature jl ∈ σl is valid with
respect to the public key pkjl .

Notation For simplicity, we henceforth represent a compound signature chain
cSig(m,σl) as ⟨m⟩σl

. here, we override the notation that we previously defined
in section 6.

4.2 Protocol Construction

The protocol follows a two-stage paradigm similar to the EIG solution in [26].
In the first stage, parties exchange and forward messages for up to t+1 rounds,
storing received information in an EIG tree. In the second stage, each party
computes its output by determining the resolved value of each node through a
bottom-up approach. This process begins at the leaf nodes and progresses toward
the root, where the resolved value of a node is computed using a predefined
function applied to the resolved values of its children. The resolved values of the
leaves correspond to those stored during the first stage. Ultimately, each party
outputs the resolved value at the root as its final decision.

Our protocol addresses the Byzantine broadcast problem, where there is a
designated sender, Ps that sends his value to all parties and parties need to
agree on the sender’s value. Consequently, node ŝ serves as the root of the tree
for all parties, and each party ultimately outputs the value to which node ŝ is
resolved. In other words, each party’s final decision corresponds to the resolved
value stored in node ŝ, which they interpret as the agreed-upon value sent by the
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designated sender. Our protocol is 1-biased, meaning that in the first round, the
designated sender Ps sends its initial value to all parties only if vs = 1; otherwise,
Ps does not send any message. At the end of the round, each party Pi updates
its EIG tree based on the messages it has received. Specifically, if Pi receives
⟨1⟩s from the sender, it sets val(ŝ, i) = ⟨1⟩s, indicating that node ŝ stores the
value 1. Otherwise, it sets val(ŝ, i) = 0. In the subsequent round, parties echo
the sender’s value by sending ⟨ŝi, ⟨val(ŝ, i)⟩i⟩ to all other parties, ensuring that
each party Pj records the message received from Pi at node ŝi. This process
continues in each round following the EIG paradigm, where parties echo and
store received values in newly added leaves of the tree or assign a default value
of 0 if no message is received.

For the EIG-based protocol to achieve early stopping, parties must cease
exchanging information within a number of rounds proportional to the exact
number of malicious parties, where f ≤ t. This is based on the observation that
a party Pi can often determine in advance the resolved value of a given node σ̂
in the EIG protocol. We define this resolved value as val⋆(σ̂, i), a process known
as prediction. Once Pi predicts val⋆(σ̂, i), it can stop collecting and forwarding
information for the entire subtree rooted at σ̂. When a party does this, we say
that Pi has closed node σ̂. Since many nodes can be resolved before the protocol
completes its communication phase, we introduce early resolve rules that allow
nodes to be resolved in rounds earlier than t+ 1.

Next, we start by explaining the output function and how the output value
is calculated. Then, we explain the intuition behind our early resolve rules.

4.3 Output Computation Function

A party terminates under one of the following conditions: (1) it resolves the root
node of the tree by setting val⋆(ŝ, i) before round t + 1, (2) it resolves all the
leaves of the tree before round t + 1, or (3) it reaches the end of round t + 1.
In case of (1), the party directly outputs the resolved value of the root node.
Otherwise, if (2) or (3) holds, the party executes the Πoutput subroutine, which
is a deterministic function to recursively resolve the nodes from the leaves up to
the root. When t < n/2, an honest node does not necessarily have a majority
of honest children. Consequently, unlike settings where t < n/3 or t < n/4, the
deterministic function cannot rely on a simple majority rule. As our protocol
is 1-biased, our deterministic function is also 1-biased. Specifically, if at least
t + 1 − |σ| of a node σ̂’s children hold the value 1, party Pi sets val⋆(σ̂) = 1
at the end of the protocol. As shown in Fig.7, every honest node has at least
t + 1 − d honest children, where d is the node’s depth. This ensures that if an
honest sender initially sends the value 1, then every honest node along any fully
honest path will also resolve to 1. Ultimately, all parties will reach agreement
on the root node’s value being 1. Fig. 6 illustrates the Πoutput subroutine, which
each party executes to determine its final output value, yi.
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ΠOutput

– Input and Initialization: let tree Treei denote Pi’s input.
– Execution:

• Each Pi recursively applies the following rules from the leaves to
the root of the tree Treei for each node ŵ where val⋆(ŵ, i) = ∅:

∗ for each node leaf ŵ, set val⋆(ŵ, i) := val(ŵ, i)
∗ for each non-leaf node ŵ, set val⋆(ŵ, i) = 1 if ∃ ≥ (t+1−(|w|))

children with val⋆(ŵj, i) = 1. Else, set val⋆(ŵ, i) = 0
– Output Determination: Pi returns value val⋆(ŝ, i).

Fig. 6. Code of ΠOutput subroutine.

4.4 Early Resolve Rules

To achieve early stopping in the t < n/2 setting, we introduce two key early
resolve rules. The first applies to the parents of leaf nodes (nodes of height
h = 1), while the second extends to nodes at greater heights in the tree (nodes
of height h > 1). These rules allow a party to close a node in an earlier round
once it can accurately predict its final resolved value.

4.4.1 Nodes of height h = 1

Resolve rule for value 1.To determine when a node σ̂ should be resolved
to the value 1, denoted as val⋆(σ̂, i) = 1, we introduce a simple yet powerful
rule. For a parent node of leaf nodes (i.e., a node with height h = 1), at least
n − 2|σ| + 1 of its children must already hold the value 1 for party Pi to confi-
dently assign σ̂ the resolved value 1.
Why is this rule safe? Consider the two possible cases for σ̂: it is either honest
or malicious. If σ̂ is honest, the correctness proof is trivial; because an honest
party either sends message 1 to all parties or sends nothing at all. More impor-
tantly, a malicious party cannot forge a message claiming σ̂ sent 1 due to the
unforgeability of signatures. We later formally prove that for any honest node σ̂,
all honest parties will resolve it to the same value they received from it, ensuring
val⋆(σ̂, i) = val(σ̂, i).

If σ̂ is malicious, things get trickier. A malicious σ̂ could send 1 to some
honest parties while withholding it from others. In this case, we must consider
two possibilities: either every node along the path σ is malicious, or at least
one honest node exists along the path. If an honest node is present, we are
safe—honest parties will all resolve it to the same value as mentioned earlier,
ensuring agreement. But what if every node in σ is malicious? Even then, the
adversary can only corrupt at most t − |σ| of its children. For σ̂ to be resolved
early to 1, party Pi must receive at least n−2|σ|+1 = 2t+2−2|σ| children with
value 1, ensuring that at least t + 1 − |σ| of them are honest. Since all honest
parties eventually resolve honest children σ̂j to 1, they will also resolve σ̂ to 1
through the Πoutput subroutine.



Towards Optimal Early Stopping Agreement Protocols 27

Why is the rule early stopping? To see why this rule achieves early stopping,
consider a path of length f consisting entirely of malicious nodes. Let σ̂ be the
first honest node on this path, where |σ| = f + 1. Since σ̂ has at least n − |σ|
honest children, and n− |σ| ≥ n− 2|σ|+ 1, enough honest children will echo its
value 1. As a result, σ̂ is resolved in round |σ|+ 1 = f + 2, and closed in round
f + 3 after echoing on its children.

Now, suppose an honest node σ̂ exists on path σ, but not all other nodes
along σ are malicious. In the worst case, assume that all nodes in σ are honest.
This scenario is worst because honest node σ̂ can have—up to f ≤ t malicious
children. These malicious children can abstain from sending 1 for node σ̂, creating
a delay in resolving node σ̂. Here, σ̂ has the minimum possible number of honest
children, given by n − f − |σ|. If Pi receives fewer than n − 2|σ| + 1 messages
with value 1 in round |σ| + 1, it implies that at least f > |σ| − 1 malicious
parties abstained from sending value 1. However, this delay does not violate
early stopping, as the protocol allows additional rounds to be run when f > |σ|.

The deepest honest node σ̂α in such a path is resolved when the condition
n − 2|σα| + 1 ≥ n − f − (|σα| − 1) holds. Simplifying, we get f = |σα| − 1,
meaning σ̂α is resolved in round |σα|+ 1 = f + 2. This ensures that the round
complexity for resolving any honest node is at most f + 2, guaranteeing early
stopping as long as f < t. Once all the leaves in the tree are resolved, a party
can terminate and compute its output, as discussed in section 4.3.

Resolve rule for value 0. A party Pi safely resolves node σ̂ to 0 if it does not
receive any message from child σ̂j with value 1. This follows from the Πoutput

function, which requires at least t + 1 − |σ| children with value 1 for σ̂ to be
resolved to 1 by the end of the protocol. If all nodes along path σ are malicious
and attempt to mislead honest parties by setting σ̂ to 1 for some and 0 for
others, they must rely on at least one honest child to send val(σ̂, i) = 1 to all
parties. However, at most t− |σ| nodes can be malicious when all nodes in σ are
corrupted. If some nodes in σ are honest, σ̂ may have more than t−|σ| malicious
children. For this deception to work, there must be an honest ancestor of σ̂ with
value 1, as otherwise, the malicious parties cannot produce a valid signature
chain containing value 1. In this case, all honest parties will resolve this ancestor
to 1, ensuring agreement.

Conversely, if σ̂ is honest and has value 0 (does not send any message), an
adversary would need to forge its signature to generate a valid message of the
form ⟨1⟩σ to mislead parties into resolving σ̂ differently. Since signature forgery
is infeasible, any honest node σ̂ with value 0 is resolved no later than round |σ|+1.

4.4.2 Nodes of height h > 1

For nodes with height h > 1, we only have one rule for the value 1. For value 0,
no additional rules are necessary because these nodes can be set within a round
as explained in the previous section. To set an node σ̂ of height h > 1 to 1,
at least t + 1 − |σ| children must be resolved to 1, i.e., val⋆(σ̂j, i) = 1. This is
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Fig. 7. EIG graph representation for n = 5 parties, assuming Party P1 as the designated
sender, with f = 1 malicious node. Malicious nodes are represented by •, while honest
nodes are represented by •. Each honest node has at least t + 1 − d honest children,
where d is the node’s depth. Given f = 1, the earliest honest node (e.g., node 12) to be
set using the early resolve rule appears at depth d = 2. To set a node with height h = 2
to value 1, at least n − 2|d| + 1 children must send value 1. As, n − 2|2| + 1 = 2, the
node is set at the end of round 3 after receiving input from its children. Thus, Party
P5 delayed the setting of honest nodes in the tree by only one round.

the same rule used in Πoutput at the end of the protocol. In every round of our
protocol, the party checks if it can set internal nodes early, recursively checking
from the bottom nodes (parents of leaves) up to the root.

Finally, the resolving rules are summarized in Πresolve subroutine, which is
invoked by parties within ΠBB.

Πresolve

– Input and Initialization: let tree Treei and path σ denote Pi’s input.
– Execution:

• Pi sets val⋆(σ̂, i) according to the following criteria:
∗ If σ̂ is of height h = 1:

· val⋆(σ̂, i) := 1 if there exists at least n−2(|σ|)+1 children
σ̂j of σ̂ with val(σ̂j, i) = ⟨1⟩σj

· val⋆(σ̂, i) := 0 if there is no node σ̂j with with val(σ̂j, i) =
⟨1⟩σj

∗ If σ̂ is of height h > 1:
· val⋆(σ̂, i) := 1 if there exists at least t+ 1− (|σ|) children
σ̂j of σ̂ with val⋆(σ̂j, i) = 1

• Output Determination: Pi returns val⋆(σ̂, i)

Fig. 8. Code of Πresolve subroutine.
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4.5 Future Certificates

If an honest party Pi resolves a node σ̂ at round r, setting val⋆(σ̂, i) ̸= ∅ and
subsequently closing the subtree rooted at σ̂, it must ensure that other honest
parties will also assign the same value to σ̂ in a later round r′ > r. When the
resolved value is 0, this process is straightforward, as honest parties interpret the
silence of Pi as an implicit confirmation of having received message 0. However,
resolving σ̂ to 1 introduces additional complexities. To assign σ̂ the value 1, it
must satisfy the condition that at least t+1−|σ| of its children, denoted as σ̂α,
have the value 1. Furthermore, these children must each have at least t+1−|σα|
of their own children also assigned the value 1, and this requirement continues
recursively throughout the subtree.

A key challenge is ensuring that once Pi closes the node σ̂ and its descendants,
the absence of votes from Pi does not prevent other honest parties from resolving
σ̂ to 1. To mitigate this issue, when Pi resolves σ̂ to 1 at round r, it reports on
the leaves of the subtree rooted at σ̂ in round r+1 and broadcasts ⟨resolve1, σ⟩i
to all honest parties. If an honest party Pj receives ⟨resolve1, σ⟩i from Pi at round
r > |σ|+1, it sets val(σ̂ki, j) = 1 provided that val(σ̂k, j) = 1. Furthermore, Pj

then forwards ⟨resolve1, σ⟩i to all other parties in the next round.
This certificate serves as a valid future signature from Pi, allowing Pj to

construct a legitimate compound chain for the value 1 in a later round, even if
Pi has stopped reporting on this subtree rooted at σ̂. The chain incorporates
Pi’s signature on the descendants of σ̂. For example, the resulting chain could
be structured as ⟨⟨1⟩σk, ⟨resolve1, σ⟩i⟩j , which is a valid chain on 1 for node σ̂kij.

4.6 Early Subtree Closure

After party Pi resolves node σ̂ in round r, i.e., val⋆(σ̂), i) = v, Pi no longer
needs to acquire additional information about the descendants of node σ̂. This
is because it has already predicted the final value stored at node σ̂, and any
additional information about the descendants would not change anything. As a
result, Pi reports on the descendants of node σ̂ of length r for the last time in
round r + 1. It assigns the final value of all descendants σ̂j of σ̂ to v, such that
val⋆(σ̂j, i) = v. Finally, it stops reporting or storing any subsequent nodes it
might receive within this subtree rooted at node σ̂. At this point, we say that
Pi has closed node σ̂ (or equivalently, the subtree rooted at node σ̂).
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Πclose

– Input and Initialization: let tree Treei and path σ denote Pi’s input.
– Execution:

• If val⋆(σ̂, i) = v, Pi sets val⋆(σ̂j, i) := v for all descendant nodes σ̂j
in Treei, where |σj| ≤ t+ 1

– Output Determination: Pi returns Treei

Fig. 9. Code of Πclose subroutine.

ΠBB

– Input and Initialization: Let vs denote Ps’s input. Each Pi sets
yi := 0, Si, Ci := ∅. Pi constructs initial EIG Treei with only root node
s. Pi sets val(ŝ, i) = ∅.

– Round 1:
• If Pi = Ps and vs = 1, Pi sends ⟨1⟩s to all parties. Else, does

nothing.
• At the end of the round, if Pi receives ⟨1⟩s from Ps, it sets

val(ŝ, i) := ⟨1⟩s. Else, it sets val(ŝ, i) := 0.
– Round r = 2 to r = t+ 1 (Pi ̸= Ps):

• Pi sends all messages in Si, and then sets Si := ∅.
• For each path w, such that |w| = r − 1 and val⋆(ŵ, i) was set in

round r − 1, Pi sends ⟨ŵi, ⟨val(ŵ, i)⟩i⟩ to all parties.
• For each path w, such that |w| = r−1 and val⋆(ŵ, i) = ∅, Pi sends

⟨ŵi, ⟨val(ŵ, i)⟩i⟩ to all parties.
• At the end of the round, If Pi receives any message of the form

⟨resolve1, σ⟩j , it adds it to Ci, and Si if never been added before.
• For each path w, such that |w = αj| = r and val⋆(ŵ, i) = ∅:

∗ If val(α̂, i) = ⟨1⟩α and ∃ ⟨resolve1, σ⟩j in Ci, such that σ ⊂ α,
Pi sets val(α̂j, i) = (⟨1⟩α, ⟨resolve1, σ⟩j).

∗ Else if, Pi receives ⟨ŵ, ⟨1⟩w⟩, it sets val(ŵ, i) := ⟨1⟩w.
∗ Else, Pi sets val(ŵ, i) := 0.

• Close nodes: Pi checks if it can close some subtrees early by
invoking subroutine Πresolve(σ̂,Treei), followed by Πclose(σ̂,Treei) on
each node σ̂ of the tree Treei recursively in a bottom-up fashion
starting from leaves.

• Add future certificates: For all nodes σ̂ in tree Treei, if val⋆(σ̂, i)
is set to 1 in round r, then Pi adds ⟨resolve1, σ⟩i to Si, if
∄⟨resolve1, α⟩i ∈ Si such that α ⊂ σ.

– Output Determination: Terminate if either of the following holds:
(1) r = t + 1, (2) node s is resolved (i.e., val⋆(ŝ, i) ̸= ∅), or (3) all
leaf nodes are resolved. For the output value, set yi = val⋆(ŝ, i) if it is
not empty. Else, calculate yi by running Πoutput(Treei), and output the
resultant value.

Fig. 10. Code of ΠBB for party pi.
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Ps’s signature and includes valid PoPk
s . By assumption, the sender Ps is in the

faulty list of all honest parties. From Lemma 9, no party can output a valid PoPk
s

from Πk
PoP. Consequently, no party can form a valid chain that includes PoPk

s .
Hence, no honest party Pi ever accepts a message with a value of 1. In round
d + 1, every honest party sends the message ⟨Vote0,Nomsg,PoPk

i ⟩. Malicious
parties cannot send ⟨Vote1, ⟨1⟩σ,PoPk

i ⟩ because ⟨1⟩σ must be a valid signature
chain. By the end of round d+2, each honest party receives at least t+1 messages
of the form ⟨Vote0,Nomsg,PoPk

i ⟩i. In round d + 2, each honest party compiles
a set S0 containing t + 1 of these received messages and broadcasts S0 to all
other parties. Due to the unforgeability of signatures, a malicious party cannot
construct a valid set S1. Thus, by the end of round d + 2, every honest party
receives at least t+1 messages containing the set S0. Consequently, each honest
party outputs yi = 0 with a grade of gi = 1.

Lemma 13. If all honest parties receive ⟨1⟩σ by the end of round d, all honest
parties output yi = 1 and gi = 1. On the other hand, if no honest party receives
⟨1⟩σ by the end of round d+ 1, all honest parties output yi = 0 and gi = 1.

Proof. We will prove each separately. Let all honest parties receive ⟨1⟩σ by the
end of round d. In round d + 1, each honest party Pi sends ⟨vote1, ⟨1⟩σ,PoPk

i ⟩i
to all other honest parties. As a result, every honest party receives at least t+1
messages of the form ⟨vote1, ⟨1⟩σ,PoPk

j ⟩j and constructs the set S1. In round
d + 2, each honest party sends S1 to all other parties. Since there are at most
t < n/2 malicious parties, no honest party receives the set S0. Therefore, every
honest party receives at least t + 1 sets of S1 and outputs yi = 1 with gi = 1.
Now, assume that no honest party receives ⟨1⟩σ by the end of round d+1. Thus,
in the beginning of round d+1, each honest party Pi sends ⟨vote0,Nomsg,PoPk

i ⟩i
to all other parties. By the end of round d + 1, each honest party receives at
least t+1 messages of the form ⟨vote0,Nomsg,PoPk

i ⟩i. Moreover, no honest party
receives ⟨vote1, ⟨1⟩σ,PoPk

i ⟩j by assumption. Consequently, in round d + 2, each
honest party sends the set S0 to all other parties. No malicious party can send
a valid set S1, due to signature unforgeability. Thus, every honest party receives
at least t+ 1 messages of the form S0 and outputs yi = 0 with gi = 1.

Lemma 14. If no honest party receives ⟨1⟩σ by the end of round d, then every
honest party Pj outputs yj = 0.

Proof. By assumption, every honest party sends a message of the form
⟨vote0,Nomsg,PoPk

i ⟩i, and no honest party sends ⟨vote1, ⟨1⟩σ,PoPk
i ⟩i during

round d + 1. For an honest party Pj to output yj = 1 in round d + 2, it must
receive at least one message of the form ⟨S1⟩j , where S1 is a set containing at
least t + 1 messages of the type ⟨vote1, ⟨1⟩σ,PoPk

j ⟩j . Since the number of mali-
cious parties is at most t , the adversary cannot generate such a set S1 without
forging signatures. Therefore, every honest party sets yj = 0.

Lemma 15. If an honest party receives a chain, ⟨1⟩l1,··· ,lr , for the first time in
the protocol in round r, then Pl1 , . . . , Plr−1

must be malicious.
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Proof. According to the protocol, if an honest party Pj receives a chain for the
first time in round r, it will forward it to all parties in round r+1. Therefore, if
an honest party receives a chain ⟨1⟩l1,··· ,lr for the first time in round r, it knows
that parties Pl1 , . . . , Plr−1

must be malicious; otherwise, it would have received
the chain in an earlier round.

Lemma 16. If honest parties Pi and Pj output yi ̸= yj, then there exists a
non-empty proper subset of honest parties, H1, that receives a chain on message
1 in round d.

Proof. By Lemma 13, honest parties output the same value if either (a) all
honest parties receive ⟨1⟩σ by the end of round d, or (b) no honest party receives
⟨1⟩σ by the end of round d + 1. Thus, honest parties may output conflicting
values only if (a) only a proper subset of honest parties, H1, receive ⟨1⟩σ by
the end of round d, or (b) a non-empty subset of honest parties receive a chain,
⟨1⟩σ, for the first time in the protocol by the end of round d + 1. However, in
the latter case, by Lemma 14, every honest party Pj outputs yj = 0. Therefore,
conflicting outputs among honest parties can only occur if a non-empty proper
subset of honest parties, H1, receive ⟨1⟩σ by the end of round d. Note that H1

must be non-empty; otherwise, it would be identical to scenario (b).

Lemma 17. Let honest parties Pi and Pj output yi ̸= yj. Then, at least d
common malicious parties are added to F ⋆

i and F ⋆
j by the end of round d+ 1.

Proof. From Lemma 16, honest parties Pi and Pj can output yi ̸= yj only if a
non-empty proper subset of honest parties, H1, receive a chain on message 1 in
the end of round d. We show that all honest parties will detect at least d malicious
parties. For parties in H1, each honest party adds the first d−1 malicious parties,
Pl1 , . . . , Pld−1

, to their faulty lists by Lemma 15. They then append their own
signature to the chain ⟨1⟩l1,··· ,ld,i and forward it to all parties in round d+ 1. If
any party in H1 receives at least t+ 1 messages of the form ⟨vote1, ⟨1⟩σ,PoPk

i ⟩i
in round d + 1, it constructs set S1 and forwards these messages to all parties
in round d + 2, ensuring that all honest parties receive them and set yi = 1.
Otherwise, if a party in H1 receives fewer than t + 1 such messages, it adds
Pld to its faulty list, as Pld must have failed to send ⟨1⟩l1,··· ,ld to all honest
parties in round d, confirming its malicious behavior. For parties outside H1,
they receive ⟨1⟩l1,··· ,ld,i for the first time in round d+ 1 and add all d malicious
parties, Pl1 , . . . , Pld , to their faulty lists. Thus, every honest party detects at
least d malicious parties if conflicting outputs occur.

We now give the proof of Lemma 10.

Proof (Of Lemma 10). Assume that for each honest party Pi, Pi /∈ Fj for any
honest party Pj .
Graded Validity: Suppose that the sender Ps is honest. In the first round,
if Ps’s initial value is 1, it sends this value to all parties; otherwise, it sends
nothing. By assumption, Pi is not in the faulty list of any honest party. Accord-
ing to Lemma 8, every honest party Pi outputs PoPk

s from Πk
PoP. Let vs = 1.
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Then, every honest party receives ⟨1⟩s in the first round. Every honest party
constructs ⟨⟨1⟩s,PoPk

s ,PoP
k
i ⟩i and forwards it to all parties in the next round.

Consequently, from Lemma 13, all honest parties output yi = 1 with gi = 1. Oth-
erwise, if vs = 0, then Ps sends nothing to any party in round 1. In round d+1,
each honest party Pi sends ⟨vote0,Nomsg,PoPk

i ⟩i to all other parties. By the end
of the round, each honest party has received at least t+ 1 messages of the form
⟨vote0,Nomsg,PoPk

j ⟩j . Moreover, no honest party receives ⟨vote1, ⟨1⟩σ,PoPk
j ⟩j ,

where ⟨1⟩σ is a valid chain due to signature unforgeability. Consequently, in
round d+2, each honest party sends the set S0 to all other parties. Thus, every
honest party receives at least t+ 1 messages of the form S0 and outputs yi = 0
with gi = 1.
Graded Consistency: Consider two honest parties, Pi and Pj . Assume that
Pi outputs yi = v and gi = 1. We will show that Pj also outputs yi = v. First,
suppose v = 1. This implies that Pi received messages of the form ⟨S1⟩k from
at least t+ 1 parties in round d+ 2, with at least one of these messages coming
from an honest party who also sent this message to all other honest parties.
Consequently, every honest party must have received at least one message of the
form ⟨S1⟩k in round d + 2, leading them to output yi = 1. Now, consider the
case where v = 0. In this scenario, Pi must have received at least t+1 messages
of the form ⟨S0⟩k, including at least one message from an honest party Pk in
round d + 2. Additionally, Pi did not receive any ⟨S1⟩l messages. This implies
that Pk did not received any ⟨vote1, ⟨1⟩σ⟩l messages in round d+1, as otherwise,
it would not have sent ⟨S0⟩k in round d + 2. Thus, no honest party could have
sent ⟨vote1, ⟨1⟩σ⟩l in round d + 1, as otherwise Pk would have it received by
the end of that round, leading to a contradiction. Given that there are at most
t < n/2 malicious parties, the adversary cannot construct a set S1 with at least
t + 1 messages of the form ⟨vote1, ⟨1⟩σ⟩l to send in round d + 2. Therefore, no
honest party Pj receives a message of the form ⟨S1⟩k in round d + 2, and all
honest parties output yi = 0.
d-Detection: From Lemma 17, if two honest parties, Pi and Pj , output con-
flicting values (yi = 1 and yj = 0, respectively), then at least d malicious parties
are added to the faulty list, F ⋆

i , of each honest party Pi by the end of round
d+ 1.
Soundness: By assumption, at the beginning of the protocol, each honest party
Pi is not in the faulty list, Pi /∈ Fj , for any other honest party Pj . An honest
party Pi adds another party Pj to its faulty list under the following conditions:

1. Let Pi receive a message on 1 for the first time in round r. If the message
is of the form ⟨1⟩l1,··· ,ldk, then it is guaranteed that parties Pl1 , · · ·Pld are
malicious, as honest parties are required to forward messages on 1 to all
other parties as soon as they receive it.

2. Pi receives a message on 1 directly from Pj in the form ⟨1⟩σj during round
d. However, fewer than t + 1 parties subsequently send ⟨vote1, ⟨1⟩σ′ ,PoPk

i ⟩i
in round d + 1. This scenario guarantees that Pj is faulty, as a genuinely
honest Pj would have broadcast ⟨1⟩σj to all honest parties during round d.
As a result, honest parties only add corrupted parties to their faulty lists.
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Termination: The protocol runs for d+ 2 synchronous rounds

We finally prove Lemma 11.

Proof (Of Lemma 11). Assume that for each honest party Pi, Pi /∈ Fj for any
honest party Pj .
Graded Validity: Assume all honest parties have the same input value vi = v.
In the first round, each honest party Pi invokes as the sender, Πk

d-GDB on input
(v, Fi). According to the graded validity of Πk

d-GDB(Definition 3), if Pi is honest,
each honest party Pj outputs gij = 1, and yj,i = v. Thus, since there are at most
t < n/2 malicious parties, every honest party Pi will output (v, gi, F

j
i ) from at

least t+1 instances of Πk
d-GDB. Consequently, each honest party sets yi = v as v

is the majority value and gi = 1.
Graded Consistency: A party Pi sets gi = 1 if at least t + 1 instances of
Πk,j

d-GDB terminate with gji = 1, and these instances have the same output value
yi,j = v. Since t < n/2, Pi sets yi = v. Let Pi be an honest party that sets gi = 1
and yi = v. From the consistency property of Πk

d-GDB, every other honest party
Pl outputs yl,j = v for the same instances where Pi outputs gji = 1. Thus, every
party Pl sets yl = yi as the output is determined using majority function. As a
result, all honest parties set yl = v.
d-Detection: For two honest parties, Pi and Pj , outputting conflicting values
(yi = 1 and yj = 0, respectively), there exists at least one instance j among the
n parallel instances of Πk

d-GDB where Pi and Pj output conflicting values. If the
sender of Πk

d-GDB is honest, then from graded validity of Πk
d-GDB, every honest

party outputs the same value. If the sender is a party in the faulty list of all
honest parties, then every honest party outputs 0 from Lemma 12. Therefore,
the d-Detection property of Πk

d-GDB implies that at least d malicious parties are
added to every honest party Pi’s faulty list F ⋆

i via F j
i .

Soundness: The output faulty list F ⋆
i is constructed as the union of all faulty

lists F j
i , for j ∈ l, generated by the l parallel executions of Πk

d-GDB. By the
soundness property of the Πk

d-GDB protocol, it follows that the resulting faulty
list F ⋆

i includes only malicious parties.
Termination: Πk

d-GDA consists of concurrent instances of Πk
d-GDB. Based on the

assumption that Πk
d-GDB terminates, Πk

d-GDA will also terminate.
Round Complexity: Πk

d-GDA consists of concurrent execution of Πk
d-GDB, which

runs in d+ 2 rounds. ⊓⊔

B Proof of Correctness of ΠBB

Lemma 18. If Pi and Pj are both honest, then for all nodes ŵ, val(ŵj, i) =
val(ŵ, j).

Proof. An honest party sends the same message to all parties.

Lemma 19. Let Pi and Pj be two honest parties. If val(ŵ, i) = 0, each honest
party Pj sets val⋆(ŵi, j) = 0 by at most round |wi|+1 and close the subtree with
root ŵi in round |wi|+ 1.
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Proof. As Pi is honest, it sends the same message to all honest parties. Due to the
unforgeability of signatures, no malicious party Pk can send ⟨1⟩ik. According to
the Πresolve rule for setting val⋆(ŵi, j) = 0, all honest parties Pj set val⋆(ŵi, j) =
0 once they receive the children of node ŵi in round |wi|+1 and close the subtree
with root ŵi in round |wi|+ 2.

Lemma 20. Assume no node is resolved on path σ by the end of round |σ| for
any honest parties, i.e., val⋆(α, i) = ∅ ∀α ∈ σ. Let Pi and Pj be two honest
parties. If Pi sets val⋆(σ̂, i) = 0, then either Pj sets val⋆(σ̂, i) = 0 by the end of
the protocol, or (2) there ∃ at least one honest node β̂ ̸= σ̂ on path σ with value
1 in every honest party’s tree.

Proof. If node σ̂ is honest, the proof follows directly from Lemma 19. Now, let’s
consider the case where node σ̂ is malicious. For an honest party Pi to resolve σ̂
to 0 in round |σ|+1, it must not receive any child of σ̂ with a value of 1. For party
Pj to resolve σ̂ to 1, it must either (1) receive at least n− 2|σ|+ 1 > t+ 1− |σ|
children with a value of 1 or (2) resolve at least t+1−|σ| children to 1 according
to the early resolve rules. If every node in σ is malicious, then there are at most
t − |σ| malicious children of σ̂. Therefore, for Pj to set val⋆(σ̂, j) = 1, it must
receive val(σ̂k, j) = 1 from at least one honest party for either resolve rules,
which leads to a contradiction since party Pi cannot then set val⋆(σ̂, i) to 0.
Thus, for the adversary to carry out this attack, node σ̂ must have more than
t − |σ| malicious children. Hence, there must be at least one honest node β̂ in
path σ, which must have a value of 1; otherwise, the adversary cannot forge its
signature and send different values to parties. Since party β̂ is honest, it sends
1 to all honest parties. From the assumption that no node is resolved (thus not
closed) on path σ by the end of round |σ| for any honest parties and since β̂ < σ̂,
val(β̂, j) = 1 for every honest party Pj

Lemma 21. Assume no node on path w is resolved for any honest party by the
end of round |w|, i.e., val⋆(α, i) = ∅ ∀α ∈ w. Let Pi and Pj be two honest parties.
For any node ŵ such that val(ŵ, j) = 1, all honest parties Pi sets val⋆(ŵj, i) = 1
by the end of the protocol.

Proof. We need to demonstrate that honest parties always observe enough de-
scendants to set val⋆(ŵj, i) = 1. We distinguish two scenarios (1) Pi sets val⋆(ŵj, i) =
1 during the protocol execution; or (2) all honest parties Pi set val⋆(ŵj, i) = 1
at the end of the protocol using the Πoutput subroutine. We will start by proving
the second scenario.

According to Lemma 18, party Pj sends the same message, ⟨1⟩wj , to all honest
parties. We then prove the lemma by induction on t+1−|wj|. If |wj| = t+1, then
val⋆(ŵj, i) = val(ŵ, j) as per the leaf node setting rule in Πoutput. If |wj| < t+1,
then following the non-leaf node rule in Πoutput, a party Pi sets val⋆(ŵj, i) to (1)

if there exist at least t+1−|wj| children with value val⋆(ŵjk, i) = 1, or to (2) 0

otherwise. By the inductive hypothesis, val⋆(ŵjk, i) = val(ŵj, k), which equals
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val(ŵ, j) from Lemma 18. Note that node ŵj has at least n − |wj| children, of
which at least t+1− |wj| are possibly honest since node ŵj is not fixed by any
honest node, and thus the chain is not closed earlier. These honest nodes have
val⋆(ŵjk, i) = val(ŵ, j) = ⟨1⟩j .

Now, we prove the 1st scenario. Assume that some honest party Pk resolves
node ŵj during the protocol execution. This could happen if it uses the Πresolve

function in round r < t + 1. Consequently, in the next round party Pk sends
⟨resolvei, ŵj⟩k to all honest parties. Thus, all honest parties set val(ŵjσk, i) = 1

for any node σ with val(σ, i) = 1, where σ is a descendant of ŵj. Therefore, for
every honest node ŵjσ, it has at least t+1−|wjσ| children with val(ŵjσ, i) = 1
in every honest parties’ trees, either from future certificates or from an honest
party that has not yet terminated.

Lemma 22. Assume no node on path σ is resolved for any honest party by the
end of round |σ|, i.e., val⋆(α, i) = ∅ ∀α ∈ σ. Let σ̂ be a node that’s a parent of
leaves. Let Pi be an honest party that resolves node σ̂ to 1 such that val⋆(σ̂, i) = 1
in round |σ|+1 < t+1, then either (1) every other honest party Pk also resolves
σ̂ to 1 by setting val⋆(σ̂, k) = 1 by the end of the protocol, or (2) there ∃ at least
one honest node β̂ ̸= σ̂ on path σ with value 1 in every honest party’s tree.

Proof. If node σ̂ is honest, then every honest party Pk sets val⋆(σ̂, k) = 1 based
on Lemma 21. Now, consider the scenario where node σ̂ is malicious. There are
two possibilities: either every node in σ is malicious, or there exists an honest
node β̂ in σ.

First, assume every node in σ is malicious. We will show that all honest
parties resolve val⋆(σ̂, k) = 1. A party Pi sets val⋆(σ̂, i) = 1 if it receives values
of 1 from at least n− 2|σ|+ 1 children of σ̂. Since n− 2|σ|+ 1 = 2t+ 2− 2|σ|,
there must be at least t+1−|σ| honest children, because at most t−|σ| children
can be malicious. According to Lemma 21, all honest parties resolve at least
t+ 1− |σ| honest children of σ̂ to a value of 1 by the end of the protocol, such
that val⋆(σ̂j, k) = 1. Consequently, val⋆(σ̂, k) = 1 is set either through the
Πoutput subroutine or the early resolve rules.

If not every node in σ̂ is malicious, there must be an honest node β̂ in σ.
This honest node β̂ must have a value of 1 or else malicious node σ̂ can not
send a valid message on 1 to party Pi without party β̂’s signature. From the
assumption that no node is resolved (and thus, closed) on path σ by the end of
round |σ| for all honest parties and since β̂ < σ̂, val(β̂, j) = 1 for every honest
party Pj .

Corollary 2. (Validity) If Ps is honest and starts with value vs = v, all honest
parties will output v.

Proof. If party Ps has vi = 1, it sends ⟨1⟩s to all parties. From lemma 21
assuming w = ∅, it follows that all honest parties will set val⋆(s, i) = 1 and
yi = 1 by the end of the protocol. Otherwise, if party Ps has vi = 0, it does not
send anything to parties in the first round. From Lemma 19, all honest parties
set val⋆(s, i) = 0 by the end of round 2.
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Lemma 23. Let Pi be the first honest party that sets val⋆(σ̂, i) = v in round r,
then no node on the path σ is resolved by any honest party by the end of round
r − 1.

Proof. By contradiction. Assume honest party Pl ̸= Pi set val⋆(β̂, i) = v, where
β̂ is a node on path σ. Pl would also set the descendants of β̂ to the same value
in round r − 1, and σ̂ is a descendant of β̂. So, honest party Pl would have set
val⋆(σ̂, l) by the end of round r − 1, which contradicts the assumption.

Lemma 24. Let Pi be the first honest party that resolves node σ̂ to 1 such that
val⋆(σ̂, i) = 1 by the end of round r < t + 1, then either (1) every other honest
party Pk also resolves σ̂ to 1 by setting val⋆(σ̂, k) = 1 by the end of the protocol,
or (2) there ∃ at least one honest node β̂ ̸= σ̂ on path σ with value 1 in every
honest party’s tree.

Proof. From the protocol construction, at round r, the maximum depth a node
can have is r, which is a leaf. Let σ̂ be a node that is resolved at round r < t+1.
Thus, σ̂ resolved by one of the early resolve rules as the last round in the protocol
is t+1. There are two early resolve rules: (1) a rule for nodes with height h = 1
(2) a rule for nodes with height h > 1. Thus, only nodes σ̂ at depth d < r can
be resolved by the early resolve rules in round r < t + 1. We prove the lemma
by induction on subtrees with root node σ̂ at depth d < r.
Base case |σ| = d = r− 1: If σ̂’s depth is r− 1, then it has height h = 1 in round
r. Furthermore, since Pi is the first party to resolve σ̂ in round |σ|+ 1, no node
on path σ is resolved by the end of round |σ| for any honest party. And thus, no
honest party closed the tree with subroot σ̂ in round |σ|+1. Let σ̂ be resolved to
1 by party Pi in round r such that val⋆(σ̂, i) = 1. From Lemma 22, every other
honest party Pk either also resolves σ̂ to 1 by setting val⋆(σ̂, k) = 1 by the end
of the protocol, or (2) there ∃ at least one honest node β̂ ̸= σ̂ on path σ with
value 1 in every honest party’s tree.
Base case |σ| = d = r − 2: If σ̂’s depth is r − 2, then it has height h > 1 in
round r. According to the early resolve rule for such node, σ̂ is resolved to 1 if
at least t+ 1− |σ| of σ̂’s children are resolved to 1, implying that val⋆(σ̂j) = 1
in round r, where j refers to some child of σ̂. These t + 1 − |σ| children have a
length of |σ| + 1 = r − 1, and they can only be set by the corresponding early
stopping resolve rule for nodes with height h = 1. Furthermore, they can only be
resolved in round |σj|+ 1 = r. From the assumption, we know that party Pi is
the first honest party that resolves node σ̂ in round |σ|+2. From Lemma 23, no
node on the path σ is resolved by any honest party by the end of round |σ|+ 1.
This further implies that no node on the path σj is resolved by the end of round
|σj| = |σ| + 1 since |σj| is a leaf, and there is no early resolve rule for leaves.
Consequently, from the base case d = r−1, if a party Pi resolves a parent of leaf
nodes σ̂j to 1 in round |σj|+1, then either (1) every other honest party Pk sets
val⋆(σ̂j, k) = 1, or (2) there exists at least one honest node β̂ on the path σj
with a value of 1. If the former holds for all t+ 1− |σ| children of σ̂, then every
party Pk sets val⋆(σ̂, k) = 1 because t+ 1− |σ| children are resolved to 1. If the
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latter, then either σ̂ = β̂ or β̂ < σ̂. Assume σ̂ = β̂ = δl, where Pl is an honest
node and val(δ, l) = 1. Additionally, no node on the path β was resolved by any
honest party by the end of round |β|, based on the assumption that Pi is the first
party to set node σ̂ in round r > |σ| > |β|. Therefore, val⋆(σ̂, i) = val⋆(σ̂, k) = 1

follows from Lemma 21, where δ = w. If β̂ ̸= σ̂, then there exists at least one
honest node β̂ on the path σ with a value of 1 in every honest party’s tree as σ̂
is honest and sends the same value to all parties. This completes the proof for
the base cases.
Inductive hypothesis: assume for d ≤ r − 2, the lemma holds for all subtrees
with root nodes σ̂ with depth |σ| ≥ d. We will show that the lemma holds for
subtrees with root nodes σ̂ with depth |σ| = d− 1.
Inductive step: σ̂ is an internal node with depth |σ| = d − 1 < r − 2 and thus,
is not a parent of leaf node. Thus, party Pi sets node σ̂ to 1 in round r if there
are t+1−|σ| children, σ̂j, that are resolved to 1 in round r according to resolve
rule for nodes with height h > 1. Let’s call these t + 1 − |σ| children set T1.
Assume these nodes σ̂j in T1 are first resolved by an honest party in rounds
s1 ≤ . . . s|T1| ≤ r < t + 1 respectively. Then, by inductive hypothesis, either
other honest parties Pk set val⋆(σ̂j, k) = 1 by the end of the protocol, or there
exists an honest node β̂ on path σj with value 1 in every honest party’s tree. If
the former case holds for all nodes, σ̂j, in T1, meaning honest party Pk resolves
val⋆(σ̂j, k) = 1, then honest Pk sets val⋆(σ̂) = 1. If the former does not hold for
all nodes in T1, then there exists at least one honest node β̂ on path σj with
value 1 by the inductive hypothesis. Similar to the base case, either σ̂ = β̂ or
β̂ < σ̂. If σ̂ = β̂, then val⋆(σ̂, i) = val⋆(σ̂, k) = 1 follows from Lemma 21. If
β̂ < σ̂, then there exists at least one honest node β̂ ̸= σ̂ on the path σ with
value 1.

Corollary 3. Let σ̂ be the earliest node (i.e., the node with the smallest depth)
on a path that’s set by an honest party Pi, such that val⋆(σ̂, i) = v in round
r < t+ 1. Then, one of the following two conditions holds: (1) either all honest
parties Pk set it to the same value, val⋆(σ̂, k) = v or (2) there exists an honest
node β̂ < σ̂ on path σ in every honest party’s tree with value 1.

Proof. Let r be the round in which an honest party Pi sets the node σ̂ during
the protocol execution in r < t + 1. Since there is no early resolve rule for a
leaf node, r must be greater than |σ| (r > |σ|). Based on the assumption that
σ̂ is the earliest node on path (σα), where |α| ≥ 0, no node on the path of σ is
resolved by any honest party by the end of round |σ|.

Consequently, Pi sets val⋆(σ̂, i) = v ∈ {0, 1} in round |σ| + 1 ≤ r < t + 1
by applying one of the early resolve rules. If v = 0, then the only early resolve
rule for value 0 can be applied in round |σ| + 1, and according to Lemma 20,
two scenarios arise: (1) all honest parties Pk set val⋆(σ̂, k) = 0 by the end of the
protocol, or (2) there exists at least one honest node β̂ < σ̂ on path σ with value
1 in every honest party’s tree. Similarly, if v = 1, then according to Lemma 24,
the same scenarios arise: (3) all honest parties Pk set val⋆(σ̂, k) = 1 by the end
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of the protocol, or (4) there exists at least one honest node β̂ < σ̂ with value 1
in every honest party’s tree.

Lemma 25. (Agreement) If an honest party Pi outputs yi = v, every honest
party Pj outputs yi = v

Proof. A party Pi sets its output based on the value it resolves the root node
ŝ to, i.e., outputs v if val⋆(ŝ, i) = v. The root node is either (1) resolved by a
subset of honest parties during the protocol run in round r < t + 1 by using
early resolve rules, or (2) all honest parties resolves ŝ at the end of the protocol
by executing Πoutput in the end of round t+ 1. We distinguish both cases.

1. Let Pi be the first party that sets val⋆(ŝ, i) during the protocol run using
early resolve rules. If val⋆(ŝ, i) = 1, then based on Lemma 24, every honest
party Pj either sets val⋆(ŝ, j) = 1 or there exists an honest node β̂ ⊂ ŝ with
value 1. However, the latter case can not happen as ŝ is the first node of the
tree. Thus, every honest party Pj sets val⋆(ŝ, j) = 1. On the other hand, let
Pi set val⋆(ŝ, i) = 0. The only available early resolve rule for 0 is applied
for nodes with height h = 1 and thus, Pi resolves ŝ at round |ŝ|+ 1 = 2 by
setting val⋆(ŝ, i) = 0. From Lemma 20, Pj also sets val⋆(ŝ, j) = 0 for the
same reason that it does not exist a node β̂ before node ŝ.

2. Assume all honest parties determine val⋆(ŝ, i) by running Πoutput at the end
of round t + 1. The function Πoutput is applied recursively from leaves to
root, resolving nodes that were not resolved during the protocol execution.
Specifically, Πoutput resolves nodes as follows:
– If a node σ̂ is a leaf, it is set to the value it stored during the protocol

execution, i.e., val⋆(σ̂, i) = val(σ̂, i).
– For a non-leaf node σ̂ that was not resolved during the protocol exe-

cution, an honest party runs a deterministic function over the resolved
children of σ̂. Node σ̂ is resolved to 1 if at least t+ 1− |σ| children are
resolved to 1, and 0 otherwise.

– If node σ̂ was resolved in some round r < t+ 1, do nothing
Consequently, we prove agreement by following these two steps:
– Step 1: We slice the trees, Ti (tree formed during protocol execution

before running Πoutput), of all honest parties Pi horizontally at different
lengths, effectively cutting some chains to a shorter length but ensuring
all honest parties’ trees are cut at the same length (same node) for each
chain. After such slicing, we consider the resultant trees T ′

i for honest
parties Pi. We show that the leaves of these trees have the same resolved
value, i.e., val⋆(σ̂, i) = val⋆(σ̂, j) for the resultant trees T ′

i and T ′
j of

any two honest parties Pi and Pj . In other words, all honest parties Pi

resolves every node σ̂, where σ̂ is a leaf in trees T ′
i , to the same value in

trees Ti during the execution of Πoutput.
– Step 2: Considering the resultant trees T ′

i of honest parties Pi, we demon-
strate that after applying Πoutput on these trees, all honest parties will
set node s to the same value, and thus, output the same value.
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As you can see, we divide the agreement proof for applying the Πoutput sub-
routine into two steps. In the first step, we focus on a selected set of nodes,
with one node chosen from each chain. We demonstrate that after running
Πoutput from the leaves up to these nodes, all honest parties resolve these
nodes to the same value.In the second step, we consider the trees formed by
treating these nodes as leaves. We then show that when Πoutput is applied to
these trees, all honest parties assign the same value to the root node s. Thus,
by proving Steps 1 and 2, we prove agreement. We begin with Step 1. For
each honest party’s tree Ti, where Ti is the tree constructed during the pro-
tocol execution, consider the subtree T ′

i , where T ′
i is the same as Ti but with

some chains cut at a shorter length. By "cutting a shorter length," we mean
the following: let σ1, σ2, . . . , σt+1 be chain c in tree T . If we cut the chain
at node σ3, then the resultant chain in tree T ′ is σ1, σ2, σ3, where σ3 is now
the leaf of chain c in tree T ′. We denote the resultant chain as c[σ3]. We will
show that for each honest party Pi and Pj , for all leaves σ̂ ∈ T ′

i , T
′
j , it holds

that val⋆(σ̂, i) = val⋆(σ̂, j). We first demonstrate how T ′
i is constructed. The

tree T ′
i is constructed by cutting the chains of tree Ti as follows:

For each chain c in tree Ti for all i ∈ [n],
– if there exists a node σ̂ that is the earliest node on chain c resolved by

some honest party Pk in some round r < t+ 1, then
• If there exists an honest node β̂ < σ̂ on path σ with value 1, such

that val(β̂, k) = 1, cut the chain of Ti at β̂, resulting in the chain
c[β] in T ′

i for all honest parties Pi.
• If there is more than one honest node with value 1, pick the earliest

node.
• Otherwise, cut the chain at σ̂, resulting in the chain c[σ̂] in T ′

i for all
honest parties Pi.

– Else, every other chain c in Ti remains the same in T ′
i .

Thus, all honest parties’ trees are cut at the same length for each chain
because all honest parties’ EIG trees have the same node locations. Conse-
quently, we show that for all the leaves in the resultant trees T ′

i , each honest
party Pi resolves them to the same value. Note that the leaves for all trees
T ′
i for i ∈ [n] fall into the following categories:

(a) An honest node β̂ with value 1, val(β̂, i) = 1, where no node δ on path β
was resolved by any honest party in any round r, where |β| < r < t+ 1.

(b) A node σ̂ that is the earliest node set by some honest Pi in some round
r < t + 1, val⋆(σ̂, i) = v. Furthermore, there does not exist any honest
node β̂ with value 1, such that β ⊂ σ.

(c) A node σ where |σ| = t+ 1.

To demonstrate that each leaf in T ′
i and T ′

j is resolved to the same value for
honest parties Pi and Pj , we consider each type separately:

– Type 1: Let β̂ = δl, where Pl is an honest node. So, val(δl, i) = val(δ, l) =
1 for every honest party Pi as Pl sends the same value to all honest
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parties. Note that no node on the path β is resolved by any honest
party by the end of round |β| according to the chain cutting rules. Thus,
according to Lemma 21, all honest parties Pi set val⋆(β̂, i) = 1, where
δ = w in Lemma 21’s statement.

– Type 2: If a leaf is of this type, then by Corollary 3, val⋆(σ̂, i) = val⋆(σ̂, j)
for every honest party Pi and Pj as there doesn’t exist an honest node
β̂ with value 1 according to the chain cutting rules, where β ⊂ σ

– Type 3: Honest party Pi sets val⋆(σ̂, i) = val(σ̂, i) according to the
Output() function for leaves as stated earlier. Since there are at most
t malicious parties, every leaf node of length t + 1 is honest. Thus, for
each leaf node σ̂j of length t+ 1, all honest parties Pi set val⋆(σ̂j, i) =

val(σ̂j, i) = val(σ̂, j) based on Lemma 18.
Hence, we proven Step 1. Now, we prove Step 2. For party Pi to calculate
val⋆(s, i), each honest party runs the Output() subroutine. This subroutine
resolves nodes recursively from the leaves up to the root by applying the
deterministic function mentioned earlier. By Step 1, for all leaves in T ′

i and
T ′
j for every honest party Pi and Pj , it holds that val⋆(σ̂, i) = val⋆(σ̂, j).

Therefore, all honest parties Pi apply the same deterministic function over
the same initial input (leaves’ resolved values) recursively until they reach
the root node in tree T ′

i . As a result, the output after applying this recur-
sive deterministic function is the same for all honest parties. Consequently,
val⋆(s, i) = val⋆(s, j) for honest parties Pi and Pj .

Lemma 26. Let node σ̂j be the first honest node on the path σjα, where |α| ≥ 0.
If |σ| ≤ t − 1, then the node σ̂j is resolved by all honest parties, such that
val⋆(σ̂j, i) = v by the latest round r = max(|σj| + 1, f − |σ| + 2). Additionally,
all honest parties closes node σ̂j by at most round r+1. If |σ| = t, then the node
σ̂j is resolved by round t+ 1.

Proof. We distinguish between σ ≤ t− 1 and σ = t

– σ ≤ t − 1: As Pj is honest, val(σ̂j, i) = val(σ̂, j) holds true in all honest
parties Pi’s trees. If val(σ̂, j) = 0, then all honest parties set val⋆(σ̂j, i) = 0

by at most round |σj|+1 and close the subtree with root σ̂j by round |σj|+2,
as per Lemma 19.
Now, consider the case where val(σ̂, j) = 1. Let subtree T be the tree with
subroot σ̂j. To resolve node σ̂j to 1 early, Pi applies Πresolve on node σ̂j. If
σ̂j is a parent of a leaf node, that’s the height of tree T is 2, and the early
resolve rule for parent of leaf nodes is applicable, then it is resolved in round
|σj|+1, and we are done. Otherwise, σ̂j is a non-parent of leaf internal node.
The early resolve rule for such nodes states that at least t+1−|σj| children
must be resolved to 1, i.e., val⋆(σ̂jk, i) = 1 to resolve σ̂j to 1. To resolve
these children, σ̂jk, to 1, at least t + 1 − |σjk| of their children must be
resolved to 1, and so on recursively until reaching the parent of leaf nodes.
These parent nodes are resolved using a different resolve rule than other
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nodes with height h > 1. To set the parent of leaf nodes using the early
resolve rule, there must be n− 2|σj|+ 1 children with value 1.
Now, let’s consider subtree T , with height greater than 2. We prove the
lemma by showing this subtree can reach at most height f − |σ| + 1. Note
that since node σ̂j is the first honest node on the path by assumption,
there are at most f − |σ| malicious children on any honest node that’s a
descendant of node σ̂j. Thus, node σ̂j and its honest descendants σ̂jα have
at least n− (f −σ)− |σj| > t+1− |j| and n− (f −σ)− |σjα| > t+1− |jα|
honest children, respectively, as f is at most t. By honest descendants σ̂jα,
we mean that each node in the path jα is honest. Additionally, all the honest
descendants σ̂jα of node σ̂j, have value val(σ̂jα) = 1. Let T1 be a subtree of
T , consisting of all honest chains, where every node in the chain is honest, in
subtree T . As shown, every node σ̂jα in T1 has at least n− (f−σ)−|σjα| >
t + 1 − |jα| honest children and value val(σ̂jα) = 1. We need to show that
the latest round in which all parents of leaf nodes, σ̂jα ∈ T1, will be set is
r = (f − |σ|) + 1.
Let σ̂jβ be a parent of leaf node in T1 in round |σjβ|+1. For an honest party
to set val⋆(σ̂jβ) = 1 during the protocol run, at least n−2|σjβ|+1 children
of σ̂jβ must have val(σ̂jβk) = 1. Thus, at the latest, the first honest node
β̂ that can be set by honest parties in round |σjβ| + 1 occurs when when
the following condition holds: n − (f − |σ|) − |σjβ| = n − 2|σjβ| + 1. That
means 2|σjβ| − |jβ| = f + 1, so |σjβ| = f − |σ| + 2. Consequently, parties
report on the children of σ̂jβ in round |σjβ|+ 2.
Thus, every node in tree T1 will be resolved to 1 in round |σjβ| + 1 by re-
cursively resolving the honest nodes by applying Πresolve for internal nodes.
Consequently, val⋆(σ̂j, i) = 1 in round r = max(|σj|+1, f −|σ|+2). Parties
then recursively call Πclose on every node in the tree in a bottom-up manner.
According to Πclose, for every val⋆(σ̂j, i) = v, party Pi sets val⋆(σ̂jk, i) := v

for all descendant nodes σ̂jk in Treei, where |σjk| ≤ t + 1. As a result,
parties stop reporting or storing any subsequent nodes they might receive
within this subtree rooted at node σ̂j, as every node σ̂jk in this subtree has
val⋆(σ̂jk) ̸= ∅. This is because, as shown in Fig 10, parties only send or
receive nodes within the subtree rooted at σ̂ if val⋆(σ̂, i) ̸= ∅."

– |σ| = t: Then, node σ̂j is a leaf of length t+ 1. Thus, every honest party Pi

runs Output() at the end of round t+ 1 and set val⋆(σ̂j, i) = val(σ̂j, i)

Lemma 27. (Early Stopping) Protocol ΠBB terminates in min(f + 3, t+ 1)

Proof. The protocol runs for at most t+1 rounds. We are left to prove the f +3
rounds. From Lemma 26, once there is an honest party j on the chain, the chain
with subroot σ̂j closes by at most round max(|σj|+2, f − |σ|+3). |σ| could be
at most f , that’s that chain of malicious parties. Such chain terminates by at
most round f + 3.
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