
HasteBoots: Proving FHE Bootstrapping in Seconds

Fengrun Liu1,3, Haofei Liang2, Tianyu Zhang2, Yuncong Hu∗,2, Xiang Xie3, Haisheng Tan1, Yu Yu2

1University of Science and Technology of China, 2Shanghai Jiao Tong University, 3Primus

Abstract—Fully Homomorphic Encryption (FHE) enables com-
putations on encrypted data, ensuring privacy for outsourced
computation. However, verifying the integrity of FHE com-
putations remains a significant challenge, especially for boot-
strapping, the most computationally intensive operation in
FHE. Prior approaches, including zkVM-based solutions and
general-purpose SNARKs, suffer from inefficiencies, with proof
generation times ranging from several hours to days. In this
work, we propose HasteBoots, a succinct argument tailored
for FHE operations. By designing customized polynomial in-
teractive oracle proofs and optimized polynomial commitment
schemes, HasteBoots achieves proof generation in a few seconds
for FHE bootstrapping, significantly outperforming existing
methods. Our approach demonstrates the potential for scalable
and efficient verifiable FHE, paving the way for practical,
privacy-preserving computations.

1. Introduction

Fully Homomorphic Encryption (FHE) [1, 2, 3, 4, 5,
6, 7] is a groundbreaking cryptographic technology that
allows computations to be performed directly on encrypted
data. This unique capability ensures that sensitive informa-
tion remains protected throughout the computation process,
making FHE especially valuable in scenarios that require
privacy preservation, such as secure cloud computing and
confidential data processing. However, achieving full ho-
momorphism—where any arbitrary computation can be per-
formed on encrypted data—relies on a key process known as
bootstrapping [1]. Bootstrapping is essential in FHE because
it periodically reduces accumulated noise in the ciphertext,
enabling ongoing computation without data degradation,
thereby maintaining both security and correctness.

In secure outsourced computing, Fully Homomorphic
Encryption is often deployed to protect client data privacy, as
it allows computations to be carried out on encrypted data.
However, this setting introduces a unique challenge: while
FHE ensures data confidentiality, it does not inherently
guarantee that the computations performed on encrypted
data are accurate or unaltered. For example, in outsourced
machine learning scenarios—such as neural network models
handled by cloud service providers—the client must have
assurance that the inference or training computations on
their model are correct, despite not being able to access the
raw (unencrypted) data or independently verify the results.

∗ Corresponding author

This is where Succinct Non-Interactive Arguments of
Knowledge (SNARKs) [8, 9, 10, 11, 12, 13, 14, 15, 16]
become essential. SNARKs provide a way to generate a
compact, verifiable proof that the computations were exe-
cuted correctly. This proof, which can be verified efficiently,
allows the client to check the correctness of the computation
without needing to trust the service provider. In decentral-
ized systems, where the integrity of computations is crucial,
FHE combined with SNARKs addresses the trust issue by
providing verifiable results.

While some prior work [17, 18, 19, 20, 21, 22, 23]
managed to prove basic FHE operations, such as addition
and multiplication, these methods fail to support complex
FHE operations, particularly bootstrapping. Bootstrapping
is essential for achieving full homomorphism, as it resets
accumulated noise in ciphertexts to allow ongoing computa-
tions. However, it is also the most computationally intensive
operation in FHE, and how to prove bootstrapping efficiently
remains a significant open problem in verifiable FHE.

One attempt is to leverage zero-knowledge virtual ma-
chines (zkVMs) [24, 25], which implement FHE algorithms
directly in high-level language such as Rust, and then com-
pile it to a proof. Although feasible, these zkVM-based
solutions suffer from extremely low efficiency. Compiled
code is not optimized for SNARKs, resulting in prohibitively
long proof generation time, particularly for bootstrappings.
Consequently, existing zkVMs like RISC0 [24] and SP1 [25]
require approximately three days and one day, respectively,
to generate a proof for a single bootstrapping.

A recent work [26] uses general-purpose SNARKs to
directly verify FHE operations. [26] obtains performance
improvements by eliminating the compilation from high-
level languages. However, general-purpose SNARKs are not
inherently optimized for FHE. For instance, FHE operations
often involve complex relations such as rounding, Num-
ber Theoretic Transform (NTT), and transformation from
a ring element to a polynomial of a multiplicative group.
These specialized relations cannot be efficiently presented
in the general circuits or custom lookup gates supported
by existing general-purpose SNARK frameworks, leading to
efficiency loss. As a result, [26] needs about half an hour
for proving bootstrapping. This long proof generation time
limits the practical scalability of verifiable FHE.

Our goal is to construct a proof system specifically tai-
lored for FHE that can generate proofs in just a few seconds,
making verifiable FHE computations viable for scalable,
privacy-preserving computations without centralized trust.



1.1. Our Contributions

Our approach leverages the Polynomial Interactive Ora-
cle Proofs (PIOPs) and Polynomial Commitment Schemes
(PCS) paradigm to construct an efficient proof system
specifically for FHE. Our contributions are as follows:
• We propose a novel proof construction framework

for FHE. We identify key atomic operations in FHE
workflows as shown in Fig. 1 and build a new framework
for proof construction as shown in Fig. 2. We observe
that the FHE workflow does not involve private input
so that knowledge soundness and zero-knowledge are not
required in our proof system. Based on this framework,
we analyze FHE algorithms and identify the FHEW/TFHE
[6, 7] as the proof-friendly FHE scheme due to its sim-
pler bootstrapping process, which is the most expensive
operation in FHE. We further select FHE parameters that
enable more efficient proof generations. Our framework
provides a foundation for future work to optimize proofs
for FHE where it suffices to improve the sub-protocols
for each component of the framework.

• We construct an efficient succinct argument
HasteBoots for FHEW/TFHE. We develop custom
PIOPs tailored for FHE operations. These PIOPs leverage
the specific structures of these operations to significantly
enhance proof efficiency. Notably, we achieve an
optimal prover for fast-NTT algorithm with bit-reversal,
which can be of independent interest. Additionally, our
approach supports batch proof of multiple operations,
further reducing computational overhead. Considering
proving efficiency and the need for field-agnostic support
across different FHE fields, we select a PCS based
on linear codes [16]. However, we observe that FHE
involves many small polynomials, which are inefficient
to open with linear-code PCS. To address this, we design
a packing mechanism that combines multiple small
polynomials into a single large polynomial for opening.
As a result, we obtain a succinct argument HasteBoots
for FHEW/TFHE with linear proving time.

• We implement and evaluate HasteBoots. Our evaluation
demonstrates the efficiency of HasteBoots, with much
faster proof generation than existing general-purpose
proof systems. On Apple M4, HasteBoots can prove a
FHE NAND operation with bootstrapping in 3 seconds,
whereas the state-of-the-art [26] require about half an
hour.

1.2. Overview of Our Techniques

Workflow of FHE NAND. We first introduce the workflow
of our FHE NAND procedure in Fig. 1. It includes four
main steps: LWE addition, batched lift followed by NTT
operations, accumulator updating, and modulus switching.

The input consists of two LWE ciphertexts ct0 =
(a0, b0) ∈ Zn

q × Zq and ct1 = (a1, b1) ∈ Zn
q × Zq,

encrypted under the secret key s ∈ Zn
q . The output is a

LWE ciphertext ct = (−a0−a1,
5q
8 − b0− b1) ∈ Zn

q ×Zq,

LWE Addition

Batched Lift

Accumulator 

Modulus Switch

NTT

𝖺𝖼𝖼[n] = (a′ , b′ ) ∈ 𝔽N × 𝔽N

𝖺𝖼𝖼[i + 1] = 𝖺𝖼𝖼[i] + (di − 1) ⊗ 𝖺𝖼𝖼[i] ⋄ 𝖹i

{𝖹i ∈ (𝔽N)4ℓ}n−1
i=0

Bootstrapping Key:

Xb, X−𝖺0, …, X−𝖺n−1 ∈ 𝔽N

{di = 𝖭𝖳𝖳(X−𝖺i) ∈ 𝔽N}n−1
i=0 𝖺𝖼𝖼[0] = (0, 𝖭𝖳𝖳(Xb)) ∈ 𝔽 N × 𝔽 N

(a, b) ∈ ℤn
q × ℤq

𝖼𝗍0, 𝖼𝗍1 ∈ ℤn
q × ℤq

Input:

Bootstrapping

𝖼𝗍 ∈ ℤn
q × ℤqOutput:

Figure 1: The computation flow of the NAND operation
in FHE. The gray part represents the bootstrapping, where
the bootstrapping keys are public. We assume q = 2N for
simplicity. ⊗ and ⋄ are defined in Section 2.2.

Multilinear Sumcheck Protocol

Lookup

Sparse  
Matrix Eval 

LWE  
Addition

NTT

Batched  
Lift

Modulus  
Switch

Accumulator  
Updating

PIOP for FHE NAND

Gadget  
Dec 

List of 
Hadamard 

ProductLookup

p1: NAND includes 4 parts 

p2: describe each part in layer 2 (gadget dec appears 2 times) 

p3: elaborate fast NTT (describe our methods first)

Q1: public range

piop design for NAND

Multilinear 
PCS 

Packed 
Opening

Gadget  
Dec 

Lookup

Succinct Argument for FHE NAND

Lookup

Figure 2: Protocol design overview of proof systems for
FHE NAND, highlighting our newly designed protocols in
blue and existing protocols in gray. Each protocol is built
on top of the underlying protocols.

encrypted under the same secret key s, while the corre-
sponding plaintext is the NAND result of the input plaintext.

FHE scheme first performs LWE addition to these ci-
phertexts to produce (a, b) = (a0 + a1, b0 + b1) with
increased noise, where 5q

8 is omitted for simplicity (the full
FHE protocol refers to Section 2.2). Bootstrapping aims to
reduce this noise by homomorphically decrypting the cipher-
text using the secret key encrypted under the secret key (a
so-called "circular encryption"), denoted as Zi, an RGSW
ciphertext encrypting the secret si. The decryption circuit
of the LWE ciphertext (a, b) is computed by ⌊ b−⟨a,s⟩

q/4 ⌉.
Our bootstrapping procedure uses an RLWE scheme [27]

over a cyclotomic ring R = Z[X]/(XN + 1), with its
quotient ring RQ = R/(QR) = F[X]/(XN + 1), where
F is the finite field over the prime Q. The cyclotomic ring
contains a cyclic subgroup G = {X, . . . ,X2N}, and a 2N -
th root of unity ω such that ω2N = 1. To perform the
homomorphic decryption in the RLWE scheme, we lift the
operation into exponent form, computing Xb−⟨a,s⟩. Assum-
ing q = 2N for simplicity, the lift operation maps b ∈ Zq to



the cyclic group, resulting in a lifted polynomial Xb ∈ G.
The accumulator is updated iteratively to obtain an RLWE
ciphertext encrypting Xb−⟨a,s⟩ with reduced noise. Finally,
we extract an LWE ciphertext (a′, b′) under modulus Q
from the accumulator’s output and perform modulus switch-
ing to return it to modulus q. For each component a′i ∈ F,
modulus switching computes ⌊a

′
i·q
Q ⌉ ∈ Zq by rounding to

the nearest integer.
PIOP Design. We introduce our PIOP design as shown in
Fig. 2 tailored for the FHE NAND workflow. We use the
multilinear polynomials to encode the FHE ciphertexts. By
reducing all relations to a multilinear sumcheck protocol,
we achieve an efficient linear-time prover. We select the
FHE modulus Q to ensure that our PIOP can be defined
on the finite field F over the prime Q, enabling native FHE
arithmetic on ZQ. We further employ an extension field EF
to improve the soundness.
LWE Addition. The core of proving addition between two
LWE ciphertexts involves an addition modulo q. However,
since our proof system uses F with modulus Q, we need to
simulate this modulus operation within the field. Given the
multilinear extensions ã, b̃, c̃, the relation c̃(x) = ã(x) +
b(x) mod q holds for all x ∈ {0, 1}logn if and only if
there exists k̃ such that ã(x) + b̃(x) = k̃(x) · q + c̃(x)
and k̃(x) ∈ {0, 1}. This can be done efficiently using the
multilinear sumcheck protocol. We also need to prove that
c̃(x) is within the correct range. We observe that since the
modulus q in FHE is relatively small, it is efficient to employ
a lookup argument with the table (0, . . . , q − 1).
Batched Lift. Before updating the accumulator, FHE needs
to perform a key operation: lifting the ring element a ∈ Zq

to the exponent, resulting in a polynomial Xa in the cyclic
subgroup G (The exponent should be a · 2N

q , for sim-
plicity, we assume q = 2N ). Note that after lifting, the
exponent a will be in Z2N . Thus, the lifting operation
involves a modular operation on Xa. The modular result
is a monomial (1 − 2k) · Xr ∈ RQ, where k = 1 and
r = a − N if a ≥ N , and k = 0 and r = a other-
wise. This monomial is represented by a coefficient vector
c ∈ FN with a single non-zero value k, located at position r.
When applying the batched lift operation to an input vector
a = (a0, . . . , aM−1) ∈ ZM

q , we obtain a sparse coefficient
matrix C = (c0, . . . , cM−1) ∈ FN×M with only M non-
zero entries, where each column ci represents the lifted
polynomial Xai ≡ (1− 2ki) ·Xri ∈ RQ.

A key observation is that each lifted polynomial is trans-
formed into its evaluation form using NTT. The subclaims of
proving these NTT are evaluation queries on the coefficient
vectors c0, . . . , cM−1 at the random point. Hence, instead of
explicitly proving the lift relation, we find a way to answer
the queries using the input vector a.

Specifically, we find that the random linear combination
of all evaluations on the coefficient vectors is equal to a sin-
gle evaluation of the sparse coefficient matrix C ∈ FN×M

at a random point. By Schwartz-Zippel lemma, it suffices to
check the random linear combination instead of individual
evaluations. We employ the idea from prior work [10, 28,

29] to represent the sparse matrix by three vectors–row, col
and val–that locates the non-zero entries. We can efficiently
reduce the evaluation of the sparse matrix to queries on
row = (r0, . . . , rM−1) and val = (1−2k0, . . . , 1−2kM−1),
where ai = ki·N+ri. Note that unlike the standard solution,
we can omit col since each column contains a single non-
zero element. We further replace memory-checking in prior
work [28][29] with an indexed lookup argument since the
table size is small in the setting of the RLWE scheme.

We discuss the proof of NTT relations in the next part,
as the accumulator updating process also relies on NTT.
Accumulator Updating. The accumulator initially stores
an RLWE ciphertext acc[0]. Each update takes a circu-
lar encryption Zi and the lifted polynomial (after NTT)
di = NTT(X−ai): acc[i+1] = acc[i]+(di−1)⊗acc[i]⋄Zi.
Both ⊗ and ⋄ (external product) are defined in Section 2.2.
This process primarily involves NTT operations, Hadamard
products, and gadget decompositions. The Hadamard prod-
uct can be directly verified using the sumcheck protocol. We
need to show how to prove NTT and gadget decompositions.

The gadget decomposition is an extension of bit de-
composition that decomposes the coefficients f ∈ FN of a
polynomial into ℓ small polynomials with coefficient vectors
f0, . . . ,fℓ−1 ∈ ZN

B such that f =
∑ℓ−1

i=0 B
i·fi. This implies

that we need to verify the relationship between f and fi and
also ensure that each fi lies within a valid range. The former
can be addressed using a polynomial identity test. For
the latter, while in bit decomposition we can easily verify
(fi(x) − 1)fi(x) = 0, gadget decomposition introduces a
larger basis B, making this method inefficient. We employ
a lookup protocol to verify that fi(x) values fall within the
range [0, B) to further improve the performance.

The NTT operation, defined over RQ with a 2N -th root
of unity ω, transforms a polynomial’s coefficient vector into
an evaluation vector at N points, with a Fourier matrix
F (Y,X ) = ω(2Y+1)·X . Prior work [30] provides a linear-
time argument for FFT with a different root of unity. How-
ever, we observe that prior methods for FFT are not directly
applicable to NTT due to the different root-of-unities, which
change the structure of the Fourier matrix. Additionally,
optimization techniques for NTT computations (fast NTT
[31]) in FHE further change the matrix structure, making it
incompatible with existing approaches.

We extend prior work [30] to support a different set
of roots of unities. We find that in the NTT Fourier matrix,
each entry is computed based on a structured exponentiation
pattern. By decomposing the exponents into bitwise compo-
nents, we break down the computation into multiple rounds,
which allows us to efficiently evaluate the NTT Fourier
matrix using dynamic programming. To accommodate the
bit-reversed order introduced by the fast NTT, we also use
different decomposition orders for variables X and Y .

We also propose a new method for proving batched NTT
after the lift operations, which is not considered in prior
work [30]. An observation is that NTT instances can be
randomized into a single NTT instance due to the linearity.
However, this does not save the prover time, as the prover
still needs to O(MN) time to compute the proof, where M



is the number of NTT instances, and N is the degree of
the polynomial. We propose to leverage the sparsity of the
coefficient vectors so that the prover can explicitly compute
the randomized coefficient vector in linear time, followed
by generating the NTT arguments for this randomized NTT
instance in total complexity of O(M + N) rather than
O(MN). This optimization is of independent interest for
proving batched NTT operations on sparse polynomials.
Modulus Switching. The last step in the bootstrapping
is modulus switching, which converts an LWE ciphertext
under the modulus Q to a new LWE ciphertext under a
smaller modulus q. Specifically, this step involves rounding
the result of dividing a·q by Q to the nearest integer in Zq, as
follows: b = ⌊a·qQ ⌉ mod q. This operation maps a range of
values to the same integer in Zq. Assuming that 2q | Q− 1,
we define k = Q−1

2q with the relation Q = 2kq + 1.
We find that this relation implies that the field can be

exactly divided into q ranges of length 2k, with a single
special point. As shown in Fig. 3, for any a ∈ [(2b − 1) ·
k + 1, (2b + 1) · k], it is mapped to b ∈ {1, . . . , q − 1}.
The remaining uncovered range, a ∈ [0, k] ∪ (0,−k] ≡ Q
is mapped to 0. Although this range is composed of two
separate ranges, they can be combined into a single sequen-
tial range [(2q − 1) · k + 1, (2q + 1) · k] of length 2k under
modulus Q, along with a single point a = k. To handle this,
we introduce an auxiliary witness b′ ∈ {1, . . . , q} such that
b′ ≡ b mod q. This leads to a dichotomy: either a = k and
b = 0, or for any a ∈ [(2b′ − 1) · k + 1, (2b′ + 1) · k], a is
mapped to b where b ∈ Zq, and b′ ∈ {1, . . . , q} with b′ ≡ b.
Finally, we leverage Hadamard products and range proofs to
prove these relations. In particular, the range proofs can be
constructed from our prior gadget decomposition protocols.
Polynomial Commitments. Finally, to commit multilinear
polynomials, we employ polynomial commitments suited
to FHE operations. We select Brakedown [32] due to its
compatibility with the FHE field. Additionally, Brakedown
is a linear-time protocol, which is crucial for our application.

We identify a challenge with using linear code-based
PCS like Brakedown in FHE, where multiple small poly-
nomials need to be opened. Although the total input size
remains the same, Brakedown’s performance drops signifi-
cantly when handling multiple small polynomials compared
to a single large polynomial, since the opening proofs size
relies on the relative code distance. Furthermore, Brakedown
lacks homomorphic properties in opening proofs, prevent-
ing batch openings. To solve this, we design a packing
mechanism that combines M multilinear polynomials, each
with logN variables, into a single (logM + logN)-variate
polynomial. Opening this packed polynomial at a random
point reveals a random linear combination of the small
polynomials at a random point, reducing the overall cost.

1.3. Comparison with the state-of-the-art [26]

In [26], Thibault and Walter design a SNARK-friendly
arithmetic circuit for TFHE bootstrapping procedure and
prove it within plonky2, which is one feasible approach
to proving custom FHE operations. However, an alternative

approach is to directly prove the relation between the inputs
and the outputs within these FHE operations, enabling us
to achieve more efficient prover than in [26]. Extracting the
relation from the arithmetic circuit and generating proofs for
it is a key feature of many highly efficient protocols. For
example, [33] proposed a highly optimized protocol for
matrix multiplication, where the prover only needs O(N2)
extra work to prove the correctness. One main bottleneck in
[26] lies in the NTT operation, where they directly prove an
NTT circuit with a size of O(N logN), resulting in a strictly
quasi-linear prover in plonky2. In contrast, our approach
achieves an optimal linear prover for the corresponding NTT
relation with bit-reversal. Additionally, [26] uses a decom-
position method to compute multiplication by the monomial
Xa, which also leads to a circuit of size O(N logN). In
our work, however, we prove this operation within our lift
operation, also resulting in an optimal linear proving time.
Another difference can also be observed in how we handle
modulus switching. While [26] applies a decomposition
approach to manage the division and rounding operations
in the circuit, which is feasible but introduces additional
error. Instead, we actually transform the modulus switching
relation into the range check relation, which is simpler and
avoids introducing extra errors.

2. Preliminary

2.1. Notation

We denote the set {0, . . . , a−1} by [a]. Let Zq be a ring
over an integer q, and FQ a field defined over a prime Q
(omitted where clear). For a vector a ∈ FN , the i-th entry is
dentoed by ai. We can decompose the vector a with respect
to a base B ∈ Z into ℓ = ⌈logB Q⌉ vectors a0, . . . , aℓ−1

such that a =
∑ℓ−1

i=0 B
i ·ai where a0, . . . ,aℓ−1 ∈ ZN

B . This
decomposition is referred to as a gadget decomposition and
is denoted by Dec(a;B, ℓ) = (a0, . . . ,aℓ). For vectors a
and b, we define the Hadamard product as c = a ◦b, where
ci = ai · bi for each i. The identity function 1(x) returns 1
if the condition x is true, and 0 otherwise.
Bit-Reversed Representation. Throughout the paper, as-
sume N is a power of two. Let x ∈ {0, 1}logN de-
note binary variables and X ∈ F denote a field variable.
For x = (x0, . . . , xlogN−1), define the canonical injection
to-field(x) =

∑logN−1
i=0 2i · xi, which maps x ∈ {0, 1}logN

to F, and let to-bits(X) denote its inverse. For binary
strings x, y ∈ {0, 1}logN , let X ,Y ∈ F represent their
corresponding field values for simplicity. For X ∈ F
corresponding to x ∈ {0, 1}logN , define its bit-reversed
representation as X R =

∑logN−1
i=0 2logN−1−i ·xi. Addition-

ally, we denote the bit-reversed order of the vector a by
aR = (a0R , . . . , a(N−1)R) ∈ FN .
Multilinear Extensions of Vectors and Matrices. Let the
identity function eq : {0, 1}logN × {0, 1}logN → {0, 1} be
defined as eq(x, y) = 1 if x = y, and 0 otherwise. The
multilinear extension of eq, denoted ẽq (x, y), can be ex-
pressed as ẽq (x, y) =

∏logN
i=1 ((1−xi)(1−yi)+xiyi) where



x, y ∈ FlogN . A vector a = (a0, . . . , aN−1) ∈ FN can be
viewed as a multivariate polynomial a : {0, 1}logN → F
such that for all x ∈ {0, 1}logN , we have a(x) = aX . The
multilinear extension of ã : FlogN → F can be uniquely de-
fined using the equality function as ã(x0, . . . , xlogN−1) =∑

b∈{0,1}log N ẽq (x, b) · a(b) such that ã(x) = a(x) for all
x ∈ {0, 1}logN . Similarly, the multilinear extension of an
N×M matrix A, denoted by Ã, is the multilinear extension
of the function A : {0, 1}logN+logM → F.
Cyclotomic Ring. For N a power of two, the 2N -th cy-
clotomic ring is defined as R = Z[X]/(XN + 1), which
has a 2N -th roots of unity such that ω2N = 1. The
quotient ring RQ = R/(QR) consists of polynomials
in R with the coefficients modulo Q. Any polynomial
c(X) =

∑N−1
i=0 ci ·Xi ∈ RQ can be uniquely defined with

the coefficient vector c = (c0, . . . , cN−1) ∈ FN .
NTT/INTT. The Number Theoretic Transform (NTT) en-
ables quasi-linear polynomial multiplication in RQ via fast
NTT algorithms [31]. NTT maps a polynomial c(X) ∈ RQ

from its coefficient vector c to an evaluation vector a =
(a0, . . . , aN−1) ∈ FN , where aY evaluates X = ω2Y+1 for
Y ∈ [N ]. Since fast NTT produces a in bit-reversed order,
we define NTT(c) = aR and its inverse as INTT(aR) = c.
Extension Field. Let F (X) ∈ F[X] be an irreducible poly-
nomial of degree D. By the Chinese Remainder Theorem,
we define the extension field F[X]/(F ), denoted by EF,
which has size QD. Each field element in EF is represented
as a polynomial of degree at most D − 1, and arithmetic
within EF is performed using polynomial arithmetic modulo
F (X). Multilinear extensions of vectors and matrices can
be similarly defined over EF.

2.2. Fully Homomorphic Encryption

In this paper, we focus on the FHEW-like fully homo-
morphic encryption systems with fast bootstrapping proce-
dures. An Learning with Errors (LWE) [34] ciphertext is
of the form (a, b) = (a, ⟨a, s⟩+mq/t+ e mod q) where
a ← Zn

q , s ∈ {0, 1}n is the secret key, e ← χσ is chosen
from some discrete gaussian distribution with small norm,
and m ∈ Zt is the message. To define the relation among
FHE various ciphertexts, we use LWE to denote the vector
space Zn+1

q , allowing us to represent a LWE ciphertext as
a vector ct = (a, b) ∈ LWE.

A Ring Learning with Errors (RLWE) [27] ciphertext
is of the form (a, b) = (a(X),a(X) · z(X) + m(x) +
e(X)) where a(X)← RQ, z(X) is the secret polynomial,
e(X)← χN

σ is sampled from discrete gaussian distribution,
and m(X) is the message polynomial. Based on the form
of RLWE ciphertexts, we use RLWE to denote the space
FN×FN , so that an RLWE ciphertext is represented by c ∈
RLWE, containting two vectors c.a ∈ FN and c.b ∈ FN .

Let B is the basis for decomposition and ℓ = ⌈logB Q⌉.
We define a RLWE′ ciphertext contains ℓ RLWE ciphertexts
that encrypt the messages m, Bm, ..., Bℓ−1m under the
same secret key. Define a RGSW ciphertext contains the
two RLWE′ ciphertexts that encrypt −zm and m, where

z is the underlying secret polynomial. We use RGSW to
denote the space RLWEℓ × RLWEℓ, so we can represent
an RGSW ciphertext Z ∈ RGSW containting 4ℓ vec-
tors Z.a0, . . . ,Z.a2ℓ−1 and Z.b0, . . . ,Z.b2ℓ−1. Let Z.a⃗ =
(Z.a0, . . . ,Z.a2ℓ−1) and Z.b⃗ = (Z.b0, . . . ,Z.b2ℓ−1)

1.
Next, we define operation FN ⊗ RLWE → RLWE:

for a vector d ∈ FN and c ∈ RLWE, d ⊗ RLWE =
(INTT(d ◦ c.a), INTT(d ◦ c.b)) ∈ RLWE. We define
operation RLWE ⋄ RGSW → RLWE between c′ ∈
RLWE and Z ∈ RGSW as follows: we first decompose
c′.a and c′.b into 2ℓ vectors, denoted by bits[0..2ℓ] =
(c′.a0, . . . , c

′.aℓ−1, c
′.b0, . . . , c

′.bℓ−1), and then we per-
form NTT on the small polynomials to obtain Nbits[0..2ℓ],
where each Nbits[i] = NTT(bits[i]), and finally we compute(

2ℓ−1∑
i=0

Nbits[i] ◦ Z.ai,

2ℓ−1∑
i=0

Nbits[i] ◦ Z.bi

)
∈ RLWE

This operation is often called as external product.
The core operation that we prove in this article is

the heaviest bootstrapping procedure. We provide a brief
overview of the entire process and refer the reader to [35]
for detailed explanations.

Given two LWE ciphertexts ct0, ct1 encrypt two bits
with binary secret key s = (s0, ..., sn−1). We first add these
two ciphertexts into a new ciphertext ct = (a, b) ∈ Zn+1

q

by adding the components of each LWE ciphertext in Zq.
In the next step, the components of ct are exponentiated

by the polynomial Y = X2N/q. Specifically, we compute
Y −a0 , . . . , Y −an−1 , Y b. We assume that 2N is divisible by
q, which is a standard parameter choice in FHE schemes.
This process is referred to as the lift procedure.

Let {Zi}0≤i≤n−1 be the bootstrapping key, which are
RGSW ciphertexts encrypting si. Let v be a constant poly-
nomial used to facilitate the extraction of an LWE ciphertext;
its specific form is omitted here as it is not crucial to our
design. The accumulator, initialized as acc[0] = v · Y b is
iteratively updated as acc[i+1] = acc[i]+Y −ai⊗acc[i]⋄Zi

for 0 ≤ i ≤ n− 1. At the end of this process, the result is
an RLWE ciphertext encrypting v · Y b−⟨a,s⟩.

Let (a′, b′) be the resulting RLWE ciphertext. The coef-
ficient vector of a′ and the constant term of b′ are extracted
as an LWE ciphertext defined over ZQ. To convert this into
a ciphertext defined over Zq, a modulus switching proce-
dure is applied to each component. The modulus switching
function is defined as: x ∈ ZQ → ⌊x·qQ ⌉ mod q.

We note a minor modification from the standard boot-
strapping procedure. In our design, we set n = N and define
the secret key z in the bootstrapping key as a reordered ver-
sion of the vector s. This avoids the need for a key switching
step, simplifying the overall process. It is straightforward to
adapt this design to the standard bootstrapping procedure.

2.3. Useful PIOP

Sumcheck Protocol. We describe a seminal interactive
proof used in our work, known as the sumcheck protocol,

1When we say Z ∈ RGSW, we intend to represent an RGSW
ciphertext in its NTT form rather than in its coefficient form.



proposed by Lund et al.[36]. Suppose there is an µ-variate
low-degree polynomial G : Fµ → F where the degree of
each variable in G is at most ℓ. A verifier V , wishes to
verify the following claim by an untrusted prover P:

T =
∑

x∈{0,1}µ

G(x1, x2, . . . , xµ)

In the sum-check protocol, V interacts with P over µ
rounds. At the end of this interaction, V outputs b ∈ {0, 1}.
The principal cost to V is the evaluation of G at a random
point in its domain r ∈ Fµ. Throughout this paper, we
consider the protocol run over the extension field EF, where
verifier V evaluates G at a random point r ∈ EFµ. We treat
the sumcheck protocol as a mechanism to reduce the claim∑

x∈{0,1}µ G ?
= T to the claim G(r) ?

= e and denote this
reduction protocol as e ← ⟨P(G),V(r)⟩ (µ, ℓ, T ), with the
following properties:
• Completeness. If T =

∑
x∈{0,1}µ G(x), then

for a correct P and for all r ∈ {0, 1}∗,
Pr [⟨P(G),V(r)⟩ (µ, ℓ, T ) = 1] = 1.

• Soundness. If T ̸=
∑

x∈{0,1}µ G(x), then for any P∗

and for all r ∈ {0, 1}∗, Pr [⟨P(G),V(r)⟩ (µ, ℓ, T ) = 1] ≤
ℓ · µ/|EF|.

• Succinctness. The proof size is O(µ · ℓ) elements of EF.
The prover time is linear to the time required to evaluate

the sum, while the verifier time is O(µ), plus the cost of
evaluating G at a random point, which corresponds to the
query complexity in the polynomial IOP (PIOP).
Hadamard Protocol. We consider a Hadamard protocol as
a PIOP for the index relation R◦, which proves a sum of the
Hadamard products. The detailed construction can be easily
achieved using the sumcheck protocol, shown in Construc-
tion 1,ensuring perfect completeness and a soundness error
of O(logN)

|EF| with O(logN) round complexity. The prover
can be implemented in O(MN) field operations, while the
verifier can be implemented in O(logN +M).

Definition 1. The indexed Hadamard relation R◦ is the set
of tuples (i,x,w) =

(⊥, (F,EF, N,M), ({a0, . . . ,aM−1}, {b0, . . . , bM−1}, c))

where ∀i,ai, bi, c ∈ FN and
∑M−1

i=0 ai ◦ bi = c.

Remark 1. The witness c can be 0.

Construction 1. We construct a PIOP for the indexed
relation R◦. The prover P takes as input an index
i =⊥, instance x = (F,EF, N,M), and witness w =
({a0, . . . ,aM−1}, {b0, . . . , bM−1}, c).
• The verifier V samples a challenge u

$← EFlogN and
sends it to P .

• Let G(x) = ẽq(x, u) · (
∑M−1

i=0 ai(x) · bi(x)− c(x)), T =
0, µ = logN, ℓ = 3.

• The prover P and the verifier V run the sumcheck protocol
e← ⟨P(G),V(r)⟩ (µ, ℓ, T )

• The verifier V makes the evaluation queries for i ∈ [M ]:
eai := ai(r), ebi := bi(r)

and ec := c(r).

check that ẽq (x, ri) · (
∑M−1

i=0 eai · ebi − ec) = e.

Lookups Based on the Logarithmic Derivative. Lookup
arguments are used to prove that a sequence of values be-
longs to a table, which is often prescribed. Haböck proposed
a lookup argument based on the logarithmic derivative in
[37]. Let N be a power-of-two less than the characteristic
of field F, i.e. N < Q. Given two vectors of field elements
a ∈ FN and t ∈ FM , lookup problem can be written as
{ai : i = 1, . . . , N} ⊆ {tj : j = 1, . . . ,M} as sets,
with multiples of values removed. For simplicity, we assume
M = N . According to the Lemma 5 of [37], we have
{ai} ⊆ {ti} as sets if and only if there exists a vector
m ∈ FN such that

N∑
i=1

1

X + ai
=

N∑
i=1

mi

X + ti

in the function field F[X]. Let mp(a, z) denote the multi-
plicity of an element z in the vector a, with a similar nota-
tion for t. The vector m can be computed as mi =

mp(a,ti)
mp(t,ti)

in probablisitic polynomial time.
We consider the batch lookup arguments proposed in

[37]. Let f0, . . . ,fM−1 and t be multivariate functions de-
fined over the Boolean hypercube, i.e., {0, 1}logN → F. By
Lemma 5 in [37], we have

⋃L−1
i=0 {fi(x)} ⊆ {t(x)} as sets

if and only if there exists a function m : {0, 1}logN → F
such that∑

x∈{0,1}log N

M−1∑
i=0

1

X + fi(x)
=

∑
x∈{0,1}log N

m(x)

X + t(x)

in the function field F[X]. For each x ∈ {0, 1}logN ,
the function m(x) can be computed as m(x) =∑M−1

i=0 mp(fi,t(x))

mp(t,t(x)) .
Hence, we have a PIOP described in Construction 2 for

the following relation Rlookup that has the soundness error
O
(

MN
|EF|

)
. The prover can be implemented in O(MN) and

the verifier time is O(logN +M).

Definition 2. The batch lookups relation Rlookup is the set
of tuples

(i,x,w) = (⊥, (F,EF, N, t,M), (f0, . . . ,fM−1))

where t,f : {0, 1}logN → F and
⋃M−1

i=0 {fi(x)} ⊆ {t(x)}
as sets.

Construction 2. We construct a PIOP for the indexed
relation Rlookup. The prover P takes as input an index
i =⊥, instance x = (F,EF, N, t,M), and witness w =
(f0, . . . ,fM−1).
• P computes the multiplicity polynomial m(x) =∑M−1

i=0 mp(fi,)

mp(t,t(x)) and sends the oracle message to the verifier.

• The verifier V samples a challenge ρ $← EF uniformly at
random and sends it to the prover P .

• The prover P compute hi(x) = mi(x)
φi(x)

where mi(x) =

−1 and φi(x) = ρ + fi(x) for i ∈ [M ] and mM (x) =



m(x) and φL(x) = ρ+t(x). The prover sends the oracle
messages h0, . . . ,hM to the verifier.

• Let G =
∑M

i=0 hi(x), T = 0, µ = logN, ℓ = 1.
• The prover P and the verifier V run the sumcheck protocol
e← ⟨P(G),V(r)⟩ (µ, ℓ, T ) where r ∈ EFµ.

• The verifier V makes the evaluation query for i ∈ [L+1]:
ehi = hi(r)

check that
∑M

i=0 e
hi = e.

• For i ∈ [M + 1], the prover and the verifier run the
Hadamard protocol in parallel with
– (i,x,w) = (⊥, (F,EF, N, 1), (hi,φi,mi))

For convenience, we also extend it to a PIOP for the
indexed lookup relation Ridx−lookup, which adds a column
specifying the table index.

Definition 3. The indexed lookups relation Ridx−lookup is
the set of tuples

(i,x,w) = (⊥, (F,EF, N, t), (idx,f))

where t,f ∈ FN , idx ∈ ZN
N and {(idx(x),f(x))} ⊆

{(to-field(x), t(x))} as sets.

3. PIOP for Building Blocks

Before introducing the PIOP for FHE operations, we
first propose our PIOP for key atomic operations.

3.1. Sparse Matrix Evaluation

[37][28] proposed a standard commitment scheme for
sparse multilinear polynomials with optimal prover costs,
where the sparse matrices are represented by dense poly-
nomials. The evaluation proof in this case is essentially a
specialized PIOP with dense polynomials committed. In this
section, we consider a specialized sparse N × M matrix
C, where each column contains exactly one non-zero entry.
Building on Claim 1 in [37] for the evaluation of general
sparse matrices, we define the evaluation for this specialized
sparse matrix in Lemma 1, and propose a PIOP for the
relation Rsparse in Definition 4, outlined in Construction 3.

Lemma 1. Given a logN+logM -variate multilinear poly-
nomial C̃ defined over a sparse N ×M matrix C, where
each column has only one non-zero value, there exist two
(logM)-variate multilinear polynomials row, val such that
the following holds for all rx ∈ FlogN , ry ∈ FlogM .

C̃(rx, ry) =∑
k∈{0,1}log M

val(k) · ẽq (to-bits(row(k)), rx) · ẽq (k, ry)

Proof. The proof follows the Claim 1 in [37] with col(k) =
to-field(k) for all k ∈ {0, 1}logM .

Definition 4. The evaluation relation Rsparse is the set of
tuples

(i,x,w) = (⊥, (F,EF, N,M, e, rx, ry), (val, row))

where rx ∈ EFlogN , ry ∈ EFlogM , e ∈ EF, and
val ∈ FM , row ∈ ZM

M , and
∑

k∈{0,1}log M val(k) ·
ẽq (to-bits(row(k)), rx) · ẽq (k, ry) = e.

Theorem 1. For every finite field F and extension field
EF, and positive integers N,M , there is a PIOP for the
indexed relation Rsparse that supports instances over F,
with perfect completeness and soundness error O(M)

|EF| with
O(logM) round complexity. The prover can be implemented
in O(M) extension field operations, and the verifier can be
implemented in O(logM).

We prove it with the following Construction 3.

Construction 3. We construct a PIOP for the indexed
relation Rsparse. The prover P takes as input an index
i =⊥, instance x = (F,EF, N,M, e, rx, ry), and witness
w = (val, col); the verifier V takes as input the index iand
the instance x.
• For k ∈ {0, 1}logM : the prover P computes Erx(k) =
ẽq (to-bits(row(k)), rx).

• Let G(k) = val(k) · Erx(k) · ẽq(k, ry), T = e, µ =
logM, ℓ = 3.

• The prover P and the verifier V run the sumcheck protocol
e← ⟨P(G),V(r)⟩ (µ, ℓ, T ) where r ∈ EFlogM .

• The verifier V makes the evaluation query for val, Erx:

eval := val(r), , eErx := Erx(r)
checks that eval · eErx · ẽq(r, ry) = e.

• Let t(x) = ẽq(x, rx) for x ∈ {0, 1}logN and idx(k) =
row(k) for k ∈ {0, 1}logM .

• The prover P and the verifier V check that Erx is
well-formed using indexed lookup with (i,x,w) = (⊥
, (F,EF, N, t), (idx, Erx))

Remark 2. Instead of using a standard memory-checking
technique [38] to prove Erx is well-formed as described in
[28][29], we use an indexed lookup protocol to prove the
values Erx , along with the index row, are prescribed in the
table t = ẽq(·, rx). This simplification is feasible because
the table size N is a small parameter in FHE.

3.2. NTT/INTT

In this section, we propose a specialized PIOP for the
NTT/INTT operation, where the evaluation vector is ar-
ranged in a bit-reversed order. Our protocol is inspired by
the approach in [30] to prove FFT. Additionally, we propose
an optimization for proving batched NTT operations, lever-
aging the linearity of the NTT operation. Specifically, this
optimization provides asymptotical improvements when the
coefficient vectors are sparse; it also concretely saves the
computational costs when the proof system operates in the
extension field EF, while the coefficient vectors are defined
over the base field F.

In our work, the NTT operation transforms the polyno-
mial’s coefficient vector c ∈ FN into an evaluation vector
a ∈ FN at X = ω2Y+1 for Y ∈ [N ] while the output vector
is arranged in a bit-reversed order, i.e. aR. Specifically, the
Y-th entry of aR represents the evaluation of X = ω2YR+1.



Hence, we can express the NTT operation as a matrix-vector
multiplication aR = FR · c, where FR is a Fourier matrix
defined by FR(Y,X ) = ω(2YR+1)·X . To prove this matrix-
vector multiplication, we first turn the equation of polyno-
mial evaluation to the form of multivariate polynomials:

ãR(y) =
∑

x∈{0,1}log N

c̃(x)F̃R(y, x) (1)

for y ∈ {0, 1}logN . To run the sumcheck protocol on
equation 1, we use the algorithm in [33] and [12]. Given
the evaluation ãR(u) at a random point u ∈ EFlogN , [33]
provides a dynamic programming algorithm for the prover
to initialize the values of c̃(x) on all x ∈ {0, 1}logN

in linear time, where the initialization is referred as the
bookkeeping table in [12]. Prior work [30] presents a linear-
time algorithm to compute F̃ (u, x) for proving FFT, where
the Fourier matrix is defined by F (Y,X ) = ωYX for
Y ∈ [M ],X ∈ [N ], so this approach cannot be directly
applied to compute F̃R(u, x) when proving fast NTT.

Instead, we adopt a similar approach by decomposing
the exponents of the roots of unity ω. The term ω2log N−i

=

ω
2N

2i+1 corresponds to the 2i+1-th roots of unity, denoted
as ω2i+1 , where ωX

i+1 takes on 2i+1 distinct values for all
X ∈ [N ]. We write F̃R(u, x) as follows:

F̃R(u, x) =
∑

y∈{0,1}log N

ẽq (u, y) F̃R(y, x)

=
∑

y∈{0,1}log N

ẽq (u, y)ω(2YR+1)·X

= ωX ·
∑

y∈{0,1}log N

ẽq (u, y)ωX·2YR

(2)

= ωX ·
∑

y∈{0,1}log N

ẽq (u, y)ωX·(
∑log N−1

i=0 2log N−i·yi)

= ωX ·
∑

y∈{0,1}log N

logN−1∏
j=0

((1− uj)(1− yj) + ujyj)

·
logN−1∏

i=0

(
ω2log N−i

)X·yi

= ωX ·
∑

y∈{0,1}log N

logN−1∏
i=0

((1− ui)(1− yi) + uiyi) · ωX·yi

2i+1

= ωX ·
logN−1∏

i=0

∑
yi∈{0,1}

((1− ui)(1− yi) + uiyi) · ωX·yi

2i+1

= ωX ·
logN−1∏

i=0

(1− ui + ui · ωX
2i+1) (3)

= ω
∑log N−1

j=0 2j ·xj ·
logN−1∏

i=0

(1− ui + ui · ωX
2i+1)

=

logN−1∏
i=0

(1− ui + ui · ωX
2i+1) · ω2i·xi (4)

Here, we decompose the bits of YR in Equation 2 and
decompose the bits of X in Equation 3. Note that Equation
4 includes an extra term, ω2i·xi , in the grand product com-
pared to Equation (8) in [30], due to the different structure
of the Fourier matrix used for proving NTT.

Using the property that ω2i+1 has 2i + 1 distinct val-
ues, we can divide the computation into logN rounds via
dynamic programming, as described in the Algorithm 1.
In particular, Step 4 of Algorithm 1 computes the most
significant bit (MSB) of j, which indicates xi for i-th round,
with i updating from 0 to logN − 1.

Remark 3. An alternative method for the prover to compute
F̃R(u, x) = ωX ·

∏logN−1
i=0 (1 − ui + ui · ωX

2i+1) is to
multiply by ωX after performing the dynamic algorithm.
However, to reduce the verifier time through delegating the
computation of F̃ (u, v), the delegation protocol described
in the following paragraph has to follow Algorithm 1.

Algorithm 1 AF R ← Initialize(ω, µ,N)

Input: The degree N and the 2N -th root of unity ω.
Input: The random point u ∈ EFlogN .
Output: AF R storing F̃R(u, x) for all x ∈ {0, 1}logN

1: AF R [0] = 1
2: for i = 0, . . . , logN − 1 do
3: for j = 2i+1 − 1, . . . , 0 do
4: b = (j >> i)&1 // the MSB of j
5: AF R [j] = AF R [j%2i] · ((1−ui)+ui ·ωj

2i+1) ·ω2i·b

6: return AF R

Reducing the verifier time. At the last round of the
sumcheck protocol, the verifier needs to evaluate F̃R(u, ·)
at a random point v $← EFlogN . While the algorithm for
computing F̃R(u, v) differs from [30], we adopt a similar
delegation protocol to reduce the verifier time to O(log2N).

The evaluation for F̃R(u, v) can be delegated to the
prover through a sequence of sumcheck protocol, following
the same Algorithm 1 to compute AF R . We abuse the
notation and use A(i)

F R : {0, 1}i+1 → EF as in [30] to denote
the array AF R in the i-th round for i = 0, . . . , logN − 1.
Then F̃R(u, v) = Ã

(logN−1)

F R (v), and we can write A(i)

F R(·)
as an equation of A(i−1)

F R (·):

A
(i)

F R(x, b) = A
(i−1)

F R (x) ((1− ui) + ui · ωi+1(x, b)) · ω2i·b

for all x ∈ {0, 1}i, b ∈ {0, 1}, where ωi+1(x, b) = ωj
2i+1

with j = X + 2i · b. Note that the right-hand side of the
above equation is not multilinear in either x or b, so we
introduce a (i + 1)-variate identity function to obtain the
following multilinear function

Ã
(i)

F R(x, b)

=
∑

z∈{0,1}i

∑
s∈{0,1}

ẽq ((x, b), (z, s)) · Ã(i−1)

F R (z)

· ((1− ui) + ui · ω̃i+1(z, s)) · ω2i·s



that holds for all x ∈ EFi, b ∈ EF.
Starting from F̃R(u, v) = Ã

(logN−1)

F R (v), the verifier and
the prover can reduce its correctness to the evaluation of
Ã

(i)

F R(·) at a random point through a sumcheck protocol for
i = logN − 1, . . . , 0. In the last round as defined in the
Step 1 of Algorithm 1, Ã(0)

F R(·) is simply the constant 1.
At the end of each sumcheck protocol, the verifier has to
evaluate ẽq(·) and ω̃i+1 at a random point to obtain Ã(i−1)

F R

at the random point for the next sumcheck protocol. By
the closed-form definition of multilinear extension, we have
ω̃i+1(r) =

∑
x∈{0,1}i+1 ẽq (r, x)ω

j
2i+1 for j =

∑i+1
k=0 2

k·xk,
which equals to

∏i+1
k=0(1− rk + rk · ω2k

2i+1).
By delegating the computation of F̃R(u, v), the verifier

only needs to evaluate c̃(·) at the random point v. Conse-
quently, we view the entire PIOP (including the delegation
protocol) for proving NTT relation RNTT as a mechanism to
reduce a claim of the form

∑
x∈{0,1}log N c̃(x) · F̃R(u, x)

?
=

ãR(u) to a subclaim d
?
= c̃(v), where v $← EFlogN .

Definition 5. The NTT relation RNTT is the set of tuples

(i,x,w) = (⊥, (F,EF, FR, N, u, e), (c))

where u ∈ EFN , e ∈ EF, c ∈ EFN , and e =∑
x∈{0,1}log N c(x) · F̃R(u, x).

Theorem 2. For every finite field F and extension field EF,
and positive integers N , there is a PIOP for the indexed
relation RNTT that supports instances over EF, with perfect
completeness and soundness error O(logN)

|EF| with O(log2N)

round complexity. The prover can be implemented in O(N)
field operations, and the verifier can be implemented in
O(log2N).

Proof. Theorem 2 can be proven with construction that
consists of a sumcheck protocol (with the bookkeeping table
for F̃R(u, x) provided using Algorithm 1) and a delegation
protocol.

Batched NTT Operation. Consider batches of NTT in-
stances with coefficient vectors c0, . . . , cM−1 ∈ FN and
their evaluations ãR

0 (u), . . . , ã
R
M−1(u) ∈ EF at the same

random point u $← EFlogN . By the linearity of the NTT
operation, we can compute a randomized NTT instance with
a randomized coefficient vector c′ =

∑M−1
i=0 ρi · ci ∈ EF

and its evaluation e =
∑M−1

i=0 ρi · ãR
i (u) ∈ EF at the point

u, where ρ0, . . . , ρM−1
$← EF. The correctness follows

from the linearity of NTT operation that
∑M−1

i=0 ρi · ai
R =∑M−1

i=0 ρi ·FRc = FR
∑M−1

i=0 ρi ·ci = NTT(c′). Hence, the
prover time for proving batched NTT operations consists
of the computation of the randomized coefficient vector
and proving a single randomized NTT instance, where the
former dominates. This process leads to a concrete compu-
tational optimization for the prover, reducing O(MN) ex-
tension field operations to O(MN) multiplications between
the base field and the extension field.

Additionally, if the coefficient vectors are sparse with
only O(M) non-zero entries, the prover time can be reduced

to O(M + N). This optimization is used in our PIOP for
proving batched lift, which is described in Section 4.2.

3.3. Gadget Decomposition

In this section, we introduce a PIOP for the operation
Dec(a;B, ℓ) that decomposes a vector a ∈ FN into ℓ
gadgets a0, . . . ,aℓ−1 ∈ ZN

B such that a =
∑ℓ−1

i=0 B
i · ai

where ℓ = ⌈logB Q⌉. We utilize the PIOP for proving the
batched lookup relation Rlookup to check that the range
of decomposed gadgets is contained within the table t =
(0, . . . , B − 1).

Definition 6. The decomposition relation Rdec is the set of
tuples

(i,x,w) = (⊥, (F,EF, N,B, ℓ), (a, (a0, . . . ,aℓ−1)))

where ℓ = ⌈logB Q⌉, a ∈ FN , a0, . . . ,aℓ−1 ∈ ZN
B and

a =
∑ℓ−1

i=0 B
i · ai.

Theorem 3. For every finite field F and extension field EF,
and positive integers N,M , there is a PIOP for the indexed
relation Rdec that supports instances over F, with perfect
completeness and soundness error O(ℓN)

|EF| with O(logN)

round complexity. The prover can be implemented in O(ℓN)
field operations, and the verifier can be implemented in
O(logN + ℓ).

We prove it with the following Construction 5.

Construction 4. We construct a PIOP for the indexed
relation Rdec. The prover P takes as input an index
i =⊥, instance x = (F,EF, N,B, ℓ), and witness w =
(a, (a0, . . . ,aℓ−1)).
• The prover P and verifier V sets t = (0, . . . , B −
1, 0, . . . , 0) ∈ FN and run the batched lookup protocol
with (i,x,w) = (⊥, (F,EF, N,N, t), (a0, . . . ,aℓ−1)).

• The verifier samples a random point on r $← EFlogN and
makes the queries for a, a0, . . . , aℓ−1.
ea = a(r), ea0 = a0(r), . . . , eaℓ−1 = aℓ−1(r)

check that
∑ℓ−1

i=0 B
i · eai = ea .

Extension to Range Check. In this paper, we generally use
the lookup protocol to check a ∈ [0, L) with a table t =
(0, . . . , L − 1) when L is relatively small. However, when
L = O(Q) is large, approaching the size of F, we instead
employ the method of gadget decomposition to check the
range relation Rrange in Definition 7, as the prover time of
lookup arguments increases linearly with the table size. If
the range size L is not an exact power of B, and the next
power of B greater than L is Bℓ, the prover can compute
the decomposed gadgets of a and a + (Bℓ − L) with two
invocations for proving Rdec, ensuring that the intersection
of the two proved ranges is [0, L). The PIOP construction
for Rrange is omitted here.

Definition 7. The range check relation Rrange is the set

(i,x,w) = (⊥, (F,EF, N,B, ℓ, L),a)
where Bℓ is the next exact power of B greater than or equal
to L and a ∈ ZN

L .



4. PIOP for FHE Operations

In this section, we introduce our PIOP for operations
defined in the FHE NAND circuit as described in Fig. 1.

4.1. LWE Addition

The core of proving LWE addition is simulating a
straightforward addition modulo q in our proof systems,
which uses modulus Q. Given a, b ∈ Zq, the result c = a+b
mod q holds if and only if there exists k ∈ {0, 1} such that
c ∈ Zq and a + b = k · q + c. To check that c is within
the correct range, we employ a lookup argument with the
table t = (0, . . . , q − 1). It is feasible in our design since
the parameter q, the modulus used in the LWE scheme, is
relatively small.

Definition 8. The LWE addition relation Radd is the set of
tuples

(i,x,w) = (⊥, (q,N,a, b), c)

where a, b, c ∈ ZN
q and a + b = c (mod q).

Theorem 4. For every finite field F and extension field EF,
and positive integers q,N , there is a PIOP for the indexed
relation Radd that supports instances over F, with perfect
completeness and soundness error O(N)

|EF| with O(logN)

round complexity. The prover can be implemented in O(N)
field operations, and the verifier can be implemented in
O(logN).

We prove it with the following Construction ??.

Construction 5. We construct a PIOP for the indexed
relation Rdec. The prover P takes as input an index
i =⊥, instance x = (F,EF, N,B, ℓ), and witness w =
(a, (a0, . . . ,aℓ−1)).
• The prover P and verifier V sets t = (0, . . . , B −
1, 0, . . . , 0) ∈ FN and run the batched lookup protocol
with (i,x,w) = (⊥, (F,EF, N,N, t), (a0, . . . ,aℓ−1)).

• The verifier samples a random point on r $← EFlogN and
makes the queries for a, a0, . . . , aℓ−1.
ea = a(r), ea0 = a0(r), . . . , eaℓ−1 = aℓ−1(r)

check that
∑ℓ−1

i=0 B
i · eai = ea .

4.2. Batched Lift

In this section, we introduce PIOP for the lift operation
before the accumulator updating. This operation lifts a ring
element a ∈ Zq into the exponent of a polynomial Xb ∈ G
where G = {X, . . . ,X2N} is a cyclic subgroup of RQ =
F/(XN + 1) and b = a · 2Nq ∈ Z2N .

Firstly, we need to perform an additional modular oper-
ation on Xb with the modulus XN+1 when b ≥ N because
the polynomial in RQ is uniquely represented with its co-
efficient vector c = (c0, . . . , cN−1) ∈ FN . Given b ∈ Z2N ,
the modular result is a monomial (1−2k)·Xr ∈ RQ, where
b = k ·N + r with k ∈ {0, 1} and r ∈ [N ]. Specifically, the
monomial is Xr if b < N and −Xr otherwise. We refer

to this monomial as the lifted polynomial, which can be
represented by a coefficient vector c ∈ FN with only one
non-zero value 1− 2k, located at position r.

When we consider the batched lift operation for an
input vector b = (b0, . . . , bM−1) ∈ ZM

2N , all the lifted
polynomials constitute a sparse coefficient matrix CN×M =
(c0, . . . , cM−1) with each column containing exactly one
non-zero element 1 − 2ki, located at position ri, where
bi = ki ·N + ri with ki ∈ {0, 1} and ri ∈ [N ].

A key observation is that all lifted polynomials are
subsequently multiplied by another polynomial in the ac-
cumulator updating. Each multiplication involves an NTT
operation on the lifted polynomial to obtain its evaluation
vector, denoted by di = NTT(ci) for i ∈ [M ], which can
be proved by the PIOP for the NTT relation RNTT, re-
turning subclaims for the evaluations of the coefficient vec-
tors c̃0(u), . . . , c̃M−1(u) at the point u $← EFlogN . These
subclaims can be further reduced to the evaluation on the
sparse coefficient matrix C̃(u, v) by the random linear com-
bination, where v $← EFlogM . Let d̃(y) be the multilinear
extension defined by the vector d = (c̃0(u), . . . , c̃M−1(u)),
it is easy to verify the following:

d̃(v) =
∑

y∈{0,1}log M

ẽq (y, v) c̃Y(u)

=
∑

y∈{0,1}log M

ẽq (y, v)
∑

x∈{0,1}log N

ẽq (x, u) cY(x)

=
∑

y∈{0,1}log M

∑
x∈{0,1}log N

ẽq (y, v) ẽq (x, u)C(X ,Y)

= C̃(u, v) (5)

Hence, instead of explicitly proving the lift operation
from the input vector b ∈ ZM

2N to the coefficient matrix
CN×M , we directly prove the following M NTT oper-
ations, returning a batch of claims to the evaluations of
c̃0(u), . . . , c̃M−1(u). By random linear combination, these
claims are reduced to the evaluation on the sparse matrix
C̃(u, v), which can be eventually reduced to the evaluation
of row = r and val = 1 − 2k as discussed in Section 3.1,
where k and r are both derived from the input vector b.

Additionally, by applying the method proposed in Sec-
tion 3.2 for proving batched NTT, the prover time is reduced
to O(M +N) due to the sparsity of the coefficient vectors.

Definition 9. The batched lift relation Rlift is the set of
tuples

(i,x,w) = (⊥, (F,EF,RQ, N,M), (s,a0, . . . ,aM−1)))

where s ∈ ZM
2N , and for each i ∈ [M ], we have ai =

NTT(ci) where ci is the coefficient vector of the polynomial
Xsi mod XN + 1 in RQ.

Theorem 5. For every finite field F, extension field EF and
the quotient ring RQ, and positive integers N,M , there is a
PIOP for the indexed relation Rlift that supports instances
over F, with perfect completeness and soundness error
O
(

logN+M
|EF|

)
with O(logN+logM) round complexity. The



prover can be implemented in O(M +N) field operations,
and the verifier can be implemented in O(log2N +M).

We prove it with the following Construction 6.

Construction 6. We construct a PIOP for the indexed
relation Rlift. The prover P takes as input an index
i =⊥, instance x = (F,EF,RQ, N,M), and witness
w = (s,a0, . . . ,aM−1).
• P computes k and r such that s = k · N + r where
k ∈ {0, 1} and r ∈ ZN

N and sends them to the verifier.
• The prover P and the verifier V run the Hadamard proto-

col with (i,x,w) = (⊥, (F,EF, N, 1), ({k}, {1−k}, 0)).
• Define table t = (0, . . . , N − 1), and P and V run the

lookup protocol with (i,x,w) = (⊥, (F,EF, N, t, 1), r)
• The verifier samples a random point on τ $← EFlogN and

makes the queries for a0, . . . , aM−1:
e0 = a0(τ), . . . , eM−1 = aM−1(τ)

• P computes the c =
∑M−1

i=0 ρi ·ci, where ci = (1−2ki) ·
Xri ∈ RQ with only one non-zero entrie.
// Note that this computation can be done in O(M). The
evaluation on c̃ can queried via c̃0, . . . , c̃M−1.

• The prover P and the verifier V run the NTT protocol
with (i,x,w) = (⊥, (F,EF, FR, u,

∑M−1
i=0 ρi · ei), (c))

and return the subclaim E
?
= c̃(u) at a random point u.

• The verifier V samples a challenge ρ $← EFM uniformly
at random and sends it to the prover P .

• For each i ∈ [M ], the prover computes di = c̃i(u) and
sends d = (d0, . . . , dM−1) ∈ EFM to the verifier.

• The verifier first checks E =
∑M−1

i=0 ρi · di.
// Then, the prover and the verifier needs to check di =
c̃i(u) for every i ∈ [M ]

• The verifier V samples a challenge v
$← EFlogM uni-

formly and sends it to the prover P .
• Let ψ =

∑
x∈{0,1}log M ẽq (v, x) · d(x) and val = 1− 2k

be an oracle that can be queried via k.
• The prover P and the verifier V run the sparse

matrix evaluation protocol with (i,x,w) = (⊥
, (F,EF, N,M,ψ, u, v), (val, r)).

• The verifier V makes the evaluation query for a,k, r:
ea := a(τ), ek := k(τ), er := r(τ)

check that ea = ek ·N + er .

4.3. Accumulator Updating

In this section, we propose a PIOP for accumulator
updating:

acc′ = acc+ d ⊗ acc ⋄ Z,
which updates the accumulator state from acc to acc′. Here
acc ∈ RLWE (and similarly for acc′) consists of two
vectors acc.a and acc.b in FN . Each update consumes a
vector d ∈ FN and Z ∈ RGSW, which contains 4ℓ vectors
Z.a0, . . . ,Z.a2ℓ−1,Z.b0, . . . ,Z.b2ℓ−1 ∈ FN .

As defined in Section 2.2, the operation ⊗ takes as
input a vector d ∈ FN and (acc.a, acc.b) ∈ RLWE, and
computes the intermedia result:

Imult = (INTT(d ◦ acc.a), INTT(d ◦ acc.b)),

where Imult ∈ RLWE. Thus, each ⊗ operation consists of
two Hardmard products and 2 INTT operations.

Next, the operation ⋄ takes Imult as the
input and performs two gadget decomposition
Dec(Imult.a;B, ℓ) and Dec(Imult.b;B, ℓ), resulting
2ℓ gadgets. We flatten these decomposed gadgets into
bits[0..2ℓ] = (Dec(Imult.a;B, ℓ),Dec(Imult.b;B, ℓ)), and
compute prod =(

2ℓ−1∑
i=0

NTT(bits[i]) ◦ Z.ai,

2ℓ−1∑
i=0

NTT(bits[i]) ◦ Z.bi

)
where prod ∈ RLWE. Hence, each ⋄ operation consists of
2ℓ NTT operations and two sums of Hadamard products.

To put it all together, each update involves 2ℓ + 2
NTT/INTT operations, two gadget decompositions, and four
(sums of) Hadamard products. The PIOP for proving the
accumulator update relation Racc, defined as follows, can
be easily derived from the aforementioned PIOPs.

Definition 10. The accumulator updating relation Racc is
the set of tuples

(i,x,w) = (Z, (F,EF, FR, N,B, ℓ), (acc,d, acc′))

where ℓ = ⌈logB Q⌉, Z ∈ RGSW, acc, acc′ ∈ RLWE,
d ∈ FN , and acc′ = acc+ d ⊗ acc ⋄ Z.

Theorem 6. For every finite field F, extension field EF, and
positive integers N,B, ℓ, there is a PIOP for the indexed
relation Racc that supports instances over F, with perfect
completeness and soundness error O

(
ℓN
|EF|

)
with O(log2N)

round complexity. The prover can be implemented in O(ℓN)
field operations, and the verifier can be implemented in
O(log2N + ℓ).

We prove it with the following Construction 7

Construction 7. We construct a PIOP for the accumulator
update. The prover P takes as input an index i = Z, instance
x = (F,EF, FR, N,B, ℓ), and witness w = (acc,d, acc′).
• P computes the following traces:

– mult = (d ◦ acc.a,d ◦ acc.b) ∈ RLWE
– Imult = (INTT(mult.a), INTT(mult.b)) ∈ RLWE
– bits[0..ℓ] = Dec(Imult.a;B, ℓ)
– bits[ℓ..2ℓ] = Dec(Imult.b;B, ℓ)
– Nbits[i] = NTT(bits[i]) for i ∈ [2ℓ]

– prod =
(∑2ℓ−1

i=0 Nbits[i] ◦ Z.ai,
∑2ℓ−1

i=0 Nbits[i] ◦ Z.bi
)

• P and V run the Hadamard protocol with (i,x,w) =

– (⊥, (F,EF, N, 1), (d, acc.a,mult.a))
– (⊥, (F,EF, N, 1), (d, acc.b,mult.b))
– (⊥, (F,EF, N, 2ℓ), (Nbits[0..2ℓ],Z.a⃗, prod.a))
– (⊥, (F,EF, N, 2ℓ), (Nbits[0..2ℓ],Z.b⃗, prod.b))

• P and V run the gadget decomposition protocol with
– (i,x,w) = (⊥, (F,EF, N,B, ℓ), (Imult.a, bits[0..ℓ]))
– (i,x,w) = (⊥, (F,EF, N,B, ℓ), (Imult.b, bits[ℓ..2ℓ]))

• V samples a random point r ∈ FlogN and make queries
for emult.a = mult.a(r), emult.b = mult.b(r), and
ei = Nbits[i](r) for each i ∈ [2ℓ] and also check that



eacc
′.a = eacc.a + eprod.a , eacc

′.b = eacc.b + eprod.b with
corresponding queries.

• The prover and the verifier run the NTT protocol with
– (i,x,w) = (⊥, (F,EF, FR, emult.a), (Imult.a))
– (i,x,w) = (⊥, (F,EF, FR, emult.b), (Imult.b))
– (i,x,w) = (⊥, (F,EF, FR, ei), (bits[i])) for i ∈ [2ℓ]

4.4. Modulus Switching

The modulus switching maps a field element a ∈ F
with modulus Q to a ring element b ∈ Zq with modulus
q. Specifically, the modulus switching function is defined as
follows:

b = ⌊a · q
Q
⌉ (mod q)

which rounds the fraction a·q
Q to the nearest integer, followed

by a modular operation with modulus q. Note that ⌊a·qQ ⌉ may
wrap around the modulus q, resulting in b = 0.

In our work, we consider modulus switching from Q to
q under the assumption2 of 2q|Q − 1. Define k = Q−1

2q ,
which gives the equality Q− 1 = 2kq.

A key observation is that the modulus switching with
such equality can be considered as a structured mapping, as
illustrated in Fig. 3. This mapping takes a sequential range
in F and maps it to the same element in Zq.

Figure 3: Assuming 2q|Q − 1 with k = Q−1
2q , the modulus

switching maps a ∈ [0, k]∪ [Q− k,Q) to 0, and a ∈ [(2b−
1) ·k+1, (2b+1) ·k] for each b ∈ {1, . . . , q−1} to b ∈ Zq.

To handle the special range [0, k] ∪ [Q − k,Q) shown
in Fig. 3, we express it as k ∪ [(2q − 1) · k + 1, (2q +
1) · k] (mod Q) based on the equality Q − 1 = 2kq. By
introducing an additional witness b′ ∈ {1, . . . , q} such that
b ≡ b′ mod q, we can prove the modulus switching relation
Rswitch (as defined in Definition 11) based on the dichotomy
presented in Theorem 7.

Theorem 7. Let q be a power of two, and let Q be a prime
such that 2q|Q− 1. Define k = Q−1

2q , so that Q = 2kq+ 1.
For any a ∈ FQ and b ∈ Zq, we have b = ⌊a·qQ ⌉ if and only if
either a = k and b = 0, or there exists b′ ∈ {1, . . . , q} such
that b′ ≡ b mod q and a ∈ [(2b′−1)·k+1, (2b′+1)·k] ∈ F.

Proof. First, it is trivial to observe that a = k /∈ [(2b′− 1) ·
k + 1, (2b′ + 1) · k] for every b′ ∈ {1, . . . , q}. In this case,
if a = k, we have ⌊k·qQ ⌉ = 0 since Q− 1 = 2kq.

2This assumption is easily satisfied in the FHEW/TFHE schemes,
which requires 2N |Q − 1 and q|2N . The prime Q, with length ℓ, is
sampled as Q = 2ℓ − i · 2N + 1 for some integer i, implying q|Q − 1,
assuming q is a power of two in our work.

Now, consider a ∈ F\{k}, we can rewrite the equality
kq = 1

2 (Q−1). For any a ∈ [(2b′−1)·k+1, (2b′+1)·k] ⊆ F,
where b′ ∈ {1, . . . , q}, the lower bound is given by:

a·q ≥ ((2b′−1)·k+1)·q = (2b′−1)·Q− 1

2
+q > b′Q− 1

2
Q,

where the last inequality holds because 2q+1−2b′ > 0 for
any b′ ∈ {1, . . . , q}.

Next, we compute the upper bound, which we handle in
two cases:
Case 1: For any a ∈ [(2b′ − 1) · k + 1, (2b′ + 1) · k] ⊆ F
where b′ = b ∈ {1, . . . , q − 1}, we have

a · q ≤ (2b′ + 1) · kq = (b′ +
1

2
) · (Q− 1) < b′Q+

1

2
Q

Thus, we conclude that ⌊a·qQ ⌉ = b′ = b.
Case 2: For any a ∈ [0, k)∪ [Q−k,Q), which corresponds
to a ∈ [(2b′− 1) · k+1, (2b′ +1) · k] (mod Q) with b′ = q
and b = 0, we consider the following two subcases:

1. If a ∈ [0, k), we have a · q < kq = 1
2 (Q− 1) < 1

2Q.
2. If a ∈ [Q− k,Q), we have a · q < q ·Q.

Combining these two subcases, we conclude that ⌊a·qQ ⌉ =
0 = b mod q.

Finally, we conclude that ⌊a·qQ ⌉ = b. The converse
direction can be proven similarly, and we omit the details
here.

Remark 4. Lemma 2 in Appendix A.1 extends to modulus
switching from Q to q with q|Q − 1, by replacing the
rounding operation with the floor operation, i.e. ⌊a·qQ ⌋ ∈ Zq.

Hence, the relation between a ∈ FQ and b ∈ Zq defined
by modulus switching operation is reduced to a dichotomy,
where each case can be expressed as an equality. If the
first case holds, i.e., a = k and b = 0, we use a random
linear combination to prove that p = λ1 · (a − k) + λ2 ·
b = 0, where λ1

$← EF and λ2
$← EF. Otherwise, we

prove that c = a − (2b′ − 1) · k − 1 ∈ F lies within the
range [0, 2k) using the range check protocol derived from
gadget decomposition method in Section 3.3. Combining the
two equalities with an additional witness w ∈ {0, 1}, which
indicates the dichotomy, we obtain the following equality:

w · p+ (1− w) · (a− (2b′ − 1) · k − 1− c)

where the witness w = 1(a = k) can be easily computed.
Based on this idea, we propose a PIOP for the modu-
lus switching relation Rswitch, which involves the sum of
Hadamard products and range checks.

Definition 11. The modulus switching relation Rswitch is the
set of tuples

(i,x,w) = (⊥, (F,EF, N,Q, q, k,B, ℓ, b),a)

where Q is the prime of F, 2q | Q − 1, k = Q−1
2q , ℓ =

⌈logB (2k)⌉, a ∈ FN , b ∈ ZN
q , and for each i ∈ [N ], we

have bi = ⌊ai·q
Q ⌉.

Theorem 8. For every finite field F, extension field EF, and
positive integers N, q, k,B, there is a PIOP for the indexed



relation Rswitch that supports instances over F, with perfect
completeness and soundness error O

(
ℓN
|EF|

)
with O(logN)

round complexity. The prover can be implemented in O(ℓN)
field operations, and the verifier can be implemented in
O(logN + ℓ).

We prove it with the following Construction 8.

Construction 8. We construct a PIOP for the indexed
relation Rswitch. The prover P takes as input an index
i =⊥, instance x = (F,EF, N,Q, q, k,B, ℓ, b), and witness
w = a.
• P computes ida, idb, b

′ and c for each x ∈ {0, 1}logN :
– ida(x) = 1(a(x) = k)
– idb(x) = 1(b(x) = 0)
– b′(x) = idb(x) · q + b(x)
– c(x) = (1− ida(x)) · (a(x)− (2b′(x)− 1) · k − 1)

and sends ida, idb and c to the verifier V , and b′ can be
queried via b and idb.

• P and V run the Hadamard protocol with
– (i,x,w) = (⊥, (F,EF, N, 1)({ida}, {1− ida},0))
– (i,x,w) = (⊥, (F,EF, N, 1)({idb}, {1− idb},0))

• P and V run the range check protocol on [0, 2k) with
(i,x,w) = (⊥, (F,EF, N,B, ℓ, 2k), c)

• The verifier V samples challenges λ1
$← EF and λ2

$← EF
uniformly at random and sends it to the prover P .

• Let idpoint = λ1 · (a − k) + λ2 · b be an oracle that can
be queried via a and b.

• P and V run the Hadamard protocol with (i,x,w) = (⊥
, (F,EF, N, 2), ({ida, 1− ida}, {idpoint, (a− (2b′−1) ·k−
1− c)},0)).

4.5. PIOP for FHE NAND

We propose our PIOP for the FHE NAND circuit de-
scribed in Algorithm 2, corresponding to the process illus-
trated in Fig. 1. By invoking the PIOPs for all the relations
defined for corresponding operations in the algorithm, we
can propose the PIOP for the NAND relation RNAND.

As shown in the Algorithm 2, it takes as input two LWE
ciphertexts, ct0, ct1, a constant vector v, and n RGSW ci-
phertexts Z0, . . . ,Zn−1, and produces as outputs the desired
LWE ciphertext. The computation trace contains n RGSW
values {acc[i] ∈ RGSW}, storing the accumulator states in
each update. The entire process involves one LWE addition,
n + 1 lift operations, a Hadamard product, n accumulator
updates, and n+1 modulus switching operations, along with
some linear operations.

Definition 12. The NAND relation RNAND is the set of
tuples (i,x,w) =

((v, {Zi}n−1
i=0 ), (F,EF, N, n, q, B, ct0, ct1, ct),⊥)

where ct0, ct1, ct ∈ LWE, v ∈ FN , Z0, . . . ,Zn−1 ∈ RGSW
and ct = HomNAND(ct0, ct1,v,Z0, . . . ,Zn−1).

Theorem 9. For every finite field F, extension field EF,
and positive integers N, q, k,B, there is a PIOP for the

Algorithm 2 HomNAND(ct0, ct1,v,Z0, . . . ,Zn−1)

Input: ct0, ct1 ∈ LWE
Input: v ∈ FN and Z0, . . . ,Zn−1 ∈ RGSW
Output: ct ∈ LWE

1: a = ct0 + ct1 (mod q) // LWE Addition
2: for i = 0 to n− 1 do
3: bi = q − ai
4: end for
5: bn = an
6: c = (b · 2Nq ) ∈ Zn+1

2N

7: for i = 0 to n do // Batched Lift
8: di = NTT(Xci mod XN + 1)
9: end for

10: acc[0] = (0,v ◦ dn) ∈ RLWE // Hadamard Product
11: for i = 0 to n− 1 do // Accumulator Update
12: acc[i+ 1] = acc[i] + (di − 1)⊗ acc[i] ⋄ Zi

13: end for
14: for i = 0 to n− 1 do // Modulus Switching
15: a′i = ⌊

(acc[n].ai)·q
Q ⌉

16: end for
17: b′ = ⌊ (acc[n].b0+8/Q)·q

Q ⌉
18: return ct = (a′ , b′)

indexed relation RNAND that supports instances over F, with
perfect completeness and soundness error O

(
ℓNn
|EF|

)
with

O(log n + log2N) round complexity where ℓ = ⌈logB Q⌉.
The prover can be implemented in O(ℓNn) field operations,
and the verifier can be implemented in O(log2N + ℓn).

Construction 9. We construct a PIOP for the RNAND. The
prover P takes as input an index i = (v, {Zi}n−1

i=0 ), instance
x = (F,EF, N, n, q, B, ct0, ct1, ct), and witness w =⊥.
• The prover invokes the Algorithm 2, storing the vec-

tors a, b, c, the NTT results of the lifted polynomi-
als d0, . . . ,dn, and the accumulator states, including
acc[0].b and {acc[i]}ni=1. These values (except for c) are
sent to the verifier as oracle messages, while c is an
oracle that can be queried via a.

• The prover and the verifier run the LWE-Addition protocol
with (i,x,w) = (⊥, (q, n+ 1, ct0, ct1),a).

• Let extb = (0, . . . , 0, 1) ∈ Zn+1
2 .

• The prover and the verifier run the Hadamard protocol
with (i,x,w) = (⊥, (F,EF, N, 2), ({q − a,a}, {1 −
extb, extb}, b)).

• The prover and the verifier run the Lift protocol with
(i,x,w) = (⊥, (F,EF,RQ, N, n+ 1), (c,d0, . . . ,dn))

• The prover and the verifier run the Hadamard protocol
with (i,x,w) = (⊥, (F,EF, N, 1), (v,dn, acc[0].b))

• For i ∈ [n]: the prover and the verifier run the accumu-
lator updating protocol with (i,x,w) =

– (Z, (F,EF, FR, N,B, ℓ), (acc[i],di − 1, acc[i+ 1]))

• Let extb′ = (1, 0, . . . , 0) ∈ ZN
2 .

• The prover and the verifier run the Hadamard pro-
tocol with (i,x,w) = (⊥, (F,EF, N, 1), ({acc[n].b +
Q/8}, {extb′}, bzero))



• Let cta = ct[0..n], ctb = (ct[n], 0, . . . , 0) ∈ Zn
q be derived

from the public input ct.
• The prover and the verifier run the Modulus Switching

protocol with
– (i,x,w) = (⊥, (F,EF, N,Q, q, k,B, ℓ, ct.a),a′)
– (i,x,w) = (⊥, (F,EF, N,Q, q, k,B, ℓ, ct.b), b′)

Complexity Analysis. The heaviest part of the algorithm
is the accumulator updating, which involves n · (2ℓ + 2)
NTT/INTT operations, 2n gadget decompositions with 2nℓ
decomposed gadgets, and 4n sums of Hadamard products.
The gadget decompositions are reduced to a batched lookup
protocol with 2nℓ vectors, each of size N , using the table
t = (0, . . . , B − 1). As a result, the soundness error and
the prover time are both bound by the term O(ℓNn). Since
all these PIOPs are powered by sumcheck protocols, all of
them, except for the delegation part of the NTT protocol,
can be combined into a single grand sumcheck protocol.
Consequently, the verifier time is determined by the rounds
complexity of the NTT protocol, plus the query complexity,
corresponding to the number of all multilinear extensions
(vectors). The asymptotic complexity of each PIOP is sum-
marized in Table 1.

5. HasteBoots: SNARGs for FHE NAND

Most modern SNARGs work by combining a type of
interactive protocol known as polynomial IOP (PIOP) with
a cryptographic primitive called a polynomial commitment
scheme (PCS). This combination yields a succinct interac-
tive argument, which can then be rendered non-interactive
via the Fiat-Shamir transformation[39], yielding a SNARG.
By using the compiler in [10] to combine the PIOP for FHE
NAND in Section 4.5 and the Brakedown PCS[16], we build
HasteBoots, a SNARG system that can efficiently generate
proofs of correct homomorphic NAND computation.

5.1. Definitions

In our setting, given the bootstrapping key {Zi}n−1
i=0

and the constant vector v, the prover and the verifier both
hold two public input LWE ciphertexts ct0, ct1 as well as
the output LWE ciphertext ct. It is important to note in
this setting, the FHE circuit to be evaluated under LWE
ciphertexts is public. As a result, the prover does not have
any private data to protect with, meaning the witness is
empty. Given this setup, a SNARG system is sufficient
without requiring knowledge extractors (i.e., SNARKs) nor
requiring zero-knowledge.

Formally speaking, let the index i contain the boot-
strapping key and the constant vector, and the public input
x = (ct0, ct1, ct) be the LWE ciphertexts. The witness
is empty, i.e. w =⊥. HasteBoots is a tuple of algorithms
(PPGen,KeyGen,Prove,Verify):
• pp ← PPGen(1λ): Given the security parameter λ, this

algorithm generates the public parameters pp.
• (ipk, ivk)← KeyGen(i, pp): Given the index i, this algo-

rithm generates an index proving key ipk and the index
verification key ivk.

• π ← Prove(x, ipk): Given the public input x and the
proving key ipk, the algoritm generates the proof π.

• {0, 1} ← Verify(x, ivk, π): Given the public input x and
the verifying key ivk, the algoritm verify the proof π.

We say that HasteBoots is a SNARG for the indexed
relation RNAND if the following properties hold.
• Completeness. For any (i,x,w) ∈ RNAND, pp ←

PPGen(1λ), (ipk, ivk) ← KeyGen(i, pp), and π ←
Prove(x, ipk), we have Pr [Verify(x, ivk, π) = 1] = 1.

• Soundness. For any PPT adversary A, the following
probability is negligible in λ:

Pr

 pp← PPGen
(
1λ
)

(ipk, ivp)← KeyGen(i)
(x, π∗)← A

(
1λ, pp, st

)
Verify(x, ivk, π∗, pp) = 1

 .
5.2. Polynomial Commitment Scheme

Polynomial commitment schemes (PCS) are crypto-
graphic protocols that allow the prover to commit to a
polynomial and later proves its evaluations on the points
queried by the verifier. PCS are widely used for realizing
oracles in PIOP. In this paper, we focus on the multilin-
ear polynomial commitment scheme. One of the prevailing
multilinear polynomial commitment schemes is Brakedown
PCS [16], featuring a linear time prover, which is both
theoretically optimal and practically efficient.

For the security definition and formal constructions, see
[16]. We describe our optimization of packing small polyno-
mials, as FHE operations involve many small polynomials.
Packing Small Polynomials. The standard polynomial com-
mitment schemes provide functionality to commit and query
a single polynomial. In HasteBoots, we often need to query
multiple polynomials at the same points. While pairing-
based polynomial commitment schemes have group ele-
ments as their commitments, whose homomorphism im-
proves the efficiency by batching the commitments and the
queries, the hash-based polynomial commitment schemes
such as Brakedown have hash value as their commitments,
do not have significant advantages by batching. However,
we observe that Brakedown PCS has poor performance for
small polynomials; thus, we consider packing multiple small
polynomials into a large one to improve efficiency.

Considering M small multilinear polynomials
c0(y), . . . , cM−1(y), where y ∈ {0, 1}logN , we can
pack these polynomials into a large multilinear polynomial
C(x, y) such that for each X ∈ [M ], it holds that
C(x, y) = cX (y) for every y ∈ {0, 1}logN . This large
polynomial can be viewed as an N × M matrix, where
the Y-th column corresponds to the small multilinear
polynomial cY . Consequently, the prover can only commit
a single (logN + logM)-variate multilinear polynomial
C(x, y). When the verifier wants to query the values of
c̃0(v), . . . , c̃M−1(v) at the same point v ∈ EFlogN , the
prover first computes di = c̃i(v) for each i ∈ [M ] and
sends these values to the verifier. These subclaims can be
reduced to the evaluations on the matrix C̃(u, v), where



u
$← EFlogM is sampled by the verifier. It is sufficient for

the verifier to query the evaluation C̃(u, v) at an extended
point. The proof of correctness follows the same idea in
Equation 5 when proving the reduction in the batched lift
protocol in Section 4.2. This packing introduces soundness
error of logM/|EF| by the Schwartz-Zipple Lemma.

6. Implementation and Evaluation

We implemented HasteBoots as a library in about 33K
lines of Rust code. Our library contains PIOPs for each
component of the FHE circuit, an optimized PCS based
on Brakedown [16], and a SNARG tailored for FHEW-like
schemes. We plan to open-source our library in the future.

Our goal is to determine whether HasteBoots can prove
FHE in practice, and thus answer the questions:
• Can HasteBoots generate proofs in seconds?
• What is the main bottleneck in the proof generation?
Experiment Setup. We select FHE parameters to optimize
compatibility with our SNARG construction, setting n =
1024, q = 1024, N = 1024, and Q = 231 − 227 + 1. Our
protocols operate in a 128-bit extension field of size QD

with D = 4 to ensure the soundness while the FHE instance
is defined over a base field of size Q.

Remark 5. The parameters in our work are not exactly the
same as those in [26], but they are quite similar, as many
parameters in FHE need to be tweaked and optimized to
ensure both correctness and security. In [26] they choose a
parameter setting with n = 728, with Q being a 64-bit prime
while their implementation also uses a 128-bit extension
field of size Q2. It is important to note that the circuit size
grows with n, which means that we are effectively proving
the correctness of a larger circuit compared to the one in
their implementation.

For gadget decomposition, we choose a gadget size of
B = 27, which balances efficiency with the computational
demands of FHE operations. Additionally, we implement the
lookup protocol using LogUp [37], setting a batch block size
of 3 to minimize overhead. This combination of parameters
ensures that our approach remains both efficient and aligned
with the underlying structure of FHE.

For Brakedown PCS [16], we set α = 0.1195, β =
0.0248, and r = 1.9. Here, α controls the size of the
subcode in each recursive call, β defines the code distance,
and r adjusts the code rate. Additionally, we set a recursion
stopping threshold of 10 to optimize performance.
Complexity Analysis. We summarize the complexity of
HasteBoots’s PIOP in Table 1. In our implementations,
M1 = 4L1n + 2n = 22528, M2 = 2L1n = 10240,
M3 = n + 1 = 1025, M4 = n + 1 = 1025 and there will
be approximately n(2L1+ 2) = 12288 NTT instances. The
complexity of the PCS can be found in [16], which results
in O(N) proving time, and O(

√
N) verification time and

proof size, where N is the size of the polynomial.
End-to-End Performance. We first test the end-to-end
performance of HasteBoots on an Apple M1, measuring
the time spent on each component as detailed in Table 2.

Note that we measure both PIOP and PCS time for each
component, as their oracles are queried at different points
and the opening proofs cannot be batched or packed. As
shown, bootstrapping is the most time-consuming part of
the entire process and remains the core challenge in the
field. Within bootstrapping, accumulator updating accounts
for over 90% of the time due to its complex operations,
including NTT, gadget decomposition, and external product
computations. Overall, HasteBoots achieves efficient prov-
ing times of approximately 7.6 seconds and verification
times around 330 ms, with a proof size of approximately
156 MB. The verification time and proof size are mainly
impacted by the Brakedown-based PCS, which, while fast
in proof generation, inherently results in longer verification
times and larger proof sizes. In particular, The prover spends
around 15% of its time on the PCS, whereas PCS takes up
95% of the verifier’s time. Future improvements could focus
on exploring alternative PCS or recursive proofs [40, 41] to
reduce the verification time and proof size.
Comparison with Prior Work. We compared the perfor-
mance of HasteBoots with previous work on proving the
bootstrapping process in FHE across different settings as
shown in Table 3. The zkVM-based approaches, including
those built on RISC0 [24] and SP1 [25], require approxi-
mately 3 days and 1 day, respectively, due to performance
losses during the compilation of FHE programs. [26] lever-
aging Plonk [14] with custom gates to directly prove FHE,
achieves improved efficiency with proof times around half
an hour. However, as a general-purpose SNARK, Plonk
still incurs some efficiency loss when handling FHE-specific
operations. In contrast, HasteBoots is specifically designed
for FHE, reducing the proof generation time to under 10
seconds. However, HasteBoots’s use of linear code-based
PCS results in slower verification times and larger proof
sizes compared to [26], which constructs incremental veri-
fiable computation (IVC) to prove accumulator updates with
recursion in plonky2. This approach achieves a verification
time of approximately 8 ms and a proof size of around 200
KB, whereas HasteBoots requires roughly 300 ms and 150
MB. It is worth noting that our proof size and verification
time can be further optimized through recursion and by
replacing the current Brakedown with more efficient PCS.

7. Related Works

Fully Homomorphic Encryption. There are two main
categories of fully homomorphic encryption schemes. The
first category is CKKS[2], BFV[3, 4], and BGV[5], which
support the package of multiple messages into a single ci-
phertext, thus supporting SIMD-like batching homomorphic
operations. However, their bootstrapping operations are very
heavy. Although these schemes support leveled FHE without
bootstrapping, they only support a small class of circuits
with a maximum depth smaller than a certain upper bound
and are not universal. The second category is FHEW[6],
TFHE[7], and variants[42, 43, 44, 45]. They don’t support
batching, but they can perform very fast bootstrapping. We



Protocols Proving Time Verification Time Soundness (/|EF|) Rounds Proof Size Query

Hadamard Protocol O(M1N) O(logN +M1) O(logN) O(logN) O(logN) O(M1)

Batched Lookups O(M2N) O(logN +M2) O(M2N) O(logN) O(logN) O(M2)

Sparse Matrix Evaluation O(M3) O(logM3) O(M3) O(logM3) O(logM3) O(1)

NTT O(N) O(log2 N) O(logN) O(log2 N) O(log2 N) O(1)

Batched Lift O(M4 +N) O(log2 N +M4) O(logN +M4) O(logM4 + log2 N) O(log2 N +M4) O(M4)

Gadget Decomposition O(L1N) O(logN + L1) O(L1N) O(logN) O(logN) O(L1)

Modulus Switching O(L2N) O(logN + L2) O(L2N) O(logN) O(logN) O(L2)

LWE Addition O(n) O(logn) O(n) O(logn) O(logn) O(1)

Accumulator Updating O(L1N) O(log2 N + L1) O(L1N) O(log2 N) O(log2 N) O(L1)

FHE NAND O(L1Nn) O(log2 N + L1n) O(L1Nn) O(logn+ log2 N) O(log2 N + n) O(L1n)

TABLE 1: Complexity of PIOPs. Notation: B is the base size, q is a power of two. Define L1 = ⌈logB Q⌉ and L2 =
⌈logB(

Q−1
q )⌉. Other parameters include N , the size of most vectors (corresponding to polynomial length in RQ), n, the

dimension of the LWE vectors. Additionally, M1 represents the number of Hadamard products within the num, M2 the
number of lookup vectors, M3 the column size of the sparse matrix (also its sparsity), and M4 the number of lift operations.

Operation Proving Time Verification Time
LWE Addition 19 ms 6 ms

Bootstrapping
Lift-NTT 160 ms 62 ms
Acc Updating 7.4 s 262 ms
Modulus Switching 31 ms 9 ms

TABLE 2: End-to-End performance for each components on
Apple M1, which contains PIOP and PCS costs. Lift-NTT
indicates the combined performance of the lift followed by
the batched NTT, as we do not prove individual lift.

Proving Time RISC0 [24] SP1 [25] [26] HasteBoots

M3 Pro (8 cores) – – 40 min 7 s
C61.meta
(128 cores)

– – 21 min 5 s

Hpc7a.96xlarge
(192 cores)

4600 min 1500 min 18 min 4 s

M4 Pro – – – 3 s

TABLE 3: Proving time for a single bootstrapping operation
across various devices.

focused on the FHEW scheme with GINX[46] bootstrapping
method, since its bootstrapping is lightweight for SNARGs.

While FHE offers strong privacy, it lacks inherent guar-
antees for integrity. This has led to a line of research [47,
48, 49, 50, 51, 52] on attack that exploit vulnerabilities in
ciphertext manipulation, potentially enabling adversaries to
alter encrypted data and even recover the client’s secret key.
Succinct Arguments. It has been extensively studied to pro-
vide efficient, verifiable proofs for computational integrity.
Existing SNARKs [8, 9, 10, 11, 12, 13, 14, 15, 16] are
designed for arbitrary computations. These works express
computations in constraint systems like Rank-1 Constraint
Systems (R1CS) or arithmetic circuits. Zero-knowledge Vir-
tual Machine (zkVM) [24, 25] build on general-purpose
SNARKs to compile high-level language programs into
proofs. However, neither general-purpose SNARKs nor
zkVMs account for the specific arithmetic structures in FHE,
leading to inefficiencies.
Verifiable FHE. Recent research has advanced theoretical

constructions for verifiable FHE, yet several challenges re-
main unaddressed. A line of work [17, 18, 19, 20, 21, 22, 23]
supports only basic FHE operations such as LWE additions
without bootstrapping, preventing fully homomorphism. [53,
54] show that verifiable FHE is possible with SNARKs. [55]
provides a construction by encoding complete FHE using
standard R1CS representations, but this method does not
natively support the field arithmetic of FHE. To address
this, [56] introduces R1CS defined over rings, which aligns
with FHE arithmetic. However, these methods offer only
theoretical results without practical constructions. Moreover,
they rely on general constraint systems such as R1CS
to represent FHE operations and leverage general-purpose
SNARKs, which are not tailored for FHE. In contrast, our
work directly proves the relations of FHE’s core operations.

Recent work focuses on constructing concrete SNARK
protocols for proving FHE. One approach is to use high-
level languages, such as Rust, to implement FHE and
then compile it into SNARK proofs using zkVM frame-
works [24, 25]. However, this method suffers from ex-
tremely low efficiency, with proof generation taking several
days. Alternatively, [26] applies Plonk [14] to directly prove
FHE computations, reducing proving time to around half
an hour. Yet, general-purpose SNARKs lack optimization
for the specialized relations involved in FHE, limiting their
efficiency in this context. In contrast, our work introduces a
concrete SNARK tailored specifically for FHE, capable of
generating proofs in seconds, achieving significant improve-
ments in both speed and practical applicability.

Another line of work [57, 58, 59, 60] performs the
integrity check on the plaintext instead of checking the
computation result of ciphertexts. First, these approaches
are not publicly verifiable so only the users with FHE secret
keys can decrypt and verify the result. This is not desirable
in decentralized applications [61, 62], where the result on
the chain needs to be verified by anyone. Second, these
approaches are vulnerable to active attacks [63] on FHE.



8. Conclusion

We propose HasteBoots, a tailored argument system for
FHE, significantly reducing bootstrapping proof generation
time. HasteBoots demonstrates scalable and efficient verifi-
able FHE, advancing privacy-preserving computation.

References

[1] C. Gentry, “Fully homomorphic encryption using ideal
lattices,” in 41st ACM STOC, M. Mitzenmacher, Ed.
ACM Press, May / Jun. 2009, pp. 169–178.

[2] J. H. Cheon, A. Kim, M. Kim, and Y. S. Song, “Ho-
momorphic encryption for arithmetic of approximate
numbers,” in ASIACRYPT 2017, Part I, ser. LNCS,
T. Takagi and T. Peyrin, Eds., vol. 10624. Springer,
Cham, Dec. 2017, pp. 409–437.

[3] J. Fan and F. Vercauteren, “Somewhat practical
fully homomorphic encryption,” Cryptology ePrint
Archive, Report 2012/144, 2012. [Online]. Available:
https://eprint.iacr.org/2012/144

[4] Z. Brakerski, “Fully homomorphic encryption with-
out modulus switching from classical GapSVP,” in
CRYPTO 2012, ser. LNCS, R. Safavi-Naini and
R. Canetti, Eds., vol. 7417. Springer, Berlin, Hei-
delberg, Aug. 2012, pp. 868–886.

[5] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Lev-
eled) fully homomorphic encryption without bootstrap-
ping,” in ITCS 2012, S. Goldwasser, Ed. ACM, Jan.
2012, pp. 309–325.

[6] L. Ducas and D. Micciancio, “FHEW: Bootstrapping
homomorphic encryption in less than a second,” in
EUROCRYPT 2015, Part I, ser. LNCS, E. Oswald
and M. Fischlin, Eds., vol. 9056. Springer, Berlin,
Heidelberg, Apr. 2015, pp. 617–640.

[7] I. Chillotti, N. Gama, M. Georgieva, and M. Iz-
abachène, “TFHE: Fast fully homomorphic encryption
over the torus,” Journal of Cryptology, vol. 33, no. 1,
pp. 34–91, Jan. 2020.

[8] J. Groth, “On the size of pairing-based non-interactive
arguments,” in EUROCRYPT 2016, Part II, ser. LNCS,
M. Fischlin and J.-S. Coron, Eds., vol. 9666. Springer,
Berlin, Heidelberg, May 2016, pp. 305–326.

[9] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev,
“Fast reed-solomon interactive oracle proofs of prox-
imity,” in ICALP 2018, ser. LIPIcs, I. Chatzigiannakis,
C. Kaklamanis, D. Marx, and D. Sannella, Eds., vol.
107. Schloss Dagstuhl, Jul. 2018, pp. 14:1–14:17.

[10] A. Chiesa, Y. Hu, M. Maller, P. Mishra, P. Vesely, and
N. P. Ward, “Marlin: Preprocessing zkSNARKs with
universal and updatable SRS,” in EUROCRYPT 2020,
Part I, ser. LNCS, A. Canteaut and Y. Ishai, Eds., vol.
12105. Springer, Cham, May 2020, pp. 738–768.

[11] J. Bootle, A. Chiesa, Y. Hu, and M. Orru, “Gemini:
Elastic snarks for diverse environments,” in EURO-
CRYPT, 2022.

[12] T. Xie, J. Zhang, Y. Zhang, C. Papamanthou, and
D. Song, “Libra: Succinct zero-knowledge proofs

with optimal prover computation,” in Advances in
Cryptology–CRYPTO 2019: 39th Annual International
Cryptology Conference, Santa Barbara, CA, USA, Au-
gust 18–22, 2019, Proceedings, Part III 39. Springer,
2019, pp. 733–764.

[13] S. Setty, “Spartan: Efficient and general-purpose zk-
snarks without trusted setup,” in CRYPTO, 2020.

[14] A. Gabizon, Z. J. Williamson, and O. Ciobotaru,
“PLONK: Permutations over Lagrange-bases for
oecumenical noninteractive arguments of knowledge,”
Cryptology ePrint Archive, Report 2019/953, 2019.
[Online]. Available: https://eprint.iacr.org/2019/953

[15] B. Chen, B. Bünz, D. Boneh, and Z. Zhang, “Hyper-
Plonk: Plonk with linear-time prover and high-degree
custom gates,” in EUROCRYPT 2023, Part II, ser.
LNCS, C. Hazay and M. Stam, Eds., vol. 14005.
Springer, Cham, Apr. 2023, pp. 499–530.

[16] A. Golovnev, J. Lee, S. T. V. Setty, J. Thaler, and R. S.
Wahby, “Brakedown: Linear-time and field-agnostic
SNARKs for R1CS,” in CRYPTO 2023, Part II, ser.
LNCS, H. Handschuh and A. Lysyanskaya, Eds., vol.
14082. Springer, Cham, Aug. 2023, pp. 193–226.

[17] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive
verifiable computing: Outsourcing computation to un-
trusted workers,” in CRYPTO, 2010.

[18] S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikun-
tanathan, and N. Zeldovich, “How to run turing ma-
chines on encrypted data,” in CRYPTO, 2013.

[19] D. Fiore, R. Gennaro, and V. Pastro, “Efficiently veri-
fiable computation on encrypted data,” in CCS, 2014.

[20] C. Ganesh, A. Nitulescu, and E. Soria-Vazquez,
“Rinocchio: Snarks for ring arithmetic,” JoC, 2023.

[21] D. Fiore, A. Nitulescu, and D. Pointcheval, “Boosting
verifiable computation on encrypted data,” in PKC,
2020.

[22] A. Bois, I. Cascudo, D. Fiore, and D. Kim, “Flexible
and efficient verifiable computation on encrypted data,”
in PKC, 2021.

[23] A. Viand, C. Knabenhans, and A. Hithnawi, “Verifiable
fully homomorphic encryption,” arXiv:2301.07041,
2023.

[24] T. R. Z. Team, “Universal zero knowledge,” https://
risczero.com/.

[25] T. SuccinctLabs, “The fastest, most feature-complete
zkvm for developers,” https://github.com/succinctlabs/
sp1.

[26] L. T. Thibault and M. Walter, “Towards verifiable
fhe in practice: Proving correct execution of tfhe’s
bootstrapping using plonky2,” ePrint, 2024.

[27] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal
lattices and learning with errors over rings,” in EURO-
CRYPT 2010, ser. LNCS, H. Gilbert, Ed., vol. 6110.
Springer, Berlin, Heidelberg, May / Jun. 2010, pp. 1–
23.

[28] S. Setty, “Spartan: Efficient and general-purpose zk-
snarks without trusted setup,” in Annual International
Cryptology Conference. Springer, 2020, pp. 704–737.

[29] S. Setty, J. Thaler, and R. Wahby, “Unlocking the

https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2019/953
https://risczero.com/
https://risczero.com/
https://github.com/succinctlabs/sp1
https://github.com/succinctlabs/sp1


lookup singularity with lasso,” in Annual International
Conference on the Theory and Applications of Cryp-
tographic Techniques. Springer, 2024, pp. 180–209.

[30] T. Liu, X. Xie, and Y. Zhang, “Zkcnn: Zero knowl-
edge proofs for convolutional neural network predic-
tions and accuracy,” in Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communica-
tions Security, 2021, pp. 2968–2985.

[31] A. Satriawan, R. Mareta, and H. Lee, “A complete
beginner guide to the number theoretic transform (ntt),”
Cryptology ePrint Archive, 2024.

[32] A. Golovnev, J. Lee, S. Setty, J. Thaler, and
R. S. Wahby, “Brakedown: Linear-time and field-
agnostic SNARKs for R1CS,” Cryptology ePrint
Archive, Paper 2021/1043, 2021. [Online]. Available:
https://eprint.iacr.org/2021/1043

[33] J. Thaler, “Time-optimal interactive proofs for cir-
cuit evaluation,” in Annual Cryptology Conference.
Springer, 2013, pp. 71–89.

[34] O. Regev, “On lattices, learning with errors, random
linear codes, and cryptography,” in 37th ACM STOC,
H. N. Gabow and R. Fagin, Eds. ACM Press, May
2005, pp. 84–93.

[35] D. Micciancio and Y. Polyakov, “Bootstrapping
in FHEW-like cryptosystems,” Cryptology ePrint
Archive, Report 2020/086, 2020. [Online]. Available:
https://eprint.iacr.org/2020/086

[36] C. Lund, L. Fortnow, H. Karloff, and N. Nisan, “Alge-
braic methods for interactive proof systems,” Journal
of the ACM (JACM), vol. 39, no. 4, pp. 859–868, 1992.

[37] U. Haböck, “Multivariate lookups based on logarithmic
derivatives,” Cryptology ePrint Archive, 2022.

[38] M. Blum, W. Evans, P. Gemmell, S. Kannan, and
M. Naor, “Checking the correctness of memories,”
Algorithmica, vol. 12, pp. 225–244, 1994.

[39] A. Fiat and A. Shamir, “How to prove yourself: Practi-
cal solutions to identification and signature problems,”
in Conference on the theory and application of cryp-
tographic techniques. Springer, 1986, pp. 186–194.

[40] A. Chiesa, D. Ojha, and N. Spooner, “Fractal: Post-
quantum and transparent recursive proofs from holog-
raphy,” in EUROCRYPT 2020, Part I, ser. LNCS,
A. Canteaut and Y. Ishai, Eds., vol. 12105. Springer,
Cham, May 2020, pp. 769–793.

[41] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer,
“Recursive composition and bootstrapping for
SNARKS and proof-carrying data,” in 45th ACM
STOC, D. Boneh, T. Roughgarden, and J. Feigenbaum,
Eds. ACM Press, Jun. 2013, pp. 111–120.

[42] Z. Liu, D. Micciancio, and Y. Polyakov, “Large-
precision homomorphic sign evaluation using
FHEW/TFHE bootstrapping,” in ASIACRYPT 2022,
Part II, ser. LNCS, S. Agrawal and D. Lin, Eds., vol.
13792. Springer, Cham, Dec. 2022, pp. 130–160.

[43] I. Chillotti, D. Ligier, J.-B. Orfila, and S. Tap, “Im-
proved programmable bootstrapping with larger pre-
cision and efficient arithmetic circuits for TFHE,” in
ASIACRYPT 2021, Part III, ser. LNCS, M. Tibouchi

and H. Wang, Eds., vol. 13092. Springer, Cham, Dec.
2021, pp. 670–699.

[44] C. Bonte, I. Iliashenko, J. Park, H. V. L. Pereira,
and N. P. Smart, “FINAL: Faster FHE instantiated
with NTRU and LWE,” in ASIACRYPT 2022, Part II,
ser. LNCS, S. Agrawal and D. Lin, Eds., vol. 13792.
Springer, Cham, Dec. 2022, pp. 188–215.

[45] Y. Lee, D. Micciancio, A. Kim, R. Choi, M. Deryabin,
J. Eom, and D. Yoo, “Efficient FHEW bootstrapping
with small evaluation keys, and applications to thresh-
old homomorphic encryption,” in EUROCRYPT 2023,
Part III, ser. LNCS, C. Hazay and M. Stam, Eds., vol.
14006. Springer, Cham, Apr. 2023, pp. 227–256.

[46] N. Gama, M. Izabachène, P. Q. Nguyen, and X. Xie,
“Structural lattice reduction: Generalized worst-case
to average-case reductions and homomorphic cryp-
tosystems,” in EUROCRYPT 2016, Part II, ser. LNCS,
M. Fischlin and J.-S. Coron, Eds., vol. 9666. Springer,
Berlin, Heidelberg, May 2016, pp. 528–558.

[47] Z. Zhang, T. Plantard, and W. Susilo, “Reaction at-
tack on outsourced computing with fully homomor-
phic encryption schemes,” in ICISC 11, ser. LNCS,
H. Kim, Ed., vol. 7259. Springer, Berlin, Heidelberg,
Nov. / Dec. 2012, pp. 419–436.

[48] Z. Li, S. D. Galbraith, and C. Ma, “Preventing adaptive
key recovery attacks on the GSW levelled homomor-
phic encryption scheme,” in ProvSec 2016, ser. LNCS,
L. Chen and J. Han, Eds., vol. 10005. Springer, Cham,
Nov. 2016, pp. 373–383.

[49] B. Chaturvedi, A. Chakraborty, A. Chatterjee, and
D. Mukhopadhyay, “vr2FHE- securing FHE from
reaction-based key recovery attacks,” Cryptology
ePrint Archive, Report 2023/561, 2023. [Online].
Available: https://eprint.iacr.org/2023/561

[50] ——, ““Ask and thou shall receive”: Reaction-
based full key recovery attacks on FHE,” in ES-
ORICS 2024, Part IV, ser. LNCS, J. Garcia-Alfaro,
R. Kozik, M. Choraś, and S. Katsikas, Eds., vol. 14985.
Springer, Cham, Sep. 2024, pp. 457–477.

[51] I. Chillotti, N. Gama, and L. Goubin, “Attacking
FHE-based applications by software fault injections,”
Cryptology ePrint Archive, Report 2016/1164, 2016.
[Online]. Available: https://eprint.iacr.org/2016/1164

[52] A. Viand, C. Knabenhans, and A. Hithnawi,
“Verifiable fully homomorphic encryption,” 2023.
[Online]. Available: https://arxiv.org/abs/2301.07041

[53] M. Manulis and J. Nguyen, “Fully homomorphic en-
cryption beyond ind-cca1 security: Integrity through
verifiability,” in EUROCRYPT, 2024.

[54] S. Canard, C. Fontaine, D. H. Phan, D. Pointcheval,
M. Renard, and R. Sirdey, “Relations among new cca
security notions for approximate fhe,” ePrint, 2024.

[55] S. Atapoor, K. Baghery, H. V. Pereira, and J. Spiessens,
“Verifiable fhe via lattice-based snarks,” ePrint, 2024.

[56] M.-Y. M. Huang, B. Li, X. Mao, and J. Zhang, “Fully
homomorphic encryption with efficient public verifica-
tion,” ePrint, 2024.

[57] S. Garg, A. Goel, and M. Wang, “How to prove

https://eprint.iacr.org/2021/1043
https://eprint.iacr.org/2020/086
https://eprint.iacr.org/2023/561
https://eprint.iacr.org/2016/1164
https://arxiv.org/abs/2301.07041


statements obliviously?” in CRYPTO, 2024.
[58] D. F. Aranha, A. Costache, A. Guimarães, and

E. Soria-Vazquez, “Heliopolis: Verifiable computation
over homomorphically encrypted data from interactive
oracle proofs is practical,” ePrint, 2023.

[59] S. Chatel, C. Knabenhans, A. Pyrgelis, C. Troncoso,
and J.-P. Hubaux, “Verifiable encodings for secure
homomorphic analytics,” arXiv:2207.14071, 2022.

[60] ——, “Poster: Verifiable encodings for maliciously-
secure homomorphic encryption evaluation,” in CCS,
2023.

[61] B. Bünz, S. Agrawal, M. Zamani, and D. Boneh,
“Zether: Towards privacy in a smart contract world,”
in FC, 2020.

[62] Y. Hu, S. Kumar, and R. A. Popa, “Ghostor: Toward
a secure {Data-Sharing} system from decentralized
trust,” in NSDI, 2020.

[63] I. Chillotti, N. Gama, and L. Goubin, “Attacking fhe-
based applications by software fault injections,” ePrint,
2016.

[64] S. Agrawal and D. Lin, Eds., ASIACRYPT 2022,
Part II, ser. LNCS, vol. 13792. Springer, Cham, Dec.
2022.

[65] A. Canteaut and Y. Ishai, Eds., EUROCRYPT 2020,
Part I, ser. LNCS, vol. 12105. Springer, Cham, May
2020.

[66] M. Fischlin and J.-S. Coron, Eds., EUROCRYPT 2016,
Part II, ser. LNCS, vol. 9666. Springer, Berlin,
Heidelberg, May 2016.

Appendix A.
Additioanl Details on Modulus Switching

A.1. Modulus Switching with Floor

Given an input a ∈ F, modulus switching with the floor
is defined as follows

b =

⌊
a · q
Q

⌋
where the floor operation returns the greatest integer less
than or equal to the fractional number a · q/Q. Assuming
q|Q− 1, which is guaranteed in the FHEW/TFHE schemes,
and defining k = Q−1

q , the modulus switching can be
considered as a structured mapping. Specifically, it maps
a ∈ [0, k] to 0, maps a ∈ [b · k+1, (b+1) · k] for each b to
b ∈ Zq.

Lemma 2. Let q be a power of two and Q a prime such
that q|Q− 1. Define k = Q−1

q such that Q = 2kq + 1. For

any a ∈ FQ and b ∈ Zq, we have b =
⌊
a·q
Q

⌋
if and only if

either a = 0 and b = 0 or a ∈ [b · k + 1, (b+ 1) · k].


	Introduction
	Our Contributions
	Overview of Our Techniques
	Comparison with the state-of-the-art thibault2024towards

	Preliminary
	Notation
	Fully Homomorphic Encryption
	Useful PIOP

	PIOP for Building Blocks
	Sparse Matrix Evaluation
	NTT/INTT
	Gadget Decomposition

	PIOP for FHE Operations
	LWE Addition
	Batched Lift
	Accumulator Updating
	Modulus Switching
	PIOP for FHE NAND

	HasteBoots: SNARGs for FHE NAND
	Definitions
	Polynomial Commitment Scheme

	Implementation and Evaluation
	Related Works
	Conclusion
	Appendix A: Additioanl Details on Modulus Switching
	Modulus Switching with Floor


