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Abstract

Secure key leasing (SKL) is an advanced encryption functionality that allows a secret key holder to generate a
quantum decryption key and securely lease it to a user. Once the user returns the quantum decryption key (or provides
a classical certificate confirming its deletion), they lose their decryption capability. Previous works on public key
encryption with SKL (PKE-SKL) have only considered the single-key security model, where the adversary receives at
most one quantum decryption key. However, this model does not accurately reflect real-world applications of PKE-SKL.
To address this limitation, we introduce collusion-resistant security for PKE-SKL (denoted as PKE-CR-SKL). In
this model, the adversary can adaptively obtain multiple quantum decryption keys and access a verification oracle
which validates the correctness of queried quantum decryption keys. Importantly, the size of the public key and
ciphertexts must remain independent of the total number of generated quantum decryption keys. We present the
following constructions:

• A PKE-CR-SKL scheme based on the learning with errors (LWE) assumption.
• An attribute-based encryption scheme with collusion-resistant SKL (ABE-CR-SKL), also based on the LWE

assumption.
• An ABE-CR-SKL scheme with classical certificates, relying on multi-input ABE with polynomial arity.

∗Part of this work was done while visiting NTT Social Informatics Laboratories as an internship.
†Supported by the US National Science Foundation (NSF) via Fang Song’s Career Award (CCF-2054758).
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1 Introduction
Secure key leasing. Encryption with secure key leasing (SKL) enables a secret key holder to generate a quantum
decryption key and lease it securely to another party. Once the lessee returns the quantum decryption key, they lose their
ability to decrypt ciphertexts. Since its introduction by Kitagawa and Nishimaki for secret key functional encryption
(SKFE) [KN22], SKL has been extensively studied [AKN+23, APV23, CGJL23, MPY23, AHH24, BGK+24, KMY24]
due to its strong security guarantee and practical applications.

Collusion-resistant SKL. Most prior works [AKN+23, APV23, CGJL23, MPY23, AHH24] study how to achieve
public-key encryption (PKE) with SKL schemes from standard cryptographic assumptions. All prior works on PKE-SKL
have explored the setting where an adversary can obtain only one quantum decryption key. However, this single-key
security model does not accurately reflect real-world scenarios. In practice, once a lessee returns their decryption key
and it is verified (i.e., after revocation), the lessor may lease another decryption key, even to the same lessee. Moreover,
in realistic settings, a single secret key holder may need to generate and lease multiple quantum decryption keys to
various entities. To accurately capture this setting, we consider adversaries capable of obtaining an unbounded number
of quantum decryption keys, even in the standard PKE setting. We define this model as collusion-resistant SKL.

Previous works [APV23, AHH24] presented delegation tasks as a compelling application like the following:
Consider a scenario where a system administrator unexpectedly needs to take leave and must temporarily assign their
responsibilities—including access to encrypted data—to a colleague by providing decryption keys. In such cases, the
single-key security model is inadequate, as the administrator may need to take leave multiple times or assign their
responsibilities to different colleagues. Another potential application of collusion-resistant PKE-SKL is in streaming
services. Encrypted videos are made accessible to subscribers through quantum decryption keys. When a user
unsubscribes, they return their leased keys, losing access to the content, and their subscription fees are canceled. By
utilizing an attribute-based encryption [SW05] variant of collusion-resistant PKE-SKL, it becomes possible to precisely
control video access based on user attributes, such as location-restrictions or premium and basic subscription plans.

Our goal: collusion-resistant SKL from weaker assumptions. The notion of collusion-resistant SKL is both
natural and compelling. However, it has yet to be achieved from well-established assumptions. All known PKE
with SKL schemes based on standard assumptions [AKN+23, APV23, CGJL23, AHH24, KMY24] do not remain
secure in the collusion-resistant setting. While some existing constructions seem to imply collusion-resistant SKL,
such as public-key functional encryption (PKFE) schemes with SKL [AKN+23, BGK+24] and collusion-resistant
single decryptor encryption (SDE)1 [ÇG24], they rely on strong assumptions. These include post-quantum secure
indistinguishability obfuscation (IO) or collusion-resistant PKFE, which in turn implies IO, albeit with a sub-exponential
security loss [BV18, AJ15, AJS15]. Achieving them from well-established assumptions still remains elusive. In this
work, we aim to construct the first collusion-resistant SKL schemes based on weaker assumptions.

1.1 Our Results
Our main contributions are summarized as follows:

1. Definition of collusion-resistant PKE-SKL (PKE-CR-SKL): We formally define PKE-CR-SKL, ensuring that
if all quantum decryption keys are returned and successfully verified, users lose decryption capabilities. We
extend the indistinguishability against key leasing attacks (IND-KLA) security definition [AKN+23] to the
collusion-resistant setting. One notable feature of this definition is that the adversary can send multiple queries to
the verification oracle, which confirms the validity of returned decryption keys. Another important feature is that
the public key and ciphertext size are independent of the number of leased decryption keys (up to logarithmic
factors).

2. Construction of IND-KLA secure PKE with collusion-resistant SKL: We propose an IND-KLA secure PKE-CR-
SKL scheme based on the learning with errors (LWE) assumption.

1In short, SDE is PKE where the decryption keys are copy-protected (i.e., unclonable). In general, SDE implies encryption with SKL (see the
discussion by Agrawal et al. [AKN+23] for details).
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Table 1: Comparison of SKL. VO means security in the presence of the verification oracle for

certificates.

Primitive Collusion-resistant SKL VO Certificate Assumption

[AKN+23] PKE − ✓ quantum PKE
[AKN+23] ABE bounded ✓ quantum ABE
[AKN+23] bCR PKFEa bounded ✓ quantum PKE
[AKN+23] PKFE ✓ ✓ quantum PKFEb

[BGK+24] PKFEc ✓ ✓d classical IO
[APV23, AHH24] PKE (FHE) − − classical LWE

[CGJL23] PKE (FHE) − − classical LWE
[KMY24] PKE − ✓e classical PKE

Ours1 PKE ✓ ✓ quantum LWE
Ours2 ABEc ✓ ✓ quantum LWE
Ours3 PKE ✓ ✓ classical MI-ABE
Ours4 ABEc ✓ ✓ classical MI-ABE

a bCR denotes bounded collusion-resistant. This scheme only satisfies the bounded collusion resistance
of standard PKFE.

b Collusion-resistant PKFE implies IO up to sub-exponential security loss.
c These schemes are selectively secure, where adversaries must declare the target plaintexts (PKFE

case) or attributes (ABE case) at the beginning.
d This scheme has public verifiability (the verification key for certificates is public).
e This scheme is secure even if the verification key is revealed to the adversary after the adversary

outputs a valid certificate.

3. Attribute-based encryption with collusion-resistant SKL: We construct an ABE-CR-SKL scheme, also based on
the LWE assumption. Since PKE is a special case of ABE, ABE-CR-SKL trivially implies PKE-CR-SKL. We first
present the PKE-CR-SKL scheme separately to provide a clearer foundation for understanding the ABE-CR-SKL
construction.

4. PKE and ABE with collusion-resistant SKL and classical certificates: We also propose an IND-KLA secure
ABE-CR-SKL scheme that utilizes classical certificates, whereas the constructions above rely on quantum
certificates.2 In this model, a classical certificate can be derived from a leased quantum decryption key, and
successful verification guarantees security. Our scheme is based on multi-input ABE (MI-ABE), which is a
potentially weaker assumption than collusion-resistant PKFE. We specify required properties for MI-ABE and
discuss the relationship between MI-ABE and other primitives in Section 8.1. ABE-CR-SKL with classical
certificates trivially implies PKE-CR-SKL with classical certificates.

We introduce fascinating techniques to achieve our results. These include the classical decryption property and the
notion of key-testability for secret key encryption with collusion-resistant SKL (SKE-CR-SKL) and secret key functional
encryption with collusion-resistant SKL (SKFE-CR-SKL). Then, we transform SKE-CR-SKL (resp. SKFE-CR-SKL) into
PKE-CR-SKL (resp. ABE-CR-SKL) by using classical ABE and compute-and-compare obfuscation [WZ17, GKW17].
In these transformations, we use decryption keys of SKE-CR-SKL (resp. SKFE-CR-SKL) as key attributes of ABE in a
superposition way. See Section 2 for the details.

1.2 Related Work
Encryption with SKL. Agrawal et al. [AKN+23] presented PKE-SKL, ABE-SKL, and PKFE-SKL schemes. Their
PKE-SKL scheme is based on standard PKE, and its certificate is quantum. This scheme is not collusion-resistant.
Their ABE-SKL scheme is based on PKE-SKL and standard (collusion-resistant) ABE, and its certificates are ones
of the underlying PKE-SKL. This scheme is bounded collusion-resistant, that is, the adversary can obtain an a-priori
bounded number of quantum decryption keys that can decrypt target ciphertexts. Their PKFE-SKL scheme is based
on PKE-SKL and standard (collusion-resistant) PKFE, and its certificates are ones of the underlying PKE-SKL. This
scheme is collusion-resistant. (If we instantiate the PKFE-SKL scheme with bounded collusion-resistant PKFE, the

2Quantum decryption keys function as quantum certificates.
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scheme is bounded collusion-resistant with respect to both standard PKFE and SKL.) All schemes mentioned above are
secure in the presence of the verification oracle for certificates.

Bartusek et al. [BGK+24] also presented a PKFE-SKL scheme. Their scheme is collusion-resistant in the selective
model, where the target plaintext is declared at the beginning of the game. In addition, their certificates are classical and
publicly verifiable. However, their scheme relies on IO.

Ananth, Poremba, and Vaikuntanathan [APV23] presented a PKE-SKL scheme with classical certificates based on
the LWE assumption and an unproven conjecture. Since the encryption algorithm of this scheme is essentially the same
as the Dual-Regev PKE scheme [GPV08], their scheme achieves fully homomorphic encryption (FHE) with SKL. Later,
Ananth, Hu, and Huang [AHH24] present a new security analysis for Ananth et al.’s scheme and removed the conjecture.
Chardouvelis, Goyal, Jain, and Liu [CGJL23] presented a PKE-SKL scheme with classical certificates based on the
LWE assumption. Their scheme is based on the Regev PKE scheme [Reg09], so it also achieves FHE with SKL. In
addition, their scheme also achieves classical communication, where all messages between senders and receivers are
classical. Kitagawa, Morimae, and Yamakawa [KMY24] presented a PKE-SKL scheme with classical certificates based
on PKE. These three works do not achieve collusion resistance. Ananth et al. [APV23, AHH24] and Chardouvelis et
al. [CGJL23] do not consider the verification oracle in their security definitions, while Kitagawa et al. [KMY24] does.3
We summarize the works on encryption with SKL in Table 1.

Secure software leasing. Ananth and La Placa [AL21] introduced secure software leasing, which encodes classical
programs into quantum programs that we can securely lease. We can view SKL as secure software leasing for decryption
functions. However, previous works on secure software leasing consider a sub-class of evasive functions [AL21, CMP20,
KNY21, BJL+21] or PRFs [KNY21], which do not support decryption functions. Moreover, they consider a weak
security model in which pirated programs use honest evaluation algorithms [AL21, KN23, BJL+21] or rely on the
quantum random oracle model [CMP20]. Bartusek et al. [BGK+24] achieve secure software leasing supporting all
differing inputs circuits4 in a strong security model where pirated programs can use arbitrary evaluation algorithms.
However, their scheme relies on IO.

Multi-input ABE. Roughly speaking, MI-ABE is ABE that can support multiple ciphertext-attributes (or multiple
key-attributes). To achieve our classical certificates scheme, we need MI-ABE for polynomial-size circuits where the
number of slots is polynomial, and we can generate ciphertexts for one slot using a public key. See Definition 8.1 for the
definition. However, as we review previous works on MI-ABE for general circuits5 below, none of them achieves what
we need without using IO.6

Agrawal, Yadav, and Yamada [AYY22] proposed two-input ABE for polynomial-size circuits based on lattices.
However, the scheme is heuristic (no reduction-based security proof) and needs a master secret key to generate
ciphertexts for all slots. Agrawal, Rossi, Yadav, and Yamada [ARYY23] proposed MI-ABE for NC1 from the evasive
LWE assumption and MI-ABE for polynomial-size circuits from the evasive LWE and tensor LWE assumptions. Their
scheme allows to generate ciphertexts for one slot using a public key. However, the number of slots is constant. Agrawal,
Kumari, and Yamada [AKY24] proposed MI-ABE7 for polynomial-size circuits based on the evasive LWE assumption.
In their scheme, the number of slots is polynomial. However, we need a master secret key to generate ciphertexts for all
input-attributes.

Broadcast encryption. Broadcast encryption [FN94] enables a sender to generate ciphertexts intended for a specific
subset of users. Only the designated users can decrypt the ciphertexts, while even if all other users collude, they cannot
recover the message. A key performance metric for broadcast encryption is the size of the public key and ciphertexts.
Several works have proposed optimal broadcast encryption schemes, where these sizes are poly(log N) and N is the
total number of users. The constructions by Agrawal and Yamada [AY20] and Agrawal, Wichs, and Yamada [AWY20]

3More precisely, the work considers adversaries that receive a verification key after they output a valid certificate. Kitagawa et al. show that their
scheme can be converted to satisfy IND-KLA by Agrawal et al. [AKN+23].

4Roughly speaking, a pair of circuits (C0, C1) is differing input if it is hard to find an input y such that C0(y) ̸= C1(y).
5Francati, Fior, Malavolta, and Venturi [FFMV23] and Agrawal, Tomida, and Yadav [ATY23] proposed MI-ABE for restricted functionalities.
6IO implies multi-input functional encryption [GGG+14], which implies MI-ABE.
7Precisely speaking, their scheme is predicate encryption, which satisfies privacy for attributes.
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rely on the LWE assumption and pairings, which are not post-quantum secure. The construction by Wee [Wee22] relies
on the evasive LWE assumption, which is a non-falsifiable assumption and has known counterexamples [BÜW24]. The
construction by Brakerski and Vaikuntanathan [BV22] relies on heuristics and lacks a reduction-based proof.

While broadcast encryption is particularly well-suited for streaming services, PKE-CR-SKL can also be applied in
this domain. Each approach has its own advantages and limitations. One advantage of broadcast encryption is that it
allows the sender to specify recipients at the encryption phase, whereas PKE-CR-SKL does not. However, PKE-CR-SKL
offers three notable advantages over optimal broadcast encryption.

1. Efficient revocation: Since decryption keys in broadcast encryption are classical, the system requires maintaining
a revocation list, which senders use to revoke users, whereas PKE-CR-SKL eliminates the need for such lists.

2. Seamless user expansion: In broadcast encryption, the user set is fixed during the setup phase, meaning that
adding new users requires updating the encryption key. In contrast, PKE-CR-SKL allows new users to be added
without requiring any key updates.

3. Weaker cryptographic assumptions: Our PKE-CR-SKL scheme is based on the standard LWE assumption,
whereas post-quantum secure optimal broadcast encryption relies on the evasive LWE assumption, which has
counterexamples [BÜW24].

In terms of asymptotic efficiency, both optimal broadcast encryption and PKE-CR-SKL achieve the same public key and
ciphertext sizes.

Certified deletion. Broadbent and Islam [BI20] introduced encryption with certified deletion, where we can generate
classical certificates to guarantee that ciphertexts were deleted. Subsequent works improved Broadbent and Islam’s work
and achieved advanced encryption with certified deletion [HMNY21, Por23, BK23, HKM+24, BGK+24] and publicly
verifiable deletion [HMNY21, BGK+24, KNY23, BKM+23]. Compute-and-compare obfuscation with certified
deletion introduced by Hiroka et al. [HKM+24] is essentially the same as secure software leasing in the strong security
model.

Single decryptor encryption. Georgiou and Zhandry [GZ20] introduced the notion of SDE. They constructed a
public-key SDE scheme from one-shot signatures [AGKZ20] and extractable witness encryption with quantum auxiliary
information [GGSW13, GKP+13]. Coladangelo, Liu, Liu, and Zhandry [CLLZ21] constructed a public-key SDE
scheme from IO [BGI+12] and extractable witness encryption or from subexponentially secure IO, subexponentially
secure OWF, and LWE by combining the results by Culf and Vidick [CV22]. Kitagawa and Nishimaki [KN22] introduced
the notion of single-decryptor functional encryption (SDFE), where each functional decryption key is copy-protected and
constructed single decryptor PKFE for P/poly from the subexponential hardness of IO and LWE. These works consider
the setting where the adversary receives only one copy-protected decryption key. Liu, Liu, Qian, and Zhandry [LLQZ22]
study SDE in the collusion-resistant setting, where the adversary receives multiple copy-protected decryption keys.
They constructed a public-key SDE scheme with bounded collusion-resistant copy-protected keys from subexponentially
secure IO and subexponentially secure LWE.

Multi-copy revocable encryption. Ananth, Mutreja, and Poremba [AMP24] introduced multi-copy revocable
encryption. This notion considers the setting where we can revoke ciphertexts (not decryption keys), and the adversary
receives multiple copies of the target ciphertext (they are pure states). Hence, this notion is different from secure key
leasing (or key-revocable cryptography).

2 Technical Overview
We now provide a technical overview of this work. Our primary focus here is on constructing PKE-CR-SKL and
ABE-CR-SKL based on the LWE assumption. For an overview of our variants with classical certificates based on
MI-ABE, please refer to Section 8.3.
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2.1 Defining PKE with Collusion-Resistant SKL
We will begin by describing the definition of PKE with Secure Key-Leasing (PKE-SKL) [AKN+23, APV23], and
then get into our collusion-resistant generalization of it. PKE-SKL is a cryptographic primitive consisting of five
algorithms: Setup, KG , Enc, Dec and Vrfy . The algorithm Setup samples a public encryption-key ek and a “master”
secret-key msk. The encryption algorithm Enc takes a message m and ek as inputs and produces a corresponding
ciphertext ct. Both these algorithms are classical and similar to their counterparts in standard PKE. On the other hand,
the key-generation algorithm KG is quantum, and produces a pair of keys (dk , vk) given msk as input. Here, dk is a
quantum decryption-key using which Dec can decrypt arbitrarily many ciphertexts encrypted under ek. The other key vk
is a classical verification-key, the purpose of which will be clear in a moment.

The setting to consider is one where an adversary is given a decryption-key dk , and is later asked to return it back.
Intuitively, we wish to guarantee that if dk is returned, the adversary can no longer decrypt ciphertexts encrypted under
ek. Since a malicious adversary may even send a malformed key d̃k , we need a way to tell whether the decryption-key has
been correctly returned. This is the purpose of the algorithm Vrfy , which performs such a check using the corresponding
(private) verification-key vk. It is required that if the state dk is sent back undisturbed, then Vrfy must accept. On the
other hand, if Vrfy accepts (even for a possibly malformed state), then the adversary must lose the ability to decrypt. This
loss in the ability to decrypt is captured formally by a cryptographic game, where an adversary is asked to distinguish
between ciphertexts of different messages, after passing the verification check.

So far, we have described the notion of PKE-SKL. In this work, we study the notion of PKE with Collusion-Resistant
SKL (PKE-CR-SKL). This primitive has the same syntax as PKE-SKL, but the aforementioned security requirement is
now stronger. Specifically, an adversary that obtains polynomially-many decryption keys and (verifiably) returns them
all, should no longer be able to decrypt. This is defined formally in our notion of IND-KLA (Indistinguishability under
Key-Leasing Attacks) security (Definition 4.3). As standard in cryptography, it is characterized by a game between a
challenger Ch and a QPT adversary A . An informal description of the game follows:

IND-KLA Game in the Collusion-Resistant Setting

1. Ch samples (ek, msk)← Setup(1λ) and sends ek to A .
2. Then, A requests q decryption keys corresponding to ek, where q is some arbitrary polynomial in λ.8

3. Ch generates (dk i, vki)i∈[q] using q independent invocations of KG(msk). It sends {dk i}i∈[q] to A .

4. Corresponding to each index i ∈ [q], A is allowed oracle access to the algorithm Vrfy(vki, ·) in the following
sense: For a quantum state d̃k queried by A , the oracle evaluates Vrfy(vki, d̃k ) and measures the verification
result. It then returns the obtained classical outcome (which indicates accept/reject). We emphasize that A
is allowed to interleave queries corresponding to indices i ∈ [q], and can also make its queries adaptively.

5. If at-least one query of A to Vrfy(vki, ·) produces an accept output for every i ∈ [q], the game proceeds to
the challenge phase. Otherwise, the game aborts.

6. In the challenge phase, A specifies a pair of messages (m0, m1). Ch sends mcoin to A for a random bit coin.
7. A outputs coin′.

A wins the game whenever coin = coin′. The security requirement is that for every QPT adversary, the winning
probability conditioned on the game not aborting is negligibly close to 1/2. Observe that the adversary is allowed to
make polynomially-many attempts in order to verifiably return a decryption-key dk i, and unsuccessful attempts are not
penalized. We also emphasize that in the definition, q is an unbounded polynomial, i.e., the construction is not allowed
to depend on q in any way.

2.2 Insecurity of Direct Extensions of Prior Work
Next, we will provide some intuition regarding the insecurity of direct extensions of prior works to this stronger setting.

8Without loss of generality, we can assume that A asks for sufficiently many keys at the beginning itself. Hence, even adversaries that can request
additional keys after accessing the verification oracle are covered by this definition.
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Let us consider the PKE-SKL scheme due to Agrawal et al. [AKN+23] for demonstration. The decryption-keys in
their scheme are of the following form9:

1√
2

(
|0⟩ |sk0⟩+ |1⟩ |sk1⟩

)
Here, sk0, sk1 are secret-keys corresponding to public-keys pk0, pk1 respectively of a standard PKE scheme.

Specifically, the pairs (pk0, sk0) and (pk1, sk1) are generated using independent invocations of the setup algorithm of
PKE. The PKE-SKL public-key consists of the pair (pk0, pk1). The encryption algorithm outputs ciphertexts of the
form (ct0, ct1), where for each i ∈ {0, 1}, cti encrypts the plaintext under pki. The verification procedure requires
the adversary to return the decryption-key, and checks if it is the same as the above state. The intuition is that if the
adversary retains the ability to decrypt, then it cannot pass the verification check with probability close to 1. For instance,
measuring the state provides the adversary with sk0 or sk1 which is sufficient for decryption, but it clearly destroys the
above quantum state.

Consider now the scenario where the public-key (pk0, pk1) is fixed, and n = poly(λ) copies of the above
decryption-key are given to an adversary. In this case, it is easy to see that the adversary can simply measure the states
to obtain both sk0 and sk1. Even though this process is destructive, since sk0 and sk1 completely describe the state,
the adversary can just recreate many copies of it and pass the deletion checks. Consequently, one might be tempted
to encode other secret information in the Hadamard basis by introducing random phases. However, we observe that
such approaches also fail due to simple gentle-measurement attacks. For example, consider the combined state of the n
decryption-keys in such a case:

1
2n/2

(
|0 . . . 0⟩ |sk0 . . . sk0⟩ − |00 . . . 1⟩ |sk0sk0 . . . sk1⟩+ · · · − |1 . . . 1⟩ |sk1 . . . sk1⟩

)
Clearly, only the last term of the superposition does not contain sk0, and the term only has negligible amplitude.

Hence, one can compute sk0 on another register and measure it, without disturbing the state more than a negligible
amount. As a result, the verification checks can be passed while retaining the ability to decrypt. We note that all existing
constructions of encryption with SKL can be broken with similar collusion attacks.

The reason our scheme does not run into such an attack is because we rely on the notion of Attribute-Based Encryption
(ABE), which enables exponentially-many secret-keys for every public-key. Consequently, different decryption-keys can
be generated as superpositions of different ABE secret-keys. However, it is not clear how this intuition alone can be used
to establish security in a provable manner, and we require additional ideas. We now describe these ideas at a high-level.

2.3 Idea Behind the PKE-CR-SKL Scheme
In order to explain the basic idea behind our PKE-CR-SKL scheme, we will first introduce a key-building block, a
primitive called SKE-CR-SKL. This is basically a secret-key variant of PKE-CR-SKL, i.e., the setup algorithm only
samples a master secret-key ske.msk, and the encryption algorithm encrypts plaintexts under ske.msk. The security
requirement is similar. An adversary that receives polynomially many decryption-keys and returns them all, should not
be able to distinguish between ciphertexts of different messages. We refer to this security notion as one-time IND-KLA
(OT-IND-KLA) security (Definition 4.7). The “one-time” prefix refers to the fact that unlike in PKE-CR-SKL, the
adversary does not have the ability to perform chosen plaintext attacks. In other words, the adversary does not see any
ciphertexts before it is required to return its decryption-keys. Although this is a weak security guarantee, it suffices for
our PKE-CR-SKL scheme. The description of the PKE-CR-SKL scheme now follows.

The key-generation procedure involves first generating an SKE-CR-SKL decryption-key, which is represented in
the computational basis as ske.dk = ∑u αu |u⟩. Actually, our SKE-CR-SKL scheme needs to satisfy another crucial
property, which we call the classical decryption property. This property requires the existence of a classical deterministic
algorithm CDec with the following guarantee. For any SKE-CR-SKL ciphertext ske.ct, CDec(u, ske.ct) correctly
decrypts ske.ct for every string u in the superposition of ske.dk . Our construction exploits this fact with the help of an
ABE scheme as follows.

9In actuality, they use a parallel repetition to amplify security.
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The actual decryption key is generated as dk := ∑u αu |u⟩ ⊗ |abe.sku⟩ where abe.sku is an ABE secret-key
corresponding to the key-attribute u. The idea is to now have the encryption algorithm encrypt the plaintext using the
ABE scheme, under a carefully chosen ciphertext-policy. Specifically, we wish to embed an SKE-CR-SKL ciphertext
ske.ct∗ as part of the policy-circuit, such that the outcome of CDec(u, ske.ct∗) determines whether the key abe.sku can
decrypt the ABE ciphertext or not. This allows us to consider two ciphertexts ske.ct∗0 , ske.ct∗1 of different plaintexts,
such that when ske.ct∗0 is embedded in the policy, then every ABE key abe.sku satisfies the ABE relation. On the other
hand, no ABE key satisfies the relation when ske.ct∗1 is embedded. Observe that in the former case, dk allows for
decryption without disturbing the state (by gentle measurement) while in the latter case, the security of ABE ensures
that no adversary can distinguish ciphertexts of different messages10. Hence, if we were to undetectably switch the
policy-circuit from one corresponding to ske.ct∗0 to one with ske.ct∗1 , we are done.

While we cannot argue this directly, our main idea is that this switch is undetectable using OT-IND-KLA security,
given that all the SKE-CR-SKL keys ske.dk are returned. This can be enforced because all the leased decryption keys
dk are required to be returned. Consequently, the verification procedure uncomputes the ABE secret-key register of
the returned keys, followed by verifying all the obtained SKE-CR-SKL keys ske.dk ′. However, there is one problem
with the template as we have described it so far. This is that both ske.ct∗0 , ske.ct∗1 are SKE-CR-SKL ciphertexts, which
inherently depend on the master secret-key. In order to remove this dependence and achieve public-key encryption, the
actual encryption algorithm uses a dummy ciphertext-policy C̃ ← CC.Sim(1λ) where CC.Sim is the simulator of a
compute-and-compare obfuscation scheme, a notion we will explain shortly. We will then rely on the security of this
obfuscation scheme to switch C̃ in the security proof, to an appropriate obfuscated circuit with ske.ct∗0 embedded in it.

In more detail, the ABE scheme allows a key with attribute u to decrypt if and only if the ciphertext policy-circuit C̃
satisfies C̃(u) = ⊥. Observe that in the construction, C̃ is generated as C̃ ← CC.Sim(1λ), which outputs ⊥ on every
input u. Consider now a circuit C̃∗ that is an obfuscation of the circuit CC[D[ske.ct∗0 ], lock, 0] which is described as
follows:

Description of CC[D[ske.ct∗0 ], lock, 0] :

• ske.ct∗0 is an SKE-CR-SKL encryption of the (dummy) message 0λ.
• D[ske.ct∗0 ] is a circuit with ske.ct∗0 hardwired. It is defined as D[ske.ct∗0 ](x) = CDec(x, ske.ct∗0).
• lock is a value chosen uniformly at random, independently of all other values.
• On input x, the circuit outputs 0 if D[ske.ct∗0 ](x) = lock. Otherwise, it outputs ⊥.

The above circuit belongs to a sub-class of circuits known as compute-and-compare circuits. Recall that our
goal was to avoid the use of IO. We can get away with using IO for this sub-class of circuits, as these so-called
compute-and-compare obfuscation schemes are known from LWE [GKW17, WZ17].

The security of the obfuscation can now be used to argue that the switch from C̃ to C̃∗ is indistinguishable. Note
that to invoke this security guarantee, lock must be a uniform value that is independent of all other values. Next, we
can rely on the OT-IND-KLA security of SKE-CR-SKL to switch the ciphertext ske.ct∗0 embedded in the circuit D to
some other ciphertext ske.ct∗1 . The switch would be indistinguishable given that the SKE-CR-SKL decryption-keys
are revoked, which we can enforce as mentioned previously. Crucially, we will generate ske.ct∗1 as an encryption of
the value lock corresponding to the above compute-and-compare circuit.11 This ensures that for every attribute u in
the superposition of an SKE-CR-SKL decryption-key ske.dk = ∑u αu |u⟩, the algorithm CDec(u, ske.ct∗1) outputs the
value lock. As a consequence, the circuit C̃∗ will output 0 instead of ⊥, meaning the key abe.sku does not satisfy the
relation in this hybrid, as desired.

It will be clear in the next subsection that our SKE-CR-SKL scheme is implied by OWFs. Since compute-and-
compare obfuscation is known from LWE [GKW17, WZ17], and so is Attribute-Based Encryption for polynomial-size
circuits [BGG+14]12, we have the following theorem:

Theorem 2.1. There exists a PKE-CR-SKL scheme satisfying IND-KLA security, assuming the polynomial hardness of
the LWE assumption.

10This requires that the ABE scheme is secure even given superposition access to the key-generation oracle.
11Although the compute-and-compare circuit depends on lock in this hybrid, the switch is still justified by OT-IND-KLA security.
12We show that their ABE scheme is secure even with superposition access to the key-generation oracle.
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We also observe that using similar ideas as in PKE-CR-SKL, one can obtain an analogous notion of selectively-secure
ABE with collusion-resistant secure-key leasing (ABE-CR-SKL) for arbitrary polynomial-time computable circuits.
Intuitively, this primitive allows the adversary to declare a target ciphertext-attribute and then make arbitrarily many
key-queries adaptively, even ones which satisfy the ABE relation. Then, as long as the adversary verifiably returns
all the keys that satisfy the relation, it must lose the ability to decrypt. This is captured formally in the notion of
selective IND-KLA security (Definition 7.12). To realize this primitive, we introduce a notion called secret-key
functional-encryption with collusion-resistant secure key-leasing (SKFE-CR-SKL), which is a functional encryption
analogue of SKE-CR-SKL. From this primitive, we require a notion called selective single-ciphertext security (Definition
7.2), that is similar to the OT-IND-KLA security of SKE-CR-SKL. Like SKE-CR-SKL, we observe that SKFE-CR-SKL
is also implied by OWFs. The other elements of the ABE-CR-SKL construction are the same as in PKE-CR-SKL,
namely compute-and-compare obfuscation and an ABE scheme. Consequently, we have the following theorem:

Theorem 2.2. There exists an ABE-CR-SKL scheme satisfying selective IND-KLA security, assuming the polynomial
hardness of the LWE assumption.

2.4 Constructing SKE-CR-SKL
Next, we will describe how we realize the aforementioned building-block of SKE-CR-SKL satisfying the classical
decryption property (Definition 4.5). Our construction will make use of a BB84-based secret-key encryption with
certified-deletion (SKE-CD) scheme, a brief description of which is as follows. This is an encryption scheme where the
ciphertexts are quantum BB84 states [Wie83, BB20]. Given such a ciphertext, an adversary is later asked to provide a
certificate of deletion. If a certificate is provided and verified to be correct, it is guaranteed that the adversary learns
nothing about the plaintext even if the secret-key is later revealed. Crucially, we require that the SKE-CD scheme
also satisfies a classical decryption property (Definition 3.12). Intuitively, this requires that if the ciphertext is of the
form skecd.ct = ∑u αu |u⟩, then every string u in the superposition can be used to decrypt correctly. Specifically,
there exists a classical deterministic algorithm SKECD.CDec such that SKECD.CDec(skecd.sk, u) correctly decrypts
skecd.ct , where skecd.sk is the secret-key.

Let us now recall the functionality offered by SKE-CR-SKL. The encryption algorithm Enc takes as input a master
secret-key ske.msk and a plaintext m and outputs a classical ciphertext ske.ct. The key-generation algorithm KG takes
as input ske.msk and produces a quantum decryption key ske.dk along with a corresponding verification-key ske.vk.
Decryption of ske.ct can be performed by Dec using ske.dk without disturbing the state by more than a negligible
amount. Furthermore, an adversary that receives q (unbounded polynomially many) decryption-keys can be asked to
return all of them, before which it does not get to see any ciphertext encrypted under ske.msk. Each returned key can be
verified using the verification algorithm and the corresponding verification key. If all q keys are verifiably returned,
then it is guaranteed that the adversary cannot distinguish a pair of ciphertexts (of different messages) encrypted under
ske.msk. This requirement, termed as OT-IND-KLA security, is captured formally in Definition 4.7. The intuition
behind the construction is now described as follows:

Let us begin with the simple encryption algorithm. Enc(ske.msk, m) produces a classical output ske.ct =
(skecd.sk, z := m⊕ r), where skecd.sk and r are values specified by ske.msk. The value skecd.sk is a secret key of
an SKE-CD scheme SKECD, while r is a string chosen uniformly at random. Clearly, one can retrieve m from ske.ct
given r. Consequently, each decryption key ske.dk is essentially an SKECD encryption of r. The idea is that the
secret-key skecd.sk can be obtained from ske.ct, which can then be used to retrieve r from ske.dk . As a consequence,
collusion-resistance (OT-IND-KLA security) can be argued based on the security of SKECD by utilizing the following
observations:

• Each decryption-key contains an SKECD encryption of r using independent randomness.

• The adversary must return all the decryption keys (containing SKECD ciphertexts) before it receives the challenge
ciphertext (containing the SKECD secret-key).

Furthermore, since ske.dk is essentially an SKECD ciphertext, the classical decryption property of SKE-CR-SKL
follows easily from the analogous classical decryption property of BB84-based SKE-CD (Definition 3.12).
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2.5 Handling Verification Queries
In our previous discussion about the idea behind the PKE-CR-SKL scheme, we left out some details regarding the
following. We did not discuss how the key-generation oracle of the ABE scheme can be used to simulate the adversary’s
view, in the hybrid where ske.ct∗1 is embedded in the circuit C̃. Firstly, we note that the ABE scheme can handle
superposition key-queries, which we establish by a straightforward argument about the LWE-based ABE scheme of
Boneh et al. [BGG+14]. Recall now that in this hybrid, for every leased decryption-key dk = ∑u αu |u⟩ ⊗ |abe.sku⟩,
each abe.sku can be obtained (in superposition) by querying ske.dk = ∑u αu |u⟩ to the oracle of ABE. However, we
observe that responses to verification queries made by the adversary are not so straightforward to simulate. This is
because for each verification query, the ABE secret-key register needs to be uncomputed, for which we will again rely
on the ABE key-generation oracle. Specifically, the problem is that for a malformed key d̃k , there may exist some ũ in
the superposition which actually satisfies the ABE relation. Recall that by definition of this relation, it follows that
CDec(ũ, ske.ct∗1) incorrectly decrypts the ciphertext ske.ct∗1 . To fix this issue, we upgrade our SKE-CR-SKL scheme
to satisfy another property called key-testability. This involves the existence of a classical algorithm KeyTest which
accepts or rejects. The property requires that when KeyTest is applied in superposition followed by post-selecting on it
accepting, every ũ in the superposition decrypts correctly. As a result, we are able to apply this key-testing procedure
to the register of the SKE-CR-SKL key, followed by simulating the adversary’s view using the ABE oracle. Note
that we will now consider KG(ske.msk) to output an additional testing-key ske.tk along with ske.dk and ske.vk. The
key-testability requirements are specified in more detail as follows:

• Security: There exists an algorithm KeyTest such that no QPT adversary can produce a classical value dk and a
message m such that:

– CDec(dk, ske.ct) ̸= m, where ske.ct← Enc(ske.msk, m).
– KeyTest(ske.tk, dk) = 1.

• Correctness: If KeyTest is applied in superposition to ske.dk and the output is measured to obtain outcome 1,
ske.dk should be almost undisturbed.

2.6 Upgrading SKE-CR-SKL with Key-Testability
We will now explain how the SKE-CR-SKL construction is modified to satisfy the aforementioned key-testability
property. First, we mention a classical decryption property of SKECD (Definition 3.12) that we crucially rely on. A
ciphertext skecd.ct (corresponding to some message m) of SKECD is essentially a BB84 state |x⟩θ . The property
guarantees the existence of an algorithm SKECD.CDec such that for any string u that matches x at all computational
basis positions specified by θ, SKECD.CDec(skecd.sk, u) = m with overwhelming probability. Recall now that in
our SKE-CR-SKL construction, ciphertexts are of the form ske.ct = (skecd.sk, z = r⊕m) and decryption-keys are
essentially SKECD encryptions of the value r. Consequently, the algorithm CDec of SKE-CR-SKL works as follows:

CDec(u, ske.ct) :

• Parse ske.ct = (skecd.sk, z).
• Output z⊕ SKECD.CDec(skecd.sk, u).

As a result, it is sufficient for us to ensure that no QPT adversary can output a value dk such that SKECD.CDec(skecd.sk,
dk) produces a value different from r. By the aforementioned classical-decryption property of SKECD, it suffices to
bind the adversary to the computational basis values of a ciphertext skecd.ct = |x⟩θ . For this, we employ a technique
reminiscent of the Lamport-signature scheme [Lam79]. Thereby, an additional “signature” register that is entangled
with the SKECD ciphertext skecd.ct = |x⟩θ is utilized. We note that similar techniques for signing BB84 states were
employed in previous works on certified deletion [HKM+24, KNY23]. Specifically, let SKECD.CTi denote the register
holding the i-th qubit of skecd.ct and si,0, si,1 be randomly chosen pre-images from the domain of an OWF f . Then, the
following map is performed on registers SKECD.CTi and Si where the latter is initialized to |0 . . . 0⟩:

11



|ui⟩SKECD.CTi
⊗ |vi⟩Si

→ |ui⟩SKECD.CTi
⊗

∣∣vi ⊕ si,ui

〉
Si

Let ρi be the resulting state. The SKE-CR-SKL decryption-key ske.dk is set to be the state ρ1 ⊗ . . .⊗ ρℓct where
ℓct is the length of skecd.ct . Thereby, the testing-key ske.tk will consist of the values f (si,0), f (si,1) for each i ∈ [ℓct].
Observe now that for a returned (possibly altered) decryption-key d̃k (or ske.d̃k ), it is possible to check for each qubit
whether the superposition term ui is associated with the correct pre-image si,ui . This can be done by forward evaluating
the pre-image register and comparing it with the value f (si,ui ) that is specified in ske.tk. This is essentially the KeyTest
algorithm. It is easy to see that this procedure does not disturb the state when applied to the unaltered decryption key dk
(or ske.dk ). Moreover, observe that the adversary does not receive the pre-image si,1−x[i] for any computational basis
position i. Consequently, we show that the adversary cannot produce a value dk whose computational basis values
are inconsistent with those of x, unless it can invert outputs of f . From the previous discussion, it follows that if the
computational basis values of dk are consistent with x, then dk cannot result in the incorrect decryption of ske.ct.

3 Preliminaries
Notations and conventions. In this paper, standard math or sans serif font stands for classical algorithms (e.g., C or
Gen) and classical variables (e.g., x or pk). Calligraphic font stands for quantum algorithms (e.g., Gen) and calligraphic
font and/or the bracket notation for (mixed) quantum states (e.g., q or |ψ⟩).

Let [ℓ] denote the set of integers {1, · · · , ℓ}, λ denote a security parameter, and y := z denote that y is set, defined,
or substituted by z. For a finite set X and a distribution D, x ← X denotes selecting an element from X uniformly at
random, and x ← D denotes sampling an element x according to D. Let y← A(x) and y← A(x ) denote assigning to
y the output of a probabilistic or deterministic algorithm A and a quantum algorithm A on an input x and x , respectively.
PPT and QPT algorithms stand for probabilistic polynomial-time algorithms and polynomial-time quantum algorithms,
respectively. Let negl denote a negligible function. For strings x, y ∈ {0, 1}n, x · y denotes

⊕
i∈[n] xiyi where xi and

yi denote the ith bit of x and y, respectively. For random variables X and Y, we use the notation X ≈ Y to denote that
these are computationally indistinguishable. Likewise, X ≈s Y denotes that they are statistically indistinguishable.

3.1 One Way to Hiding Lemmas
Lemma 3.1 (O2H Lemma [AHU19]). Let G, H : X → Y be any functions, z be a random value, and S ⊆ X be a
random set such that G(x) = H(x) holds for every x /∈ S. The tuple (G, H, S, z) may have arbitrary joint distribution.
Furthermore, let A be a quantum oracle algorithm that makes at most q quantum queries. Let B be an algorithm such
that B H on input z chooses i← [q], runs A H(z), measures A’s i-th query, and outputs the measurement outcome. Then,
we have: ∣∣∣Pr

[
A H(z) = 1

]
− Pr

[
AG(z) = 1

]∣∣∣ ≤ 2q ·
√

Pr[B H(z) ∈ S] .

We require a generalization of this lemma, where A receives an additional quantum oracle Q in both worlds.
Consequently, we consider B to be given oracle access toQ, which it uses to simulate the oracle calls of A toQ. Notice
that if the outputs of Q were classical, we could have simply defined augmented oracles G′ (likewise H′) based on
G (likewise H) and Q. However, the oracles Q we consider will have classical inputs and quantum state outputs.
Consequently, the lemma we require is stated as follows:

Lemma 3.2 (O2H Lemma with Auxiliary Quantum Oracle). Let G, H : X → Y be any functions, z be a random
value, and S ⊆ X be a random set such that G(x) = H(x) holds for every x /∈ S. The tuple (G, H, S, z) may have
arbitrary joint distribution. Furthermore, let Q be a quantum oracle that is arbitrarily correlated with the tuple
(G, H, S, z), takes classical input and produces a (possibly mixed) quantum state as output. Let A be a quantum oracle
algorithm that makes at most q quantum queries to the oracles H or G, and arbitrarily many queries to the oracle Q.
Let B be an algorithm such that BQ,H on input z, chooses i← [q], runs AQ,H(z), measures A’s i-th query to H, and
outputs the measurement outcome. Then, we have:
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∣∣∣Pr
[

AQ,H(z) = 1
]
− Pr

[
AQ,G(z) = 1

]∣∣∣ ≤ 2q ·
√

Pr[BQ,H(z) ∈ S] .

Proof of Lemma 3.2. Let us consider an adversary Ã that receives as input the description ⟨Q⟩ of Q13, along with the
input z used by A . Given oracle access to H (likewise G) and (z, ⟨Q⟩) as input, Ã simply runs A H,Q(z) (likewise
AG,Q(z)) by simulating its queries to Q using the description ⟨Q⟩. Then, the O2H Lemma (Lemma 3.1) implies the
existence of an algorithm B̃ H(z, ⟨Q⟩) that chooses i← [q], runs Ã H(z, ⟨Q⟩), measures its i-th query to H and outputs
the measurement outcome. Observe that the algorithms Ã and B̃ do not make use of the description ⟨Q⟩ except for
simulating the queries made by A . Consequently, there exists an algorithm BQ,H(z) equivalent to B̃ H(z, ⟨Q⟩) that
directly runs A (instead of Ã) and simulates its oracle queries to Q using its own access to Q.

Remark 3.3. We assume that B also outputs the measured index i. However, this output is not taken into account for
notation such as BQ,H(z) ∈ S for the sake of simplicity.

3.2 Standard Cryptographic Tools
Attribute-Based Encryption.

Definition 3.4 (Attribute-Based Encryption). An ABE scheme ABE is a tuple of four PPT algorithms (Setup, KG, Enc,
Dec). Below, let X = {Xλ}λ, Y = {Yλ}λ, and R = {Rλ : Xλ ×Yλ → {0, 1}}λ be the ciphertext attribute space,
key attribute space, and the relation associated with ABE, respectively. We note that we will abuse the notation and
occasionally drop the subscript for these spaces for notational simplicity. We also note that the message space is set to
be {0, 1}ℓ below.

Setup(1λ)→ (pk, msk): The setup algorithm takes a security parameter 1λ and outputs a public key pk and master
secret key msk.

KG(msk, y, r)→ sky: The key generation algorithm KG takes a master secret key msk, a key attribute y ∈ Y , and
explicit randomness r. It outputs a decryption key sky. Note that KG is deterministic.14

Enc(pk, x, m)→ ct: The encryption algorithm takes a public key pk, a ciphertext attribute x ∈ X , and a message m,
and outputs a ciphertext ct.

Dec(sky, ct)→ z: The decryption algorithm takes a secret key sky and a ciphertext ct and outputs z ∈ {⊥} ∪ {0, 1}ℓ.

Correctness: We require that

Pr

Dec(sky, ct) = m :

(pk, msk)← Setup(1λ),
r ← {0, 1}poly(λ),
sky ← KG(msk, y, r),
ct← Enc(pk, x, m)

 ≥ 1− negl(λ).

holds for all x ∈ X and y ∈ Y such that R(x, y) = 0 and m ∈ {0, 1}ℓ.

By setting X , Y , and R appropriately, we can recover important classes of ABE. In particular, if we set
Xλ = Yλ = {0, 1}∗ and define Rλ so that Rλ(x, y) = 0 if x = y and Rλ(x, y) = 1 otherwise, we recover the
definition of identity-based encryption (IBE). If we set Xλ = {0, 1}n(λ) and Yλ to be the set of all circuits with input
space {0, 1}n(λ) and size at most s(λ), where n and s are some polynomials, and define R so that R(x, y) = y(x), we
recover the definition of (key policy) ABE for circuits.

We introduce a new security notion for ABE that we call quantum selective-security for ABE where the adversary is
allowed to get access to the key generation oracle in super-position.

13The O2H Lemma (Lemma 3.1) holds even if z is exponentially large, so the description of Q need not be concise.
14In the standard syntax, KG does not take explicit randomness, and is probabilistic. This change is just for notational convention in our schemes.
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Definition 3.5 (Quantum Selective-Security for ABE). We say that ABE is a selective-secure ABE scheme for relation
R : X × Y → {0, 1}, if it satisfies the following requirement, formalized by the experiment Expq-sel-ind

ABE,A (1λ, coin)
between an adversary A and a challenger Ch:

1. A declares the challenge ciphertext attribute x∗. Ch runs (pk, msk)← Setup(1λ) and sends pk to A .

2. A can get access to the following quantum key generation oracle.

Oqkg(Y, Z): Given two registers Y and Z, it first applies the map |y⟩Y |b⟩B → |y⟩Y |b⊕ R(x∗, y)⟩B and
measures the register B, where B is initialized to |0⟩B. If the result is 0, it returns ⊥. Otherwise, it chooses
r ← {0, 1}poly(λ), applies the map |y⟩Y |z⟩Z → |y⟩Y |z⊕KG(msk, y, r)⟩Z and returns the registers Y
and Z.

3. At some point, A sends (m0, m1) to Ch . Then, Ch generates ct∗ ← Enc(pk, x∗, mcoin) and sends ct∗ to A .

4. Again, A can get access to the oracle Oqkg.

5. A outputs a guess coin′ for coin and the experiment outputs coin′.

We say that ABE satisfies quantum selective security if, for all QPT A , it holds that

Advq-sel-ind
ABE,A (1λ) :=

∣∣∣Pr
[
Expq-sel-ind

ABE,A (1λ, 0)→ 1
]
− Pr

[
Expq-sel-ind

ABE,A (1λ, 1)→ 1
]∣∣∣

≤ negl(λ).

Boneh and Zhandry [BZ13b] introduced a similar quantum security notion for IBE and argued that it is straightforward
to prove the quantum security of the IBE scheme by [ABB10], by leveraging the lattice trapdoor based proof technique.
It is easy to prove the quantum selective security of the ABE scheme for circuits by Boneh et al. [BGG+14], which
relies on the lattice trapdoor based proof technique as well. Formally, we have the following theorem.

Theorem 3.6. Assuming the hardness of the LWE problem, there exists a quantum selectively secure ABE scheme for all
relations computable in polynomial time.

We elaborate on this in Appendix A.

Compute-and-Compare Obfuscation. We define a class of circuits called compute-and-compare circuits as follows:

Definition 3.7 (Compute-and-Compare Circuits). A compute-and-compare circuit CC[P, lock, m] is of the form

CC[P, lock, m](x)
{

m if P(x) = lock
⊥ otherwise

where P is a circuit, lock is a string called the lock value, and m is a message.

We now introduce the definition of compute-and-compare obfuscation. We assume that a program P has an
associated set of parameters ppP (input size, output size, circuit size) which we do not need to hide.

Definition 3.8 (Compute-and-Compare Obfuscation). A PPT algorithm CC.Obf is an obfuscator for the family of
distributions D = {Dλ} if the following holds:

Functionality Preserving: There exists a negligible function negl such that for all programs P, all lock values lock,
and all messages m, it holds that

Pr
[
∀x, P̃(x) = CC[P, lock, m](x) : P̃← CC.Obf(1λ, P, lock, m)

]
≥ 1− negl(λ).
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Distributional Indistinguishability: There exists an efficient simulator Sim such that for all messages m, we have

(CC.Obf(1λ, P, lock, m), aux ) ≈ (CC.Sim(1λ, ppP, |m|), aux ),

where (P, lock, aux )← Dλ.

Theorem 3.9 ([GKW17, WZ17]). If the LWE assumption holds, there exists compute-and-compare obfuscation for all
families of distributions D = {Dλ}, where each Dλ outputs uniformly random lock value lock independent of P and
aux .

We present the definitions for SKE with certified deletion.

Definition 3.10 (SKE-CD (Syntax)). An SKE-CD scheme is a tuple of algorithms (KG, Enc, Dec, Del , Vrfy) with
plaintext spaceM and key space K.

KG(1λ)→ sk: The key generation algorithm takes as input the security parameter 1λ and outputs a secret key sk ∈ K.

Enc(sk, m)→ (ct , vk): The encryption algorithm takes as input sk and a plaintext m ∈ M and outputs a ciphertext ct
and a verification key vk.

Dec(sk, ct)→ m′: The decryption algorithm takes as input sk and ct and outputs a plaintext m′ ∈ M or ⊥.

Del (ct)→ cert: The deletion algorithm takes as input ct and outputs a certificate cert.

Vrfy(vk, cert)→ ⊤/⊥: The verification algorithm takes vk and cert as input and outputs ⊤ or ⊥.

Decryption correctness: There exists a negligible function negl such that for any m ∈ M,

Pr
[

Dec(sk, ct) = m : sk← KG(1λ)
(ct , vk)← Enc(sk, m)

]
≥ 1− negl(λ).

Verification correctness: There exists a negligible function negl such that for any m ∈ M,

Pr

Vrfy(vk, cert) = ⊤ :
sk← KG(1λ)
(ct , vk)← Enc(sk, m)
cert← Del (ct)

 ≥ 1− negl(λ).

We introduce indistinguishability against Chosen Verification Attacks (CVA).

Definition 3.11 (IND-CVA-CD Security). We consider the following security experiment Expind-cva-cd
SKECD,A (1λ, coin).

1. The challenger computes sk← KG(1λ).

2. Thoughout the experiment, A can get access to the following oracle.

OEnc(m): On input m, it generates (ct , vk)← Enc(sk, m) and returns (vk, ct).

3. A sends (m0, m1) ∈ M2 to the challenger.

4. The challenger computes (ct∗, vk∗)← Enc(sk, mcoin) and sends ct∗ to A .

5. Hereafter, A can get access to the following oracle, where V is initialized to ⊥.

OVrfy(cert): On input cert, it returns sk and updates V to ⊤ if Vrfy(vk∗, cert) = ⊤. Otherwise, it returns ⊥.

6. When A outputs coin′ ∈ {0, 1}, the experiment outputs coin′ if V = ⊤ and otherwise outputs 0.
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We say that SKECD is IND-CVA-CD secure if for any QPT A , it holds that

Advind-cva-cd
SKECD,A (1λ) :=

∣∣∣Pr
[
Expind-cva-cd

SKECD,A (1λ, 0) = 1
]
− Pr

[
Expind-cva-cd

SKECD,A (1λ, 1) = 1
]∣∣∣

≤ negl(λ).

Definition 3.12 (BB84-Based SKE-CD). We say that an SKE-CD scheme SKECD = (KG, Enc, Dec, Del , Vrfy) is a
BB84-based SKE-CD scheme if it satisfies the following conditions.

• Let (ct , vk) ← Enc(sk, m). vk is of the form (x, θ) ∈ {0, 1}ℓct × {0, 1}ℓct , and ct is of the form |ψ1⟩ ⊗ · · · ⊗
|ψℓct⟩, where

|ψi⟩ =
{
|x[i]⟩ i f θ[i] = 0
|0⟩+ (−1)x[i] |1⟩ i f θ[i] = 1.

Moreover, there exists n < ℓct such that θ[i] = 0 for every i ∈ [n + 1, ℓct]. We call x[n + 1]∥ · · · ∥x[ℓct] a
classical part of ct . The parameter n is specified by a construction. The classical part has information of θ, and
we can compute θ from it and sk.

• Del (ct) measures each qubit of ct in the Hadamard basis and outputs the measurement result cert ∈ {0, 1}ℓct .

• Vrfy(vk, cert) outputs ⊤ if cert[i] = x[i] holds for every i ∈ [n] such that θ[i] = 1, and 0 otherwise.

• Classical Decryption Property: There exists an additional deterministic polynomial time algorithm CDec with
the following property. Let (ct , vk)← Enc(sk, m), where vk = (x, θ). Let u ∈ {0, 1}ℓct be any string such that
u[i] = x[i] for all i : θ[i] = 0. Then, the following holds:

Pr
[
CDec

(
sk, u

)
= m

]
≥ 1− negl(λ)

Theorem 3.13. There exists a BB84-based SKE-CD scheme satisfying IND-CVA-CD security, assuming the existence of
a CPA-secure Secret-Key Encryption scheme.

Kitagawa and Nishimaki [KN22] claimed the same statement as Theorem 3.13. However, their proof has a gap
because known BB84-based SKE-CD schemes do not satisfy the unique certificate property, which they introduced.
Hence, we prove Theorem 3.13 in Appendix B.

4 Encryption with Collusion-Resistant SKL
In this section, we define the notions of public-key and secret-key encryption with collusion-resistant secure key-leasing.

4.1 Definitions of PKE-CR-SKL
The syntax of PKE-CR-SKL is defined as follows.

Definition 4.1 (PKE-CR-SKL). A PKE-CR-SKL scheme PKE-CR-SKL is a tuple of five algorithms (Setup, KG , Enc,
Dec, Vrfy). Below, letM be the message space of PKE-CR-SKL.

Setup(1λ)→ (ek, msk): The setup algorithm takes a security parameter 1λ, and outputs an encryption key ek and a
master secret-key msk.

KG(msk)→ (dk , vk): The key generation algorithm takes the master secret-key msk as input, and outputs a decryption
key dk and a verification key vk.

Enc(ek, m)→ ct: The encryption algorithm takes an encryption key ek and a message m ∈ M, and outputs a
ciphertext ct.
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Dec(dk , ct)→ m̃/⊥: The decryption algorithm takes a decryption key dk and a ciphertext ct, and outputs a value m̃
or ⊥.

Vrfy(vk, d̃k )→ ⊤/⊥: The verification algorithm takes a verification key vk and a (possibly malformed) decryption
key d̃k , and outputs ⊤ or ⊥.

Decryption correctness: For every m ∈ M, we have

Pr

Dec(dk , ct) = m :
(ek, msk)← Setup(1λ)
(dk , vk)← KG(msk)
ct← Enc(ek, m)

 ≥ 1− negl(λ).

Verification correctness: We have

Pr
[

Vrfy(vk, dk ) = ⊤ : (ek, msk)← Setup(1λ)
(dk , vk)← KG(msk)

]
≥ 1− negl(λ).

Remark 4.2. We can assume without loss of generality that a decryption key of a PKE-CR-SKL scheme is reusable, i.e.,
it can be reused to decrypt (polynomially) many ciphertexts. In particular, we can assume that for honestly generated
ct and dk , if we decrypt ct by using dk , the state of the decryption key after the decryption is negligibly close to that
before the decryption in terms of trace distance. This is because the output of the decryption is almost deterministic by
decryption correctness, and thus such an operation can be done without almost disturbing the input state by the gentle
measurement lemma [Win99].

Definition 4.3 (IND-KLA Security). We say that a PKE-CR-SKL scheme PKE-CR-SKL with the message spaceM
is IND-KLA secure, if it satisfies the following requirement, formalized by the experiment Expind-kla

PKE-CR-SKL,A(1
λ, coin)

between an adversary A and a challenger Ch:

1. Ch runs (ek, msk)← Setup(1λ) and sends ek to A .

2. A requests q decryption keys for some polynomial q. Ch generates (dk i, vki)← KG(msk) for every i ∈ [q] and
sends dk 1, . . . , dk q to A .

3. A can get access to the following (stateful) verification oracle OVrfy where Vi is initialized to ⊥ for all i ∈ [q]:

OVrfy (i, d̃k ): It runs d← Vrfy(vki, d̃k ) and returns d.
If Vi = ⊥ and d = ⊤, it updates Vi := ⊤.

4. A sends (m∗0 , m∗1) ∈ M2 to the challenger. If Vi = ⊥ for some i ∈ [q], the challenger outputs 0 as the final
output of this experiment. Otherwise, the challenger generates ct∗ ← Enc(ek, m∗coin) and sends ct∗ to A .

5. A outputs a guess coin′ for coin. Ch outputs coin′ as the final output of the experiment.

For any QPT A , it holds that

Advind-kla
PKE-CR-SKL,A(1

λ) :=∣∣∣Pr
[
Expind-kla

PKE-CR-SKL,A(1
λ, 0)→ 1

]
− Pr

[
Expind-kla

PKE-CR-SKL,A(1
λ, 1)→ 1

]∣∣∣ ≤ negl(λ).

4.2 Definitions of SKE-CR-SKL
The syntax of SKE-CR-SKL is defined as follows.

Definition 4.4 (SKE-CR-SKL). An SKE-CR-SKL scheme SKE-CR-SKL is a tuple of five algorithms (Setup, KG , Enc,
Dec, Vrfy). Below, letM be the message space of SKE-CR-SKL.
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Setup(1λ)→ msk: The setup algorithm takes a security parameter 1λ and outputs a master secret-key msk.

KG(msk)→ (dk , vk, tk): The key generation algorithm takes the master secret-key msk as input. It outputs a
decryption key dk , a verification key vk, and a testing key tk.

Enc(msk, m)→ ct: The encryption algorithm takes the master secret-key msk and a message m ∈ M, and outputs a
ciphertext ct.

Dec(dk , ct)→ m̃: The decryption algorithm takes a decryption key dk and a ciphertext ct, and outputs a value m̃.

Vrfy(vk, d̃k )→ ⊤/⊥: The verification algorithm takes a verification key vk and a (possibly malformed) decryption
key d̃k , and outputs ⊤ or ⊥.

Decryption correctness: For all m ∈ M, we have

Pr

Dec(dk , ct) = m :
msk← Setup(1λ)
(dk , vk, tk)← KG(msk)
ct← Enc(msk, m)

 ≥ 1− negl(λ).

Verification correctness: We have

Pr
[

Vrfy(vk, dk ) = ⊤ : msk← Setup(1λ)
(dk , vk, tk)← KG(msk)

]
≥ 1− negl(λ).

Definition 4.5 (Classical Decryption Property). We say that SKE-CR-SKL = (Setup, KG , Enc, Dec, Vrfy) has the
classical decryption property if there exists a deterministic polynomial time algorithm CDec such that given dk in the
register DK and ciphertext ct, Dec applies the map |u⟩DK |v⟩MSG → |u⟩DK |v⊕ CDec(u, ct)⟩MSG and outputs the
measurement result of the register MSG in the computational basis, where MSG is initialized to |0 · · · 0⟩MSG.

Definition 4.6 (Key Testability). We say that an SKE-CR-SKL scheme SKE-CR-SKL with the classical decryption
property satisfies key testability, if there exists a classical deterministic algorithm KeyTest that satisfies the following
conditions:

• Syntax: KeyTest takes as input a testing key tk and a classical string dk as input. It outputs 0 or 1.

• Correctness: Let msk← Setup(1λ) and (dk , vk, tk)← KG(msk). We denote the register holding dk as DK. Let
KT be a register that is initialized to |0⟩KT. If we apply the map |u⟩DK |β⟩KT → |u⟩DK |β⊕KeyTest(tk, u)⟩KT
to the registers DK and KT and then measure KT in the computational basis, we obtain 1 with overwhelming
probability.

• Security: Consider the following experiment Expkey-test
SKE-CR-SKL,A(1

λ).

1. The challenger Ch runs msk← Setup(1λ) and initializes A with input msk.
2. A requests q decryption keys for some polynomial q. Ch generates (dk i, vki, tki) ← KG(msk) for every

i ∈ [q] and sends (dk i, vki, tki)i∈[q] to A .

3. A sends (k, dk, m) to Ch , where k is an index, dk is a classical string and m is a message. Ch generates
ct← Enc(msk, m). Ch outputs ⊤ if KeyTest(tkk, dk) = 1 and CDec(dk, ct) ̸= m. Otherwise, Ch outputs
⊥.

For all QPT A , the following must hold:

Advkey-test
SKE-CR-SKL,A(1

λ) := Pr
[
Expkey-test

SKE-CR-SKL,A(1
λ)→ ⊤

]
≤ negl(λ).
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Definition 4.7 (OT-IND-KLA Security). We say that an SKE-CR-SKL scheme with key testability SKE-CR-SKL is
OT-IND-KLA secure, if it satisfies the following requirement, formalized by the experiment Expot-ind-kla

SKE-CR-SKL,A(1
λ, coin)

between an adversary A and a challenger Ch:

1. Ch runs msk← Setup(1λ) and initializes A with the security parameter 1λ.

2. A requests q decryption keys for some polynomial q. The challenger generates (dk i, vki, tki)← KG(msk) for
every i ∈ [q] and sends (dk i, tki)i∈[q] to A .

3. A can get access to the following (stateful) verification oracle OVrfy where Vi is initialized to be ⊥:

OVrfy (i, d̃k ): It runs d← Vrfy(vki, d̃k ) and returns d.
If Vi = ⊥ and d = ⊤, it updates Vi := ⊤.

4. A sends (m∗0 , m∗1) ∈ M2 to the challenger. If Vi = ⊥ for some i ∈ [q], Ch outputs 0 as the final output of this
experiment. Otherwise, Ch generates ct∗ ← Enc(msk, m∗coin) and sends ct∗ to A .

5. A outputs a guess coin′ for coin. Ch outputs coin′ as the final output of the experiment.

For all QPT A , it holds that:

Advot-ind-kla
SKE-CR-SKL,A(1

λ) :=∣∣∣Pr
[
Expot-ind-kla

SKE-CR-SKL,A(1
λ, 0)→ 1

]
− Pr

[
Expot-ind-kla

SKE-CR-SKL,A(1
λ, 1)→ 1

]∣∣∣ ≤ negl(λ).

5 SKE-CR-SKL with Key Testability
In this section, we show how to achieve SKE-CR-SKL introduced in Section 4.2.

5.1 Construction
We construct an SKE-CR-SKL scheme with key testability SKE-CR-SKL = SKE-CR-SKL.(Setup, KG , Enc, Dec, Vrfy)
having the additional algorithms CDec and KeyTest, using the following building blocks.

• BB84-based SKE-CD scheme (Definition 3.12) SKECD = SKECD.(KG, Enc, Dec, Del , Vrfy) having the classical
decryption algorithm SKECD.CDec.

• OWF f : {0, 1}λ → {0, 1}p(λ) for some polynomial p.

LetM := {0, 1}ℓm be the plaintext space. The construction is as follows:

SKE-CR-SKL.Setup(1λ):

1. Generate r ← {0, 1}ℓm .
2. Generate skecd.sk← SKECD.KG(1λ).
3. Output msk := (skecd.sk, r).

SKE-CR-SKL.KG(msk):

1. Parse msk = (skecd.sk, r).
2. Generate (skecd.ct , skecd.vk) ← SKECD.Enc(skecd.sk, r). skecd.vk is of the form (x, θ) ∈ {0, 1}ℓct ×
{0, 1}ℓct , and skecd.ct is of the form |ψ1⟩SKECD.CT1

⊗ · · · ⊗ |ψℓct⟩SKECD.CTℓct
.

3. Generate si,b ← {0, 1}λ and compute ti,b ← f (si,b) for every i ∈ [ℓct] and b ∈ {0, 1}. Set T :=
t1,0∥t1,1∥ · · · ∥tℓct,0∥tℓct,1 and S = {si,0 ⊕ si,1}i∈[ℓct] : θ[i]=1.
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4. Prepare a register Si that is initialized to
∣∣0λ

〉
Si

for every i ∈ [ℓct].

5. For every i ∈ [ℓct], apply the map

|ui⟩SKECD.CTi
⊗ |vi⟩Si

→ |ui⟩SKECD.CTi
⊗

∣∣vi ⊕ si,ui

〉
Si

to the registers SKECD.CTi and Si and obtain the resulting state ρi.
6. Output dk = (ρi)i∈[ℓct], vk = (x, θ, S), and tk = T.

SKE-CR-SKL.Enc(msk, m):

1. Parse msk = (skecd.sk, r).
2. Output ct := (skecd.sk, r⊕m).

SKE-CR-SKL.CDec(dk, ct):

1. Parse ct = (skecd.sk, z). Let d̃k be the sub-string of dk on register SKECD.CT = SKECD.CT1 ⊗ · · · ⊗
SKECD.CTℓct .

2. Output z⊕ SKECD.CDec(skecd.sk, d̃k).

SKE-CR-SKL.Dec(dk , ct):

1. Parse (ρi)i∈[ℓct]. We denote the register holding ρi as SKECD.CTi ⊗ Si for every i ∈ [ℓct].

2. Prepare a register MSG of ℓm qubits that is initialized to |0 · · · 0⟩MSG.
3. Apply the map

|u⟩⊗
i∈[ℓct ] SKECD.CTi

⊗ |w⟩MSG →

|u⟩⊗
i∈[ℓct ] SKECD.CTi

⊗ |w⊕ SKE-CR-SKL.CDec(u, ct)⟩MSG

to the registers
⊗

i∈[ℓct] SKECD.CTi and MSG.

4. Measure MSG in the computational basis and output the result m′.

SKE-CR-SKL.Vrfy(vk, d̃k ):

1. Parse vk = (x, θ, S = {si,0 ⊕ si,1}i∈[ℓct] : θ[i]=1) and dk = (ρi)i∈[ℓct] where ρi is a state on the registers
SKECD.CTi and Si.

2. For every i ∈ [ℓct], measure ρi in the Hadamard basis to get outcomes ci, di corresponding to the registers
SKECD.CTi and Si respectively.

3. Output ⊤ if x[i] = ci ⊕ di · (si,0 ⊕ si,1) holds for every i ∈ [ℓct] such that θ[i] = 1. Otherwise, output ⊥.

SKE-CR-SKL.KeyTest(tk, dk):

1. Parse dk as a string over the registers SKECD.CT = SKECD.CT1 ⊗ · · · ⊗ SKECD.CTℓct and S =
S1 ⊗ · · · ⊗ Sℓct . Let ui denote the value on SKECD.CTi and vi the value on Si. Parse tk as T =
t1,0∥t1,1∥ · · · ∥tℓct,0∥tℓct,1.

2. Let Check[ti,0, ti1 ](ui, vi) be the deterministic algorithm that outputs 1 if f (vi) = ti,ui holds and 0 otherwise.
3. Output Check[t1,0, t1,1](u1, v1) ∧ · · · ∧ Check[tℓct,0, tℓct,1](uℓct , vℓct).
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Decryption correctness: For a ciphertext ct = (skecd.sk, r ⊕ m), the decryption algorithm Dec performs the
following computation:

|u⟩⊗
i∈[ℓct ] SKECD.CTi

⊗ |w⟩MSG →

|u⟩⊗
i∈[ℓct ] SKECD.CTi

⊗ |w⊕ r⊕m⊕ SKECD.CDec(skecd.sk, u)⟩MSG

Recall that SKECD.CT = SKECD.CT1 ⊗ · · · ⊗ SKECD.CTℓct is a register corresponding to the ciphertext of a
BB84-based SKE-CD scheme SKECD. Hence, from the Classical Decryption property of SKECD (Definition 3.12), it
must be that SKECD.CDec(skecd.sk, u) = r for every u in the superposition of skecd.ct . Consequently, m is written
onto the MSG register in each term of the superposition and decryption correctness follows.

Verification correctness: Observe that for the Hadamard basis positions (i ∈ [ℓct] such that θ[i] = 1), ρi is of the
form:

ρ[i] = |0⟩SKECD.CTi
|si,0⟩Si

+ (−1)x[i] |1⟩SKECD.CTi
|si,1⟩Si

It is easy to see that measuring the state in the Hadamard basis gives outcomes ci, di (on registers SKECD.CTi and
Si respectively) satisfying x[i] = ci ⊕ di · (si,0 ⊕ si,1). Hence, the verification correctness follows.

Theorem 5.1. There exists an SKE-CR-SKL scheme satisfying OT-IND-KLA security and Key-Testability, assuming the
existence of a BB84-based SKE-CD scheme and the existence of an OWF.

We prove this theorem in the subsequent sections.

5.2 Proof of OT-IND-KLA Security
Let A be an adversary for the OT-IND-KLA security of the construction SKE-CR-SKL that makes use of a BB84-based
SKE-CD scheme SKECD. Consider the hybrid Hybcoin

j defined as follows:

Hybcoin
j :

1. The challenger Ch runs msk← SKE-CR-SKL.Setup(1λ) and initializes A with input 1λ.
2. A requests q decryption keys for some polynomial q. For each k ∈ [j], Ch generates (dk i, vki, tki) ←

K̃G(msk) where K̃G is defined as follows (the difference from SKE-CR-SKL.KG is colored in red):
K̃G(msk):

(a) Parse msk = (skecd.sk, r).
(b) Sample r̃ ← {0, 1}ℓm .
(c) Generate (skecd.ct , skecd.vk)← SKECD.Enc(skecd.sk, r̃). skecd.vk is of the form (x, θ) ∈ {0, 1}ℓct ×
{0, 1}ℓct , and skecd.ct can be described as |ψ1⟩SKECD.CT1

⊗ · · · ⊗ |ψℓct⟩SKECD.CTℓct
.

(d) Generate si,b ← {0, 1}λ and compute ti,b ← f (si,b) for every i ∈ [ℓct] and b ∈ {0, 1}. Set
T := t1,0∥t1,1∥ · · · ∥tℓct,0∥tℓct,1 and S = {si,0 ⊕ si,1}i∈[ℓct] : θ[i]=1.

(e) Prepare a register Si that is initialized to |0 · · · 0⟩Si
for every i ∈ [ℓct].

(f) For every i ∈ [ℓct], apply the map

|ui⟩SKECD.CTi
⊗ |vi⟩Si

→ |ui⟩SKECD.CTi
⊗

∣∣vi ⊕ si,ui

〉
S1

to the registers SKECD.CTi and Si and obtain the resulting state ρi.
(g) Output dk = (ρi)i∈[ℓct], vk = (x, θ, S), and tk = T.
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3. On the other hand, for k = j + 1, . . . , q, Ch generates (dk k, vkk, tkk) ← SKE-CR-SKL.KG(msk). Then,
Ch sends (dk k, tkk)k∈[q] to A .

4. A can get access to the following (stateful) verification oracle OVrfy where Vi is initialized to ⊥:

OVrfy (i, d̃k ): It runs d ← SKE-CR-SKL.Vrfy(vki, d̃k ) and returns d. If Vi = ⊥ and d = ⊤, it updates
Vi := ⊤.

5. A sends (m∗0 , m∗1) ∈ {0, 1}ℓm × {0, 1}ℓm to Ch . If Vi = ⊥ for some i ∈ [q], Ch outputs 0 as the final output
of this experiment. Otherwise, Ch generates ct∗ ← SKE-CR-SKL.Enc(msk, m∗coin) and sends ct∗ to A .

6. A outputs a guess coin′ for coin. The challenger outputs coin′ as the final output of the experiment.

We will now prove the following lemma:

Lemma 5.2. ∀j ∈ {0, . . . , q− 1} and coin ∈ {0, 1} : Hybcoin
j ≈ Hybcoin

j+1 .

Proof. Suppose Hybcoin
j ̸≈ Hybcoin

j+1 . Let D be a corresponding distinguisher. We will construct a reduction R that
breaks the IND-CVA-CD security of the BB84-based SKE-CD scheme SKECD. The execution of R D in the experiment
Expind-cva-cd

SKECD,R (1λ, b) proceeds as follows:

Execution of R D in Expind-cva-cd
SKECD,R (1λ, b):

1. The challenger Ch computes skecd.sk← SKECD.KG(1λ).
2. R samples (r0, r1)← {0, 1}ℓm × {0, 1}ℓm and sends it to Ch .
3. Ch computes (skecd.ct⋆, skecd.vk⋆)← SKECD.Enc(skecd.sk, rb) and sends skecd.ct⋆ to R .
4. R initializes D with 1λ. D requests q keys for some polynomial q.
5. For each k ∈ [j], R computes dk k as follows:

• Sample a random value r̃ ← {0, 1}ℓm .
• Compute (skecd.c̃t , skecd.ṽk)← OEnc(r̃).
• Compute dk k by executing Steps 2.(c)-2.(g) as in Hyb0

j , but using skecd.c̃t in place of skecd.ct .

6. R computes dk j+1 by executing Steps 2.(c)-2.(g) as in Hyb0
j , but using skecd.ct⋆ in place of skecd.ct .

7. For each k ∈ [j + 2, q], R computes dk k as follows:

• Compute (skecd.c̃t , skecd.ṽk)← OEnc(r1).
• Compute dk k by executing Steps 2.(c)-2.(g) as in Hyb0

j , but using skecd.c̃t in place of skecd.ct .

8. R sends dk 1, . . . , dk q to D and initializes Vk = ⊥ for every k ∈ [q].

9. If k ̸= j + 1, R simulates the response of oracle OVrfy (k, d̃k ) as follows:

• Parse ṽk = (x, θ, S = {si,0 ⊕ si,1}i∈[ℓct] : θ[i]=1) and d̃k = (ρi)i∈[ℓct].
• For every i ∈ [ℓct], measure ρi in the Hadamard basis to get outcomes ci, di corresponding to the

registers SKECD.CTi and Si respectively.
• Compute cert[i] = ci ⊕ di · (si,0 ⊕ si,1) for every i ∈ [ℓct].
• If x[i] = cert[i] holds for every i ∈ [ℓct] : θ[i] = 1, then update Vk = ⊤ and send ⊤ to D. Else, send
⊥.

10. If k = j + 1, R simulates the response of oracle OVrfy (k, d̃k ) as follows:

• Compute cert = cert[1]∥ . . . ∥cert[ℓct], where each cert[i] is computed as in Step 9.
• Send cert to Ch . If Ch returns skecd.sk, send ⊤ to D and update Vj+1 = ⊤. Else if Ch returns ⊥, send
⊥ to D.

22



11. D sends (m⋆
0 , m⋆

1) ∈ {0, 1}ℓm × {0, 1}ℓm to R . If Vi = ⊥ for any i ∈ [q], R sends 0 to Ch . R computes
ct⋆ = (skecd.sk, r1 ⊕m⋆

coin), where skecd.sk is obtained from Ch in Step 10. R sends ct∗ to D.
12. D outputs a guess b′ which R forwards to Ch . Ch outputs b′ as the final output of the experiment.

We will first argue that when b = 1, the view of D is exactly the same as its view in the hybrid Hybcoin
j . Notice that

the reduction computes the first j decryption keys by querying the encryption oracle on random plaintexts. Hybj on the
other hand, directly computes them but there is no difference in the output ciphertexts. A similar argument holds for the
keys dk j+2, . . . , dk q, which contain encryptions of the same random value r1. Moreover, if b = 1, the value encrypted
as part of the key dk j+1 is also r1. This is the same as in Hybcoin

j . As for the verification oracle queries, notice that they
are answered similarly by the reduction and Hybcoin

j for all but the j + 1-th key. For the j + 1-th key, the reduction
works differently in that it forwards the certificate cert to the verification oracle. However, the verification procedure of
the BB84-based SKE-CD scheme checks the validity of the value cert in the same way as the reduction, so there is no
difference.

Finally, notice that when b = 0, the encrypted value is random and independent of r1, similar to the hybrid Hybcoin
j+1 .

Consequently, R breaks the IND-CVA-CD security of SKECD with non-negligible probability, a contradiction.

Notice now that the hybrid Hybcoin
0 is the same as the experiment Expot-ind-kla

SKE-CR-SKL,A(1
λ, coin). From the previous

lemma, we have that Hybcoin
0 ≈ Hybcoin

q . However, we have that Hyb0
q ≈ Hyb1

q because Hyb0
q and Hyb1

q do not encrypt
r at all as part of the decryption keys, but they mask the plaintext with r. Consequently, we have that Hyb0

0 ≈ Hyb1
0,

which completes the proof.

5.3 Proof of Key-Testability
First, we will argue the correctness requirement. Recall that SKE-CR-SKL.KG applies the following map to a BB84
state |x⟩θ , where (x, θ) ∈ {0, 1}ℓct × {0, 1}ℓct , for every i ∈ [ℓct]:

|ui⟩SKECD.CTi
⊗ |vi⟩Si

→ |ui⟩SKECD.CTi
⊗

∣∣vi ⊕ si,ui

〉
Si

where SKECD.CTi denotes the register holding the i-th qubit of |x⟩θ and Si is a register initialized to |0 . . . 0⟩Si
.

Consider applying the algorithm SKE-CR-SKL.KeyTest in superposition to the resulting state, i.e., performing
the following map, where SKECD.CT = SKECD.CT1 ⊗ · · · ⊗ SKECD.CTℓct and S = S1 ⊗ · · · ⊗ Sℓct , and KT is
initialized to |0⟩:

|u⟩SKECD.CT ⊗ |v⟩S ⊗ |β⟩KT → |u⟩SKECD.CT ⊗ |v⟩S ⊗ |β⊕ SKE-CR-SKL.KeyTest(tk, u∥v)⟩KT

where tk = T = t1,0∥t1,1∥ · · · ∥tℓct,0∥tℓct,1. Recall that SKE-CR-SKL.KeyTest outputs 1 if and only if
Check[ti,0, ti,1](ui, vi) = 1 for every i ∈ [ℓct], where ui, vi denote the states of the registers SKECD.CTi and Si
respectively. Recall that Check[ti,0, ti,1](ui, vi) computes f (vi) and checks if it equals ti,ui . Since the construction
chooses ti,ui such that f (si,ui ) = ti,ui , this check always passes. Consequently, measuring register KT always produces
outcome 1.

We will now argue that the security requirement holds by showing the following reduction to the security of the
OWF f . Let A be an adversary that breaks the key-testability of SKE-CR-SKL. Consider a QPT reduction R that works
as follows in the OWF security experiment:

Execution of R A in Exptowf
f ,R (1

λ):

1. The challenger chooses s← {0, 1}λ and sends y := f (s) to R .
2. R runs SKE-CR-SKL.Setup(1λ) and initializes A with input msk.
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3. A requests q decryption keys for some polynomial q. R picks a random index k⋆ ∈ [q]. For every
k ̸= k⋆, R generates (dk k, vkk, tkk) by computing the function f as needed. For the index k⋆, R computes
(dk k⋆ , vkk⋆ , tkk⋆) as follows (the difference is colored in red):

(a) Parse msk = (skecd.sk, r).
(b) Generate (skecd.ct , skecd.vk)← SKECD.Enc(skecd.sk, r). skecd.vk is of the form (x, θ) ∈ {0, 1}ℓct ×
{0, 1}ℓct , skecd.ct is of the form |ψ1⟩SKECD.CT1

⊗ · · · ⊗ |ψℓct⟩SKECD.CTℓct
.

(c) Choose an index i⋆ ∈ [ℓct] such that θ[i⋆] = 0. For every i ∈ [ℓct] such that i ̸= i⋆, generate
si,b ← {0, 1}λ and compute ti,b ← f (si,b) for every b ∈ {0, 1}. For i = i⋆, set ti⋆ ,1−x[i⋆ ] := y. Then,
generate si⋆ ,x[i⋆ ] ← {0, 1}λ and compute ti⋆ ,x[i⋆ ] = f (si⋆ ,x[i⋆ ]). Set T := t1,0∥t1,1∥ · · · ∥tℓct,0∥tℓct,1
and S = {si,0 ⊕ si,1}i∈[ℓct] : θ[i]=1.

(d) Prepare a register Si that is initialized to |0 · · · 0⟩Si
for every i ∈ [ℓct].

(e) For every i ∈ [ℓct], apply the map

|ui⟩SKECD.CTi
⊗ |vi⟩Si

→ |ui⟩SKECD.CTi
⊗

∣∣vi ⊕ si,ui

〉
Si

to the registers SKECD.CTi and Si and obtain the resulting state ρi.
(f) Compute dk k⋆ = (ρi)i∈[ℓct], vkk⋆ = (x, θ, S), and tkk⋆ = T.

4. R sends (dk i, vki, tki) to A for every i ∈ [q].
5. A sends (k, dk, m) to R . If k ̸= k⋆, R aborts. Otherwise, R parses dk as a string over the registers

SKECD.CT = SKECD.CT1⊗ · · · ⊗ SKECD.CTℓct and S = S1⊗ · · · ⊗ Sℓct and measures the register Si⋆
to obtain an outcome si⋆ . R then sends si⋆ to the challenger.

Notice that the view of A is the same as its view in the key-testability experiment, as only the value ti⋆ ,1−x[i⋆ ] is
generated differently by forwarding the value y, but this value is distributed identically to the original value. Note that in
both cases, A receives no information about a pre-image of ti⋆ ,1−x[i⋆ ]. Now, R guesses the index k that A targets with
probability 1

q . By assumption, we have that CDec(dk, ct) ̸= m where ct = Enc(msk, m). The value dk can be parsed
as a string over the registers SKECD.CT and S. Let d̃k be the sub-string of dk on the register SKECD.CT. Recall
that CDec invokes the algorithm SKECD.CDec on input d̃k. We will now recall a property of SKECD.CDec that was
specified in Definition 3.12:

Let (ct , vk = (x, θ))← SKECD.Enc(skecd.sk, r) where skecd.sk← SKECD.KG(1λ). Now, let u be any arbitrary
value such that u[i] = x[i] for all i : θ[i] = 0. Then, the following holds:

Pr
[
SKECD.CDec(skecd.sk, u) = r

]
≥ 1− negl(λ)

Consequently, if d̃k is such that d̃k[i] = x[i] for all i : θ[i] = 0, where (x, θ) are specified by vkk⋆ , then
SKECD.CDec(skecd.sk, d̃k) outputs the value r with high probability. Since CDec(dk, ct = (skecd.sk, r⊕m)) outputs
r⊕m⊕ SKECD.CDec(skecd.sk, d̃k), we have that CDec(dk, ct = (skecd.sk, r⊕m)) = m. Therefore, it must be the
case that there exists some index i for which d̃k[i] ̸= x[i]. With probability 1

ℓct
, this happens to be the guessed value i⋆.

In this case, A must output si⋆ on register Si such that f (si⋆) = ti⋆ ,1−x[i⋆ ] = y. This concludes the proof.
Since we have proved OT-IND-KLA security (Section 5.2) and Key-Testability (Section 5.3), we can now state the

following theorem:

6 PKE-CR-SKL from LWE
In this section, we show how to achieve PKE-CR-SKL from SKE-CR-SKL, standard ABE, and compute-and-compare
obfuscation.
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6.1 Construction
We construct a PKE-CR-SKL scheme PKE-CR-SKL = PKE-CR-SKL.(Setup, KG , Enc, Dec, Vrfy) with message space
M = {0, 1}ℓ using the following building blocks.

• ABE scheme ABE = ABE.(Setup, KG, Enc, Dec) for the following relation R.

R(x, y): Interpret x as a circuit. Then, output 0 (decryptable) if ⊥ = x(y) and otherwise 1.

• Compute-and-Compare Obfuscation CC.Obf with the simulator CC.Sim.

• SKE-CR-SKL scheme with Key Testability SKE-CR-SKL = SKE-CR-SKL.(Setup, KG , Enc, Dec, Vrfy , KeyTest).
It also has the classical decryption algorithm SKE-CR-SKL.CDec.

The construction is as follows.

PKE-CR-SKL.Setup(1λ):

• Generate (abe.pk, abe.msk)← ABE.Setup(1λ).
• Generate ske.msk← SKE-CR-SKL.Setup(1λ).
• Output ek := abe.pk and msk := (abe.msk, ske.msk).

PKE-CR-SKL.KG(msk):

• Parse msk = (abe.msk, ske.msk).
• Generate (ske.dk , ske.vk, ske.tk) ← SKE-CR-SKL.KG(ske.msk). We denote the register holding ske.dk

as SKE.DK.
• Prepare a register ABE.SK that is initialized to |0 · · · 0⟩ABE.SK.

• Choose explicit randomness k← {0, 1}λ.
• Apply the map |u⟩SKE.DK |v⟩ABE.SK → |u⟩SKE.DK |v⊕ ABE.KG(abe.msk, u, k)⟩ABE.SK to the registers

SKE.DK and ABE.SK, and obtain dk over the registers SKE.DK and ABE.SK.
• Output dk and vk := (abe.msk, ske.vk, ske.tk, k).

PKE-CR-SKL.Enc(ek, m):

• Parse ek = abe.pk.
• Generate C̃ ← CC.Sim(1λ, ppD, 1), where ppD consists of circuit parameters of D defined in the security

proof.
• Generate abe.ct← ABE.Enc(abe.pk, C̃, m).
• Output ct := abe.ct.

PKE-CR-SKL.Dec(dk , ct):

• Parse ct = abe.ct. We denote the register holding dk as SKE.DK⊗ ABE.SK.
• Prepare a register MSG that is initialized to |0 · · · 0⟩MSG
• Apply the map |v⟩ABE.SK |w⟩MSG → |v⟩ABE.SK |w⊕ ABE.Dec(v, abe.ct)⟩MSG to the registers ABE.SK

and MSG.
• Measure the register MSG in the computational basis and output the result m′.

PKE-CR-SKL.Vrfy(vk, dk ′):

• Parse vk = (abe.msk, ske.vk, ske.tk, k). We denote the register holding dk ′ as SKE.DK⊗ ABE.SK.
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• Prepare a register SKE.KT that is initialized to |0⟩SKE.KT.
• Apply the map |u⟩SKE.DK |β⟩SKE.KT → |u⟩SKE.DK |β⊕ SKE-CR-SKL.KeyTest(ske.tk, u)⟩SKE.KT to the

registers SKE.DK and SKE.KT.
• Measure SKE.KT in the computational basis and output ⊥ if the result is 0. Otherwise, go to the next step.
• Apply the map |u⟩SKE.DK |v⟩ABE.SK → |u⟩SKE.DK |v⊕ ABE.KG(abe.msk, u, k)⟩ABE.SK to the registers

SKE.DK and ABE.SK.
• Trace out the register ABE.SK and obtain ske.dk ′ over SKE.DK.
• Output ⊤ if ⊤ = SKE-CR-SKL.Vrfy(ske.vk, ske.dk ′) and ⊥ otherwise.

Decryption correctness. The key dk output by PKE-CR-SKL.KG is of the form ∑u αu |u⟩SKE.DK |abe.sku⟩ABE.SK,
where abe.sku ← ABE.KG(abe.msk, u, k). Let ct← PKE-CR-SKL.Enc(ek, m). On applying |v⟩ABE.SK |w⟩MSG →
|v⟩ABE.SK |w⊕ ABE.Dec(v, abe.ct)⟩MSG to ∑u αu |u⟩SKE.DK |abe.sku⟩ABE.SK ⊗ |0 · · · 0⟩MSG, with overwhelming
probability, the result is negligibly close to

∑
u

αu |u⟩SKE.DK |abe.sku⟩ABE.SK ⊗ |m⟩MSG

since C̃(u) = ⊥ and thus R(C̃, u) = 0 for C̃ ← CC.Sim(1λ, ppD, 1) and almost every string u. Therefore, we see that
PKE-CR-SKL satisfies decryption correctness.

Verification correctness. Let dk ← PKE-CR-SKL.KG(msk). It is clear that the state ske.dk ′ obtained when
computing PKE-CR-SKL.Vrfy(vk, dk ) is the same as ske.dk generated when generating dk . Therefore, the verification
correctness of PKE-CR-SKL follows from that of SKE-CR-SKL.

6.2 Proof of IND-KLA Security
Let A be an adversary for the IND-KLA security of PKE-CR-SKL. We consider the following sequence of experiments.

Hybcoin
0 : This is Expind-kla

PKE-CR-SKL,A(1
λ, coin).

1. The challenger Ch generates (abe.pk, abe.msk)← ABE.Setup(1λ) and ske.msk← SKE-CR-SKL.Setup(1λ),
and sends ek := abe.pk to A .

2. A requests q decryption keys for some polynomial q. Ch generates dk i as follows for every i ∈ [q]:

• Generate (ske.dk i, ske.vki, ske.tki) ← SKE-CR-SKL.KG(ske.msk). We denote the register holding
ske.dk i as SKE.DKi.

• Prepare a register ABE.SKi that is initialized to |0 · · · 0⟩ABE.SKi
.

• Choose explicit randomness ki ← {0, 1}λ.
• Apply the map |u⟩SKE.DKi

|v⟩ABE.SKi
→ |u⟩SKE.DKi

|v⊕ ABE.KG(abe.msk, u, ki)⟩ABE.SKi
to the

registers SKE.DKi and ABE.SKi, and obtain dk i over the registers SKE.DKi and ABE.SKi.

Ch sends dk 1, . . . , dk q to A .
3. A can get access to the following (stateful) verification oracle OVrfy where Vi is initialized to be ⊥:

OVrfy (i, d̃k ): It computes d as follows.

(a) Let the register holding d̃k be SKE.DKi ⊗ ABE.SKi.
(b) Prepare a register SKE.KTi that is initialized to |0⟩SKE.KTi

.
(c) Apply the map |u⟩SKE.DKi

|β⟩SKE.KTi
→ |u⟩SKE.DKi

|β⊕ SKE-CR-SKL.KeyTest(ske.tki, u)⟩SKE.KTi
to the registers SKE.DKi and SKE.KTi.
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(d) Measure SKE.KTi in the computational basis and set d := ⊥ if the result is 0. Otherwise, go to
the next step.

(e) Apply the map |u⟩SKE.DKi
|v⟩ABE.SKi

→ |u⟩SKE.DKi
|v⊕ ABE.KG(abe.msk, u, ki)⟩ABE.SKi

to the
registers SKE.DKi and ABE.SKi.

(f) Trace out the register ABE.SKi and obtain ske.dk ′ over SKE.DKi.
(g) Set d := ⊤ if ⊤ = SKE-CR-SKL.Vrfy(ske.vki, ske.dk ′) and set d := ⊥ otherwise. It returns d to

A . Finally, if Vi = ⊥ and d = ⊤, it updates Vi := ⊤.
4. A sends (m∗0 , m∗1) ∈ M2 to Ch . If Vi = ⊥ for some i ∈ [q], Ch outputs 0 as the final output of this experiment.

Otherwise, Ch generates C̃∗ ← CC.Sim(1λ, ppD, 1) and abe.ct∗ ← ABE.Enc(abe.pk, C̃∗, m∗coin), and
sends ct∗ := abe.ct∗ to A .

5. A outputs coin′. Ch outputs coin′ as the final output of the experiment.

Hybcoin
1 : This is the same as Hybcoin

0 except that C̃∗ is generated as C̃∗ ← CC.Obf(1λ, D[ske.ct∗], lock, 0), where
ske.ct∗ ← SKE-CR-SKL.Enc(ske.msk, 0λ), lock ← {0, 1}λ, and D[ske.ct∗](x) is a circuit that has ske.ct∗
hardwired and outputs SKE-CR-SKL.CDec(x, ske.ct∗).

We pick lock as a uniformly random string that is completely independent of other variables such as ske.ct∗. Thus,
from the security of CC.Obf, we have Hybcoin

0 ≈ Hybcoin
1 .

Hybcoin
2 : This is the same as Hybcoin

1 except that ske.ct∗ hardwired into the obfuscated circuit C̃∗ is generated as
ske.ct∗ ← SKE-CR-SKL.Enc(ske.msk, lock).

From the OT-IND-KLA security of SKE-CR-SKL, we can show that Hybcoin
1 ≈ Hybcoin

2 . Suppose that Hybcoin
1 ̸≈

Hybcoin
2 and D is a corresponding distinguisher. We consider the following reduction R :

Execution of R D in Expot-ind-kla
SKE-CR-SKL,R (1

λ, b):

1. Ch runs ske.msk← SKE-CR-SKL.Setup(1λ) and initializes R with the security parameter 1λ.
2. R generates (abe.pk, abe.msk)← ABE.Setup(1λ) and sends ek := abe.pk to D.
3. D requests q decryption keys for some polynomial q. R requests q decryption keys. Ch generates

(ske.dk i, ske.vki, ske.tki)← SKE-CR-SKL.KG(msk) for every i ∈ [q] and sends (ske.dk i, ske.tki)i∈[q] to
R .

4. R computes dk 1, . . . , dk q as in Step 2. of Hybcoin
0 , except that the received values (ske.dk i)i∈[q] are used

instead of the original ones.
5. R simulates the access to OVrfy (i, d̃k ) for D as follows:

OVrfy (i, d̃k ) :

(a) Perform Step 3.(a)-3.(f) of Hybcoin
0 to obtain ske.dk ′, but using the received value ske.tki instead

of the original one.
(b) Set d := ⊤ if ⊤ = SKE-CR-SKL.OVrfy (i, ske.dk ′) and set d := ⊥ otherwise. It returns d to D.

Finally, if Vi = ⊥ and d = ⊤, it updates Vi = ⊤.
6. R sends (ske.m∗0 , ske.m∗1) := (0λ, lock) to Ch and receives ske.ct∗ ← SKE-CR-SKL.Enc(ske.msk, ske.m∗b).
7. D sends (m∗0 , m∗1) ∈ M2 to R . If Vi = ⊥ for some i ∈ [q], R outputs 0. Otherwise, R generates C̃∗ ←

CC.Obf(1λ, D[ske.ct∗], lock, 0) and abe.ct∗ ← ABE.Enc(abe.pk, C̃∗, m∗coin) and sends ct∗ := abe.ct∗ to
D.

8. D outputs a bit b′. R outputs b′ and Ch outputs b′ as the final output of the experiment.

It is easy to see that the view of D is the same as that in Hybcoin
2 when lock is encrypted in ske.ct∗ and that of

Hybcoin
1 when 0λ is encrypted. Moreover, for D to distinguish between the two hybrids, it must be the case that Vi = ⊤

for all i ∈ [q], which directly implies that the q analogous values checked by SKE-CR-SKL.OVrfy must also be ⊤.
Consequently, R breaks the OT-IND-KLA security of SKE-CR-SKL. Therefore, it must be that Hybcoin

1 ≈ Hybcoin
2 .

27



Hybcoin
3 : This is the same as Hybcoin

2 except that dk i is generated as follows for every i ∈ [q]. (The difference is colored
in red.)

• Generate (ske.dk i, ske.vki, ske.tki)← SKE-CR-SKL.KG(ske.msk). We denote the register holding ske.dk i
as SKE.DKi.

• Prepare a register ABE.Ri that is initialized to |0⟩ABE.Ri
.

• Apply the map |u⟩SKE.DKi
|β⟩ABE.Ri

→ |u⟩SKE.DKi

∣∣∣β⊕ R(C̃∗, u)
〉

ABE.Ri
to the registers SKE.DKi and

ABE.Ri. (Note that we can generate C̃∗ at the beginning of the game.)
• Measure ABE.Ri in the computational basis and set dk i := ⊥ if the result is 0. Otherwise, go to the next

step.
• Prepare a register ABE.SKi that is initialized to |0 · · · 0⟩ABE.SKi

.

• Sample explicit randomness ki ← {0, 1}λ.
• Apply the map |u⟩SKE.DKi

|v⟩ABE.SKi
→ |u⟩SKE.DKi

|v⊕ ABE.KG(abe.msk, u, ki)⟩ABE.SKi
to the registers

SKE.DKi and ABE.SKi, and obtain dk i over the registers SKE.DKi and ABE.SKi.

From the decryption correctness of SKE-CR-SKL, the added procedure that checks R(C̃∗, u) in superposition does
not affect the final state dk i with overwhelming probability since R(C̃∗, u) = 1 in this hybrid for any u that appears in
ske.dk i when describing it in the computational basis. Therefore, we have Hybcoin

2 ≈ Hybcoin
3 .

Hybcoin
4 : This is the same as Hybcoin

3 except that the oracle OVrfy behaves as follows. (The difference is colored in red.)

OVrfy (i, d̃k ): It computes d as follows.

(a) Let the register holding d̃k be SKE.DKi ⊗ ABE.SKi.
(b) Prepare a register SKE.KTi that is initialized to |0⟩SKE.KTi

.
(c) Apply the map |u⟩SKE.DKi

|β⟩SKE.KTi
→ |u⟩SKE.DKi

|β⊕ SKE-CR-SKL.KeyTest(ske.tki, u)⟩SKE.KTi
to the registers SKE.DKi and SKE.KTi.

(d) Measure SKE.KTi in the computational basis and set d := ⊥ if the result is 0. Otherwise, go to the
next step.

(e) Prepare a register ABE.Ri that is initialized to |0⟩ABE.Ri
.

(f) Apply the map |u⟩SKE.DKi
|β⟩ABE.Ri

→ |u⟩SKE.DKi

∣∣∣β⊕ R(C̃∗, u)
〉

ABE.Ri
to the registers SKE.DKi

and ABE.Ri.
(g) Measure ABE.Ri in the computational basis and set d := ⊥ if the result is 0. Otherwise, go to the next

step.
(h) Apply the map |u⟩SKE.DKi

|v⟩ABE.SKi
→ |u⟩SKE.DKi

|v⊕ ABE.KG(abe.msk, u, ki)⟩ABE.SKi
to the

registers SKE.DKi and ABE.SKi.
(i) Trace out the register ABE.SKi and obtain ske.dk ′ over SKE.DKi.
(j) Set d := ⊤ if ⊤ = SKE-CR-SKL.Vrfy(ske.vki, ske.dk ′) and set d := ⊥ otherwise. Return d to A .

Finally, if Vi = ⊥ and d = ⊤, update Vi := ⊤.

Suppose there exists a QPT distinguisher D that has non-negligible advantage in distinguishing Hybcoin
3 and Hybcoin

4 .
Let D make q = poly(λ) many queries to the oracle OVrfy (·, ·). We will now consider the following QPT algorithm
Ao2h with access to an oracle OKG and an oracle O that runs D as follows:

A
OKG ,O
o2h (abe.pk, ske.msk) :

1. Ao2h initializes D with input ek = abe.pk.
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2. When D requests q decryption keys, Ao2h queries OKG on input q and receives ({dk i}i∈[q], {vki}i∈[q]). It
forwards {dk i}i∈[q] to D.

3. Ao2h simulates the access of OVrfy for D as follows:

OVrfy (y, d̃k ) :

(a) Execute Steps (a)-(e) of OVrfy as in Hybcoin
4 .

(b) Apply the map |u⟩SKE.DKy |β⟩ABE.Ry
→ |u⟩SKE.DKy |β⊕O(u)⟩ABE.Ry

to the registers SKE.DKy
and ABE.Ry.

(c) Execute Steps (g)-(j) of OVrfy as in Hybcoin
4 .

4. D sends (m∗0 , m∗1) ∈ M2 to Ao2h. If Vi = ⊥ for some i ∈ [q], Ao2h outputs 0. Otherwise, Ao2h
generates C̃∗ ← CC.Obf(1λ, D[ske.ct∗], lock, 0), where ske.ct∗ ← SKE-CR-SKL.Enc(ske.msk, lock). It
then generates abe.ct∗ ← ABE.Enc(abe.pk, C̃∗, m∗coin) and sends ct∗ := abe.ct∗ to D.

5. D outputs a guess b′. Ao2h outputs b′.

Let H be an oracle that for every input u, outputs 1. Consider now the extractor B
OKG ,H
o2h as specified by the O2H

Lemma (Lemma 3.2). We will now construct a reduction R that runs Bo2h by simulating the oracles OKG and H for
Bo2h, and breaks the key-testability of the SKE-CR-SKL scheme.

Execution of R in Expkey-test
SKE-CR-SKL,R (1

λ):

1. The challenger Ch runs ske.msk← SKE-CR-SKL.Setup(1λ) and initializes R with input ske.msk.
2. R samples (abe.pk, abe.msk)← ABE.Setup(1λ) and initializes Bo2h with the input (abe.pk, ske.msk).
3. When Bo2h queries input q to OKG , R generates the decryption-keys dk 1, . . . , dk q in the same way as in

Hybcoin
3 and sends them to Bo2h.

4. When Bo2h queries an input u to H, R responds with 1.
5. Bo2h outputs measured index y and measurement outcome dk. R sends (y, dk, lock) to Ch .

We will now claim that with non-negligible probability, R obtains values dk and y such that R(C̃∗, dk) = 0. By the
definition of R and C̃∗ and the decryption correctness of SKE-CR-SKL, this will imply that SKE-CR-SKL.CDec(dk,
ske.ct⋆) ̸= lock. Moreover, KeyTest(ske.tky, dk) also holds. Consequently, this will imply R breaks the key-testability
of SKE-CR-SKL. To prove this, we will rely on the One-Way to Hiding (O2H) Lemma (Lemma 3.2). Consider an
oracle G which takes as input u and outputs R(C̃∗, u) and an oracle H which takes as input u and outputs 1. Notice that
if the oracle O = G, then the view of D as run by Ao2h is the same as in Hybcoin

4 , while if O = H, the view of D is the
same as in Hybcoin

3 . By the O2H Lemma, we have the following, where z = (abe.pk, ske.msk).

∣∣∣Pr
[

A
OKG ,H
o2h (z) = 1

]
− Pr

[
A

OKG ,G
o2h (z) = 1

]∣∣∣ ≤ 2q ·
√

Pr
[

B
OKG ,H
o2h (z) ∈ S

]
.

where S is a set where the oracles H and G differ, which happens only for inputs u s.t. R(C̃∗, u) = 0. Since R obtains
dk and y as the output of B

OKG ,H
o2h (z), the argument follows that Hybcoin

3 ≈ Hybcoin
4 .

Hybcoin
5 : This is the same as Hybcoin

4 except that ct∗ := abe.ct∗ is generated as abe.ct∗ ← ABE.Enc(abe.pk, C̃∗, 0ℓm).

The view of A in Hybcoin
4 and Hybcoin

5 can be simulated with abe.pk and the access to the quantum key generation
oracle Oqkg. This is because before ABE.KG is required to be applied in both the generation of {dk i}i∈[q] and to
compute the responses of OVrfy , the relation check R(C̃∗, u) is already applied in superposition. Thus, we have
Hybcoin

4 ≈ Hybcoin
5 .
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Lastly, Hyb0
5 and Hyb1

5 are exactly the same experiment and thus we have
∣∣∣Pr

[
Hyb0

5 = 1
]
− Pr

[
Hyb1

5 = 1
]∣∣∣ =

negl(λ). Then, from the above arguments, we obtain∣∣∣Pr
[
Expind-kla

PKE-CR-SKL,A(1
λ, 0) = 1

]
− Pr

[
Expind-kla

PKE-CR-SKL,A(1
λ, 1) = 1

]∣∣∣
=
∣∣∣Pr

[
Hyb0

0 = 1
]
− Pr

[
Hyb1

0 = 1
]∣∣∣ ≤ negl(λ).

This completes the proof.
Given the fact that SKE-CR-SKL with Key-Testability (implied by BB84-based SKE-CD and OWFs), Compute-and-

Compare Obfuscation, and Ciphertext-Policy ABE for General Circuits are all implied by the LWE assumption, we state
the following theorem:

Theorem 6.1. There exists a PKE-CR-SKL scheme satisfying IND-KLA security, assuming the polynomial hardness of
the LWE assumption.

7 ABE-CR-SKL from LWE
In this section, we show how to achieve ABE-CR-SKL from the LWE assumption. To this end, we also introduce
SKFE-CR-SKL with classical decryption and key-testability. First, we recall the standard SKFE.

Definition 7.1 (Secret-Key Functional Encryption). An SKFE scheme SKFE for the functionality F : X ×Y → Z is
a tuple of four PPT algorithms (Setup, KG, Enc, Dec).

Setup(1λ)→ msk: The setup algorithm takes a security parameter 1λ, and outputs a master secret key msk.

KG(msk, y)→ sky: The key generation algorithm takes a master secret key msk and a function y ∈ Y , and outputs a
functional decryption key sky.

Enc(msk, x)→ ct: The encryption algorithm takes a master secret key msk and a plaintext x ∈ X , and outputs a
ciphertext ct.

Dec(sky, ct)→ z: The decryption algorithm takes a functional decryption key sky and a ciphertext ct, and outputs
z ∈ {⊥} ∪ Z .

Correctness: We require that for every x ∈ X and y ∈ Y , we have that

Pr

Dec(sky, ct) = F(x, y) :
msk← Setup(1λ)
sky ← KG(msk, y)
ct← Enc(msk, x)

 ≥ 1− negl(λ).

Definition 7.2 (Selective Single-Ciphertext Security). We formalize the experiment Expadp-ind
SKFE,A(1

λ, coin) between an
adversary A and a challenger for an SKFE scheme for the functionality F : X ×Y → Z as follows:

1. Initialized with 1λ, A outputs (x∗0 , x∗1). The challenger Ch runs msk ← Setup(1λ) and sends ct∗ ←
Enc(msk, x∗coin) to A .

2. A can get access to the following oracle.

OKG (y): Given y, if F(x∗0 , y) ̸= F(x∗1 , y), returns ⊥. Otherwise, it returns sky ← KG(msk, y).

3. A outputs a guess coin′ for coin. Ch outputs coin′ as the final output of the experiment.

We say that SKFE satisfies selective single-ciphertext security if, for any QPT A , it holds that

Advsel-1ct
SKFE,A(1

λ) :=
∣∣∣Pr

[
Expsel-1ct

SKFE,A(1
λ, 0)→ 1

]
− Pr

[
Expsel-1ct

SKFE,A(1
λ, 1)→ 1

]∣∣∣ ≤ negl(λ).

Theorem 7.3 ([GVW12]). Assuming the existence of OWFs, there exists selective single-ciphertext secure SKFE.
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7.1 Definitions of SKFE-CR-SKL
We consider the classical decryption property and key-testability for SKFE-CR-SKL as in the case of SKE-CR-SKL.

Definition 7.4 (SKFE-CR-SKL). An SKFE-CR-SKL scheme SKFE-CR-SKL for the functionality F : X ×Y → Z is a
tuple of five algorithms (Setup, KG , Enc, Dec, Vrfy).

Setup(1λ)→ msk: The setup algorithm takes a security parameter 1λ and a master secret key msk.

KG(msk, y)→ (sk y, vk, tk): The key generation algorithm takes a master secret key msk and a string y ∈ Y , and
outputs a functional secret key sk y, a certificate verification key vk, and a testing key tk.

Enc(msk, x)→ ct: The encryption algorithm takes a master secret key msk and a string x ∈ X , and outputs a
ciphertext ct.

Dec(sk y, ct)→ z: The decryption algorithm takes a functional secret key sk y and a ciphertext ct, and outputs a value
z ∈ Z ∪ {⊥}.

Vrfy(vk, s̃k y)→ ⊤/⊥: The verification algorithm takes a verification key vk and a (possibly malformed) functional
secret key s̃k y, and outputs ⊤ or ⊥.

Decryption correctness: For all x ∈ X and y ∈ Y , we have

Pr

Dec(sk y, ct) = F(x, y) :
msk← Setup(1λ)
(sk y, vk, tk)← KG(msk, y)
ct← Enc(msk, x)

 ≥ 1− negl(λ).

Verification correctness: We have

Pr
[

Vrfy(vk, sk y) = ⊤ :
msk← Setup(1λ)
(sk y, vk, tk)← KG(msk, y)

]
≥ 1− negl(λ).

Definition 7.5 (Classical Decryption Property). We say that SKFE-CR-SKL = (Setup, KG , Enc, Dec, Vrfy) has the
classical decryption property if there exists a deterministic polynomial time algorithm CDec such that given sk y in
the register SK and ciphertext ct, Dec applies the map |u⟩SK |v⟩OUT → |u⟩SK |v⊕ CDec(u, ct)⟩OUT and outputs the
measurement result of the register OUT in the computational basis, where OUT is initialized to |0 · · · 0⟩OUT.

Definition 7.6 (Key-Testability). We say that an SKFE-CR-SKL scheme SKFE-CR-SKL with the classical decryption
property satisfies key testability, if there exists a classical deterministic algorithm KeyTest that satisfies the following
conditions:

• Syntax: KeyTest takes as input a testing key tk and a classical string sk as input. It outputs 0 or 1.

• Correctness: Let msk ← Setup(1λ) and (sk y, vk, tk) ← KG(msk, y) where y is a string. We denote
the register holding sk y as SK. Let KT be a register that is initialized to |0⟩KT. If we apply the map
|u⟩SK |β⟩KT → |u⟩SK |β⊕KeyTest(tk, u)⟩KT to the registers SK and KT and then measure KT in the
computational basis, we obtain 1 with overwhelming probability.

• Security: Consider the following experiment Expkey-test
SKFE-CR-SKL,A(1

λ).

1. The challenger Ch runs msk← Setup(1λ) and initializes A with input msk.
2. A can get access to the following oracle, where the list LKG used by the oracles is initialized to an empty list.

OKG (y): Given y, it finds an entry of the form (y, tk) from LKG . If there is such an entry, it returns ⊥.
Otherwise, it generates (sk y, vk, tk)← KG(msk, y), sends (sk y, vk, tk) to A , and adds (y, tk) to LKG .
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3. A sends a tuple of classical strings (y, sk, x) to Ch . Ch outputs ⊥ if there is no entry of the form (y, tk) in
LKG for some tk. Otherwise, Ch generates ct← Enc(msk, x), and outputs ⊤ if KeyTest(tk, sk) = 1 and
CDec(sk, ct) ̸= F(x, y), and outputs ⊥ otherwise.

For all QPT A , the following must hold:

Advkey-test
SKFE-CR-SKL,A(1

λ) := Pr
[
Expkey-test

SKFE-CR-SKL,A(1
λ)→ ⊤

]
≤ negl(λ).

Definition 7.7 (Selective Single-Ciphertext KLA Security). We say that an SKFE-CR-SKL scheme SKFE-CR-SKL
is selective single-ciphertext secure, if it satisfies the following requirement, formalized from the experiment
Expsel-1ct-kla

SKFE-CR-SKL,A(1
λ, coin) between an adversary A and a challenger:

1. Initialized with 1λ, A outputs (x∗0 , x∗1). The challenger Ch runs msk← Setup(1λ).

2. A can get access to the following (stateful) oracles, where the list LKG used by the oracles is initialized to an
empty list:

OKG (y): Given y, it finds an entry of the form (y, vk, V) from LKG . If there is such an entry, it returns ⊥.
Otherwise, it generates (sk , vk, tk)← KG(msk, y), sends sk and tk to A , and adds (y, vk,⊥) to LKG .

OVrfy (y, s̃k ): Given (y, s̃k ), it finds an entry (y, vk, V) from LKG . (If there is no such entry, it returns ⊥.) It then
runs d← Vrfy(vk, s̃k ) and returns d to A . If V = ⊥, it updates the entry into (y, vk, d).

3. A requests the challenge ciphertext. If there exists an entry (y, vk, V) in LKG such that F(x∗0 , y) ̸= F(x∗1 , y) and
V = ⊥, Ch outputs 0 as the final output of this experiment. Otherwise, Ch generates ct∗ ← Enc(msk, x∗coin) and
sends ct∗ to A .

4. A continues to make queries to OKG . However, A is not allowed to send y such that F(x∗0 , y) ̸= F(x∗1 , y) to OKG .

5. A outputs a guess coin′ for coin. Ch outputs coin′ as the final output of the experiment.

For any QPT A , it holds that

Advsel-1ct-kla
SKFE-CR-SKL,A(1

λ) :=
∣∣∣Pr

[
Expsel-1ct-kla

SKFE-CR-SKL,A(1
λ, 0)→ 1

]
− Pr

[
Expsel-1ct-kla

SKFE-CR-SKL,A(1
λ, 1)→ 1

]∣∣∣ ≤ negl(λ).

In Appendix C, we prove the following theorem:

Theorem 7.8. Assuming the existence of a BB84-based SKE-CD scheme and the existence of OWFs, there exists a
selective single-ciphertext KLA secure SKFE-CR-SKL scheme satisfying the key-testability property.

7.2 Definitions of ABE-CR-SKL
In this section, we recall definitions of ABE-CR-SKL by Agrawal et al. [AKN+23].

Definition 7.9 (ABE-CR-SKL). An ABE-CR-SKL scheme ABE-CR-SKL is a tuple of five algorithms (Setup, KG , Enc, Dec,
Vrfy). Below, let X = {Xλ}λ, Y = {Yλ}λ, and R = {Rλ : Xλ ×Yλ → {0, 1}}λ be the ciphertext attribute space,
the key attribute space, and the associated relation of ABE-CR-SKL, respectively. LetM denote the message space.

Setup(1λ)→ (pk, msk): The setup algorithm takes a security parameter 1λ, and outputs a public key pk and master
secret key msk.

KG(msk, y)→ (sk y, vk): The key generation algorithm takes a master secret key msk and a key attribute y ∈ Y , and
outputs a user secret key sk y and a verification key vk.
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Enc(pk, x, m)→ ct: The encryption algorithm takes a public key pk, a ciphertext attribute x ∈ X , and a plaintext
m ∈ M, and outputs a ciphertext ct.

Dec(sk y, ct)→ m′: The decryption algorithm takes a user secret key sk y and a ciphertext ct. It outputs a value
m′ ∈ {⊥} ∪M.

Vrfy(vk, sk ′)→ ⊤/⊥: The verification algorithm takes a verification key vk and a quantum state sk ′, and outputs ⊤
or ⊥.

Decryption correctness: For every x ∈ X and y ∈ Y satisfying R(x, y) = 0 and m ∈ M, we have

Pr

Dec(sk y, ct) = m

∣∣∣∣∣∣
(pk, msk)← Setup(1λ)
(sk y, vk)← KG(msk, y)
ct← Enc(pk, x, m)

 ≥ 1− negl(λ).

Verification correctness: For every y ∈ Y , we have

Pr
[

Vrfy(vk, sk y) = ⊤
∣∣∣∣ (pk, msk)← Setup(1λ)
(sk y, vk)← KG(msk, y)

]
≥ 1− negl(λ).

Definition 7.10 (Adaptive IND-KLA Security). We say that an ABE-CR-SKL scheme ABE-CR-SKL for relation
R : X × Y → {0, 1} is adaptively IND-KLA secure, if it satisfies the following requirement, formalized from the
experiment Expada-ind-kla

ABE-CR-SKL,A(1
λ, coin) between an adversary A and a challenger Ch:

1. At the beginning, Ch runs (pk, msk)← Setup(1λ) and initializes the list LKG to be an empty set. Throughout the
experiment, A can access the following oracles.

OKG (y): Given y, it finds an entry of the form (y, vk, V) from LKG . If there is such an entry, it returns ⊥.
Otherwise, it generates (sk y, vk)← KG(msk, y), sends sk y to A , and adds (y, vk,⊥) to LKG .

OVrfy (y, s̃k ): Given (y, s̃k ), it finds an entry (y, vk, V) from LKG . (If there is no such entry, it returns ⊥.) It then
runs d := Vrfy(vk, s̃k ) and returns d to A . If V = ⊥, it updates the entry into (y, vk, d).

2. When A sends (x∗, m0, m1) to Ch , it checks that for every entry (y, vk, V) in LKG such that R(x∗, y) = 0, it
holds that V = ⊤. If so, Ch generates ct∗ ← Enc(pk, x∗, mcoin) and sends ct∗ to A . Otherwise, it outputs 0.

3. A continues to make queries to OKG (·) and OVrfy (·, ·). However, A is not allowed to send a key attribute y such
that R(x∗, y) = 0 to OKG .

4. A outputs a guess coin′ for coin. Ch outputs coin′ as the final output of the experiment.

For any QPT A , it holds that

Advada-ind-kla
ABE-CR-SKL,A(1

λ) :=
∣∣∣Pr

[
Expada-ind-kla

ABE-CR-SKL,A(1
λ, 0)→ 1

]
− Pr

[
Expada-ind-kla

ABE-CR-SKL,A(1
λ, 1)→ 1

]∣∣∣ ≤ negl(λ).

Remark 7.11. Although we can handle the situation where multiple keys for the same attribute y are generated using an
index management such as (y, 1, vk1, V1), (y, 2, vk2, V2), we use the simplified definition as Agrawal et al. [AKN+23]
did.

We also consider relaxed versions of the above security notion.

Definition 7.12 (Selective IND-KLA Security). We consider the same security game as that for adaptive IND-KLA
security except that the adversary A should declare its target x∗ at the beginning of the game (even before it is given pk).

We then define the advantage Advsel-ind-kla
ABE-CR-SKL,A(1

λ) for the selective case similarly. We say ABE-CR-SKL is
selectively IND-KLA secure if for any QPT adversary A , Advsel-ind-kla

ABE-CR-SKL,A(1
λ) is negligible.
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7.3 Construction
We construct an ABE-CR-SKL scheme ABE-CR-SKL = ABE-CR-SKL.(Setup, KG , Enc, Dec, Vrfy) for the relation R
with the message spaceM := {0, 1}ℓm using the following building blocks.

• ABE scheme ABE = ABE.(Setup, KG, Enc, Dec) for the following relation R′.

R′(x′, y′): Interpret x′ := x∥C and y′ := y∥z, where C is a circuit. Then, output 0 if R(x, y) = 0 and
C(z) = ⊥, and otherwise output 1.

• Compute-and-Compare Obfuscation CC.Obf with the simulator CC.Sim.

• SKFE-CR-SKL scheme with key-testability SKFE-CR-SKL = SKFE-CR-SKL.(Setup, KG , Enc, Dec, Vrfy , KeyTest)
for the following functionality F. It also has the classical decryption algorithm SKFE-CR-SKL.CDec.

F(x̃, ỹ): Interpret x̃ := x∥z and ỹ := y. Then, output z if R(x, y) = 0, and otherwise output ⊥.

The construction is as follows.

ABE-CR-SKL.Setup(1λ):

• Generate (abe.pk, abe.msk)← ABE.Setup(1λ).
• Generate skfe.msk← SKFE-CR-SKL.Setup(1λ).
• Output pk := abe.pk and msk := (abe.msk, skfe.msk).

ABE-CR-SKL.KG(msk, y):

• Parse msk = (abe.msk, skfe.msk).
• Generate (skfe.sk , skfe.vk, skfe.tk) ← SKFE-CR-SKL.KG(skfe.msk, y). We denote the register holding

skfe.sk as SKFE.SK.
• Sample explicit randomness k← {0, 1}λ.
• Prepare a register ABE.SK that is initialized to |0 · · · 0⟩ABE.SK.
• Apply the map |u⟩SKFE.SK |v⟩ABE.SK → |u⟩SKFE.SK |v⊕ ABE.KG(abe.msk, y∥u, k)⟩ABE.SK to the regis-

ters SKFE.SK and ABE.SK, and obtain sk over the registers SKFE.SK and ABE.SK.
• Output sk and vk := (y, abe.msk, skfe.vk, skfe.tk, k).

ABE-CR-SKL.Enc(pk, x, m):

• Parse pk = abe.pk.
• Generate C̃ ← CC.Sim(1λ, ppD, 1), where ppD consists of circuit parameters of D defined in the security

proof.
• Generate abe.ct← ABE.Enc(abe.pk, x∥C̃, m).
• Output ct := abe.ct.

ABE-CR-SKL.Dec(sk , ct):

• Parse ct = abe.ct. We denote the register holding sk as SKFE.SK⊗ ABE.SK.
• Prepare a register MSG that is initialized to |0 · · · 0⟩MSG
• Apply the map |v⟩ABE.SK |w⟩MSG → |v⟩ABE.SK |w⊕ ABE.Dec(v, abe.ct)⟩MSG to the registers ABE.SK

and MSG.
• Measure the register MSG in the computational basis and output the result m′.

ABE-CR-SKL.Vrfy(vk, sk ′):
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• Parse vk = (y, abe.msk, skfe.vk, skfe.tk, k). We denote the register holding sk ′ as SKFE.SK⊗ ABE.SK.
• Prepare a register SKFE.KT that is initialized to |0⟩SKFE.KT.
• Apply the map |u⟩SKFE.SK |β⟩SKFE.KT → |u⟩SKFE.SK |β⊕ SKFE-CR-SKL.KeyTest(skfe.tk, u)⟩SKFE.KT

to the registers SKFE.SK and SKFE.KT.
• Measure SKFE.KT in the computational basis and output ⊥ if the result is 0. Otherwise, go to the next step.
• Apply the map |u⟩SKFE.SK |v⟩ABE.SK → |u⟩SKFE.SK |v⊕ ABE.KG(abe.msk, y∥u, k)⟩ABE.SK to the regis-

ters SKFE.SK and ABE.SK.
• Trace out the register ABE.SK and obtain skfe.sk ′ over register SKFE.SK.
• Output ⊤ if ⊤ = SKFE-CR-SKL.Vrfy(skfe.vk, skfe.sk ′) and ⊥ otherwise.

Decryption correctness: Let x and y be a ciphertext-attribute and a key-attribute, respectively, such that R(x, y) = 0.
The secret-key sk output by ABE-CR-SKL.KG is of the form ∑u αu |u⟩SKFE.SK

∣∣∣abe.sky∥u

〉
ABE.SK

, where abe.sky∥u ←
ABE.KG(abe.msk, y∥u, k). Let ct← ABE-CR-SKL.Enc(pk, x, m), where ct = abe.ct← ABE.Enc(abe.pk, x∥C̃, m)

and C̃ ← CC.Sim(1λ, ppD, 1). If we apply the map

|v⟩ABE.SK |w⟩MSG → |v⟩ABE.SK |w⊕ ABE.Dec(v, abe.ct)⟩MSG

to ∑u αu |u⟩SKFE.SK

∣∣∣abe.sky∥u

〉
ABE.SK

⊗ |0 · · · 0⟩MSG, the result is

∑
u

αu |u⟩SKFE.SK

∣∣∣abe.sky∥u

〉
ABE.SK

⊗ |m⟩MSG

since C̃(u) = ⊥ and thus R′(x∥C̃, y∥u) = 0 for every string u. Therefore, ABE-CR-SKL satisfies decryption
correctness.

Verification correctness. Let y be a key attribute and (sk , vk)← ABE-CR-SKL.KG(msk, y). It is clear that the state
skfe.sk ′ obtained when computing ABE-CR-SKL.Vrfy(vk, sk ) is the same as skfe.sk generated when generating sk .
Therefore, the verification correctness of ABE-CR-SKL follows from that of SKFE-CR-SKL.

7.4 Proof of Selective IND-KLA Security
Let A be an adversary for the selective IND-KLA security of ABE-CR-SKL. We consider the following sequence of
experiments.

Hybcoin
0 : This is Expsel-ind-kla

ABE-CR-SKL,A(1
λ, coin).

1. A declares the challenge ciphertext attribute x∗. The challenger Ch generates (abe.pk, abe.msk) ←
ABE.Setup(1λ) and skfe.msk← SKFE-CR-SKL.Setup(1λ), and sends pk := abe.pk to A .

2. A can get access to the following (stateful) oracles, where the list LKG used by the oracles is initialized to an
empty list:
OKG (y): Given y, it finds an entry of the form (y, vky, V) from LKG . If there is such an entry, it returns ⊥.

Otherwise, it generates sk y, vky as follows.
• Generate (skfe.sk y, skfe.vky, skfe.tky)← SKFE-CR-SKL.KG(skfe.msk, y). We denote the regis-

ter holding skfe.sk y as SKFE.SKy.
• Prepare a register ABE.SKy that is initialized to |0 · · · 0⟩ABE.SKy

.

• Sample explicit randomness ky ← {0, 1}λ.
• Apply the map |u⟩SKFE.SKy |v⟩ABE.SKy

→ |u⟩SKFE.SKy

∣∣v⊕ ABE.KG(abe.msk, y∥u, ky)
〉

ABE.SKy
to the registers SKFE.SKy and ABE.SKy, and obtain sk y over the registers SKFE.SKy and ABE.SKy.
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• Set vky := (y, abe.msk, skfe.vky, skfe.tky, ky).
It returns sk y to A and adds the entry (y, vky,⊥) to LKG .

OVrfy (y, s̃k ): It finds an entry (y, vky, V) from LKG . (If there is no such entry, it returns ⊥.) It parses
vky = (y, abe.msk, skfe.vky, skfe.tky, ky) and computes d as follows.

• Let the register holding s̃k be SKFE.SKy ⊗ ABE.SKy.
• Prepare a register SKE.KTy that is initialized to |0⟩SKE.KTy

.

• Apply |u⟩SKFE.SKy |β⟩SKE.KTy
→ |u⟩SKFE.SKy

∣∣β⊕ SKFE-CR-SKL.KeyTest(skfe.tky, u)
〉

SKE.KTy
to the registers SKFE.SKy and SKE.KTy.

• Measure SKE.KTy in the computational basis and set d := ⊥ if the result is 0. Otherwise, go to
the next step.

• Apply the map |u⟩SKFE.SKy |v⟩ABE.SKy
→ |u⟩SKFE.SKy

∣∣v⊕ ABE.KG(abe.msk, y∥u, ky)
〉

ABE.SKy
to the registers SKFE.SKy and ABE.SKy.

• Trace out the register ABE.SKy and obtain skfe.sk ′ over SKFE.SKy.
• Set d := ⊤ if ⊤ = SKFE-CR-SKL.Vrfy(skfe.vky, skfe.sk ′) and set d := ⊥ otherwise. It returns d

to A . Finally, if V = ⊥, it updates the entry (y, vky, V) to (y, vky, d).

3. A sends (m∗0 , m∗1) ∈ M2 to Ch . Ch checks if for every entry (y, vky, V) in LKG such that R(x∗, y) = 0, it
holds that V = ⊤. If so, it generates C̃∗ ← CC.Sim(1λ, ppD, 1) and abe.ct∗ ← ABE.Enc(abe.pk, x∗∥C̃∗,
m∗coin), and sends ct∗ := abe.ct∗ to A . Otherwise, it outputs 0.

4. A outputs coin′. The challenger outputs coin′ as the final output of the experiment.

Hybcoin
1 : This is the same as Hybcoin

0 except that C̃∗ is generated as C̃∗ ← CC.Obf(1λ, D[skfe.ct∗], lock, 0), where
skfe.ct∗ ← SKFE-CR-SKL.Enc(skfe.msk, x∗∥0λ), lock ← {0, 1}λ, and D[skfe.ct∗](x) is a circuit that has
skfe.ct∗ hardwired and outputs SKFE-CR-SKL.CDec(x, skfe.ct∗).

We pick lock as a uniformly random string that is completely independent of other variables such as skfe.ct∗. Thus,
from the security of CC.Obf, we have

∣∣Pr
[
Hybcoin

0 = 1
]
− Pr

[
Hybcoin

1 = 1
]∣∣ = negl(λ).

Hybcoin
2 : This is the same as Hybcoin

1 except that skfe.ct∗ hardwired into the circuit D is generated as skfe.ct∗ ←
SKFE-CR-SKL.Enc(skfe.msk, x∗∥lock).

From the selective single-ciphertext security of SKFE-CR-SKL, we can show that Hybcoin
1 ≈ Hybcoin

2 . Suppose that
Hybcoin

1 ̸≈ Hybcoin
2 and D is a corresponding distinguisher. We consider the following reduction R :

Execution of R D in Expsel-1ct-kla
SKFE-CR-SKL,R (1

λ, b):

1. Ch runs skfe.msk← SKFE-CR-SKL.Setup(1λ) and initializes R with the security parameter 1λ.
2. D declares the challenge ciphertext-attribute x∗. R generates (abe.pk, abe.msk)← ABE.Setup(1λ) and

sends ek := abe.pk to D.
3. R chooses lock← {0, 1}λ and sends (skfe.m∗0 , skfe.m∗1) := (x∗∥0λ, x∗∥lock) to Ch .
4. R simulates the access to OKG (y) for D as follows, where LKG is a list initialized to be empty:

OKG (y) : Given y, it finds an entry of the form (y, vky, V) from LKG . If there is such an entry, it returns⊥.
Otherwise, it generates (sk y, vky) similar to Hybcoin

0 except that the values (skfe.sk y, skfe.vky, skfe.tky)

are generated as (skfe.sk y, skfe.vky, skfe.tky)← SKFE-CR-SKL.OKG (y) instead. It adds (y, vky,⊥)
to LKG and returns sk y.

5. R simulates the access to OVrfy (y, s̃k ) as follows:
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OVrfy (y, s̃k ) : Given (y, s̃k ), it finds an entry (y, vky, V) from LKG (If there is no such entry, it returns ⊥).
It then executes a procedure similar to that in Hybcoin

0 , except that SKFE-CR-SKL.OVrfy (y, skfe.sk ′) is
executed instead of SKFE-CR-SKL.Vrfy(skfe.vky, skfe.sk ′). The corresponding output d is returned
as the output of the oracle.

6. R requests the challenge ciphertext from Ch and receives skfe.ct∗ ← SKFE-CR-SKL.Enc(skfe.msk, skfe.m∗b).

7. D sends (m∗0 , m∗1) ∈ M2 to R . R checks that for every entry (y, vky, V) such that R(x∗, y) =

0, it holds that V = ⊤. If so, it generates C̃∗ ← CC.Obf(1λ, D[skfe.ct∗], lock, 0) and abe.ct∗ ←
ABE.Enc(abe.pk, x∗∥C̃∗, m∗coin) and sends ct∗ := abe.ct∗ to D. Else, it outputs 0.

8. D outputs a bit b′. R outputs b′ and Ch outputs b′ as the final output of the experiment.

It is easy to see that the view of D is the same as that in Hybcoin
2 when lock is encrypted in skfe.ct∗ and that

of Hybcoin
1 when 0λ is encrypted. Moreover, for D to distinguish between the two hybrids, it must be the case that

V = ⊤ for all entries (y, vky, V) such that R(x∗, y) = 0, which directly implies that the analogous values checked by
SKFE-CR-SKL.OVrfy must also be ⊤. If R(x∗, y) = 1, F(x∗∥0λ, y) = F(x∗∥lock, y) = ⊥. Consequently, R breaks
the selective single-ciphertext security of SKFE-CR-SKL. Therefore, it must be that Hybcoin

1 ≈ Hybcoin
2 .

Hybcoin
3 : This is the same as Hybcoin

2 except that OKG behaves as follows. (The difference is red colored.)

OKG (y): Given y, it finds an entry of the form (y, vky, V) from LKG . If there is such an entry, it returns ⊥.
Otherwise, it generates sk y, vky as follows.

• Generate (skfe.sk y, skfe.vky, skfe.tky) ← SKFE-CR-SKL.KG(skfe.msk, y). We denote the register
holding skfe.sk y as SKFE.SKy.

• Prepare a register ABE.R′y that is initialized to |0⟩ABE.R′y .

• Apply the map |u⟩SKFE.SKy |β⟩ABE.R′y → |u⟩SKFE.SKy

∣∣∣β⊕ R′(x∗∥C̃∗, y∥u)
〉

ABE.R′y
to the registers

SKFE.SKy and ABE.R′y.
• Measure ABE.R′y in the computational basis and output ⊥ if the result is 0. Otherwise, go to the next

step.
• Prepare a register ABE.SKy that is initialized to |0 · · · 0⟩ABE.SKy

.

• Sample explicit randomness ky ← {0, 1}λ.
• Apply the map |u⟩SKFE.SKy |v⟩ABE.SKy

→ |u⟩SKFE.SKy

∣∣v⊕ ABE.KG(abe.msk, y∥u, ky)
〉

ABE.SKy
to

the registers SKFE.SKy and ABE.SKy, and obtain sk y over the registers SKFE.SKy and ABE.SKy.
• Set vky := (y, abe.msk, skfe.vky, skfe.tky, ky).

It returns sk y to A and adds the entry (y, vky,⊥) to LKG .

With overwhelming probability, we observe that the added procedure that checks R′(x∗∥C̃∗, y∥u) in superposition
affects the final state sk y at most negligibly. We consider the following two cases.

• The first case is where R(x∗, y) = 1. In this case, we have R′(x∗∥C̃∗, y∥u) = 1 for any u. Hence, we see that
the added procedure does not affect the state skfe.sk y.

• The second case is where R(x∗, y) = 0. Let skfe.sk y = ∑u αu |u⟩SKFE.SKy
. From the classical decryption

property of SKFE-CR-SKL, we have that for any u, it holds that SKFE-CR-SKL.CDec(u, skfe.ct∗) = lock. Thus,
C̃∗(u) ̸= ⊥ and R′(x∗∥C̃∗, y∥u) = 1 with overwhelming probability from the correctness of CC.Obf. Hence,
we see that the added procedure affects the state skfe.sky at most negligibly.

Therefore, we have
∣∣Pr

[
Hybcoin

2 = 1
]
− Pr

[
Hybcoin

3 = 1
]∣∣ = negl(λ).
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Hybcoin
4 : This is the same as Hybcoin

3 except that the oracle OVrfy behaves as follows. (The difference is red colored.)

OVrfy (y, s̃k ): It finds an entry (y, vky, V) from LKG . (If there is no such entry, it returns ⊥.) It parses
vky = (y, abe.msk, skfe.vky, skfe.tky, ky). If R(x∗, y) = 1, then it behaves exactly as in Hybcoin

3 and
otherwise, it computes d as follows:
(a) Let the register holding s̃k be SKFE.SKy ⊗ ABE.SKy.
(b) Prepare a register SKFE.KTy that is initialized to |0⟩SKFE.KTy

.

(c) Apply |u⟩SKFE.SKy |β⟩SKFE.KTy
→ |u⟩SKFE.SKy

∣∣β⊕ SKFE-CR-SKL.KeyTest(skfe.tky, u)
〉

SKFE.KTy
to the registers SKFE.SKy and SKFE.KTy.

(d) Measure SKFE.KTy in the computational basis and set d := ⊥ if the result is 0. Otherwise, go to the
next step.

(e) Prepare a register ABE.R′y that is initialized to |0⟩ABE.R′y .

(f) Apply the map |u⟩SKFE.SKy |β⟩ABE.R′y → |u⟩SKFE.SKy

∣∣∣β⊕ R′(x∗∥C̃∗, y∥u)
〉

ABE.R′y
to the registers

SKFE.SKy and ABE.R′y.
(g) Measure ABE.R′y in the computational basis and set d := ⊥ if the result is 0. Otherwise, go to the next

step.
(h) Apply the map |u⟩SKFE.SKy |v⟩ABE.SKy

→ |u⟩SKFE.SKy |v⊕ ABE.KG(abe.msk, y∥u, k)⟩ABE.SKy
to

the registers SKFE.SKy and ABE.SKy.
(i) Trace out the register ABE.SKy and obtain skfe.sk ′ over SKFE.SKy.
(j) Set d := ⊤ if ⊤ = SKFE-CR-SKL.Vrfy(skfe.vky, skfe.sk ′) and set d := ⊥ otherwise. It returns d to

A . Finally, if V = ⊥, it updates the entry (y, vky, V) into (y, vky, d).

Suppose there exists a QPT distinguisher D that has non-negligible advantage in distinguishing Hybcoin
3 and Hybcoin

4 .
Let D make q = poly(λ) many queries to the oracle OVrfy (·, ·). We will now consider the following QPT algorithm
Ao2h with access to an oracle ÕKG and an oracle O that runs D as follows:

A
ÕKG ,O
o2h (abe.pk, skfe.msk) :

1. Ao2h runs D who sends the challenge ciphertext-attribute x∗ to Ao2h.
2. Ao2h sends ek = abe.pk to D and initializes LKG to be an empty list.

3. When D queries OKG on input y, Ao2h queries the oracle ÕKG (y) in order to obtain its response |ϕ⟩ and a
list L̃KG . It updates LKG = L̃KG . It sends |ϕ⟩ to D.

4. Ao2h simulates the access of OVrfy for D as follows:

OVrfy (y, s̃k ) :

(a) Execute Steps (a)-(e) of OVrfy as in Hybcoin
4 .

(b) Apply the map |u⟩SKE.SKy |β⟩ABE.Ry
→ |u⟩SKE.SKy |β⊕O(u)⟩ABE.Ry

to the registers SKE.SKy
and ABE.Ry.

(c) Execute Steps (g)-(j) of OVrfy as in Hybcoin
4 .

5. D sends (m∗0 , m∗1) ∈ M2 to Ao2h. Ao2h checks if for every entry (y, vky, V) in LKG such that
R(x∗, y) = 0, it holds that V = ⊤. If so, it generates C̃∗ ← CC.Obf(1λ, D[skfe.ct∗], lock, 0) and
abe.ct∗ ← ABE.Enc(abe.pk, x∗∥C̃∗, m∗coin), where skfe.ct∗ = SKFE-CR-SKL.Enc(skfe.msk, x∗∥0λ)and
sends ct∗ := abe.ct∗ to D. Otherwise, it outputs 0.

6. D outputs a guess b′. Ao2h outputs b′.
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Let H be an oracle that for every input u, outputs 1. Consider now the extractor B
ÕKG ,H
o2h as specified by the O2H

Lemma (Lemma 3.2). We will now construct a reduction R that runs Bo2h by simulating the oracles ÕKG and H for
Bo2h, and breaks key-testability of the SKFE-CR-SKL scheme.

Execution of R in Expkey-test
SKFE-CR-SKL,R (1

λ):

1. The challenger Ch runs skfe.msk← SKFE-CR-SKL.Setup(1λ) and initializes R with input skfe.msk.
2. R samples (abe.pk, abe.msk)← ABE.Setup(1λ) and initializes Bo2h with the input (abe.pk, skfe.msk).
3. R simulates the access to ÕKG (y) for B as follows, where LKG is a list initialized to be empty:

ÕKG (y) : Given y, it finds an entry of the form (y, vky, V) from LKG (If there is such an entry, it returns
(⊥, LKG )). Otherwise, it generates (sk y, vky) similar to Hybcoin

3 . It adds (y, vky,⊥) to LKG and returns
(sk y, LKG ).

4. When Bo2h queries an input u to H, R responds with 1.
5. Bo2h outputs values y and sk. R sends (sk, y, lock) to Ch .

We will now claim that with non-negligible probability, R obtains values sk and y such that R′(x∗∥C̃∗, y∥sk) = 0.
Recall that the hybrids differ only when R(x∗, y) = 0. By the definition of R′ and C̃∗ and the decryption correctness of
SKFE-CR-SKL, this will imply that SKFE-CR-SKL.CDec(sk, skfe.ct⋆) ̸= F(x∗∥lock, y) since F(x∗∥lock, y) = lock,
and R′(x∗∥C̃∗, y∥sk) = 0 requires C̃∗(sk) = ⊥. Moreover, KeyTest(skfe.tky, sk) also holds. Consequently, this will
imply R breaks the key-testability of SKFE-CR-SKL. To prove this, we will rely on the One-Way to Hiding (O2H)
Lemma (Lemma 3.2). Consider an oracle G which takes as input u and outputs R′(x∗∥C̃⋆, y∥u) and an oracle H which
takes as input u and outputs 1. Notice that if the oracle O = G, then the view of D as run by Ao2h is the same as in
Hybcoin

4 , while if O = H, the view of D is the same as in Hybcoin
3 . By the O2H Lemma, we have the following, where

z = (abe.pk, skfe.msk).

∣∣∣∣Pr
[

A
ÕKG ,H
o2h (z) = 1

]
− Pr

[
A

ÕKG ,G
o2h (z) = 1

]∣∣∣∣ ≤ 2q ·

√
Pr

[
B

ÕKG ,H
o2h (z) ∈ S

]
.

where S is a set where the oracles H and G differ, which happens only for inputs u s.t. R′(x∗∥C̃⋆, y∥u) = 0. Since R

obtains sk and y as the output of B
ÕKG ,H
o2h (z), the argument follows that Hybcoin

3 ≈ Hybcoin
4 .

Hybcoin
5 : This is the same as Hybcoin

4 except that ct∗ := abe.ct∗ is generated as abe.ct∗ ← ABE.Enc(abe.pk, x∗∥C̃∗, 0ℓm).

The view of A in Hybcoin
4 and Hybcoin

5 can be simulated with abe.pk and the access to the quantum key generation oracle
Oqkg. This is because before ABE.KG is required to be applied in the simulation of oracles OKG and OVrfy , the relation
check R′(x∗∥C̃⋆, y∥u) is already applied in superposition. Thus, we have

∣∣Pr
[
Hybcoin

4 = 1
]
− Pr

[
Hybcoin

5 = 1
]∣∣ =

negl(λ).
Lastly, Hyb0

5 and Hyb1
5 are exactly the same experiment and thus we have

∣∣∣Pr
[
Hyb0

5 = 1
]
− Pr

[
Hyb1

5 = 1
]∣∣∣ =

negl(λ). Then, from the above arguments, we obtain∣∣∣Pr
[
Expsel-ind-kla

ABE-CR-SKL,A(1
λ, 0) = 1

]
− Expsel-ind-kla

ABE-CR-SKL,A(1
λ, 1) = 1]

∣∣∣
=
∣∣∣Pr

[
Hyb0

0 = 1
]
− Pr

[
Hyb1

0 = 1
]∣∣∣ ≤ negl(λ).

This completes the proof.
Recall now that SKFE-CR-SKL with Key-Testability is implied by BB84-based SKE-CD, OWFs and adaptively

single-ciphertext function-private SKFE. Since this notion of SKFE is implied by OWFs (Theorem 7.3), we have that
SKFE-CR-SKL with Key-Testability is implied by LWE. Since, Compute-and-Compare Obfuscation and quantum-secure
Ciphertext-Policy ABE for Circuits are both implied by LWE, this gives us the following theorem:
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Theorem 7.13. There exists an ABE-CR-SKL scheme satisfying Selective IND-KLA security, assuming the polynomial
hardness of the LWE assumption.

8 ABE-CR2-SKL from Multi-Input ABE
In this section, we show how to achieve ABE-CR-SKL with classical certificates (ABE-CR2-SKL) from MI-ABE.

8.1 Definitions of Multi-Input ABE
First, we recall the definitions of MI-ABE. The syntax of MI-ABE is as follows:

Definition 8.1. A Multi-Input (Ciphertext-Policy) Attribute-Based Encryption scheme MI-ABE is a tuple of four PPT
algorithms (Setup, KeyGen, Enc, Dec). Let k = poly(λ) and let {Xλ}λ, {(Yλ)

k}λ and R = {Rλ : Xλ × (Yλ)
k →

{0, 1}} be the ciphertext attribute space, key attribute space and the relation associated with MI-ABE respectively. Let
{0, 1}ℓ be the message space. Let s(λ) denote the maximum bit string length required to describe PPT circuits with input
size k · n(λ) and depth d(λ) for polynomials s, n and d. Let Xλ = {0, 1}s(λ) and Y = {0, 1}n(λ). Let R be such that
R(x, y1, . . . , yk) = 0 ⇐⇒ x(y1, . . . , yk) = ⊥ where x ∈ X is parsed as a k-input circuit and (y1, . . . , yk) ∈ Y k.

Setup(1λ)→ (pk, msk): The setup algorithm takes a security parameter 1λ and outputs a public key pk and master
secret key msk.

KG(msk, i, yi)→ ski: The key generation algorithm takes the master secret key msk, an index i ∈ [k], and a
key-attribute yi ∈ Y as input. It outputs a secret-key ski.

Enc(pk, x, m)→ ct: The encryption algorithm takes the public key pk, a ciphertext attribute x ∈ X , and a message
m ∈ {0, 1}ℓ as input. It outputs a ciphertext ct.

Dec(ct, sk1, . . . skk)→ m̃: The decryption algorithm takes as input a ciphertext ct and k secret-keys sk1, . . . , skk. It
outputs a value m̃ ∈ {0, 1}ℓ ∪⊥.

Correctness: We require that

Pr

Dec(ct, sk1, . . . , skk) = m

∣∣∣∣∣ (pk, msk)← Setup(1λ),
∀i ∈ [k] : ski ← KG(msk, i, yi),
ct← Enc(pk, x, m)

 ≥ 1− negl(λ).

holds for all x ∈ X and (y1, . . . , yk) ∈ Y k such that R(x, y1, . . . , yk) = 0 and m ∈ {0, 1}ℓ.

Remark 8.2. We say that an MI-ABE scheme has polynomial-arity, if it allows k to be an arbitrary polynomial in λ.

Definition 8.3 (Post-Quantum Selective Security for MI-ABE:). We say that MI-ABE is a selective-secure MI-ABE
scheme for relation R : X × Y k → {0, 1}, if it satisfies the following requirement, formalized from the experiment
Expsel-ind

MI-ABE,A(1
λ, coin) between an adversary A and a challenger Ch:

1. A declares the challenge ciphertext attribute x. Ch runs (pk, msk)← Setup(1λ) and sends pk to A .

2. A can get access to the following key generation oracle.

Okg(i, yi): It outputs ski ← KG(msk, i, yi) to A .

3. At some point, A sends (m0, m1) to Ch. Then, Ch generates ct∗ ← Enc(pk, x, mcoin) and sends ct∗ to A .

4. Again, A can get access to the oracle Okg.

5. A outputs a guess coin′ for coin and the experiment outputs coin′.
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For an adversary to be admissible, we require that for all tuples (y1, . . . , yk) ∈ Y k received by A , it must hold that
R(x, y1, . . . , yk) = 1 (non-decrytable). Given this constraint, we say MI-ABE satisfies selective security if for all QPT
A , the following holds:

Advsel-ind
MI-ABE,A(1

λ) :=
∣∣∣Pr

[
Expsel-ind

MI-ABE,A(1
λ, 0)→ 1

]
− Pr

[
Expsel-ind

MI-ABE,A(1
λ, 1)→ 1

]∣∣∣ ≤ negl(λ).

Remark 8.4. We do not require quantum security in Definition 8.3 unlike Definition 3.5.

Comparison with the Definition of Agrawal et. al [ARYY23]. Their definition considers a key-policy variant
of MI-ABE. It consists of algorithms (Setup, Enc, KG1, · · · , KGk−1, KGk, Dec) where Enc works in a similar way
as our definition, i.e., Enc(pk, x0, m) → ct for message m and attribute x0. For each i ∈ [k − 1], KGi works as
KGi(msk, xi) → ski for the i-th key-attribute xi. On the other hand, KGk works as KGk(msk, f ) → sk f where f is
an arbitrary k-input function. The guarantee is that decryption is feasible if and only if f (x0, . . . , xk−1) = ⊥. The
algorithm Dec has the syntax Dec(pk, ct, sk1, . . . , skk−1, sk f )→ m′.

It is easy to see that this definition directly implies a (k− 1)-input ciphertext-policy MI-ABE with algorithms
(Setup′, Enc′, KG′, Dec′). Specifically, Setup′(1λ) := Setup(1λ), Enc′(pk, x0, m) :=

(
pk, Enc(pk, x0, m)

)
and KG′

can be defined as KG′(msk, i, xi) := KGi(msk, xi) for all i ∈ [k − 1]. Finally, Dec′ is defined as Dec′(ct =
(pk, c̃t), sk1, . . . , skk−1) := Dec(pk, c̃t, sk1, . . . , skk−1, sk f ) for the function f (x0, . . . , xk−1) = Cx0(x1, . . . , xk−1)
where Cx0 is the circuit described by ciphertext-attribute x0.

Unfortunately, [ARYY23] only allows for a constant k, and hence we do not currently know of a construction where
k = poly(λ). In the recent work of [AKY24], a variant of MI-ABE (for k = poly(λ)) was achieved from the LWE
and evasive LWE assumptions, which is non-standard. However, the scheme it implies would require the encryption
algorithm Enc′ to utilize the master secret-key msk.

Disucssion on MI-ABE and IO. We focus on MI-ABE satisfying Definition 8.1 in this paragraph. MI-ABE is not
stronger than IO since IO is equivalent to multi-input functional encryption (MIFE) [GGG+14] and MIFE trivially
implies MI-ABE. Although we do not know whether MIFE is separated from MI-ABE, it is likely since PKFE is
separated from ABE [GMM17] and constructing FE schemes is significantly more challenging than ABE schemes.
Moreover, MI-ABE is not currently known from weaker assumptions than IO. They are qualitatively different primitives,
and MI-ABE could be constructed from weaker assumptions in the future. We also know that MI-ABE implies witness
encryption [BJK+18], and witness encryption is achieved from the evasive LWE assumption [Tsa22, VWW22]. Hence,
MI-ABE is somewhere between witness encryption and IO. Achieving MI-ABE from lattice assumptions is an interesting
open problem.

8.2 Definitions of ABE-CR2-SKL
The syntax of ABE-CR2-SKL is defined as follows.

Definition 8.5 (ABE-CR2-SKL). An ABE-CR2-SKL scheme ABE-CR2-SKL is a tuple of six algorithms (Setup, KG , Enc,
Dec, Del , Vrfy). Below, letM be the message space of ABE-CR2-SKL, X be the ciphertext-attribute space, and Y the
key-attribute space.

Setup(1λ)→ (ek, msk): The setup algorithm takes a security parameter 1λ, and outputs an encryption key ek and a
master secret-key msk.

KG(msk, y)→ (sk , vk): The key generation algorithm takes the master secret-key msk and a key-attribute y ∈ Y as
inputs, and outputs a decryption key sk and a verification key vk.

Enc(ek, x̃, m)→ ct: The encryption algorithm takes an encryption key ek, a ciphertext-attribute x̃ ∈ X , and a message
m ∈ M as inputs, and outputs a ciphertext ct.

Dec(sk , ct)→ m̃: The decryption algorithm takes a decryption key sk and a ciphertext ct, and outputs a value m̃ or ⊥.
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Del (sk )→ cert: The deletion algorithm takes a decryption key sk and outputs a deletion certificate cert.

Vrfy(vk, cert′)→ ⊤/⊥: The verification algorithm takes a verification key vk and a certificate cert′, and outputs ⊤
or ⊥.

Decryption correctness: For every m ∈ M, x̃ ∈ X and y ∈ Y such that x̃(y) = 0 (decryptable), we have

Pr

Dec(sk , ct) = m :
(ek, msk)← Setup(1λ)
(sk , vk)← KG(msk, y)
ct← Enc(ek, x̃, m)

 ≥ 1− negl(λ).

Verification correctness: For every y ∈ Y , we have

Pr

Vrfy(vk, cert) = ⊤ :
(ek, msk)← Setup(1λ)
(sk , vk)← KG(msk, y)
cert← Del (sk )

 ≥ 1− negl(λ).

Remark 8.6. We use the same experiment identifier sel-ind-kla to refer to the selective IND-KLA security experiments
of ABE-CR-SKL and ABE-CR2-SKL. This is for the sake of simplicity, as the exact experiment will be clear from the
context.

Selective IND-KLA Security: This security notion for an ABE-CR2-SKL scheme is defined in the same way as for
ABE-CR-SKL, except that instead of access to the oracle OVrfy in the experiment, A receives access to the following
oracle:

OVrfy(y, cert): Given (y, cert), it finds an entry (y, vk, V) from LKG . (If there is no such entry, it returns ⊥.) It
then runs d := Vrfy(vk, cert) and returns d to A . If V = ⊥, it updates the entry into (y, vk, d).

8.3 Construction of ABE-CR2-SKL from MI-ABE
Construction overview. We first provide the main idea behind our ABE-CR2-SKL based on MI-ABE, which follows
along the lines of our ABE-CR-SKL construction with some key-differences. In this case, we directly rely on a
BB84-based SKE-CD scheme as a building block, instead of needing something similar to SKFE-CR-SKL. Consider
now an SKE-CD ciphertext skecd.ct of the plaintext 0λ. Let its corresponding verification-key skecd.vk be of the form
skecd.vk = (x, θ), where x and θ are k-bit strings. Then, skecd.ct is of the form |ψ1⟩ ⊗ · · · ⊗ |ψk⟩, where for i ∈ [k],
|ψi⟩ is of the following form:

|ψi⟩ =
{
|x[i]⟩ i f θ[i] = 0
|0⟩+ (−1)x[i] |1⟩ i f θ[i] = 1

Now, for each i ∈ {2, . . . , k} and u ∈ {0, 1}, consider the attribute-key abe.ski,u generated by the MI-ABE
key-generation algorithm for slot i and attribute t∥u. Here, t is a value chosen at random and is common for all slots
corresponding to a given decryption-key sk . Additionally, for u ∈ {0, 1}, consider the keys abe.sk1,u corresponding to
the attributes t∥u∥y where y is the actual ABE key-attribute.

Consider now the following state ρi for each i ∈ [k]:

ρi =

{
|x[i]⟩

∣∣∣abe.ski,x[i]

〉
i f θ[i] = 0

|0⟩ |abe.ski,0⟩+ (−1)x[i] |1⟩ |abe.ski,1⟩ i f θ[i] = 1,

The quantum decryption-key of our scheme will be the tuple sk = (ρi)i∈[k]. The encryption algorithm is
similar to the ABE-CR-SKL scheme, and outputs an MI-ABE encryption of message m under a policy CABE∥C̃
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where C̃ ← CC.Sim(1λ) is a simulator of a compute and compare obfuscator and CABE is the actual ABE policy.
However, the MI-ABE relation is a little different. The relation is such that for a set of k attributes y1 = t1∥u1∥y
and y2 = t2∥u2, . . . , yk = tk∥uk, it outputs 0 (decryptable) whenever CABE(y) = 0 (the ABE relation is satisfied)
AND t1 = . . . = tk AND C̃(u1∥ . . . ∥uk) = ⊥. Otherwise, it outputs 1. As in ABE-CR-SKL, the idea is that C̃ is
indistinguishable from C̃∗ that is an obfuscation of the compute-and-compare circuit CC[D[lock⊕ r, skecd.sk], lock, 0].
Here, lock and r are random values, and skecd.sk is the secret-key of the SKE-CD scheme. The circuit D is such that
D(u) outputs lock⊕ r⊕ SKECD.CDec(skecd.sk, u), where SKECD.CDec is the classical decryption algorithm of the
SKE-CD scheme.

Consequently, when every sk = (ρi)i∈[k] the adversary receives is generated using an SKE-CD encryption of r (instead
of 0λ as in the scheme), then any tuple of k MI-ABE keys of the adversary having attributes

(
t1∥u1∥y, t2∥u2 . . . , tk∥uk

)
satisfies one of the three conditions:

• The values t1 . . . tk are not all the same.

• CABE(y) ̸= 0.

• For u = u1∥ . . . ∥uk, D[lock⊕ r, skecd.sk](u) returns lock.

Notice that the former condition ensures that the adversary cannot interleave keys corresponding to different
decryption-keys. The last condition holds because the adversary never receives abe.ski,1−x[i] for any i such that θ[i] = 0.
Consequently, u and x are the same at all positions where θ[i] = 0. This means that SKECD.CDec(skecd.sk, u) outputs
r by the classical decryption property of SKECD (Definition 3.12). It is important to note that the positions i where
θ[i] = 1 (the Hadamard positions) have no effect on the value output by SKECD.CDec as their purpose is just in the
verification of deletion. As a result, the security of MI-ABE allows to simulate the adversary’s view in this hybrid, as no
“decryptable” set of k keys is given out.

Importantly, the switch from SKE-CD encryptions of 0λ to r is indistinguishable, given that the adversary deletes
all the information in the SKE-CD ciphertexts. To enforce this, the deletion algorithm requires the adversary to
measure both the SKE-CD and MI-ABE registers for each slot to obtain values (ci, di)i∈[k]. Then, given the values
{abe.ski,0 ⊕ abe.ski,1}i∈[k] as part of the verification key, the verification checks whether x[i] = ci ⊕ di · (abe.ski,0 ⊕
abe.ski,1) holds for every i ∈ [k] such that θ[i] = 1. As a result, we are able use a standard hybrid argument to turn any
distinguisher (of the 0λ and r hybrids) into an attack on the certified deletion security of the SKE-CD scheme.

Construction. We will construct an ABE-CR2-SKL scheme ABE-CR2-SKL = ABE-CR2-SKL.(Setup, KG , Enc,
Dec, Del , Vrfy) using the following building blocks:

• Multi-Input (Ciphertext-Policy) ABE Scheme MI-ABE = MI-ABE.(Setup, KG, Enc, Dec) for the following
relation:

R(x̃∥z, y1, · · · , yk): Let x̃ be interpreted as a circuit and z as a k-input circuit.
– Parse y1 = t1∥u1∥y.
– Parse yi = ti∥ui for every i ∈ 2, . . . , k.
– If ti ̸= tj for some i, j ∈ [k], output 1. Otherwise, go to the next step.
– If z(u1∥ · · · ∥uk) = ⊥ AND x̃(y) = 0, output 0 (decryptable). Else, output 1.

• Compute-and-Compare Obfuscation CC.Obf with the simulator CC.Sim.

• BB84-based SKE-CD scheme SKECD = SKECD.(KG, Enc, Dec, Del , Vrfy) with the classical decryption
algorithm SKECD.CDec.

The description of each algorithm of ABE-CR2-SKL is as follows.

ABE-CR2-SKL.Setup(1λ):
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• Generate (abe.pk, abe.msk)← MI-ABE.Setup(1λ).
• Generate skecd.sk← SKECD.KG(1λ).
• Output ek := abe.pk and msk := (abe.msk, skecd.sk).

ABE-CR2-SKL.KG(msk, y):

• Parse msk = (abe.msk, ske.msk).
• Sample a random value t← {0, 1}λ.
• Generate (skecd.ct , skecd.vk) ← SKECD.Enc(skecd.sk, 0λ). skecd.vk is of the form (x, θ) ∈ {0, 1}k ×
{0, 1}k, and skecd.ct is of the form |ψ1⟩SKECD.CT1

⊗ · · · ⊗ |ψk⟩SKECD.CTk
.

• Generate abe.sk1,b ← MI-ABE.KG(abe.msk, 1, t∥b∥y) for each b ∈ {0, 1}.
• For every i ∈ 2, . . . , k, do the following:

– Generate abe.ski,b ← MI-ABE.KG(abe.msk, i, t∥b) for each b ∈ {0, 1}.
• For every i ∈ [k], do the following:

– Prepare a register ABE.SKi that is initialized to |0 · · · 0⟩ABE.SKi
.

– Apply the map |u⟩SKECD.CTi
|v⟩ABE.SKi

→ |u⟩SKECD.CTi
|v⊕ abe.ski,u⟩ABE.SKi

to the registers
SKECD.CTi and ABE.SKi, and obtain the resulting state ρi.

• Output sk := (ρi)i∈[k] and vk :=
(
skecd.vk, {abe.ski,0 ⊕ abe.ski,1}i∈[k]:θ[i]=1

)
.

ABE-CR2-SKL.Enc(ek, x̃, m):

• Parse ek = abe.pk.
• Generate C̃ ← CC.Sim(1λ, ppD, 1), where ppD consists of circuit parameters of D defined in the security

proof.
• Generate abe.ct← MI-ABE.Enc(abe.pk, x̃∥C̃, m).
• Output ct := abe.ct.

ABE-CR2-SKL.Dec(sk , ct):

• Parse sk = (ρi)i∈[k] and ct = abe.ct. We denote the register holding ρi as SKECD.CTi ⊗ ABE.SKi.

• Prepare a register MSG that is initialized to |0 · · · 0⟩MSG
• To the registers

⊗
i∈[k] ABE.SKi and MSG, apply

⊗
i∈[k] |vi⟩ABE.SKi

⊗ |w⟩MSG →
⊗

i∈[k] |vi⟩ABE.SKi
⊗

|w⊕MI-ABE.Dec(abe.ct, v1, · · · , vk)⟩MSG.
• Measure the register MSG in the computational basis and output the result m′.

ABE-CR2-SKL.Del (sk ):

• Parse sk = (ρi)i∈[k]. Let the register holding ρi be denoted as SKECD.CTi ⊗ ABE.SKi.

• For each i ∈ [k], measure the registers SKECDi and ABE.SKi in the Hadamard basis to obtain outcomes ci
and di.

• Output cert = (ci, di)i∈[k].

ABE-CR2-SKL.Vrfy(vk, cert):

• Parse vk =
(
skecd.vk = (x, θ), {abe.ski,0 ⊕ abe.ski,1}i∈[k]:θ[i]=1

)
and cert = (ci, di)i∈[k].

• Output ⊤ if x[i] = ci ⊕ di · (abe.ski,0 ⊕ abe.ski,1) holds for every i ∈ [k] such that θ[i] = 1 and ⊥
otherwise.
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Let sk ← ABE-CR2-SKL.KG(msk, y). sk is of the form (ρi)i∈[k], where ρi is of the following form, where (x, θ)
is the verification key of a BB84-based SKECD scheme:

ρi =

{
|x[i]⟩

∣∣∣abe.ski,x[i]

〉
i f θ[i] = 0

|0⟩ |abe.ski,0⟩+ (−1)x[i] |1⟩ |abe.ski,1⟩ i f θ[i] = 1,

Recall that abe.ski,b = MI-ABE.KG(abe.msk, i, t∥b) for every i ∈ {2, . . . , k} and b ∈ {0, 1}. Moreover,
abe.sk1,b = MI-ABE.KG(abe.msk, 1, t∥b∥y) for each b ∈ {0, 1}.

Decryption correctness. The MI-ABE relation defined in the construction is as follows:

R(x̃∥z, y1, · · · , yk): Let x̃ be interpreted as a circuit and z as a k-input circuit.

• Parse y1 = t1∥u1∥y.
• Parse yi = ti∥ui for every i ∈ 2, . . . , k.
• If ti ̸= tj for some i, j ∈ [k], output 1. Otherwise, go to the next step.
• If z(u1∥ · · · ∥uk) = ⊥ AND x̃(y) = 0, output 0 (decryptable). Else, output 1.

Clearly, z := C̃ ← CC.Sim(1λ, ppD, 1) always outputs ⊥ and t1 = . . . = tk holds by construction. Hence, the
guarantee follows from the decryption correctness of MI-ABE, as long as x̃(y) = 0 holds, as desired.

Verification correctness. Recall that the verification only checks the Hadamard basis positions, i.e, positions i ∈ [k]
such that θ[i] = 1. Consider the outcome (ci, di) obtained by measuring the state |0⟩ |abe.ski,0⟩+(−1)x[i] |1⟩ |abe.ski,1⟩
in the Hadamard basis, where ci denotes the first bit of the outcome. It is easy to see that x[i] = ci ⊕ di · (abe.ski,0 ⊕
abe.ski,1) is satisfied. Hence, the verification correctness follows.

8.4 Proof of Selective IND-KLA Security
Let A be an adversary for the selective IND-KLA security of ABE-CR2-SKL. We consider the following sequence of
experiments.

Hybcoin
0 : This is Expsel-ind-kla

ABE-CR2-SKL,A(1
λ, coin).

1. A declares the challenge ciphertext attribute x∗ ∈ X .
2. The challenger Ch generates (abe.pk, abe.msk)← MI-ABE.Setup(1λ) and skecd.sk← SKECD.KG(1λ),

and sends ek := abe.pk to A .
3. A can get access to the following (stateful) oracles, where the list LKG used by the oracles is initialized to an

empty list:

OKG (y): Given y, it finds an entry of the form (y, vky, Vy) from LKG . If there is such an entry, it returns ⊥.
Otherwise, it generates (sk y, vky)← KG(msk, y), sends sk y to A , and adds (y, vky,⊥) to LKG .

OVrfy(y, cert): Given (y, cert), it finds an entry (y, vky, Vy) from LKG . (If there is no such entry, it returns
⊥.) It then runs d := Vrfy(vky, cert) and returns d to A . If Vy = ⊥, it updates the entry into (y, vky, d).

4. A sends (m∗0 , m∗1) ∈ M2 to the challenger. If Vj = ⊥ for some j ∈ [q], Ch outputs 0 as the fi-
nal output of this experiment. Otherwise, Ch generates C̃∗ ← CC.Sim(1λ, ppD, 1) and abe.ct∗ ←
MI-ABE.Enc(abe.pk, x∗∥C̃∗, m∗coin), and sends ct∗ := abe.ct∗ to A .

5. A outputs coin′. Ch outputs coin′ as the final output of the experiment.
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Hybcoin
1 : This is the same as Hybcoin

0 except that C̃∗ is generated as C̃∗ ← CC.Obf(1λ, D[lock⊕ r, skecd.sk], lock, 0),
where lock ← {0, 1}λ, r ← {0, 1}λ and D[lock⊕ r, skecd.sk](x) is a circuit that has lock⊕ r and skecd.sk
hardwired and outputs lock⊕ r⊕ SKECD.CDec(skecd.sk, x).
Since lock is chosen at random independently of all other variables, from the security of compute-and-compare
obfuscation, we have that Hybcoin

0 ≈ Hybcoin
1 .

Hybcoin
2 : This is the same as Hybcoin

1 except that skecd.ct generated as part of ABE-CR2-SKL.KG(msk, y) such that
x∗(y) = 0, is generated as (skecd.ct , skecd.vk)← SKECD.Enc(skecd.sk, r).

In the previous step, we changed the distribution of C̃∗ used to generate the challenge ciphertext so that C̃∗ has
skecd.sk hardwired. However, the ciphertext is given to A after A deletes all the leased secret keys satisfying the
ABE relation, and thus the corresponding ciphertetexts of SKECD. Thus, we can use the security of SKECD
to argue that Hybcoin

1 ≈ Hybcoin
2 . Let q be the number of key-queries made to OKG that satisfy the relation wrt

x∗. Consider now q + 1 hybrids Hybcoin
1,0 , · · · , Hybcoin

1,q where for every l ∈ [q], Hybcoin
1,l is such that the first l

of the q keys are generated using SKECD encryptions of r (instead of 0λ). Notice that Hybcoin
1,0 ≡ Hybcoin

1 and
Hybcoin

1,q ≡ Hybcoin
2 . Suppose that Hybcoin

1,l ̸≈ Hybcoin
1,l+1 for some l ∈ [q]. Let D be a distinguisher with non-

negligible advantage in distinguishing the hybrids. We will construct the following reduction to the IND-CVA-CD
security of SKECD:

Execution of R D in Expind-cva-cd
SKECD,R (1λ, b):

1. The challenger Ch computes sk← KG(1λ).
2. D declares a challenge ciphertext attribute x∗ to R . R generates (abe.pk, abe.msk)← MI-ABE.Setup(

1λ) and sends ek := abe.pk to D.
3. R sends (r0, r1) := (0λ, r) to Ch .
4. Ch computes (ct⋆, vk⋆)← Enc(sk, rb) and sends ct⋆ to R .
5. R simulates the oracle OKG (y) for D as follows. Given y, it finds an entry (y, vky, Vy) from LKG . If

there is such an entry, it returns ⊥. Otherwise, it proceeds as follows:
• For the j-th query (of the q satisfying key-queries), if j ̸= l + 1, R computes sk y and vky as in

Hybcoin
0 , except that the values (skecd.ct , skecd.vk) are computed using OEnc(r) for j ∈ [l] and

using OEnc(0λ) for j ∈ {l + 2, . . . , q}.
• For the j-th query (of the q satisfying key-queries), if j = l + 1, R computes sk y as in Hybcoin

0 , except
that the value ct⋆ is used instead of skecd.ct . Consider the values {abe.ski,0, abe.ski,1}i∈[k]:θ[i]=1

computed during the computation of sk y. R computes the value ṽky = {abe.ski,0⊕ abe.ski,1}i∈[k].
• If x∗(y) ̸= 0 (unsatisfying key-queries), R computes sk y and vky as in Hybcoin

0 , except that
(skecd.ct , skecd.vk) are computed using OEnc(0λ).

6. R simulates the view of oracle OVrfy(y, cert) for D as follows. Given (y, cert), it finds an entry
(y, vky, Vy) from LKG . If there is no such entry, it returns ⊥. Otherwise, it proceeds as follows:

• If x∗(y) ̸= 0, R simulates access to OVrfy as in Hybcoin
0 .

• If y corresponds to the j-th satisfying key-query to OKG and j ̸= l + 1, R simulates access to OVrfy
as in Hybcoin

0 .
• If y corresponds to the j-th satisfying key-query to OKG and j = l + 1, R simulates access to

OVrfy(y, cert) as follows:

(a) Parse ṽky = {abe.ski,0 ⊕ abe.ski,1}i∈[k] and cert = (ci, di)i∈[k].
(b) Compute x[i] = ci ⊕ di · (abe.ski,0 ⊕ abe.ski,1) for every i ∈ [k].
(c) If OVrfy(x) = sk, set d := ⊤. Else, set d := ⊥.
It returns d to D. If Vy = ⊥, it updates the entry in LKG into (y, vky, d).
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7. D sends (m∗0 , m∗1) ∈ M2 to R . R computes ct∗ as in Step 4. of Hybcoin
1 using skecd.sk := sk obtained

from Ch . It sends ct∗ to D if Vy = ⊤ for every entry of the form (y, vky, Vy) in LKG such that
x∗(y) = 0. Else, it outputs ⊥.

8. D guesses a bit b′. R sends b′ to Ch .

Notice that the view of D in the reduction is that of Hybcoin
1,l if b = 0 and Hybcoin

1,l+1 if b = 1. Moreover, D can
only distinguish when Vy = ⊤ for all entries (y, vky, Vy) ∈ LKG such that x∗(y) = 0. This means that Vy
corresponding to the (l + 1)-th satisfying query to OKG also satisfies Vy = ⊤. Consequently, the corresponding
verification check of Ch is also ⊤. Hence, R succeeds in breaking IND-CVA-CD security of SKECD. Therefore,
we have Hybcoin

1 ≈ Hybcoin
2 .

We will now bound the distinguishing gap between Hyb0
2 and Hyb1

2 using the security of MI-ABE. Consider a
decryption key sk y = (ρi)i∈[k] such that x∗(y) = 0. Recall that a ciphertext of BB84-based SKECD is of the form
|ψ1⟩ ⊗ · · · ⊗ |ψk⟩, where

|ψi⟩ =
{
|x[i]⟩ if θ[i] = 0
|0⟩+ (−1)x[i] |1⟩ if θ[i] = 1

As a result, we have

ρi =

{
|x[i]⟩

∣∣∣abe.ski,x[i]

〉
if θ[i] = 0

|0⟩ |abe.ski,0⟩+ (−1)x[i] |1⟩ |abe.ski,1⟩ if θ[i] = 1,

where abe.sk1,b ← MI-ABE.KG(abe.msk, 1, ty∥b∥y) for each b ∈ {0, 1} and abe.ski,b ← MI-ABE.KG(abe.msk, i,
ty∥b) for each i ∈ {2, . . . , k} and b ∈ {0, 1}. Here, ty is a random value that is common for each of the k “slots”
of the decryption-key sk y. Notice first that no two values ty, tw are equal for tw corresponding to some sk w except
with negligible probability. Consequently, due to the defined relation R and the selective security of MI-ABE, any
set of k secret keys is “decryptable” only if they correspond to the same decryption key sk y. Now, we notice that
abe.ski,1−x[i] is not given to A for any i ∈ [k] such that θ[i] = 0. This means that for any set of k MI-ABE keys
corresponding to the decryption-key sk y, the attributes (x′[1], · · · , x′[k]) satisfy x′[i] = x[i] for all i : θ[i] = 0.
Consequently, the classical decryption property (See Definition 3.12) of the BB84-based SKE-CD scheme guarantees
that lock⊕ r⊕ SKECD.CDec(skecd.sk, x′) = lock in these hybrids. This means that C̃∗(x′) = 0 (instead of ⊥). As a
result, any subset of MI-ABE keys of size k given to A is a “non-decryptable” set in the hybrids Hyb0

2 and Hyb1
2. It is

easy to see now that we can reduce to the selective security of MI-ABE. Specifically, the reduction specifies the target
attribute x∗∥C̃∗ where C̃∗ ← CC.Obf(1λ, D[lock⊕ r, skecd.sk], lock, 0) and simulates the view for A by querying the
key-generation oracle of MI-ABE accordingly. Note that the reduction can handle verification queries since it can obtain
both abe.ski,0 and abe.ski,1 for every i ∈ [k] such that θ[i] = 1 that are sufficient to perform the verification. (Especially,
it does not need abe.ski,1−x[i] for i ∈ [k] such that θ[i] = 0 for verification.) We now state the following theorem:

Theorem 8.7. There exists an ABE-CR2-SKL scheme satisfying selective IND-KLA Security, assuming the existence
of a selectively-secure Multi-Input ABE scheme for polynomial-arity, Compute-and-Compare Obfuscation, and a
BB84-based SKE-CD scheme.
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A Quantum Secure ABE for All Relations from LWE
We show there exists quantum selective-secure ABE for all relations computable in polynomial time based on the LWE
assumption.

A.1 Preparation
Definition A.1 (Quantum-Accessible Pseudo-Random Function). Let {PRFk : {0, 1}ℓ1 → {0, 1}ℓ2 | k ∈ {0, 1}λ}
be a family of polynomially computable functions, where ℓ1 and ℓ2 are some polynomials of λ. We say that PRF is a
quantum-accessible pseudo-random function (QPRF) family if for any QPT adversary A , it holds that

Advprf
A (λ) =

∣∣∣Pr
[

A |PRFk(·)⟩(1λ)← 1 | k← {0, 1}λ
]
− Pr

[
A |R(·)⟩(1λ)← 1 | R← U

]∣∣∣ ≤ negl(λ),

where U is the set of all functions from {0, 1}ℓ1 to {0, 1}ℓ2 .

Theorem A.2 ([Zha12]). If there exists a OWF, there exists a QPRF.

A.2 Proofs
We first define Key-Policy ABE for polynomial size circuits and briefly see that it can be used to instantiate ABE for any
relations computable in polynomial time, even under quantum selective-security. Then, we prove that the Key-Policy
ABE scheme for polynomial size circuits by Boneh et al. [BGG+14] with a light modification using QPRF satisfies
quantum selective-security under the LWE assumption.

Key-Policy ABE for Circuits: Let Xλ = {0, 1}n(λ) and Yλ be the set of all circuits with input space {0, 1}n(λ)

and size at most s(λ), where n and s are some polynomials. Let Rλ be the following relation:

Rλ(x, y) = 0 ⇐⇒ y(x) = 0

An ABE scheme for such {Xλ}λ, {Yλ}λ, and {Rλ}λ is referred to as a Key-Policy ABE scheme for circuits.

Lemma A.3. If there exists a quantum selective-secure Key-Policy ABE scheme for circuits, then there exists a quantum
selective-secure ABE scheme for all relations computable in polynomial time.

Proof. Let Xλ ⊆ {0, 1}n, Yλ ⊆ {0, 1}ℓ, and Rλ : Xλ × Yλ → {0, 1}, where n and ℓ are polynomials and Rλ is
computable in polynomial time. We construct ABE scheme ABE = (Setup, KG, Enc, Dec) with attribute spaces {Xλ}
and {Yλ} and relation {Rλ}, using Key-Policy ABE scheme for circuits ABE′ = (Setup, KG′, Enc, Dec) with the
following attribute spaces {X ′λ} and {Y ′λ}.

• X ′λ = {0, 1}n.

• Let Cλ,y be the circuit such that Cλ,y(x) = Rλ(x, y) for every x ∈ {0, 1}n and y ∈ {0, 1}ℓ, and let s be the
maximum size of Cy. Note that s is a polynomial in λ. Then, Y ′λ is the set of all circuits with input length n and
size at most s′.
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The scheme is as follows: KG′(msk, y, r) = KG(msk, Cλ,y, r). It is easy to see that the correctness of ABE follows
from that of ABE′. For the quantum selective security of ABE′, consider a reduction R to the quantum selective security
of ABE.

Execution of R A in Experiment Expq-sel-ind
ABE,A (1λ, coin):

1. R receives challenge attribute x∗ ∈ Xλ from A and forwards it to the challenger Ch.

2. For each oracle query (Y, Z) made by A , R performs the following map on register Z initialized to
∣∣∣0s(λ)

〉
:

|y⟩Y |z⟩Z 7→ |y⟩Y
∣∣z⊕ Cλ,y

〉
Z

3. Then, R queries the registers Y, Z to Oqkg followed by returning the registers Y, Z to A .
4. When A sends (m0, m1) to R , R forwards it to Ch.
5. On receiving ct⋆ ← Enc(pk, x∗, mcoin) from Ch, R forwards it to A .
6. Finally, when A outputs a guess coin′, R sends coin′ to Ch.

Since the view of A is identical to that in the quantum selective security experiment for scheme ABE′, R ends up
breaking the quantum selective security of ABE.

Theorem A.4. Assuming the polynomial hardness of the LWE problem, there exists a quantum selective-secure
Key-Policy ABE scheme for circuits.

Proof. We claim that the Key-Policy ABE scheme for circuits by Boneh et al. [BGG+14] based on LWE is quantum
selective-secure. Actually, we will alter the key-generation algorithm of their scheme as follows: KG(msk, y, k) =
KG′(msk, y, PRFk(y)) where KG′ is the key-generation algorithm of their construction with explicit random coins
PRFk(y), and {PRFk}k is QPRF. This is a common technique utilized in quantum security proofs (See for Eg.
[BZ13a, BZ13b]) that allows one to use a common random value for every term of a superposition. In the following
discussion, whenever we discuss a hybrid titled "Game i" for some value i, it refers to the corresponding hybrid in
Theorem 4.2 of [BGG+14]. Also, any indistinguishability claims between Game hybrids that are mentioned to be
previously established, will refer to their work. Consider the following sequence of hybrids for the aforementioned ABE
scheme ABE and a QPT adversary A:

Hybcoin
0 : This is the same as the experiment Expq-sel-ind

ABE,A (1λ, coin).

Hybcoin
1 : This is similar to Hybcoin

0 , except that the public-key pk is generated based on the challenge attribute x∗, as in
the hybrid Game 1. It was shown that the hybrids Game 0 (the original experiment) and Game 1 are statistically
indistinguishable. By the same argument, it follows that Hybcoin

0 ≈s Hybcoin
1 .

Hybcoin
2 : This is similar to Hybcoin

1 , except that the public-key is further modified as in Game 2. Unlike the change
made in Hybcoin

1 though, this change requires the key-queries to be answered differently as in Game 2. More
specifically, the hybrid now has a punctured master secret-key that still allows it to simulate every key-query y such
that Cy(x∗) ̸= ⊥. It was shown previously that Game 1 ≈s Game 2. Consider now the intermediate hybrids
H̃ybcoin

1 , H̃ybcoin
2 that are similar to Hybcoin

1 , Hybcoin
2 respectively, except that all the superposition key-queries in

these hybrids are responded using independent (true) randomness in every term of the superposition. We will
now restate the following lemma by [BZ13a], which we will use to argue that H̃ybcoin

1 ≈s H̃ybcoin
2 .

Lemma A.5. [BZ13a] Let Y and Z be sets and for each y ∈ Y , let Dy and D′y be distributions on Z such that
SD(Dy, D′y) ≤ ϵ. Let O : Y → Z and O′ : Y → Z be functions such that O(y) outputs z ← Dy and O′(y)
outputs z′ ← D′y. Then, O(y) and O′(y) are ϵ′-statistically indistinguishable by quantum algorithms making q
superposition oracle queries, such that ϵ′ =

√
8C0q3ϵ where C0 is a constant.
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Recall that Y denotes the set of key-attributes. Let us fix a challenge ciphertext attribute x∗ for the following
discussion. For each y ∈ Y let the distributions D1

y[pk], D2
y[pk] correspond to how a key for attribute y is

sampled in the hybrids H̃ybcoin
1 , H̃ybcoin

2 respectively, conditioned on the public key being pk. Note that for each
i ∈ [2], we consider Di

y[pk] to also output the public-key pk along with the secret-key for y. We know that on
average over pk, D1

y[pk] ≈s D2
y[pk] holds for all y ∈ Y . It now follows from the above lemma that on average

over pk, the analogously defined oracles O1[pk], O2[pk] are statistically indistinguishable by algorithms making
polynomially many superposition queries. Observe that with access to oracle Oi[pk] for each i ∈ [2], the view of
A in H̃ybcoin

i (conditioned on the public-key being pk) can easily be recreated as the oracle outputs pk, which can
then be used to compute the challenge ciphertext corresponding to coin. Consequently, it follows that the hybrids
H̃ybcoin

1 and H̃ybcoin
2 are statistically indistinguishable. Since H̃ybcoin

i ≈ Hybcoin
i holds for each i ∈ [2] (by the

quantum-security of PRF), we have that Hybcoin
1 ≈ Hybcoin

2 .

Hybcoin
3 : This is similar to Hybcoin

2 , except that the challenge ciphertext is chosen uniformly at random, as in Game 3.

Observe that Hyb0
3 ≡ Hyb1

3. It was shown previously that Game 3 ≈ Game 2 by a reduction to LWE. Specifically,
the reduction prepares the setup based on the LWE sample and the challenge ciphertext x∗, and plants the LWE
challenge in the challenge ciphertext. It is easy to see that a similar reduction works in our case, thereby showing
that Hybcoin

2 ≈ Hybcoin
3 . Consequently, it follows that Hyb0

0 ≈ Hyb1
0.

This completes the proof.

B IND-CVA-CD Secure BB84 Based SKE-CD
To prove Theorem 3.13, we show how to transform IND-CD secure SKE-CD to IND-CVA-CD secure one.

Definition B.1 (IND-CD Security). We define the security experiment Expind-cd
SKECD,A(1

λ, coin) in the same way as
Expind-cva-cd

SKECD,A (1λ, coin) except that the adversary A is allowed to get access to the verification oracle only once. We say
that SKECD is IND-CD secure if for any QPT A , it holds that

Advind-cd
SKECD,A(1

λ) :=
∣∣∣Pr

[
Expind-cd

SKECD,A(1
λ, 0) = 1

]
− Pr

[
Expind-cd

SKECD,A(1
λ, 1) = 1

]∣∣∣ ≤ negl(λ).

Bartusek and Khurana [BK23] showed the following theorem.

Theorem B.2 ([BK23]). There exists an IND-CD secure BB84 based SKE-CD scheme assuming just an IND-CPA
secure SKE scheme.

We prove Theorem 3.13 by proving the following theorem.

Theorem B.3. Let SKECD = (KG, Enc, Dec, Del , Vrfy) be a BB84-based SKE-CD scheme. If SKECD is IND-CD
secure, then it is also IND-CVA-CD secure.

Proof. Let A be a QPT adversary that attacks the IND-CVA-CD security of SKECD with q verification queries. Let FVi
be the event that the i-th verification query is the first verification query such that the answer for it is not ⊥. Then, A’s
advantage can be described as follows.

Advind-cva-cd
SKECD,A (1λ) :=

∣∣∣Pr
[
Expind-cva-cd

SKECD,A (1λ, 0) = 1
]
− Pr

[
Expind-cva-cd

SKECD,A (1λ, 1) = 1
]∣∣∣

≤ ∑
i∈[q]

∣∣∣Pr
[
Expind-cva-cd

SKECD,A (1λ, 0) = 1∧ FVi

]
− Pr

[
Expind-cva-cd

SKECD,A (1λ, 1) = 1∧ FVi

]∣∣∣ (1)

To bound each term of Equation (1), we construct the following QPT adversary Bi that attacks the IND-CD security of
SKECD using A .
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1. Bi initializes A with the security parameter 1λ.

2. A makes queries to the encryption oracle throughout the experiment.

OEnc(m): When A makes an encryption query m, Bi forwards it to its own encryption oracle, and sends back the
answer (vk, ct) from the encryption oracle to A .

3. When A outputs (m0, m1) ∈ M2, Bi sends (m0, m1) to its challenger. On receiving the challenge ciphertext ct∗

from the challenger, Bi measures its classical part cla. This does not affect ct∗. Bi then forwards ct∗ to A .

4. Hereafter, A can get access to the following oracle.

OVrfy(certj): For the j-th query certj, if j < i, Bi returns ⊥ to A . if j = i, Bi queries certj to its verification
oracle. If the response is ⊥, Bi aborts. Otherwise if the answer is sk, Bi forwards sk to A . Bi also computes
θ from cla and sk, and sets vk′ = (θ, certi). Bi checks whether Vrfy(vk′, certj) = ⊥ holds for every j < i
(that is, whether the i-th query is the first query resulting in the answer other than ⊥). If not, Bi aborts.
Otherwise, Bi responds to the subsequent verification queries using vk′.

5. When A outputs coin′ ∈ {0, 1}, Bi outputs coin′.

Let vk∗ = (θ, x) be the verification key corresponding to ct∗. For any string cert, if Vrfy(vk∗, cert) = ⊤,
Vrfy(vk∗, ·) and Vrfy(vk′, ·) for vk′ = (θ, cert) are functionally equivalent, and vk′ can be used as an alternative
verification key. This is because Vrfy(vk∗, cert′) and Vrfy(vk′, cert′) respectively checks whether cert′[i] = x[i] and
cert′[i] = cert[i] holds or not for every i ∈ [n] such that θ[i] = 1, and for such i, we have x[i] = cert[i] from the fact
that Vrfy(vk∗, cert) = ⊤.

From the above, after the i-th verification query from A is responded, Bi can check whether its simulation
of A so far has been successful or not. Moreover, if the simulation has failed, Bi aborts, and otherwise, Bi can
successfully simulate the remaining steps for A using the alternative verification key vk′ = (θ, certi). Then, we have
Pr

[
Expind-cd

SKECD,Bi
(1λ, coin) = 1

]
= Pr

[
Expind-cva-cd

SKECD,A (1λ, coin) = 1∧ FVi

]
. Since, SKECD satisfies IND-CD security,

it holds that ∣∣∣Pr
[
Expind-cd

SKECD,Bi
(1λ, 0) = 1

]
− Pr

[
Expind-cd

SKECD,Bi
(1λ, 1) = 1

]∣∣∣ = negl(λ)

for every i ∈ [q], which shows each term of Equation (1) is negligible. This completes the proof.

C Construction of SKFE-CR-SKL with Key Testability
C.1 Construction
We construct an SKFE-CR-SKL scheme for the functionality F : X ×Y → Z with key testability SKFE-CR-SKL =
SKFE-CR-SKL.(Setup, KG , Enc, Dec, Vrfy) having the additional algorithms SKFE-CR-SKL.(CDec, KeyTest), using
the following building blocks.

• BB84-based SKE-CD scheme (Definition 3.12) SKECD = SKECD.(KG, Enc, Dec, Del , Vrfy) having the classical
decryption algorithm SKECD.CDec.

• Classical SKFE scheme SKFE = SKFE.(Setup, KG, Enc, Dec) for the functionality F : X ×Y → Z .

• OWF f : {0, 1}λ → {0, 1}p(λ) for some polynomial p.

The construction is as follows:

SKE-CR-SKL.Setup(1λ):

1. Generate skecd.sk← SKECD.KG(1λ).
2. Generate skfe.msk← SKFE.Setup(1λ).
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3. Output msk := (skecd.sk, skfe.msk).

SKFE-CR-SKL.KG(msk, y):

1. Parse msk = (skecd.sk, skfe.msk).
2. Generate skfe.sky ← SKFE.KG(skfe.msk, y).
3. Generate (skecd.ct , skecd.vk) ← SKECD.Enc(skecd.sk, skfe.sky). Recall that skecd.vk is of the form

(x, θ) ∈ {0, 1}ℓct × {0, 1}ℓct , and skecd.ct is of the form |ψ1⟩SKECD.CT1
⊗ · · · ⊗ |ψℓct⟩SKECD.CTℓct

.

4. Generate si,b ← {0, 1}λ and compute ti,b ← f (si,b) for every i ∈ [ℓct] and b ∈ {0, 1}. Set T :=
t1,0∥t1,1∥ · · · ∥tℓct,0∥tℓct,1 and S = {si,0 ⊕ si,1}i∈[ℓct] : θ[i]=1.

5. Prepare a register Si that is initialized to
∣∣0λ

〉
Si

for every i ∈ [ℓct].

6. For every i ∈ [ℓct], apply the map

|ui⟩SKECD.CTi
⊗ |vi⟩Si

→ |ui⟩SKECD.CTi
⊗

∣∣vi ⊕ si,ui

〉
Si

to the registers SKECD.CTi and Si and obtain the resulting state ρi.
7. Output sk y = (ρi)i∈[ℓct], vk = (x, θ, S), and tk = T.

SKFE-CR-SKL.Enc(msk, x):

1. Parse msk = (skecd.sk, skfe.msk).
2. Generate skfe.ct← SKFE.Enc(skfe.msk, x).
3. Output ct := (skecd.sk, skfe.ct).

SKFE-CR-SKL.CDec(sk, ct):

1. Parse ct = (skecd.sk, skfe.ct). Parse sk as a string over the registers SKECD.CT = SKECD.CT1 ⊗ · · · ⊗
SKECD.CTℓct and S = S1 ⊗ · · · ⊗ Sℓct . Let s̃k be the sub-string of sk on register SKECD.CT.

2. Compute skfe.sk← SKECD.CDec(skecd.sk, s̃k).
3. Output z← SKFE.Dec(skfe.sk, skfe.ct).

SKFE-CR-SKL.Dec(sk , ct):

1. Parse (ρi)i∈[ℓct]. We denote the register holding ρi as SKECD.CTi ⊗ Si for every i ∈ [ℓct].

2. Prepare a register MSG of ℓm qubits that is initialized to |0 · · · 0⟩MSG.
3. Apply the map

|u⟩⊗
i∈[ℓct ] SKECD.CTi

⊗ |w⟩MSG → |u⟩⊗i∈[ℓct ] SKECD.CTi
⊗ |w⊕ SKFE-CR-SKL.CDec(u, ct)⟩MSG

to the registers
⊗

i∈[ℓct] SKECD.CTi and MSG.

4. Measure MSG in the computational basis and output the result m′.

SKFE-CR-SKL.Vrfy(vk, sk ):

1. Parse vk = (x, θ, S = {si,0 ⊕ si,1}i∈[ℓct] : θ[i]=1) and sk = (ρi)i∈[ℓct] where ρi is a state on the registers
SKECD.CTi and Si.

2. For every i ∈ [ℓct], measure ρi in the Hadamard basis to get outcomes ci, di corresponding to the registers
SKECD.CTi and Si respectively.

3. Output ⊤ if x[i] = ci ⊕ di · (si,0 ⊕ si,1) holds for every i ∈ [ℓct] such that θ[i] = 1. Otherwise, output ⊥.
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SKFE-CR-SKL.KeyTest(tk, sk):

1. Parse sk as a string over the registers SKECD.CT = SKECD.CT1 ⊗ · · · ⊗ SKECD.CTℓct and S =
S1 ⊗ · · · ⊗ Sℓct . Let ui denote the value on SKECD.CTi and vi the value on Si. Parse tk as T =
t1,0∥t1,1∥ · · · ∥tℓct,0∥tℓct,1.

2. Let Check[ti,0, ti1 ](ui, vi) be the deterministic algorithm that outputs 1 if f (vi) = ti,ui holds and 0 otherwise.
3. Output Check[t1,0, t1,1](u1, v1) ∧ Check[t2,0, t2,1](u2, v2) ∧ · · · ∧ Check[tℓct,0, tℓct,1](uℓct , vℓct).

C.2 Proof of Selective Single-Ciphertext KLA Security
Let A be an adversary for the selective single-ciphertext KLA security of the construction SKFE-CR-SKL that makes
use of a BB84-based SKE-CD scheme SKECD. Consider the hybrid Hybcoin

j defined as follows:

Hybcoin
j :

1. Initialized with 1λ, A outputs (x∗0 , x∗1). Sample msk← SKFE-CR-SKL.Setup(1λ).
2. A can get access to the following (stateful) oracles, where the list LKG used by the oracles is initialized to an

empty list:

OKG (y): Given y, it finds an entry of the form (y, vk, V) from LKG . If there is such an entry, it returns ⊥.
Otherwise it proceeds as follows:

(i) If this is the k-th query for k ≤ j and F(x∗0 , y) ̸= F(x∗1 , y), then compute (sk , vk, tk) ←
K̃G(msk, y) where K̃G is defined below. Otherwise, compute (sk , vk, tk)← KG(msk, y).

(ii) It sends sk and tk to A and adds (y, vk,⊥) to LKG .
OVrfy (y, s̃k ): Given (y, s̃k ), it finds an entry (y, vk, V) from LKG . (If there is no such entry, it returns ⊥.)

It then runs d← Vrfy(vk, s̃k ) and returns d to A . If V = ⊤, it updates the entry into (y, vk, d).

K̃G(msk): Differences from KG are colored in red:
(a) Parse msk = (skecd.sk, skfe.msk).
(b) Generate r ← {0, 1}λ.
(c) Generate (skecd.ct , skecd.vk)← SKECD.Enc(skecd.sk, r). skecd.vk is of the form (x, θ) ∈ {0, 1}ℓct ×
{0, 1}ℓct , and skecd.ct is of the form |ψ1⟩SKECD.CT1

⊗ · · · ⊗ |ψℓct⟩SKECD.CTℓct
.

(d) Generate si,b ← {0, 1}λ and compute ti,b ← f (si,b) for every i ∈ [ℓct] and b ∈ {0, 1}. Set
T := t1,0∥t1,1∥ · · · ∥tℓct,0∥tℓct,1 and S = {si,0 ⊕ si,1}i∈[ℓct] : θ[i]=1.

(e) Prepare a register Si that is initialized to
∣∣0λ

〉
Si

for every i ∈ [ℓct].
(f) For every i ∈ [ℓct], apply the map

|ui⟩SKECD.CTi
⊗ |vi⟩Si

→ |ui⟩SKECD.CTi
⊗

∣∣vi ⊕ si,ui

〉
Si

to the registers SKECD.CTi and Si and obtain the resulting state ρi.
(g) Output sk y = (ρi)i∈[ℓct], vk = (x, θ, S), and tk = T.

3. If there exists an entry (y, vk, V) in LKG such that F(x∗0 , y) ̸= F(x∗1 , y) and V = ⊥, output 0. Otherwise,
generate ct∗ ← Enc(msk, x∗coin) and send ct∗ to A .

4. A continues to make queries to OKG . However, A is not allowed to send y such that F(x∗0 , y) ̸= F(x∗1 , y) to
OKG .

5. A outputs a guess coin′ for coin. Output coin′.

Let A make q = poly(λ) many queries to OKG before the challenge phase. We will now prove the following lemma:
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Lemma C.1. ∀j ∈ {0, . . . , q− 1} and coin ∈ {0, 1} : Hybcoin
j ≈c Hybcoin

j+1 .

Proof. Suppose Hybcoin
j ̸≈ Hybcoin

j+1 . Let D be a corresponding distinguisher. We will construct a reduction R that
breaks the IND-CVA-CD security of the BB84-based SKE-CD scheme SKECD. The execution of R D in the experiment
Expind-cva-cd

SKECD,R (1λ, b) proceeds as follows:

Execution of R D in Expind-cva-cd
SKECD,R (1λ, b):

1. The challenger Ch computes skecd.sk← SKECD.KG(1λ).
2. R initializes D with 1λ which outputs (x∗0 , x∗1).

3. R samples skfe.msk← SKFE.Setup(1λ). It initializes a list LKG to an empty list.
4. R simulates the oracle OKG for D as follows:

OKG (y) : Given y, it finds an entry of the form (y, vk, V) from LKG . If there is such an entry, it returns ⊥.
Otherwise, it proceeds as follows for the k-th query:
(a) If k ≤ j and F(x∗0 , y) ̸= F(x∗1 , y), then compute (sk , vk, tk) as in K̃G except that the pair

(skecd.ct , skecd.vk) is obtained as the output of OEnc(r) instead. Send sk and tk to A and add
(y, vk,⊥) to LKG .

(b) If k = j + 1 and F(x∗0 , y) ̸= F(x∗1 , y), compute skfe.sky ← SKFE.KG(skfe.msk, y). Then, send
(r∗, skfe.sky) to Ch where r∗ is a random value. On receiving skecd.ct∗ from Ch , compute sk
and tk as in KG , except that skecd.ct∗ is used in place of skecd.ct. Send sk and tk to A and add
(y, 0λ,⊥) to LKG .

(c) If k > j + 1 or F(x∗0 , y) = F(x∗1 , y), then compute (sk , vk, tk) as in KG except that the pair
(skecd.ct , skecd.vk) is replaced with the output of OEnc(skfe.sky) instead. Send sk and tk to A
and add (y, vk,⊥) to LKG .

5. R simulates the oracle OVrfy for D as follows:

OVrfy (y, s̃k ) : Given (y, s̃k ), it finds an entry (y, vk, V) from LKG (If there is no such entry, it returns ⊥.)
It then proceeds as follows, if y corresponds to the k-th query made to OKG and k ̸= j + 1:

(a) Parse vk = (x, θ, S = {si,0 ⊕ si,1}i∈[ℓct] : θ[i]=1) and s̃k = (ρi)i∈[ℓct].
(b) For every i ∈ [ℓct], measure ρi in the Hadamard basis to get outcomes ci, di corresponding to the

registers SKECD.CTi and Si respectively.
(c) Compute cert[i] = ci ⊕ di · (si,0 ⊕ si,1) for every i ∈ [ℓct].
(d) If x[i] = cert[i] holds for every i ∈ [ℓct] : θ[i] = 1, then update the entry to (y, vk,⊤) and send
⊤ to D. Else, send ⊥.

If k = j + 1, then it proceeds as follows:
(a) Compute cert = cert[1]∥ . . . ∥cert[ℓct] where each cert[i] is computed as in the previous case.
(b) Send cert to Ch . If Ch returns skecd.sk, send ⊤ to D and update the corresponding entry to

(y, vk,⊤). Else, output ⊥.

6. D requests the challenge ciphertext. If there exists an entry (y, vk, V) in LKG such that F(x∗0 , y) ̸= F(x∗1 , y)
and V = ⊥, output 0. Otherwise, compute and send ct⋆ = (skecd.sk, SKFE.Enc(skfe.msk, x∗coin)) to D.

7. D continues to make queries to OKG . However, A is not allowed to send y such that F(x∗0 , y) ̸= F(x∗1 , y) to
OKG . Consequently, R simulates these queries as per Step 4. (c) above.

8. D outputs a guess coin′ for coin which R forwards to Ch . Ch outputs coin′ as the output of the experiment.

We will first argue that when b = 1, the view of D is exactly the same as its view in the hybrid Hybcoin
j . Notice

that the for the first j queries, if F(x∗0 , y) ̸= F(x∗1 , y) for a key-query corresponding to y, then the decryption key is
computed by querying the encryption oracle on a random plaintext. If this condition does not hold, then the key is
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computed by querying the encryption oracle on the corresponding SKFE key skfe.sky. The hybrid Hybj on the other
hand, directly computes these values, but there is no difference in the distribution of the output ciphertexts. A similar
argument holds for the keys dk j+2, . . . , dk q, which contain encryptions of the corresponding keys skfe.sky. Note that if
F(x∗0 , y∗) = F(x∗1 , y∗), where y∗ corresponds to the j + 1-th query, then the hybrids Hybcoin

j and Hybcoin
j+1 are identical.

Hence, consider the case when F(x∗0 , y∗) ̸= F(x∗1 , y∗). In this case, if b = 1, the value encrypted as part of the key
sk j+1 is skfe.sky∗ . This is the same as in Hybcoin

j . As for the verification oracle queries, notice that they are answered
similarly by the reduction and Hybcoin

j for all but the j + 1-th key. For the j + 1-th key, the reduction works differently
in that it forwards the certificate cert to the verification oracle. However, the verification procedure of the BB84-based
SKE-CD scheme checks the validity of the value cert in the same way as the reduction, so there is no difference.
Finally, notice that when b = 0, the encrypted value is an independent and random value, similar to the hybrid Hybcoin

j+1 .
Consequently, R breaks the IND-CVA-CD security of SKECD with non-negligible probability, a contradiction.

Notice now that the hybrid Hybcoin
0 is the same as the experiment Expsel-1ct-kla

SKE-CR-SKL,A(1
λ, coin). From the previous

lemma, we have that Hybcoin
0 ≈c Hybcoin

q . However, we have that Hyb0
q ≈c Hyb1

q holds from the selective single-
ciphertext security of the underlying SKFE scheme SKFE. This is because any key-query corresponding to y after the
q-th query is such that F(x∗0 , y) = F(x∗1 , y). For the first q queries, wherever this condition doesn’t hold, the SKFE keys
have been replaced with random values. Consequently, we have that Hyb0

0 ≈c Hyb1
0, which completes the proof.

C.3 Proof of Key-Testability
First, we will argue the correctness requirement. Recall that SKFE-CR-SKL.KG applies the following map to a BB84
state |x⟩θ , where (x, θ) ∈ {0, 1}ℓct × {0, 1}ℓct , for every i ∈ [ℓct]:

|ui⟩SKECD.CTi
⊗ |vi⟩Si

→ |ui⟩SKECD.CTi
⊗

∣∣vi ⊕ si,ui

〉
Si

where SKECD.CTi denotes the register holding the i-th qubit of |x⟩θ and Si is a register initialized to |0 . . . 0⟩Si
.

Consider applying the algorithm SKFE-CR-SKL.KeyTest in superposition to the resulting state, i.e., performing
the following map, where SKECD.CT = SKECD.CT1 ⊗ · · · ⊗ SKECD.CTℓct and S = S1 ⊗ · · · ⊗ Sℓct , and KT is
initialized to |0⟩:

|u⟩SKECD.CT ⊗ |v⟩S ⊗ |β⟩KT → |u⟩SKECD.CT ⊗ |v⟩S ⊗ |β⊕ SKFE-CR-SKL.KeyTest(tk, u∥v)⟩KT

where tk = T = t1,0∥t1,1∥ · · · ∥tℓct,0∥tℓct,1. Recall that SKFE-CR-SKL.KeyTest outputs 1 if and only if
Check[ti,0, ti,1](ui, vi) = 1 for every i ∈ [ℓct], where ui, vi denote the states of the registers SKECD.CTi and Si
respectively. Recall that Check[ti,0, ti,1](ui, vi) computes f (vi) and checks if it equals ti,ui . Since the construction
chooses ti,ui such that f (si,ui ) = ti,ui , this check always passes. Consequently, measuring register KT always produces
outcome 1.

We will now argue that the security requirement holds by showing the following reduction to the security of the
OWF f . Let A be an adversary that breaks the key-testability of SKFE-CR-SKL. Consider a QPT reduction R that
works as follows in the OWF security experiment:

Execution of R A in Exptowf
f ,R (1

λ):

1. The challenger chooses s← {0, 1}λ and sends y∗ = f (s) to R .
2. R runs SKFE-CR-SKL.Setup(1λ) and initializes A with input msk.
3. R picks a random k∗ ∈ [q].
4. R simulates the access of A to the oracle OKG as follows, where the list LKG is initialized to an empty list:

OKG (y): For the k-th query, do the following:
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(a) Given y, it finds an entry of the form (y, tk) from LKG . If there is such an entry, it returns ⊥.
(b) Otherwise, if k ̸= k∗, it generates (sk y, vk, tk)← KG(msk, y), sends (sk y, vk, tk) to A , and adds

(y, tk) to LKG .
(c) Otherwise, if k = k∗, it generates (sk y, vk, tk)← K̃G(msk, y) (differences from KG are colored

in red). It then sends (sk y, vk, tk) to A and adds (y, tk) to LKG .

K̃G(msk, y)
(a) Parse msk = (skecd.sk, skfe.msk).
(b) Generate skfe.sky ← SKFE.KG(skfe.msk, y).
(c) Generate (skecd.ct , skecd.vk)← SKECD.Enc(skecd.sk, skfe.sky). Here, skecd.vk is of the form

(x, θ) ∈ {0, 1}ℓct ×{0, 1}ℓct , and skecd.ct is of the form |ψ1⟩SKECD.CT1
⊗· · ·⊗ |ψℓct⟩SKECD.CTℓct

.

(d) Choose an index i⋆ ∈ [ℓct] such that θ[i⋆] = 0. For every i ∈ [ℓct] such that i ̸= i⋆, gen-
erate si,b ← {0, 1}λ and compute ti,b ← f (si,b) for every b ∈ {0, 1}. For i = i⋆, set
ti⋆ ,1−x[i⋆ ] = y∗. Then, generate si⋆ ,x[i⋆ ] ← {0, 1}λ and compute ti⋆ ,x[i⋆ ] = f (si⋆ ,x[i⋆ ]). Set
T := t1,0∥t1,1∥ · · · ∥tℓct,0∥tℓct,1 and S = {si,0 ⊕ si,1}i∈[ℓct] : θ[i]=1.

(e) Prepare a register Si that is initialized to
∣∣0λ

〉
Si

for every i ∈ [ℓct].
(f) For every i ∈ [ℓct], apply the map

|ui⟩SKECD.CTi
⊗ |vi⟩Si

→ |ui⟩SKECD.CTi
⊗

∣∣vi ⊕ si,ui

〉
Si

to the registers SKECD.CTi and Si and obtain the resulting state ρi.
(g) Output sk y = (ρi)i∈[ℓct], vk = (x, θ, S), and tk = T.

5. A sends a tuple of classical strings (y, sk, x∗) to R . R outputs ⊥ if there is no entry of the form (y, tk)
in LKG for some tk. Also, if k ̸= k∗, R outputs ⊥. Otherwise, R parses sk as a string over the registers
SKECD.CT = SKECD.CT1⊗ · · · ⊗ SKECD.CTℓct and S = S1⊗ · · · ⊗ Sℓct and measures the register Si⋆
to obtain an outcome si⋆ . R then sends si⋆ to the challenger.

Notice that the view of A is the same as its view in the key-testability experiment, as only the value ti⋆ ,1−x[i⋆ ] is
generated differently by forwarding the value y, but this value is distributed identically to the original value. Note that in
both cases, A receives no information about a pre-image of ti⋆ ,1−x[i⋆ ]. Now, R guesses the index k that A targets with
probability 1

q . By assumption, we have that CDec(sk, ct) ̸= F(x∗, y) where ct = Enc(msk, x∗). The value sk can be
parsed as a string over the registers SKECD.CT and S. Let s̃k be the sub-string of sk on the register SKECD.CT. Recall
that CDec invokes the algorithm SKECD.CDec on input s̃k. We will now recall a property of SKECD.CDec that was
specified in Definition 3.12:

Let (ct , vk = (x, θ)) ← SKECD.Enc(skecd.sk, skfe.sky) where skecd.sk ← SKECD.KG(1λ). Now, let u be any
arbitrary value such that u[i] = x[i] for all i : θ[i] = 0. Then, the following holds:

Pr
[
SKECD.CDec(skecd.sk, u) = skfe.sky

]
≥ 1− negl(λ)

Consequently, if s̃k is such that s̃k[i] = x[i] for all i : θ[i] = 0, where (x, θ) are specified by vkk⋆ , then
SKECD.CDec(skecd.sk, s̃k) outputs the value skfe.sky with high probability. Since CDec(sk, ct = (skecd.sk, skfe.ct =
SKFE.Enc(skfe.msk, x∗))) outputs SKFE.Dec(SKECD.CDec(skecd.sk, s̃k), skfe.ct), we have that it outputs x∗ with
high probability from the decryption correctness of SKFE. Therefore, it must be the case that there exists some index i
for which s̃k ̸= x[i]. With probability 1

ℓct
, this happens to be the guessed value i⋆. In this case, A must output si⋆ on

register Si such that f (si⋆) = ti⋆ ,1−x[i⋆ ] = y∗. This concludes the proof.
Since we have proved selective single-ciphertext security and key-testability, we can now state the following theorem:

Theorem C.2. Assuming the existence of a BB84-based SKE-CD scheme and the existence of OWFs, there exists a
selective single-ciphertext KLA secure SKFE-CR-SKL scheme satisfying the key-testability property.
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