
Dynamic Decentralized Functional Encryption:
Generic Constructions with Strong Security

Ky Nguyen1 , David Pointcheval1,2 , and Robert Schädlich1

1 DIENS, École normale supérieure, CNRS, Inria, PSL University, Paris, France
2 Cosmian, Paris, France

Abstract. Dynamic Decentralized Functional Encryption (DDFE) is a generalization of Functional
Encryption which allows multiple users to join the system dynamically without interaction and without
relying on a trusted third party. Users can independently encrypt their inputs for a joint evaluation
under functions embedded in functional decryption keys; and they keep control on these functions as
they all have to contribute to the generation of the functional keys.
In this work, we present new generic compilers which, when instantiated with existing schemes from
the literature, improve over the state-of-the-art in terms of security, computational assumptions and
functionality. Specifically, we obtain the first adaptively secure DDFE schemes for inner products in both
the standard and the stronger function-hiding setting which guarantees privacy not only for messages
but also for the evaluated functions. Furthermore, we present the first DDFE for inner products whose
security can be proven under the LWE assumption in the standard model. Finally, we give the first
construction of a DDFE for the attribute-weighted sums functionality with attribute-based access control
(with some limitations). All prior constructions guarantee only selective security, rely on group-based
assumptions on pairings, and cannot provide access control.

https://orcid.org/0000-0002-3867-4209
https://orcid.org/0000-0002-6668-683X
https://orcid.org/0000-0001-8643-9046

Table of Contents

1 Introduction . 3
1.1 Research Questions . 5
1.2 Our Contributions . 6

2 Preliminaries . 7
2.1 Notational Conventions . 7
2.2 Pairing Groups and Hardness Assumptions . 8
2.3 Arithmetic Branching Programs . 9
2.4 Dynamic Decentralized Functional Encryption . 9
2.5 Decentralized Multi-Client Functional Encryption . 12
2.6 Attribute-Based and Identity-Based Encryption . 14
2.7 Lockable Obfuscation . 16
2.8 Pseudorandom Functions (PRF) . 16
2.9 Non-Interactive Key Exchange (NIKE) . 17

3 Technical Overview . 18
3.1 From DMCFE to DDFE . 18
3.2 Achieving Security Against Any Queries . 21

4 From DMCFE to DDFE . 24
5 Security Against Any Queries . 29

5.1 Attribute-Based All-or-Nothing Encapsulation . 29
5.2 DDFE for AB-AWS Secure Against Any Queries . 34

A Supporting Materials – Section 4 . 42
A.1 Generic Upgrade of the Security Model in [NPS24] . 42
A.2 Instantiation of Construction 25 with a DMCFE for AB-AWS 44
A.3 Instantiation of Construction 25 with the DMCFE of [CDG+18a] 48
A.4 Instantiation of Construction 25 with a Variant of [LT19] . 49
A.5 Instantiation of Construction 25 with the DMCFE of [NPS24] 56

3

1 Introduction

Functional Encryption. Public-Key Encryption (PKE) is one of the fundamental objects of
studies in modern cryptography. Starting from the initial interest of all-or-nothing security - either
a decryption key reveals the whole original message or the ciphertext is sementically secure - the
past decades have witnessed new interests in a more fine-grained control over the information that
can be obtained at decryption time. Boneh, Sahai and Waters [SW05, BSW11] introduced the
concept of Functional Encryption (FE) in which a decryption key is functional with respect to some
function f and decrypting a ciphertext under this functional key reveals only f(x) for a plaintext x.
The essential lies in limiting the information leakage about x to not more than what is revealed by
f(x). Previous advanced notions of PKE, such as Identity-Based Encryption [Sha84, Coc01, BF01]
or Attribute-Based Encryption [SW05, GPSW06, OSW07, ALdP11, OT12], are enclosed in the
umbrella of FE. More importantly, FE for general function classes shows versatile connections to other
important cryptographic primitives [ABF+13, AJ15, BV15, Dat20, BS23] as well as motivates the
study of new notions [GVW15]. Zooming in more concrete classes, notably constructing FE schemes
to evaluate inner products between a functional vector in the key and a data vector in the ciphertext,
aka IPFE, has received a great deal of attention since the seminal work of Abdalla et al. [ABDP15].
Thus emerge further improved IPFE constructions [ALS16, BBL17, CLT18] and novel candidates for
more complex concrete evaluations, such as for quadratic functions [BCFG17, Gay20, AS17, Lin17]
or for attribute-weighted sums [AGW20, ATY23].

Properties of Functional Decryption Keys. One important flexibility of FE is that one can
enrich further properties of the function class that are reflected via the functional keys. In this paper
we focus on two aspects: controlling the usage of functional keys and hiding the function.

Fine-Grained Control over Functional Decryption Keys. The notion of FE tackles the leakage of
informaiton about the plaintext x in terms of the function evaluation f(x). It remains another classical
question, which concerns the functional decryption keys themselves: without futher restrictions,
once a key is obtained, it can be used forever. Given the inherent information that can be gathered
from each key, this poses a serious threat when we look at concrete function classes. For instance, in
IPFE schemes, when the obtained keys correspond to a basis of the inner product vector space, the
adversary can easily recover the whole plaintext vector - by decrypting to get the inner products and
solving a linear system. The problem of controlling decryption keys is the subject of extensive studies
in the literature of broadcast encyrption, revocation systems, and more generally, of ABE itself, e.g.
see [Wee21, Wee22, FWW23] and related works. For practical interests3, Abdalla et al. [ACGU20]
started the line of works on integrating a mechanism of attribute-based access control into FE for
inner products. Follow-up works include [NPP22, NPP24] for inner products and [ATY23] for the
class of attribute-weighted sums. It is important to note that the foregoing access-control over
decryption keys in FE is part of an enhancement to the function class, as argued in [NPP22] and
later made clear in [ATY23, NPP24]. Therefore, for example, moving from IPFE to IPFE with
access control incurs dealing with a richer function class and is more challenging.

Function Privacy. Originally, FE is an advanced PKE notion and it provides security regarding
the plaintext x vis-a-vis the ciphertexts and the functional decryption keys. The security model of
FE per se does not require the functional keys to hide the function they decrypt. From a practical
standpoint, however, the function itself can contain confidential data and it is of interests to require
more confidentiality with respect to the functional decryption keys. Specific examples include models
of machine/deep learning whose parameters constitute the function to be evaluated, and these

3 The problem of controlling keys becomes easy if one is willing to resort to FE schemes for general function class, at
the cost of prohibitively poor efficiency.

4

parameters are often the result of expensive training processes, which are kept secret to ensure the
business model of the service provider. It is then natural to require that the function itself is hidden
from the adversary, which is known as the function-hiding (FH) property. Apart from the practical
advantages, FH-FE schemes also turn out to be an important theoretical object. From a FH-IPFE,
various works [Lin17, Gay20] exploit different approaches to achieve FE schemes for quadratic
functions. Recent works [AGT21a, AGT22] go even further, still based on FH-IPFE-compatible
approaches, to successfully realize quadractic evaluation in the multi-input setting. Sticking to the
class of inner products, the property of function-hiding itself inspires recent progress in the multi-
user setting, e.g. see [SV23, NPS24, Ngu24]. As a consequence, we believe that the function-hiding
property is a desirable aspect of FE schemes that deserves to be studied in its own right, especially
when considering the practical applications and the technical building blocks for more advanced
constructions. We will revise the multi-user/inputs setting below.

Extensions of FE in the Multi-User Setting. The evaluational nature of FE gives rise to
immediate extensions to the multi-user setting, in which the function in the functional key will
evaluate over multiple inputs that can come from different sources. Hence, soon after the seminal work
of Boneh et al. [SW05, BSW11] on FE, the study of Multi-Client Functional Encryption (MCFE) and
Multi-Input Functional Encryption (MIFE) was initiated by Goldwasser et al. [GGG+14, GKL+13].
Since their introduction, a long line of works has been devoted to the study of MIFE/MCFE, notably
for the concrete function class of inner products [DOT18, CDG+18a, CDG+18b, ACF+18, ABKW19,
ABG19, LT19, CDSG+20, ACGU20, NPP22] and more, e.g. for quadratic functions [AGT21a,
dPP22, AGT22] or for attribute-weighted sums [ATY23].

(Decentralized) Multi-Client Functional Encryption. As a recapitulation from the foundational

works of [GGG+14, GKL+13, CDG+18a] about MIFE/MCFE, the setting of MCFE captures the
scenario where multiple users independently encrypt their data using their private encryption keys
under some message tag. The functional key is generated by a trusted third party that can be used
to evaluate the function over the multiple ciphertexts, only if all ciphertexts share the same message
tag tag. Taking a step further, the work by Chotard et al. [CDG+18a] questions the need of a central
authority for distributing functional keys in MCFE and proposes the Decentralized Multi-Client
Functional Encryption (DMCFE). In DMCFE, the interaction between users is done during the setup
of the system so as to generate a secret key SKi that is used for both encryption and functional key
generation, for each user i. Thanks to the ensemble of the secret keys SKi, the functional key is now
generated without the need of a central authority: given a secret key SKi, a user can independently
contribute to the generation of a functional key DKf for a function f , and each contribution is
associated with a key tag tag-f for later joint combination, where tag-f can contain the description of f
itself. This liberation of DMCFE from the necessity of a central authority is a significant improvement
in terms of trust model, and unsurprisingly after [CDG+18a] many follow-up works dive into different
angles, ranging from constructions and applications [LT19, ABKW19, ABG19, QLH+24] to security
enhancements [NPP23, NPS24]. In terms of the supported functions, all aforementioned works
focus on the class of inner products, while some progress for more expressive classes to compute
attribute-weighted sums is only achieved very recently in [ATY23, Ngu24]. More interestingly, the
two works [ATY23, Ngu24] focus on a more general version of DMCFE, which is coined Dynamic
Decentralized Functional Encryption (DDFE) and in the end gives implicit constructions of DMCFE.
It is indeed this utmost general notion of DDFE with which the current work is concerned. We
will come back to the notion of DDFE in the following, after addressing a technical subtlety of the
message/key tags up to the current notion of DMCFE.

Repetitions under One Message/Key Tag. It is made clear in the above discussion that only
ciphertexts of the same message tag tag and functional keys of the same key tag tag-f can be

5

combined in the notion of DMCFE. A question that immediately comes to mind is the role of
these message/key tags in the security model of DMCFE. The initial security model of DMCFE
in [CDG+18a] and subsequent work [LT19] ignores different queries for the same pair (i, tag) or
(i, tag-f) after the first query. One justitfication that is given in [CDG+18a] is that it is up to the
user’s responsibility not to use the same mesage and key tag twice, neither for encryption nor for
key-generation, respectively. Nonetheless, we believe that proving security under a repeated usage
of tags is still important. First of all, from a practical point of view, there can exist a scenario
where a user mistakenly or maliciously uses the same tag twice. Secondly, from a theoretical point
of view, when repetitions are allowed for the message tag in ciphertexts, i.e. security still holds even
when the adversary can obtain multiple ciphertexts for the same (i, tag), it is studied in preceding
works [ABKW19, ABG19] and recently confirmed in [ATY23, NPP24] that the security model
of (D)MCFE encircle that of MIFE, where in the former we can fix a public message tag for all
ciphertexts and arrive at the latter in which there is no message tag whatsoever. As a consequence,
our aim for the security of DMCFE and the like will allow repetitions on both message/key tags.

Dynamic Decentralized Functional Encryption. As explained in the preceding paragraphs, in DM-
CFE some interaction is required during the setup phase of the system, which implies that the number
of users is fixed in advance. Embarking on the resolution of this rigidity, Chotard et al. [CDSG+20]
generalized DMCFE and defined the notion of Dynamic Decentralized Functional Encryption (DDFE)
where users can join at various stages during the lifetime of a system. All decentralized features
of DMCFE are maintained in DDFE. The striking difference is that in DDFE there is only a
non-interactive global setup, whereas each user when joining can run a local setup algorithm to
generate their own secret key SKi using some public parameters set by that global setup algorithm.
At any time, any set of users UM can independently encrypt their individual data to contribute
to a list of ciphertexts (CTi)i∈UM

under some message tag tag. Similarly, a set of users UK can
independently contribute to a list of functional keys (DKi)i∈UK

under some key tag tag-f. We recall
the usage of tags here is similar to that in (D)MCFE: the ciphertexts and the functional keys can
be combined only if they have the same message and key tags, respectively. A DDFE scheme allows
jointly decrypting a list of ciphertexts (CTi)i∈UM

using a list of functional keys (DKi)i∈UK
, without

resorting to any central authority. Construction-wise, the work of [CDSG+20] gives a DDFE for
the class of inner products (IP-DDFE) at the core of which is the MCFE from [CDG+18a]. The
work of [CDSG+20] is then followed by [AGT21b] that revisits and improves by first constructing
a FH-MCFE for inner products and then lifting it to a FH-DDFE for inner products. Moving
away from inner products, [ATY23] presents the first DDFE for the more general class of attribute-
weighted sums (AWS). All constructions attain only selective security under static corruption
in the ROM, i.e. the adversary makes all encryption, key-generation and corruption queries up
front in one shot. Very recently, [Ngu24] leverages the state-of-the-art from [AGT21b, ATY23] to
give the first FH-DDFE for inner products and DDFE for AWS without ROM. All mentioned
works allow repetitions for message tags. Regarding the security against repetitions on key tags,
[AGT21b] and the FH-IP-DDFE of [Ngu24] explicitly exclude them from their security model,
whereas [CDSG+20, ATY23] and the DDFE for AWS of [Ngu24] consider a simplified functionality
that does not consider key generation with respect to tags, thus there is no notion of repetition for
key tags.

1.1 Research Questions

The above expository discussion leads us to various research questions. This paper focuses on DDFE
for inner products or for attribute-weighted sums, with or without access-control, with or without

6

function-hiding. The following questions are not necessarily distinct, but we dissect them on different
facets for clarity. Needless to say, resolving multiple of them at the same time is notoriously hard:

1. All cited DDFE schemes [CDSG+20, AGT21b, ATY23] attain only selective security under static
corruption. How far can we push for adaptive security of DDFE?
Note: the concurrent and independent work [Ngu24] also achieves adaptively secure FH-IP-DDFE
under static corruption.

2. Regarding the attribute-based access control over functional keys, existing works can go as far
as MCFE or MIFE, for inner products in [ACGU20, NPP22, NPP24] and for attribute-weighted
sums in [ATY23]. How further can we integrate access control into the multi-user setting, e.g.
for DDFE?

3. All cited DDFE schemes [CDSG+20, AGT21b, ATY23, Ngu24] rely on group-based assumptions
and do not provide post-quantum security. The only multi-user FE scheme in the post-quantum
regime comes from the DMCFE of [LT19] for inner products and relies on the Learning with
Error (LWE) assumption. How far can we push for post-quantum security for DDFE?

4. The security against repetitions on key tags is either excluded in the FH-IP-DDFE from [AGT21b,
Ngu24], or not explicitly considered in [CDSG+20] for IP-DDFE and in [ATY23, Ngu24] for AWS-
DDFE. How can we achieve security against repetitions for both encryption and key-generation
queries in the FH-DDFE and/or DDFE with access control setting?

1.2 Our Contributions

In this paper, we present several candidates of DDFE for the classes of inner products and attribute-
weighted sums that strictly improve on various aspects of security compared with [CDSG+20,
AGT21b, ATY23, Ngu24]. At the center of our constructions are two generic transformations that
enjoy preferable properties:

1. Compiler 1 - From DMCFE to DDFE. Inspired by the (non-generic) lifting result from FH-IP-
MCFE to FH-IP-DDFE of [AGT21b], we present a generic conversion from DMCFE to DDFE
that works both in the standard and function-hiding setting and for arbitrary functionalities,
while preserving the security properties of the DMCFE. For the compiler to be applicable, we
require some natural structural properties that are satisfied by many DMCFE schemes in the
literature. Details are given in Section 4.

2. Compiler 2 - From Legitimate-Query to Any-Query Security. For function classes with access
control, we present a generic transformation to remove the so-called legitimate-query constraint.
Intuitively, this constraint requires that for each message/key tag combination, the adversary
either queries for ciphertexts and keys that permit an honest decryption (i.e. the attributes of
the ciphertexts are authorized with respect to the key’s policy), or no queries are submitted at
all. To achieve a polynomial runtime of the encryption and decryption procedure, we must limit
the number of function tags to some a priori fixed polynomial and the number of users who can
jointly evaluate a function to a constant. Details are given in Section 5.

Below and in Table 1 are presented a summary of our final DDFE instantiations and a comparison
with existing works. All DDFE go through the first compiler from DMCFE to DDFE. For the case
of AB-AWS, we additionally apply the second compiler to remove the legitimate-query constraint.

1. Concrete Instantiations - IP-DDFE. With respect to the inner-product functionality, we show
how to instantiate our compiler with the DMCFE schemes of [CDG+18a, LT19]. In this way, we
obtain the first adaptively secure IP-DDFEs, with tag repetition under the SXDH assumption in
the ROM, and without tag repetition under the LWE assumption in the standard model. This
provides an affirmative answer to questions 1, 3 and 4 in the case of IP-DDFE.

7

Scheme Functionality FH

Oracle Queries

Assumptions ROM
OEnc OKeyGen

[CDSG+20] inner products ✗ sel,w/-rep sel,⊏⊐ SXDH ✓

[AGT21b] inner products ✓ sel,w/-rep sel,w/o-rep SXDH ✓

[ATY23] AWS ✗ sel,w/-rep sel,⊏⊐ MDDH ✓

[Ngu24] inner products ✓ adap,w/-rep adap,w/o-rep SXDH ✗

[Ngu24] AWS ✗ sel,w/-rep sel,⊏⊐ SXDH ✗

Sec. 4 + [CDG+18a] inner products ✗ adap,w/-rep adap,w/-rep SXDH ✓

Sec. 4 + [LT19] inner products ✗ adap,w/o-rep adap,w/o-rep LWE ✗

Sec. 4 + [NPS24] inner products ✓ adap,w/-rep adap, bnd-rep† SXDH ✓

Sec. 4 + 5 + A.2 AB-AWS‡ ✗ sel,w/-rep adap,w/-rep LWE, SXDH ✓

⊏⊐ The work considers a simpler functionality without function tags, thus there is no notion of function tag
repetition.

† The number of repetitions at one slot for any key tag is fixed polynomially bounded.
‡ The construction suffers from two limitations: the number of supported function tags is polynomially
bounded and the maximum number of users who can jointly evaluate a function is a constant.

Table 1: We compare our obtained DDFE with existing works, in terms of whether the scheme provides standard security (✗) or
the stronger function-hiding security (✓) (FH), whether the encryption oracle (OEnc) and key-generation oracle (OKeyGen) can
be queried adaptively and with repetitions (Oracle Queries), which assumptions are used for the security proof (Assumptions),
and whether the security is proven in the ROM (✓) or not (✗) (ROM). The shorthands (sel, adap) denote selective or adaptive
oracle queries. The shorthands (w/-rep,w/o-rep) indicate whether the adversary can demand repetitive queries to the same
slot and tag or not. All schemes consider only static corruptions, and all schemes from group-based assumptions use pairings.
Preferred properties are underlined.

2. Concrete Instantiation - FH-IP-DDFE. In the function-hiding setting of the inner-product
functionality, we instantiate our compiler with the FH-DMCFE scheme of [NPS24]. This gives
the first adaptively secure FH-IP-DDFE, with full repetitions on message tags and an a priori
polynomially bounded number of repetitions on key tags under the SXDH assumption in the
ROM. This provides an affirmative answer to question 1 and partially resolves question 4 in the
case of FH-IP-DDFE.

3. Concrete Instantiation - AB-AWS-DDFE. Beyond inner products towards AB-AWS, we instan-
tiate our compilers with a new DMCFE for AWS with access control that is also constructed
in this work. We achieve semi-adaptive security (i.e. the encryption oracle cannot be called
anymore after the first key generation query) under the SXDH and LWE assumptions in the
ROM, thereby resolving question 2 and partially question 1 in the case of DDFE for AB-AWS.

2 Preliminaries

2.1 Notational Conventions

Let λ ∈ N be the security parameter. Except in the definitions, we will suppress λ in subscripts for
brevity. A nonnegative function ε : N→ R is negligible if ε(λ) = O(λ−n) for all n ∈ N. An algorithm
is said to be efficient if it runs in probabilistic polynomial time (PPT) in the security parameter.

To avoid confusion, we always write vectors v and matrices A in boldface and use uppercase
letters for the latter. Scalars s are written in italics. Unless otherwise stated, all vectors v are viewed
as column vectors. The corresponding row vector is denoted by v⊤.

8

Security Experiments and Distributions. Let Exp be an interactive experiment that interacts
with an algorithm A (called the adversary), depends on the security parameter λ and has binary
outcome. We also refer to such objects as games or hybrids. We let “ExpA(1

λ)→ 1” denote the
event that the outcome of running Exp with A on security parameter λ is 1. For two experiments
Exp0 and Exp1, we define the distinguishing advantage of A against the tuple (Exp0,Exp1) as

AdvExp0,Exp1,A(λ) :=
∣∣∣Pr [Exp1

A(1
λ)→ 1

]
− Pr

[
Exp0

A(1
λ)→ 1

]∣∣∣ .

We write Exp0 ≈c Exp1 if the experiments are computationally indistinguishable, i.e. their dis-
tinguishing advantage is negligible for all efficient adversaries A. We write Exp0 ≈s Exp1 if the
experiments are statistically indistinguishable, i.e. their distinguishing advantage is negligible for all
(even unbounded) adversaries. We write Exp0 ≡ Exp1 if the experiments are identically distributed,
i.e. their distinguishing advantage is 0 for all (even unbounded) adversaries. By default, the term
indistinguishable refers to computational indistinguishability.

More general, the same notations can be used for sequences of distributions. Let D0 = {D0
λ}λ∈N

and D1 = {D1
λ}λ∈N be two sequences of distributions. For b ∈ {0, 1}, we define Expb

A(1
λ) as

follows: sample x $← Db
λ, run A(1λ, x) and use the output of A as the outcome of the experiment.

Then we write D0 ≈c D
1 (resp. D0 ≈s D1, D0 ≡ D1) if Exp0

A ≈c Exp1
A (resp. Exp0

A ≈s Exp1
A,

Exp0
A ≡ Exp1

A).

Sets and Indexing. We denote by Z and N the sets of integers and natural numbers (positive
integers). For integers m and n, we write [m;n] to denote the set {z ∈ Z : m ≤ z ≤ n} and let
[n] := [1;n]. For a prime number p, Zp denotes the finite field of integers modulo p. For a finite
set S, we let 2S denote the power set of S. To index a vector or the columns of a matrix, we write
v[i] and A[j]. In contrast, objects of some collection that is not regarded as a vector or matrix are
indexed using subscripts (or superscripts in some cases). For instance, vi represents a vector, not a
component of some vector. If i runs through some index set [n], it means that there are n vectors
v1, . . . ,vn. If the n objects are scalars (or not explicitly vectors), we will write v1, . . . , vn instead.

2.2 Pairing Groups and Hardness Assumptions

Pairing Groups. Our constructions use a sequence of pairing groups

G = {Gλ = (Gλ,1,Gλ,2,Gλ,t, gλ,1, gλ,2, gλ,t, eλ, pλ)}λ∈N ,

where Gλ,1 (resp. Gλ,2, Gλ,t) is a cyclic group of order pλ generated by gλ,1 (resp. gλ,2, gλ,t), and
eλ : Gλ,1 × Gλ,2 → Gλ,t is the pairing operation satisfying eλ(g

a
λ,1, g

b
λ,2) = gabλ,t for all integers a, b.

The group operations and the pairing map are required to be efficiently computable.
Following the implicit notation in [EHK+13], we write JaKi to denote gaλ,i for i ∈ {1, 2, t}. This

notation extends component-wise to matrices and vectors having entries in Zp. Equipped with these
notations, group operations are written additively and the pairing operation multiplicatively, e.g.
JAK1 −BJCK1D = JA−BCDK1 and JAK1JBK2 = JABKt.
Computational Assumptions. We state the assumptions needed for our constructions. Let
{Gλ = (Gλ,1,Gλ,2,Gλ,t, gλ,1, gλ,2, gλ,t, eλ, pλ)}λ∈N be a sequence of pairing groups.

Definition 1 (Decisional Diffie-Hellman Assumption (DDH)). Let i ∈ {1, 2, t}. The DDH
assumption holds in {Gλ,i}λ∈N if {Ja, b, abKi}λ∈N ≈c {Ja, b, ab+ cKi}λ∈N for a, b, c $← Zpλ.

Definition 2 (Symmetric eXternal Diffie-Hellman Assumption (SXDH)). The SXDH as-
sumption holds in {Gλ}λ∈N if the DDH assumption holds in both {Gλ,1}λ∈N and {Gλ,2}λ∈N.

9

2.3 Arithmetic Branching Programs

We recall the definition of arithmetic branching programs.

Definition 3 (Arithmetic Branching Program (ABP)). An arithmetic branching program f : Zn0
q →

Zq is defined by a tuple (V,E, s, t, q, n0, σ) consisting of a directed acyclic graph (V,E) with two dis-
tinguished vertices s, t ∈ V , a prime q, an arity n0 and a labelling function σ : E → Faff , where Faff

contains all affine functions g : Zn0
q → Zq. Let P be the set of all paths from s to t. The output of

the ABP on input x ∈ Zn0
q is defined as f(x) =

∑
p∈P

∏
e∈p σ(e)(x).

More general, we denote by Fabp
n0,n1 the class of functions f : Zn0

q → Zn1
q that evaluate an ABP in

each coordinate.

2.4 Dynamic Decentralized Functional Encryption

In this section we recall the notion of Dynamic Decentralized Functional Encryption (DDFE). This
notion was introduced first in [CDSG+20] and later defined in [AGT21b, Section 6.1] as a special case
of the Multi-Party Functional Encryption notion. Let {IDλ}λ∈N, {Kλ}λ∈N, {Mλ}λ∈N and {Rλ}λ∈N
be sequences of identity, key, message and output spaces, respectively, and Kλ = Kλ,pri × Kλ,pub,
Mλ =Mλ,pri×Mλ,pub consist of a private and a public component each. We consider a functionality

fdyn =
{
fdyn
λ :

⋃
n∈N(IDλ ×Kλ)

n ×
⋃

n∈N(IDλ ×Mλ)
n → Rλ

}
λ∈N

.

Definition 4 (DDFE Syntax). A DDFE scheme FE for a functionality fdyn = {fdyn
λ }λ∈N consists

of five efficient algorithms with the following syntax:

GSetup(1λ)→ PP: On input the security parameter 1λ this algorithm outputs a public parameter PP.
The other algorithms implicitly take PP.

LSetup(i)→ (PKi, SKi): On input an identity i ∈ IDλ, this algorithm outputs a pair of a public key
PKi and a corresponding secret key SKi. The following three algorithms implicitly take PKi.

KeyGen(SKi, ki)→ DKi: On input a secret key SKi and ki ∈ Kλ, this algorithm outputs a decryption
key DKi.

Enc(SKi,mi)→ CTi: On input a secret key SKi and m ∈ Mλ, this algorithm outputs a cipher-
text CTi.

Dec({DKi}i∈UK
, {CTi}i∈UM

)→ d ∈ Rλ: On input a set of decryption keys {DKi}i∈UK
and a set of

ciphertext {CTi}i∈UM
for UK ,UM ⊆ IDλ, this algorithm outputs either an element in Rλ.

Correctness. FE is correct if for all λ ∈ N, sets UK ,UM ⊆ IDλ, keys {(i, ki)}i∈UK
∈
⋃

n∈N(IDλ ×
Kλ)

n, and inputs {(i,mi)}i∈UM
∈
⋃

n∈N(IDλ ×Mλ), we have

Pr

d = fdyn

λ

(
{(i, ki)}i∈UK

,

{(i,mi)}i∈UM

)
∣∣∣∣∣∣∣∣∣∣∣∣

PP←GSetup(1λ)

∀i ∈ UK ∪ UM : (PKi,SKi)←LSetup(PP)

∀i ∈ UK : DKi←KeyGen(SKi, ki)

∀i ∈ UM : CTi←Enc(SKi,mi)

d := Dec({DKi}i∈UK
, {CTi}i∈UM

)

 = 1 ,

where the probability is taken over the random coins of the algorithms.

10

Security. We define partially function-hiding security for DDFE as follows.

Definition 5 (DDFE Security). Let xxx ∈ {stat, dyn}, yyy ∈ {sel, sadap, adap}, zzz ∈ {sym, asym}.
Given a PPT adversary A against a DDFE scheme FE for a functionality fdyn = {fdyn

λ }λ∈N, we
define the experiment Expddfe-b

FE,fdyn,A(1
λ) as shown in Figure 1. W.l.o.g., we assume that each i is

queried at most once to OHonestGen and OCorrupt, and that a query OCorrupt(i) is always preceded
by a query OHonestGen(i). We recall that for the queries to OKeyGen and OEnc, namely (i, k(0)

i , k(1)

i)
and (i,m(0)

i ,m(1)

i), there are private parts k(b)

i,pri,m
(b)

i,pri and public parts k(b)

i,pub,m
(b)

i,pub in the keys as

well as in the messages. We always require m(0)

i,pub = m(1)

i,pub =: mi,pub and k(0)

i,pub = k(1)

i,pub =: ki,pub
because the public data is not hidden.

The adversary A is admissible with respect to C,H,Qenc,Qkey, denoted by adm(A) = 0, if the
following conditions are satisfied. Otherwise, we say that A is not admissible and write adm(A) = 1.

1. There are no sets UK ,UM ⊆ IDλ such that there exist sequences {(i, k(0)

i , k(1)

i)}i∈UK
, {(i,m(0)

i ,m(1)

i)}i∈UM

that satisfy all the conditions:
• For all i ∈ UK , (i, k(0)

i , k(1)

i) ∈ Qkey or [k(0)

i = k(1)

i and i ∈ C].
• For all i ∈ UM , (i,m(0)

i ,m(1)

i) ∈ Qenc or [m(0)

i = m(1)

i and i ∈ C].
• fdyn

λ ({(i, k(0)

i)}i∈UK
, {(i,m(0)

i)}i∈UM
) ̸= fdyn

λ ({(i, k(1)

i)}i∈UK
, {(i,m(1)

i)}i∈UM
).

2. If xxx = stat, then the adversary first generates a set S of honest users. After that it submits all
queries to OCorrupt in one shot.

3. If yyy = sel, then the adversary first generates a set S of honest users. After that it submits all
queries to OEnc and OKeyGen in one shot. If yyy = sadap, then the adversary cannot call OEnc
anymore after submitting the first query to OKeyGen.

4. If zzz = sym, then for i ∈ C all queries (i, k(0)

i , k(1)

i) ∈ Qkey and (i,m(0)

i ,m(1)

i) ∈ Qenc satisfy k(0)

i =
k(1)

i and m(0)

i = m(1)

i , respectively.4

We say that FE is xxx-yyy-zzz-secure if for all PPT adversaries A,

Expddfe-0
FE,fdyn,A(1

λ) ≈c Expddfe-1
FE,fdyn,A(1

λ) .

Initialize(1λ):
C,H,Qenc,Qkey←∅
PP←GSetup(1λ)
Return PP

OHonestGen(i):
(PKi, SKi)←LSetup(PP)
H←H∪ {i}; return PKi

OCorrupt(i):
H←H \ {i}; C←C ∪ {i}
Return SKi

OKeyGen(i, k(0)

i , k(1)

i):

Qkey←Qkey ∪ {(i, k(0)

i , k(1)

i)}
Return DKi←KeyGen(SKi, k

(b)

i)

OEnc(i,m(0)

i ,m(1)

i):

Qenc←Qenc ∪ {(i,m(0)

i ,m(1)

i)}
Return CTi←Enc(SKi,m

(b)

i)

Finalize(b′):

If adm(A) = 0, return β←(b′
?
= b)

Else, return a random bit β $← {0, 1}

Fig. 1: Security game Expddfe-b
FE,fdyn,A(1λ) for Definition 5

4 The symmetric setting allows proving security in the case where SKi cannot only be used to encrypt/generate keys
but also to decrypt/decode CTi/DKi.

11

Functionalities. First, we define the functionalities fdyn-ip and fdyn-fh-ip of bounded-norm inner-
products with standard or function-hiding security.

Definition 6 (Inner-Product Functionality). For λ ∈ N, let Tagλ = IDλ = {0, 1}poly(λ),
Rλ = Z, Kλ,pub = [−B;B]N × 2IDλ × Tagλ, Mλ,pub = 2IDλ × Tagλ, Kλ,pri = {⊤} and Mλ,pri =
[−B;B]N for polynomials B = B(λ) and N = N(λ) : N → N. The inner-product functionality

fdyn-ip = {fdyn-ip
λ }λ∈N is defined via

fdyn-ip
λ

(
{(i, ki)}i∈UK

, {(i,mi)}i∈UM

)
=

{∑
i∈U ⟨xi,yi⟩ if condition (∗) holds

⊥ otherwise

for all λ ∈ N, where condition (∗) holds if UK = UM (in which case we define U := UK) and there
exist tag, tag-f ∈ Tagλ such that for each i ∈ U

• ki is of the form (ki,pri = ⊤, ki,pub = (yi,U , tag-f)), and
• mi is of the form (mi,pri = xi,mi,pub = (U , tag)).

The functionality fdyn-fh-ip = {fdyn-fh-ip
λ }λ∈N is the same as fdyn-ip except that we set Kλ,pub =

2IDλ × Tagλ, Kλ,pri = [−B;B]N and condition (∗) holds if UK = UM (in which case we define
U := UK) and there exist tag, tag-f ∈ Tagλ such that for each i ∈ U

• ki is of the form (ki,pri = yi, ki,pub = (U , tag-f)), and
• mi is of the form (mi,pri = xi,mi,pub = (U , tag)).

Second, we define the functionality fdyn-ab-aws of Attribute-Based Attribute-Weighted Sums (AB-
AWS) which is a generalization of the previous inner-product functionality.

Definition 7 (Attribute-Based Attribute-Weighted Sum Functionality). Let G = {Gλ =
(G1,λ,G2,λ,Gt,λ, g1,λ, g2,λ, gt,λ, eλ, qλ)}λ∈N be a sequence of pairing groups. For λ ∈ N, let Tagλ =

IDλ = {0, 1}poly(λ), Rλ = Gt,λ, Kλ,pub = Fabp
n′
0,1
× Fabp

n0,n1 × 2IDλ × Tagλ, Mλ,pub = (Zn′
0

qλ ∪ {⋆}) ×⋃
N∈N(Zn0

q)N × 2IDλ × Tagλ, Kλ,pri = {⊤} andMλ,pri =
⋃

N ′∈N(Zn1
q)N

′
for polynomials n′

0 = n′
0(λ),

n0 = n0(λ), n1 = n1(λ), N = N(λ) and N ′ = N ′(λ) : N → N. The AB-AWS functionality

fdyn-ab-aws = {fdyn-ab-aws
λ }λ∈N is defined via

fdyn-ab-aws
λ

(
{(i, ki)}i∈UK

, {(i,mi)}i∈UM

)
={q∑

i∈U
∑

j∈[Ni]
⟨hi(xi,j), zi,j⟩

y
t

if condition (∗) holds
⊥ otherwise

for all λ ∈ N, where condition (∗) holds if UK = UM (in which case we define U := UK) and there
exist tag, tag-f ∈ Tagλ such that for each i ∈ U

• ki is of the form (ki,pri = ⊤, ki,pub = (gi, hi,U , tag-f)),
• mi is of the form (mi,pri = {zi,j}j∈[N ′

i]
,mi,pub = (yi, {xi,j}j∈[Ni],U , tag)) such that N ′

i = Ni, and
• for all i ∈ [n], gi(yi) = 0 or yi = ⋆.

Definition 8 (Legitimate Queries for AB-AWS). For a set U ⊆ ID, we denote by T (U) the set
of all function tags tag-f such that there exists a query (j, k(0)

j , k(1)

j) ∈ Qkey with j ∈ H and kj,pub =

(gj , hj ,U , tag-f). An encryption query OEnc(i,m(0)

i ,m(1)

i) with mi,pub = (yi, {xi,j′}j′∈[Ni],U , tag) is
legitimate if m(0)

i = m(1)

i or, for all j ∈ U ∩ H and tag-f ∈ T (U), there exist (j, k(0)

j , k(1)

j) ∈ Qkey

with kj,pub = (gj , hj ,U , tag-f) and (j,m(0)

j ,m(1)

j) ∈ Qenc with mj,pub = (yj , {xj,j′}j′∈[Nj],U , tag) such
that gj(yj) = 0. Furthermore, a DDFE for AB-AWS is secure against legitimate queries if the
scheme is secure against all admissible (i.e. adm(A) = 0 as per Definition 5) adversaries A that
submit only legitimate encryption queries.

12

A DDFE is called a single-client FE scheme if IDλ = {⊤} is a singleton for all λ ∈ N. The
functionality of Attribute-Based Attribute-Weighted Sums with Inner Products (AB-AWSw/IP) for
single-client FE schemes is defined as follows.

Definition 9 (AB-AWSw/IP). Let G = {Gλ = (G1,λ,G2,λ,Gt,λ, g1,λ, g2,λ, gt,λ, eλ, qλ)} be a se-

quence of pairing groups. For λ ∈ N, let Rλ = Gt,λ, Kλ,pub = Fabp
n′
0,1
× Fabp

n0,n1, Kλ,pri = Gm
2,λ,

Mλ,pub = (Zn′
0

qλ ∪ {⋆}) ×
⋃

N∈N(Zn0
q)N and Mλ,pri =

⋃
N ′∈N(Zn1

q)N
′ × Gm

1,λ. The functionality

fab-aws-ip = {fab-aws-ip
λ }λ∈N is defined via

fab-aws-ip
λ

(
k,m

)
=

{q∑
j∈[N]⟨h(xj), zj⟩+ ⟨p,q⟩

y
t

if (∗) holds
⊥ otherwise

for all λ ∈ N and condition (∗) is satisfied if

• m is of the form (mpri = ({zj}j∈[N ′], JpK1),mpub = (y, {xj}j∈[N])) such that N ′ = N ,
• k is of the form (kpri = JqK2, kpub = (g, h)), and
• g(y) = 0 or y = ⋆.

FE for AB-AWSw/IP with sadap-security is known to exist under the MDDHk assumption and
pairings [ATY23].

2.5 Decentralized Multi-Client Functional Encryption

The notion of Decentralized Multi-Client Functional Encryption (DMCFE) introduced in [CDG+18a]
can be identified as a special case of DDFE, where the number n of users is fixed in advanced
by a (possibly interactive) global setup and there is no local setting up so that a new user can
enter the system. Moreover, for efficiency, prior papers (such as [CDG+18a, CDG+18b, ABKW19,
ABG19, LT19, CDSG+20]) considered an additional key combination algorithm that, given n
decryption key components {DKtag-f,i}i∈[n] generated for the same tag tag-f, outputs a succinct
functional key DKtag-f which can be passed to decryption Dec(DKtag-f , {CTtag,i}i∈[n]). Without loss
of generality, the DMCFE notion in this paper implicitly includes the key combination algorithm
in the decryption algorithm and whenever we refer to other existing DMCFE schemes, they are
syntactically understood as such. The formal definition of DMCFE that is used in this paper is
given below.

Let {Tagλ}λ∈N, {Kλ}λ∈N, {Mλ}λ∈N and {Rλ}λ∈N be sequences of tag, key, message and output
spaces, respectively, and Kλ = Kλ,pri ×Kλ,pub,Mλ =Mλ,pri ×Mλ,pub consist of a private and a
public component each. We consider a functionality f = {fλ,n : Kn

λ ×Mn
λ → Rλ}λ,n∈N.

Definition 10 (DMCFE Syntax). A DMCFE scheme FE for the functionality f = {fλ,n}λ,n∈N
consists of the four efficient algorithms defined below:

Setup(1λ, 1n)→ (PP, {SKi}i∈[n]): This is a protocol between the n clients that eventually generate
their own secret keys SKi, as well as the public parameter PP. The other algorithms implicitly
take PP.

KeyGen(SKi, tag-f, yi)→ DKtag-f,i: On input a secret key SKi, a tag tag-f ∈ Tagλ, and ki ∈ Kλ, this
algorithm outputs a decryption key DKtag-f,i.

Enc(SKi, tag, xi)→ CTtag,i: On input a secret key SKi, a tag tag ∈ Tagλ and xi ∈Mλ, this algorithm
outputs a ciphertext CTtag,i.

Dec({DKtag-f,i}i∈[n], {CTtag,i}i∈[n])→ d: On input a set of functional decryption keys {DKtag-f,i}i∈[n]
all generated for the same tag tag-f and a set of ciphertexts {CTtag,i}i∈[n] all generated for the
same tag tag, this algorithm outputs an element d ∈ Rλ.

13

Correctness. FE is correct if for all λ, n ∈ N, all tags tag-f, tag ∈ Tagλ and all inputs {ki}i∈[n] ⊆ Kλ

and {mi}i∈[n] ⊆Mλ, we have

Pr

d = fλ,n
(
{ki}i∈[n],
{mi}i∈[n]

)
∣∣∣∣∣∣∣∣∣∣
(PP, {SKi}i∈[n])←Setup(1λ, 1n)

∀i ∈ [n] : DKtag-f,i←KeyGen(SKi, tag-f, ki)

∀i ∈ [n] : CTtag,i←Enc(SKi, tag,mi)

d := Dec({DKtag-f,i}i∈[n], {CTtag,i}i∈[n])

 = 1 ,

where the probability is taken over the random coins of the algorithms.

Security. We define security for DMCFE as follows.

Definition 11 (DMCFE Security). Let xxx ∈ {stat, dyn}, yyy ∈ {sel, sadap, adap}, zzz ∈
{sym, asym}. Given a PPT adversary A against a DMCFE scheme FE for a functionality f =
{fλ,n}λ,n∈N, we define the experiment Expdmcfe-b

FE,f,A (1λ) as shown in Figure 2. We recall that for the

queries to OKeyGen and OEnc, namely (i, tag-f, k(0)

i , k(1)

i) and (i, tag,m(0)

i ,m(1)

i), there are private
parts k(b)

i,pri,m
(b)

i,pri and public parts k(b)

i,pub,m
(b)

i,pub in the keys as well as in the messages. We always

require m(0)

i,pub = m(1)

i,pub =: mi,pub and k(0)

i,pub = k(1)

i,pub =: ki,pub because the public data is not hidden.

The adversary A is admissible with respect to C,Qenc,Qkey, denoted by adm(A) = 0, if the
following conditions are satisfied. Otherwise, we say that A is not admissible and write adm(A) = 1.

1. There are no tags tag-f, tag ∈ Tagλ such that there exist sequences {(i, tag-f, k(0)

i , k(1)

i)}i∈[n],
{(i, tag,m(0)

i ,m(1)

i)}i∈[n] that satisfy all the conditions:

• For all i ∈ [n], (i, tag-f, k(0)

i , k(1)

i) ∈ Qkey or [k(0)

i = k(1)

i and i ∈ C].
• For all i ∈ [n], (i, tag,m(0)

i ,m(1)

i) ∈ Qenc or [m(0)

i = m(1)

i and i ∈ C].
• fλ({(i, k(0)

i)}i∈[n], {(i,m
(0)

i)}i∈[n]) ̸= fλ({(i, k(1)

i)}i∈[n], {(i,m
(1)

i)}i∈[n]).
2. If xxx = stat, then the adversary submits all queries to OCorrupt up front in one shot.

3. If yyy = sel, then the adversary submits all queries to OEnc and OKeyGen up front in one shot.
If yyy = sadap, then the adversary cannot call OEnc anymore after submitting the first query
to OKeyGen.

4. If zzz = sym, then for i ∈ C all queries (i, k(0)

i , k(1)

i) ∈ Qkey and (i,m(0)

i ,m(1)

i) ∈ Qenc satisfy k(0)

i =
k(1)

i and m(0)

i = m(1)

i , respectively.5

We say that FE is xxx-yyy-zzz-secure if for all PPT adversaries A,

Expdmcfe-0
FE,f,A (1λ) ≈c Expdmcfe-1

FE,f,A (1λ) .

Functionalities. We give the static versions of the inner-product and attribute-based attribute-
weighted sums functionalities introduced in Definitions 6 and 7.

Definition 12 (Inner Product Functionality). For λ ∈ N, let Rλ = Z, Kλ,pub =Mλ,pri =
[−B;B]N and Kλ,pri = Mλ,pub = {⊤} for polynomials B = B(λ) and N = N(λ) : N → N. The
functionality f ip = {f ip

λ,n}λ,n∈N for standard security is defined via

f ip
λ,n

(
{ki = (⊤,yi)}i∈[n], {mi = (xi,⊤)}i∈[n]

)
=
∑
i∈[n]

⟨xi,yi⟩

5 A recent work [NPP23] studies a stronger security notion that removes this condition for (D)MCFE.

14

Initialize(1λ, 1n):
C,Qenc,Qkey←∅
(PP, {SKi}i∈[n])←Setup(1λ)
Return PP

OKeyGen(i, tag-f, k(0)

i , k(1)

i):

Qkey←Qkey ∪ {(i, tag-f, k(0)

i , k(1)

i)}
Return DKi←KeyGen(SKi, tag-f, k

(b)

i)

OEnc(i, tag,m(0)

i ,m(1)

i):

Qenc←Qenc ∪ {(i, tag,m(0)

i ,m(1)

i)}
Return CTi←Enc(SKi, tag,m

(b)

i)

OCorrupt(i):
C←C ∪ {i}; return SKi

Finalize(b′):

If adm(A) = 0, return β←(b′
?
= b)

Else, return a random bit β $← {0, 1}

Fig. 2: Security game Expdmcfe-b
FE,f,A(1λ) for Definition 11

for all λ, n ∈ N. The functionality f fh-ip = {f fh-ip
λ,n }λ,n∈N for function-hiding security is defined as f ip

except that we set Kλ,pub = {⊤}, Kλ,pri = [−B;B]N and

f fh-ip
λ,n

(
{ki = (yi,⊤)}i∈[n], {mi = (xi,⊤)}i∈[n]

)
=
∑
i∈[n]

⟨xi,yi⟩

for all λ, n ∈ N.

Definition 13 (Attribute-Based Attribute-Weighted Sum Functionality). Let G = {Gλ =
(G1,λ,G2,λ,Gt,λ, g1,λ, g2,λ, gt,λ, eλ, qλ)}λ∈N be a sequence of pairing groups. For λ ∈ N, let Rλ = Gt,λ,

Kλ,pub = Fabp
n′
0,1
× Fabp

n0,n1, Kλ,pri = {⊤}, Mλ,pub = (Zn′
0

qλ ∪ {⋆}) ×
⋃

N∈N(Zn0
q)N and Mλ,pri =⋃

N ′∈N(Zn1
q)N

′
. The functionality fab-aws = {fab-aws

λ,n }λ,n∈N is defined via

fab-aws
λ,n

(
{ki}i∈[n], {mi}i∈[n]

)
=

{q∑
i∈[n]

∑
j∈[Ni]

⟨hi(xi,j), zi,j⟩
y
t

if (∗) holds
⊥ otherwise

for all λ, n ∈ N and condition (∗) is satisfied if

• mi is of the form (mi,pri = {zi,j}j∈[N ′
i]
,mi,pub = (yi, {xi,j}j∈[Ni])) such that N ′

i = Ni,
• ki is of the form (ki,pri = ⊤, ki,pub = (gi, hi)), and
• for all i ∈ [n], gi(yi) = 0 or yi = ⋆.

Definition 14 (Legitimate Queries for AB-AWS). We denote by T the set of all function
tags tag-f such that there exists a query (j, tag-f, k(0)

j , k(1)

j) ∈ Qkey with j ∈ H. An encryption

query OEnc(i, tag,m(0)

i ,m(1)

i) with mi,pub = (yi, {xi,j′}j′∈[Ni]) is legitimate if m(0)

i = m(1)

i or, for

all j ∈ [n] \ C and tag-f ∈ T , there exist (j, tag-f, k(0)

j , k(1)

j) ∈ Qkey with kj,pub = (gj , hj) and

(j, tag,m(0)

j ,m(1)

j) ∈ Qenc with mj,pub = (yj , {xj,j′}j′∈[Nj]) such that gj(yj) = 0. Furthermore, a
DMCFE for AB-AWS is secure against legitimate queries if the scheme is secure against all
admissible (i.e. adm(A) = 0 as per Definition 11) adversaries A that submit only legitimate
encryption queries.

2.6 Attribute-Based and Identity-Based Encryption

We recall the definition of Attribute-Based Encryption [SW05].

15

Definition 15 (Attribute-Based Encryption (ABE)). Let M = {Mλ}λ∈N, X = {Xλ}λ∈N
and Y = {Yλ}λ∈N be sequences of message, ciphertext-attribute and key-attribute spaces, and
let f = {fλ}λ∈N be a sequence of predicates where fλ : Xλ × Yλ → {0, 1} for all λ ∈ N. An ABE
scheme ABE forM and f consists of the four efficient algorithms defined below:

Setup(1λ)→ (MPK,MSK): On input the security parameter 1λ, this algorithm outputs a pair of a
master public key MPK and a master secret key MSK.

KeyGen(MSK, y)→ DKy: On input the master secret key MSK and an attribute y ∈ Yλ, this algorithm
outputs a decryption key DKy.

Enc(MPK, x)→ DKx: On input the master public key MPK an attribute x ∈ Xλ and a message µ ∈
Mλ, this algorithm outputs a ciphertext CTx.

Dec(DKy,CTx)→ µ′ ∨ ⊥: On input a decryption keys DKy and a ciphertext CTx, this algorithm
outputs an element µ′ ∈Mλ or ⊥.

Correctness. The ABE scheme ABE is correct if for all λ ∈ N, µ ∈Mλ, x ∈ Xλ and y ∈ Yλ such
that fλ(x, y) = 0, we have

Pr

µ = µ′

∣∣∣∣∣∣∣∣∣
(MPK,MSK)←Setup(1λ)

DKy←KeyGen(MSK, y)

CTx←Enc(MPK, x, µ)

µ′ := Dec(DKy,CTx)

 = 1 ,

where the probability is taken over the random coins of the algorithms.

Security. We define security for ABE as follows.

Definition 16 (ABE Security). Given a PPT adversary A against an ABE scheme ABE for a
predicate f = {fλ}λ∈N, we define the experiment Expabe-b

ABE,A(1
λ) as shown in Figure 3. The oracle

OKeyGen can be called any (polynomial) number of times whereas the oracle OEnc can be called
only once. We say that FE is secure if for all PPT adversaries A,

Expabe-0
ABE,A(1

λ) ≈c Expabe-1
ABE,A(1

λ) .

Initialize(1λ, 1n):
Q←∅; xenc = ⊥
(MPK,MSK)←Setup(1λ)
Return MPK

OKeyGen(y):
Qkey←Qkey ∪ {y}
Return DKy←KeyGen(MSK, y)

OEnc(x, µ(0), µ(1)):
xenc←x
Return CTx←Enc(MSK, x, µ(b))

Finalize(b′):
If f(xenc, y) = 1 for all y ∈ Q,

return β←(b′
?
= b)

Else, return a random bit β $← {0, 1}

Fig. 3: Security game Expabe-b
ABE,A(1λ) for Definition 16

ABE schemes for ABPs are known to exist under the MDDHk assumption and pairings [LL20]. We
define identity-based encryption as a special case of ABE.

Definition 17 (Identity-Based Encryption (IBE)). Let ID = {IDλ}λ∈N be a sequence of identity
spaces. An IBE scheme for ID is an ABE for the attribute spaces X = Y = ID and the equality
predicates, i.e. f = {fλ}λ∈N where fλ(x, y) = (x

?
= y) for all λ ∈ N.

16

2.7 Lockable Obfuscation

We recall the definition of a lockable obfuscator [GKW17, WZ17]. Given polynomials n = n(λ),m =
m(λ) and d = d(λ), we denote by Cn,m,d(λ) the class of depth d(λ) circuits with n(λ) bits input and
m(λ) bits output.

Definition 18 (Lockable Obfuscation). Let M = {Mλ}λ∈N be a sequence of message spaces
and {Cn,m,d(λ)}λ∈N a sequence of circuit classes. A lockable obfuscator forM and C is a tuple of
two efficient algorithms:

Obf(1λ, C, µ, σ)→ (C̃): On input 1λ, a circuit C ∈ Cn,m,d(λ), a message µ ∈ Mλ and a “lock

value” σ ∈ {0, 1}m(λ), this algorithm outputs an obfuscated circuit C̃.
Eval(C̃, x)→ µ′ ∨ ⊥: On input an obfuscated circuit C̃ and an input x ∈ {0, 1}n(λ), this algorithm

outputs a value µ′ ∈Mλ or ⊥.

Correctness. A lockable obfuscator satisfies (perfect) correctness if for all λ ∈ N, all circuits
C ∈ Cn,m,d(λ), all messages µ ∈Mλ and all inputs x ∈ {0, 1}n(λ), the following two implications are
satisfied:

1. if C(x) = σ, then Eval(Obf(1λ, C, µ, σ), x) = µ
2. if C(x) ̸= σ, then Eval(Obf(1λ, C, µ, σ), x) = ⊥

Security. We define security against multiple challenges. In [AYY22], this definition was observed
to be equivalent to the original single-challenge version from [GKW17].

Definition 19 (Security against Multiple Queries). For a lockable obfuscation scheme LObf =
(Obf,Eval) and an efficient algorithm Sim, we define the following oracles:

OObf0(C, µ): sample σ $← {0, 1}m(λ) and return C̃ ← Obf(1λ, C, µ, σ)
OObf1(C, µ): return Sim(1λ, 1|C|, 1|µ|)

We call LObf secure if there exists a PPT simulator Sim such that for all PPT adversaries A, there
exists a negligible function negl(·) such that

Advlock
LObf,A(λ) :=

∣∣∣Pr [AOObf1 → 1
]
− Pr

[
AOObf0 → 1

]∣∣∣ ≤ negl(λ) .

Perfectly correct lockable obfuscators for general circuits are known to exist under the LWE
assumption [GKW17, GKVW20].

2.8 Pseudorandom Functions (PRF)

Definition 20 (Family of Pseudorandom Functions (PRF)). Let {Xλ}λ∈N, {Yλ}λ∈N and
{Kλ}λ∈N be sequences of sets representing domain, range and key space, respectively. Furthermore,
let {Rλ}λ∈N be such that, for each λ ∈ N, Rλ is the set of all functions with domain Xλ and range Yλ.
A family of functions {PRFK}K∈Kλ

that consists of efficiently computable functions PRFK : Xλ → Yλ
is called pseudorandom if for all PPT adversaries A, there exists a negligible function negl(·) such
that

Advprf
PRFK ,A(1

λ) :=
∣∣∣Pr[APRFK(·) = 1]− Pr[AR(·) = 1]

∣∣∣ ≤ negl(λ) ,

where K $← Kλ and R $← Rλ.

It is well-known that PRFs can be constructed under DDH, e.g. the Naor-Reingold construc-
tion [NR97] or under the Learning with Rounding (LWR) [BPR12]. The LWR problem is shown to be
as hard as LWE if the modulus and modulus-to-noise ratio are super-polynomial [BPR12, AKPW13].

17

2.9 Non-Interactive Key Exchange (NIKE)

Definition 21 (Non-Interactive Key Exchange (NIKE)). A NIKE scheme NIKE = (Setup,
KeyGen, SharedKey) for a sequence of key spaces {Kλ}λ∈N is a tuple of three efficient algorithms
defined as follows:

Setup(1λ): On input the security parameter 1λ, the algorithm outputs the public parameters PP.

KeyGen(PP): On input the public parameters PP, the algorithm outputs a pair (SK,PK) consisting
of a secret key SK and the corresponding public key PK.

SharedKey(SK,PK′): On input a secret key SK and a (usually non-corresponding) public key PK′,
the algorithm deterministically outputs a shared key K ∈ Kλ.

Correctness. The NIKE scheme NIKE is correct if for all λ ∈ N, we have

Pr

K1,2 = K2,1

∣∣∣∣∣∣∣∣∣∣∣∣

PP←Setup(1λ),

(PK1,SK1)←KeyGen(PP),

(PK2,SK2)←KeyGen(PP),

K1,2←SharedKey(SK1,PK2),

K2,1←SharedKey(SK2,PK1)

 = 1 ,

where the probability is taken over the random coins of the algorithms.

Security. We define IND-security.

Definition 22 (IND-Security). For a NIKE scheme NIKE and a PPT adversary A we define
the experiment Expnike-b

NIKE,A as shown in Figure 4. The oracles OHonestGen, OReveal, OTest and
OCorrupt can be called in any order and any number of times. The adversary A is NOT admissible,
denoted by adm(A) = 0, if either one of the following holds:

1. There exist public keys PK1 and PK2 such that A made the following queries

• OCorrupt(PK1),
• OTest(PK1,PK2) or OTest(PK2,PK1)’

2. There exist public keys PK1 and PK2 such that A made the following queries

• OReveal(PK1,PK2) or OReveal(PK2,PK1),
• OTest(PK1,PK2) or OTest(PK2,PK1).

Otherwise, we say that A is admissible and write adm(A) = 1. We call NIKE IND-secure if for all
PPT adversaries A,

Expnike-0
NIKE,A(1

λ) ≈c Expnike-1
NIKE,A(1

λ) .

NIKE can be constructed based on a variant of the Decisional Bilinear Diffie-Hellman assumption
in the standard model [FHKP13, Section 4.3]. In a recent work [Lan23], it is shown that NIKE
can be constructed from LWE with polynomial modulus-to-noise ratio and satisfy strong security
properties in the standard model.

18

Initialize(1λ):

PP←Setup(1λ); H←∅
Return PP

OHonestGen():
(SK,PK)←KeyGen
H←H∪ {(SK,PK)}
Return PK

OReveal(PK1,PK2):
If ∃SK1 s.t. (SK1,PK1) ∈ H,

return K←SharedKey(SK1,PK2)
If ∃SK2 s.t. (SK2,PK2) ∈ H,

return K←SharedKey(SK2,PK1)
Return ⊥

OTest(PK1,PK2):

If {(SK1,PK1), (SK2,PK2)} ⊈ H,
return ⊥

If b = 0, return K $← K
Else, return K←SharedKey(SK1,PK2)

OCorrupt(PK):
Recover SK s.t. (SK,PK) ∈ H
H ← H \ {(SK,PK)}
Return SK

Finalize(b′):

If adm(A) = 1, return β←(b′
?
= b)

Else, return β $← {0, 1}

Fig. 4: Security game Expnike-b
NIKE,A for b ∈ {0, 1}

3 Technical Overview

3.1 From DMCFE to DDFE

We give an overview of our compiler from DMCFE to DDFE. The compiler is inspired by a
blueprint in the literature [AGT21b] that is applied mainly in the function-hiding setting. The
construction of [AGT21b] proceeds in two steps. First, the authors build an FH-MCFE scheme.
Then, they lift their FH-MCFE scheme to FH-DDFE in a non-black-box manner. The final FH-
DDFE scheme of [AGT21b] is secure against selective adversaries that submit all oracle queries
up front. There is a further constraint on the adversary termed one key-label restriction: their
queries OKeyGen(i, (k0pri, kpub), (k1pri, kpub)) for kpub = (⋆,UK , tag-f) are made only once for each
(i,Uk, tag-f), i.e. they do not allow repetitions for function tags. Our starting point is to aim at a
transformation from DMCFE to DDFE, not from the multi-client FE regime as in [AGT21b]. The
goal is to cover settings with or without function-hiding, and to achieve adaptive security for both
encryption and key-generation queries under static corruption, against repetitions on message/key
tags.

We explain at high level in the following paragraphs: (i) why we start from DMCFE, which differs
from the work of [AGT21b], (ii) the structural properties that allow us to convert DMCFE into
DDFE in a black-box manner, and (iii) a summary of the instantiations of our generic conversion on
existing DMCFE schemes in the literature, as well as a new instantiation that we provide. As already
presented in Table 1, we are able to cover a more general setting that applies to various schemes in
the literature and achieve several DDFE constructions with previously unattained properties.

DMCFE as Starting Point - Removing the One Key-Label Restriction. We recall from the
syntax and security definitions of DDFE (Definitions 4 and 5, respectively) that the key-generation
KeyGen(SKi, ki)→ DKi and encryption Enc(SKi,mi)→ CTi algorithms can be seen as symmetric
operations on the i-th slot of the key and ciphertext vectors, respectively. Each user i can perform
these operations independently. On the other hand, when viewing MCFE as a restricted particular
case of DDFE (centralized setup and key generation, fixed number of users), in order to base the
DDFE scheme on an MCFE scheme, each key tag that is queried to OKeyGen by the adversary
must encompass a well-formed MCFE key. More specifically, for each tag-f, what the adversary
is allowed to submit to OKeyGen must only correspond to a global key query on (ki)i∈[n] of all n

19

components, where n is a fixed number of users and each i ∈ [n] is assigned one ki. Translating back
to the language of DDFE, this implies for each (i, tag-f) the adversary is allowed to submit only one
query OKeyGen(i, (k0pri, kpub), (k1pri, kpub)), which leads exactly to the one key-label restriction. As a
consequence, in order to circumvent this restriction it is necessary to start from a generalization
of MCFE that allows for local key queries, which is the DMCFE model. Then, the next step is to
devise a transformation from DMCFE to DDFE that is not subject to the one key-label restriction,
i.e. a transformation that allows for repeated key queries for a slot i under the same key tag. By
doing so, starting from a DMCFE that is secure against repetitions on key tags, our obtained DDFE
scheme inherits the stronger security notion compared to [AGT21b].

Transformation from (D)MCFE to DDFE. As we have mentioned in Section 1, the striking
difference is that in DDFE there is only a non-interactive global setup outputting public parameters.
So as to join the system, each user runs a local setup algorithm to generate their own secret key
SKi using some public parameters. At any time, any set of users UM can independently encrypt
their individual data to contribute to a list of ciphertexts (CTi)i∈UM

under some message tag tag.
Similarly, a set of users UK can independently contribute to a list of functional keys (DKi)i∈UK

under some key tag tag-f. Note that the dynamic set of users is also reflected in the DDFE version
of the function class for inner products (cf. Definition 6), and for the function class of AB-AWS
(cf. Definition 7). Compared with the DMCFE setting, the number of clients is fixed up front
(Definition 12 for inner products and Definition 13 for AB-AWS). Hence, it is necessary to deal with
newly arrived sets of users if one wants to convert a DMCFE scheme to a DDFE scheme, i.e. to
handle in an independent manner each UM (for encryption) and UK (for key-generation) by the
underlying DMCFE.

From Previous Works - The Transformation of [AGT21b]. We briefly highlight the key ideas
of the transformation from MCFE to DDFE in [AGT21b]. Let ID be some set of identities. The
authors of [AGT21b] start from an MCFE in which each user i ∈ [n] ⊆ ID holds a master secret
key MSKi of a single-input IPFE scheme. First of all, the removal of interaction between the
users, for the sake of obtaining their SKi, is achieved by equipping each user i with a key Ki for a
family of pseudorandom functions {PRFK}K . Then, for each independent support UM ⊆ ID, user
i ∈ UM runs the setup algorithm of the single-input FE using PRFKi(UM)→ ri as fixed random
coins. The PRF ensures that for the same support UM , user i always uses the same key SKi, but
different independent keys for different supports. Next, concerning the key-generation, the authors
of [AGT21b] use a well-known technique from the literature [CDSG+20] called Decentralized Sum
(DSum). From a bird’s eye view, DSum is used to generate a fresh secret sharing of 0 for each
function, by interleaving a Non-Interactive Key Exchange (NIKE) scheme and a PRF, without
interaction and independently for each support UK . This addresses the challenge of key-generation
in a decentralized and non-interactive manner when moving to DDFE.

Our Conversion from Dynamizable DMCFE to DDFE. We observe that both techniques men-
tioned in the previous paragraph can be applied in a much broader setting. As mentioned above,
our starting point is a DMCFE scheme. Intuitively, we show that a DMCFE scheme can be lifted to
DDFE whenever the only correlation between the user’s secret keys comes from a random secret
sharing of 0. Specifically, we require that the i-th secret key SKi must be possible to generate given
only some global public parameters and the i-th share of an n-out-of-n secret sharing of 0, where 0
is the neutral element of an arbitrary finite Abelian group. This property is coined dynamizability
of the DMCFE scheme and we give the formal definition in Definition 23. As in [AGT21b], we use a
DSum instance to compute a secret sharing (si)i without interaction and a PRF to generate the
key components independent of other users. In this way, we can emulate an independent DMCFE
instance with respect to each support UM and UK , and each user i can use their DDFE secret

20

key SKi to dynamically derive a DMCFE key for encryption and/or key-generation in the DMCFE
scheme for arbitrary sets UM and UK .

Concrete Instantiations. We first discuss the case for the function class of inner products,
whose definitions are given in Definition 12 for DMCFE functionality and Definition 6 for DDFE
functionality. The compiler first allows us to apply the conversion to the FH-DMCFE scheme
from [NPS24], where the shares si are vectors in Z2

q . (Recall that their scheme uses two scalar
secret sharings, one in the keys and one in the ciphertexts). This gives us the first function-hiding
IP-DDFE construction with adaptive security in the literature. Moreover, we also note that the
FH-DMCFE scheme from [NPS24] achieves security against a fixed polynomially bounded number
of repetitions on the key tags, meaning the resulting FH-IP-DDFE scheme inherits this property
and improves upon the work of [AGT21b]. Similarly, our conversion can be applied to the DMCFE
scheme in [CDG+18a] where shares si are matrices in Z2×2

q , giving the first adaptively secure scheme
in the standard (non-function-hiding) setting. Details about these instantiations can be found in
Appendices A.5 and A.3, respectively.

Furthermore, we want to apply our conversion to the lattice-based DMCFE of [LT19]. Un-
fortunately, their scheme does not exactly meet our definition of dynamizability. The problem is
that the secret keys SKi in their scheme do not contain a secret share of 0, but a secret share ti
of a value t distributed according to a discrete Gaussian. Nevertheless, we are able to make the
scheme fit into our framework via a slight modification. Without recalling the details of their
scheme here, our key observation is that encryption and key generation for some slot i can be
done using only the share ti. The sum t =

∑
i∈[n] ti is only needed for decryption. For this reason,

it is not necessary to include the value t into the secret keys or the public parameters (as done
in [LT19]). Instead, we can mask the value ti with a share si of a secret sharing of 0 which can be
computed using the DSum technique as before. This gives a variant of [LT19]. Specifically, when
every user includes the masked value ui = ti + si into their decryption keys (or ciphertexts), then
the sum

∑
i∈[n] ui =

∑
i∈[n] ti = t can be reconstructed at decryption time. It may seem that this

already solves all our problems, but there is one more technical detail. The DSum technique works
only for finite Abelian groups. However, the support of discrete Gaussian random variables is over
Z and infinite. Therefore, our argument for dynamizability, later the security of our modification
to [LT19], becomes probabilistic in the sense that: with high probability, we will be working in a
fixed finite range and the argument holds for statistically close distributions (in previous applications
to [CDG+18a, NPS24] the dynamizability is perfect). In the end, we are able to apply our conversion
to the lattice-based DMCFE scheme of Libert et al. [LT19] which yields an IP-DDFE whose security
is based solely on LWE in the standard model. We refer to Appendix A.4 for details.

For the functionality of AB-AWS, whose defintions are given in Definition 13 for DMCFE and
Definition 7 for DDFE, we construct a new DMCFE scheme in Appendix A.2. We do not recall
the details of this construction here because it is very similar to a scheme for function-hiding
IP-DDFE recently described in [NPS24]. The only difference is that they start from a single-client
function-hiding FE scheme for inner products, whereas we use a single-client FE scheme for a
functionality termed AB-AWSw/IP introduced and instantiated in [ATY23]. The resulting scheme
for AB-AWS is dynamizable with shares si being elements of Zq. The IP-DDFE scheme in [NPS24]
is only secure against so-called complete queries. This restriction in the security model can be
removed via a generic conversion also discussed in [NPS24]. When considering functionalities with
access control (such as AB-AWS), however, then the situation is more complex which is why the
conversion of [NPS24] to achieve security against incomplete queries does not suffice anymore. To
deal with this more complex situation and achieve security against any queries, we present a second
compiler whose details are discussed in the next section.

21

3.2 Achieving Security Against Any Queries

So far, we have not paid attention to one important issue. Our DMCFE scheme for AB-AWS which
has been lifted to DDFE for AB-AWS is only secure against so-called legitimate queries. Intuitively,
a query is legitimate if it is subject to the adversary’s admissibility condition. In more detail, for
some set of users U ⊆ ID and tags tag, tag-f ∈ Tag, there may exist an honest slot i ∈ U such that
the adversary does not have a ciphertext with respect to tag and an attribute xi, and a decryption
key with respect to tag-f and a policy fi such that fi(xi) = 0. If this happens, the adversary is not
supposed to learn anything, as the decryption algorithm cannot be run in an honest manner on this
input. Therefore, the admissibility condition does not impose any restriction in this case, and we
call the adversary’s queries with respect to U and tag, tag-f illegitimate.

Existing Solutions in the MIFE Setting and Their Limitations. In [ATY23], the authors
show how to lift an MIFE for AB-AWS from legitimate-query to any-query security. Roughly
speaking, they use an n-out-of-n secret sharing to share the decryption keys of the underlying
MIFE which is secure against legitimate queries. Then they encrypt each share with an independent
ABE. If a query is illegitimate, then not all ABE ciphertexts can be decrypted and the MIFE key
cannot be recovered. We can observe that this compiler only works in the MIFE setting because
it cannot deal with different tags. Indeed, once all shares are recovered and the MIFE decryption
key is reconstructed, it can be used for a decryption of ciphertexts associated with arbitrary tags,
regardless of whether they are legitimate or not. To overcome this problem, we need a more powerful
primitive than ABE which is able to check legitimacy globally across several ciphertexts, as in the
presence of tags this property cannot be decided by looking at only one slot at a time anymore.

In other words, the primitive we are looking for is Multi-Input ABE (MI-ABE). MI-ABE allows
each encryptor i ∈ [n] to generate a ciphertext CTi with respect to an attribute xi. Using a decryption
key for some arity-n policy f , (CT1, . . . ,CTn) can be jointly decrypted if the combination of all at-
tributes satisfies the key’s policy, i.e. if f(x1, . . . , xn) = 0. By viewing the tags as part of the attributes,
MI-ABE seems powerful enough to perform a tag-sensitive check of legitimacy. Unfortunately, all
existing constructions of MI-ABE are either based on nonstandard assumptions [AYY22, ARYY23] or
their supported policy classes capture only conjunctions [FFMV23, ATY23]6. Note that conjunctions
are not powerful enough to check a global equality, hence do not suffice to check legitimacy with
respect to a specific tag7. So we need to construct such a scheme first. Fortunately, there is one
work that comes somewhat close to what we need: in [FFMV23], Francati et al. build multi-input
predicate encryption from any classical predicate encryption (PE) scheme [GVW15] and lockable
obfuscation [GKW17]. Their supported policy class is conjunctions of F , where F is the class of
policies supported by the employed PE scheme. Before we explain how tags can be integrated into
their construction, we give a brief recall of their techniques.

Ingredients. First, Lockable Obfuscation (LO) [GKW17, WZ17] allows to obfuscate a circuit C
with respect to a message µ and a lock value σ. Correctness asks that an evaluation of the obfuscated
circuit on some input x yields µ if C(x) = σ and ⊥ otherwise. Simulation security requires that if σ
looks random to the adversary, then the obfuscated circuit is computationally indistinguishable from
a garbage program that does not carry any information about µ or C. Second, Attribute-Based
Encryption (ABE) enables the generation of ciphertexts aCT(x, µ) for a message µ with respect to
an attribute x and decryption keys aDK(f) with respect to a policy f . Correctness and security

6 A policy f is said to be a conjunction of a policy class F if there exist policies f1, . . . , fn ∈ F such that f(x1, . . . , xn) =
f1(x1) ∧ · · · ∧ fn(xn).

7 If no tag is given explicitly at decryption time, which is our setting, two main reasons for this insufficiency are: (i)
message tags are not known at key-generation time, (ii) each conjunction term fi(xi) evaluates attributes at slot i
independently from fj(xj) on attributes at slot j ̸= i, cf. [ACGU20, NPP22] and discussions therein for details.

22

require that decryption is possible if and only if f(x) = 0. In the particular case of [FFMV23],
attributes are of the form x = (x1, . . . , xn) and policies are of the form f(x) = f1(x1) ∧ · · · ∧ fn(xn).
For each i ∈ [n], there exists a wildcard ⋆ such that fi(⋆) = 0 for any choice of fi. Similarly, we
consider identity-based encryption (IBE) which allows the generation of ciphertexts idCT(id, µ)
with respect to an identity id and a message µ, and decryption keys idDK(id′) with respect to an
identity id′. Decryption is possible if and only if id = id′. Furthermore, we use several independent
PKE instances. An encryption of a message µ under the public key of the i-th instance is denoted
by pCTi(µ).

The MI-ABE of [FFMV23]. For simplicity, we consider a single-message scheme where the first
slot takes an attribute and a message whereas the other slots take only an attribute8. Furthermore,
we do not consider attribute-hiding in this work, which allows us to start from any ABE instead of
PE. Each user i ∈ [n] in the MI-ABE holds the secret key pSKi of an independent PKE instance. To
generate a ciphertext CTxi for an attribute xi (and a message µ if i = 1), user i samples a random
lock value σi and creates c(0)i = aCT((x1, . . . , xn), σi), where xj = ⋆ for all j ̸= i. Subsequently, the
encryptor adds n layers of PKE encryption: for all j = 1, . . . , n, they compute c(j)i = pCTj(c

(j−1)

i).

The final ciphertext is an obfuscation CTxi = C̃i of a circuit Ci[c
(n)

i , pSKi] generated with respect to
the lock value σi and the message µ (if i = 1) or the PKE key pSKi (if i > 1). The notation C[α]
means that the value α is hardwired in the description of the circuit C. MI-ABE decryption keys DKf

for a policy f are simply a decryption key aDK(f) of the employed single-input ABE.
The pivotal point of the construction is the definition of the circuits Ci[c

(n)

i , pSKi] which must
enable “communication” between the obfuscated circuits without violating attribute privacy. To
recover the message µ, we must unlock C̃1. The corresponding lock value σ1 is already hardwired in
the circuit C1[c

(n)

1 , pSK1], however it is hidden under n layers of PKE encryption in the value c(n)

1 .
To decrypt, we need the secret keys pSKi for all i > 1. These keys are embedded as messages in the
obfuscated circuits C̃i. So in order to evaluate C̃1, we need to evaluate C̃i for i > 1 first. Specifically,
C1[c

(n)

1 , pSK1] takes as input aDK(f) and invokes the evaluation of C̃2 on input (pSK1, aDK(f)),

C̃2 invokes the evaluation C̃3 on input (pSK1, pSK2, aDK(f)) and so on until C̃n takes the secret
keys from all the other slots as input. At this point, the evaluation of C̃n, which is an obfuscation
of Cn[c

(n)
n , pSKn], has everything to remove the n layers of PKE encryption from c(n)

n to recover c(0)n =
aCT((x1, . . . , xn), σn). Recall that x1 = · · · = xn−1 = ⋆ in c(0)n . Thus, if fn(xn) = 0, then the
evaluation of C̃n can further decrypt c(0)n using aDK(f) to recover σn which unlocks C̃n and
reveals pSKn. Now C̃n−1 has pSKn from the evaluation of C̃n, pSKn−1 hardwired in its own description,

and (pSK1, . . . , pSKn−2, aDK(f)) from its inputs. So C̃n−1 can perform a similar computation as C̃n

at the end of which the secret key pSKn−1 is revealed and so on. Eventually, C̃1 recovers all the
secret keys from the other slots via nested evaluations of the other obfuscated circuits, which allows
recovering σ1 and unlocking C̃1 to learn µ. (The actual decryption procedure is a bit more complex
leading to a runtime of O(nn) which limits the number of slots to n = O(1), but we omit the details
here).

Dealing With Tags. We first observe that the policies supported by the construction of [FFMV23]
are not able to perform a global equality check. This is because in the generation of a ciphertext C̃i

all attributes xj , for j ∈ [n] \ {i}, are set to the wildcard ⋆. Hence, even if one could generate
keys for arbitrarily powerful policies, it is not possible to check authorization with respect to
attributes from more than one slot at the same time. We therefore need to approach the problem
differently, without embedding the condition on tag equality into the policies. For this, we recall that
decryption uses a sophisticated nesting technique of several obfuscated circuits which only works if

8 Such a single-message scheme can easily be lifted to an n-message scheme by running multiple single-message
schemes in parallel with rotated slots [AYY22].

23

the circuits are linked properly. This “link” is established as follows. To unlock an obfuscation C̃i of
a circuit Ci[c

(n)

i , pSKn], one needs to recover the lock value σi. This lock value is hardwired in the
circuit itself, but it is hidden in c(n)

i under n layers of PKE encryption. The corresponding secret

keys pSKj are embedded in the obfuscated circuits C̃j from the other slots j ∈ [n]; so to recover σi,
the PKE keys from the other slots must be retrieved first9. Our idea is to let the n encryption layers
in c(n)

i depend on the tag. Specifically, the j-th layer c(j)i should only be possible to decrypt if the

corresponding secret key, which is embedded in C̃j , is associated with the same tag. In this way, it

can be checked in a pairwise manner that C̃i and C̃j were generated with respect to the same tag tag.

To this end, we replace the PKE instances with IBE. During the generation of C̃i, the value c(j)i ,
for j ∈ [n], is generated by encrypting c(j−1)

i under the public key of the j-th IBE instance with
respect to the tag tag which is viewed as the identity, i.e. c(j)i = idCTj(tag, c

(j−1)

i). Correspondingly,

the PKE secret key pSKj in C̃j is replaced with an IBE decryption key idDKj(tag). In this way,
the above-mentioned link between two obfuscated circuits works only if both were generated with
respect to the same tag.

From MI-ABE to DDFE. Our next step is to lift this construction from the MIFE setting
to DDFE. On the positive side, the initial construction from [FFMV23] is already secure under
corruptions, and we have already discussed how to encrypt with respect to tags. It remains to
modify the generation of decryption keys so that it works in a decentralized manner and does
not require a master secret key anymore. Furthermore, we need to allow users to join the system
dynamically. This requires to modify the setup algorithm so that it works without interaction. To
our knowledge, there is currently no work in the literature that considers (key-policy) ABE in such
a general setting. We therefore start by introducing a new functionality that we call Attribute-Based
All-or-Nothing Encapsulation (AB-AoNE), as it can be regarded as a generalization of the AoNE
functionality from [CDSG+20]. Consider a tag tag and a set of users U . Given a ciphertext of a
message µi created with respect to U , tag and an attribute xi and a decryption key generated with
respect to U and a policy fi for each i ∈ U , the AB-AoNE functionality allows recovering {µi}i∈U if
and only if fi(xi) = 0 for all i ∈ U .

We first discuss how to modify the construction such that key generation works in a decentralized
manner. Previously, to generate a key for a policy f , one runs the key generation algorithm of the
employed ABE scheme on input f . This requires the ABE master secret key and, hence, can only be
performed by a central authority that cannot be corrupted. To overcome this limitation, we exploit
two properties. First, we recall that policies f are always of the form f = f1 ∧ · · · ∧ fn. Second, we
observe that ciphertexts are always generated with respect to attributes (x1, . . . , xn) where all but
one xi are wildcards. Together, these two properties imply that the ABE is solely used to perform
local checks of authorization in one slot, but never a global check across several slots at the same
time. For this reason, we can replace the global ABE instance with independent instances, where
each user i holds the ABE master secret key of the i-th instance and generates a partial decryption
key DKi = aDKi(fi).

Second, the DDFE model asks that functions can be evaluated with respect to dynamically chosen
subsets U of users. Specifically, we must guarantee decryptability for ciphertexts and decryption keys
generated for the same set U of users, whereas we must prevent the adversary from meaningfully
combining ciphertexts and keys generated with respect to different sets U ′ ≠ U . To achieve this,
our idea is to again manipulate the “link” between the obfuscated circuits C̃i. Recall that C̃i is
an obfuscation of a circuit Ci[c

(n)

i , idDK(tag)], where c(n)

i is generated by a single ABE encryption

9 More precisely, if the evaluation of C̃i is invoked by an obfuscated circuit C̃j with j < i, then the PKE secret
key pSKj is directly given as input. Conversely, to recover the secret key pSKj for j > i, C̃i invokes C̃j by itself
and pSKj is released if the evaluation succeeds.

24

followed by n layers of IBE encryption. For the ABE, the situation is simple as both encryption and
key generation are performed by the same user. Therefore, we can simulate an independent ABE
instance for each set U by using a PRF for the generation of the random coins passed to the ABE
setup algorithm. For the IBE, the situation is slightly different. This is because during encryption
with respect to some set U , a user i must compute c(n)

i which requires the IBE public keys of the
other users j ∈ U \ {i}. As encryption should be possible without interaction, we cannot distribute
fresh IBE public keys for each new set U . Instead, users must provide a fixed public key when they
join the system. These public keys cannot depend on specific sets U since they are not known at
this point yet. To overcome this problem, we exploit again the fact that we use IBE instead of PKE
which allows us to embed the current set U as part of the identities.

DDFE for AB-AWS Secure Against Any Queries. Being equipped with a DDFE for AB-
AoNE, we can tackle our original task of building a DDFE for AB-AWS secure against any queries.
Let wmFE = (wmGSetup,wmLSetup,wmKeyGen,wmEnc,wmDec) be a DDFE for AB-AWS secure
against legitimate queries and anFE = (anGSetup, anLSetup, anKeyGen, anEnc, anDec) a DDFE for
AB-AONE. We consider a polynomial-size function tag space Tag-f. To set up a user i, our final
DDFE generates an independent instance of wmFE and anFE for each tag-f ∈ Tag-f. To encrypt mi =
(mi,pri,mi,pub) with mi,pub = (yi, {xi,j}j ,UM , tag), one runs wmCTi,tag-f ← wmEnc(wmSKi,tag-f ,mi)
and outputs CTi,tag-f ← anEnc(anSKi,tag-f , (wmCT,UM , tag)) for each tag-f. Key generation for
an input ki = (gi, hi,UK , tag-f ′) runs and outputs wmDKi,tag-f′ ← wmKeyGen(wmSKi,tag-f , ki)
and anDKi,tag-f ← anKeyGen(anSKi,tag-f ,UK). If one has an authorized combination of ciphertexts
and decryption keys, then one can first remove the layer of AB-AoNE encryption, followed by the
decryption of the scheme secure against legitimate queries. For security, if the adversary submits
an illegitimate query, then the AB-AoNE ciphertext cannot be decrypted. Otherwise, if the query
is legitimate, then the AB-AoNE can be removed but we can rely on the security of the original
scheme wmFE.

Open Problems - Decryption Efficiency and Larger Key Tag Space. Our final DDFE
has two limitations. First, it can only support constant-size sets U of users. This limitation is
inherited from the MI-ABE of [FFMV23] whose decryption procedure is only efficient for a constant
number of slots. Second, our scheme can only deal with a function tag space of polynomial size.
One reason for this limitation is that the key generation of our AB-AoNE functionality cannot deal
with tags. This is again related to the original scheme from [FFMV23] which is not secure under
collusions. However, even if we were able to generalize the AB-AoNE construction to function tags,
it is unclear how this would help to build DDFE for AB-AWS for a larger function tag space due to
mix-and-match attacks. Indeed, having one legitimate combination with decryption keys for some
tag tag-f suffices to remove the AB-AoNE layer and recover the wmFE ciphertexts. Subsequently,
these wmFE ciphertexts can be decrypted by any (even illegitimate) keys for another tag tag-f ′. To
prevent these attacks, our above compiler uses an independent wmFE instance for each tag-f, but
this fact also limits the function tags to a polynomial number.

Finally, we would like to emphasize that solving any of these problems is not only interesting for
our current task of achieving DDFE for AB-AWS with security against any queries, but would also
have implications to future constructions of MI-ABE.

4 From DMCFE to DDFE

In this section, we generically build DDFE schemes from DMCFE, PRF and NIKE schemes. The
setup algorithms of the underlying DMCFE schemes are required to satisfy simple structural
properties.

25

Definition 23 (Dynamizability). Let A be an (additively written) finite Abelian group and n ∈ N.
We define the set of n-out-of-n sharings of 0A as S(n,A) = {(si)i∈[n] ∈ An :

∑
i∈[n] si = 0A}.

A DMCFE scheme FE = (Setup,KeyGen,Enc,Dec) is called A-dynamizable if there exist PPT
algorithms SetupPP and SetupUser such that, for all λ, n ∈ N, the distributionsPP, {SKi}i∈[n]

∣∣∣∣∣∣∣
(si)i∈[n]

$← S(n,A)
PP← SetupPP(1λ)

∀i ∈ [n] : SKi ← SetupUser(PP, si)

and {(PP, {SKi}i∈[n])← Setup(1λ, 1n)} are identical, where the probability is taken over the sampling
of (si)i∈[n] and the random coins of the algorithms.

Next, we define the DDFE functionality fdyn that we will obtain when plugging a DMCFE scheme
for a functionality f into our conversion.

Definition 24 (Corresponding DDFE Functionality). Let {Tagλ}λ∈N, {IDλ}λ∈N, {Kλ}λ∈N,
{Mλ}λ∈N and {Rλ}λ∈N be sequences of tag, identity, key, message and output spaces, respectively,
where Tagλ = IDλ = {0, 1}poly(λ) and Kλ = Kλ,pri × Kλ,pub, Mλ = Mλ,pri × Mλ,pub consist

of a private and a public component each. Furthermore, let Kdyn
λ,pub = Kλ,pub × 2IDλ × Tagλ and

Mdyn
λ,pub =Mλ,pub × 2IDλ × Tagλ, then define Kdyn

λ = Kλ,pri × Kdyn
λ,pub and Mλ =Mλ,pri ×Mdyn

λ,pub.
Consider a DMCFE functionality f = {fλ,n : Kn

λ ×Mn
λ → Rλ}λ,n∈N. The DDFE functionality

fdyn =
{
fdyn
λ :

⋃
n∈N(IDλ ×Kdyn

λ)n ×
⋃

n∈N(IDλ ×Mdyn
λ)n → Rλ

}
λ∈N

which corresponds to the DMCFE functionality f is defined via

fdyn
λ ({i, kdyni }i∈UK

, {i,mdyn
i }i∈UM

) =

{
fλ,|U|({ki}i∈U , {mi}i∈U) if (∗) holds
⊥ otherwise

for every λ ∈ N, where condition (∗) holds if UK = UM (in which case we define U := UK)

and there exist tag, tag-f ∈ Tagλ such that for each i ∈ U , wee require (i) kdyni is of the form

(ki,pri, (ki,pub,U , tag-f)) (in which case we define ki := (ki,pri, ki,pub)), and (ii) mdyn
i is of the form

(mi,pri, (mi,pub,U , tag)) (in which case we define mi := (mi,pri,mi,pub)).

For example, we can observe that the DDFE inner-product functionality fdyn-ip in Definition 6
corresponds to the DMCFE inner-product functionality f ip in Definition 12, and that the DDFE
attribute-based attribute-weighted sums functionality fdyn-ab-aws in Definition 7 corresponds to the
DMCFE version fab-aws in Definition 13. We next describe our conversion.

Construction 25 (DMCFE to DDFE). The construction uses the following ingredients:

• An A-dynamizable DMCFE scheme mFE = (mSetup,mKeyGen,mEnc,mDec) for a function-
ality f . As mFE is A-dynamizable, it is equipped with two additional algorithms mSetupPP
and mSetupUser.

• Two families of pseudorandom functions {PRFK}K∈K and {PRF′K}K∈K′, where the range of
{PRF′K}K∈K′ is a subset of A.

• A NIKE scheme NIKE = (nSetup, nKeyGen, nSharedKey) with key space K′.

The details of our DDFE scheme FE = (GSetup, LSetup,KeyGen,Enc,Dec) for the functionality fdyn

corresponding to f are as follows:

26

GSetup(1λ): On input the security parameter 1λ, run mPP← mSetupPP(1λ) and nPP← nSetup(1λ)
and output PP := (mPP, nPP)

LSetup(i): On input an identity i ∈ ID, sample Ki
$← K, generate (nSKi, nPKi) ← nKeyGen(nPP)

and output the key pair (PKi := nPKi, SKi := (nSKi,Ki)).

KeyGen(SKi, k
dyn
i): On input a secret key SKi = (nSKi,Ki) and ki = (ki,pri, ki,pub = (k′i,pub,UK , tag-f))

such that i ∈ UK , compute and output DKi as follows: ∀j ∈ UK \ {i} :

K ′
i,j ← nSharedKey(nSKi, nPKj); si =

∑
j∈UK\{i}(−1)j<iPRF′K′

i,j
(UK)

mSKi ← mSetupUser(mPP, si;PRFKi(UK))

DKi ← mKeyGen(mSKi, tag-f, (ki,pri, k
′
i,pub))

Enc(SKi,m
dyn
i): On input a secret key SKi = (nSKi,Ki) and mi = (mi,pri,mi,pub = (m′

i,pub,UM , tag))
such that i ∈ UM , compute and output CTi as follows: ∀j ∈ UM \ {i} :

K ′
i,j ← nSharedKey(nSKi, nPKj); si =

∑
j∈UM\{i}(−1)j<iPRF′K′

i,j
(UM)

mSKi ← mSetupUser(mPP, si;PRFKi(UM))

CTi ← mEnc(mSKi, tag, (mi,pri,m
′
i,pub))

Dec({DKi}i∈UK
, {CTi}i∈UM

): On input a set of decryption keys {DKi}i∈UK
and a set of ciphertexts

{CTi}i∈UM
, if UK ̸= UM abort with failure, otherwise compute and output

d← mDec({DKi}i∈UK
, {CTi}i∈UM

) .

Correctness It holds that
∑

i∈UK
si =

∑
i∈UK

∑
j∈UK\{i}(−1)j<iPRF′K′

i,j
(UK) and evaluates to 0

thanks to the correctness of the NIKE scheme NIKE that gives K ′
i,j = K ′

j,i for all i, j ∈ UK . Thus,
(si)i∈UK

∈ S(|UK |,A). The argument for UM proceeds in the same way. Then the correctness of FE
follows from the correctness of mFE and the decomposition of the setup algorithm according to the
A-dynamizability.

Security Security is stated in the following proposition.

Proposition 26. Let yyy ∈ {sel, sadap, adap}, zzz ∈ {sym, asym}. If mFE is stat-yyy-zzz-secure and
A-dynamizable, {PRFK}K∈K and {PRF′K′}K′∈K′ are pseudorandom and NIKE is secure, then the
DDFE scheme FE in Construction 25 is also stat-yyy-zzz-partially function-hiding. Moreover, if
mFE is secure without repetitions10 or against legitimate queries, then so is FE.

Proof. Let Q be the number of different sets U ⊆ ID that occur in an encryption or key generation
query and let U1, . . . ,UQ denote these sets in the order of their first appearance. We prove the
proposition via a series of hybrids G(b)

0 , . . . ,G(b)

Q where G(b)

ℓ , for ℓ ∈ [0;Q] and b ∈ {0, 1}, is the same

as Expddfe-b
FE,fdyn,A(1

λ) except that, upon receiving a key generation query

OKeyGen
(
i, (k(0)

i,pri, (ki,pub,Uℓ′ , tag-f)), (k
(1)

i,pri, (ki,pub,Uℓ′ , tag-f))
)
,

the simulator computes and sends

DKi ←

{
mKeyGen(mSKi, tag-f, (k

(0)

i,pri, ki,pub)) if ℓ′ ≤ ℓ

mKeyGen(mSKi, tag-f, (k
(b)

i,pri, ki,pub)) if ℓ′ > ℓ ,

10 An encryption (resp. key generation) query for a tuple (i, tag) (resp. (i, tag-f)) is said to be a repetition if an
encryption (resp. key generation) query for the same tuple (i, tag) (resp. (i, tag-f)) has already been submitted
before.

27

and upon receiving an encryption query

OEnc(i, (m(0)

i,pri, (mi,pub,Uℓ′ , tag)), (m(1)

i,pri, (mi,pub,Uℓ′ , tag))) ,

the simulator computes and sends

CTi ←

{
mEnc(mSKi, tag, (m

(0)

i,pri,mi,pub)) if ℓ′ ≤ ℓ

mEnc(mSKi, tag, (m
(b)

i,pri,mi,pub)) if ℓ′ > ℓ .

Below, we prove the following claim for all ℓ ∈ [Q].

Claim 27. If mFE is A-dynamizable and stat-yyy-zzz-secure, {PRFK}K∈K and {PRF′K′}K′∈K′ are
pseudorandom and NIKE is secure, then we have G(b)

ℓ−1 ≈c G
(b)

ℓ .

Furthermore, we note that G(b)

0 = Expddfe-b
FE,fdyn,A(1

λ), for b ∈ {0, 1}, and G(0)

Q ≡ G(1)

Q because the
adversary’s view is independent of the bit b. This concludes the proof of the proposition. ⊓⊔

We now prove the claim.

Proof (of Claim 27). The proof is a sequence of hybrids Ĝ(β)

0 , . . . , Ĝ(β)

3 for β ∈ {0, 1}.

Game Ĝ(β)

0 for β ∈ {0, 1}: This is game Gb
ℓ−1+β. In particular, upon receiving an encryption

query OEnc(i,m(0)

i ,m(1)

i) with mγ
i = (mγ

i,pri,mi,pub = (m′
i,pub,Uℓ, tag)) for γ ∈ {0, 1} such

that i ∈ Uℓ ∩H, the challenger computes

∀j ∈ Uℓ \ {i} : K ′
i,j ← nSharedKey(nSKi, nPKj)

si =
∑

j∈Uℓ\{i}

(−1)j<iPRF′K′
i,j
(Uℓ)

mSKi ← mSetupUser(mPP, si;PRFKi(Uℓ))

CTi ← mEnc(mSKi, tag, (m
(b′)
i,pri,m

′
i,pub)) ,

where b′ = b if β = 0 and b′ = 0 if β = 1. Similarly, for a key generation queryOKeyGen(i, k(0)

i , k(1)

i)
with kγi = (kγi,pri, ki,pub = (k′i,pub,Uℓ, tag-f)) for γ ∈ {0, 1} such that i ∈ Uℓ ∩H, it computes

∀j ∈ Uℓ \ {i} : K ′
i,j ← nSharedKey(nSKi, nPKj)

si =
∑

j∈Uℓ\{i}

(−1)j<iPRF′K′
i,j
(Uℓ)

mSKi ← mSetupUser(mPP, si;PRFKi(Uℓ))

DKi ← mKeyGen(mSKi, tag-f, (k
(b′)
i,pri, k

′
i,pub)) .

Game Ĝ(β)

1 for β ∈ {0, 1}: This game is the same as Ĝ(β)

0 except that the challenger initially sam-
ples ti

$← A for all i ∈ Uℓ∩H conditioned on
∑

i∈Uℓ∩H ti = −
∑

i∈Uℓ\H
∑

j∈UK\{i}(−1)j<iPRF′K′
i,j
(Uℓ).

Upon receiving an encryption or key generation query with respect to Uℓ and i ∈ Uℓ ∩H, the
challenger computes

mSKi ← mSetupUser(mPP, ti ;PRFKi(Uℓ)) .

Below, we prove the following claim.

28

Claim 28. If {PRF′K′}K′∈K′ is pseudorandom and NIKE is secure, then we have Ĝ(β)

0 ≈c Ĝ
(β)

1 .

Game Ĝ(β)

2 for β ∈ {0, 1}: This game is the same as Ĝ(β)

1 except that the challenger initially
samples rℓ,i

$← {0, 1}poly(λ) for all i ∈ Uℓ ∩H. Upon receiving an encryption or key generation
query with respect to Uℓ and i ∈ Uℓ ∩H, the challenger computes

mSKi ← mSetupUser(mPP, ti; rℓ,i) .

We have Ĝ(β)

1 ≈c Ĝ
(β)

2 under the pseudorandomness of PRF.

Game Ĝ(β)

3 for β ∈ {0, 1}: This game is the same as Ĝ(β)

2 except that upon receiving an encryption
or key generation query with respect to Uℓ and i ∈ Uℓ ∩H, the challenger respectively computes

DKi ← mKeyGen(mSKi, tag-f, (k(0)

i,pri , ki,pub))

CTi ← mEnc(mSKi, tag, (m(0)

i,pri ,mi,pub)) .

We have Ĝ(β)

2 ≈c Ĝ
(β)

3 under the dynamizability and security of mFE. Moreover, we can observe

that Ĝ(0)

3 ≈c Ĝ
(1)

3 , as the adversaries view is independent of the bit β. ⊓⊔

Proof (of Claim 28). Let Uℓ ∩H = {i1, . . . , iN}. We consider a series of hybrids G0, . . . ,GN−1. For
each κ ∈ [0;N − 1], Gκ is the same Ĝ(β)

0 except that the challenger initially samples siν ,iN
$← A for

all ν ∈ [κ] and, upon receiving an encryption or key generation query with respect to Uℓ and iν
for ν ∈ [N] (note that replies to other oracle queries do not change between Ĝ(β)

0 and Ĝ(β)

1), the
challenger computes

siν =

∑
j∈UK\{iν ,iN}

(−1)j<iνPRF′K′
iν ,j

(Uℓ) + siν ,iN if ν ≤ κ∑
j∈UK\{iν}

(−1)j<iνPRF′K′
iν ,j

(Uℓ) if κ < ν < N∑
j∈UK\{iη}η∈[κ]∪{N}

(−1)j<iNPRF′K′
iN ,j

(Uℓ)−
∑
η∈[κ]

siη ,iN if ν = N

We can observe that G0 = Ĝ(β)

0 and GN−1 ≡ Ĝ(β)

1 . Thus, the remaining task is to prove Gκ−1 ≈c Gκ

for κ ∈ [N − 1]. To do so, we first change the way of choosing K ′
iκ,iN

to K ′
iκ,iN

$← K′ instead
of K ′

iκ,N
← nSharedKey(nSKiκ , nPKiN). This cannot be noticed by the adversary under the IND-

security of NIKE. Subsequently, we conclude Gκ−1 ≈c Gκ from the security of PRF′. ⊓⊔

Concrete Instantiations. All schemes we instantiate satisfy the dynamizability property. Partic-
ularly, this includes our DMCFE for AB-AWS presented in Section A.2, several existing schemes
in the literature [CDG+18a, LT19, NPS24] for the inner product functionality (with standard or
function-hiding security). The latter [CDG+18a, LT19, NPS24] come with a few restrictions in their
security model and as in [NPS24] we remove all of them except for the constraints on repetitions,
using a generic conversion (see Appendix A.1). These new schemes have interesting, previously

unattained properties which we highlight by a frame .

Theorem 29. • Conversion of our DMCFE for AB-AWS. Assuming SXDH in the ROM, there

exists a DDFE scheme for fab-aws that is stat-sel-sym-secure against legitimate queries. For
details, see Section A.2. In Section 5, we show how to remove the restriction to legitimate queries
under certain conditions.

29

• Conversion of the DMCFE of [CDG+18a]. Assuming SXDH in the ROM, there exists a DDFE

scheme for f ip that is stat- adap -sym-secure without repetitions. For details, see Section A.3.

• Conversion of the DMCFE of [LT19]. Assuming LWE in the standard model , there exists

a DDFE scheme for f ip that is stat- adap -sym-secure without repetitions. For details, see
Section A.4.

• Conversion of the DMCFE of [NPS24]. Assuming SXDH in the ROM, there exists a DDFE

scheme for f fh-ip that is stat- adap -sym-secure with bounded repetitions for OKeyGen queries
and unbounded repetitions for OEnc queries. For details, see Section A.5.

5 Security Against Any Queries

In this section, we show how the restriction to legitimate queries can be removed under certain
conditions. For notational convenience, we present our construction in the particular case of DDFE
for AB-AWS. Nonetheless, the conversion may also be applied to other attribute-based functionalities
“AB-XXX”, where XXX can be more general than AWS.

5.1 Attribute-Based All-or-Nothing Encapsulation

We define a new functionality for DDFE which is a generalization of the All-or-Nothing Encapsula-
tion (AoNE) introduced in [CDSG+20].

Definition 30 (Attribute-Based AoNE (AB-AoNE)). For λ ∈ N, let Tagλ = IDλ = Rλ =

{0, 1}poly(λ), Kλ,pub = Fabp
n′
0,1
× 2IDλ, Kλ,pri = {⊤}, Mλ,pub = (Zn′

0
qλ ∪ {⋆}) × 2IDλ × Tagλ and

Mλ,pri = {0, 1}L for polynomials n′
0 = n′

0(λ), L = L(λ) : N → N. The AB-AoNE functionality
fab-aone = {fab-aone

λ :
⋃

n∈N(IDλ ×Kλ)
n ×

⋃
n∈N(IDλ ×Mλ)

n → Rλ}λ∈N is defined via

fab-aone
λ ((i, ki)i∈UK

, (i,mi)i∈UM
) =

{
(xi)i∈U if condition (∗) holds
⊥ otherwise

for all λ ∈ N, where condition (∗) holds if UM = UK (in which case we define U =: UK) and there
exists tag ∈ Tagλ such that for each i ∈ U : (i) mi is of the form (mi,pri := xi,mi,pub := (yi,U , tag)),
(ii) ki is of the form (ki,pri := ⊤, ki,pub := (gi,U)), and (iii) gi(yi) = 0.

Construction 31. The construction uses the following ingredients:

• A lockable obfuscation scheme LObf = (Obf,Eval) with lock space L = {0, 1}L for some polyno-
mial L = L(λ).

• An ABE scheme aFE = (aSetup, aKeyGen, aEnc, aDec) for the policy class Fabp
n′
0,1

with message

space L.
• An IBE scheme idFE = (idSetup, idKeyGen, idEnc, idDec) with identity space 2ID × Tag.
• A PRF family {PRFK}K∈K with key space K.

We implicitly assume that each U ⊆ ID is equipped with a universally accepted cyclic11 permuta-
tion πU : U → U . If U is clear from the context (e.g. in the description of an algorithm that takes
a set U ⊆ ID as input), we use the following shorthand notation: given i ∈ ID and k ∈ N, we
write i ▷ k := πk

U (i) for the result of k successive applications of πU on input i, i.e. i ▷ k is the k-th
successor of i under πU . In particular, we observe that i ▷ 0 = i ▷ |U| = i ▷ 2 · |U| = i.

The details of the DDFE scheme anFE for AB-AoNE go as follows:

11 We call a permutation cyclic if it consists of a single cycle without fixed points.

30

GSetup(1λ): On input the security parameter 1λ, output PP := 1λ.

LSetup(PP, i): On input the public parameters PP and a user i ∈ ID, sample Ki
$← K, gener-

ate (idMPKi, idMSKi) ← idSetup(1λ) and output the key pair (SKi := (idMSKi,Ki), pki :=
idMPKi).

KeyGen(SKi, ki): On input a secret key SKi = (idMSKi,Ki) and ki = (ki,pri = ⊤, ki,pub = (gi,UK)),
compute and output DKi := aDKi as follows:

(aMPKi, aMSKi)← aSetup(1λ;PRFKi(UK)) , aDKi ← aKeyGen(aMSKi, gi)

Enc(SKi,mi): On input a secret key SKi = (idMSKi,Ki) and mi = (mi,pri,mi,pub = (yi,UM , tag))

such that i ∈ UM , sample σi
$← L and output CTi := C̃i generated as follows:

(aMPKi, aMSKi)← aSetup(1λ;PRFKi(UM))

c(0)i ← aEnc(aMPKi,yi, σi)

∀k = 1, . . . , |UM | − 1: c(k)i ← idEnc(idMPKi▷k, (UM , tag), c(k−1)

i)

idDKi ← idKeyGen(idMSKi, (UM , tag))

C̃i ← Obf(1λ, CUM ,i[idDKi, c
(n−1)

i], (idDKi,mi,pri), σi)

Dec({DKi}i∈UK
, {CTi}i∈UM

): On input a set of decryption keys {DKi}i∈UK
and a set of ciphertexts

{CTi}i∈UM
, if UK ̸= UM abort with failure. Otherwise, parse DKi = aDKi and CTi = C̃i for

all i ∈ U := UM , then output {mi,pri}i∈U computed as follows:

∀i ∈ U : (idDKi,mi,pri)← Eval(C̃i, (n, {C̃j}j∈U\{i},∅, {aDKj}j∈U))

input :
• a number t ∈ [n] where n := |U|
• a set of obfuscated circuits {C̃i▷ℓ}ℓ∈[t−1]

• a set of idFE decryption keys {idDKi▷ℓ}ℓ∈[t;n−1]

• a set of aFE decryption keys {aDKi▷ℓ}ℓ∈[0;t−1]

output : an element of the lock space σi ∈ L or ⊥
initialize {idDKi▷ℓ ← ⊥}ℓ∈[t−1]

for k ← 1 to t− 1 do

dk ← Eval(C̃i▷k, (t− k, {C̃i▷ℓ}ℓ∈[k+1;t−1], {idDKi▷ℓ}ℓ∈[t;n+k−1], {aDKi▷ℓ}ℓ∈[k;t−1]))
if dk = ⊥ then return ⊥
else parse (idDKi▷k,mi▷k,pri)← dk

end
for k ← n− 1 to 1 do

c(k−1)

i ← idDec(idDKi▷k, c
(k)

i)
end

return σi ← aDec(aDKi, c
(0)

i)

Fig. 5: Definition of the circuit CU,i with hardwired values [idDKi, c
(n−1)

i] and input (t, {C̃i▷ℓ}ℓ∈[t−1], {idDKi▷ℓ}ℓ∈[t;n−1],
{aDKi▷ℓ}ℓ∈[0;t−1])

31

Correctness and Security. Let λ ∈ N, U ⊆ ID, tag ∈ Tag and, for each i ∈ U , mi,pri ∈ Mpri,

yi ∈ Zn′
0

qλ ∪ {⋆} and fi ∈ Fabp
n′
0,1

such that fi(yi) = 0. Furthermore, let {DKi = aDKi}i∈U and {CTi =

C̃i}i∈U be created as in Construction 31. To establish correctness, we show the following statement.

Proposition 32. For i ∈ U , n := |U|, t ∈ [n] and k ∈ [0; t− 1], we have

Eval(C̃i▷k, (t− k, {C̃i▷ℓ}ℓ∈[k+1;t−1], {idDKi▷ℓ}ℓ∈[t;n+k−1], {aDKi▷ℓ}ℓ∈[k;t−1]))

= (idDKi▷k,mi▷k,pri) .

In particular, correctness follows from t = n and k = 0:

Eval(C̃i, (n, {C̃i▷ℓ}ℓ∈[n−1]︸ ︷︷ ︸
={C̃j}j∈U\{i}

,∅, {aDKi▷ℓ}ℓ∈[0;n−1]︸ ︷︷ ︸
={aDKj}j∈U

)) = (idDKi,mi,pri) ,

Due to the nested evaluations, decryption runs in time O(nn) for n = |U|. So the scheme is
efficient for constant-size sets of users, i.e. n = O(1).

Proof. We prove the lemma by induction over δ := t− k from 1 to n.

Base Case For δ = 1, we must argue that

Eval(C̃i▷k, (1,∅, {idDKi▷ℓ}ℓ∈[k+1;n+k−1], {aDKi▷k})) = (idDKi▷k,mi▷k,pri) .

By construction, C̃i▷k is generated as follows:

C̃i▷k ← Obf(1λ, CUM ,i▷k[idDKi▷k, c
(n−1)

i▷k], (idDKi▷k,mi▷k,pri), σi▷k) ,

where σi▷k
$← L is the lock value of the obfuscated circuit. On input (1,∅, {idDKi▷ℓ}ℓ∈[k+1;n+k−1],

{aDKi▷k}), the circuit CUM ,i▷k[idDKi▷k, c
(n−1)

i▷k] skips the first for loop and directly starts to remove
the (n−1) layers of identity-based encryption from c(n−1)

i▷k using the keys {idDKi▷ℓ}ℓ∈[k+1;n+k−1] given

as input. Then it decrypts c(0)i▷k using the decryption key aDKi▷k which is also given as input. By
assumption, we have fi▷k(yi▷k) = 0, so decryption succeeds and returns σi▷k, which is also the output
of the circuit. As a consequence, the obfuscated circuit is unlocked and the message (idDKi▷k,mi▷k,pri)
is released.

Induction Step Let δ ∈ [2;n]. We show that, if

Eval
(
C̃i▷k,

(
δ′, {C̃i▷ℓ}ℓ∈[k+1;k+δ′−1],{idDKi▷ℓ}ℓ∈[k+δ′;n+k−1],

{aDKi▷ℓ}ℓ∈[k;k+δ′−1]

))
= (idDKi▷k,mi▷k,pri)

for all δ′ ∈ [δ − 1], then

Eval(C̃i▷k, (δ, {C̃i▷ℓ}ℓ∈[k+1;k+δ−1],{idDKi▷ℓ}ℓ∈[k+δ;n+k−1],

{aDKi▷ℓ}ℓ∈[k;k+δ−1])) = (idDKi▷k,mi▷k,pri) .

By construction, C̃i▷k is an obfuscation of the circuit CUM ,i▷k[idDKi▷k, c
(n−1)

i▷k] under the lock value

σi▷k. On input (δ, {C̃i▷ℓ}ℓ∈[k+1;k+δ−1], {idDKi▷ℓ}ℓ∈[k+δ;n+k−1], {aDKi▷ℓ}ℓ∈[k;k+δ−1]), the circuit starts

by evaluating the obfuscated circuits {C̃i▷ℓ}ℓ∈[k+1;k+δ−1]. Note that all these evaluations proceed

32

with respect to inputs that are covered by the induction hypothesis. Therefore, we can conclude
that after finishing the first for loop, all decryption keys {idDKi▷ℓ}ℓ∈[k+1;n+k−1] are known. (Either
they were given as input or recovered during the nested evaluations). Then we can argue as in the
base case: while iterating over the second for loop, the (n− 1) layers of identity-based encryption
are removed. Finally, c(0)i▷k can be decrypted using aDKi▷k, which is possible as fi▷k(yi▷k) = 0 by

assumption. Therefore, C̃i▷k is unlocked and the message (idDKi▷k,mi▷k,pri) is released. ⊓⊔

The construction is semi-adaptively secure under static corruptions.

Proposition 33. If LObf, aFE and idFE are secure, then the DDFE scheme FE in Construction 31
is stat-adap-sym-secure.

Proof. Let q denote the number of distinct tuples (UM , tag) ∈ 2ID × Tag that occur as part of
the public input mi,pub = (✩,UM , tag)12 of an encryption query OEnc(i,m(0)

i ,m(1)

i). We denote
them by (U1, tag1), . . . , (Uq, tagq) in the order of their first appearance. We consider a series of

hybrids G(b)

0 , . . . ,G(b)
q where, for ℓ ∈ [0; q] and b ∈ {0, 1}, G(b)

ℓ is the same as the experiment
Expddfe-b

FE,fab-aone,A(1
λ) except that the challenger returns CTi ← Enc(SKi,m

(0)

i) for all encryption

queries OEnc(i,m(0)

i ,m(1)

i) where the public input is of the form mi,pub = (✩,Uj , tagj) such that j ∈
[ℓ].

Below we prove the following claim for all ℓ ∈ [q] and b ∈ {0, 1}.

Claim 34. If aFE and LObf are secure, then G(b)

ℓ−1 ≈c G
(b)

ℓ .

Furthermore, we can observe that Gb
0 = Expddfe-b

FE,fab-aone,A(1
λ), for b ∈ {0, 1}, and G(0)

q ≡ G(1)
q as the

replies of the challenger in Gb
q are independent of the challenge bit b ∈ {0, 1}. This concludes the

proof of the proposition. ⊓⊔

We now turn to the claim.

Proof (of Claim 34). We define an event Eℓ as follows:

Eℓ: For all i ∈ Uℓ\C, there exist (i, k(0)

i , k(1)

i) ∈ Qkey with ki,pub =
(fi,Uℓ) and (i,m(0)

i ,m(1)

i) ∈ Qenc with mi,pub = (yi,Uℓ, tagℓ)
such that fi(yi) = 0.

Intuitively, Eℓ occurs if queries with respect to (Uℓ, tagℓ) are legitimate. The proof is done via a

sequence of hybrids Ĝβ
0 , . . . , Ĝ

β
3 for β ∈ {0, 1}.

Game Ĝ(β)

0 for β ∈ {0, 1} This is game G(b)

ℓ−1+β.

Game Ĝ(β)

1 for β ∈ {0, 1} This is the same as G(β)

0 except that the challenger chooses a random
bit d $← {0, 1} during Initialize. Upon A calling Finalize, if [d = 0 and Eℓ occurs] or [d = 1 and Eℓ

does not occur], the simulator outputs 0. It is not hard to see that Ĝ(β)

0 ≈s Ĝ
(β)

1 . We emphasize

the fact that the guess in Ĝ(β)

1 doubles the adversary’s advantage in the transitions Ĝ(β)

1 → Ĝ(β)

2

and Ĝ(β)

2 → Ĝ(β)

3 . However, the sequence of games is designed in such a way that the simulator
never has to guess more than once, so globally the advantage grows only linearly, not exponentially
in q = poly(λ).

Game Ĝ(β)

2 for β ∈ {0, 1} This game is the same as Ĝ(β)

1 except that if d = 1, then the challenger
returns CTi ← Enc(SKi,m

(0)

i) for all encryption queries OEnc(i,m(0)

i ,m(1)

i) such that mi,pub =
(✩,Uℓ, tagℓ). Below, we prove the following claim.

Claim 35. If aFE and LObf are secure, then Ĝ(β)

1 ≈c Ĝ
(β)

2 .

12 The symbol ✩ is a placeholder for an arbitrary attribute yi, not the wildcard ⋆.

33

Game Ĝ(β)

3 for β ∈ {0, 1} This game is the same as G(b)

ℓ.2 except that if d = 0, then the challenger
returns CTi ← Enc(SKi,m

(0)

i) for all encryption queries OEnc(i,m(0)

i ,m(1)

i) such that mi,pub =
(yi,Uℓ, tagℓ). Below, we prove the following claim.

Claim 36. If aFE, idFE and LObf are secure, then Ĝ(β)

2 ≈c Ĝ
(β)

3 .

Furthermore, we can observe that Ĝ(0)

3 ≡ Ĝ(1)

3 which concludes the proof of the claim. ⊓⊔

Proof (of Claim 35). Note that the outcome of Ĝ(β)

1 and Ĝ(β)

2 are the same if d = 0 or Eℓ does
not occur. We therefore assume that d = 1 and Eℓ occurs in the remainder of the proof. We start
with a detailed analysis of the adversary’s admissibility condition. Let i0 ∈ Uℓ \ C and consider
an encryption query CTi0 ← OEnc(i0,m

(0)

i0
,m(1)

i0
) with m(b)

i0
= (m(b)

i0,pri
,mi0,pub), for b ∈ {0, 1}, and

mi0,pub = (yi0 ,Uℓ, tagℓ). We observe that if there exists (i0, k
(0)

i0
, k(1)

i0
) ∈ Qkey with ki0,pub = (fi0 ,Uℓ)

such that fi0(yi0) = 0, then m(0)

i0,pri
= m(1)

i0,pri
. Indeed, in this case the adversary can pick fi and yi

such that fi(yi) = 0 for each i ∈ Uℓ ∩ C, then generate

CTi ← Enc
(
SKi, (mi,pri = ⊤,mi,pub = (yi,Uℓ, tagℓ))

)
DKi ← KeyGen

(
SKi, (ki,pri = ⊤, ki,pub = (fi,Uℓ))

)
by herself. Furthermore, the event Eℓ guarantees that the adversary possesses ciphertexts CTi for
attributes yi and decryption keys DKi for policies fi such that fi(yi) = 0 for all i ∈ Uℓ \ C. These
ciphertexts and keys (obtained via oracle queries for i ∈ Uℓ \C or self-generated for i ∈ Uℓ∩C) can be
used for a joint decryption with the ciphertext CTi0 . Then the admissibility gives m(0)

i0,pri
= m(1)

i0,pri
.

(For i0 ∈ Uℓ ∩ C, we always have m(0)

i0,pri
= m(1)

i0,pri
, as we consider sym-security).

The proof consists of the following sequence of hybrids.

Game G
(γ)

0 for γ ∈ {0, 1}: This is game Ĝ(β)

1+γ .

Game G
(γ)

1 for γ ∈ {0, 1}: This is the same as G
(γ)

0 except that, for each query OEnc(i,m(0)

i ,m(1)

i)
with m(0)

i,pri ̸= m(1)

i,pri and mi,pub = (yi,Uℓ, tagℓ), the challenger computes

c(0)i ← aEnc
(
aMPKi,yi, 0L(λ)

)
,

instead of c(0)i ← aEnc(aMPKi,yi, σi). From the above analysis of the admissibility condition,
we have fi(yi) = 1 for every key generation query (i, k(0)

i , k(1)

i) ∈ Qkey with ki,pub = (fi,Uℓ).
Therefore, the security of aFE implies G

(γ)

0 ≈c G
(γ)

1 .

Game G
(γ)

2 for γ ∈ {0, 1}: This is the same as G
(γ)

1 except that, for each query OEnc(i,m(0)

i ,m(1)

i)
with m(0)

i,pri ̸= m(1)

i,pri and mi,pub = (yi,Uℓ, tagℓ), the challenger computes

C̃i ← Sim
(
1λ, 1|CUM,i[idDKi,c

(n−1)
i]|, 1|(idDKi,m

(0)
i,pri)|

)
,

instead of C̃i ← Obf(1λ, CUM ,i[idDKi, c
(n−1)

i], (idDKi,m
(b′)
i,pri), σi), where Sim is the simulation

algorithm whose existence is guaranteed by the security of LObf, and b′ = b if β = γ = 0
and b′ = 0 otherwise. It follows G

(γ)

1 ≈c G
(γ)

2 from the security of LObf. Furthermore, we

observe that all replies to oracle queries in G
(γ)

2 are independent of γ ∈ {0, 1}. Therefore, we
have G

(0)

2 ≡ G
(1)

2 which concludes the proof of the claim. ⊓⊔

Proof (of Claim 36). Note that the outcome of Ĝ(β)

2 and Ĝ(β)

3 are the same if d = 1 or Eℓ occurs.
We therefore assume that d = 0 and Eℓ does not occur in the remainder of the proof. We observe

34

that the negation of Eℓ implies the existence of an i0 ∈ Uℓ \ C which satisfies fi0(yi0) = 1 for each
combination of (i0,m

(0)

i0
,m(1)

i0
) ∈ Qenc and (i0, k

(0)

i0
, k(1)

i0
) ∈ Qkey with mi0,pub = (ai0 ,Uℓ, tagℓ) and

ki0,pub = (fi0 ,Uℓ).
The proof consists of the following sequence of hybrids.

Game G
(γ)

0 for γ ∈ {0, 1}: This is game Ĝ(β)

2+γ .

Game G
(γ)

1 for γ ∈ {0, 1}: This is the same as G
(γ)

0 except that, for each query OEnc(i0,m(0)

i0
,m(1)

i0
)

with mi0,pub = (yi0 ,Uℓ, tagℓ), the challenger computes

c(0)i0
← aEnc

(
aMPKi0 ,yi0 , 0L(λ)

)
,

instead of c(0)i0
← aEnc(aMPKi0 ,yi0 , σi0). As we have fi0(yi0) = 1 for every key generation query

(i0, k
(0)

i0
, k(1)

i0
) ∈ Qkey with ki0,pub = (fi0 ,Uℓ), the security of aFE implies G

(γ)

0 ≈c G
(γ)

1 .

Game G
(γ)

2 for γ ∈ {0, 1}: This is the same as G
(γ)

1 except that, for each query OEnc(i0,m(0)

i0
,m(1)

i0
)

with mi0,pub = (yi0 ,Uℓ, tagℓ), the challenger runs

C̃i0 ← Sim(1λ, 1
|CUM,i[idDKi0

,c
(n−1)
i0

]|
, 1

|(idDKi0
,m

(0)
i0,pri

)|
)

instead of C̃i0 ← Obf(1λ, CUM ,i[idDKi0 , c
(n−1)

i0
], (idDKi0 ,m

(b′)
i0,pri

), σi0), where b′ = b if β = γ = 0

and b′ = 0 otherwise. It follows G
(γ)

1 ≈c G
(γ)

2 from the security of LObf.

Game G
(γ)

3 for γ ∈ {0, 1}: This is the same as G
(γ)

2 except that, for each query OEnc(i,m(0)

i ,m(1)

i)
with mi,pub = (yi,Uℓ, tagℓ) and i ∈ (Uℓ ∩H) \ {i0}, the challenger computes

c(0)i ← aEnc
(
aMPKi,yi, 0L(λ)

)
∀k ∈ [|Uℓ| − 1] : c(k)i ← idEnc(idMPKi▷k, (UM , tag), c(k−1)

i) ,

instead of c(0)i ← aEnc(aMPKi,yi, σi). For each i ∈ Uℓ \ {i0}, there exists k0 ∈ [|Uℓ| − 1]

such that i ▷ k0 = i0. From G
(γ)

2 , we observe that the adversary never learns idDKi0 ←
idKeyGen(idMSKi0 , (Uℓ, tagℓ)). Thus, the adversary cannot decrypt c

(k0)

i and, in particular, never

obtains c(0)i . It follows G
(γ)

2 ≈c G
(γ)

3 from the security of idFE.

Game G
(γ)

4 for γ ∈ {0, 1}: This is the same as G
(γ)

3 except that, for each query OEnc(i,m(0)

i ,m(1)

i)
with mi,pub = (yi,Uℓ, tagℓ) and i ∈ (Uℓ ∩H) \ {i0}, the challenger runs

C̃i ← Sim
(
1λ, 1|CUM,i[idDKi,c

(n−1)
i]|, 1

|(idDKi0
,m

(0)
i0,pri

)|)
,

instead of C̃i ← Obf(1λ, CUM ,i[idDKi, c
(n−1)

i], (idDKi0 ,m
(b′)
i0,pri

), σi). It follows G
(γ)

3 ≈c G
(γ)

4 from

the security of LObf. Furthermore, we observe that the replies to oracle queries in G
(γ)

4 are

independent of γ ∈ {0, 1}. Therefore, we have G
(0)

4 ≡ G
(1)

4 which concludes the proof of the
claim. ⊓⊔

5.2 DDFE for AB-AWS Secure Against Any Queries

In this section, we present a simple conversion that lifts a DDFE for AB-AWS with legitimate-
query security to any-query security, under the condition that the tag space for function keys has
polynomial size.

35

Construction 37 (DDFE for AB-AWS Secure Against Any Queries). The construction
uses the following ingredients:

• A DDFE wmFE = (wmGSetup,wmLSetup,wmKeyGen,wmEnc,wmDec) for AB-AWS secure
against legitimate queries.

• A DDFE anFE = (anSetup, anKeyGen, anEnc, anDec) for AB-AoNE.

The details of the DDFE scheme FE for AB-AWS secure against any queries go as follows:

GSetup(1λ): On input the security parameter 1λ, run wmPP← wmGSetup(1λ), anPP← anGSetup(1λ)
and output PP := (wmPP, anPP).

LSetup(PP, i): On input PP and a user i ∈ ID, generate

{(wmSKi,tag-f ,wmPKi,tag-f)← wmLSetup(wmPP)}tag-f∈Tag-f
{(anSKi,tag-f , anPKi,tag-f)← anLSetup(anPP)}tag-f∈Tag-f

and output (SKi := {wmSKi,tag-f , anSKi,tag-f}tag-f∈Tag-f ,PKi := {wmPKi,tag-f , anPKi,tag-f}tag-f∈Tag-f).
KeyGen(SKi, ki): On input SKi and ki = (ki,pri, ki,pub), parse ki,pub = (gi, hi,UK , tag-f), compute

and output DKi := (wmDKi,tag-f , anDKi,tag-f) as follows:

wmDKi,tag-f ← wmKeyGen(wmSKi,tag-f , ki)

anDKi,tag-f ← anKeyGen(anSKi,tag-f , k
′
i = (⊤, (gi,UK))) ,

Enc(SKi,mi): On input SKi and mi = (mi,pri,mi,pub), parse mi,pub = (yi, {xi,j}j∈[Ni],UM , tag) and
output CTi := {anCTi,tag-f}tag-f∈Tag-f as follows:

wmCTi,tag-f ← wmEnc(wmSKi,tag-f ,mi)

m′
i,tag-f := (m′

i,tag-f,pri = wmCTi,tag-f ,m
′
i,tag-f,pub = (yi,UM , tag))

anCTi,tag-f ← anEnc(anSKi,tag-f ,m
′
i,tag-f) ,

Dec({DKi}i∈UK
, {CTi}i∈UM

): On input a set of secret keys {DKi}i∈UK
and a set of ciphertexts

{CTi}i∈UM
, if UK ̸= UM output ⊥. Otherwise, define U := UK , parse DKi = (wmDKi,tag-f , anDKi,tag-f)

and CTi = {anCTi,tag-f}tag-f∈Tag-f for all i ∈ U and output d computed as follows:

{wmCTi,tag-f}i∈U ← anDec({anDKi,tag-f}i∈U , {anCTi,tag-f}i∈U)
d← wmDec({wmDKi,tag-f}i∈U , {wmCTi,tag-f}i∈U) .

Correctness and Security. Correctness follows immediately from the correctness of wmFE
and anFE. The scheme is efficient if |Tag-f| = poly(λ). Security is stated in the following proposition.

Proposition 38. Let yyy ∈ {sel, sadap, adap} and zzz ∈ {sym, asym}. If wmFE is stat-yyy-zzz-secure
against legitimate queries and anFE is stat-yyy-zzz-secure, then the DDFE in Construction 37 is
stat-yyy-zzz-secure against any queries.

Proof. Let qM denote the number of distinct tuples (U , tag) ∈ 2ID × Tag such that there is an
encryption query OEnc(i,m(0)

i ,m(1)

i) with public input mi,pub = (✩,U , tag). We denote these tuples
by (U1, tag1), . . . , (UqM , tagqM) in the order of their first appearance. Furthermore, we fix any order
on Tag-f and parse Tag-f = {tag-f1, . . . , tag-fqK}, where qK denotes the size of Tag-f. We consider

hybrid games Gℓ.κ, for ℓ ∈ [qM], κ ∈ [0; qK] and b ∈ {0, 1}, where G(b)

ℓ.κ is the same as the experiment

36

Expddfe-b
FE,fab-aws,A(1

λ) except that, for the reply to an encryption query OEnc(i,m(0)

i ,m(1)

i) with public

input mi,pub = (yi, {xi,j}j ,Uℓ′ , tagℓ′), the challenger computes for all κ′ ∈ [qK]

wmCTi,tag-fκ′ ←

{
wmEnc(wmSKi,tag-fκ′ , m(0)

i) if ℓ′ < ℓ ∨ (ℓ = ℓ′ ∧ κ′ ≤ κ)

wmEnc(wmSKi,tag-fκ′ ,m
(b)

i) if ℓ′ > ℓ ∨ (ℓ = ℓ′ ∧ κ′ > κ) ,

and sends CTi := {anCTi,tag-fκ′}κ′∈[qK] to A computed as

m′
i,tag-fκ′

:= (m′
i,tag-fκ′ ,pri

= wmCTi,tag-fκ′ ,m
′
i,tag-fκ′ ,pub

= (yi,Uℓ, tagℓ))
anCTi,tag-fκ′ ← anEnc(anSKi,tag-fκ′ ,m

′
i,tag-fκ′

) .

We can observe that, for b ∈ {0, 1}, Gb
0.0 = Expddfe-b

FE,fab-aws,A(1
λ), and G(0)

qM .qK ≡ G(1)
qM .qK . Furthermore,

we have Gb
ℓ.qK

= Gℓ+1.0 for all ℓ ∈ [qM − 1]. Thus, all we need to prove is the following claim for
all ℓ ∈ [qM], κ ∈ [qK] and b ∈ {0, 1}.

Claim 39. If anFE and wmFE are secure, then G(b)

ℓ.κ−1 ≈c G
(b)

ℓ.κ.

This concludes the proof of the proposition. ⊓⊔

We now turn to the proof of the claim.

Proof (of Claim 39). We define an event Eℓ.κ as follows:

Eℓ.κ: For all i ∈ Uℓ\C, there exist (i, k(0)

i , k(1)

i) ∈ Qkey with ki,pub =
(gi, hi,Uℓ, tag-fκ) and (i,m(0)

i ,m(1)

i) ∈ Qenc with mi,pub =
(yi, {xi,j}j ,Uℓ, tagℓ) such that gi(yi) = 0, or there is no
key generation with a public input of the form ki,pub =
(✩,Uℓ, tag-fκ) at all.

The proof is done via a sequence of hybrids Ĝβ
0 , . . . , Ĝ

β
3 for β ∈ {0, 1}.

Game Ĝ(β)

0 for β ∈ {0, 1} This is game G(b)

ℓ,κ−1+β.

Game Ĝ(β)

1 for β ∈ {0, 1} This is the same as G(β)

0 except that the challenger chooses a random
bit d $← {0, 1} during Initialize. Upon A calling Finalize, if [d = 0 and Eℓ occurs] or [d = 1 and Eℓ

does not occur], the simulator outputs 0. We have Ĝ(β)

0 ≈s Ĝ
(β)

1 .

Game Ĝ(β)

2 for β ∈ {0, 1} This game is the same as Ĝ(β)

1 except that if d = 1, then the challenger
computes

wmCTi,tag-fκ ← wmEnc(wmSKi,tag-fκ , m(0)

i)

for the reply to an encryption query OEnc(i,m(0)

i ,m(1)

i) with a public input of the form mi,pub =

(✩,Uℓ, tagℓ). We have Ĝ(β)

1 ≈c Ĝ
(β)

2 under the security of wmFE.

Game Ĝ(β)

3 for β ∈ {0, 1} This game is the same as Ĝ(β)

2 except that if d = 0, then the challenger
computes

m′
i,tag-fκ

:= (m′
i,tag-fκ′ ,pri

= ⊥ ,m′
i,tag-fκ,pub

= (yi,Uℓ, tagℓ))
anCTi,tag-fκ ← anEnc(anSKi,tag-fκ ,m

′
i,tag-fκ

)

for the reply to an encryption query OEnc(i,m(0)

i ,m(1)

i) with a public input of the form mi,pub =

(✩,Uℓ, tagℓ). We have Ĝ(β)

1 ≈c Ĝ(β)

2 under the security of anFE. Furthermore, we can observe

that Ĝ(0)

3 ≡ Ĝ(1)

3 which concludes the proof of the claim. ⊓⊔

37

By instantiating wmFE with the DDFE for AB-AWS from Section 4 and anFE with the DDFE for
AB-AoNE from Section 5.1, we obtain the following theorem.

Theorem 40. Assuming LWE and SXDH, there exists an stat-sadap-sym-secure DDFE for AB-
AWS in the ROM. For efficiency, the function tag space Tag-f and sets U ⊆ ID of users must have
polynomial and constant size, respectively.

Acknowledgments

This work was supported in part by the French ANR Project ANR-19-CE39-0011 PRESTO and the
France 2030 ANR Project ANR-22-PECY-003 SecureCompute.

38

References

ABDP15. Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval. Simple functional encryption
schemes for inner products. In Jonathan Katz, editor, PKC 2015, volume 9020 of LNCS, pages 733–751.
Springer, Heidelberg, March / April 2015.

ABF+13. Joël Alwen, Manuel Barbosa, Pooya Farshim, Rosario Gennaro, S. Dov Gordon, Stefano Tessaro, and
David A. Wilson. On the relationship between functional encryption, obfuscation, and fully homomorphic
encryption. In Martijn Stam, editor, 14th IMA International Conference on Cryptography and Coding,
volume 8308 of LNCS, pages 65–84. Springer, Heidelberg, December 2013.

ABG19. Michel Abdalla, Fabrice Benhamouda, and Romain Gay. From single-input to multi-client inner-product
functional encryption. In Steven D. Galbraith and Shiho Moriai, editors, ASIACRYPT 2019, Part III,
volume 11923 of LNCS, pages 552–582. Springer, Heidelberg, December 2019.

ABKW19. Michel Abdalla, Fabrice Benhamouda, Markulf Kohlweiss, and Hendrik Waldner. Decentralizing inner-
product functional encryption. In Dongdai Lin and Kazue Sako, editors, PKC 2019, Part II, volume
11443 of LNCS, pages 128–157. Springer, Heidelberg, April 2019.

ACF+18. Michel Abdalla, Dario Catalano, Dario Fiore, Romain Gay, and Bogdan Ursu. Multi-input functional
encryption for inner products: Function-hiding realizations and constructions without pairings. In Hovav
Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of LNCS, pages 597–627.
Springer, Heidelberg, August 2018.

ACGU20. Michel Abdalla, Dario Catalano, Romain Gay, and Bogdan Ursu. Inner-product functional encryption with
fine-grained access control. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020, Part III,
volume 12493 of LNCS, pages 467–497. Springer, Heidelberg, December 2020.

AGT21a. Shweta Agrawal, Rishab Goyal, and Junichi Tomida. Multi-input quadratic functional encryption from
pairings. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part IV, volume 12828 of LNCS,
pages 208–238, Virtual Event, August 2021. Springer, Heidelberg.

AGT21b. Shweta Agrawal, Rishab Goyal, and Junichi Tomida. Multi-party functional encryption. In Kobbi
Nissim and Brent Waters, editors, TCC 2021, Part II, volume 13043 of LNCS, pages 224–255. Springer,
Heidelberg, November 2021.

AGT22. Shweta Agrawal, Rishab Goyal, and Junichi Tomida. Multi-input quadratic functional encryption: Stronger
security, broader functionality. In Eike Kiltz and Vinod Vaikuntanathan, editors, TCC 2022, Part I,
volume 13747 of LNCS, pages 711–740. Springer, Heidelberg, November 2022.

AGW20. Michel Abdalla, Junqing Gong, and Hoeteck Wee. Functional encryption for attribute-weighted sums
from k-Lin. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part I, volume 12170
of LNCS, pages 685–716. Springer, Heidelberg, August 2020.

AJ15. Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact functional encryp-
tion. In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of
LNCS, pages 308–326. Springer, Heidelberg, August 2015.

AKPW13. Joël Alwen, Stephan Krenn, Krzysztof Pietrzak, and Daniel Wichs. Learning with rounding, revisited -
new reduction, properties and applications. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013,
Part I, volume 8042 of LNCS, pages 57–74. Springer, Heidelberg, August 2013.

ALdP11. Nuttapong Attrapadung, Benôıt Libert, and Elie de Panafieu. Expressive key-policy attribute-based
encryption with constant-size ciphertexts. In Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio
Nicolosi, editors, PKC 2011, volume 6571 of LNCS, pages 90–108. Springer, Heidelberg, March 2011.

ALS16. Shweta Agrawal, Benôıt Libert, and Damien Stehlé. Fully secure functional encryption for inner products,
from standard assumptions. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part III,
volume 9816 of LNCS, pages 333–362. Springer, Heidelberg, August 2016.

ARYY23. Shweta Agrawal, Mélissa Rossi, Anshu Yadav, and Shota Yamada. Constant input attribute based (and
predicate) encryption from evasive and tensor LWE. In Helena Handschuh and Anna Lysyanskaya, editors,
CRYPTO 2023, Part IV, volume 14084 of LNCS, pages 532–564. Springer, Heidelberg, August 2023.

AS17. Prabhanjan Ananth and Amit Sahai. Projective arithmetic functional encryption and indistinguishability
obfuscation from degree-5 multilinear maps. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors,
EUROCRYPT 2017, Part I, volume 10210 of LNCS, pages 152–181. Springer, Heidelberg, April / May
2017.

ATY23. Shweta Agrawal, Junichi Tomida, and Anshu Yadav. Attribute-based multi-input FE (and more) for
attribute-weighted sums. In Helena Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part IV,
volume 14084 of LNCS, pages 464–497. Springer, Heidelberg, August 2023.

AYY22. Shweta Agrawal, Anshu Yadav, and Shota Yamada. Multi-input attribute based encryption and predicate
encryption. In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part I, volume 13507 of
LNCS, pages 590–621. Springer, Heidelberg, August 2022.

39

BBL17. Fabrice Benhamouda, Florian Bourse, and Helger Lipmaa. CCA-secure inner-product functional encryption
from projective hash functions. In Serge Fehr, editor, PKC 2017, Part II, volume 10175 of LNCS, pages
36–66. Springer, Heidelberg, March 2017.

BCFG17. Carmen Elisabetta Zaira Baltico, Dario Catalano, Dario Fiore, and Romain Gay. Practical functional
encryption for quadratic functions with applications to predicate encryption. In Jonathan Katz and Hovav
Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 67–98. Springer, Heidelberg,
August 2017.

BF01. Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. In Joe Kilian,
editor, CRYPTO 2001, volume 2139 of LNCS, pages 213–229. Springer, Heidelberg, August 2001.

BPR12. Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and lattices. In David
Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 719–737.
Springer, Heidelberg, April 2012.

BS23. Nir Bitansky and Tomer Solomon. Bootstrapping Homomorphic Encryption via Functional Encryption.
In Yael Tauman Kalai, editor, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023),
volume 251, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

BSW11. Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and challenges. In Yuval
Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 253–273. Springer, Heidelberg, March 2011.

BV15. Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from functional encryption. In
Venkatesan Guruswami, editor, 56th FOCS, pages 171–190. IEEE Computer Society Press, October 2015.

BV16. Zvika Brakerski and Vinod Vaikuntanathan. Circuit-ABE from LWE: Unbounded attributes and semi-
adaptive security. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part III, volume
9816 of LNCS, pages 363–384. Springer, Heidelberg, August 2016.

CDG+18a. Jérémy Chotard, Edouard Dufour Sans, Romain Gay, Duong Hieu Phan, and David Pointcheval. Decentral-
ized multi-client functional encryption for inner product. In Thomas Peyrin and Steven Galbraith, editors,
ASIACRYPT 2018, Part II, volume 11273 of LNCS, pages 703–732. Springer, Heidelberg, December 2018.

CDG+18b. Jérémy Chotard, Edouard Dufour Sans, Romain Gay, Duong Hieu Phan, and David Pointcheval. Multi-
client functional encryption with repetition for inner product. Cryptology ePrint Archive, Report
2018/1021, 2018. https://eprint.iacr.org/2018/1021.

CDSG+20. Jérémy Chotard, Edouard Dufour-Sans, Romain Gay, Duong Hieu Phan, and David Pointcheval. Dynamic
decentralized functional encryption. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020,
Part I, volume 12170 of LNCS, pages 747–775. Springer, Heidelberg, August 2020.

CLT18. Guilhem Castagnos, Fabien Laguillaumie, and Ida Tucker. Practical fully secure unrestricted inner product
functional encryption modulo p. In Thomas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018,
Part II, volume 11273 of LNCS, pages 733–764. Springer, Heidelberg, December 2018.

Coc01. Clifford Cocks. An identity based encryption scheme based on quadratic residues. In Bahram Honary,
editor, 8th IMA International Conference on Cryptography and Coding, volume 2260 of LNCS, pages
360–363. Springer, Heidelberg, December 2001.

Dat20. Pratish Datta. Constrained pseudorandom functions from functional encryption. Theoretical Computer
Science, 2020.

DOT18. Pratish Datta, Tatsuaki Okamoto, and Junichi Tomida. Full-hiding (unbounded) multi-input inner product
functional encryption from the k-Linear assumption. In Michel Abdalla and Ricardo Dahab, editors,
PKC 2018, Part II, volume 10770 of LNCS, pages 245–277. Springer, Heidelberg, March 2018.

dPP22. Paola de Perthuis and David Pointcheval. Two-client inner-product functional encryption with an
application to money-laundering detection. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi,
editors, ACM CCS 2022, pages 725–737. ACM Press, November 2022.

EHK+13. Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar. An algebraic framework for
Diffie-Hellman assumptions. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume
8043 of LNCS, pages 129–147. Springer, Heidelberg, August 2013.

FFMV23. Danilo Francati, Daniele Friolo, Giulio Malavolta, and Daniele Venturi. Multi-key and multi-input predicate
encryption from learning with errors. In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023,
Part III, volume 14006 of LNCS, pages 573–604. Springer, Heidelberg, April 2023.

FHKP13. Eduarda S. V. Freire, Dennis Hofheinz, Eike Kiltz, and Kenneth G. Paterson. Non-interactive key exchange.
In Kaoru Kurosawa and Goichiro Hanaoka, editors, PKC 2013, volume 7778 of LNCS, pages 254–271.
Springer, Heidelberg, February / March 2013.

FWW23. Cody Freitag, Brent Waters, and David J. Wu. How to use (plain) witness encryption: Registered ABE,
flexible broadcast, and more. In Helena Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023,
Part IV, volume 14084 of LNCS, pages 498–531. Springer, Heidelberg, August 2023.

Gay20. Romain Gay. A new paradigm for public-key functional encryption for degree-2 polynomials. In Aggelos
Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas, editors, PKC 2020, Part I, volume 12110
of LNCS, pages 95–120. Springer, Heidelberg, May 2020.

https://eprint.iacr.org/2018/1021

40

GGG+14. Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz, Feng-Hao Liu, Amit Sahai,
Elaine Shi, and Hong-Sheng Zhou. Multi-input functional encryption. In Phong Q. Nguyen and Elisabeth
Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 578–602. Springer, Heidelberg, May
2014.

GKL+13. S. Dov Gordon, Jonathan Katz, Feng-Hao Liu, Elaine Shi, and Hong-Sheng Zhou. Multi-input functional
encryption. Cryptology ePrint Archive, Report 2013/774, 2013. https://eprint.iacr.org/2013/774.

GKVW20. Rishab Goyal, Venkata Koppula, Satyanarayana Vusirikala, and Brent Waters. On perfect correctness in
(lockable) obfuscation. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part I, volume 12550
of LNCS, pages 229–259. Springer, Heidelberg, November 2020.

GKW17. Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation. In Chris Umans, editor, 58th
FOCS, pages 612–621. IEEE Computer Society Press, October 2017.

GPSW06. Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for fine-grained
access control of encrypted data. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati,
editors, ACM CCS 2006, pages 89–98. ACM Press, October / November 2006. Available as Cryptology
ePrint Archive Report 2006/309.

GPV08. Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new cryptographic
constructions. In Richard E. Ladner and Cynthia Dwork, editors, 40th ACM STOC, pages 197–206. ACM
Press, May 2008.

GVW15. Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption for circuits from LWE.
In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS,
pages 503–523. Springer, Heidelberg, August 2015.

Lan23. Roman Langrehr. On the multi-user security of lwe-based nike, 2023. https://eprint.iacr.org/2023/
1401.

Lin17. Huijia Lin. Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5 PRGs. In
Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages
599–629. Springer, Heidelberg, August 2017.

LL20. Huijia Lin and Ji Luo. Succinct and adaptively secure ABE for ABP from k-Lin. In Shiho Moriai and
Huaxiong Wang, editors, ASIACRYPT 2020, Part III, volume 12493 of LNCS, pages 437–466. Springer,
Heidelberg, December 2020.

LT19. Benôıt Libert and Radu Titiu. Multi-client functional encryption for linear functions in the standard
model from LWE. In Steven D. Galbraith and Shiho Moriai, editors, ASIACRYPT 2019, Part III, volume
11923 of LNCS, pages 520–551. Springer, Heidelberg, December 2019.

Ngu24. Duy Nguyen. Dynamic decentralized functional encryptions from pairings in the standard model. Cryp-
tology ePrint Archive, Paper 2024/580, 2024. https://eprint.iacr.org/2024/580.

NPP22. Ky Nguyen, Duong Hieu Phan, and David Pointcheval. Multi-client functional encryption with fine-grained
access control. In Shweta Agrawal and Dongdai Lin, editors, ASIACRYPT 2022, Part I, volume 13791 of
LNCS, pages 95–125. Springer, Heidelberg, December 2022.

NPP23. Ky Nguyen, Duong Hieu Phan, and David Pointcheval. Optimal security notion for decentralized multi-
client functional encryption. In Mehdi Tibouchi and Xiaofeng Wang, editors, ACNS 23, Part II, volume
13906 of LNCS, pages 336–365. Springer, Heidelberg, June 2023.

NPP24. Ky Nguyen, Duong Hieu Phan, and David Pointcheval. Multi-client functional encryption with public
inputs and strong security. Cryptology ePrint Archive, Paper 2024/740, 2024. https://eprint.iacr.

org/2024/740.

NPS24. Ky Nguyen, David Pointcheval, and Robert Schädlich. Decentralized multi-client functional encryption with
strong security. Cryptology ePrint Archive, Report 2024/764, 2024. https://eprint.iacr.org/2024/764.

NR97. Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-random functions. In
38th FOCS, pages 458–467. IEEE Computer Society Press, October 1997.

OSW07. Rafail Ostrovsky, Amit Sahai, and Brent Waters. Attribute-based encryption with non-monotonic access
structures. In Peng Ning, Sabrina De Capitani di Vimercati, and Paul F. Syverson, editors, ACM CCS
2007, pages 195–203. ACM Press, October 2007.

OT12. Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure unbounded inner-product and attribute-based
encryption. In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS, pages
349–366. Springer, Heidelberg, December 2012.

QLH+24. Xinyuan Qian, Hongwei Li, Meng Hao, Guowen Xu, Haoyong Wang, and Yuguang Fang. Decentralized
multi-client functional encryption for inner product with applications to federated learning. IEEE
Transactions on Dependable and Secure Computing, 2024.

Sha84. Adi Shamir. Identity-based cryptosystems and signature schemes. In G. R. Blakley and David Chaum,
editors, CRYPTO’84, volume 196 of LNCS, pages 47–53. Springer, Heidelberg, August 1984.

https://eprint.iacr.org/2013/774
https://eprint.iacr.org/2023/1401
https://eprint.iacr.org/2023/1401
https://eprint.iacr.org/2024/580
https://eprint.iacr.org/2024/740
https://eprint.iacr.org/2024/740
https://eprint.iacr.org/2024/764

41

SV23. Elaine Shi and Nikhil Vanjani. Multi-Client Inner Product Encryption: Function-Hiding Instantiations
Without Random Oracles. In International Conference on Practice and Theory of Public-Key Cryptography
(PKC), 2023. https://eprint.iacr.org/2023/615.

SW05. Amit Sahai and Brent R. Waters. Fuzzy identity-based encryption. In Ronald Cramer, editor, EURO-
CRYPT 2005, volume 3494 of LNCS, pages 457–473. Springer, Heidelberg, May 2005.

Wee21. Hoeteck Wee. Broadcast encryption with size N1/3 and more from k-lin. In Tal Malkin and Chris Peikert,
editors, CRYPTO 2021, Part IV, volume 12828 of LNCS, pages 155–178, Virtual Event, August 2021.
Springer, Heidelberg.

Wee22. Hoeteck Wee. Optimal broadcast encryption and CP-ABE from evasive lattice assumptions. In Orr
Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022, Part II, volume 13276 of LNCS, pages
217–241. Springer, Heidelberg, May / June 2022.

WZ17. Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare programs under LWE. In Chris
Umans, editor, 58th FOCS, pages 600–611. IEEE Computer Society Press, October 2017.

https://eprint.iacr.org/2023/615

42

A Supporting Materials – Section 4

A.1 Generic Upgrade of the Security Model in [NPS24]

In this section, we recall the generic compiler from [NPS24] to remove the one-challenge and complete-
queries constraint for the inner-product functionality in both the standard and function-hiding
setting.

Definition 41 (Security for f ip and f fh-ip). A DMCFE scheme is said to be

• secure against complete queries if it is secure against all PPT adversaries that satisfy the following
additional condition: for all tag, tag-f ∈ Tag, if there exists a tuple of the form (i, tag-f, ⋆, ⋆) ∈ Qkey

(resp. (i, tag, ⋆, ⋆) ∈ Qenc) for some i ∈ [n], then there exist tuples (j, tag-f, ⋆, ⋆) ∈ Qkey (resp.
(j, tag, ⋆, ⋆) ∈ Qenc) for all j ∈ [n],

• one-challenge secure if it is secure against all PPT adversary that declare two additional “chal-
lenge” tags tag∗, tag-f∗ ∈ Tag up front to Initialize such that for all tag, tag-f ∈ Tag:

◦ if (i, tag-f, k(0)

i , k(1)

i) ∈ Qkey and tag-f ̸= tag-f∗, then k(0)

i = k(1)

i .

◦ if (i, tag,m(0)

i ,m(1)

i) ∈ Qenc and tag ̸= tag∗, then m(0)

i = m(1)

i ,

The compiler of [NPS24] uses a DMCFE scheme for a functionality called All-or-Nothing Encapsu-
lation (AoNE).

Definition 42 (All-or-Nothing Encapsulation). For λ ∈ N, let Tagλ = Rλ = {0, 1}poly(λ),
Kλ = ∅, Mλ,pub = Tag13 and Mλ,pri = {0, 1}L for a polynomial L = L(λ) : N → N. The all-or-
nothing encapsulation functionality faone = {faone

λ,n }λ,n∈N is defined via

faone
λ,n (∅, {mi}i∈[n]) =

{
{mi,pri}i∈[n] if condition (∗) holds
⊥ otherwise

for all λ, n ∈ N, where condition (∗) holds if there exists tag ∈ Tagλ such that for each i ∈ [n], mi is
of the form (mi,pri,mi,pub := tag).

As Kλ = ∅, there is no concept of keys, thus KeyGen is unnecessary and Dec works without
taking secret keys as input. Recall from Definition 12 that the functionality f ip is defined w.r.t.
Kλ,pri =Mλ,pri = [−B;B]N for polynomials B = B(λ) and N = N(λ) : N→ N. Being more specific,

we will write f ip
B,N for this functionality below.

We recall the generic compiler from [NPS24] to remove the complete-queries constraint for the
inner-product functionality f ip.

Construction 43 ([NPS24]). The construction uses the following ingredients:

• A DMCFE scheme cFE = (cSetup, cKeyGen, cEnc, cDec) for the functionality f ip
B,2N that is

one-challenge secure against complete queries.
• A DMCFE scheme aFE = (aSetup, aEnc, aDec) for the functionality faone.

The details of the DMCFE FE = (Setup,KeyGen,Enc,Dec) for f fh-ip
B,N go as follows:

13 Slightly abusing notation, we view Tag as part ofMλ =Mλ,pri ×Mλ,pub, even though in the syntax of DMCFE
the tag tag ∈ Tagλ is a separate input to the encryption algorithm Enc(SKi, tag,mi) rather than part of mi ∈Mλ.

43

Setup(1λ, 1n): On input the security parameter 1λ and the support 1n, run

(cPP, {cSKi}i∈[n])← cSetup(1λ, 1n)

(aPP, {aSKi}i∈[n])← aSetup(1λ, 1n)

and return PP := (cPP, aPP), {SKi := (cSKi, aSKi)}i∈[n].
KeyGen(SKi, tag-f, ki): On input a secret key SKi = (cSKi, aSKi), a tag tag-f, and ki = (ki,pri =

yi, ki,pri = ⊤), define ki = (k′i,pri = (yi ∥ 0N), k′i,pri = ⊤) and output DKi computed as follows:

cDKi ← cKeyGen(cSKi, tag-f, k
′
i)

DKi ← aEnc(aSKi, tag-f, cDKi) .

Enc(EKi, tag,mi): On input a secret key SKi = (cSKi, aSKi), a tag tag, and mi = (mi,pri =
xi,mi,pri = ⊤), define mi = (m′

i,pri = (xi ∥ 0N),m′
i,pri = ⊤) and output CTi computed as

follows:

cCTi ← cEnc(cSKi, tag,m
′
i)

CTi ← aEnc(aSKi, tag, cCTi) .

Dec({DKi}i∈[n], {CTi}i∈[n]): On input a set of functional keys {DKi}i∈[n] and a set of ciphertexts
{CTi}i∈[n], compute

{cDKi}i∈[n] ← aDec({DKi}i∈[n])
{cCTi}i∈[n] ← aDec({aCTi}i∈[n]) .

If one of these decryption processes returns ⊥, output ⊥. Otherwise, output

d← cDec({cDKi}i∈[n], {cCTi}i∈[n]) .

The compiler for the functionality f fh-ip is exactly the same except that the vectors yi are part of
ki,pri instead of ki,pub for i ∈ [n].

Proposition 44 ([NPS24], Lemmas 2, 3 and 4). Let xxx ∈ {stat, dyn}, yyy ∈ {sel, adap},
zzz ∈ {sym, asym}. If cFE is one-challenge xxx-yyy-zzz-secure against complete queries, then FE is
xxx-yyy-zzz-secure against all PPT adversaries.

We next argue that Construction 43 preserves the dynamizability property.

Lemma 45 (Dynamizability). If cFE is A-dynamizable and aFE is B-dynamizable for Abelian
groups A and B, then FE is A× B dynamizable.

Proof. We assume that cFE and aFE are dynamizable, so they are equipped with additional
algorithms cSetupPP, cSetupUser, aSetupPP and aSetupUser. Let (ai, bi)i∈[n] ∈ S(n,A × B). Then
FE admits the following implementation of the algorithms SetupPP and SetupUser.

SetupPP(1λ): Run cPP← cSetupPP(1λ) and aPP← aSetupPP(1λ), then output PP := (cPP, aPP).

SetupUser(PP, (ai, bi)): Compute cSKi ← cSetupUser(cPP, ai) as well as aSKi ← aSetupUser(aPP, bi),
then output SKi := (cSKi, aSKi).

44

Then the distributionsPP, {SKi}i∈[n]

∣∣∣∣∣∣∣
(ai, bi)i∈[n]

$← S(n,A× B)
PP← SetupPP(1λ)

∀i ∈ [n] : SKi ← SetupUser(PP, (ai, bi))

and {(PP, {SKi}i∈[n])← Setup(1λ, 1n)} are identical. ⊓⊔

In [CDSG+20], the authors give two possible instantiations for aFE that are O-dynamizable, where O
denotes the trivial group with one element. In this case, we obtain that FE is A×O-dynamizable,
and A×O and A are isomorphic. The construction in [CDSG+20, Section 4] uses solely IBE, thus
can be based on both SXDH [BF01] or LWE [GPV08]. Combining Propositions 44 and Lemma 45,
we obtain the following theorem.

Theorem 46. Let xxx ∈ {stat, dyn}, yyy ∈ {sel, adap}, zzz ∈ {sym, asym} and A be an Abelian
group. If there exists an A-dynamizable DMCFE for f ip or fh-ip that is one-challenge xxx-yyy-zzz-
secure against complete queries, then there exists an A-dynamizable xxx-yyy-zzz-secure DMCFE.

A.2 Instantiation of Construction 25 with a DMCFE for AB-AWS

The function class AB-AWS is defined in Definition 13. Our construction follows the blueprint
of [NPS24]. In Section 2, they give an informal description of a compiler from function-hiding
single-client IPFE to function-hiding DMCFE for inner products. We follow their blueprint but
replace the single-client FE scheme for inner products with one for the AB-AWSw/IP functionality.

Construction 47 (DMCFE Scheme for Attribute-based AWS). The construction uses an
FE scheme aFE = (aSetup, aKeyGen, aEnc, aDec) for the AB-AWSw/IP functionality based on a
pairing group G = (G1,G2,Gt, g1, g2, gt, e, q). The details of the DMCFE scheme FE for the AB-AWS
functionality go as follows:

Setup(1λ, 1n): On input the security parameter 1λ and the number of clients 1n, sample two full-
domain hash functions H1 and H2 onto G2

1 and G2
2, respectively. Furthermore, run aMSKi ←

aSetup(1λ) for each i ∈ [n] and sample s1, . . . , sn
$← Zq conditioned on

∑
i∈[n] si = 0. Out-

put PP := (H1,H2) and {SKi := (si, aMSKi)}i∈[n].
KeyGen(SKi, tag-f, ki): On input a secret key SKi = (si, aMSKi), a tag tag-f and ki = (ki,pri =
⊤, ki,pub = (gi, hi)), compute Jτtag-fK2 ← H2(tag-f) and output DKi := aDKi as follows:

k′i := (k′i,pri = J(τtag-f , 0)K2, k′i,pub = ki,pub) , aDKi ← aKeyGen(aMSKi, k
′) .

Enc(SKi, tag,mi): On input a secret key SKi = (si, aMSKi), a tag tag and mi = (mi,pri = {zi,j}j∈[Ni],mi,pub =
(yi, {xi}j∈[Ni])), compute JσtagK1 ← H1(tag) and output CTi := aCTi as follows:

m′
i :=

(
m′

i,pri = (mi,pri, J(siσtag, 0)K1),m′
i,pub = mi,pub

)
aCTi ← aEnc(aMSKi,m

′
i) .

Dec({DKi}i∈[n], {CTi}i∈[n]): On input a set of decryption keys {DKi = aDKi}i∈[n] and a set of
ciphertexts {CTi = aCTi}i∈[n], compute ρi ← aDec(aDKi, aCTi) for all i ∈ [n]. If there exists i
such that ρi = ⊥, then output ⊥. Otherwise, parse JdiKt = ρi and return JdKt =

∑
i∈[n]JdiKt.

45

Correctness. For all i ∈ [n], if gi(yi) = 0, then we have

di =
∑

j∈[Ni]

⟨f(xi,j), zi,j⟩+ ⟨siσtag, τtag-f⟩

by the correctness of aFE. Hence, we conclude d =
∑

i∈[n]
∑

j∈[Ni]
⟨f(xi,j), zi,j⟩ from the fact

that
∑

i∈[n] si = 0.

Dynamizability. The following lemma argues that the construction fits into the framework of
dynamizable DMCFE schemes.

Lemma 48. The DMCFE scheme FE in Construction 47 is Zq-dynamizable.

Proof. Let (si)i∈[n] ∈ S(n,Zq). The scheme admits the following implementation of the algorithms
SetupPP and SetupUser.

SetupPP(1λ): Sample two full-domain hash functions H1 and H2 onto G1 and G2 respectively.
Output PP := (H1,H2).

SetupUser(PP, si): Generate aMSKi ← aSetup(1λ) and output SKi := (aMSKi, si).

Then the distributionsPP, {SKi}i∈[n]

∣∣∣∣∣∣∣
(si)i∈[n]

$← S(n,Zq)

PP← SetupPP(1λ)

∀i ∈ [n] : SKi ← SetupUser(PP, si)

and {(PP, {SKi}i∈[n])← Setup(1λ, 1n)} are identical. ⊓⊔

Security. The following lemma proves security against legitimate queries.

Proposition 49. If aFE is sadap-secure and the SXDH assumption holds in G, then Construction 47
is stat-sadap-sym-secure against legitimate queries in the random oracle model.

Proof. LetQ be the number of different tags that occur in an encryption query and let {tag1, . . . , tagQ}
denote the set of these tags with some fixed ordering. We prove the proposition via a series of
hybrids G(b)

0 , . . . ,G(b)

Q where G(b)

ℓ , for ℓ ∈ [0;Q] and b ∈ {0, 1}, is the same as Expdmcfe-b
FE,fab-aws,A(1

λ)

except that for encryption queries of the form OEnc(i, tagℓ′ ,m
(0)

i ,m(1)

i) with m(β)

i = (m(β)

i,pri,mi,pub)
for β ∈ {0, 1}, the challenger sets

m′
i,pri =

{
(m(0)

i,pri, JpiK1 = J(siσtag, 0)K1) if ℓ′ ≤ ℓ

(m(b)

i,pri, JpiK1 = J(siσtag, 0)K1) if ℓ′ > ℓ

Below, we prove the following claim for all ℓ ∈ [Q]:

Claim 50. If aFE is selectively secure and the SXDH assumption holds in G, then we have G(b)

ℓ−1 ≈c

G(b)

ℓ .

Furthermore, we note that G(b)

0 = Expdmcfe-b
FE,fab-aws,A(1

λ), for b ∈ {0, 1}, and G(0)

Q ≡ G(1)

Q because the
adversary’s view is independent of the bit b. This concludes the proof of the proposition. ⊓⊔

We now prove the claim.

46

Proof (of Claim 50). We start with a concrete interpretation of the adversary’s admissibility condi-
tion in the case of the AB-AWS functionality. We denote the input to the κ-th encryption query of
the form OEnc(i, tag, ⋆, ⋆) by (m(κ,0)

tag,i,m
(κ,1)

tag,i) with m(κ,γ)

tag,i = (m(κ,γ)

tag,i,pri = {z
(κ,γ)

tag,i,j}j∈[N(κ)
tag,i]

,m(κ)

tag,i,pub =

(y(κ)

tag,i, {x
(κ)

tag,i,j}j∈[N(κ)
tag,i]

)) for γ ∈ {0, 1}. Similarly, we denote the public input to the ν-th query

of the form OKeyGen(i, tag-f, ⋆, ⋆) by kνtag-f,i,pub = (gνtag-f,i, h
ν
tag-f,i)

14. The admissibility condition

of Definition 11 states that for all tag, tag-f, κ and ν satisfying gνtag-f,i(y
(κ)

tag,i) = 0 for all i ∈ H
where H := [n] \ C, we have∑

i∈H

∑
j∈[N(κ)

tag,i]

〈
hνtag-f,i(x

(κ)

tag,i,j), z
(κ,0)

tag,i,j

〉
=
∑
i∈H

∑
j∈[N(κ)

tag,i]

〈
hνtag-f,i(x

(κ)

tag,i,j), z
(κ,1)

tag,i,j

〉

as well as z(κ,0)

tag,i,j = z(κ,1)

tag,i,j for all j ∈ [N (κ)

tag,i] if i ∈ C. From this, it follows for γ ∈ {0, 1}15 that

∆(γ)

tag-f,tag,i :=
∑

j∈[N(κ)
tag,i]

〈
hνtag-f,i(x

(κ)

tag,i,j), z
(κ,γ)

tag,i,j − z(κ,0)

tag,i,j

〉
(1)

are constant for all repetitions κ, ν, and∆(γ)

tag-f,tag,i = 0 if i ∈ C. Then we also have that
∑

i∈H∆(γ)

tag-f,tag,i =
0. Together, these conditions imply that the following distributions are identical.

D0 =

{
(si)i∈H : (si)i∈H

$← Z|H|
q s.t.

∑
i∈H

si = 0

}

D1 =

{
(si +∆(γ)

tag-f,tag,i)i∈H : (si)i∈H
$← Z|H|

q s.t.
∑
i∈H

si = 0

} (2)

We consider the following series of hybrids Ĝ(β)

0 , . . . , Ĝ(β)

5 for β ∈ {0, 1}.

Game Ĝ(β)

0 for β ∈ {0, 1}: This is game G(b)

ℓ−1+β.

Game Ĝ(β)

1 for β ∈ {0, 1}: This is the same as Ĝ(β)

0 except that the challenger samples random
group elements Jstagℓ,iK1

$← G1 for each i ∈ H subject to the condition
∑

i∈HJstagℓ,iK1 =
−
∑

i∈C si · JσtagℓK1. For the reply to an encryption query OEnc(i, tagℓ,m
(0)

i ,m(1)

i) with respect
to tagℓ and i ∈ H, the challenger defines

m′
i :=

(
m′

i,pri = (m(b′)
i,pri, JpiK1 = J(stagℓ,i , 0)K1),m

′
i,pub = mi,pub

)
,

where b′ = b if β = 0 and b′ = 0 if β = 1. We have Ĝ(β)

0 ≈c Ĝ
(β)

1 under the DDH assumption in G1.
Note that we can exploit the random self-reducibility of the DDH problem here, so one DDH
instance suffices.

Game Ĝ(β)

2 for β ∈ {0, 1}: This is the same as Ĝ(β)

1 except that we program H1 at the point tagℓ
by sampling σtagℓ

$← Zq and setting H1(tagℓ) := JσtagℓK1. This gives a perfect simulation and we

have Ĝ(β)

1 ≡ Ĝ(β)

2 .

Game Ĝ(β)

3 for β ∈ {0, 1}: This is the same as Ĝ(β)

2 except that the challenger samples random
group elements Jstagℓ,iK2

$← G2 for each i ∈ H subject to the condition
∑

i∈HJstagℓ,iK2 =

14 Note that the private key input is always ⊤ in the AB-AWS functionality, so we can ignore it. For this reason, we
may also write OKeyGen(i, tag-f, ki,pub) instead of OKeyGen(i, tag-f, k(0)

i , k(1)

i) for brevity.
15 More precisely, the case γ = 1 follows from the admissibility condition while for γ = 0, we always have ∆(γ)

tag-f,tag,i = 0.

47

−
∑

i∈C si · JσtagℓK2. Note that JσtagℓK2 is known thanks to the programming of the random oracle.
For the reply to an encryption query OEnc(i, tagℓ,m

(0)

i ,m(1)

i) with respect to tagℓ and i ∈ H or
a key generation query OKeyGen(i, tag-f, ki,pub), respectively, the challenger defines

m′
i :=

(
m′

i,pri = (m(b′)
i,pri, JpiK1 = J(0, 1)K1),m′

i,pub = mi,pub

)
k′i :=

(
k′i,pri = JqiK2 = J(τtag-f , τtag-f · stagℓ,i)K2, k′i,pub = ki,pub

)
.

As the inner products between vectors JpiK1 and JqiK2 do not change, it follows Ĝ(β)

2 ≈c Ĝ(β)

3

from the security of aFE.
Game Ĝ(β)

4 for β ∈ {0, 1}: This is the same as Ĝ(β)

3 except that the challenger samples random
values stag-f,tagℓ,i

$← Zq for each i ∈ H and tag-f ∈ Tag that occurs in a key generation query
subject to the condition

∑
i∈H stag-f,tagℓ,i = −

∑
i∈C τtag-f · stagℓ,i. For the reply to a query

OKeyGen(i, tag-f, ki,pub) such that i ∈ H, the challenger defines

k′i :=
(
k′i,pri = JqiK2 = J(τtag-f , stag-f,tagℓ,i)K2, k′i,pub = ki,pub

)
.

We have Ĝ(β)

3 ≈c Ĝ
(β)

4 under the DDH assumption in G2. Note that we can exploit the random
self-reducibility of the DDH problem.

Game Ĝ(β)

5 for β ∈ {0, 1}: This is the same as Ĝ(β)

4 except that, for the reply to an encryption
query aCTtagℓ,i ← OEnc(i, tagℓ,m

(0)

i ,m(1)

i) with respect to tagℓ and i ∈ H or a key generation
query aDKtag-f,i ← OKeyGen(i, tag-f, ki,pub), respectively, the challenger sets

m′
i :=

(
m′

i,pri = (m(0)

i,pri , JpiK1 = J(0, 1)K1),m′
i,pub = mi,pub

)
k′i :=

(
k′i,pri = JqiK2 = J(τtag-f , stag-f,tagℓ,i + ∆(b′)

tag-f,tagℓ,i
)K2, k′i,pub = ki,pub

)
.

We have Ĝ(β)

4 ≈c Ĝ
(β)

5 from the security of aFE. This can be seen as follows. Parse the inputs
of the queries as m(γ)

i = (m(γ)

i,pri = {z
(γ)

i,j }j∈[Ni],mi,pub = (yi, {xi,j}j∈[Ni])) for γ ∈ {0, 1} and

ki,pub = (gi, hi). Let d(κ)

tag-f,tagℓ,i
denote the decryption value of aDec(aDKtag-f,i, aCTtagℓ,i) in

game Ĝ(β)
κ for κ ∈ {4, 5}. We need to argue that d(4)

tag-f,tagℓ,i
= d(5)

tag-f,tagℓ,i
for all tag-f and i ∈ H.

For this, we distinguish two cases. If gi(ytagℓ
) ̸= 0, then d(4)

tag-f,tagℓ,i
= d(5)

tag-f,tagℓ,i
= ⊥. Otherwise,

we have d(4)

tag-f,tagℓ,i
= d(5)

tag-f,tagℓ,i
=
∑

j∈[Ni]

〈
hi(xi,j), z

(b)

i,j

〉
, where in the case d(5)

tag-f,tagℓ,i
we use

the fact that ∆b
tag-f,tagℓ,i

is a constant for all repetitions, as observed in (1).

Game Ĝ(β)

6 for β ∈ {0, 1}: This is the same as Ĝ(β)

5 except that, for the reply to a key generation
query OKeyGen(i, tag-f, ki,pub), the challenger sets

k′i :=
(
k′i,pri = JqiK2 = J(τtag-f , stag-f,tagℓ,i + ������XXXXXX∆(b′)

tag-f,tagℓ,i
)K2, k′i,pub = ki,pub

)
.

As observed in (2), this does not change the distribution of the vector JqiK2; so we have Ĝ(β)

5 ≡ Ĝ(β)

6 .

Moreover, we observe that in Ĝ(β)

5 the adversaries view is independent of β which implies Ĝ(0)

6 ≡
Ĝ(1)

6 . This concludes the proof of the claim. ⊓⊔

Combining Proposition 49 with the generic conversion from DMCFE to DDFE (Construction 25,
Proposition 26), we obtain the following corollary.

Corollary 51. Assuming SXDH in the ROM, there exists a DDFE scheme for fab-aws that is
stat-sel-sym-secure against legitimate queries.

48

A.3 Instantiation of Construction 25 with the DMCFE of [CDG+18a]

We recall the construction of [CDG+18a] using our notations. Their scheme considers a restricted
variant of the inner-product functionality f ip (Definition 12) where each user encrypts sub-vectors
of length 1, i.e. N = N(λ) = 1.

Construction 52 (DMCFE Scheme of [CDG+18a]). The construction is based on a pairing
group G = (G1,G2,Gt, g1, g2, gt, e, q). The details of the scheme FE = (Setup,KeyGen,Enc,Dec) go
as follows:

Setup(1λ, 1n): On input the security parameter 1λ and the number of clients 1n sample two full-
domain hash functions H1 and H2 onto G2

1 and G2
2, respectively. For each i ∈ [n], generate

si
$← Z2

q and Ti
$← Z2×2

q such that
∑

i∈[n]Ti = 0. Output (PP := (H1,H2), {SKi := (si,Ti)}i∈[n]).
KeyGen(SKi, tag-f, ki): On input a secret key SKi = (si,Ti), a tag tag-f and ki = (⊤, yi), compute

JvK2 = H2(tag-f), JdiK2 = Jyi · si +Ti · vK2 and output DKi := JdiK2.
Enc(SKi, tag,mi): On input a secret key SKi = (si,Ti), a tag tag and a mi = (xi,⊤), compute

JuK1 = H1(tag), JciK1 = J⟨u, si⟩+ xiK1 and output CTi := (JciK1, tag).
Dec({DKi}i∈[n], {CTi}i∈[n]): On input a set of decryption keys {DKi = JdiK2}i∈[n] and a set of

ciphertexts {CTi = (JciK1, tagi)}i∈[n], if H1(tag1) = · · · = H1(tagn) =: JuK1 compute

JαKt =
∑n

i=1JciK1JyiK2 − JuK1JdiK2 ,

then find and output the discrete log α. Otherwise, abort with failure.

Proposition 53 ([CDG+18a]). Construction 52 is stat-adap-sym-secure against complete queries
and without repetitions under the SXDH assumption in the ROM.

The following lemma shows that their scheme fits into our framework of dynamizability.

Lemma 54. The DMCFE scheme FE in Construction 52 is Z2×2
q -dynamizable.

Proof. Let (Ti)i∈[n] ∈ S(n,Z2×2
q). The scheme admits the following implementation of the algorithms

SetupPP and SetupUser.

SetupPP(1λ): Sample two full-domain hash functions H1 and H2 onto G2
1 and G2

2 respectively.
Output PP := (H1,H2).

SetupUser(PP,Ti): Sample si
$← Z2

q and output SKi := (si,Ti).

Then the distributionsPP, {SKi}i∈[n]

∣∣∣∣∣∣∣
(Ti)i∈[n]

$← S(n,Z2×2
q)

PP← SetupPP(1λ)

∀i ∈ [n] : SKi ← SetupUser(PP,Ti)

and {(PP, {SKi}i∈[n])← Setup(1λ, 1n)} are identical. ⊓⊔

Combining Theorem 46 and Proposition 53 with the generic conversion from DMCFE to DDFE
(Construction 25, Proposition 26), we obtain the following corollary.

Corollary 55. Assuming SXDH and the ROM, there exists a DDFE scheme for f ip where each
user encrypts vectors of length 1 that is stat-adap-sym-secure without repetitions.

49

A.4 Instantiation of Construction 25 with a Variant of [LT19]

We recall the DMCFE construction of [LT19]. We start with some preliminaries.

Preliminaries. For the preliminaries on lattices, homomorphic encryption, and admissible hash
functions, we refer to [LT19, Section 2]. If X and Y are distributions over the same domain D, then
∆(X,Y) denotes their statistical distance. Let Σ ∈ Rn×n be a symmetric positive definite matrix and
c ∈ Rℓ be a vector. We define the Gaussian function over Rn by ρΣ, c(x) = exp(−π(x−c)⊤Σ−1(x−c))
and if Σ = σ2 · In and c = 0, we write ρσ for ρΣ, c. For any discrete set Λ ⊂ Rn, the discrete
Gaussian distribution DΛ,Σ,c has probability mass PrX∼DΛ,Σ,c

[X = x] = ρΣ,c(x)/ρΣ,c(Λ), for any
x ∈ Λ. When c = 0 and Σ = σ2 · In we denote DΛ,Σ,c by DΛ,σ.

We will make use of the Chernoff-Cramér tail bound for Gaussian random variables. Let
X ∼ N(0, ν) where ν > 0 is the variance. Then for any β > 0, it holds that

Pr[|X| ≥ β] ≤ 2 · exp
(
−β2

2ν

)
. (3)

Furthermore, we need two classical inequalities from calculus. For all x, n > 0, it holds that

ex ≤
(
1 +

x

n

)n+x/2
and 1 + x ≤ ex . (4)

Finally, we recall the LWE assumption.

Definition 56 (Learning with Errors). Let α : N→ (0, 1) and m ≥ n ≥ 1, q ≥ 2 be functions of
a security parameter λ ∈ N. We write vectors as column vectors. The Learning with Errors (LWE)
problem consists in distinguishing between the distributions (A, s⊤A + e⊤) and U(Zn×m

q × Zm
q),

where A ∼ U(Zn×m
q), s ∼ U(Zn

q) and e ∼ DZm,αq. For a PPT algorithm A : Zn×m
q × Zm

q → {0, 1},
we define

AdvLWE
q,m,n,α(A) =

∣∣∣Pr[A(A, s⊤A+ e⊤
)
= 1]− Pr[A (A,u) = 1]

∣∣∣ ,
where the probabilities are over A ∼ U(Zn×m

q), s ∼ U(Zn
q), u ∼ U(Zm

q), e ∼ DZm,αq and the
internal randomness of A. We say that LWEq,m,n,α is hard if for all PPT algorithm A, the advantage
AdvLWE

q,m,n,α(A) is negligible in λ.

We require that α ≥ 2
√
n/q for the reduction from worst-case lattice problems and refer the readers

to, e.g., [BV16] for more details.

Constructions. For the ease of comparison with [LT19], we now use ℓ to denote the number of
clients and n0 to denote the dimension of a vector xi encrypted by client i ∈ [ℓ]. For λ ∈ N, letRλ = Z,
Kλ,pub = {(y, . . . , y) : y ∈ [−B;B]} ⊊ [−B;B]n0 ,Mλ,pri = [−B;B]n0 and Kλ,pri =Mλ,pub = {⊤}
for polynomials B = B(λ) and n0 = n0(λ) : N→ N. The functionality f ip = {f ip

λ,n}λ,n∈N is defined
via

f ip
λ,ℓ

(
{ki = (⊤,yi)}i∈[ℓ], {mi = (xi,⊤)}i∈[ℓ]

)
=
∑
i∈[ℓ]

⟨xi,yi⟩

for all λ, ℓ ∈ N. Note that this functionality is more restrictive than Definition 12, which consid-
ers Kλ,pub = [−B;B]. The construction of [LT19] does not quite satisfy the definition of dynamiz-
ability, however we can achieve this property with a simple modification. Below we recall their
scheme FE and present our modified scheme FE .

50

Construction 57 (DMCFE Scheme FE of [LT19] and our Variant FE). The constructions
are defined w.r.t. the following common global parameters

CP = (ℓmax, n0, n1, n1, n, n,m,m, α,α1, α1, σ, σ, ℓt, ℓf , L, q, q,AHF,AHFf , M)

where M is a new additional parameter for our variant FE . The gadget matrices are defined as:

G = [In ⊗ (1, 2, 4, . . . , 2⌈log q⌉) | 0n | · · · | 0n] ∈ Zn×m
q

G0 = [In0 ⊗ (1, 2, 4, . . . , 2⌈log q⌉) | 0n0 | · · · | 0n0] ∈ Zn0×m
q

G = [In ⊗ (1, 2, 4, . . . , 2⌈log q⌉) | 0n | · · · | 0n] ∈ Zn×m
q .

The constructions FE and FE work as follows:

Setup(1λ, 1ℓ,CP): On input the common global parameters CP and the number of clients 1ℓ, sample
random matrices:

V $← Zn0×n
q

{
Ai,b

$← Zn×m
q

}
i∈[L],b∈{0,1}

V $← Zn×n
q

{
Bi,b

$← Zn×m
q

}
i∈[L],b∈{0,1} ,

as well as Gaussian samples ti
$← DZn,σ and si

$← DZn,σ for each i ∈ [ℓ].

For each i ∈ [ℓ], sample vi
$← [−M,M]n such that

∑
i∈[ℓ] vi = 0. Output

PP :=
(
CP,V,V, {Ai,b}i∈[L],b∈{0,1}, {Bi,b}i∈[L],b∈{0,1}, t :=

∑n
i=1 ti

)
{
SKi := (si, ti, ui := ti + vi)

}
i∈[ℓ] .

KeyGen(SKi, tag-f, ki): On input a secret key SKi := (si, ti, ui), a tag tag-f and ki = (⊤, yi) compute

the hash τtag-f = τtag-f [1] . . . τtag-f [L] := AHFf(tag-f) ∈ {0, 1}L as well as the GSW evaluation

B(τtag-f) = BL,τtag-f [L] ·G
−1
(
BL−1,τtag-f [L−1] ·G

−1(· · ·
B2,τtag-f [2] ·G

−1
(B1,τtag-f [1])

))
·G−1

(W
⊤
) ∈ Zn×m

q (5)

and W = G
⊤ ·V ∈ Zm×n

q . Sample etag-f,i
$← Dm,αq and output

DKi =
(
di := G

⊤ · (yi · si) +B(τtag-f)
⊤ · ti + etag-f,i ∈ Zm

q , ui

)
.

Enc(SKi, tag,xi): On input a secret key SKi := (si, ti, ui), a tag tag and mi = (⊤,xi), compute the

hash τtag = τtag[1] . . . τtag[L] := AHF(tag) ∈ {0, 1}L as well as the GSW evaluation

A(τtag) = AL,τtag[L] ·G
−1
(
AL−1,τtag[L−1] ·G−1

(
· · ·

A2,τtag[2] ·G
−1(A1,τtag[1])

))
·G−1(W⊤) ∈ Zn×m

q (6)

and W = G⊤
0 ·V ∈ Zm×n

q . Sample etag,i
$← DZm,αq and output

CTi = G⊤
0 · xi +A(τtag)

⊤ · si + etag,i .

51

Dec({DKi}i∈[ℓ], {CTi}i∈[ℓ]): On input a set of decryption keys {DKi = (di, ui)}i∈[ℓ] and a set of

ciphertexts {CTi}i∈[ℓ], compute t =
∑

i∈[ℓ] ui and

τtag-f = τtag-f [1] . . . τtag-f [L] := AHFf(tag-f) ∈ {0, 1}L

d̃tag-f =
∑
i∈[ℓ]

di −B(τtag-f)
⊤ · t mod q ,

where B(τtag-f) is as per (5). Interpret d̃tag-f = G
⊤
dtag-f + ẽtag-f , use the public trapdoor of

Λ⊥(G) to compute dtag-f . Next, compute

τtag = τtag[1] . . . τtag[L] := AHF(tag) ∈ {0, 1}L

ztag =
∑
i∈[ℓ]

yi · CTi −A(τtag)
⊤ · dtag-f mod q,

where A(τtag) is computed as per (6). Interpret ztag = G⊤
0 z + e, use the public trapdoor of

Λ⊥(G0) to compute z ∈ [−ℓXY, ℓXY].

Dynamizability. Intuitively, the original scheme FE is not dynamizable because the vec-
tors {ti}i∈[n] are conditioned on a global constraint

∑
i∈[n] ti = t, thus they cannot be sampled by

running SetupUser independently for each i. To circumvent this problem, we remove t from the
global parameters, include a masked version ui of ti into each decryption key DKi and reconstruct t
from {ui}i∈[n] at decryption time. The following lemma shows that our DMCFE scheme FE
obtained in this way fits into our framework of dynamizability.

Lemma 58. The DMCFE scheme FE in Construction 57 is M-dynamizable, where M = M(M,n)
denotes the finite Abelian group [−M,M]n equipped with modular addition.

Proof. Let (vi)i∈[n] ∈ S(n,M). The scheme admits the following implementation of the algorithms
SetupPP and SetupUser.

SetupPP(1λ): Sample random matrices

V $← Zn0×n
q

{
Ai,b

$← Zn×m
q

}
i∈[L],b∈{0,1}

V $← Zn×n
q

{
Bi,b

$← Zn×m
q

}
i∈[L],b∈{0,1} ,

then output PP :=
(
CP,V,V, {Ai,b}i∈[L],b∈{0,1}, {Bi,b}i∈[L],b∈{0,1}

)
.

SetupUser(PP,vi): Sample ti
$← DZn,σ and si

$← DZn,σ, then output SKi := (si, ti,ui := ti + vi).

By construction, it is straightforward that for any λ, ℓ ∈ N, the distributionsPP, {SKi}i∈[n]

∣∣∣∣∣∣∣
(vi)i∈[n]

$← S(n,M)

PP← SetupPP(1λ)

∀i ∈ [n] : SKi ← SetupUser(PP,vi)

and {(PP, {SKi}i∈[n])← Setup(1λ, 1ℓ)} are identical. ⊓⊔

52

Security. We first recall the security result from [LT19]

Proposition 59 ([LT19]). The DMCFE scheme FE presented in Construction 57 is stat-adap-sym-
secure against complete queries without repetitions under the LWE assumption in the standard model
with respect to the following choice of parameters:

• Let ℓmax = λk, n1 = λd, d = 3d+k−1, q = 2λ
d−1+λ, q = 2λ

d−1+λ, n1 = λd, α1 = 2−λd−1+d log λ, α1 =

2−λd−1+d log λ, α = 2−
√
λ, n0 · ℓmax = O(λd−2), n0 = O(λd−2), n = O(λ2d−1), n = O(λ4d+k−2),

σ = 2λ
d−1−2λ, σ = 2λ

d−1−2λ, and m,m = poly(λ).
• The tag lengths ℓt ∈ Θ(λ) for encryption and ℓf ∈ Θ(λ) for key generation.
• The dimensions n,m, n0, n1, n,m ∈ poly(λ) satisfy that n > 3·(n0+n1)·⌈log q⌉, m > 2·n·⌈log q⌉,
n > 3 · (n+ n1) · ⌈log q⌉, and m > 2 · n · ⌈log q⌉.

• The description of balanced admissible hash functions AHF : {0, 1}ℓt → {0, 1}L and AHFf :
{0, 1}ℓf → {0, 1}L for suitable L ∈ poly(λ).

• A real α > 0 and a Gaussian parameter σ > 0 so that the interval [−β, β] := [−σ
√
n, σ
√
n]

specifies the domain for the secret vector’s coordinates (with overwhelming probability).
• The real M := λ2 · σ.

Based on this result, we prove security of our variant FE . Intuitively, the only relevant difference

between FE and FE is that, for i ∈ [n], the decryption key DKi in FE additionally contains a

masked version ui of ti. As the vector ti is part of the secret key SKi in the original scheme FE , we
must show that ui does not leak any information about ti. If ti was sampled from a finite set S, the
argument would be trivial: we could simply pick the mask vi according to the uniform distribution
over S. However, the distribution of ti follows a discrete Gaussian over the infinite set Zn making
the argument slightly more complex. First, we use the Chernoff-Cramér tail bound to argue that t is
in a bounded-size interval with high probability. Second, we show that when choosing the mask vi

from this interval, then the vector ui statistically hides ti.

Proposition 60. If the DMCFE scheme FE in 57 is stat-adap-sym-secure against complete queries
without repetitions under the LWE assumption in the standard model, then so is our modified
scheme FE .

Proof. Let A be an adversary in the security game Expdmcfe-b

FE ,f ip,A
(1λ) attacking the security of FE .

We build an adversary B in the security game Expdmcfe-b

FE ,f ip,B
(1λ) that uses A as a subroutine and

attacks the security of the original scheme FE . For convenience, we introduce the shorthands

Expip
A := Expdmcfe-b

FE ,f ip,A
(1λ) , Expip

B := Expdmcfe-b

FE ,f ip,B
(1λ) .

The adversary B works as follows:

• Initialization and Static Corruption Queries: Upon A calling Expip
A.Initialize(1

λ), B calls the

initialization procedure Expip
B .Initialize(1

λ) of its own challenger to obtain

PP :=
(
CP,V,V, {Ai,b}i∈[L],b∈{0,1}, {Bi,b}i∈[L],b∈{0,1}, t

)
.

and sends PP = (CP,V,V, {Ai,b}i∈[L],b∈{0,1}, {Bi,b}i∈[L],b∈{0,1}) to A. The adversary B aborts
if t /∈ [−M,M]n.

53

In the static corruption setting, A declares up front a set C ⊂ [ℓ] of corrupted clients. For
each i ∈ C, B samples vi

$← [−M,M]n, queries (si, ti) ← Expip
B .OCorrupt(i) and returns

SKi = (si, ti, ui := ti + vi). Finally, for each i ∈ H := [ℓ]\C, B samples vectors ui
$← [−M,M]n

conditioned on
∑

i∈H ui = t−
∑

i∈C ui.
• Encryption Queries: Upon receiving a query

Expip
A.OEnc(i, tag,m

(0)

i = (⊤,x(0)

i),m(1)

i = (⊤,x(1)

i)) ,

if i ∈ H, B returns CTi ← FE .Enc((si, ti), tag,m
(b)

i) computed by running the encryption

algorithm of FE . If i ∈ C, B queries Expip
B .OEnc(i, tag,m

(0)

i ,m(1)

i) and forwards the result to A.
• Key-Generation Queries: Upon receiving a query

Expip
A.OKeyGen(i, tag-f, k

(0)

i = (y(0)

i ,⊤), k(1)

i = (y(1)

i ,⊤)) ,

if i ∈ H, B returns DKi ← FE .KeyGen((si, ti), tag-f, k
(b)

i) computed by running the encryption

algorithm of FE . If i ∈ C, B calls di ← Expip
B .OKeyGen(i, tag-f, k

(0)

i , k(1)

i) and sends DKi =
(di,ui) to A.

• Finalize: Upon A calling Expip
A.Finalize(b

′), B calls Expip
B .Finalize(b

′).

For t =
∑

i∈[ℓ] ti with ti
$← DZn,σ i.i.d, it holds that t follows the Gaussian distribution DZn,ℓ·σ

where the standard deviation is multiplied by a factor ℓ. By using the fact that the center of DZn,n·σ
is 0 together with the union bound, the Chernoff-Cramér bound in Equation (3) yields:

Pr[B aborts on t] = Pr
[
∃ i ∈ [ℓ] : |t[i]| ≥M

]
≤ ℓ ·

(
2 exp

(
− M2

2ℓ2σ2

))
,

which is negligible in λ under the parameter choice M = λ2 · σ with respect to ℓ and σ. In what
follows, we condition on the event that B does not abort on t. By construction the public parameters,
encryption responses, and the corrupted keys provided by B are identical to those in the experiment
Expip

A. It therefore suffices to show that the ODKeyGen responses DKi = (di,ui) simulated by B
are indistinguishable from those in the experiment Expip

A. Specifically, we show that the following
distributions are statistically close

D0 :=

{
(ti,vi)

}
i∈C ;{

ui

}
i∈H; t

∣∣∣∣∣∣∣∣∣∣∣∣∣

∀i ∈ [ℓ] : ti
$← DZn,σ; t :=

∑
i∈[ℓ] ti

∀i ∈ C : vi
$← [−M,M]n

∀i ∈ H : ui
$← [−M,M]n s.t.∑

i∈H ui = t−
∑

i∈C(ti + vi)

D1 :=

{
(ti,vi)

}
i∈C ;{

ui

}
i∈H; t

∣∣∣∣∣∣∣∣
∀i ∈ [ℓ] : ti

$← DZn,σ; t :=
∑

i∈[ℓ] ti

∀i ∈ [ℓ] : vi
$← [−M,M]n

∀i ∈ H : ui := ti + vi

 ,

where D0 corresponds to the simulation of B and D1 corresponds to the responses in the experiment
Expip

A.
We recall that U(S) denotes the uniform distribution on a finite set S, and that S(ℓ, [−M,M]n)

denotes the distribution that outputs vi
$← [−M,M]n for i ∈ [ℓ] conditioned on

∑
i∈[ℓ] vi = 0.

W.l.o.g, we extend the distribution U([−M,M]n) over [−M,M]n to a distribution over Zn such that

54

for any x ∈ Zn \ [−M,M]n it holds PrX∼U([−M,M]n)[X = x] = 0. For the ease of notation, we use
boldface letters T, U and V to denote collections of vectors {ti}i, {ui}i, {vi}i sampled following a
given distribution.

We will make use of the following lemma which is proven below.

Lemma 61. For each U ∈ ([−M,M]n)|H|, we have

Pr[D1→ U] ≤ (2M + 1)n

(2M + 1)n|H|

(
1 +

2|H|πnB2

2σ2 − |H|πnB2

)
+

(
1

(2M + 1)n

)|H|−1

,

where B := λ · σ.

We bound the statistical distance ∆(D0, D1) as follows:

∆(D0, D1) (7)

(⋆)

≤ max
S⊆([−M,M]n)|H|

|Pr[D1 ∈ S]− Pr[D0 ∈ S]|+ negl1(λ)

(▲)
≤

∑
U∈S⊆([−M,M]n)|H|

∀U∈S:Pr[D1→U]>Pr[D0→U]

(
Pr[D1→ U]−

(
1

(2M + 1)n

)|H|−1
)

+ negl1(λ) (8)

We note that (⋆) follows from the definition of the statistical distance and Equation (3), and (▲)
applies the uniform choice of U in D0. Next, we use Lemma 61 and obtain from (8) that

∆(D0, D1)

≤
∑

U∈S⊆([−M,M]n)|H|

∀U∈S:Pr[D1→U]>Pr[D0→U]

(
(2M + 1)n

(2M + 1)n|H| ·

(
1 +

2|H|πnB2

2σ2 − |H|πnB2

)

+

(
1

(2M + 1)n

)|H|−1

−
(

1

(2M + 1)n

)|H|−1
)

+ negl1(λ)

≤
∑

U∈S⊆([−M,M]n)|H|

∀U∈S:Pr[D1→U]>Pr[D0→U]

(2M + 1)n

(2M + 1)n|H| ·

(
1 +

2|H|πnB2

2σ2 − |H|πnB2

)
+ negl1(λ)

(3)

≤
∑

U∈S⊆([−M,M]n)|H|

∀U∈S:Pr[D1→U]>Pr[D0→U]

1

(2M + 1)n|H| · exp

(
2Mn− 2|H|πnB2

|H|πnB2 − 2σ2

)

+ negl1(λ)

≤ exp

(
2Mn− 2|H|πnB2

|H|πnB2 − 2σ2

)
+ negl1(λ) ,

where (3) uses the fact that 1 + x ≤ ex from (4). To bound negl1(λ), we can perform a similar

calculation as it is done for negl2(λ) in the proof of Lemma 61. By parameter choices |H|πnB2
=

ω(1)σ2 and M = o(|H|πB2
), then exp

(
2Mn− 2|H|πnB2

|H|πnB2−2σ2

)
is negligible in λ and the proof is

completed. ⊓⊔

55

We now prove the lemma.

Proof (of Lemma 61). For U ∈ ([−M,M]n)|H|, noting that in D1 each ti
$← DZn,σ is i.i.d by

construction, we compute

Pr[D1→ U]

≤
∑

T∈([−B,B]n)|H|

V∈([−M,M]n)|H|

T+V=U

Pr[∀i ∈ H : DZn,σ→ T[i]] · Pr[S(n, [−M,M]n)→ V] + negl2(λ)

=
∑

T∈([−B,B]n)|H|

V∈([−M,M]n)|H|

T+V=U

 |H|∏
i=1

ρσ(T[i])

ρσ(Zn)

 · (1

(2M + 1)n

)|H|−1

+ negl2(λ) (9)

We denote the i-th vector in T by T[i] ∈ [−B,B]n and write Σ := σ2 · I. Then evaluating the
Gaussian term gives

ρσ(T[i])

ρσ(Zn)
≤ ρσ(T[i])

ρσ([−B,B]n)
=

exp(−πT[i]⊤Σ−1T[i])∑
T∈[−B,B]n exp(−πT

⊤Σ−1T)

=
exp(−π∥T[i]∥22/σ2)∑

T̂∈[−B,B]n
exp(−π∥T̂∥22/σ2)

(a)

≤ exp(πnB
2
/σ2)

(2B + 1)n

(b)

≤

(
1 + 2|H|πnB2

2σ2−|H|πnB2

)
(2B + 1)n

1/|H|

, (10)

where (a) follows from the fact that the squared Euclidean norm ∥T[i]∥22 is bounded by nB
2
, and

(b) uses the inequality ex ≤
(
1 + x

n

)n+x/2
from (4). We observe that any choice of T given U fixes

V. Then plugging (10) into (9) implies

Pr[D1→ U] ≤
(
2B + 1

2M + 1

)n·|H|

· (2M + 1)n
(

1

(2B + 1)n

)|H|

·

(
1 +

2|H|πnB2

2σ2 − |H|πnB2

)
+ negl2(λ)

≤ (2M + 1)n

(2M + 1)n|H|

(
1 +

2|H|πnB2

2σ2 − |H|πnB2

)
+ negl2(λ) .

56

It remains to bound negl2(λ). By employing the independence of the mask V from T, we have

negl2(λ) ≤
∑

V∈([−M,M])|H|

Pr[S(ℓ, [−M,M]n)→ V] · Pr[T /∈ ([−B,B]n)|H|]

(c)

≤ (2M + 1)n|H|
(

1

(2M + 1)n

)|H|−1

· Pr[T /∈ ([−B,B]n)|H|]

(d)

≤ (2M + 1)n|H|
(

1

(2M + 1)n

)|H|−1

· 2n|H| · exp

(
− B

2

2σ2

)
(e)

≤ exp (2Mn|H|) ·
(

1

(2M + 1)n

)|H|−1

· 2n|H| · exp

(
− B

2

2σ2

)

=

(
1

(2M + 1)n

)|H|−1

· 2n|H| · exp

(
2Mn|H| − B

2

2σ2

)
(f)

≤
(

1

(2M + 1)n

)|H|−1

,

where (c) uses the union bound over all possible values of V and the fact that it is uniformly
distributed, (d) employs the Gaussian distribution of T and Equation (3), (e) uses the inequality

1 + x ≤ ex from (4) and (f) follows from the parameter choice M = o(B
2
). This concludes the

proof. ⊓⊔

Combining Theorem 46 and Proposition 60 with the generic conversion from DMCFE to DDFE
(Construction 25, Proposition 26), we obtain the following corollary.

Corollary 62. Assuming LWE in the standard model, there exists a DDFE scheme for f ip, where
functional vectors have the same entry in each coordinate, that is stat-adap-sym-secure without
repetitions.

A.5 Instantiation of Construction 25 with the DMCFE of [NPS24]

The construction of [NPS24] is based on the dual pairing vector spaces (DPVS) framework which
we briefly recall below.

Dual Pairing Vector Spaces. Let G = (G1,G2,Gt, g1, g2, gt, e, q) be a pairing group, N ∈ N
and consider GN

1 having N copies of G1. Viewing ZN
q as a vector space of dimension N over

Zq with the notions of bases, we can obtain naturally a similar notion of bases for GN
1 . More

specifically, any invertible matrix B ∈ GLN (Zq) identifies a basis B of GN
1 , whose i-th row bi is

JBiK1, where Bi is the i-th row of B. It is straightforward that we can write B = JBK1 for any basis
B of GN

1 corresponding to an invertible matrix B ∈ GLN (Zq). We write x = (m1, . . . ,mN)B to

indicate the representation of x in the basis B, i.e. x =
∑N

i=1mi · bi. Treating GN
2 similarly, we can

furthermore define a product of two vectors x = J(m1, . . . ,mN)K1 ∈ GN
1 ,y = J(k1, . . . , kN)K2 ∈ GN

2

by x× y :=
∏N

i=1 e(x[i],y[i]) = J⟨(m1, . . . ,mN), (k1, . . . , kN)⟩Kt. Given a basis B = (bi)i∈[N] of GN
1 ,

we define B∗ to be a basis of GN
2 by first defining B∗ := (B−1)⊤ and the i-th row b∗

i of B∗ is
JB∗

i K2. It holds that B · (B∗)⊤ = IN the identity matrix and bi × b∗
j = Jδi,jKt for every i, j ∈ [N],

where δi,j = 1 if and only if i = j. We call the pair (B,B∗) a pair of dual orthogonal bases of
(GN

1 ,GN
2). If B is constructed by a random invertible matrix B $← GLN (Zq), we call the resulting

(B,B∗) a pair of random dual bases. A DPVS is a bilinear group G = (G1,G2,Gt, g1, g2, gt, e, q)
with dual orthogonal bases. We denote by DPVSGen the algorithm that takes as inputs G, and

57

a unary 1N , then outputs a pair of random matrices (B,B∗) that specify dual orthogonal bases
(B = JBK1,B∗ = JB∗K2) of (GN

1 ,GN
2).

We recall the construction of [NPS24] for the functionality f fh-ip. Assuming SXDH in the ROM,
the construction is stat-adap-sym-secure in the one-challenge setting under the complete-queries
constraint against unbounded repetitions for OEnc queries and J = poly(λ) repetitions for OKeyGen
queries. The parameter J must be specified at Setup time.

Construction 63 (DMCFE scheme of [NPS24]). The construction is based on a pairing
group G = (G1,G2,Gt, g1, g2, gt, e, q). The details of the scheme FE = (Setup,KeyGen,Enc,Dec) go
as follows:

Setup(1λ, 1n): On input the security parameter 1λ and the number of clients 1n, sample two full-
domain hash functions H1 and H2 onto G1 and G2, respectively. Furthermore, sample matrices
(Bi, B

∗
i)← DPVSGen(G, 12N ·(J+1)+4), for i ∈ [n], that specify dual orthogonal bases (Bi,B

∗
i).

16

Sample (t̃i)i
$← Zn

q conditioned on
∑n

i=1 t̃i = 0. Output the public parameters PP := (H1,H2) and
the secret keys {SKi}i∈[n] as follows:

SKi := (t̃i,bi,1, . . . ,bi,N , Bi,N+1, bi,N+3,b
∗
i,1, . . . ,b

∗
i,N , B∗

i,N+1, b∗
i,N+2) .

KeyGen(SKi, tag-f, ki = (yi,⊤)): Parse SKi as above, compute H2(tag-f)→ JµK2 and sample πi
$← Zq.

Then output

DKi =
N∑
k=1

yi[k]b
∗
i,k + JµK2 ·B∗

i,N+1 + πib
∗
i,N+2

= (yi, µ, πi, 0, 0N+2N ·J+1)B∗
i
.

Enc(SKi, tag,mi = (xi,⊤)): Parse SKi as above, compute H1(tag)→ JωK1 and sample a random
scalar ρi

$← Zq. Then output

CTi =

N∑
k=1

xi[k]bi,1 + t̃iJωK1 ·Bi,N+1 + ρibi,N+3

= (xi, t̃iω, 0, ρi, 0N+2N ·J+1)Bi .

Dec({DKi}i∈[n], {CTi}i∈[n]): Compute JdKt =
∑n

i=1 CTi × DKi, then find and output the discrete log
d.

Proposition 64 ([NPS24]). Construction 63 is one-challenge stat-adap-sym-secure against com-
plete queries with unbounded repetitions for OEnc queries and polynomially bounded repetitions
for OKeyGen queries under the SXDH assumption in the ROM.

The following lemma argues that the construction fits into the framework of dynamizable DMCFE
schemes.

Lemma 65. The DMCFE scheme FE in Construction 63 is Zq-dynamizable.

Proof. Let (t̃i)i∈[n] ∈ S(n,Zq). The scheme admits the following implementation of the algorithms
SetupPP and SetupUser.

16 For each i ∈ [n], we denote j-th row of Bi (resp. B
∗
i) by bi,j (resp. b∗

i,j). Similarly, Bi,k (respectively B∗
i,k) denotes

the k-th row of the basis changing matrix Bi (respectively B∗
i).

58

SetupPP(1λ): Sample two full-domain hash functions H1 and H2 onto G1 and G2 respectively. Return
PP := (H1,H2).

SetupUser(PP, t̃i): Generate (Bi, B
∗
i)← DPVSGen(G, 14N+5) and return SKi computed as follows:

SKi := (t̃i,bi,1, . . . ,bi,N , Bi,N+1, bi,N+3,b
∗
i,1, . . . ,b

∗
i,N , B∗

i,N+1, b∗
i,N+2) .

Then the distributionsPP, {SKi}i∈[n]

∣∣∣∣∣∣∣
(t̃i)i∈[n]

$← S(n,Zq)

PP← SetupPP(1λ)

∀i ∈ [n] : SKi ← SetupUser(PP, t̃i)

and {(PP, {SKi}i∈[n])← Setup(1λ, 1n)} are identical. ⊓⊔

Combining Theorem 46 and Proposition 64 with the generic conversion from DMCFE to DDFE
(Construction 25, Proposition 26), we obtain the following corollary.

Corollary 66. Assuming SXDH and the ROM, there exists a DDFE scheme for f fh-ip that is
stat-adap-sym-secure with unbounded repetitions for OEnc queries and polynomially bounded repeti-
tions for OKeyGen queries.

	Introduction
	Research Questions
	Our Contributions

	Preliminaries
	Notational Conventions
	Pairing Groups and Hardness Assumptions
	Arithmetic Branching Programs
	Dynamic Decentralized Functional Encryption
	Decentralized Multi-Client Functional Encryption
	Attribute-Based and Identity-Based Encryption
	Lockable Obfuscation
	Pseudorandom Functions (PRF)
	Non-Interactive Key Exchange (NIKE)

	Technical Overview
	From DMCFE to DDFE
	Achieving Security Against Any Queries

	From DMCFE to DDFE
	Security Against Any Queries
	Attribute-Based All-or-Nothing Encapsulation
	DDFE for AB-AWS Secure Against Any Queries

	Supporting Materials – Section 4
	Generic Upgrade of the Security Model in EPRINT:NguPoiSch24
	Instantiation of Construction 25 with a DMCFE for AB-AWS
	Instantiation of Construction 25 with the DMCFE of AC:CDGPP18
	Instantiation of Construction 25 with a Variant of AC:LibTit19
	Instantiation of Construction 25 with the DMCFE of EPRINT:NguPoiSch24

