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Abstract. The public comments received for the review process for
NIST (SP) 800-38A pointed out two important issues that most com-
panies face: (1) the limited security that AES can provide due to its
128-bit block size and (2) the problem of nonce-misuse in practice. In
this paper, we provide an alternative solution to these problems by in-
troducing two optimally secure deterministic authenticated encryption
(DAE) schemes, denoted as DENC1 and DENC2 respectively. We show
that our proposed constructions improve the state-of-the-art in terms
of security and efficiency. Specifically, DENC1 achieves a robust security
level of O(r2σ2ℓ/22n), while DENC2 attains a near-optimal security level
of O(rσ/2n), where σ is the total number of blocks, ℓ is maximum number
of blocks in each query, and r is a user-defined parameter closely related
to the rate of the construction. Our research centers on the development
of two IV-based encryption schemes, referred to as IV1 and IV2, which
respectively offer security levels of O(r2σ2ℓ/22n) and O(rσ/2n). Notably,
both of our DAE proposals are nearly rate 1/2 constructions. In terms
of efficiency, our proposals compare favorably with state-of-the-art AE
modes on contemporary microprocessors.
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1 Introduction

In May 2021, NIST initiated a review process for (SP) 800-38A: Recommen-
dation for Block Cipher Modes of Operation: Methods and Techniques and its
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addendum, Three Variants of Ciphertext Stealing for CBC Mode[16]. Two key
concerns raised in the public comments[15,14] were the issue of nonce-misuse in
practice and the limited security provided by AES due to its 128-bit block size.

In authenticated encryption (AE), using nonces is a standard practice to
enhance security by ensuring non-repetition. However, even a single instance
of nonce reuse can potentially compromise the entire scheme. For example, in
GCM[29], reusing a nonce exposes the hash key. Ensuring nonce uniqueness re-
quires a stateful implementation, which is not always practical, especially in
cases where multiple devices share the same key but cannot reliably synchro-
nize. Additionally, flawed implementations can inadvertently cause nonce reuse.
A comprehensive Internet-wide scan conducted by Böck et al.[5] revealed several
HTTPS servers that always use the same nonce, and many others that employ
random 64-bit nonces. Due to the birthday problem, the latter approach drasti-
cally limits the number of messages that can be safely encrypted.

On the other hand, the GCM construction only provides security that ap-
proaches the 2n/2 birthday bound [29,26,20,43]. However, this security bound
may be on the edge of acceptability due to the second problem we mentioned
about: the underlying block cipher has a limited block size.

Grimm highlighted that, in practical implementations, certain designs gen-
erate a fresh AES key for each message or data item, while employing a constant
nonce value for every encryption operation [15,14]. To enhance security beyond
the limited 264 birthday bound and to fortify resilience for customers, he recom-
mends that NIST should consider the development of two new standards:

1. A novel block cipher with a substantial key and state size, while still main-
taining software performance levels comparable to AES, particularly when
utilizing AES-NI instructions.

2. Utilization of this newly devised cipher to construct an authenticated en-
cryption scheme featuring authenticated data, with a crucial requirement
that the mode should not necessitate a nonce generated by the caller.

Nonetheless, the first point seems difficult to achieve in the practice. On one
hand, the task of designing a novel block cipher is far from straightforward. It
required two decades of dedicated research to establish the level of trust and
confidence that AES enjoys today. Conversely, demanding equivalent software
performance while working with a primitive that possesses a substantially larger
state size compared to AES presents its own set of challenges. On the other hand,
as mentioned in the NSA presentation at the NIST workshop [46], it is extremely
difficult to replace AES with another cipher due to its large economic impact [27]
and the fact that it is used in millions of products. However, it is important to
acknowledge that there are alternative solutions to each of these two problems.

Solution For The Unique-Nonce Problem: A comprehensive solution to
address the unique-nonce challenge involves the adoption of a misuse-resistant
AE (MRAE) scheme. This concept, initially introduced by Rogaway and Shrimp-
ton [43], operates by employing a pseudo-random function (PRF) construction
denoted as F to compute an authentication tag referred to as IV . Subsequently,
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it applies an IV-based encryption algorithm, utilizing IV as input, to encrypt
the message.

This MRAE concept has been further refined by assessing the adversarial
distinguishing advantage in terms of parameters such as the maximum number
of multicollisions in nonce values [42] or the maximum number of reused nonce
values [19]. In contrast, the MRAE notion transforms a deterministic AE (DAE)
scheme into a nonce-based MRAE scheme, where the security of such AE schemes
becomes independent of the number of nonce repetitions. While DAE schemes
still accept an input nonce, they no longer adhere to the constraint of non-
repetition. Therefore, the input nonce can be considered a part of the associated
data A. In this scenario, the sole requirement is that the pair (A,M) is never
duplicated.

Beyond Birthday Bound Secure AE Schemes: In recent years, there has
been a surge in the introduction of block cipher-based AE schemes that offer
security beyond the birthday bound. For example, the well-known AES-GCM-SIV,
which has been demonstrated to offer 3n/4-bit security when nonces are unique,
and n/2-bit security in the event of nonce repetition, as established by Iwata and
Seurin [24]. These security claims are contingent upon assuming the multi-user
security of AES in the standard model. Conversely, Bose et al. [6] revealed that
by employing a different key derivation function, the nonce-respecting security
of AES-GCM-SIV in the ideal cipher model can be elevated to a robust n-bit
level.

In 2006, Iwata [21] introduced an approach to reuse some of the block ci-
pher evaluations, and proposed a block cipher based encryption scheme CENC
and a nonce based AE scheme CHM. The security of these constructions can
be reduced to the security of the sum of permutations [4] construction. Conse-
quently, both CENC and CHM achieve nearly optimal n-bit security under the
assumption that the input nonce is never repeated. A more recent addition, the
SCM mode [10], adopts a similar approach as the CENC and CHM modes. Unlike
its predecessors, SCM exhibits graceful security degradation in the faulty nonce
model [19] when nonces are reused. Consequently, SCM maintains security levels
beyond the birthday bound when the number of repeated nonces is limited. Un-
fortunately, as the authors have demonstrated, when instantiated with random
nonces, the SCM mode can only attain birthday-bound security.

It is worth to mention that there are a number of AE schemes build on tweak-
able block ciphers that includes [42,28,23,35,32,33,34]. While there are several
security advantages associated with designing an authenticated encryption (AE)
scheme based on tweakable block ciphers, it is worth noting that block cipher-
based schemes offer the convenience of instantiation with widely adopted block
ciphers like AES. Consequently, this article’s primary focus is on the following
research question: Can we design a DAE scheme that achieves n-bit security
while minimizing the use of block cipher calls?
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1.1 Our Contributions

This paper makes a significant contribution by providing a positive response
to the aforementioned question. Specifically, we introduce two optimally secure
DAE schemes named DENC1 and DENC2, demonstrating that DENC1 offers a se-
curity level of O(n2σ2ℓ/22n), while DENC2 achieves a security level of O(nσ/2n)
when these constructions are instantiated with an n-bit block cipher, where ℓ
denotes the maximum bit-length for a single message and σ denotes the total bit-
length across all messages encrypted before rekeying. The most innovative part
of our research centers on the development of two IV-based encryption (IVE)
schemes, which we call IV1 and IV2. The structure of our proposal is reminiscent
of Iwata’s CENC construction [21]. However, the security of CENC is completely
dependent on the unique input nonce, when the nonce is repeated, one can triv-
ially break the construction. While in the case of DAE, this uniqueness is not
available, instead we only have a uniform random tag to serve as input. Naive
use of the tag will result in birthday bound security. To solve this problem, we
double the tag length by introducing two block cipher calls during the MAC
part of the DAE, and create input masks for our IVE schemes using this 2n-bit
random tag. Our scheme explicitly relies on the use of masks in the input, along
with a CENC like transformation in the output, and the security of both IV1 and
IV2 is dominated by the used mask.
IV1: Length dependent n-bit secure IV-Based Encryption. As our first
contribution, we propose the IV0 paradigm in Section 4, which takes a 2-wise
independent sequence as the input and provides a security bound of O(rσ/2n).
However, for a fixed parameter r, r + 1 block cipher calls are needed to gen-
erate r blocks with n-bit output, leading to a rate of r/(r + 1). Therefore, the
security of the IV0 structure decreases dramatically once r becomes large. To
avoid this problem and to create an IV-based encryption scheme with variable
output length, we introduce IV1 in Section 5. This construction can be seen as
an iteration of chunks of r blocks. The output of each chunk is produced by
evaluating the IV0 construction, and therefore requires r + 1 block cipher calls.
We show that, given 2-wise independent sequences as input to each block of
each chunk, IV1 yields a security bound of O(r2σ2ℓ/22n), where ℓ denotes the
maximum number of message blocks in a message.

IV2: Length independent n-bit secure IV-Based Encryption. The secu-
rity of the IV1 construction can decrease dramatically if the message length ℓ
becomes large. For example, if r is small and ℓ = O(2n/4), then IV1 is secured
upto 27n/8 blocks6. To achieve truly message length-independent near-optimal
n-bit security, we introduce IV2 in Section 6 as our second contribution. The un-
derlying design philosophy of IV2 is very similar to that of IV1. It is important to
emphasize that the security of IV2 depends on the property of the input string
on which it is used. To create such an input string for the k-th block of the j-th
chunk of i-th query, we use the HtmB paradigm outlined in [12] as follows:

(k1, k2) = mBenes(u[1]⊕ ⟨j⟩n, u[2]⊕ ⟨j⟩n),
6 In practice, the message length is usually smaller than 2n/4 blocks.
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where (u[1], u[2]) is the initial 2n-bit input random IV of the construction, ⟨j⟩n
denotes the n-bit binary representation of the integer j, and mBenes is the mod-
ified Benes function [1]. We have shown that using this input sequence, IV2
achieves an optimal security bound of O(rσ/2n). However, it is important to
note that IV1 achieves security bound roughly in the order of O(r2σ2ℓ/22n) by
invoking r+1 block cipher calls in each chunk. On the other hand, IV2 achieves
an ℓ-free security bound, i.e., O(rσ/2n), at the cost of making six extra block
cipher calls in each chunk and two additional block cipher keys to process the
mBenes paradigm compared to the IV1 construction. However, the increasing key
size does not seem to be a big problem for practical applications, since Microsoft
is already requesting for a new block cipher using 512-bit secret key [15]. Hence,
IV2 requires a total of r+7 block cipher calls for each chunk, where r represents
the size of each chunk, leading to a rate of r/(r + 7).

DENC1 and DENC2: Towards Building Optimally Secure DAE. Our fi-
nal contribution is to propose two block cipher based deterministic authenti-
cated encryption schemes, called DENC1 and DENC2. Both DENC1 and DENC2
follow the SIV paradigm proposed by Rogaway and Shrimpton [43], where a
variable-input length pseudorandom function is used to process the associated
data A7 and a message M to yield a 2n-bit authentication tag IV , which in turn
is used in an IV-based encryption scheme to encrypt the message M . For both
DENC1 and DENC2, we use F∗, a variant of the 2k-mPMAC+-p2 [12] construc-
tion, as the underlying variable input-length PRF. However, we combine it with
the IV1 construction as the underlying IV-based encryption scheme to yield our
first DAE scheme DENC1. On the other hand, we combine F∗ with IV2 as the
underlying IV-based encryption scheme to yield another DAE scheme DENC2.
We prove that DENC1 has a security bound of O

(
r2σ2ℓ/22n

)
(in Corollary 7.1),

and DENC2 has a security bound of O (rσ/2n) (in Corollary 7.2), where σ is
the total number of encrypted message blocks and ℓ the maximum number of
blocks allowed in a message. Note that DENC1 requires a total of 2ℓ+ ℓ/r block
cipher calls, while DENC2 requires 2ℓ + 7ℓ/r calls. Table 1 compares DENC1
and DENC2 to well-known block-cipher based AE schemes. In the table, we in-
clude the most prominent nonce-based AE schemes for better comparison. As
explained before, practical situations usually lead to many repeated nonces (for
example, when random nonces are used). We see that DENC1 and DENC2 out-
perform all block cipher based AE schemes in the nonce-misuse setting, and it
only requires 2ℓ + ℓ/r resp. 2ℓ + 7ℓ/r calls to the underlying block cipher to
process a message of length ℓ.

Figure 1.1 compares the influence of the maximum message length ℓ to the
threshold number of the total length of the encryption queries σ for DENC1,
DENC2, and AES-GCM-SIV in the nonce-respecting setting, where we distinguish
two different models in which AES-GCM-SIV has been analyzed. We see that
both DENC1 and DENC2 provide stronger bounds than AES-GCM-SIV both in

7 The associated data A may contain a nonce N , therefore N does not need to be
unique as long as the couple (A,M) is not repeated.

7 Authenticity only. CWC+ does not provide privacy in the nonce-misuse setting.
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Table 1. Comparison of our AE modes, DENC1 and DENC2, with other prominent
block cipher-based DAE schemes. Here, n is the block size and we set r = n. The
security is measured when the message length ℓ is a constant number of blocks.

AE Primitive # Calls Nonce-respecting Security Nonce-misusing Security References

Nonce-based AE schemes

GCM PRF 2ℓ O(2n/2) — [29]

CHM PRP 2ℓ O(22n/3) — [21]

OCB3 PRP ℓ O(2n/2) — [26]

GCM-SIV PRF 2ℓ O(2n/2) O(2n/2) [20]

CWC+ PRP 2ℓ O(23n/4/ℓ1/4) O(2n/2/ℓ) [19]

AES-GCM-SIV muPRP 2ℓ O(23n/4 + 2n/ℓ2) O(2n/2/ℓ) [24]

AES-GCM-SIV ICM 2ℓ O(2n/ℓ) O(2n/ℓ) [6]

SCM PRP 2ℓ O(2n/ℓ+ 22n/3/ℓ1/3) O(2n/2/ℓ) [10]

XOCB PRP ℓ O(22n/3/ℓ) — [3]

DAE schemes

SIV PRP 2ℓ O(2n/2) O(2n/2) [43]

SIV-d PRP dℓ O(2
d

d+1n) O(2
d

d+1n) [22]

SUNDAE PRP 2ℓ+ 1 O(2n/2) O(2n/2) [2]

ANYDAE PRP 2ℓ O(2n/2) O(2n/2) [8]

DENC1 PRP 2ℓ+ ℓ/r O(2n/rℓ1/2) O(2n/rℓ1/2) Sec. 7
DENC2 PRP 2ℓ+ 7ℓ/r O(2n/r) O(2n/r) Sec. 7
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Fig. 1.1. The threshold number of the total length of the encryption queries σ as a
function of ℓ, where we set r = n.
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the standard model and the ideal cipher model for arbitrary message length ℓ.
For practical applications where the messages to be encrypted have a limited
length ℓ, we see that DENC1 already provides 15n/16-bit security for ℓ = 2n/8,
and 7n/8-bit security for ℓ = 2n/4. In case long messages need to be encrypted
and optimal n-bit security is required, we can choose for DENC2. Note that users
can choose the rate parameter r in such a way that the best security/efficiency
trade-off can be obtained according to the application and the used block cipher.

We have instantiated DENC1 and DENC2 with AES-128 and implemented
them in software. The experimental results in Section 7.2 indicate that both
DENC1 and DENC2 are highly competitive within the class of AE schemes (both
nonce-based and deterministic). This is due to the fact that both schemes are
highly parallelizable and can therefore benefit significantly from the pipelining
support for AES in modern microprocessors.

2 Preliminaries

The set of non-negatives is denoted N, and N+ denotes the set of positives. For
any n ∈ N+, [n] denotes the set {1, ..., n} and (n] = [n] ∪ {0}, respectively.
The set of all n-bit strings is denoted by {0, 1}n, and {0, 1}≤n :=

⋃n
m=0{0, 1}m,

where {0, 1}0 is the set of empty string ⊥. We write ⟨i⟩n to denote the canonical
unsigned n-bit binary representation of i ∈ N. For any x ∈ {0, 1}≤∞, |x| denotes
the bit-length8 of x. For any x, y ∈ {0, 1}≤∞, x ∥ y denotes the concatenation
of x and y. For any x ∈ {0, 1}≤∞ and k ≤ |x|, ⌊x⌋k (res. ⌈x⌉k) denotes the
rightmost (res. leftmost) k bits of x. We define two padding schemes:

zsn(x) := x ∥ 0n−(|x| mod n) ozsn(x) := zsn(x ∥ 1),

for any n ∈ N+ and x ∈ {0, 1}≤∞. We write (x[1], . . . , x[ℓ])←n x to denote the
n-bit parsing of x, i.e., x[1] ∥ . . . ∥ x[ℓ] = zsn(x) and |x[i]| = n for all i ∈ [ℓ].

We often identify {0, 1}n as the Galois field F2n with some implicitly fixed
irreducible polynomial p(x). In this context, we distinguish an arbitrary root of
p(x) by 2, as the primitive element of F2n . For any x, y ∈ F2n , x ⊕ y and x · y
correspond to the field addition and multiplication modulo p(x), respectively.

Without loss of generality, we assume9 that any finite set is a subset of
{0, 1}≤∞. For any finite sets X and Y, we write F(X ,Y) to denote the set of
all functions from X to Y. Similarly, we write P(X ) to denote the set of all
permutations of X , respectively. Two finite sequences (Xi)i∈I and (Yi)i∈I are
said to be bijectively-consistent if, Xi = Xj ⇐⇒ Yi = Yj , for all i, j ∈ I.

For any finite sets K, X and Y, a (K,X ,Y)-keyed function f is a family of
functions {fK : X → Y}K∈K. One can similarly define a (K,X )-keyed permu-
tation π. For a finite set X , we write X ←$X to denote the uniform at random
sampling of X from X .
8 The number of bits in x.
9 This is without loss of generality as any finite set S can be bijectively mapped to a
subset of binary strings of length ⌈log2 |S|⌉.
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Definition 2.1 (d-wise Independence). A (K,X ,Y)-keyed function f is said
to be a d-wise independent hash function, if for distinct x1, . . . , xd ∈ X and any
y1, . . . , yd ∈ Y, we have Pr

K ←$K
(fK(x1) = y1, . . . , fK(xd) = yd) = |Y|−d.

2.1 Security Definitions

A distinguisher A is simply a binary-output oracle-algorithm, denoted AO when
run with oracle O. The computational distance between oracle O1 and oracle O0

with respect to a distinguisher A is defined as:

CD(O1 −O0 | A) :=
∣∣∣Pr (AO1 = 1

)
− Pr

(
AO0 = 1

)∣∣∣ .
We say that A is a (q, ℓ, σ, τ)-distinguisher if it runs in time at most τ and makes
at most q queries to its oracle, each of length at most ℓ bits and a total length of
at most σ bits across all queries. For oracles operating over fixed-length inputs
and/or outputs, we simplify this to a (q, τ)-distinguisher, and further, drop the
time parameter for all computationally unbounded distinguishers. Without loss
of generality, we assume that A never makes a pointless10 query.

H-coefficients Technique: Suppose A is computationally unbounded and deter-
ministic11 distinguisher. Let Θ1 (res. Θ0) denote the transcript generated by
A’s interaction with O1 (res. O0). A transcript ω is said to be attainable if
Pr (Θ0 = ω) > 0. The following result due to Patarin is an ubiquitous tool in
information-theoretic security proofs. A proof of this result is available in mul-
tiple papers including [37,9,25].

Theorem 2.1 (H-coefficient Technique [37]). Let Ω be the set of all at-
tainable transcripts. For some ϵ1, ϵ2 ≥ 0, suppose there is a set Ωbad ⊆ Ω such
that:

• Pr (Θ0 ∈ Ωbad) ≤ ϵ1;

• for any ω /∈ Ωbad, Pr (Θ1 = ω) ≥ (1− ϵ2)Pr (Θ0 = ω).

Then, CD(O1 −O0 | A) ≤ ϵ1 + ϵ2.

Pseudorandom Function (PRF): A (K,X ,Y)-keyed function F is said to be
a (q, ℓ, σ, τ, ϵ)-PRF if for all (q, ℓ, σ, τ)-distinguisher A

Advprf
F (A) := CD(FK − $f | A) ≤ ϵ, (1)

for K ←$K and $f ←$F(X ,Y).

Pseudorandom Permutation (PRP): A (K,X )-keyed permutation E is said
to be a (q, ℓ, σ, τ, ϵ)-PRP if for all (q, ℓ, σ, τ)-distinguisher A

Advprp
E (A) := CD(EK − π | A) ≤ ϵ, (2)

10 A query is pointless if it is either a duplicate query or if the corresponding response
is deducible from the previous queries.

11 This is without loss of generality for computationally unbounded distinguishers.
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for K ←$K and π←$P(X ).

IV-based Encryption: A (K, T ,M)-IV-based encryption scheme (abbreviated
as IVE), denoted E , is a tuple of (K, T ×M,M)-keyed functions (E .Enc, E .Dec)
that satisfies:

1. the correctness condition: E .DecK(T, E .EncK(T,M)) = M , and

2. the length-preserving property: |E .EncK(T,M)| = |M |.

for all (K,T,M) ∈ K × T ×M. It is customary to refer to E .Enc as the en-
cryption algorithm and E .Dec as the decryption algorithm, with T ∈ T being
the initialization vector (IV). The outputs of E .Enc and E .Dec are referred as
ciphertext and plaintext, respectively.

E is said to achieve (q, ℓ, σ, τ, ϵ)-random-IV privacy (Priv$) security if for all
(q, ℓ, σ, τ)-distinguisher A that is restricted to sample mutually independent and
uniform at random IVs across queries

Advpriv$
E (A) := CD(E .EncK − $e | A) ≤ ϵ, (3)

for K ←$K and the oracle $e takes (T,M) ∈ T ×M as input and outputs a
uniform random string of length |M | bits.

Convention: Throughout we fix some n ∈ N+ as the block size. Let B := {0, 1}n
and set T := B2. By extension, B∗ := ∪∞i=1Bi, denotes the set of all block-
strings. We may refer to any element in B and T as a block and a diblock,
respectively. In this context, the block length of any x ∈ {0, 1}≤∞ is defined as,
∥x∥ := |zsn(x)|/n = ⌈|x|/n⌉. Similarly, ∥ℓ∥ := ⌈ℓ/n⌉ for all ℓ ∈ N.

Pseudorandom Blocks Generator (PRBG) and PRBG-based IVE: Let G
be a (K, T ×N,B∗)-keyed function satisfying ∥GK(T,m)∥ = m for all (K,T,m) ∈
K×T ×N. G is said to be a (q, ℓ, σ, τ, ϵ)-PRBG if for all (q, ℓ, σ, τ)-distinguishers
A that is restricted to sample mutually independent and uniform at random
values in T across all queries

Advprbg
G (A) := CD(GK − $g | A) ≤ ϵ, (4)

for K ←$K and the oracle $g takes (T,m) ∈ T × N as input and outputs a
uniform random string of length m blocks.

One can define a natural (K, T ×M,M)-IVE E based on G as follows:

E .EncK(T,M) := ⌊GK(T, ∥M∥)⌋|M | ⊕M,

E .DecK(T,C) := ⌊GK(T, ∥C∥)⌋|C| ⊕ C,
(5)

for all K ∈ K, T ∈ T , and M,C ∈ M. Here, G is referred as the keystream
generator of E . Indeed, most of the existing IVE follow this approach, and all
the IVE schemes in this paper also employ this technique. The following security
reduction follows directly by definitions.
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Proposition 2.1. For all (q, ℓ, σ, τ)-Priv$ distinguisher A, there exists a
(q, n∥ℓ∥, n∥σ∥+ nq,O(τ))-PRBG distinguisher B such that

Advpriv$
E (A) ≤ Advprbg

G (B).

Thus, in context of the security of such IVEs, it is sufficient to show that the
underlying keystream generator is a secure PRBG.

Deterministic Authenticated Encryption: A (K,H,M, T )-deterministic
authenticated encryption scheme (abbreviated as DAE), denoted Π, is a tuple
(Π.Enc,Π.Dec) where:

• Π.Enc is a (K,H×M,M×T )-keyed function,

• Π.Dec is a (K,H×M× T ,M∪ {⊥})-keyed function,

that satisfies:

1. the correctness condition: Π.DecK(A,Π.EncK(A,M)) = M , and

2. the fixed-stretch property: |Π.EncK(A,M)| = |M |+ 2n,

for all (K,A,M) ∈ K × H ×M. It is customary to refer to Π.Enc as the en-
cryption algorithm and Π.Dec as the decryption algorithm, with A ∈ H being
the header or associated data. The outputs of Π.Enc and Π.Dec are referred to
as ciphertext-tag and plaintext, respectively. While DAE does not inherently
include the concept of a nonce, we will treat it as part of the associated data for
interoperability purposes.

Π is said to achieve (q, ℓ, σ, τ, ϵ)-deterministic authenticated encryption (DAE)
security if for all (q, ℓ, σ, τ)-distinguisher A:

Advdae
Π (A) := CD((Π.EncK ,Π.DecK)− ($a,⊥) | A) ≤ ϵ, (6)

for K ←$K, the oracle $a takes (A,M) ∈ H×M as input and outputs a uniform
random string of length |M | + 2n bits, and the oracle ⊥ denotes the constant
function ⊥ : H×M× T → {⊥}.

3 Towards Optimally Secure DAE

Our objective in this section is to lay the foundation towards a DAE scheme.
Rogaway and Shrimpton’s synthetic IV or SIV [43] is a generic technique to
construct a DAE scheme given any PRF and any IVE E . First, we describe the
SIV paradigm along with the well-known SIV security reduction in Section 3.1.
Next, in Section 3.2, we employ the Hash-then-modified-Benes approach due
to Cogliati et al. [12] to construct an optimally secure 2n-bit pseudorandom
function F∗.
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3.1 The SIV Paradigm

Definition 3.1. Given a (K1,H × M, T )-keyed function F and a (K2, T ×
M,M)-IVE E, we define a (K1 × K2,H × M, T )-DAE, called the SIV[F, E ]
construction as follows: for all (K1,K2) ∈ K1 × K2, (A,M) ∈ H × M, and
(C, T ) ∈M× T

SIV.EncK1,K2
(A,M) := (E .EncK2

(FK1
(A,M),M),FK1

(A,M))

SIV.DecK1,K2(A,C, T ) :=

{
E .DecK2

(C, T ) if FK1
(A, E .DecK2

(C, T )) = T

⊥ otherwise.

The following result is the Iwata-Minematsu adaptation [22] of a celebrated
generic composition result shown in multiple papers, including [43, Theorem
2], [20, Corollary 2.3], and [36, Theorem 1].

Lemma 3.1 (SIV Security). For any (q, ℓ, σ, τ)-DAE distinguisher A, there
exists a (q, ℓ, σ,O(τ))-PRF distinguisher B and a (q, ℓ, σ,O(τ))-Priv$ distin-
guisher C, such that

Advdae
SIV[F,E](A) ≤ Advprf

F (B) +Advpriv$
E (C) + q

22n
.

The SIV security lemma effectively states that we can construct an optimally
secure DAE by combining an optimally secure PRF F and an optimally secure
IVE E .

3.2 F∗: Optimally Secure Variable-Length Input PRF

In [12], Cogliati et al. proposed a generic paradigm to construct optimally secure
PRFs, called Hash-then-modified Benes (or HtmB).

The high level idea is as follows: first, the variable-length input is hashed into
a 2n-bit value using a hash function with certain collision-freeness properties.
This 2n-bit hash value is then fed through the modified Benes (or mBenes)
function [1] to generate the output. Although mBenes can produce a 2n-bit
output, the authors truncate the output to the first n-bits. We emphasize that
this has no bearing on the security of the resulting construction, and was done
solely for practical reasons. See [12, Remark 4.1] for more details.

In this paper, we will consider an HtmB instance with full 2n-bit output. In
particular, we reuse the HtmB instance 2k-HtmB-p2 from [12], albeit with the full
2n-bit output, and call it 2k-HtmB-p2∗. We instantiate this construction with
the hash layer from PMAC+ [47], and call it PHASH∗. The resulting (P(B)3,H×
M, T )-keyed function F∗ is described in Algorithm 1.

Theorem 3.1 (F∗ Security). Let q, ℓ, σ ∈ N+ such that n3 ≤ 2
n
2−1, n2q ≤

2n−4 and ∥ℓ∥ ≤ 2
n
2−1. Then, for any (q, ℓ, σ)-PRF distinguisher A we have

Advprf
F∗ (A) ≤

134(∥σ∥+ q)

2n
+

392(∥σ∥+ q)2

22n
+

128q2

23n
.
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Algorithm 1 The F∗ function.

1: function F∗
π1,π2,π3

(A,M)

=== (U, V )← PHASH∗
π1
(A,M) ===

2: (D[1], . . . , D[ℓ])← ozsn(A) ∥ ozsn(M)
3: U ← 0n

4: V ← 0n

5: for i = 1 . . . ℓ do
6: ∆i ← 2i · π1(0

n)⊕ 22i · π1(10
n−1)

7: U ← U ⊕ π1(D[i]⊕∆i)
8: V ← 2 · V ⊕ π1(Di ⊕∆i)

9: U ← 0 ∥ ⌊U⌋n−1

10: V ← 1 ∥ ⌊V ⌋n−1

======

11: X ← π2(U)⊕ V
12: Y ← π2(V )⊕ U
13: T [1]← π3(00 ∥ ⌊X⌋n−2)⊕ π3(01 ∥ ⌊Y ⌋n−2)
14: T [2]← π3(10 ∥ ⌊X⌋n−2)⊕ π3(11 ∥ ⌊Y ⌋n−2)
15: T ← T [1] ∥ T [2]
16: return T

A formal proof of this result follows from the proof of [12, Theorem 7.3], where
the underlying hash function is instantiated with PHASH∗. The analysis of this
hash function is similar to the analysis presented in [12, Section 6.2]. See Ap-
pendix A for further details.

With F∗, we have been able to exploit the HtmB paradigm to construct an
optimally secure variable-length input PRF. Now, all that is required is to in-
stantiate SIV with an optimally secure IVE that works with 2n-bit IV values.
Unfortunately, barring SIV-r construction [22], there are not many options in
this direction. While SIV-r can theoretically achieve close to optimal security,
it does so at a very high cost in terms of efficiency.12 In particular, to achieve
security up to 2

rn
r+1 queries, it requires r independent permutations and makes

rℓ calls to process ℓ-block messages. Clearly, this becomes practically infeasible
even for a modest value of r, say 4.

We devote the rest of this paper to gradually build towards an efficient solu-
tion for this problem, and as a side-effect, obtain an optimally secure DAE.

4 IV0: Optimally Secure IVE for Short Inputs

In our quest for an optimally secure IVE, we first propose the IV0 paradigm for
handling short-length inputs. Fix:

• a rate parameter r, representing the maximum number of input blocks,

12 Here, efficiency is measured in terms of the rate and key size.
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• a (T ,N,B)-keyed function H,

where H serves as an implicit parameter for IV0. At its core, IV0 utilizes a
(P(B), T ×N× [r],B≤r)-keyed function, called Star, as the underlying keystream
generator. Algorithm 2 provides a complete description of this function.

Given Star, we now define IV0 as a (P(B), T ,B≤r)-IVE as follows: for all
π ∈ P(B), T ∈ T and M,C ∈ B≤r:

IV0.Encπ(T,M) := Starπ(T, 1, ∥M∥)⊕M (7)

IV0.Decπ(T,C) := Starπ(T, 1, ∥C∥)⊕ C (8)

One might question whether the second argument in the definition of Star serves
any purpose. Although it is fixed in IV0, we include it in the argumentation to
ensure notational simplicity in latter constructions. Starmakes r′+1 permutation
calls to process r′-block input, where r′ ≤ r. Thus, the rate for IV0 is r′/(r′+1)
for any r′-block input. Theorem 4.1 shows that IV0 achieves near-optimal security
for small r.

Algorithm 2 The Star function.

1: function Starπ(T , j, r
′)

2: ĵ ← (j − 1)(r + 1)
3: Xj [0]← HT (ĵ)
4: Yj [0]← π(Xj [0])
5: for k = 1 . . . r′ do
6: Xj [k]← HT (ĵ + k)
7: Yj [k]← π(Xj [k])
8: Zj [k]← Yj [0]⊕ Yj [k]

9: Zj ← Zj [1] ∥ . . . ∥ Zj [r
′]

10: return Zj

Theorem 4.1 (IV0 Security). Fix some n, r, q, σ ∈ N+ such that n3r2 ≤
2

n
2−5, σ ≤ qrn and n2r2(∥σ∥ + q) ≤ 2n/48. Suppose H is a 2-wise independent

hash function. Then, for all (q, rn, σ)-Priv$ distinguisher A, we have

Advpriv$
IV0 (A) ≤ 17r(∥σ∥+ q + r)

2n
.

Proof Overview: A detailed proof of this theorem is postponed to Section 9.
Here, we briefly outline the approach. For simplicity in the discussion, we assume
that all the queries are r-block long, i.e., σ = nrq. First, it is sufficient to upper
bound the statistical distance between Z and U ←$Brq, where Z is the output
across all queries. To bound this, we need a strong lower bound on Pr (Z = z)
for most z ∈ Brq, which leads to analyzing the system of equations:

S := {Y i
1 [0]⊕ Y i

1 [k] = zi1[k] : i ∈ [q], k ∈ [r]}

A valid solution to these q bivariate equations must satisfy the so-called
bijectively-consistent condition (see Section 2). We apply Patarin’s mirror the-
ory [11] to lower bound the number of solutions to S satisfying this condition.
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Applying mirror theory typically requires specific restrictions on S. To express
and analyse these, we use a graph-theoretic approach, associating a dependency
graph (see Section 8 for details) with (X,Z) and reformulating the aforemen-
tioned combinatorial problem as an enumeration of certain vertex-labelings of
this graph. We show that if the graph is acyclic and composed of small compo-
nents, mirror theory gives the desired lower bound on valid labelings, leading to
the security bound. Finally, we prove that the said dependency graph for random
(X,Z) meets these conditions with overwhelming probability.

4.1 A 2-wise Independent Hash Function

Theorem 4.1 specifies that IV0 must be instantiated with a 2-wise independent
hash function. While one can use any one of the off-the-shelf algebraic hash
functions [44,45], they usually involve multiplications by arbitrary field elements
in F2n , which can be computationally expensive for large n. Instead, we propose
the following 2-wise independent hash function.

Definition 4.1 (Galois-Wegman-Carter Hash). Define the (F2
2n ,N,F2n)-

hash function gwc as: for all K = (K0,K1) ∈ F2
2n and i ∈ N,

gwcK(i) := K0 ⊕ 2(i mod 2n)+1 ·K1.

Since the rank of [
1 2(i mod 2n)+1

1 2(j mod 2n)+1

]
is 2 for any 0 ≤ i ̸= j ≤ 2n−1 − 1, ensuring that the equations gwcK(i) = x
and gwcK(j) = y are linearly independent, yielding a unique solution given any
x and y. Moreover, for random K ←$F2

2n , each of these solutions hold with
1/22n probability, making gwc a 2-wise independent hash function. We use gwc
whenever a 2-wise independent hash function is required. Note that we do not
claim any novelty with respect to this hash function; similar constructions have
been implicitly used in prior works [47,31,7].

5 IV1: Extending IV0 to Variable-Length Inputs

As discussed in the preceding section, IV0 is an efficient and highly secure IVE,
provided the input size remains small, typically up to a small multiple of n.
For longer, arbitrarily sized inputs, this straightforward approach encounters a
technical limitation: the r = O(

√
2n/n2q) restriction in Theorem 4.1. However,

it is possible to extend IV0 to accommodate general scenarios. We refer to this
updated construction as IV1. At a high level, this can be achieved by dividing
the input into chunks of size at most r blocks and applying IV0 to each chunk
individually. In this context, for any x ∈ {0, 1}∗, ∥x∥r := ⌈∥x∥/r⌉ is referred as
the chunk-length of x. Similarly, ∥ℓ∥r := ⌈∥ℓ∥/r⌉ for all ℓ ∈ N.

We define an efficient extension of Star (see Algorithm 2), called GiantStar,
which is a (P(B), T ×N,B∗)-keyed function and acts as the underlying keystream
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generator in IV1. Algorithm 3 provides a complete description of this function.
Given GiantStar, we now define IV1 as a (P(B), T , {0, 1}∗)-IVE as follows: for all
π ∈ P(B), T ∈ T and M,C ∈ {0, 1}∗:

IV1.Encπ(T,M) := ⌈GiantStarπ(T, ∥M∥)⌉|M | ⊕M (9)

IV1.Decπ(T,C) := ⌈GiantStarπ(T, ∥C∥)⌉|C| ⊕ C (10)

To produce an m-block output, GiantStar requires exactly m+ ⌈m/r⌉ permuta-
tion calls. Thus, the rate for IV1 is approx. r/(r+ 1). Theorem 5.1 below states
the security bound for IV1.

Algorithm 3 The GiantStar function.

1: function GiantStarπ(T , ∥ℓ∥)
2: if ∥ℓ∥ = 0 then
3: return ⊥
4: r′ ← ∥ℓ∥ mod r
5: for j = 1 . . . ∥ℓ∥r − 1 do
6: Zj ← Starπ(T, j, r)

7: if r′ = 0 then
8: r′ ← r
9: Z∥ℓ∥r ← Starπ(T, ∥ℓ∥r, r′)
10: Z ← Z1 ∥ . . . ∥ Z∥ℓ∥r
11: return Z

Theorem 5.1 (IV1 Security). Fix some n, r, q, ℓ, σ ∈ N+ such that n3r2 ≤
2

n
2−5, σ ≤ qℓ and n2r2(∥σ∥ + q) ≤ 2n/48. Suppose H is instantiated with the

gwc hash function. Then, for all (q, ℓ, σ)-Priv$ distinguisher A, we have

Advpriv$
IV1 (A) ≤ 16r2∥ℓ∥(∥σ∥+ q + r)2

22n
+

18r(∥σ∥+ q + r)

2n
.

Proof Overview: A detailed proof of this theorem is provided in Section 10. The
proof is inherently similar to the proof of Theorem 4.1, except for an additional
bad event analysis and some notational extensions. Again, we have to analyze
system of equations of the form:

S := {Y i
j [0]⊕ Y i

j [k] = zij [k] : i ∈ [q], j ∈ [∥ℓi∥r], k ∈ [r]}

where ℓi denotes the length of the i-th query. As in the case of Theorem 4.1, a
valid solution to this system must also satisfy the bijectively-consistent condition.
We again apply mirror theory to provide a lower bound on the number of valid
solutions to S, leveraging our graph-theoretic formulation as before.

A key difference between this proof and that of Theorem 4.1 lies in the
probability bound of a large component in the random dependency graph. In
this case, due to the limited randomness and the possibility of multiple chunks
per query, an additional term of O(r2∥ℓ∥(∥σ∥ + q + r)2/22n) appears in the
security bound.
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Remark 5.1. Note the subtle change in the theorem statement of IV1 compared
to IV0: the hash function H is specifically instantiated with gwc. This choice is
necessary to obtain a bound of O(r2∥ℓ∥(∥σ∥+ q+ r)2/22n). While other instan-
tiations may yield similar bounds, our proof approach would only guarantee a
bound of O(∥ℓ∥(∥σ∥ + q)/2n) for a general 2-wise independent hash function,
imposing a stricter limit on ℓ under the same query limit.

Remark 5.2. In [30], Minematsu and Tsunoo proposed a weak PRF 13 construc-
tion called Extended PRT (ERT), an extension of the Damg̊ard-Neilsen weak
PRF construction PRT [17]. Their construction uses a tree-based structure built
on a weak PRF primitive. While ERT improves upon PRT by reducing the key
size by about 63%, it still requires a key size proportional to the tree depth. In
contrast, IV1 requires only a single key and is inherently parallel.

6 IV2: Optimally Secure IVE for Variable-Length Inputs

While IV1 handles arbitrary-length inputs, its security degrades linearly with
input length, which is undesirable for applications with long inputs. To address
this, we introduce IV2, an IVE that achieves optimal security independent of the
maximum message length, providing an ℓ-free security bound. Essentially, it is a
variant of IV1, where each chunk is processed with an independent and uniform
IV. This makes it equivalent to IV0 but with at most ∥σ∥r + 2q invocations of
Star, instead of q as in IV0.

Let G denote a (K, T ×N,B∗)-keyed function. Given G, we first define a (K×
P(B), T ×N,B∗)-keyed function, called Snowflake, which acts as the underlying
keystream generator in IV2. Algorithm 4 provides a complete description of this
function. Given Snowflake, we now define IV2 as a (K×P(B), T , {0, 1}∗)-IVE as
follows: for all K ∈ K, π ∈ P(B), T ∈ T and M,C ∈ {0, 1}∗:

IV2.EncK,π(T,M) := ⌈SnowflakeK,π(T, ∥M∥)⌉|M | ⊕M (11)

IV2.DecK,π(T,C) := ⌈SnowflakeK,π(T, ∥C∥)⌉|C| ⊕ C (12)

To produce an m-block output, Snowflake requires exactly m + ⌈m/r⌉ permu-
tation calls and ⌈m/r⌉ calls to G. Thus, the rate of IV2 is contingent upon
the efficiency of G and the relative amortization of G calls for long messages.
Theorem 5.1 below states the security bound for IV2.

Theorem 6.1 (IV2 Security). Fix some n, r, q, ℓ, σ ∈ N+ such that n3r2 ≤
2

n
2−5, σ ≤ qℓ and n2r2(∥σ∥ + q) ≤ 2n/48. Suppose H is a 2-wise indepen-

dent hash function. Then, for all (q, ℓ, σ)-Priv$ distinguisher A, there exists a
(q, 2ℓ+2n, 2σ+6nq)-PRBG distinguisher B and a (∥σ∥r+2q, rn, σ+4rnq)-Priv$
distinguisher C such that

Advpriv$
IV2 (A) ≤ Advprbg

G (B) +Advpriv$
IV0 (C) + 4(∥σ∥+ 3q)2

22n
.

13 In context of this paper, a weak PRF is equivalent to the notion of PRBG defined
in Section 2.1.
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Algorithm 4 The Snowflake function.

1: function SnowflakeK,π(T , ∥ℓ∥)
2: if ∥ℓ∥ = 0 then
3: return ⊥
4: r′ ← ∥ℓ∥ mod r
5: W1 ∥ . . . ∥W∥ℓ∥r ←2n GK(T, 2∥ℓ∥r)
6: for j = 1 . . . ∥ℓ∥r − 1 do
7: Zj ← Starπ(Wj , 0, r)

8: if r′ = 0 then
9: r′ ← r
10: Z∥ℓ∥r ← Starπ(W∥ℓ∥r , 0, r

′)
11: Z ← Z1 ∥ . . . ∥ Z∥ℓ∥r
12: return Z

Proof Overview: From the security bound, the security of IV2 reduces to IV0 if
G is replaced by $g, at the cost of Advprbg

G (B). With no IV (i.e. T ) collisions,
each chunk has independent, uniform IVs. A cursory glance at Algorithm 4 then
shows that one can construct C that perfectly simulates the oracle access to this
modified IV2 using oracle access to IV0, as long as there are no collisions among
the IV inputs of IV0. Note that the additional term of O(∥σ∥+3q)2/22n) accounts
for the IV collisions: O(q2/22n) for an IV collision in G, and O((∥σ∥+2q)2/22n)
for an IV collision in Star. See Appendix B for a detailed proof.

6.1 Instantiating the G Function

Theorem 6.1 dictates that we instantiate G with a secure PRBG. Recall that
G is invoked at most ∥ℓ∥r times for any ℓ-bit input. So, the effect of a slightly
heavier G will be somewhat milder on the rate of IV2. In Algorithm 5 we propose
a (P(B)2, T × N,B∗)-keyed function, called G∗, which is based on the HtmB
paradigm [12]. It generates diblocks of output in parallel (see also Fig. 6.1),
where each diblock index will correspond to a chunk index in Snowflake. For the
j′-th diblock, it generates a 2n-bit string (Uj′ [1], Uj′ [2]) as follows:

Uj′ [1] = 0 ∥ (⌊T [1]⌋n−1 ⊕ ⟨j
′⟩n−1), (13)

Uj′ [2] = 1 ∥ (⌊T [2]⌋n−1 ⊕ ⟨j
′⟩n−1), (14)

where T = (T [1], T [2]) denotes the 2n-bit IV input of G∗. This initial 2n-bit is
then fed to the modified Benes [1,41] function that generates the 2n-bit output
keystream Wj′ . In the following lemma, we show that G∗ is a secure PRBG.

Lemma 6.1 (G∗ Security). Fix some n, r, q, ℓ, σ ∈ N+ such that n3 ≤ 2
n
2−5,

σ ≤ qℓ and n2(∥σ∥ + q) ≤ 2n/48. Then, for all (q, ℓ, σ)-PRBG distinguisher A
we have

Advprbg
G∗ (A) ≤ 11(∥σ∥+ q)

2n
+

49(∥σ∥+ q)2

22n
.
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Algorithm 5 The G∗ function.

1: function G∗
π1,π2

(T , ℓ)
2: if ℓ = 0 then
3: return ⊥
4: m← ⌈ℓ/2⌉
5: for j′ = 1 . . .m do
6: j ← 2j′ − 1
7: Uj′ [1]← 0 ∥ (⌊T [1]⌋n−1 ⊕ ⟨j

′⟩n−1)
8: Uj′ [2]← 1 ∥ (⌊T [2]⌋n−1 ⊕ ⟨j

′⟩n−1)
9: Vj′ [1]← π1(Uj′ [1])⊕ Uj′ [2]
10: Vj′ [2]← π1(Uj′ [2])⊕ Uj′ [1]
11: Xj [0]← 00 ∥ ⌊Vj′ [1]⌋n−2

12: Xj [1]← 01 ∥ ⌊Vj′ [2]⌋n−2

13: Xj+1[0]← 10 ∥ ⌊Vj′ [1]⌋n−2

14: Xj+1[1]← 11 ∥ ⌊Vj′ [2]⌋n−2

15: Wj [1]← π2(Xj [0])⊕ π2(Xj [1])
16: Wj+1[1]← π2(Xj+1[0])⊕ π2(Xj+1[1])
17: Wj′ ←Wj [1] ∥Wj+1[1]

18: W ←W1 ∥ . . . ∥Wm

19: return ⌈W ⌉nℓ

Proof Overview: The proof ideas for this lemma are similar to those of the
PRBG constructions discussed. We need to show that the mirror theory condi-
tions hold for the system of equations:

{π2(Xj′ [0])⊕ π2(Xj′ [1]) = Wj′ [1] : j ∈ [ℓ], b ∈ {0, 1}}.

This is achieved using techniques from [12], with mirror theory completing the
proof. See Appendix F for further details.

We instantiate IV2 with G∗, and refer the resulting instance as IV2∗. Using
Theorem 6.1 and 4.1, and Lemma 6.1, we have the following corollary:

Corollary 6.1 (IV2∗ Security). Fix some n, r, q, ℓ, σ ∈ N+ such that n3r2 ≤
2

n
2−5, σ ≤ qℓ and n2r2(∥σ∥ + q) ≤ 2n/48. Suppose H is a 2-wise independent

hash function. Then, for all (q, ℓ, σ)-Priv$ distinguisher A we have

Advpriv$
IV2∗ (A) ≤

28r(∥σ∥+ 2q + r)

2n
+

54(∥σ∥+ 4q)2

22n
.

Note that, IV2∗ achieves an ℓ-independent n-bit security bound, whereas IV1
contains an ℓ factor in its security bound. However, IV1 requires r + 1 block
cipher calls per chunk, where the chunk size is r, leading to its rate r/(r + 1),
whereas IV2∗ takes a few extra permutation calls per chunk (i.e. r+7 permutation
calls, leading to a rate of r/(r + 7)) compared to the IV1 construction.
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T [1]

⟨j′⟩n−1

T [2]

⌊·⌋1

⌊·⌋1

⊕

⊕

π0
1

π1
1

⊕

⊕

⌊·⌋2

⌊·⌋2

π00
2

π01
2

π10
2

π11
2

⊕

⊕

Wj′ [1]

Wj′ [2]

Fig. 6.1. The j′-th diblock of the keystream generated by G∗ with IV T , where ⌊·⌋d
denotes the chopped version of input to the rightmost n − d bits, and πd

k denotes the
injective function πk(d ∥ ·).

7 The DENC Family of DAE

We propose two SIV-based DAE constructions, namely DENC1 and DENC2 using
F∗, IV1 and IV2∗. Formally, we define:

DENC1 := SIV [F∗, IV1] and DENC2 := SIV [F∗, IV2∗] , (15)

where the underlying hash function H in both IV1 and IV2∗ is instantiated
with the gwc hash. Thus, DENC1 is a (P(B)4,H × M, T )-DAE and DENC2
is a (P(B)6,H×M, T )-DAE.

7.1 DAE Security of the DENC Family

Using Lemma 3.1, Theorem 3.1, Theorem 5.1 and Corollary 6.1 we immediately
get the following corollaries:

Corollary 7.1 (Security Theorem of DENC1). Fix some n, r, q, ℓ, σ ∈ N+

such that n3r2 ≤ 2
n
2−5, σ ≤ qℓ, ∥ℓ∥ ≤ 2

n
2−1, and n2r2(∥σ∥+ q) ≤ 2n/48. Then,

for all (q, ℓ, σ)-DAE distinguisher A, we have

Advdae
DENC1(A) ≤

152r(∥σ∥+ q + r)

2n
+

409r2∥ℓ∥(∥σ∥+ q + r)2

22n
+

128q2

23n
.

Corollary 7.2 (Security Theorem of DENC2). Fix some n, r, q, ℓ, σ ∈ N+

such that n3r2 ≤ 2
n
2−5, σ ≤ qℓ, ∥ℓ∥ ≤ 2

n
2−1, and n2r2(∥σ∥+ q) ≤ 2n/48. Then,

for all (q, ℓ, σ)-DAE distinguisher A, we have

Advdae
DENC2(A) ≤

162r(∥σ∥+ 2q + r)

2n
+

446(∥σ∥+ 4q)2

22n
+

128q2

23n

7.2 On Practical Instantiations of DENC1 and DENC2.

In practice the independent instance of random permutations in DENC1 and
DENC2 can be easily replaced with independently keyed instances of any efficient
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keyed permutation, most notably AES. In terms of security, this replacement
costs at most a small14 constant multiple of the PRP advantage against the
chosen keyed permutation.

It is worth mentioning that both constructions offer nearly n-bit security,
although the security bound of DENC1 has an additional factor of “ℓ”, while the
security bound of DENC2 is ℓ-free. However, the enhancement in the security
bound comes at the expense of a slight increase in the number of block cipher
calls and two additional block cipher keys. Depending on the application, if the
message sizes are small (e.g., ℓ = O(poly(n))), it is advisable to use DENC1. On
the other hand, if ℓ = O(2n/4), using DENC1 provides only 7n/8-bit security,
whereas DENC2 always offers nearly n-bit security. We consider the chunk size
r to be roughly O(n), the block size of the underlying block ciphers of the
constructions.

We implemented15 DENC1 and DENC2 for chunk size of r = 64 with AES-128
as the underlying block cipher. Table 2 compares the software performance of
DENC1 and DENC2 with existing authenticated encryption (AE) schemes. We
focus primarily on schemes that are either deterministic or offer nonce-misuse
resistance. For this comparison, we reuse performance data from [10]. This is
a fair comparison, as DENC1 and DENC2 were benchmarked under identical
conditions: our measurements were conducted on an Intel Skylake processor (i7-
6700 CPU @ 4.20 GHz) with compiler optimization level -O2. In [10], authors
note that the performance of ZAE is estimated based on the speed of Deoxys-
BC-256 in counter mode. The results clearly demonstrate that both DENC1 and

Table 2. Software performance comparison of our modes DENC1 and DENC2 with
several prominent deterministic and/or nonce-misuse resistant AE schemes. The per-
formance figures presented are throughputs, in units of cycles-per-byte (cpb).

AE Primitive
Length

Reference
1kB 4kB 64kB

ChaCha20-Poly1305 – 2.17 1.55 1.47 [10]

AES-GCM AES-128 1.23 0.63 0.56 [10]

AES-GCM-SIV AES-128 1.57 0.89 0.81 [10]

Deoxys-I Deoxys-BC-256 1.38 0.91 0.77 [10]

Deoxys-II Deoxys-BC-256 2.19 1.68 1.52 [10]

ZAE Deoxys-BC-256 ≥ 1.94 ≥ 1.41 ≥ 1.25 [10]

SCM AES-128 0.94 0.86 0.83 [10]

DENC1 AES-128 0.96 0.89 0.84 This work

DENC2 AES-128 1.04 0.95 0.91 This work

DENC2 are highly competitive within the category of DAE schemes, including
AES-GCM-SIV. This is not surprising, as both schemes are highly parallelizable
and significantly benefit from the pipelining support for AES in modern micro-
processors. Specifically, on the Skylake processor, it is possible to pipeline four
AES calls concurrently, which is especially advantageous in DENC2, where it
helps amortize the overhead of the additional AES calls per chunk.

14 For DENC1 it is 4 and for DENC2 it is 6.
15 A reference implementation in C is included as accompanying code.
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8 Dependency Graphs and Vertex-Labelings

The security proofs for IV0 and IV1 employ a common graph-based analysis. We
abstract out this graph structure and present some important results on it. The
proofs of these results are postponed to Appendix C.

For some fixed q, c, r ≥ 1, let (c1, . . . , cq) be a sequence over [c] indexed by [q],
and (r1,1, . . . , rq,cq ) be a sequence over [r] indexed by {(i, j) ∈ [q] × [ci]}. Let
V = {(i, j, k) ∈ [q]× [ci]× (ri,j ]} and V|0 = V \ {(i, j, 0) : (i, j) ∈ [q]× [ci]}.

Definition 8.1 (Dependency Graph). To any sequences X and Z over B
and B \ {0n}, respectively, indexed by V and V|0, we associate an edge-labeled
bichromatic graph, denoted G, with vertex set V and edge set E consisting of two
types of edges:

• for all (i, j, k) ∈ V|0, (i, j, 0) and (i, j, k) are connected by a blue solid edge

labeled Zi
j [k], denoted (i, j, 0) Zi

j [k] (i, j, k).

• (i, j, k) ̸= (i′, j′, k′) ∈ V are connected by a red dotted edge labeled 0, denoted
(i, j, 0) 0 (i′, j′, k′), if Xi

j [k] = Xi′

j′ [k
′].

Whenever convenient, we will drop X and Z to lighten the notation. Fig. 8.1
illustrates a dependency graph. Let Eb and Er denote the set of blue and red
edges, respectively. We often write λ(e) to denote the label of edge e, and simi-
larly write χ(e) to denote the color of e. One can also view λ : E → Z ∪ {0} and
χ : E → {blue, red} as the labeling and coloring functions, respectively.

By extension, to any trail p = (e1, . . . , ek), we associate the label λ(p) :=
λ(e1)⊕· · ·⊕λ(ek). In a similar fashion, the trail p is said to be (colored) blue (res.
red) if and only if χ(ei) = blue (res. χ(ei) = red) for all i ∈ [k], and otherwise
the trail is said to be bichromatic. The following proposition characterizes two
simple properties of the dependency graph. A proof of this result follows directly
from the definition of dependency graphs.

Proposition 8.1. In any dependency graph G,

1. All blue paths must contain at most two edges.
2. All cycles must either be red or bichromatic.

Definition 8.2 (Star). For (i, j) ∈ [q]× [ci], the (i, j)-th star of G, denoted Sij,
is the subgraph induced by the edge set {{(i, j, 0), (i, j, k)} : k ∈ (ri,j ]} ⊆ Eb.

In other words, a star is a tree of distance two and contains only blue edges. Note
that, V(Sij) ∩ V(Si

′

j′) = ∅ for (i, j) ̸= (i′, j′), and V =
⊔

(i,j)∈[q]×[ci] V(S
i
j). Thus,

the stars partition the vertex set of G, and edges, if any, between two distinct
stars must always be red.

Definition 8.3 (Maximally blue). A maximally blue subgraph T of G is a
connected subgraph to which no more blue edges can be added without discon-
necting it.
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Fig. 8.1. A dependency graph. The vertex labels ijk = (i, j, k) are purely informational.

Definition 8.4 (Snowflake). For any k ∈ N+, a k-snowflake T of G is a
maximally blue subtree of that contains exactly k red edges.

Example 8.1. Consider the dependency graph illustrated in Fig. 8.1.

1. The graph consists of 5 stars, namely S11 , S12 , S21 , S31 , S32 .
2. The graph consists of several maximally blue subgraphs, including the star
S11 and the subgraph induced by the remaining stars.

3. The graph has several snowflakes, including the 0-snowflake S11 , the 3-
snowflake constructed by deleting the edges 313 0 314 and 121 0 326.

Proposition 8.2. For some k ≥ 0, let T be a k-snowflake of G. Then V(T ) =⊔
(i,j)∈I V(Sij), where I ⊆ {(i, j) ∈ [q]× [ci]} such that |I| = k + 1.

Definition 8.5 (Interesting Trail). For k = 0, a 0-interesting trail is simply
a blue path. For some k ≥ 1, a k-interesting trail is a bichromatic trail that starts
with a blue edge, and has exactly k red edges, with no two red edges adjacent to
each other.

Definition 8.6 (Circle-Graph). For some k ≥ 1, a k-circle is a k-interesting
cycle that ends with a red edge. G is said to be a circle-graph if it contains a
k-circle, for some k ≥ 1, and a circle-free graph otherwise.
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Definition 8.7 (Line-Graph). For some k ≥ 0, a k-line p is a k-interesting
path that ends with a blue edge, and has λ(p) = 0. G is said to be a line-graph if
it contains a k-line for some k ≥ 0, and a line-free graph otherwise.

Example 8.2. Consider the dependency graph illustrated in Fig. 8.1.

1. The graph consists of several interesting trails includ-
ing the 0-interesting trail (111, 1

1
0, 1

1
6), the 4-interesting trail

(211, 2
1
0, 1

2
3, 1

2
0, 1

2
1, 3

2
6, 3

2
0, 3

2
3, 2

1
5, 2

1
0, 2

1
2, 3

1
5, 3

1
0, 3

1
1) etc.

2. The graph has two circles: the 1-circle (314, 3
1
0, 3

1
3, 3

1
4) and the 3-circle

(123, 1
2
0, 1

2
1, 3

2
6, 3

2
0, 3

2
3, 2

1
5, 2

1
0, 1

2
3).

3. Suppose Z3
1 [2]⊕Z3

1 [5]⊕Z2
1 [2]⊕Z1

2 [3]⊕Z1
2 [2] = 0n. Then, the graph contains

a 2-line (312, 3
1
0, 3

1
5, 2

1
2, 2

1
0, 1

2
3, 1

2
0, 1

2
2).

Additional Notations: Let µ = |{(i, j) ∈ [q] × [ci]}| ≤ qc and ν = |V|0| =∑
(i,j)∈[q]×[ci] ri,j ≤ rµ. Then, |V| = µ+ ν ≤ µ(r + 1) ≤ 2µr ≤ 2qcr.

Proposition 8.3. For k ≥ 0:

1. The number of k-snowflakes is at most (4r2µ)k+1.
2. The number of k-lines is at most (2r2µ)k+1.
3. The number of (k + 1)-circles is at most (2r2µ)k+1.

8.1 Vertex-Labeling of Dependency Graph

Definition 8.8 (Valid Vertex-Labeling). A vertex-labeling Y : V → B of G
is said to be valid if:

1. for all (u, v) /∈ E, Y (u) ̸= Y (v), and
2. for all (u, v) ∈ E, Y (u)⊕ Y (v) = λ(u, v).

We write h(G) to denote the number of valid vertex-labelings for G.

One can also view a valid vertex-labeling Y as a sequence over B, indexed by
V, by writing Y i

j [k] = Y (i, j, k) for all (i, j, k) ∈ V. This view gives the following
interesting property for any valid vertex-labeling of G.

Proposition 8.4. If Y is a valid vertex-labeling of G[X,Z] then X and Y are
bijectively-consistent.

Note that, the above result also hints at another interesting property. The num-
ber of vertices with distinct labels is independent of the valid vertex-labeling
itself. In fact, using Proposition 8.4, this number is exactly

|X| := |{Xi
j [k] : (i, j, k) ∈ V}|.

Starting with Patarin’s foundational works [38,39,40], a series of pa-
pers [38,39,40,13,18,11] developed an elegant combinatorial technique, the so-
called mirror theory, to bound h(G) under the assumption that G satisfies:
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1. CF[X,Z]: G is circle-free,
2. LF[X,Z]: G is line-free, and
3. GSFξ[X,Z]: every component in G has less than ξ vertices,

for some fixed ξ ≥ 2. Borrowing nomenclature from Cogliati et al. [12], we say
that G is mirror theory compatible up to ξ if the following predicate holds:

MTCξ[X,Z] = CF[X,Z] ∧ LF[X,Z] ∧ GSFξ[X,Z] (16)

The following proposition reduces GSFξ[X,Z] to the existence of a (k − 1)-
snowflake in G, where k ≥ ⌈ξ/(r + 1)⌉.

Proposition 8.5. If G does not contain a (k − 1)-snowflake for all k ≥
⌈ξ/(r + 1)⌉ then GSFξ holds.

The following result due to Cogliati et al. [11] is the fundamental theorem on
valid vertex-labelings for mirror theory compatible dependency graphs.

Theorem 8.1 (Theorem 1 in [11]). Suppose |X| ≤
√
2n or

√
2n ≥ ξ(nξ+1),

and 1 ≤ |X| ≤ 2n/12ξ2 for some ξ ≥ 2. If MTCξ[X,Z] holds then

h(G[X,Z]) ≥
(2n)|X|

2nν
.

A rigorous and complete proof of this theorem is available in Cogliati et al. [11].

9 Proof of IV0 Security Theorem

First, by Proposition 2.1, we have

Advpriv$
IV0 (A) ≤ Advprbg

Star (B), (17)

for some (q, nr, σ+nq)-PRBG distinguisher B. Thus, it is sufficient to prove that
Star is a secure PRBG. We will use the H-coefficient terminology and technique
for this. Let O1 and O0 denote the oracles corresponding to Star (the real world)
and $g (the ideal oracle), respectively. We adopt notations similar to those in
Algorithm 2 to describe the transcripts. Specifically, for the i-th query:

• the input is given by (T i, ri,1) ∈ T × [r],
• the keystream output is given by Zi = (Zi

1[1], . . . , Z
i
1[ri,1]).

At this point, B knows HT i , allowing it to immediately deduce the inputs to the
underlying permutation (in both worlds). These inputs are denoted as

Xi = (Xi
1[0], . . . , X

i
1[ri,1]),

and satisfy Xi
1[k] = HT i(k) for all k ∈ (ri,1]. Let T := (T i)i∈[q], Z := (Zi)i∈[q]

and X := (Xi)i∈[q]. Let V and V|0 denote the index sets corresponding to the
sequences X and Z, respectively.
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In addition, we modify the oracles to release the outputs of the underlying
permutation after the query-response phase is over, but before B outputs its deci-
sion. This modification obviously does not decrease B’s advantage. These outputs
are denoted by the sequence Y := (Y i)i∈[q], where Y i = (Y i

1 [0], . . . , Y
i
1 [ri,1]).

In the real world, we store Y during the query-response phase and release it
afterward.

In the ideal world, we sample Y uniformly at random from the valid vertex
labelings of the dependency graph G[X,Z]. This requires Z to be a sequence
over B \ {0n}; otherwise, the graph is not defined. Consider the event

ZRO : ∃ (i, k) ∈ [q]× [ri,1], such that Zi
1[k] = 0n

Suppose ZRO does not occur. Then G[X,Z] is well-defined. Let L denote the set
of all valid vertex labelings of G. At this stage, the reader might foresee our
intention to use Theorem 8.1 to lower bound h(G). Let ξ := (n+1)(r+1). Recall
the predicate MTCξ : G is mirror theory compatible up to ξ.

Suppose MTCξ holds. Then, we set Y ←$L, and with a slight abuse of notation,
we write Y i

1 [k] = Y (i, 1, k) for all (i, k) ∈ [q]× (ri,1].

Finally, we define Bad := (ZRO ∨ ¬MTCξ), to capture the event that one of the
aforementioned assumptions does not hold. If Bad holds, then we set Y i

1 [k] = 0n

for all (i, k) ∈ [q]× (ri,1].

Transcript Analysis: Given the aforementioned sampling mechanism in the
ideal world, the set of all attainable transcripts Ω can be deduced as the set of all
tuples (t, x, y, z), where t, x, y, and z are sequences over B indexed analogously
as T , X, Y , and Z, respectively, satisfying the following relations for all (i, k):

• xi
1[k] = Hti(k).

• ¬ZRO ∧ MTCξ implies that:

• x and y are bijectively-consistent.
• zi1[k] = yi1[0]⊕ yi1[k], whenever k ̸= 0.

• ZRO ∨ ¬MTCξ implies that yij [k] = 0n.

We define Ωbad := {(t, x, y, z) ∈ Ω : Bad holds}. Any ω ∈ Ωbad is referred as bad,
and the remaining transcripts are all good.

Lemma 9.1. For r(∥σ∥+ q + r) ≤ 2n−3 and 2-wise independent hash function
H, we have

Pr (Θ0 ∈ Ωbad) ≤
17r(∥σ∥+ q + r)

2n
.

Proof. By definition, we have

Pr (Θ0 ∈ Ωbad) = Pr (Bad) ≤ Pr (ZRO) + Pr (¬MTCξ | ¬ZRO)

≤ ∥σ∥+ q

2n
+ Pr (¬MTCξ | ¬ZRO), (18)
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where the last inequality follows from the uniformity of Zi
1[k] for all (i, k) ∈

[q] × [ri,1], and the fact that
∑

i ri,1 ≤ ∥σ∥ + q. Let E := ¬ZRO ∧ GSFξ. For the
remaining terms on the r.h.s., Eq. (16) gives

Pr (¬MTCξ | ¬ZRO) ≤ Pr (¬GSFξ | ¬ZRO) + Pr (¬CF | E) + Pr (¬LF | E). (19)

We make the following claim with regards to the three terms on the r.h.s.:

Claim 9.1 For r(∥σ∥+ q + r) ≤ 2n−3, we have

Pr (¬GSFξ | ¬ZRO) ≤ ϵ, Pr (¬CF | E) ≤ ϵ, Pr (¬LF | E) ≤ 2ϵ,

where ϵ = 4r(∥σ∥+ q + r)/2n.

A proof of this claim is deferred to the Appendix D. The result follows by
combining Eq. (18) and (19) with Claim 9.1. ⊓⊔

Coming back to the main proof, fix a good transcript (t, x, y, z) ∈ Ω \Ωbad. Let
ν = |V|0|. By hypothesis x and y is bijectively-consistent. Using n3r2 ≤ 2

n
2−5

and n2r2(∥σ∥+ q) ≤ 2n/48 and Theorem 8.1, we have

Pr (Θ0 = (t, x, y, z)) ≤ 1

2nν
× 2nν

(2n)|x|
≤ 1

(2n)|x|
= Pr (Θ1 = (t, x, y, z)) (20)

The result now follows from Lemma 9.1, Eq. (20) and (17), and Theorem 2.1.

10 Proof of IV1 Security Theorem

Using Proposition 2.1, it is sufficient to bound Advprbg
GiantStar(B) for any

(q, ∥ℓ∥, ∥σ∥ + q)-PRBG distinguisher B. The proof idea is mostly the same as
in the proof of Theorem 4.1 given in the previous section. So, we borrow (and
extend) notations from Section 9 whenever convenient. For the i-th query:

• the input is given by (T i, ∥ℓi∥) ∈ T × [∥ℓ∥],
• the keystream output is given by Zi = (Zi

1, . . . , Z
i
∥ℓi∥r ), where for all (i, j) ∈

[q]×[∥ℓi∥r], Zi
j = (Zi

j [1], . . . , Z
i
j [ri,j ]), and ri,j = r for all (i, j) ∈ [q]×[∥ℓi∥r−

1], while ri,∥ℓi∥r ∈ [r].

At this point, B can deduce the inputs to the underlying permutation (in
both worlds). These inputs are denoted as Xi = (Xi

1, . . . , X
i
∥ℓi∥r ), where

Xi
j = (Xi

j [0], . . . , X
i
j [ri,j ]) for all (i, j) ∈ [q]×[∥ℓi∥r] such that Xi

j [k] = HT i(ĵ+k)

for all k ∈ (ri,1] and ĵ = (j − 1)(r + 1). Let T = (T i)i∈[q], Z = (Zi)i∈[q] and
X = (Xi)i∈[q]. Let V and V|0 denote the index sets corresponding to the se-
quences X and Z, respectively.

In addition, the oracles release the outputs of the underlying permutation
after the query-response phase is over, but before B outputs its decision. These
outputs are denoted by the sequence Y := (Y i)i∈[q], where Y

i = (Y i
1 , . . . , Y

i
∥ℓi∥r )
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and Y i
j = (Y i

j [0], . . . , Y
i
j [ri,j ]) for all (i, j) ∈ [q]× [∥ℓi∥r]. We skip the description

of the sampling strategy since it is identical to the one used in Section 9, with

ZRO : ∃ (i, j, k) ∈ [q]× [∥ℓi∥r]× [ri,j ], such that Zi
j [k] = 0n,

while MTCξ and Bad are defined as before in Section 9.

Transcript Analysis: Given the aforementioned sampling mechanism in the
ideal world, the set of all attainable transcripts Ω can be deduced as the set of all
tuples (t, x, y, z), where t, x, y, and z are sequences over B indexed analogously
as T , X, Y , and Z, respectively, satisfying the following relations for all (i, j, k):

• xi
j [k] = Hti(ĵ + k).

• ¬ZRO ∧ MTCξ implies that:
• x and y are bijectively-consistent.
• zij [k] = yij [0]⊕ yij [k], whenever k ̸= 0.

• ZRO ∨ ¬MTCξ implies that yij [k] = 0n.

We define Ωbad := {(t, x, y, z) ∈ Ω : Bad holds}. Any ω ∈ Ωbad is referred as bad,
and the remaining transcripts are all good.

Lemma 10.1. For r(∥σ∥ + q + r) ≤ 2n−3, and H instantiated with gwc hash
function, we have

Pr (Θ0 ∈ Ωbad) ≤
16r2∥ℓ∥(∥σ∥+ q + r)2

22n
+

18r(∥σ∥+ q + r)

2n
.

Proof. Following the proof of Lemma 9.1, first we get

Pr (Θ0 ∈ Ωbad) ≤
∥σ∥+ q

2n
+ Pr (¬MTCξ | ¬ZRO). (21)

Now, we say that two vertices u, v ∈ V are query-related, denoted u ∼ v, if
u = (i, ∗, ∗) and v = (i, ∗, ∗) for some i ∈ [q], where ∗ denotes some appropri-
ate value. Observe that, for any sequence of query-related indices (u1, . . . , uk),
the corresponding subsequence (Xu1

, . . . , Xuk
) of X can be at most 2-wise in-

dependent. Note that, k can be as large as ∥ℓ∥. This differs from the proof of
Theorem 4.1, where this limitation only applies within chunks of size at most r.
As a consequence, we need the following auxiliary event to avoid a large degra-
dation in the bound on Pr (¬MTCξ | ¬ZRO):
AUX: for some d ∈ [n], there exists a d-interesting path (u1, u2, . . . , ud+1) such
that u1 ∼ ud+1, and ui ̸∼ ui+1 otherwise.

Let E := ¬ZRO ∧ ¬AUX ∧ GSFξ. Coming back to Eq. 21, we now have

Pr (¬MTCξ | ¬ZRO) ≤ Pr (AUX | ¬ZRO) + Pr (¬GSFξ | ¬AUX ∧ ¬ZRO)

+ Pr (¬CF | E) + Pr (¬LF | E)

≤ Pr (AUX | ¬ZRO) + 16r(∥σ∥+ q + r)

2n
. (22)
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where the last inequality follows from the observation that once we condition
on ¬AUX the analysis of ¬GSFξ, ¬CF and ¬LF is analogous to the ones given in
Claim 9.1. We make the following claim with regards to Pr (AUX | ¬ZRO):

Claim 10.1 For r(∥σ∥+ q + r) ≤ 2n−3:

Pr (AUX | ¬ZRO) ≤ 16r2∥ℓ∥(∥σ∥+ q + r)2

22n
+

q

2n
.

A proof of this claim is deferred to Appendix E. The result follows by combining
Eq. (21) and (22) with Claim 10.1. ⊓⊔

By observing that the good transcript analysis is again identical with the one in
Section 9, we establish the result using Lemma 10.1 and Theorem 2.1.

11 Conclusion

We presented DENC1 and DENC2, two highly secure DAE schemes based on
a block cipher. We provided a complete security analysis of both constructions
in the standard prp model. Our analysis showed that both DENC1 and DENC2
compare favorably to well-known AE schemes in terms of security and efficiency.
A possible future research direction for this work is to reduce the number of
needed keys, while another promising avenue is to analyze the multi-user security
of DENC1 and DENC2.
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Appendix

A Proof of F∗ Security Theorem

First, we recall some relevant notions of universality. It would be convenient to
fix an arbitrary sequence of distinct inputs X1, . . . , Xq ∈ X for any q ≥ 2 such
that ℓ = maxi |Xi| and

∑
i∈[q] |Xi| = σ.

Almost Universal Hash Function: A (K,X ,B)-keyed function H is said to
be a (q, ℓ, σ, ϵ)-almost universal (AU) hash function if:

Pr (∃i ̸= j : HK(Xi) = HK(Xj)) ≤ ϵ. (23)

holds for some ϵ ∈ [0,∞) and K ←$K.
Almost Collision-free Universal Hash Function [12]: A (K,X ,B)-
keyed function H is said to be (q, ℓ, σ, ϵ)-Almost θ-Collision-free Universal (or
ACUθ) if one has Pr (C ≥ θ) ≤ ϵ for some ϵ ∈ [0,∞), where

C := |{(i, j) : i < j ∈ [q], HK(Xi) = HK(Xj)}|.

Diblock ACUq Hash Function [12]: A (K,X , T )-keyed function H is said to

be a (q, ℓ, σ, ϵ1, ϵ2)-Diblock ACUq (or DbACUq) if H is (q, ℓ, σ, ϵ1)-AU and H1 and
H2 are (q, ℓ, σ, ϵ2)-ACUq, where H1 and H2 denote the leftmost and rightmost n
bits of H, respectively.

The Proof. The following result is a minor variation of [12, Theorem 7.3], and
a proof follows much in the same manner as the proof of [12, Theorem 7.3 and
Theorem 4.4] and [11, Theorem 3].

Proposition A.1 (Extension of Theorem 7.3 from [12]). Suppose PHASH∗

is a (q, ℓ, σ, ϵ1, ϵ2)-DbACUq hash function, n3 ≤ 2
n
2−1 and n2q ≤ 2n−4. Then,

for any (q, ℓ, σ)-PRF distinguisher A

Advprf
F∗ (A) ≤

128q2

23n
+

136q2

22n
+

8q

2n
+ ϵ1 + 2ϵ2.

Thus it is sufficient to show that PHASH∗π1
is a DbACUq hash function for

π1←$P(B).
Fix any sequence of distinct input (A1, C1), . . . , (Aq, Cq) ∈ H×M. Since the

mapping (A,C) 7→ ozsn(A) ∥ ozsn(C) is injective, it would be convenient to
simply consider the combined input, Di := ozsn(Ai) ∥ ozsn(Ci) for all i ∈ [q].
From [47, Lemma 2 and 3], for distinct D ̸= D′ such that |D|, |D′| ≤ n2n−2, we
have

Pr
(
PHASH1∗π1

(D) = PHASH1∗π1
(D′)

)
≤ 16max{∥D∥, ∥D′∥}

2n

Pr
(
PHASH2∗π1

(D) = PHASH2∗π1
(D′)

)
≤ 16max{∥D∥, ∥D′∥}

2n

where PHASH1∗ and PHASH2∗ are the leftmost and rightmost n bits of PHASH∗.
Then, a simple application of Markov’s inequality gives
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Proposition A.2. For ∥ℓ∥ ≤ 2n−2, we have

• PHASH1∗π1
is (q, ℓ, σ, ϵ2)-ACUq,

• PHASH2∗π1
is (q, ℓ, σ, ϵ2)-ACUq,

where ϵ2 := (∥σ∥+ q)/2n−4.

All that remains is to show that PHASH∗π1
is a (q, ℓ, σ, ϵ1)-AU for an appropriate

ϵ1, where the sequence of messages is denoted (D1, . . . , Dq). We extend and reuse
notations from Algorithm 1 whenever necessary. Let Ei[j] = ∆j ⊕Di[j]. Let

• ZRO: π1(10
n−1) = 0n,

• AUX1: ∃ (i, j) ∈ [q]× [∥ℓi∥] such that Ei[j] = 0n,
• AUX2: ∃ (i, j) ∈ [q]× [∥ℓi∥] such that Ei[j] = 10n−1,
• AUX3: ∃ i ∈ [q] and pairwise distinct j1, j2, j3 ∈ [∥ℓi∥] such that

Ei[j1] = Ei[j2] = Ei[j3],

and AUX := ZRO ∪ AUX1 ∪ AUX2 ∪ AUX3. For all i ̸= j ∈ [q] and b0, b1 ∈ {0, 1}, let
COLi,j,b0,b1 be the event

PHASH∗π1
(Di)⊕ PHASH∗π1

(Dj) = b0 ∥ 0n−1 ∥ b1 ∥ 0n−1,

and COL :=
⋃
i ̸=j
b0,b1

COLi,j,b0,b1 . Then, we have

Pr (COL) ≤ Pr (AUX) + Pr (COL | ¬AUX)

≤ Pr (ZRO) + Pr (AUX1) + Pr (AUX2) + Pr (AUX3) + Pr (COL | ¬AUX)

≤ 1

2n
+

2(∥σ∥+ q)

2n − 1
+ Pr (AUX3) + Pr (COL | ¬AUX) (24)

where the first two terms correspond to Pr (ZRO) and Pr (AUX1) + Pr (AUX2),
respectively.

Now, consider the event AUX3. Fix any i ∈ [q] and any pairwise distinct
j1, j2, j3 ∈ [∥ℓi∥]. We can rewrite Ei[j1] = Ei[j2] = Ei[j3] as

(2j1 ⊕ 2j2)π1(0
n)⊕ (22j1 ⊕ 22j2)π1(10

n−1) = Di[j1]⊕Di[j2]

(2j1 ⊕ 2j3)π1(0
n)⊕ (22j1 ⊕ 22j3)π1(10

n−1) = Di[j1]⊕Di[j3].

Given that j1, j2, j3 < 2n−1, the values 2j1 , 2j2 , 2j3 are pairwise distinct. Thus,
the aforementioned system has a unique solution that holds with probability at
most 1/2n(2n − 1). Summing over all possible choices yield

Pr (AUX3) ≤
q∑

i=1

∥ℓi∥3

2n(2n − 1)
≤

q∑
i=1

∥ℓi∥
2n − 1

≤ ∥σ∥+ q

2n − 1
, (25)
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where the second inequality follows from ℓ ≤ n2
n
2−1. For COL | ¬AUX, we claim

Pr (COL | ¬AUX) ≤ 8(∥σ∥+ q)(∥σ∥+ 15q)

22n
+

12∥σ∥+ 28q

2n − 2
. (26)

A proof of this claim follows from the proof of [12, Claim 6.2]. Combining
Eq. (24)-(26) gives

Proposition A.3. For q, ℓ, σ ∈ N+ and ∥ℓ∥ ≤ 2
n
2−1, PHASH∗π1

is
(q, ℓ, σ, ϵ1, ϵ2)-DbACUq hash function, where

ϵ1 ≤
8(∥σ∥+ q)(∥σ∥+ 15q)

22n
+

15∥σ∥+ 32q

2n − 2
,

ϵ2 ≤
16(∥σ∥+ q)

2n
.

Theorem 3.1 follows from Proposition A.1 and A.3.

B Proof of IV2 Security Theorem

First, triangle inequality gives

Advpriv$
IV2 (A) = CD(IV2[G].EncK,π − $e | A)

≤ CD(IV2[G].EncK,π − IV2[$g].Encπ | A)
+CD(IV2[$g].Encπ − $e | A) (27)

For the first term on the r.h.s. of Eq. (27), we construct a (q, 2ℓ+2n, 2σ+6nq)-
PRBG distinguisher B as follows: it runs A in a black box manner, answering its
i-th query by first generating W1 ∥ . . . ∥W∥ℓi∥r (see step 5 of Algorithm 4) using
its own oracle, and then following Algorithm 4 from step 6 onwards, where Star
is instantiated with π. Then clearly, B correctly simulates IV2[G].EncK,π when
its oracle is GK , and it correctly simulates IV2[$g].Encπ when its oracle is $g,
as long as there is no collision in the T values. Moreover, B simply relays the
output of A at the end of the query-response phase. Thus we have

Advprbg
G (B) = CD(GK − $g | A)

≥ CD(IV2[G].EncK,π − IV2[$g].Encπ | A)−
q2

22n
, (28)

where the second term on the r.h.s. is due to the collision probability of T values.
Next for the second term on the r.h.s. of Eq. (27), we construct a (∥σ∥r +

2q, rn, σ+4rnq)-Priv$ distinguisher C as follows: it runsA in a black box manner,
answering its i-th query using the following steps:

1. Set W1 ∥ . . . ∥W∥ℓi∥r as $g(T
i, 2∥ℓi∥r).

2. For j ∈ [∥ℓi∥r − 1] do:
(a) Query (Wj ,M

i
j) and suppose the response is Ci

j , where M i
j =

(M i
j [1], . . . ,M

i
j [r]) denotes j-th chunk of the input message and ri,j = r.



34 Yu Long Chen, Avijit Dutta, Ashwin Jha, Mridul Nandi

3. Query (Wj ,M
i
∥ℓi∥r ) and suppose the response is Ci

∥ℓi∥r , where M i
j =

(M i
j [1], . . . ,M

i
j [ri,∥ℓi∥r ]) denotes the last chunk of the input message and

ri,∥ℓi∥r ∈ [r].

Once again, C correctly simulates IV2[$g].Encπ when its oracle is IV0.Encπ, and
it correctly simulates $e when its oracle is $e, as long as there is no collision in
the W values. It relays the output of A as it is at the end of the query-response
phase. Thus we have

Advpriv$
IV0 (C) = CD(IV0.Encπ − $e | A)

≥ CD(IV2[$g].Encπ − $e | A)−
4(∥σ∥r + 2q)2

22n
, (29)

where the second term on the r.h.s. is due to the collision probability of W
values. The result now follows by combining Eq. (27)-(29) followed by some
simplification.

C Proofs for the Dependency Graph Results

C.1 Proof of Proposition 8.2

Since T is a k-snowflake, we must have k red edges in T . Suppose there exists a
star, say Sij , such that 0 < V(T )∩V(Sij) < ri,j+1. Let V ′ = V(T )∩V(Sij). Since
Sij is connected, any u ∈ V ′ and v ∈ V(Sij) are connected. More importantly,

{u, v} is a blue edge, whence v ∈ V(T ) for all v ∈ V(Sij), otherwise it contradicts
the maximally blue property of T . Therefore, we have V(Sij) ⊆ V(T ), leading to a
contradiction. Thus, we must have V(T ) =

⊔
(i,j)∈I V(Sij), for some I ⊆ {(i, j) ∈

[q] × [ci]}. Let |I| = k′. Then, |V(T )| =
∑

(i,j)∈I(ri,j + 1) = k′ +
∑

(i,j)∈I ri,j ,

and E(T ) = k′ − 1 +
∑

(i,j)∈I ri,j . Now, exactly
∑

(i,j)∈I ri,j edges are blue,

accounting for the ri,j edges in each (i, j)-th star in T . Rest of the (k′−1) edges
must all be red as edges between the stars are always red, whence k′ = k+1. ⊓⊔

C.2 Proof of Proposition 8.3

First consider the number of snowflakes. From Proposition 8.2 we know that
there are exactly k + 1 stars and k red edges in any k-snowflake. There are at
most µk+1 ways to choose these stars. Further, there are at most (r+1)2k ways
to choose the vertices that incident on the red edges. Once these indices are
chosen the k-snowflake is fixed. Thus, the number of k-snowflakes is at most
(4r2µ)k+1.

Next, we show the bound for k-line. The bound for (k+1)-circle can be derived
similarly. Partition the k-line p into a sequence of sub-paths (p1, . . . , p2k+1) such
that pi is a red edge (res. a blue path) for all even (res. odd) i ∈ [2k + 1]. Since
p is a path, each p2i+1 belongs to a distinct star, for all i ∈ (k], leading to k+ 1
distinct stars. Further, from Proposition 8.1, we have that each p2i+1 can either
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be of length 1 or 2. Suppose, exactly s blue sub-paths are of length 2, and the
rest are all of length 1. Each blue edge in any (i, j)-star incidents on (i, j, 0).
Therefore, for any sub-paths of length 2, we have to fix just two vertices, and
for sub-paths of length 1, we have to fix just one vertex in the star. And, once
we have fixed these vertices, the k-line is fixed. Thus, the number of such k-lines
is at most µk+1r2srk+1−s. Summing over all s, we have

µk+1
k+1∑
s=0

(
k + 1

s

)
r2srk+1−s ≤ (µr(r + 1))k+1 ≤ (2µr2)k+1. ⊓⊔

C.3 Proof of Proposition 8.4

If there is no valid labeling then the statement is vacuous. So, suppose there is
at least one valid labeling Y . First, suppose Y i

j [k] = Y i′

j′ [k
′] for some (i, j, k) ̸=

(i′j′, k′). Then, we must have an edge e = {(i, j, k), (i′, j′, k′)}, otherwise Y i
j [k] ̸=

Y i′

j′ [k
′] (by condition 1). Furthermore, suppose λ(e) is non-zero. Then, using

condition 2, Y i
j [k]⊕ Y i′

j′ [k
′] = λ(e) ̸= 0. This is impossible by hypothesis. Thus,

λ(e) = 0, which means Xi
j [k] = Xi′

j′ [k
′]. Now, suppose Xi

j [k] = Xi′

j′ [k
′] for some

(i, j, k) ̸= (i′j′, k′). Then, there is an edge e = {(i, j, k), (i′, j′, k′)} with label
λ(e) = 0. Using condition 2, Y i

j [k] = λ(e)⊕ Y i′

j′ [k
′] = Y i′

j′ [k
′]. ⊓⊔

C.4 Proof of Proposition 8.5

The largest component in G is of course maximally blue, otherwise one can just
add the missing blue edges without disconnecting it. Thus, it is sufficient to show
the result for an arbitrary maximally blue component. First, using a similar line
of arguments as used in the proof of Proposition 8.2, we can establish that
V(C) =

⊔
(i,j)∈I V(Sij), where I ⊆ {(i, j) ∈ [q]× [ci]} such that |I| = k for some

k ≥ 1. Clearly, k ≥ ⌈ξ/(r + 1)⌉. Now, we use induction to show the existence of
a k′-snowflake that spans exactly k′ + 1 stars in C for all k′ ∈ (k − 1]. This, in
combination of the fact that k ≥ ⌈ξ/(r + 1)⌉ proves the lemma. For k′ = 0, any
(i, j)-star in C is a 0-snowflake, and ⌈ξ/(r + 1)⌉ = ⌈ri,j + 1/r + 1⌉ = 1. Now,
suppose we have a k′-snowflake S for some k′ < k − 1. We construct a (k′ + 1)-
snowflake by connecting S with a (i′, j′)-star not in S, but which shares a red
edge with S. Note that, at least one such star exists, since k′ < k − 1 and C is
connected. The result follows. ⊓⊔

D Proof of Claim 9.1

We prove the three bounds one by one as follows:

• Pr (¬GSFξ | ¬ZRO): Proposition 8.5 establishes that, without loss of general-
ity, it is sufficient to bound the probability of existence of an n-snowflake T
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in G. Such a T contains exactly n red edges connecting exactly (n+1) stars,
which satisfy the following system of equations:

Xi11
1 [k11] = Xi12

1 [k12]

...

Xin1
1 [kn1] = Xin2

1 [kn2],

Since T is acyclic, the set of indices ij11, ij12, . . . , ijl1, ijl2 must contain at
least l + 1 distinct elements for any l ∈ [n]. Let I = i11, i12, . . . , in1, in2.
We know that each T j is uniformly distributed and independent of T j′ for
all j ̸= j′ ∈ I. Combining this with the 2-wise independence of H, the
probability that the system of equations holds is at most 2−n

2

. Using union
bound and Proposition 8.3, we get

Pr (¬GSFξ | ¬ZRO) ≤

(
4r2

⌈
∥σ∥+q

r

⌉)n+1

2n2 ≤ 4r(∥σ∥+ q + r)

2n
, (30)

where the last inequality follows from r(∥σ∥+ q + r) ≤ 2n−3.
• Pr (¬CF | ¬ZRO ∧ GSFξ): The graph does not contain any component of size

greater than (n + 1)(r + 1). Thus, it is sufficient to bound the probability
that G contains an l-circle for some l ≤ n. Any such l-circle must satisfy the
following system of equations corresponding to the l red edges in the circle:

Xi1
1 [k11] = Xi2

1 [k22]

...

Xil
1 [kl1] = Xi1

1 [k12]

When l = 1, there must be a red edge between two vertices within a star.
Using the 2-wise independence property of H, the probability of this hap-
pening is at most 2−n. For l ≥ 2, we can apply a similar argument as in the
previous case, concluding that the first l− 1 equations hold with probability
at most 2(1−l)n. Conditioned on this event, the final equation holds with
probability at most 2−n due to the 2-wise independence of H. Applying the
union bound and using Proposition 8.3 over all l ∈ [n], we get

Pr (¬CF | ¬ZRO ∧ GSFξ) ≤
n∑

l=1

2r2
⌈
∥σ∥+q

r

⌉
2n

l

≤
∞∑
l=1

(
2r(∥σ∥+ q + r)

2n

)l

≤ 4r(∥σ∥+ q + r)

2n
, (31)

where we used the fact that r(∥σ∥+ q + r) ≤ 2n−2.
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• Pr (¬LF | ¬ZRO ∧ GSFξ): This case can be handled in a manner similar to the

previous two, noting that X and Z are statistically independent, and Zi
j [k]

is uniformly distributed on B \ {0n}. We then obtain:

Pr (¬LF | ¬ZRO ∧ GSFξ) ≤
8r(∥σ∥+ q + r)

2n
. (32)

The result then follows from Eq. (30)-(32). ⊓⊔

E Proof of Claim 10.1

Suppose the graph has the said d-interesting path for some fixed d ∈ [n]. Any
such d-interesting path must satisfy the following system of equations corre-
sponding to the d red edges in the interesting path:

Xi1
j11

[k11] = Xi2
j21

[k22]

...

Xid
jd1

[kd1] = Xi1
j12

[k12]

Now, we can have two cases:

• Case A: d = 1. there must be a red edge between two query-related vertices.
Due to the specific algebraic structure of gwc hash, this is only possible if
T i1 [2] = 0n. The probability of this happening is at most 2−n, which gives

Pr (¬AUX ∧ d = 1 | ¬ZRO) ≤ q

2n
. (33)

• Case B: d ≥ 2. For this case we can apply a similar argument as in the
proof of 9.1, concluding that the first d− 1 equations hold with probability
at most 2(1−d)n. Conditioned on this event, the final equation holds with
probability at most 2−n due to the 2-wise independence of H. Now, for any
such d-interesting path, we have at most (2r(∥σ∥+ q+ r))d−1 choices for the
intermediate vertices, and for any fixed choice of the intermediate vertices
the two query-related endpoints can be chosen in at most 2∥ℓ∥(∥σ∥+q) ways.
Applying the union bound over all d ∈ [n], we get

Pr (¬AUX ∧ d ≥ 2 | ¬ZRO) ≤ 2∥ℓ∥
n∑

d=2

(
2r(∥σ∥+ q + r)

2n

)d

≤ 4r∥ℓ∥(∥σ∥+ q + r)

2n

∞∑
d=1

(
2r(∥σ∥+ q + r)

2n

)d

≤ 16r2∥ℓ∥(∥σ∥+ q + r)2

22n
, (34)

where we used the fact that r(∥σ∥+ q + r) ≤ 2n−2.
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F Proof of G∗ Security Lemma

We extend the notations from Algorithm 5 steps 11–14 to multiple queries.
Specifically, we write Xi

j [k] for (i, j, k) ∈ V, where V := [q]× [∥ℓi∥]× (1].
Considering the proofs of Theorems 4.1 and 5.1, and by applying the same

strategy, it is clear that it suffices to prove that MTCξ[X,W ] holds with high
probability for ξ = 2(n+ 1). In particular, we have

Advprbg
G∗ (A) ≤ Pr (ZRO ∨ ¬MTCξ[X,W ])

≤ Pr (ZRO) + Pr (¬MTCξ[X,W ] | ¬ZRO),

where ZRO : ∃ (i, j) ∈ [q] × [∥ℓi∥], such that W i
j [1] = 0n, and the probabilities

are computed in the ideal world. Then, using uniformity of W i
j [1], we have

Advprbg
G∗ (A) ≤ ∥σ∥+ q

2n
+ Pr (¬MTCξ[X,W ] | ¬ZRO), (35)

and furthermore

Pr (¬MTCξ | ¬ZRO) ≤ Pr (¬GSFξ | ¬ZRO) + Pr (¬CF | ¬ZRO ∧ GSFξ)

+ Pr (¬LF | ¬ZRO ∧ GSFξ). (36)

The three terms on the r.h.s. can be upper bounded by using a similar strategy
as used in [12, Lemma 4.2, 4.3 and 4.4]. In particular, by reusing the notations
from [12], we define

• Fresh : ∀ i, j ∈ [q],
(
T̂ i[1], T̂ i[2]

)
̸=

(
T̂ i′ [1], T̂ i′ [2]

)
.

• Lpairs :
∣∣∣{(i, i′) : i < i′ ∈ [q], T̂ i[1] = T̂ i′ [1]}

∣∣∣ < ∥σ∥.
• Rpairs :

∣∣∣{(i, i′) : i < i′ ∈ [q], T̂ i[2] = T̂ i′ [2]}
∣∣∣ < ∥σ∥.

where x̂ := ⌊x⌋n−1 for any x ∈ {0, 1}n. Let Triv = ¬(Fresh∩Lpairs∩Rpairs).
Then, using the uniformity of T i and independence of T i and T j , we have

Pr (Triv) = Pr (¬(Fresh ∩ Lpairs ∩ Rpairs))

≤ Pr (¬Fresh) + Pr (¬Lpairs) + Pr (¬Rpairs)

≤ q2

22n
+

2(∥σ∥+ q)

2n
. (37)

Now, we bound the probabilities of the three remaining terms on the r.h.s. of
Eq. (37) conditioned on ¬Triv, i.e.

Pr (¬MTCξ | ¬ZRO) ≤ Pr (Triv) + Pr (¬GSFξ | ¬ZRO ∧ ¬Triv)

+ Pr (¬CF | ¬ZRO ∧ ¬Triv ∧ GSFξ)
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+ Pr (¬LF | ¬ZRO ∧ ¬Triv ∧ GSFξ). (38)

First consider Pr (¬GSFξ | ¬ZRO ∧ ¬Triv). By Proposition 8.5 it is sufficient to
bound the probability of existence of an n-snowflake T . Such a snowflake must
contain exactly n red edges, which in turn must satisfy the following system of
equations:

Xi11
j11

[k11] = Xi12
j12

[k12]

...

Xin1
jn1

[kn1] = Xin2
jn2

[kn2].

Now, we must have one of the following two cases:

1. The system has full rank: Using a similar argumentation as used in the proof
of Claim 9.1, we bound the probability to (8∥σ∥+ q + 2)/2n.

2. The system does not have full rank: There exists a subsystem of l equations
for some l < n such that there exists an arrangement of the equations where
the first l − 1 equations are independent, and the final equation is a conse-
quence of the previous equations. Without loss of generality, we assume that
the first l equations satisfy this property. Furthermore, in the last equation,
we can also assume kl1 = kl2 = 1. Since this last equation is dependent on
the previous equations, we must have distinct (ia1, ja1) and (ib2, jb2) such
that

T̂ ia1 [1]⊕ T̂ il1 [1] = ⟨ja1⟩n−1 ⊕ ⟨jl1⟩n−1,

T̂ ib2 [1]⊕ T̂ il2 [1] = ⟨jb2⟩n−1 ⊕ ⟨jl2⟩n−1.

Since Lpairs holds we must have at most (∥σ∥ + q)2 choices for
(ia1, ja1), (ib2, jb2), (il1, jl1), (il2, jl2). Then, using the independence of the
first l − 1 equations, the probability in this case is bounded as follows:

∞∑
l′=4

4l
′−2(∥σ∥+ q)l

′−2

2(l′−2)n
≤ 16(∥σ∥+ q)2

22n
,

where the last equation follows from the fact (∥σ∥+ q) ≤ 2n−2.

Combining the two cases yields:

Pr (¬GSFξ | ¬ZRO ∧ ¬Triv) ≤
8∥σ∥+ q + 2

2n
+

16(∥σ∥+ q)2

22n
(39)

Using similar argumentation, we have

Pr (¬CF | ¬ZRO ∧ ¬Triv ∧ GSFξ) ≤
16(∥σ∥+ q)2

22n
(40)

Pr (¬LF | ¬ZRO ∧ ¬Triv ∧ GSFξ) ≤
16(∥σ∥+ q)2

22n
(41)

Finally, the result follows from Eq. (35)-(41).
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