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Abstract

We introduce Zinc, a hash-based succinct argument for integer arithmetic. Zinc’s goal
is to provide a practically efficient scheme that bypasses the arithmetization overheads
that many succinct arguments present. These overheads can be of orders of magnitude
in many applications. By enabling proving statements over the integers, we are able to
arithmetize many operations of interest with almost no overhead. This includes modular
operations involving any moduli, not necessarily prime, and possibly involving multiple
moduli in the same statement. In particular, Zinc allows to prove statements for the ring
Z/nZ for arbitrary n ≥ 1. Importantly, and departing from prior work, our schemes are
purely code and hash-based, and do not require hidden order groups. In its final form,
Zinc operates similarly to other hash-based schemes using Brakedown as their PCS, and
at the same time it benefits from the arithmetization perks brought by working over Z
(and Q) natively.

At its core, Zinc is a succinct argument for proving relations over the rational
numbers Q, even though when applied to integer statements, an honest prover and
verifier will only operate with small integers. Zinc consists of two main components: 1)
Zinc-PIOP, a framework for proving algebraic statements over the rationals by reducing
modulo a randomly chosen prime q, followed by running a suitable PIOP over Fq (this
is similar to the approach from [CHA24], with the difference that we use localizations
of Q to enable prime modular projection); and 2) Zip, a Brakedown-type polynomial
commitment scheme built from an IOP of proximity to the integers, a novel primitive
that we introduce. The latter primitive guarantees that a prover is using a polynomial
with coefficients close to being integral. With these two primitives in place, one can use
a lookup argument over the rationals to ensure that the witness contains only integer
elements.
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1 Introduction

SNARGs are proof systems allowing to succinctly prove the validity of statements in arbitrary
NP relations. However, the most efficient SNARGs (and SNARKs) to date are specifically
designed to handle relations RELF that are expressed using algebraic operations over a fixed
finite field F. On the other hand, there are many relations of interest, say REL, which are
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naturally independent of the field F, maybe because they are not algebraic in nature (say, e.g.
a graph coloring problem), or because they are expressed over a different field F′ (perhaps the
field of rational numbers Q when proving statements concerning ML models), or even a ring
such as Z/2nZ (as is the case for CPU-related operations and operations concerning some
cryptographic primitives like FHE). Hence, in these cases, when seeking to prove statements
from REL, one is forced to rewrite REL into an equivalent relation RELF over F. This process
is called arithmetization, and it can easily lead to an increase in statement or circuit sizes of
a factor of 25 or more [BFK+24, OKMZ24]. We loosely call such a factor the arithmetization
overhead.

When considering, for example, state-of-the-art SNARKs used in industry such as Stwo
[HLP24], we see that more than 80% of the proving cost is related to computing the trace
witnessing the validity of the statement, then computing the Low-Degree Extension of the
trace, and then Merkle-committing to it [Eli]. The cost of all these steps is dramatically
affected by the statement size, which, as we mentioned above, can incur overheads of a factor
more than 25 when the relation is not naturally expressed in Stwo’s underlying field, i.e. the
Mersenne 31 field. On the other hand, less than 20% of the proving cost in Stwo comes from
executing the actual SNARK after the witness has been computed, encoded, and committed.
This suggests that the next big step towards reducing the cost of proving may be found in
reducing arithmetization costs.

In this work, we present Zinc, a framework for building hash-based SNARKs that enable
proving statements for relations expressed using integer arithmetic. As we argue below, this
type of arithmetic is highly expressive and can be used, among others, to prove statements
involving any type of modular arithmetic (possibly, using multiple moduli in the same
relation), with essentially no arithmetization overhead. Moreover, for the most part, Zinc
operates as a regular hash-based succinct argument executed modulo a random prime, and
when it doesn’t, we make sure that the prover and verifier always work with integers of ≈ λ
bit-size (assuming the relation REL admits witnesses with entries of ≈ λ bit-size), where λ is
the security parameter. As a result, Zinc provides a scheme that works similarly to other
state-of-the-art hash-based arguments, but that is capable of handling statements involving
arbitrary moduli with almost no arithmetization overhead.

A key building block of Zinc is Zip, a Brakedown-like [GLS+23] polynomial commitment
scheme (PCS) for multilinear polynomials with coefficients being close to integers. Indeed,
Zip is built from what we call an IOP of Proximity to the Integers, which we believe is of
independent interest.

The benefits of integer arithmetic Before delving deeper into our contributions, we
justify the expressiveness and convenience of integer arithmetic through an example. Suppose
we are interested in proving the following R1CS constraint over a finite field Fq with a prime
number q of elements:

∀ y ∈ {0, 1}µ; ∑
x∈{0,1}µ

A(y,x) · z(x)

 ·
 ∑

x∈{0,1}µ
B(y,x) · z(x)

−
 ∑

x∈{0,1}µ
C(y,x) · z(x)

 =Fq 0,

(1)
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where A,B,C are public multilinear polynomials on 2µ variables, z is a witness multilinear
polynomial on µ variables, and ◦ denotes the Hadamard product (i.e. component-wise
multiplication). Here, the prover P claims knowledge of such a polynomial z. All polynomials
have coefficients in the field Fq, which we interpret as the subset [0, q − 1] of the integers Z.
Above, we wrote =Fq to emphasize that the equality holds modulo q. Similarly, given an
arbitrary ring R, we write =R to denote equality over the ring R.

Denoting the left-hand side of (1) by Q(y), we have that (1) is equivalent to the following
constraint over the integers

∀ y ∈ {0, 1}µ; Q(y) =Z q · u(y), (2)

where u(y) is a multilinear polynomial on µ variables with coefficients in Z. Thus, instead of
proving knowledge of z satisfying (1), P can prove knowledge of integral (i.e. with integer
coefficients) polynomials z and u satisfying (2).

This technique can be extended so as to handle R1CS statements involving any moduli,
with possible multiple moduli per statement. Indeed, let m be a vector of size 2µ with integer
entries indexed by elements from {0, 1}µ, i.e. m = (my | y ∈ {0, 1}µ) ∈ Z2µ . Now consider,
instead of (2), the following constraint, which generalizes (2):

∀ y ∈ {0, 1}µ; Q(y) =Z my · u(y), (3)

Each equality Q(y) =Z my · u(y) is equivalent to Q(y) = my · u(y) mod my. Hence, Eq. (3)
is a R1CS statement where each constraint is equivalent to a constraint modulo my. So, in
particular, (3) captures statements involving multiple moduli. Moreover, these moduli do
not need to be prime numbers, they could be, for example, 232 or 264 –a typical modulo of
interest due to many CPU and cruptographic operations occurring under this arithmetic.

We also remark that, in this specific use-case of integer arithmetic, if the constraint is
satisfiable, then one can always find a satisfying integer witness of “small” (i.e. ≈ 2λ) bit-size.
Indeed, notice that, if Eq. (3) is satisfiable, then there exists a witness z, u such that all
coefficients of z are in the interval [0,maxy{my} − 1]. This is because Eq. (3) is equivalent
to a system of statements involving modular arithmetic with m as moduli, and so z can
always correspond to values reduced mod m. Further, all the coefficients of u can be bounded,
roughly, as 22µ · ∥A∥∞ · ∥B∥∞ ·maxy{my}2. Overall, we have that if the bit-size of my is
≈ λ for all y ∈ {0, 1}µ, and A,B,C contain small entries, then Eq. (3) is satisfiable with an
integer witness with entries of bit-length at most ≈ 2λ.

Design principles With these observations in mind, we focus on designing a SNARK
for all sorts of algebraic relations over the integers Z, including (3), and the CCS relation
[STW23a] over Z. To do so, we set a series of design principles, which we explain next.

1. Using error correcting codes and collision resistant hash functions. As
mentioned earlier, we seek to design a SNARK that operates similarly to other hash-
based state-of-the-art SNARKs used in industry [HLP24, Plo, DP23, BG23]. These
are SNARKs based on error-correcting codes and collision resitant hash functions. In
particular, we seek to depart from [CHA24], where Campanelli and Hall-Andersen build
a SNARK for integer arithmetic by relying on hidden order groups, which introduce
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high computational overheads and are not plausibly post-quantum secure. We expand
upon this point in Section 2.3, where we discuss different ways of constructing a
polynomial commitment scheme for polynomials where all coefficients are (close to)
being integral.

2. Avoid working with large integers or rational numbers. It is relatively simple
to design a PIOP for the CCS relation over the integers. Indeed, one can easily adapt
SuperSpartan [STW23a] to work over Z. However, doing so would result in a scheme
where both prover and verifier would need to operate with integers of thousands of bits.
Given that integer multiplication does not have a linear cost, this could outweigh the
savings achieved by reducing arithmetization overheads. To address this problem, we
draw inspiration from [CHA24] and execute our protocols modulo a random prime of
roughly λ bits. As a result, because we use hash-based cryptography and because we
work modulo a random prime, for the most part, Zinc operates similarly to a regular
hash-based SNARK over a random λ-bit prime.

Applications We envision Zinc to find a large number of use-cases. Particularly, many
scenarios where arithmetization overheads are problematic could benefit from Zinc. Some such
scenarios are: statements involving RSA-group arithmetic (i.e. additions and multiplications
modulo a product of two primes), which are relevant in standardized cryptographic primitives
like RSA signatures used, e.g. in OAuth, ECDSA signatures, etc.; arithmetic modulo 2n for
some n, e.g. CPU operations, operations pertaining FHE schemes, and some treatments of
floating point operations [CCKP19]; performing recursive proving for different proof systems
at once (this in particular avoids the problem of finding pairs of friendly elliptic curves,
which are less efficient and well-understood than standard curves); avoiding wrong-field
arithmetizations in the recursive step of incremental verifiable computation (IVC) schemes;
etc.

Additionally, as we discuss below, Zinc is also capable of proving statements expressed
over the field of rational numbers. As such, Zinc can find use-cases in proving computations
involving (approximations of) real numbers, such as ML-related operations, or finance-related
computations.

The main components and ideas behind Zinc Next, we provide a high-level outline
of the main building blocks of Zinc. We refer to our technical overview (Section 2) for a
detailed explanation of these and the main ideas involved.

We present two main protocols: Zinc-PIOP and Zip. Formally speaking, the first is a
framework that provides polynomial interactive oracle proofs (PIOPs) for proving algebraic
statements over the field of rational numbers Q (with bounded bit-size). The second is a
Brakedown-like polynomial commitment scheme (PCS) [GLS+23] (expressed using IOPs)
that allows to commit to multilinear polynomials with rational coefficients. Put together, we
obtain an interactive oracle proof (IOP) for computations over bounded rational numbers,
which can then be compiled with Merkle trees using standard methods [CY24, COS20].

When seeking to prove statements over the integers, we can enforce provers to actually
use integer witnesses by using Zinc-PIOP to build a lookup argument for membership into a
bounded subset of Z.
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Our Zinc-PIOP framework works similarly as the mod-AHP framework from Campanelli
and Hall-Andersen [CHA24]. Mainly, V samples a random prime, and then P and V execute
a suitable PIOP over the finite field Fq. The main difference is that [CHA24] works entirely
with integers, while we work over the rationals. This makes projection onto the finite
field Fq a subtler matter, and introduces some complexity when analyzing the soundness
and completeness of the resulting schemes. Mathematically, we use the notion of rational
localization to treat such projections. Namely, the set Z(q) = {a/b ∈ Q | q does not divide b}
is a subring of Q which admits a projection onto Fq.

As mentioned, Zip is a Brakedown-like polynomial commitment scheme [GLS+23] for
multilinear polynomials with (bounded) rational coefficients. Zip is based on what we call an
IOP of proximity (IOPP) to the integers. Intuitively, Zip is meant to be used to commit to
polynomials with (bounded) integer coefficients, but it only guarantees that the coefficients
are rational numbers of a slightly large bit-size (i.e. rationals which are “close” to being
integer). This scenario is analogous to what one has with IOP of proximity to a linear code
(see e.g. [BSBHR18]). Such a primitive guarantees that a prover knows a word that is close
to being a codeword, but it is meant to be used by provers that actually know the codeword.

We emphasize that, despite being schemes that formally work over the rationals, when
used honestly, Zinc-PIOP and Zip only require the prover and the verifier to operate with
small sized integers, and with field elements.

Related work Arguably, the closest work to ours is Campanelli and Hall-Andersen’s
[CHA24]. As we mentioned, [CHA24] presents a framework for building SNARKs for proving
statements over the integers. In this work, the authors introduce the concept of a mod-
Algebraic Holographic Proof (mod-AHP), which is a type of PIOP with preprocessing where
witnesses are polynomials with integral coefficients, and where constraints are enforced
modulo a prime. The framework then proposes compiling mod-AHPs with a PCS for integral
polynomials, and where polynomial evaluations are only required to hold modulo a prime.
The authors call such a primitive a mod-PC, and propose to instantiate it with a variation
of the PCS from Block et al. [BHR+21] which, in turn, relies on [BFS20]. This PCS is based
on hidden order groups. In our work we specifically choose to avoid working with PCS for
integral polynomials (because it is not apparent to us how one would design an efficient such
PCS that relies only on hash functions), but we adopt the idea from [CHA24] of working
modulo a random prime, and we extend it so that the idea can be used when operating with
rational numbers.

In Rinnochio [GNSV23], the authors construct a delegated verifier scheme for proving
statements over Galois rings, which, among others, have the potential of allowing to prove
computations modulo 2n with a small arithmetization overhead. The main drawback of
[GNSV23] is that the Galois ring needs to be very large, namely with elements of bit-size
around n · λ, in order to guarantee λ bits of security, creating a large embedding overhead
[DP23]. The reason this occurs is that [GNSV23] requires working over a ring with a large,
so-called, exceptional set. Further works that build schemes over rings with large exceptional
sets (and thus incur embedding overheads) are [BCS21, ACC+22, SV22]. Unlike Zinc, none of
these approaches rely solely on collision-resistant hash functions. Other schemes supporting
non-prime arithmetics are lattice-based ones such as LaBRADOR [BS23], though they often
suffer from embedding overheads and are not hash-based.
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Two recent concurrent works [HMZ25, WZD25] propose SNARKs for proving statements
over certain cyclotomic rings and over Galois rings, respectively. Ultimately, both schemes
end up creating proofs for statements over Galois rings. Interestingly, both protocols use
a hash-based and code-based PCS. Precisely, the authors of both works [HMZ25, WZD25]
propose versions of the Brakedown PCS [GLS+23] for polynomials whose coefficients are
Galois rings elements. The first reference uses an underlying linear code based on Reed-
Solomon codes, while the second uses an expand-accumulate code, as we do in Zip. [HMZ25]
proposes a technique for reducing the size of the rings used during the creation of the proof,
though we note that the prover is still required to commit to polynomials with coefficients in
the initial Galois ring.

Other approaches for proving statements modulo 2n are based on VOLE techniques (see,
e.g. [LXY24, BBMH+21, BBMHS22]) but yield non-succinct schemes.

Binius and FRI-binius [DP23, DP24] can be seen as contributing to the effort of reducing
arithmetization overheads, since, by working over binary fields, the schemes can handle
bit-wise operations with little overhead. Similarly, recent improvements in industry-used
SNARKs have sought to work with prime fields Fq that allow for faster arithmetization of
certain operations, e.g. with q being the Mersenne 31 prime [HLP24] or the Babybear prime
[Plo] (there are other reasons why working with such primes is beneficial). Finally, all efforts
around designing field-agnostic SNARKs [BCG+17, BCG20, GLS+23, ZCF23, BFK+24] (i.e.
SNARKs that can be instantiated over any field) can be understood as contributing to
reducing arithmetization overheads, since one can always instantiate them over the most
convenient field, depending on the relation being proved. Besides also being capable of such,
Zinc can handle multiple arithmetics at the same time and in the same instantation, and is
not restricted to prime arithmetic.

1.1 Acknowledgements

This work was supported by the Ethereum Foundation ZK grant FY24-1490 [Fou]. We thank
Ahmet Ramazan Ağırtaş, Alexander R. Block, Remco Bloemen, Matteo Campanelli, Zahra
Javar, Ignacio Manzur, Justin Thaler, Michał Zając, and Yevgeny Zaytman for insightful
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2 Technical overview

As mentioned earlier, one of our primary goals is to efficiently prove CCS instances over the
integers. For simplicity, let us restrict to R1CS-like constraints such as (2). We emphasize
that our techniques support any relation whose constraints are algebraic –a class of relations
that we call algebraic indexed relation (cf. Definition 4.1). Concretely, for the purposes of
this technical overview, we informally define the following relation, which we call R1CSℓ
as in R1CS with ℓifted modules, and which captures the constraints (3). Fix a size bound
B ≥ 1, and let ZB be the set of integers with bit-size less than B. Let A,B,C be three
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n× n matrices with entries from ZB, and let m ∈ Zn
B. Then we define RELR1CSℓ,Z as

RELR1CSℓ,Z =


(x;w)

∣∣∣∣∣∣∣∣∣∣∣

x = (x), x ∈ Zk
B,

w = (w,u), w ∈ Zn−k−1
B ,u ∈ Zn

B,

z = (w,x, 1),(
A · zT

)
◦
(
B · zT

)
=
(
C · zT

)
+mT ◦ uT


where ◦ is the Hadamard product (i.e. component-wise multiplication), T denotes transposi-
tion, and k ≥ 0 is a parameter.

In practice, we think of B as poly(λ). One may wonder if this places too much of a
restriction on the expressiveness of the relation RELR1CS,QB

. We argue that, in practice, this
is not the case: first, when it comes to the constraints of the form (3), which lift modular
arithmetic onto Z, one can easily see that, as long as x and A,B,C have entries of bit-size,
say ≈ λ, any satisfying witness has bit-size at least ≈ 2 · λ. Further, in general, if we think
of an R1CS constraint as a depth-d layered arithmetic circuit, then, if the circuit admits a
valid witness, there is always one such witness of size ≈ d · λ.

A first attempt A relatively naïve attempt towards designing a SNARK for RELR1CSℓ,Z is
to start with a suitable polynomial interactive oracle proof (PIOP) for RELR1CSℓ,Z, in which
the prover (even a malicious one) is guaranteed to send polynomials whose coefficients are
integers from ZB. Let us call such a PIOP a PIOP over ZB. It is relatively straightforward
to adapt the original Spartan PIOP [Set19] over a finite field F into a PIOP over ZB for
RELR1CSℓ,Z. The scheme can be obtained by simply replacing all oracle polynomials from F[X],
i.e. the ring of polynomials with coefficients in the field F sent by the prover, with polynomials
from ZB[X], i.e. the ring of polynomials whose coefficients are integers with bit-size less
than B bits, and then making some simple modifications to the verifier so its challenges are
integers. Since in a PIOP over ZB we are allowed to make the very strong assumption that
provers, even malicious ones, always send polynomials from ZB , the knowledge soundness of
the scheme follows with standard arguments involving Scwhartz-Zippel lemma (which holds
over any integral domain, such as Z, since integral domains are always contained in a field).
We note that completeness is also simple to establish, perhaps with the only point worth
commenting upon being that multilinear extensions over the ring Z work in the same way as
multilinear extensions over fields.

We emphasize that such a PIOP over ZB is not described, nor used, in this paper. The
only reason we are discussing it is to illustrate what goes wrong when naïvely trying to
design a SNARK for RELR1CSℓ,Z.

One initial objection to this approach is in regards to its efficiency: the PIOP we have
outlined is, essentially, “Spartan running over integers”. This means that, as is, the sumchecks
used in the PIOP will require the prover and verifier to operate with increasingly large
integers. For example, say we set B = 256 and n = 220 (which makes sumchecks have around
20 rounds), and we have the verifier sample ≤ 128-bit integer challenges. Then the integers
used in the PIOP can grow up to over thousands of bits. In [CHA24], Campanelli and
Hall-Andersen address this issue by, essentially, running the PIOP over ZB modulo a random
prime sampled by the verifier, with the restriction that the initial oracle polynomials sent
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by the prover are from ZB[X]. The authors call this a mod-algebraic holographic proof. As
we will see later, we adopt the same idea, but instead of restricting ourselves to an integral
setting, we will work over the field of rational numbers and its local subrings, which admit
modding out by all but one prime (see Section 2.1 below).

As the next step of our naïve attempt, one would then compile the PIOP over ZB

into a succinct argument by leveraging a PCS, adapting some of the compilers from, e.g.
[CHM+19, BFS20]. Crucially, since the security of PIOPs over ZB only holds if provers
are guaranteed to send polynomials from ZB[X], here one is required to use a PCS that
guarantees this property, i.e. a PCS that allows to extract bounded integral polynomials.
However, this is not a trivial task at all. We note that [CHA24] also requires this.

To our knowledge, the only PCS for integral polynomials that guarantees extraction of
integral polynomials is due to Block et al. [BHR+21], cf. also [CHA24] for an improvement in
regards to communication complexity. The PCS in [BHR+21] extends some of the ideas from
Bünz et al. in [BFS20], where, in [BFS20], a PCS for polynomials of the form f/N is presented,
with f ∈ ZB[X] and N ≥ 1 is a bounded integer. We refer to Section 5.2 from [CHA24]
for an informative overview of the two references [BFS20, BHR+21]. The resulting PCSs
(both in [BHR+21] and [CHA24]) rely on hidden order groups, which introduce significant
efficiency and technical overheads. Further, these groups require the RSA assumption which
makes the resulting constructions insecure against quantum adversaries.

Key design choice: moving to the field of rational numbers One of our main
objectives is to design a SNARK that relies solely on the random oracle heuristic, and so
using hidden order groups is something we seek to avoid. Since there is no apparent way to
design a PCS for integer polynomials without these, in this work, we choose to depart from
the above attempt where one starts with a PIOP over the integers and compiles it with a
PCS for integral polynomials. Instead, we set up to work over the rational numbers
Q and to require extraction of bounded rational polynomials (i.e. polynomials whose
coefficients belong to Q), rather than integral polynomials. With Q being a field, extraction
becomes much simpler, and this unlocks a plethora of design directions. Indeed, we build
our PCS as a variation of Brakedown [GLS+23], as we discuss later on.

Our techniques are highly general. We use them to design both a SNARK for the CCS
relation over Q, and a lookup argument which we use to prove set membership of subsets of
Q. Using the latter to prove membership to the ring Z, we obtain a SNARK for the CCS
relation over Z.

Next, we present an overview of the main components of Zinc.

2.1 Constructing a PIOP over Q from a collection of PIOPs over finite
fields

We begin by reformulating the relation RELR1CSℓ,Z into the field of rational numbers Q. For
technical reasons, we additionally add an oracle to the witness as part of the public instance
(this is a usual technicality occurring in many schemes in general). Further, since we are
interested in working with polynomials, instead of having the witness be two vectors (w,u)
with entries in QB (where QB is the set of rational numbers with bit-size less than B, cf.
Section 3.2 for details on how we encode Q as strings of bits), we instead have the witness
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consist of multilinear polynomials with coefficients in QB. Namely, we use the multilinear
extensions of w,u, which we denote by w̃, ũ, respectively.

Below, given a multilinear polynomial ṽ, we use [[ṽ]] to denote an oracle to such
polynomial. This is an idealized object that allows querying ṽ at arbitrary points, but does
not require reading or storing ṽ in its entirety. In practice, these oracles are replaced by
commitments computed using a polynomial commitment scheme.

We now define

RELR1CSℓ,Q =


(x;w)

∣∣∣∣∣∣∣∣∣∣∣

x = (x, [[w̃]], [[ũ]]), x ∈ Zk
B,

w = (w̃, ũ), w ∈ Qn−k−1
B ,u ∈ Qn

B,

z = (w,x, 1),(
A · zT

)
◦
(
B · zT

)
=
(
C · zT

)
+mT ◦ uT


where QB is the set of rational numbers with bit-size less than B, m ∈ Zn

B is a vector with
entries in ZB, and A,B,C are three n× n matrices with entries in ZB. For simplicity, in
this technical overview we omit all technicalities regarding the usage of indexes, indexers,
and prover and verifier parameters (cf. Section 3.4). We also keep the constraints in
RELR1CSℓ,Q express in terms of vectors, even though we use multilinear polynomials in x

and w. This is done merely for simplicity, but in practice one would express the constraint(
A · zT

)
◦
(
B · zT

)
=
(
C · zT

)
+mT ◦ uT in terms of the multilinear extensions of z,w,u,m

and A,B,C. During this technical overview, we proceed similarly with all other relations.
Our goal is still to allow a prover to prove statements over the integers. As such, we

expect the statements being proved to be over the integers, and this is why x is defined as
an integer vector above, and why the matrices A,B,C are integral as well. Similarly, and
this will be very relevant for technical reasons later, an honest prover is expected to be
using a witness (w̃, ũ) such that (w,u) ∈ Z2n−k−1

B′ , rather than (w,u) ∈ Q2n−k−1
B , for

certain B′ ≤ B. This is a similar scenario to how, in interactive oracle proofs of proximity
(IOPP) to a code, the honest prover is expected to be using a codeword, but the IOPP allows
to prove only that the prover is using words that are close to the codeword (cf. Section 2.3
for more details on this matter regarding rationals vs integers). We remark that, in any case,
our techniques can be extended to work purely over the rational numbers.

We next describe a PIOP over Q for RELR1CSℓ,Q, in which we assume that provers
(possibly malicious) are bound to use polynomials whose coefficients (in Lagrange basis)
belong to QB (again, an honest prover however will want to use polynomials with coefficients
in ZB′) or in a suitable finite field. When this is the case, we informally say that the PIOP is
over QB . In a nutshell, the PIOP over QB simply has the verifier sample a random Ω(λ)-bit
prime q, and then P and V execute a PIOP for the R1CSℓ relation over finite fields, modding
out the entries in (x;w) by q. In what follows, we unpack how this is done.

First, let q be a prime number, and let Z(q) denote the set of rational numbers a/b ∈ Q
such that q does not divide b. This set is called the localization of Q at the ideal (q), and
forms a subring of Q. Additionally, Z(q) admits a natural projection (an exhaustive ring
homomorphism) onto Fq:

ϕq : Z(q) → Fq

a/b 7→ a · b−1 mod q,
(4)
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where b−1 denotes a multiplicative inverse of b modulo q. We extend the notation ϕq so that
it applies component-wise to vectors, tuples, and matrices. For example, if r = (r1, . . . , rn)
is a vector of elements from Z(q), then ϕq(r) = (ϕq(r1), . . . , ϕq(rn)).

Given a prime q, we define a relation ϕq(RELR1CSℓ,Z(q)
) which is exactly the relation

RELR1CSℓ,Z(q)
, with the difference that the equality (A · zT) ◦ (B · zT) = (C · zT) +mT ◦uT is

replaced with the equality (ϕq(A) ·ϕq(z)
T)◦ (ϕq(B) ·ϕq(z)

T) =Fq (ϕq(C) ·ϕq(z)
T)+ϕq(m)T ◦

ϕq(u)
T. More precisely,

ϕq(RELR1CSℓ,Z(q)
) =


(x;w)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x = (x, [[w̃]], [[ũ]]), x ∈ Zk
B,

w = (w̃, ũ), w ∈ (Z(q))
n−k−1
B ,u ∈ (Z(q))

n
B,

z = (w,x, 1),(
ϕq(A) · ϕq(z)

T
)
◦
(
ϕq(B) · ϕq(z)

T
)

=Fq

(
ϕq(C) · ϕq(z)

T
)
+ ϕq(m)T ◦ ϕq(u)

T


,

where (Z(q))B denotes the set of rational numbers with bit-size less than B that belong
to Z(q). Note that the last constraint is well-defined, since A,B,C,x are integral, and w

contains entries in Z(q), and so all elements in such constraint are suitable arguments for the
homomorphism ϕq. This relation is similar to the so-calle associated fingerprinting relation
from [CHA24].

For large enough B (i.e. B above log(q)), the relation ϕq(RELR1CSℓ,Z(q)
) is essentially an

R1CS relation (with the extra term ϕq(m)T◦ϕq(u)
T) over the finite field Fq, with the difference

that the instance and the witnesses are specified as elements of the ring Z(q) rather than
elements from Fq = ϕq(Z(q)). For the purpose of proving instances from ϕq(RELR1CSℓ,Z(q)

),
this is an irrelevant distinction, since, one can prove, (x;w) ∈ ϕq(RELR1CSℓ,Z(q)

) if and only if
(ϕq(x);ϕq(w)) satisfies the R1CS relation (with the extra term) over Fq. With this in mind,
it is not difficult to turn a PIOP over Fq for the latter relation, e.g. Spartan [Set19], into a
PIOP over (Z(q))B for ϕq(RELR1CSℓ,Z(q)

).
We emphasize again the following aspect regarding the security of PIOPs. When we speak

of a PIOP over QB, or over (Z(q))B, for RELR1CSℓ,Q or RELR1CSℓ,Z(q)
, respectively, we only

consider security against provers that send polynomials of appropriate degree and number
of variables, and whose coefficients belong to QB or to (Z(q))B

1. Further, we only consider
security for instances x = (x, [[w̃]], [[ũ]]) such that (w,u) belongs to Q2n−k−1

B or to Z2n−k−1
B ,

respectively. In that case, we say that x is well-formed.
Our PIOP over QB for RELR1CSℓ,Q is built from PIOPs over (Z(q))B for ϕq(RELR1CSℓ,Z(q)

),
for different primes q. The scheme is described informally in Protocol 1 below.

1We also allow for polynomials to have coefficients in prescribed finite fields
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Protocol 1 Zinc-PIOP: A PIOP over QB for RELR1CSℓ,Q from PIOPs over Z(q) for
ϕq(RELR1CSℓ,Z(q)

) (Informal).

Input: P and V receive (x;w) ∈ RELR1CSℓ,Q and (x) as input, respectively. Write w = (w̃, ũ)
with (w,u) ∈ Q2n−k−1

B .
1: V uniformly samples a prime q of Ω(λ) bits.
2: If (w,u) contains a rational number whose denominator is divisible by q, i.e. if (w,u) ̸∈

Zn−1−k
(q) , P indicates V which entry of w contains such an entry. Then V checks (by

querying an appropriate oracle) that this is indeed the case, and if so, it accepts the
proof and the protocol terminates.

3: Otherwise, P and V execute a PIOP over (Z(q))B for the relation ϕq(RELR1CSℓ,Z(q)
) with

prover input (x;w) and with verifier input (x).

We next argue that Protocol 1 is perfectly complete and knowledge sound if the PIOPs
for ϕq(RELR1CSℓ,Z(q)

) are.

Knowledge soundness error We provide an intuitive explanation of why Protocol 1 has
negligible knowledge soundness error, if configured appropriately.

Assume a malicious prover P∗, given input x, is able to convince the verifier V with
probability ε. Let q be the prime sampled by V at Step 1 of Protocol 1. Let Ewf be the event
that (w,u) ∈ (Z(q))

2n−k−1
B . In this event, x is a well-formed instance for ϕ(RELR1CSℓ,Z(q)

),
and P∗ is able to convince the verifier Vq of the PIOP for the relation ϕq(RELR1CSℓ,Z(q)

) with
probability εq, where εq is the soundness error of this PIOP. Since we assume the latter PIOP
is knowledge sound, there is an extractor that is able to extract a witness w∗ = (w̃∗, ũ∗)
with (w∗,u∗) ∈ (Z(q))

2n−k−1 such that (x;w∗) ∈ ϕq(RELR1CSℓ,Z(q)
) with probability at least

≥ εq − negl(λ). In particular, since x contains oracles [[w̃]], [[ũ]] to the witness, we have
w∗ = w,u∗ = u. Let w = (w̃, ũ). Now, if (x;w) ∈ RELR1CSℓ,Q, then we are done. Otherwise,
since (x;w) = (x;w∗) ∈ RELR1CSℓ,Z(q)

, we have

A · zT ◦B · zT −C · zT −mT ◦ uT = q · vq (5)

for some nonzero vector vq ∈ Zn
(q) (it is nonzero because, otherwise, we would have (x;w) ∈

RELR1CSℓ,Q), where z = (w,x, 1). Let I be the set of primes that can be sampled by V and
that satisfy (5) for some nonzero vector vq ∈ Z(q). Let Q(z) be the left-hand side of Eq. (5).
Then we have Q(z) = q · vq for all q ∈ I.

Assume for a moment that the vectors vq, as well as z and u, are integral (but note that
in general they are rational). Then we have

Q(z) = A · zT ◦B · zT −C · zT −mT ◦ uT =

∏
q∈I

q

 · v
for some nonzero integral vector v. This means that some entry, say Q(z)i of the vector Q(z)
has bit-size at least log(

∏
q∈I q). Assuming, say, that log(q) = λ, we have that Q(z)i has

bit-size at least λ · |I|. Since the entries of Q(z) are polynomial expressions on the entries of

12



A,B,C, z,m, and u, and we assumed that all of these contain entries in ZB, this places a
polynomial poly(λ) upper bound on |I|, assuming B,n = poly(λ).

Hence the probability that V samples q such that (x;w) ∈ RELR1CSℓ,Z(q)
but (x;w) ̸∈

RELR1CSℓ,Q is at most poly(λ)/|P|, where P is the set of primes that can be sampled by V.
Choosing |P| = O(2λ) we obtain that this probability is negligible.

More precisely, and in the general case where v, z,u contain rational entries, we obtain a
similar bound using the following general result.

Lemma 2.1 (Informal, cf. Definition 4.7 and Proposition 4.6). Let P (Y) = P (Y1, . . . , Yµ)
be a polynomial with coefficients in ZB. Let I be a set of primes of bit-size at least λ, and
let y ∈ Qµ

B be such that y ∈ Zµ
(q) for all q ∈ I. Note that then P (y) ∈ Z(q). Assume that

ϕq(P (y)) = 0 for all primes q in I. Then one of the entries of y has bit-size at least

λ · |I| − (B + 2degp(P ))

degp(P )
,

where degp(P ) =
∑

i∈[µ] degYi
(P ) is the sum of the partial degrees of P .

Hence, if we know that the entries in y have bit-size less than B, one concludes that
|I| < λ−1 · (B · degp(P ) +B + 2degp(P ) = poly(λ) if B, 2degp(P ) = poly(λ).

We now argue that Ewf holds except with negligible probability. This will conclude our
proof outline. Indeed, if Ewf does not hold for a prime q, then q divides some denominator in
the vector (w,u). Using the pigeonhole principle, it is clear that if Pr[¬Ewf ] is large, then
there is an entry in (w,u) whose denominator is divisible by many primes. This makes such
entry have a large bit-size, but we have assumeed that the entries in (w,u) have bit-size less
than B = poly(λ).

Remark 2.2. We emphasize the importance in the above analysis of having assumed that
(w,u) are rational numbers of bit-size less than B. Without this guarantee, none of the error
bounds we found can be made negligible. When compiling the PIOP into an IOP or into a
succinct argument, it will be up to the PCS to make sure this bound holds.

Note that here we speak of bit-size, and not of absolute value. A rational number a/b
could have a small absolute value, but still have arbitrarily large bit-size if b is very large.

Lookup relations over Q, and forcing provers to use integral witnesses. Above,
we constructed a PIOP over QB for the relation RELR1CSℓ,Q from PIOPs for the standard
R1CS relation (with an extra term) over finite fields. In many occasions, we can use the same
ideas to “lift” PIOPs for other relations over finite fields, into a PIOP for the corresponding
relation over QB. In particular, we are able to do this for the lookup relation, i.e. a relation
that constraints all entries in a witness vector a to appear as entries in a public vector t.
This ultimately provides us with a PIOP for proving membership to any subset S of QB.
In particular, taking S = [−2B + 1, 2B − 1], we are able to force PIOP provers to use an
integral witness within the range [−2B + 1, 2B − 1]. Throughout the paper, all intervals of
the form [n,m], n,m ∈ Z, denote the set of integers {n, n+ 1, . . . ,m}.
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More precisely, consider the following relation, which we call lookup relation. Let n,m ≥ 0
be two vector sizes, and B ≥ 1 a bit-size bound. Then we define2

RELLook,Q :=

{(
x = ([[ã]], [[t̃]]);

w = (ã, t̃)

) ∣∣∣∣∣ a ∈ Qna
B , t ∈ Qnt

B ,

{ai | i ∈ [na]} ⊆ {tj | j ∈ [nt]}

}
,

and similarly as before, for q a prime,

ϕq(RELLook,Z(q)
) :=

{(
x = ([[ã]], [[t̃]]);

w = (ã, t̃)

) ∣∣∣∣∣ a ∈ (Z(q))
na
B , t ∈ (Z(q))

nt
B ,

{ϕq(ai) | i ∈ [na]} ⊆ {ϕq(tj) | j ∈ [nt]}

}
,

As was the case with ϕq(RELR1CSℓ,Z(q)
), it is relatively simple to construct a PIOP over Z(q)

for the relation ϕq(RELLook,Z(q)
) from a PIOP for the standard lookup relation over the field

Fq. Then, a similar construction as Protocol 1 provides a PIOP over Q for RELLook,Q with
perfect completeness and negligible knowledge soundness error.

Achieving generality We emphasize that our formal treatment (cf. Section 4) of these
techniques is fully general. We work over abstract rings and with any relation REL whose
constraints can be described algebraically. The abstract rings we can support must satisfy
certain technical conditions regarding existence of suitable projection morphisms (cf. Defi-
nition 4.7), which are satisfied when working with Q,Z, Z(q), and Fq. An informal idea of
what these requirements are may be intuited from our previous informal explanation of why
Protocol 1 has negligible knowledge soundness error.

2.2 Obtaining PIOP’s for integral relations

We now put together the constructions from Section 2.1 to build a PIOP over QB for the
relation RELR1CSℓ,Z, which is the relation we wanted to treat initially. Essentially, the PIOP
simply has the prover and the verifier execute two PIOPs over QB, one for RELR1CSℓ,Q and
one for RELLook,Q. In the latter case, the vector a is taken to be the witness w used in
RELR1CSℓ,Q, and t is the vector of integers in the interval [−2B + 1, 2B − 1]. As vector sizes
for the relation RELLook,Q, we set na to be 2n− k − 1, and nt to be 2B+1 + 1.

Protocol 2 A PIOP over QB for RELR1CSℓ,Z.
Input: P, V receive inputs (x;w) ∈ RELR1CSℓ,Z and (x). Write x = (x, [[w̃]], [[ũ]]), with
(w,u) ∈ Z2n−k−1

B , x ∈ Zk
B.

1: P and V execute a PIOP over QB for the relation RELR1CSℓ,Q with inputs (x;w) and x,
respectively.

2: Then, P and V execute a PIOP over QB for the relation RELLook,Q with inputs
(xLook;wLook) and xLook, respectively, where xLook = ([[(w̃, ũ)]], [[t̃]]), wLook = ((w̃, ũ), t̃),
and where t is a vector containing all integers in the range [−2B + 1, 2B − 1].

2In full formality, the polynomial t̃ and its oracle would be placed in an index, rather than in x and w, cf.
Section 3.5.
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Remark 2.3. As we justify below, Protocol 2 is a PIOP over QB, meaning that it is
knowledge sound against malicious provers that are guaranteed to send polynomials with
coefficients in QB, or in a suitable finite field, and for well-formed instances x.

In particular, knowledge soundness is not restricted to malicious provers sending polyno-
mials with coefficients in ZB (or a finite field). This is crucial, since, Q being a field, places
a much lighter burden on the PCS when compiling the PIOP into a succinct argument.

We next oultine why Protocol 2 has negligible completeness and soundness error, assuming
the PIOPs for RELR1CSℓ,Q and RELLook,Q have negligible such errors. Let us denote these
two PIOPs by ΠRELR1CSℓ,Q ,ΠRELLook,Q . It is clear that, if P is honest, then it will convince V as
long as the honest provers of ΠRELR1CSℓ,Q and of ΠRELLook,Q convince their respective verifiers.
Hence, Protocol 2 has negligible completeness error under our assumptions.

Next, we address knowledge soundness. As mentioned above, we want to show that Pro-
tocol 2 is knowledge sound against malicious provers that send polynomials with coefficients
in QB (as opposed to only in ZB), or in some suitable finite field. To prove this, informally
speaking, we have to show that if such a malicious prover P∗ manages to convince the
verifier with non-negligible probability, then it is possible to extract a witness w∗ = (w̃∗, ũ∗)
with (w∗,u∗) ∈ Z2n−k−1

B , such that (x;w∗) ∈ RELR1CSℓ,Z. For P∗ to be able to convince V
reliably, it has to be able to convince the verifiers of both PIOPs ΠRELR1CSℓ,Q and ΠRELLook,Q .
Since we assume that these two PIOPs over QB have negligible knowledge soundness, it
is possible, except with negligible probability, to extract from P∗ witnesses w∗ = (w̃∗, ũ∗)
with (w∗,u∗) ∈ Q2n−k−1

B and w
∗∗
Look = ((w̃∗∗, ũ∗∗), t̃∗∗) with (w̃∗∗, ũ∗∗) ∈ Q2n−k−1

B , such
that (x;w∗) ∈ RELR1CSℓ,Q and (xLook;w

∗∗) ∈ RELLook,Q. In particular, since both x and
xLook contain oracles (w̃, ũ) and [[t̃]] to the witness polynomials, we have w∗ = w∗∗ = w,
u∗ = u∗∗ = u, and t∗∗ = t. Now, since (xLook;w

∗∗
Look) = (xLook; ((w̃, ũ), t̃)) ∈ RELLook,Q,

we have that (w,u) ∈ Z2n−k−1
B , i.e. (w,u) consists of integer entries. Since we have

(x;w∗) = (x; (w̃, ũ)) ∈ RELR1CSℓ,Q, we obtain that (x;w∗) ∈ RELR1CSℓ,Z, as needed.

2.3 Zip: A PCS over QB from an IOP of Proximity (IOPP) to the Integers

So far, we outlined the construction of a PIOP over QB for the relation RELR1CSℓ,Q (and for
RELLook,Q), see Protocol 1. Our next goal is to turn this PIOP into a succinct argument by
compiling it with a polynomial commitment scheme (PCS)3. As emphasized previously, the
security of these PIOPs is only guaranteed against malicious provers that send polynomials of
appropriate degrees, number of variables, and with coefficients either in QB or in a suitable
finite field. This applies as well to the polynomials in the instance and witnesses of RELR1CSℓ,Q
and RELLook,Q. Hence, our PCS, which we call Zip, must ensure that provers are committing
to such polynomials, i.e. we must make sure that it is possible to extract such polynomials.

For technical reasons that will become apparent later, another important aspect to
consider is that we expect honest provers to actually use polynomials with coefficients
in ZB′ for some B′ < B, instead of in QB. As such, we allow ourselves the freedom to
design a PCS whose completeness is only guaranteed when P is using polynomials with

3In fact, our compilation proceeds in a slightly different way: namely, our PCS is in “IOP form” –i.e. the
commitments contain oracles to strings, which are meant to be replaced by Merkle tree commitments later.
Then we compile our PIOP with this PCS, which results in an IOP, and then we compile this IOP using the
iCOS/iBCS transformation [CY24]. This is similar as how compilation is achieved in works such as [COS20].
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coefficients in ZB′ , but whose extractor is only guaranteed to output polynomials with
coefficients in QB. In other words, Zip is a PCS for polynomials with coefficients in QB

whose completeness is only guaranteed when provers use polynomials with coefficients in ZB′

for some suitable B′ < B, with B being polynomial on B′ and other parameters. Precisely,
B = 2 ·B′ + (6 · dim+2) · (λ+ log(dim)), where dim is, roughly, the square root of the length
of witnesses.

This situation is similar to what occurs with interactive oracle proofs of proximity (IOPPs)
to a code C, see e.g. [BSBHR18]. In such an IOPP, the honest prover P is expected to use a
codeword as a witness, but the scheme can only guarantee that P is using a word that is
close to a codeword. On the other hand, if P does not use a codeword as a witness, then the
IOPP does not guarantee completeness. In our scenario, Zip is a PCS for polynomials whose
coefficients belong to QB –in that case, in a sense, they are close to being integers– but the
honest prover is expected to actually use integral polynomials, of a bit-size smaller than B.
Because of this, we say that Zip is built from an Interactive Oracle Proof of Proximity
to the Integers.

The IOP underlying Zip is not only an IOPP to the Integers in the above sense, it is also
an IOPP to certain linear codes, as we see next. Indeed, Zip is based on the Brakedown
PCS [GLS+23] and its instantiation from [BFK+24] via Expand-Accumulate (EA) codes (for
reasons we will explain later). The variation works at times over the field of rational numbers,
and modulo a random prime. We put special care to make sure that, in the former case,
the honest prover and the verifier only ever handle integers of small bit-size. Our variation
of Brakedown includes an additional crucial check from the verifier which forces provers to
use witnesses with rational entries of bit-size at most B. Completeness is only guaranteed
for honest provers using witnesses with integer entries of bit-size at most B′, where B′ is
described above. Additionally, Zip allows to prove polynomial evaluations at integral points.

We remark that Zip can be extended to allow honest provers to actually use polynomials
with coefficients in QB′ , instead of polynomials with coefficients in ZB′ . This could be
of interest when proving statements involving rational numbers is relevant, e.g. in ML or
financial applications.

2.3.1 The commitment and testing phase

As we mentioned, Zip is a variation of Brakedown [GLS+23]. The PCS relies on a linear
code C over Q of dimension dim and length n (i.e. a Q-vector subspace of Qn of dimension
dim), and with certain favorable properties concerning the projection of C onto finite fields.
See Section 2.3.3 for further information on this.

Let f(X) = f(X1, . . . , Xµ) be a multilinear polynomial with coefficients in QB, with an
even number of variables µ. Say P wishes to commit to f . To do so, P proceeds analogously as
in the original Brakedown scheme. Namely, P organizes the coefficients of f into a dim× dim
matrix vf , where dim = 2µ/2. Then, P computes the encoding EncC(v

f
i ) with respect to

the code C of each row vf
i (i ∈ [dim]) of vf . The commitment to f is then the vector

(Commit(EncC(v
f
i )))i∈[dim], where Commit denotes a vector commitment, such as the Merkle

tree commitment scheme.
The commitment is supposed to be followed by an interactive testing phase, which we

describe in simplified form in Protocol 3.
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Protocol 3 Zip’s testing procedure (informal).
Input: Let x = (cmi)i∈[dim] with each cmi being supposedly a vector commitment to a word
ûi which is close to the code C, i.e. so that ûi agrees with a unique codeword v̂i = EncC(vi) ∈ C
on “many” positions. P and V receive (x) as input. P additionally receives w = (vi)i∈[dim],
the coefficient matrix of a polynomial f with coefficients in QB, as input. The words ûi

are given to P as part of its prover parameters. // Unlike when designing our PIOP in
Section 2.1, on this occasion we place no assumption on the bit-sizes of the entries in ûi and
vi, i ∈ [dim].

1: V sends P uniformly sampled elements r1, . . . , rdim ∈ [0, 2λ − 1]4.
2: P sends V the vector sv =

∑
i∈[dim] ri · vi ∈ Qdim.

3: If for some j ∈ [dim], the absolute value of svj (i.e. the j-th component of the vector svj)
is “too large”, i.e. if |svj | > dim · 2B′+λ, or if svj is not an integer, V rejects.

4: V randomly chooses a subset J ⊆ [n] with |J | = Θ(λ). For each j ∈ J :

• V interacts with P to open the commitments cmi at position j, for each i ∈ [dim].
Let û1,j , . . . , ûdim,j be the received values. If these are not integers of a certain
bit-size bound, V rejects.

• V checks whether EncC(sv)j =
∑

i∈[dim] ri · ûi,j .

This testing phase is very similar to the testing phase of the original Brakedown scheme,
but, unlike in the original one, serves two main purposes:

1. First, as in the original Brakedown scheme, it guarantees that, except with negligible
probability (e.w.n.p.), P sent a vector of commitments to words (ûi)i∈[dim] with each
ûi being close to a unique codeword EncC(vi).

2. Second, by having V check (at Step 3 of Protocol 3) that the vector sv – supposedly the
vector

∑
i∈[dim] ri · vi – contains only integer entries, and that these entries are not “too

large”, we guarantee that, e.w.n.p., the witness vectors vi belong to QB. Intuitively
speaking, this guarantees that the vectors vi are “close” to being integral of bit-size B′.

When it comes to proving that Protocol 3 provides the guarantees mentioned in Item
1 above, our analysis is very similar to the one in the original Brakedown paper [GLS+23].
However, the corresponding arguments only allow to prove the existence of unique codewords
EncC(vi) ∈ Qdim close to ûi, for all i ∈ [dim], because we simply apply Brakedown’s arguments
to a certain linear code over Q (cf. Section 2.3.3). In particular, we have no restriction
whatsoever on the bit-size of the codewords EncC(vi) and their underlying messages vi.

We next explain why, as mentioned in Item 2 above, Step 3 of Protocol 3 indeed guarantees
that vi ∈ Qdim

B for all i ∈ [dim]. To begin with, as in Brakedown’s original soundness analysis,
it is possible to use the correlated agreement properties of linear codes to guarantee that,
e.w.n.p., the vector sv sent by P at Step 2 of Protocol 3 is indeed the random linear combination∑

i∈[dim] ri · vi. We call such an event E0.

4For technical reasons, in Zip we actually sample the r1, . . . , rdim in an interval of the form [0, q0 − 1] for
q0 a fixed prime.
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Now, assume that E0 holds and that some entry in the vectors v1, . . . ,vn has very large
bit-size. Say it is the first entry v11 of v1. Then, if E0 holds and Item 2 of Protocol 3 passes,
we have that the “random linear combination”∑

j∈[dim]

ri · v1j

is an integer with absolute value less than dim · 2B′+λ, where B′ is such that

B = 2 ·B′ + (6dim+ 2) · (λ+ log(dim)). (6)

In particular, we have that a random linear combination of rational numbers, some of them
with very large bit-size, resulted in an integer of small bit-size.

Considering this, we prove two results regarding random linear combinations of rational
numbers with large bit-sizes, cf. Lemmas 2.4 and 2.5 below. Combined, these results amount
to say that if a random linear combination of rational numbers (using integers for the random
coefficients) results in an integer, then the rational numbers had bit-size similar to the bit-size
of the random integers.

Applied to our setting we obtain that, e.w.n.p., V accepts at Step 3 of Protocol 3 with
probability at most

min

{
1,

dim · 2B′

∥v∥∞

}
, (7)

where ∥v∥∞ is the largest absolute value of an entry in the vectors v1, . . . ,vdim. This
probability is 1 if ∥v∥∞ is small (as we want it to be), and becomes smaller as ∥v∥∞ increases.
In particular, it is 1 if the bit-size of all entries in v is at most B′ (since then ∥v∥∞ < 2B

′).
On the other hand, if the bit-size of v is close to B, say if it is B, then we can show that 7 is
negligible. This is because our lemmas (cf. Lemma 2.5) also yield that, e.w.n.p., the largest
denominator in v has bit-size at most λ. This allows us to deduce (using our encoding of Q
as strings of bits, cf. Section 3.2) that at least one entry in v has a numerator of bit-size at
least (B − λ)/2, and so ∥v∥∞ ≥ 2(B−λ)/2/2λ = 2B/2−3λ/2. Using the expression (6) for B,
we indeed obtain that 7 is negligible. Note that the B in (6) is way more than enough to
make (7) negligible. A smaller B would suffice here, but, for technical reasons, our extractor
requires B to be as large as in (6).

This is essentially why Zip guarantees that P is using a polynomial with coefficients in
QB, but is supposed to be used for polynomials with coefficients in ZB′ .

The two aforementioned results regarding random linear combinations of rational numbers
are the following:

Lemma 2.4 (A random linear combination of large rational numbers is large (Lemma 5.7)).
Let v1, . . . , vn ∈ Q be n rational numbers, not all of them zero. Let S = [0, 2s − 1] for some
s ≥ 1, and let b ≥ 1. Then

Pr

 |∑
i∈[n]

ri · vi| < 2b

∣∣∣∣∣∣ ri ← S for all i ∈ [n]

 ≤ min

{
1,

2b

maxi∈[n]{|vi|} · 2s

}
,

where ri ← S means uniformly sampling from S.
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Lemma 2.5 (A random linear combination of rational numbers with large denominators
rarely results in an integer (Lemma 5.8)). Let v = (v1, . . . , vn) ∈ Qn be a vector of n ≥ 1
rational numbers, not all of them zero. For each i ∈ [n], write vi = ai/bi with ai, bi ∈ Z and
gcd(ai, bi) = 1. Let M ≥ 1 be a positive integer, and assume there exists i ∈ [n] such that
|bi| > M and vi ̸= 0. Then the probability of uniformly sampling n integers r1, . . . , rn in the
interval [0,M − 1] such that

∑
i∈[n] rivi is an integer is at most 1/M . More formally,

P = Pr

∑
i∈[n]

ri · vi

 ∈ Z

∣∣∣∣∣∣ ri ← [0,M − 1] for all i ∈ [n]

 ≤ 1

M
.

Some technical challenges around Zip’s extractor Recall that, in Zip, the prover
commits to words ûi ∈ Qdim, i ∈ [dim], which are supposedly close to being codewords
EncC(vi) and which, in most cases, will indeed be the actual codewords EncC(vi). However,
as with most code-based PCS, the prover can potentially take ûi to be EncC(vi) after replacing
a few of its values by arbitrary strings of bits. In this work, we fix an encoding of Q as
bit-strings (cf. Section 3.2), and hence we interpret any string as a rational number. In any
case, a prover may use an arbitrarily large string of bits in an entry of ûi. A complication
that results from this phenomenon is the following: because this piece of data has large
bit-size, a polynomial time extractor cannot read it entirely. This would not occur when
working over a finite field F, because the extractor knows that all field elements have at most
log(|F|) = O(λ) bits. Nevertheless, in Section 5.4 we describe an expected polynomial time
extractor that can handle this situation. In particular, since the extractor is expected PPT,
it does not necessarily read some of the entries in the vectors û1, . . . , ûdim entirely.

2.3.2 The evaluation protocol

The evaluation protocol of Zip is essentially the same as in the original Brakedown scheme,
except that we execute it modulo a random prime. We describe it in simplified form in
Protocol 4. This scheme is supposed to be run only after the testing protocol (Protocol 3) has
been successfully executed and accepted by the verifier. The scheme exploits the well-known
fact [Tha22] that, given a µ-variate multilinear polynomial f(X1, . . . , Xµ) and an evaluation
point q ∈ Rµ (for R a ring), there exist q1,q2 ∈ Rdim, where dim = 2µ/2, such that

f(q) = qT
1 · v · q2,

where v is the dim × dim matrix containing the coefficients of f . Below, we let ϕq be the
canonical projection of Z(q) onto Fq, cf. Eq. (4).
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Protocol 4 Zip’s evaluation protocol (informal).
Input: Let x = ((cmi)i∈[dim],q, y) with cmi being a Merkle commitment to a word ûi which
is close to a codeword EncC(vi), for all i ∈ [dim], where vi ∈ Qdim

B ; q ∈ Zµ
B, and y is an

integer of appropriate size. P claims that the µ-variate polynomial f whose coefficients are
given by (vi)i∈[dim] satisfies f(q) = y. P and V receive x as input. P additionally receives
w = (vi)i∈[dim].
1: V samples a random Ω(λ)-bit prime q.
2: If vi ̸∈ Zdim

(q) , or ûi ̸∈ Zn
(q) for some i ∈ [dim], then P aborts.

3: Let q1,q2 ∈ Zdim be such that f(q) = qT
1 · v · q2. P sends V the vector

svq =
∑

i∈[dim]

ϕq(q1,i) · ϕq(vi) ∈ Fdim
q .

4: V randomly chooses a subset J ⊆ [dim] of size |J | = Θ(λ). For each j ∈ J :

• V interacts with P to open the commitments cmi at position j, for each i ∈ [dim].
Let û1,j , . . . , ûdim,j be the received values.

• V checks whether

EncCq(svq)j =
∑

i∈[dim]

ϕq(q1,i) · ϕq(ûi,j), ϕq(y) =
∑

i∈[dim]

svq,i · ϕq(q2,i),

where EncCq(svq) denotes multiplying the matrix ϕq(MC) by the vector svq, where MC is a
generator matrix of C.

The purpose of this evaluation protocol is to guarantee that, indeed, f(q) = y. The
reason why the protocol is knowledge sound comes from two arguments. First, one can show
that the check EncCq(svq)j =

∑
i∈[dim] ϕq(q1,i) · ϕq(ûi,j) guarantees that, e.w.n.p., P indeed

sent the vector v̄q =
∑

i∈[dim] ϕq(q1,i) · ϕq(vi) ∈ Fdim
q at Step 3 of Protocol 4. This can be

proved using the properties of the linear code ϕq(C) in a similar way as done in the original
Brakedown security proof. Below, in Section 2.3.3, we explain what our code is and what
properties it has when projected with ϕq. Note that all applications of the map ϕq above are
well defined.

Second, once the correctness of the vector v̄q is established, one has that the equality
ϕq(y) =

∑
i∈[dim] svq,i · ϕq(q2,i) is equivalent to ϕq(f(q)) = ϕq(y). However, we want to

guarantee that f(q) = y as rational numbers, not as projected elements onto Fq. For this, we
can argue that f(q) = y over the rational numbers in a similar way as to how we proved that
the PIOP in Protocol 1 is knowledge sound, with the crucial difference that, in the latter, we
were allowed to assume that provers, even malicious ones, were bound to use polynomials
with coefficients of bounded bit-size, including the polynomials in the instance oracles. On
this occasion, we cannot place such constraint because one of the goals of Zip is to enforce
malicious provers to meet this requirement.

However, as we saw above in Section 2.3.1, Step 3 of Zip’s testing phase (Protocol 3)
guarantees that the vectors vi belong to Qdim

B , for all i ∈ [dim], e.w.n.p. In this setting, one
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can use again Lemma 2.1 in a similar way as it was used when analyzing the knowledge
soundness of Protocol 1, to prove that indeed f(q) = y over the rationals, e.w.n.p.

2.3.3 The underlying linear code and the cost of committing and testing

As underlying linear code for our Brakedown-like scheme, we use the juxtaposed expand-
accumulate (JEA) codes from Block et al. [BFK+24], with the difference that the randomness
used when instantiating the code is drawn, approximately, from the interval of integers
[0, s− 1] rather than from a finite field F. We argue in Section 6 that s ≈ 24λ suffices, and
we conjecture (cf. Remark 6.8) that it is possible to choose s ≈ 22λ, or even smaller.

This linear code, which we denote CJEA, is constructed as follows: start by randomly
sampling expander matrices E1 and E2 with entries in [0, s− 1] with respect to two different
distributions (cf. Section 6 for the details on these). The parameters defining these distribu-
tions are chosen in a way to ensure that both E1 and E2 are sparse matrices. Next, form
generator matrices MBP and MBer by taking a matrix product of E1 and E2, respectively,
with an accumulator matrix A (i.e. a square matrix such that every entry on and above the
main diagonal is one). The matrices MBP and MBer give rise to two distinct linear codes CBP
and CBer. The codewords in our JEA linear code CJEA are concatenations of codewords of
these two codes.

As a result, we obtain a code with a sparse generating matrix, and with nonzero entries
having around s bits. This respects one of our design principles, namely, to not operate
with very large integers. Indeed, encoding integer vectors with entries of bit-size B′ only
requires multiplying integers of bit-size B′ with integers of bit-size log(s), plus performing
additions with integers of bit-size not much larger than B′ + log(s) (note that additions are
much cheaper than multiplications though). As outlined at the beginning of this technical
overview, B′ ≤ 2λ is a reasonable choice for some applications relevant to Zinc.

We remark that using other codes may not immediately provide the same property:
indeed, for example, Brakedown’s code [GLS+23], or Basefold’s code [ZCF23] are defined
recursively through iterative matrix multiplications, with each matrix having some of their
entries filled with random field elements. Naïvely executing this procedure over the integers
would result in encoding matrices whose nonzero entries have thousands of bits. We leave the
task of finding other suitable linear codes over Q as an interesting line of further research.

An additional property that our code C must satisfy is that, when projected onto a finite
field Fq via the homomorphism ϕq, where q is random, the resulting code should have good
distance properties, e.w.n.p. over the choice of q. This is because Protocol 4 operates with
codewords that are reduced modulo a random prime.

We show that our JEA code satisfies these properties. The way we prove this is as follows.
We assume V samples primes of bit-size at most log(s)/2. Then we show that except for a
negligible number of such primes, the generator matrix M of C has all entries in an interval
of the form [0, k · q − 1] for some k ≥ 0. Essentially, this is true because, in such setting, if
kmax is the largest k such that k · q ≤ s, then there are less than q elements in [0, s− 1] that
do not belong to [0, kmax · q − 1]. Hence, the probability of sampling one such element is at
most q/s ≤ 1/

√
s ≤ 1/2λ approximately, if s ≥ 22λ.

This means that, e.w.n.p., when projected onto Fq, the entries of M are uniformly sampled
elements from Fq. As such, we are able to argue that when projected onto Fq, M is a matrix
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formed in the same way one would form a matrix for a JEA code over Fq. Then, we can
apply the results from [BFK+24] to the projected JEA code. We refer to Section 6 for more
details.

2.4 Further work

Ongoing work of ours is to implement and benchmark Zinc and Zip. We leave as further
work the task of analyzing the state-restoration soundness of our schemes, so that we can
reliably compile our succinct arguments into a SNARK using the Fiat-Shamir transform.

3 Preliminaries

3.1 General notation

Given an integer k ≥ 1 we let [k] := {1, . . . , k}. We let {0, 1}k := {(b1, . . . , bk) | bi ∈
{0, 1}, for all i ∈ [k]} be the hypercube of dimension k, or, in other words, the set of all
sequences of k bits. We denote vectors and tuples with lowercase boldface roman letters,
e.g. v,u, . . . By vi we denote the i-th entry of a vector v. Sometimes (in Section 5), we use
symbols like v or u to denote matrices. In this case, vi denotes the i-th row of v, and vi,j

denotes the (i, j)-th entry of v.
For any rational number v ∈ Q, we denote its absolute value by |v|, and, given v a vector

(or a matrix) as above, we denote by ∥v∥∞ = maxi{|vi|} its norm. Whenever we consider a
finite set S, we denote by |S| the cardinality of S. We denote by gcd and lcm, respectively,
the greatest common divisor and the lowest common multiple of a tuple of integers. Given
two integers a and b with a ≤ b, we denote by [a, b] ⊂ Z the interval of integer elements
greater than or equal to a and smaller than or equal to b.

Throughout, we use K to denote a possibly infinite countable field and F a finite field. By
R we denote a (possibly countably infinite) associative commutative ring with multiplicative
identity. Note that a field is a ring, and hence when working over R, we are also including
the scenario where we work over a field.

Given non-zero vectors v1, . . . ,vt ∈ Rm, for some t,m ≥ 1, we say that the vectors are
linearly independent over R, if any linear combination

∑
i∈[t] ri · vi ̸= 0 := (0, . . . , 0)T ∈ Rm,

for any (r1, . . . , rt)
T ̸= 0 in Rt; otherwise, we say that the vectors v1, . . . ,vt are linearly

dependent over R.
Let X = (X1, . . . , Xµ) be a tuple of variables. We let R[X] denote the ring of multivariate

polynomials on variables X and with coefficients in R. By Rmultilin[X] we denote the set of
polynomials from R[X] all whose variables have individual degree at most 1, i.e. the set of
multilinear polynomials over R.

We use λ to denote the security parameter. A function f(λ) is in poly(λ) if there exists
c ∈ N such that f(λ) = O(λc). If for all c ∈ N, f(λ) = o(λ−c), then f(λ) is said to be
negligible in λ, i.e. negl(λ).

22



3.2 Rings, localizations of rationals at a prime, and multilinear polynomi-
als

Rings and ring homomorphisms All rings in this paper are associative, commutative,
have a multiplicative identity element, and are possibly infinite, but countable. A ring
homomorphism ϕ : R → R′ between two rings R,R′ is a map such that ϕ(a+b) = ϕ(a)+ϕ(b),
ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ R, and ϕ(1) = 1. The kernel of ϕ, denoted kerϕ, is the subset
of R formed by all elements a ∈ R such that ϕ(a) = 0. Such subset forms an ideal of R. We
say ϕ is onto if for each b ∈ R′ there exists a ∈ R such that ϕ(a) = b.

The homomorphism ϕ extends naturally to a homomorphism ϕ : R[X]→ R′[X] between
the polynomial rings R[X],R′[X] on variables X. Similarly, given an oracle [[f ]] to a
polynomial f ∈ R[X], we let ϕ([[f ]]) = [[ϕ(f)]]. Given a vector v containing elements from
R, polynomials from R[X], and oracles to polynomials from R[X], by ϕ(v) we denote the
vector resulting from applying ϕ at each component of v.

Given a countable ring R, we fix an encoding of the elements of R as binary strings.
Given B ≥ 1, we let RB denote the subset of R consisting of all ring elements whose encoding
has at most B bits.

Rational numbers and their representation We let Z denote the ring of integers,
and Q the field of rational numbers. We represent uniquely each element from Q as a pair
(a, b) ∈ Z2 with b > 0 such that the greatest common divisor of a and b is 1. In this case we
say that (a, b) are in lowest form, and we we denote the pair by a/b.

In this work we fix an encoding of the rational numbers as strings of bits, so that the
encoding of a/b ∈ Q in lowest form has bit-size at most 2max{log(|a|), log(b)}+ 3, which
in many cases is upper bounded by 2(log(|a|) + log(b)) + 3. This is achieved as follows.
Given such a/b with a ≥ 0, we write two strings of bits for a and b of equal length ℓ(a,b),
with ℓ(a,b) minimal. This is done by considering the natural encodings ea, eb of the integers
a, b as bits of strings, and then, possibly, adding 0’s to the left of either a and b. Then
the encoding of a/b is the concatenation of ea and eb. Clearly, this encoding has bit-size
2max{log(a) + 1, log(b) + 1}.

Now, when reading a string of bits s, we interpret it as a rational number in the following
way: if s has an even number of bits, we split s into two equally sized strings of bits s1, s2,
and take s as the representation of s′1/s′2 where s′1, s

′
2 are the integers represented by the

strings s′1, s
′
2. If s has an odd number of bits, then we take s to be the rational represented

by the string of bits obtained from s after removing its last bit.
This representation of positive rational numbers as strings of bits is then extended to

negative rational numebers by adding an extra bit to the representation which indicates the
sign of the number. Conversely, and similarly as above, any string of bits s can be interpreted
as a rational number as follows: if s has odd length, then interpret the first bit as the sign of
the number, and proceed as before with the rest of the string. If s has even length, delete
the last bit in s, and then decode the resulting string as we just explained.

Overall, we obtain an encoding of Q such that each a/b ∈ Q in lowest form has an
encoding of bit-size at most 2max{log(a) + 1, log(b) + 1}+ 1.

Remark 3.1. Note that 2max{log(a) + 1, log(b) + 1}+ 1 ≤ 2 · (log(a) + log(b)) + 1 for any
nonzero a/b. To simplify our mathematical expressions, we usually upper bound the bit-size
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of a/b as 2 · (log(|a|) + log(b)) + 1, rather than using the actual bit-length of a/b. To simplify
some expositions, we approximate such bound simply as upper bound 2 · (log(a) + log(b)),
which holds as long as min{log(|a|), log(|b|)} ≥ 3/2.

Localization of rationals at a prime The localization of Q at a prime number q is the
set

Z(q) =

a

b

∣∣∣∣∣∣
a

b
∈ Q,

b ̸≡ 0 mod q

 .

It is well-known that Z(q) is a ring. Further, Z(q) admits the following ring-homomorphism:

ϕq : Z(q) → Fq

a/b 7→ a · b−1

where Fq is the finite field with q elements, and b−1 above denotes the inverse of b modulo
the prime q. The kernel ker(ϕq) of ϕq is the subring of elements of Z(q) that are mapped to
0 by ϕq. We have

ker(ϕq) = qZ(q) = {a/b ∈ Z(q) | a ≡ 0 mod q}.

An integral domain is a ring D where whenever a ·b = 0 for some a, b ∈ D, it must be the case
that either a or b are zero. The ring of integers Z is an integral domain, and any field is an
integral domain. If D is an integral domain, then one can define its field of fractions, which
is the field comprised of elements of the form a/b, and whose addition and multiplication
operations are analogous to how rational addition and multiplication work. Indeed, the field
of rational numbers Q is the field of fractions of Z.

Multilinear polynomials and multilinear extensions (MLE) over a ring Let R
be a ring. Let µ ≥ 1 and let X = (X1, . . . , Xµ) be a tuple of variables. It is well known
[Tha22] that a multilinear polynomial f(X) ∈ Rmultilin[X] is uniquely defined by the multiset
of the values it takes on {0, 1}µ, i.e. f({0, 1}µ) := {f(x) | x ∈ Rµ}. In other words, any
two f, g ∈ Rmultilin[X] such that f(x) = g(x) for all x ∈ {0, 1}µ are the same polynomial.
Further, given a map f : {0, 1}µ → R, there always exists a unique multilinear polynomial
on µ variables, denoted f̃(X), such that f̃(x) = f(x) for all x ∈ {0, 1}µ. It is given by the
expression

f̃(X) :=
∑

x∈{0,1}µ
f(x) · ẽq(x;X) (8)

where ẽq(x;X) is the unique multilinear polynomial on µ variables that takes the value 0 on
all points of the hypercube {0, 1}µ, except at x where it takes the value 1. Precisely,

ẽq(x;X) :=
∏
i∈[µ]

(xiXi − (1− xi)(1−Xi)) .

This unique multilinear polynomial f̃(X) is called the multilinear extension (MLE) of f .
Given a vector v = (v1, . . . , v2µ) ∈ R2µ , we define the MLE of v (denoted by ṽ(X)) as the
MLE of the map v : {0, 1}µ → R assigning to each element x ∈ {0, 1}µ the element vx,
where here we interpret x as the natural number whose binary representation is x.
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3.3 Linear codes

A linear code C over a field K of length n and dimension dim ≤ n is a vector subspace of Kn of
dimension dim. The rate of C is ρ = dim/n. A matrix MC ∈ Kdim×n is said to be a generator
matrix for C if it has rank dim and its rows span C. Elements in C are called codewords.
A vectors of length n is called a word. A word may have arbitrary entries, not even from
the field K. The Hamming distance ∆H(c1, c2) between two words c1, c2 ∈ C is the number
of positions where c1 and c2 differ. The relative Hamming distance ∆(c1, c2) between two
words c1 and c2 is ∆(c1, c2) = ∆H(c1, c2)/n. The relative distance dist of C is the minimum
relative Hamming distance between two codewords of C, i.e. dist = minc1,c2∈C,c1 ̸=c2 ∆(c1, c2).

Given any word v, we say that v is δ-close to C if the relative Hamming distance between
v and the closest codeword c from C is δ, written ∆(v, C) ≤ δ.

For a given word v, let Bv(δ) = {c ∈ C | ∆(v, c) ≤ δ} be the ball of radius δ centered at
v. We say δ is within the unique decoding radius if for every word v, Bv(δ) contains at most
one codeword. Any δ satisfying δ < (1− dist/n)/2 is within the unique decoding radius.

For any linear code C over K, the interleaved code Ck over Kk has codewords k × n
matrices U , such that every row Ui is a codeword in C. Ck is a code of length n and dimension
k · dim. For any matrix A in Kk×n, the relative Hamming distance ∆(A, Ck) is the number
of columns where A and the closest codeword U ∈ Ck differ on at least one entry, divided by
the code length n.

Definition 3.1 ((δ, α,K)-correlated agreement of a code [BSCI+23, Theorem 1.4]). Let
C be a linear code over a (possibly infinite) field K with length n and dimension dim. Let
K ⊆ K be a finite subset of K. Let 0 < δ, α < 1. Let k ≥ 1 and let v1, . . . ,vk be k words.
We say that v1, . . . ,vk have δ-correlated agreement in C if there exists a set E ⊆ [n] with
|E| ≥ (1− δ) · n and codewords c1, . . . , ck ∈ C such that vi and ci agree on E, for all i ∈ [k].

We say that C has (δ, α,K)-correlated agreement if for any k words v1, . . . ,vk such that

Pr

∆
∑

i∈[k]

rivi, C

 ≤ δ

∣∣∣∣∣∣ ri ← K, i ∈ [k]

 > α,

we have that v1, . . . ,vk have δ-correlated agreement in C.
When no confusion arises, we will just say that the code has δ-correlated agreement and

drop the reference to α and the set K.

Lemma 3.2 (Correlated agreement for linear codes over infinite fields, c.f. [AHIV22], Lemma
4.5). Let C be a linear code over a field K with dimension dim, length n and relative distance
dist. Let K ⊆ K be a finite nonempty subset of K. Then C has (δ, α,K)-correlated agreement
with δ < dist/3, α = n/|K|.

This lemma is proven in Appendix A.

3.4 Interactive Proofs, PIOPs, and Polynomial Commitments

In this section we provide standard definitions and notations for interactive proofs and
arguments, IOPs, PIOPs, and polynomial commitment schemes. We mainly follow [CBBZ22,
BFS19, CY24].
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Indexed relations An indexed relation REL is a set consisting of index-instance-witness
triples (i,x;w). In this paper, typically, i,x,w are tuples of natural numbers, ring elements,
and polynomials with coefficients in a ring. Additionally, i and x may contain oracles (see
below). Our relations are parameterized by a collection of global parameters, which we
denote by gp. Accordingly, we often denote relations by RELgp. We always include the
security parameter in gp, but we omit referring to it.

We let LANG(RELgp) denote the language associated to RELgp. This is the set of index-
instance pairs (i,x) for which there exists a witness w such that (i,x;w) ∈ RELgp.

An oracle is a finite string (fi)i∈[n] of ring elements indexed over an ordered subset
S = (si)i∈[n] of a ring R. Oracles receive a special treatment as they are meant to be received
by a verifier, but not necessarily read in full. In this paper we think of a string (fi)i∈[n]
as the map f : S → R with f(si) = fi. We distinguish between the actual map f and its
oracle, which we denote by [[f ]]. The latter can be received by a verifier, and read only at
specific points, but not read in full. We distinguish between regular oracles (i.e. oracles to
strings as we just defined), and oracles to polynomials. The latter are oracles to a string
that consists of evaluations of a polynomial f of a prescribed number of variables, degree,
and with coefficients in some prescribed set. These evaluations contain enough information
to uniquely determine f . For example, if f is multilinear with µ variables, then the oracle
may consist of all evaluations of f in {0, 1}µ.

Interactive proofs Let RELgp be an indexed relation (without oracles) parameterized by
some global parameters gp.

Definition 3.2 (Interactive Proof). An Interactive Proof for an indexed relation RELgp with
global parameters gp is a tuple of algorithms (Indexer,P,V) where: for all (i,x;w) ∈ RELgp,
Indexer is a deterministic algorithm taking gp, i as input and outputting verifier and prover
parameters (vp, pp)← Indexer(gp, i). The pair (P,V) is a pair of interactive algorithms where
P receives (pp,x,w) as input, and V receives (vp,x) as input. The interactive proof cna have
the following properties:

• Completeness with error εcomp. For all (i,x;w) ∈ RELgp,

Pr
[
⟨P(pp,x,w),V(vp,x)⟩ = 1

∣∣ (vp, pp)← Indexer(gp, i)
]
≥ 1− εcomp(gp, i,x).

• Soundness with error εsound (adaptive). Let L(RELgp) be the language corresponding
to the indexed relation RELgp. The protocol Π has soundness error εsound if for any
unbounded adversarial prover P∗, for any (i,x), the following holds:

Pr

[
⟨P∗(pp, i,x),V(vp,x)⟩ = 1

∧ (i,x) /∈ L(RELgp)

∣∣∣∣∣ (vp, pp)← Indexer(gp, i)

]
≤ εsound(gp, i,x).

• Knowledge soundness with error εks. There exists a probabilistic oracle machine Ext
(called the extractor) such that, given oracle access to any unbounded adversarial prover
P∗, and any (i,x) the following holds:

Pr

[
⟨P∗(pp, i,x),V(vp,x)⟩ = 1

∧ (i,x;w) ̸∈ RELgp

∣∣∣∣∣ (vp, pp)← Indexer(gp, i)

w← ExtP
∗
(gp, i,x)

]
≤ εks(gp, i,x, εP∗).
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We require ExtP
∗
(gp, i,x) to run in expected polynomial time on (gp, i,x, ε−1

P∗ ) (we do
not count the running time of the oracle to P∗).

• Public coin. Π is public coin if the verifier messages are random coins and if the final
verification procedure can be executed publicly.

Interactive Oracle Proofs (IOP)

Definition 3.3 (Interactive Oracle Proof (IOP)). An interactive oracle proof (IOP) over a
ring R is a public-coin interactive proof for an indexed relation RELgp = {(i,x,w)}. In this
relation, i and x can contain oracles to strings of elements from R or a prescribed subset of
R. The full strings behind the oracles from i and x are contained in the prover’s parameters
pp and in the witness w, respectively. We denote an oracle to a string π by [[π]].

In every protocol message, the prover P sends oracles to strings of elements from R, a
prescribed subset of R, or a prescribed subset of some other ring. In every round, the verifier
V sends a random challenge ρi.

We define completeness, soundness, and knowledge soundness in an analogous way as to
how they were defined for interactive proofs and arguments in Definition 3.2.

Definition 3.4 (Polynomial Interactive Oracle Proof (PIOP)). A polynomial interactive
oracle proof (PIOP) over a ring R is an IOP with the difference that all oracles contain
polynomials of prescribed number of variables µ, degrees, and with coefficient in some subset
of R or some other ring R′. The oracle polynomials can be queried at any point of Rµ (or
Rµ′).

We define completeness, soundness, and knowledge soundness in an analogous way as to
how they were defined for interactive proofs and arguments in Definition 3.2.

Remark 3.3 (On having well-formed global parameters, indices, instances, and oracles).
Soundness and knowledge soundness notions of interactive proofs/arguments, IOPs, and
PIOP all assume that the data in the parameters gp, pp, vp and in the index i and instance
x have the correct syntactic form. In particular, it is assumed that all strings or polynomials
behind the oracles have the correct length, have entries in the correct sets, or correspond
to polynomials of the prescribed number of variables, degrees, and with coefficients in a
prescribed set. In this case we say that (gp, i,x) is well-formed.

This applies as well to the oracles sent by the prover during the interactive phase of the
protocol, in which case we say that P sends well-formed oracles. In particular, it applies also
to malicious provers. For example, in a PIOP, the knowledge error only applies in the case
that the malicious provers are given well-formed (gp, i,x) and send well-formed oracles.

Lemma 3.4 (Sound PIOPs are knowledge sound – Adaptation of [CBBZ22, Lemma 2.3]).
Let Π be a PIOP over a ring R for an indexed relation RELgp with soundness error ε. Assume
that, for all (i,x;w) ∈ RELgp, w consists only of multilinear polynomials such that x contains
oracles to these polynomials. Then the PIOP has knowledge soundness error ε, and the
extractor runs in time O(|w|).

Proof. We translate the proof of [CBBZ22, Lemma 2.3] to our formalism. We construct
an extractor Ext that can produce a witness w∗ such that (i,x;w∗) ∈ RELgp if and only if
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(i,x) ∈ LANG(RELgp), for any index-instance pair (i,x). Therefore, on every input (i,x) in
the language of RELgp, the soundness error is exactly the knowledge-soundness error. Let
P̃ be a PPT adversary for Π. By definition of extractor, the algorithm can query oracles.
Thus, for each oracle of a multilinear polynomial in µ variables in x, ExtP̃(gp, i,x) can
query it at the points {0, 1}µ distinct points to extract the polynomial inside the oracle
and thus extract the whole w∗. Note that such extractor works in poly(i,x) time. Now, if
(i,x;w∗) ∈ RELgp, then (i,x) ∈ LANG(RELgp) by definition. Let us prove that also the other
implication is true. Assume that (i,x) ∈ LANG(RELgp). By definition, there exists a witness
w (a priori possibly different from w

∗) such that (i,x;w) ∈ RELgp. Since the extractor
evaluates the oracles at {0, 1}µ, and any polynomial in w and w∗ is multilinear in µ-variables,
it follows that the queried polynomials must coincide, hence proving that w = w

∗. Hence
(i,x;w := w

∗) ∈ RELgp. ExtP̃(gp, i,x) then outputs the unique valid witness associated with
(i,x), for any (i,x) ∈ LANG(RELgp).

Polynomial Commitment Schemes We next recall the notion of Polynomial Commit-
ment Scheme. Our formulation allows for handling polynomials with coefficients in some
subset of a ring (possibly infinite). We also allow for the possibility that the commitments
produced by a PCS contain oracles to strings, and that the evaluation protocol is an IOP
rather than an interactive argument. We do this because we later describe Zip’s evaluation
procedure by means of an IOP. The oracles can then be replaced later with Merkle tree
commitments, or some other vector commitment.

Definition 3.5 (Multilinear PCS over a ring R – with oracles allowed). A multilinear
Polynomial Commitment Scheme PCS consists of a tuple of PPT algorithms and protocols
(Commit,Open,Eval) and global parameters gp with the following properties.

The global parameters gp have the form gp = (µ, S,R, gp′) where µ is a number of variables,
R is a ring, S is a subset of R (possibly S = R), and gp′ are other parameters required
to describe the scheme.

Commit(gp, f, aux) : Takes as input the parameters gp = (µ, S,R, gp′), a multilinear poly-
nomial f ∈ Smultilin[X], where X = (X1, . . . , Xµ), and some auxiliary data aux. The
Commit algorithm outputs a commitment cm, which may contain oracles to strings, and
an opening hint hint, which may or may not be randomness used in the computation of
the commitment.

Open(gp, cm, f, hint): Takes as input the parameters gp = (µ, S,R, gp′), a commitment cm,
an opening hint hint, and a multilinear polynomial f ∈ Smultilin[X], and outputs a bit
b ∈ {0, 1}.
The scheme PCS has binding error εbind if for every adversary P∗,

Pr

b0 = b1 = 1 ∧ f1 ̸= f2

∣∣∣∣∣∣∣
(cm, f1, f2, hint1, hint2)← P∗(gp)

b1 ← Op(gp, cm, f1, hint1)

b2 ← Op(gp, cm, f2, hint2)

 ≤ εbind(gp, cm).
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Eval = (IndexerEval,PEval,VEval): Is an interactive public-coin protocol, possibly an IOP, for
the following relation:

RELgp,Eval =


(i,x;w)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

gp = (µ, S ⊆ R, gp′),
i = (cm, hint)5,

x = (x, y), x ∈ Rµ, y ∈ R
w = (f), f ∈ Smultilin[X1, . . . , Xµ],

f(x) = y,

Open(gp, c, f, hint) = 1.


.

Additionally, the relation implicitly includes constraints requiring that (cm, hint) has the
correct form and are valid outputs of Commit. These constraints may use parameters
from gp′. Moreover, the relation RELgp,Eval can contain constraints forcing query points
x and evaluation values y to belong to some sets specified in gp′. We refer to Section 5.2
for an example of a concrete evaluation relation RELgp,Eval.

We say the Polynomial Commitment Scheme PCS has knowledge soundness error εks if
Eval has knowledge soundness error εks.

We say that PCS has completeness error εcomp if the following two conditions hold:

• For every parameters gp, f ∈ Smultilin[X1, . . . , Xµ], auxiliary input aux, and opening
hint hint,

Pr[Open(gp, cm, f, hint) = 1 | (cm, hint)← Commit(gp, f, aux)] = 1− εcomp(gp, f).

• For every parameters gp, f ∈ Smultilin[X1, . . . , Xµ], auxiliary input aux, opening hint
hint, and x ∈ Sµ, y ∈ R,

Pr

[
1← ⟨PEval(pp,x, y, f),VEval(vp,x, y)⟩

∣∣∣∣ cm = Commit(gp, f, aux)
y = f(x)

]
= 1−εcomp(gp, f).

A multilinear PCS PC is said to be succinct if the commitment cm output by Commit has
size sublinear in 2µ.

3.5 CCS and lookup relations

We next recall the definition of two well-known types of constraints. Instead of formulating
them over a finite field F, we use a general ring R.

5Having the commitment cm and the hint hint in the index i allows to not place the hint in the witness w.
This way, when designing an interative proof for RELgp,Eval, the hint hint can be given to the prover as part of
the prover parameters pp output by IndexerEval, and since hint is not part of the witness, we do not rquire
extractors to recover hint, which in some cases is not something one wants to do. For example, in a PCS
constructed from IOPs of Proximity, cm is a (collection of) Merkle tree commitment to the encoding of a
word hint, which is, supposedly, close to a codeword c. We are only interested in having an extractor that
recovers c, not hint.
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Customizable Constraint System (CCS) over a ring In this section we recall the
definition of Customizable Constraint Systems (CCS), which constitute a generalization of
R1CS and other constraint systems. We generalize the original definition so that it operates
over a general commutative ring R, rather than a field. We follow the polynomial-based
version of the definition from [KS23].

We start by fixing global parameters gp = (R, 2µ1 , 2µ2 , ℓ, n, q, d, c,S) for m,n, ℓ, n, q, d ≥ 1,
c ∈ Rq, and where S is a tuple of multisets:

S = (S1, . . . , Sq), Si is a multiset with ≤ d elements from [n]. (9)

The CCS relation for the parameters gp, which we denote CCSgp, is defined as:

CCSgp :=



i,x;
w



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

gp = (R, 2µ1 , 2µ2 , ℓ, n, q, d,S, c),
i = ([[M1]], . . . , [[Mt]]),

µ = µ1 + µ2, M1 . . . ,Mn ∈ Rmultilin[X1, . . . , Xµ],

x = (y, [[f ]]), y ∈ R2ℓ−1, f ∈ Rmultilin[Y1, . . . , Yµ2−ℓ],

w = [[f1]],

Z(Y1, . . . , Yµ2) = MLE((f(x)x∈{0,1}µ2−ℓ ,y, 1))

∑
i∈[q]

ci ·

∏
j∈Si

 ∑
y∈{0,1}s

Mj(x,y) · Z(y)

 = 0 for all x ∈ {0, 1}µ1 .



,

where by MLE we denote the multilinear extension of a vector.

Lookup relation over a ring Let gp be global parameters of the form gp = (R, na, nt, B)
where na, nt, B ≥ 1 and na, nt are powers of two. The lookup relation Lookgp for the
parameters gp is defined as:

Lookgp :=


 i = ([[t]]),

x = ([[a]]);

w = (a(X))


∣∣∣∣∣∣∣∣∣∣
gp = (R, na, nt, B),

a(X) ∈ RB[X], X = (X1, . . . , Xlog(na)),

t(Y) ∈ RB[Y], Y = (Y1, . . . , Ylog(nt)),

{a(x) | x ∈ {0, 1}logna} ⊆ {t(y) | y ∈ {0, 1}log(nt)}.



4 Zinc-PIOP: Building PIOPs over rings from collections of
PIOPs over quotients of subrings

In this section, we describe a framework, which we call Zinc-PIOP, for building PIOPs for
relations whose constraints are, in nature, algebraic over some ring. We call such relations
algebraic indexed relations (cf. Definition 4.1). We refer to Section 2.1 for an intuitive but
detailed explanation of the ideas used in this section.
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4.1 PIOP over a ring, projections, and lifts

We start by outlining our setting and presenting some tools we will work with. Mainly,
we define what we mean by a relation to be algebraic over a ring R, and we establish
correspondences between PIOPs for a relation over a ring R, and a PIOP for an homomorphic
image R′ of R. A reader wishing to tone down the abstractness of the presentation can
replace R by the local ring Z(q) (or even Z, even though we will never instantiate the schemes
in this section on Z), and R′ by Fq, for q a prime.

Recall that, given a ring R, we implicitly fix an encoding of its elements as strings of bits.
Given B ≥ 1, by RB we denote the subset of R consisting of ring elements whose encoding
has at most B bits.

Definition 4.1 (Algebraic indexed relation over a ring R). Let R be a ring, and let Q be a
set of polynomials with coefficients in R (possibly multivariate and of arbitraty degree). Let
gp = (k,m, n, µ,B) be global parameters where k,m, n, µ,B are size parameters. Abusing the
language, we set gp to also include the security parameter λ, the ring R, and the polynomials
Q, but we do not explicitly display them inside gp. Instead, we refer to R,Q in more explicit
ways. We do so because in our constructions, gp stays fixed, while R and Q often vary.

An algebraic indexed relation for the parameters (gp,R,Q) is a set RELgp,R,Q of triples
(i,x;w) with the following properties:

• The index i contains n oracles [[g1]], . . . , [[gn]] to multilinear polynomials g1, . . . , gn ∈
Rmultilin

B [X], where X = (X1, . . . , Xµ).

• Q is a set of polynomials with coefficients in R, each on (n+ k) · 2µ +m variables.

• w is a vector consisting of k multilinear polynomials f1(X), . . . , fk(X) from Rmultilin
B [X].

• x = (y, [[f1]], . . . , [[fk]]), where y ∈ Rm
B .

• Each of the polynomials in Q vanishes when evaluated on the values

((g1(x), . . . , gn(x), f1(x), . . . , fk(x))x∈{0,1}µ ,y).

Formally, RELgp,R,Q has the following form:

RELgp,R,Q =


(i,x;w)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

gp = (k,m, n, µ,B),

i = ([[g1]], . . . , [[gn]]),

x = (y, [[f1]], . . . , [[fk]]) for some y ∈ Rm
B ,

w = (f1(X), . . . , fk(X)) ∈
(
Rmultilin

B [X]
)n

, X = (X1, . . . , Xµ),

(g1(X), . . . , gn(X)) ∈
(
Rmultilin

B [X]
)n

,

Q((g1(x), . . . , gn(x), f1(x), . . . , fk(x))x∈{0,1}µ ,y) = 0 for all Q ∈ Q


In Section 4.4 we show that both the CCS relation and the lookup relation (Section 3.5)

can be rewritten as algebraic indexed relations. In the next definition we generalize the
notion of algebraic indexed relation.
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Definition 4.2 (Projected algebraic indexed relation). Let RELgp,R,Q be an algebraic indexed
relation with parameters (gp,R,Q), and let ϕ : R → R′ be a ring homomorphism. We
define an associated relation, which we call ϕ-projected algebraic indexed relation, denoted
by ϕ(RELgp,R,Q), as the relation RELgp,R,Q, with the only difference that in ϕ(RELgp,R,Q) we
require that the image by ϕ of the polynomials in Q vanishes. Formally (we highlight the
difference between RELgp,R,Q and ϕ(RELgp,R,Q) in blue):

ϕ(RELgp,R,Q) =



(i,x;w)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

gp := (k,m, n, µ,B),

i := ([[g1]], . . . , [[gn]]),

x = (y, [[f1]], . . . , [[fk]]) for some y ∈ Rm
B ,

w = (f1(X), . . . , fk(X)) ∈
(
Rmultilin

B [X]
)k

, X = (X1, . . . , Xµ),

(g1(X), . . . , gn(X)) ∈
(
Rmultilin

B [X]
)n

,

ϕ(Q((g1(x), . . . , gn(x), f1(x), . . . , fk(x))x∈{0,1}µ ,y)) = 0

for all Q ∈ Q


Importantly, in a projected algebraic indexed relation, the oracles and polynomials in

(i,x;w) are over the ring R, even though the constraints posed by the polynomials Q are
enforced only under the image of ϕ.

Notice that, by taking R′ = R and ϕ the identity homomorphism (i.e. ϕ(a) = a for all
a ∈ R) we have that ϕ(RELgp,R,Q) = RELgp,R,Q. Hence, projected algebraic indexed relations
are a generalization of algebraic indexed relations.

Definition 4.3 (Well-formed index-instance pairs). Let ϕ(RELgp,R,Q) be a projected alge-
braic indexed relation. Following Remark 3.3, we say that (i,x) is a well-formed index-
instance pair for the relation ϕ(RELgp,R,Q) if i and x have the form specified in the definition
of ϕ(RELgp,R,Q). Namely, if i = (gp, [[g1]], . . . , [[gn]]) and x = (y, [[f1]], . . . , [[fk]]) where
g1, . . . , gn, f1, . . . , fk are all µ-variate multilinear polynomials from RB[X], and y is a tuple
of m elements from RB.

Let ϕ : R → R′ be a ring homomorphism and let RELgp,R,Q be an algebraic indexed
relation. By ϕ(Q) we define the set containing the image under ϕ of the polynomials in Q.
One can then consider the relation RELgp,R′,ϕ(Q). By definition, this is precisely,

RELgp,R′,ϕ(Q) =



(i,x;w)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

gp = (k,m, n, µ,B), n,m, k,B ≥ 1,

i = ([[g1]], . . . , [[gn]]),

x = (y, [[f1]], . . . , [[fk]]) for some y ∈
(
R′

B

)m
,

w = (f1(X), . . . , fk(X)) ∈
(
R′

B

multilin
[X]
)k

, X = (X1, . . . , Xµ),

(g1(X), . . . , gn(X) ∈
(
R′

B

multilin
[X]
)n

,

ϕ(Q)((g1(x), . . . , gn(x), f1(x), . . . , fk(x))x∈{0,1}µ ,y) = 0

for all Q ∈ ϕ(Q)


The following definition is necessary to make sure many of the constructions in this

section are well defined and result in efficient algorithms.
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Definition 4.4 (Efficient homomorphism ϕ). We say that a ring homomorphism ϕ : R → R′

is efficient if 1) ϕ(RB) = R′
B

6 for all B ≥ 1 (in words, the image by ϕ of the elements from
R of bit-size less than B can be written with less than B bits); 2) ϕ(a) can be computed in
polynomial time on the bit-size of a, for all a ∈ R; and 3) given a′ ∈ R′

B, it is possible to
find a ∈ RB such that ϕ(a) = a′ in polynomial time on the bit-size of a′.

Given an index i = ([[g1]], . . . , [[gn]]) for RELgp,R,Q and a homomorphism ϕ : R → R′,
we define ϕ(i) = (ϕ([[g1]]), . . . , ϕ([[gn]])).

The next observation follows immediately from Definition 4.4.

Remark 4.1. Suppose ϕ : R → R′ is an efficient ring homomorphism. Then, given any well-
formed index-instance pair (i,x) for ϕ(RELgp,R,Q), we have that (ϕ(i), ϕ(x)) is a well-formed
index-instance pair for RELgp,R′,ϕ(Q) which can be computed efficiently.

Conversely, given a well-formed index-instance pair (i′,x′) for RELgp,R′,Q′ , there exists a
well-formed index-instance pair (i,x) for ϕ(RELgp,R,Q) that can be computed efficiently.

Given an oracle [[f ]] to a polynomial f ∈ R[X], we let ϕ([[f ]]) = [[ϕ(f)]]. In the scenario
where V has received an oracle [[f ]], V can query the oracle ϕ([[f ]]) as follows: first, it queries
[[f ]] at the desired position, and then V applies the homomorphism ϕ to the received value.

Lemma 4.2. Let ϕ : R → R′ be an efficient ring homomorphism, and let (i,x) be a well-
formed index-instance pair for ϕ(RELgp,R,Q). Then (i,x) ∈ LANG(ϕ(RELgp,R,Q)) if and only
if (ϕ(i), ϕ(x)) ∈ LANG(RELgp,R′,ϕ(Q)).

Proof. Write gp = (k,m, n, µ,B), i = ([[g1]], . . . , [[gn]]), x = (y, [[f1]], . . . , [[fk]]). Since ϕ is
efficient, (ϕ(i), ϕ(x)) is a well-formed index-instance pair for RELgp,R′,ϕ(Q), due to Remark 4.1.

Assume first that (ϕ(i), ϕ(x)) ∈ LANG(RELgp,R′,ϕ(Q)). Then there exists

w
′ = (h1(X), . . . , hk(X)) ∈

(
R′multilin

B [X]
)k

such that (ϕ(i), ϕ(x);w′) ∈ RELgp,R′,ϕ(Q). In particular, [[hi]] = ϕ([[fi]]), and so hi(x) =
ϕ(fi)(x) for all x ∈ {0, 1}µ and all i ∈ [k]. For all Q′ ∈ ϕ(Q), we have Q′ = ϕ(Q) for some
Q ∈ Q, and, by definition and because ϕ is a ring homomorphism,

0 = Q′((ϕ(g1)(x), . . . , ϕ(gn)(x), h1(x), . . . , hk(x))x∈Bµ , ϕ(y))

= ϕ(Q((g1(x), . . . , gn(x), f1(x), . . . , fk(x))x∈Bµ ,y)).

Finally, since (i,x) is a well-formed index-instance pair for ϕ(RELgp,R,Q), we have that
gi(X) ∈ Rmultilin

B (X) for all i ∈ [n]; [[fi]] is a string consisting of all the evaluations of a
multilinear polynomial fi(X) ∈ Rmultilin

B (X); and y ∈ Rm
B . We conclude that, letting w =

(f1(X), . . . , fk(X)), we have (i,x;w) ∈ ϕ(RELgp,R,Q), and so (i,x) ∈ LANG(ϕ(RELgp,R,Q)).
Conversely, suppose that (i,x) ∈ LANG(ϕ(RELgp,R,Q)). Then, there exists w = (h1(X),

. . . , hk(X)) ∈ R′
B
multilin[X] such that (i,x;w) ∈ ϕ(RELgp,R,Q). In particular, hi(x) = fi(x)

for all x ∈ {0, 1}µ. Then, by the definition of ϕ(RELgp,R,Q) and of RELgp,R′,ϕ(Q), and because
ϕ is a ring homomorphism, we have that (ϕ(i), ϕ(x);ϕ(w)) ∈ RELgp,R′,ϕ(Q).

6We ask that bit-size bound in R and in R′ is the same simply due to ease of presentation. The condition
could be relaxed to asking that ϕ(RB) = R′

B′ for a new parameter B′. In that case, our results still hold
after making straightforward changes to their statements and corresponding proofs.
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Now, let Π′
R be a PIOP over R′ for RELgp,R′,ϕ(Q). We introduce the notion of the lift of

Π′
R. Informally, this is a PIOP over R for ϕ(RELgp,R,Q) where P and V simply apply the

map ϕ to all elements from R and polynomials with coefficients in R, and then execute Π′
R.

Definition 4.5 (Lift of a PIOP). Let RELgp,R,Q be an algebraic indexed relation with
parameters (gp,R,Q). Let ϕ : R → R′ be an efficient (cf. Definition 4.4) ring homomorphism.
Let ΠR′ = (IndexerR′ ,PR′ ,VR′) be a PIOP over R′ for RELgp,R′,ϕ(Q). In Protocol 5 we
describe a PIOP over R for ϕ(RELgp,R,Q), denoted Πlift

R′ = (IndexerliftR′ ,Plift
R′ ,Vlift

R′), and called
the lift of Π′

R onto R.

Protocol 5 A PIOP Πlift
R′ = (IndexerliftR′ ,Plift

R′ ,Vlift
R′) over R for the relation ϕ(RELgp,R,Q), called

the lift of Π′
R = (IndexerR′ ,PR′ ,VR′).

Indexer: Given gp and i = ([[g1]], . . . , [[gn]]) for ϕ(RELgp,R,Q), the indexer IndexerliftR′ runs
IndexerR′ on input gp and ϕ(i), and obtains verifier and prover parameters vp, pp as output.
By definition (cf. Section 3.4), vp = (vp′, ([[ϕ(gi)]])i∈[n]) and pp = (pp′, (ϕ(gi))i∈[n]) for some
vp′, pp′. Then IndexerliftR′ outputs vplift = (vp′, ([[gi]])i∈[n]) and pplift = (pp′, (gi)i∈[n]).

Input: Let (i,x) be a well-formed index-instance pair for ϕ(RELgp,R,Q). Plift
R′ and Vlift

R′ receive
(pplift,x,w) and (vplift,x) as input, respectively, where (vplift, pplift)← IndexerliftR′(gp, i). Let
(vp, pp)← IndexerR′(gp, ϕ(i)).

Interactive phase: Let k be the number of communication rounds in ΠR′ ,
and let M1, . . . ,Mk+1, C1, . . . , Ck be the message and challenge spaces of
ΠR′ .
1: Let m1 be a first message output by PR′(pp, ϕ(x);ϕ(w)). Then Plift

R′ sends m1 to Vlift
R′ .

2: For i = 1, . . . , k,

• Vlift
R′ uniformly samples a challenge ρi in the challenge space Ci, and sends ρi to

Plift
R′ .

• Let mi+1 be output by PR′(pp, ϕ(x);ϕ(w)) after having output messages m1, . . . ,mi

and received challenges ρ1, . . . , ρi. Then Plift
R′ sends mi+1 to Vlift

R′ .

3: Vlift
R′ outputs VR′(vp, ϕ(x),m1, ρ1, . . . ,mk, ρk,mk+1).

Lemma 4.3. Let RELgp,R,Q be an algebraic indexed relation with parameters (gp,R,Q).
Let ϕ : R → R′ be an efficient ring homomorphism. Let ΠR′ = (IndexerR′ ,PR′ ,VR′) be a
PIOP over R′ for an algebraic indexed relation RELgp,R′,ϕ(Q). Suppose ΠR′ has soundness
error εsound and completeness error εcomp. Then Πlift

R′ is a PIOP over R′ for the relation
ϕ(RELgp,R′,Q) with soundness and completeness errors εliftsound, ε

lift
comp satisfying

εliftsound(gp, i,x) = εsound(gp, ϕ(i), ϕ(x)), εliftcomp(gp, i,x) = εcomp(gp, ϕ(i), ϕ(x))

for all well-formed index-instance pairs (i,x) for ϕ(RELgp,R,Q) (note that by Remark 4.1,
(ϕ(i), ϕ(x)) is well-formed as well).

Proof. We begin by proving the soundness error equality. Let Plift,∗
R′ be a malicious prover for

Πlift
R′ . We define a malicious prover P∗

R′ for ΠR′ that, for each well-formed index-instance pair
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(i,x) for ϕ(RELgp,R,Q) such that (i,x) ̸∈ LANG(ϕ(RELgp,R,Q)), succeeds in convincing VR′

on input (vp, ϕ(x)) with at least the same probability as Plift,∗
R′ convinces Vlift

R′ . We describe
P∗
R′ in Protocol 6.

Protocol 6 Malicious prover P∗
R′ for ΠR′ constructed from a malicious prover Plift,∗

R′ for Πlift
R′ .

Input: Let (i′,x′) be a well-formed index-instance pair for RELgp,R′,ϕ(Q). Let
(vp′, pp′) ← IndexerR′(gp, i′). P∗

R′ receives (pp′,x′). Let k be the number of
rounds of Πlift

R′ and let M1, . . . ,Mk+1, C1, . . . , Ck be its message and challenge spaces.
Note that these are also the number of rounds and message/challenge spaces of
ΠR′ .
1: P∗

R′ first finds a well-formed index-instance pair (i,x) for ϕ(RELgp,R,Q) such that
(ϕ(i), ϕ(x)) = (i′,x′). Such a pair exists and is efficiently computable due to Remark 4.1.
Then it computes (vplift, pplift)← IndexerliftR′(gp, i).

2: Let m1 be a first message output by Plift,∗
R′ (pplift,x). Then P∗

R′ sends m1 to VR′ .
3: For i = 1, . . . , k,

• P∗
R′ receives a challenge ρi ∈ Ci from VR′ .

• Let mi+1 be output by Plift,∗
R′ (pplift,x) after having output messages m1, . . . ,mi and

received challenges ρ1, . . . , ρi. Then P∗
R′ sends mi+1 to VR′ .

Let tr be a transcript of the interaction between Plift,∗
R′ (pplift,x′) and Vlift

R′(vplift,x′). Then,
by definition of Πlift

R′ we have that Vlift
R′(vplift,x, tr) = VR′(vp′,x′, tr) (where by Vlift

R′(vplift,x, tr)
we mean whether the verifier accepts or rejects after an interaction with transcript tr),
and moreover, tr is also a transcript of interaction between P∗

R′(pp′,x′) and VR′(vp′,x′).
Moreover, the probability that tr is output during the protocol ⟨Plift,∗

R′ (pplift,x),Vlift
R′(vplift,x)⟩

and during ⟨P∗
R′(pp′, ϕ(x)),VR′(vp′, ϕ(x))⟩ is the same. Hence

Pr[Vlift
R′(vplift,x, tr) = 1 | tr← ⟨Plift,∗

R′ (pplift,x),Vlift
R′(vplift,x)⟩]

= Pr[VR′(vp′, ϕ(x), tr) = 1 | tr← ⟨Plift,∗
R′ (pplift,x),Vlift

R′(vplift,x)⟩]
= Pr[VR′(vp′, ϕ(x), tr) = 1 | tr← ⟨P∗

R′(pp′, ϕ(x)),VR′(vp′, ϕ(x))⟩],

where the notation tr ← ⟨P,V⟩ indicates the transcript resulting of an execution of an
interactive protocol between a prover P and a verifier V. By Lemma 4.2, since (i,x) is
well-formed, we have that (i,x) ∈ RELgp,R,Q if and only if (ϕ(i), ϕ(x)) ∈ RELgp,R′,ϕ(Q).
Hence εliftsound(gp, i,x) = εsound(gp, ϕ(i), ϕ(x)).

Now, we prove the completeness error bound. Let (i,x) be well-formed, with (i,x) ∈
LANG(ϕ(RELgp,R,Q)). Then, by Lemma 4.2, (ϕ(i), ϕ(x)) ∈ LANG(RELgp,R′,ϕ(Q)). Moreover,
by similar reasons as argued above, we have

Pr[Vlift
R′(vplift,x, tr) = 1 | tr← ⟨Plift

R′(pplift,x),Vlift
R′(vplift,x)⟩]

= Pr[VR′(vp′, ϕ(x), tr) = 1 | tr← ⟨Plift
R′(pplift,x),Vlift

R′(vplift,x)⟩]
= Pr[VR′(vp′, ϕ(x), tr) = 1 | tr← ⟨PR′(pp′, ϕ(x)),VR′(vp′, ϕ(x))⟩].
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Hence εliftcomp(gp, i,x) = εcomp(gp, ϕ(i), ϕ(x)).

4.2 Constructing a PIOP over a ring from PIOPs over quotients of sub-
rings

We proceed to describe our Zinc-PIOP framework. We fix D to be an integral domain and
K its field of fractions. We let RELgp,K,Q be an algebraic indexed relation. For each tuple
gp = (k,m, n, µ,B), we let η(gp) = η ≥ 1 be a positive integer, and let Rgp = {Ri | i ∈ [η]}
be a finite collection of subrings of K (we sometimes omit the dependency on gp for the sake
of readability). We assume without further reference that, for all i ∈ [η], it is computationally
cheap to check whether a given ring element a ∈ K belongs to Ri or not.

The reader may find it helpful to think of D as the ring of integers Z, of K as the field of
rational numbers Q, and of the subrings Ri as the local rings Z(qi) for different primes qi.
In this setting, later, the morphisms ϕi : Ri → R′

i would become the canonical projections
ϕqi : Z(qi) → Fqi . Indeed, in Section 4.3, we instantiate Zinc-PIOP under this setting.

Definition 4.6 (Compatibility of relations with families of subrings). We say that RELgp,K,Q
is compatible with Rgp if all polynomials in Q have coefficients in D ∩ RB, for all R ∈
Rgp = {Ri | i ∈ [η]}, where B is the bit-size bound parameter from gp.

Notice that then the algebraic indexed relations RELgp,Ri,Q are well-defined, in the sense
that ϕi(Q) is well-defined.

We further fix ring homomorphisms Φgp = {ϕi : Ri → R′
i | i ∈ [η]}, and for each i ∈ [η]

we let Πi = (Indexeri,Pi,Vi) be a PIOP for the algebraic indexed relation RELgp,R′
i,ϕi(Q) with

soundness error εi.

Remark 4.4. Suppose RELgp,K,Q is compatible with Rgp. Let (i,x;w) ∈ RELgp,K,Q and
i ∈ [η] be such that (i,x;w) ̸∈ ϕi(RELgp,Ri,Q). Write i = (g1, . . . , gn) ∈ Kmultilin

B [X]n,
w = (f1, . . . , fk) ∈ Kmultilin

B [X]k and x = (y, [[f1]], . . . , [[fk]]) with y ∈ Km
B , and define

v(x,w) = ((g1(x), . . . , gn(x), f1(x), . . . , fk(x))x∈{0,1}µ ,y). Then some entry in v(x,w) does
not belong to (Ri)B.

This follows directly from the definition of the relations RELgp,K,Q and ϕi(RELgp,Ri,Q).
Indeed, assume our claim is false. We know that Q(v(x,w)) = 0 over K, for all Q ∈ Q. If
our claim does not hold, then all entries in v(x,w) belong to Ri, and so ϕi(Q(v(x,w))) is
well-defined and zero over R′

i. Hence, (i,x;w) ∈ ϕi(RELgp,Ri,Q). A contradiction.

Definition 4.7 (Expanding family of homomorphisms). Let D be an integral domain and let
K be its field of fractions. Let m ≥ 1, let R = {Ri | i ∈ [m]} be a collection of subrings of K,
and let Φ = {ϕi : Ri → R′

i | i ∈ [m]} be a collection of ring homomorphisms. Let k ≥ 1 (one
may think k = λ). We say that (R,Φ) is k-expanding if the following two properties hold:

1. For any subset I ⊆ [η], we have that all elements from

K \
⋃
i∈I
Ri

have an encoding as string of bits of bit-size at least k · |I|.
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2. For all B,n ≥ 1 and polynomial P ∈ DB[Y1, . . . , Yn], the following holds: assume
y ∈ Rn is such that

P (y) ∈
⋂
i∈I

kerϕi \ {0}

for some nonempty subset I ⊆ [m]. Then y contains an entry whose bitstring encoding
has more than

k · |I| − (B + log(nm(P )))∑
i∈[n] degYi

(P )

bits, where nm(P ) denotes the number of nonzero coefficients of P , and degYi
(P )

denotes the degree of the variable Yi in P .

We describe a PIOP for the algebraic indexed relation RELgp,K,Q as follows. Let (i,x) be
a well-formed index-instance pair for RELgp,K,Q, with i = ([[g1]], . . . , [[gn]]). Upon receiving
(gp, i), the indexer outputs vp = (gp, [[g1]], . . . , [[gn]]), and pp = (gp, g1, . . . , gn).

Protocol 7 Zinc-PIOP: A PIOP over K for RELgp,K,Q from {ϕi,Πi | i ∈ [η]}.
Input: Let (i,x) be a well-formed index-instance pair for RELgp,K,Q and let (vp, pp) ←
Indexer(gp, i). P receives (pp,x,w) and V receives (vp,x). We assume (i,x;w) ∈ RELgp,K,Q.
Let Rgp = {Ri | i ∈ [η]} and Φgp = {ϕi : Ri → R′

i | i ∈ [η]} be collections of η subrings of
K and morphisms, respectively. For each i ∈ [η], let Πi = (Indexeri,Pi,Vi) be a PIOP for
RELgp,R′

i,ϕi(Q).
1: V samples i ∈ [η] uniformly at random, and sends i to P.
2: Suppose (i,x;w) ̸∈ RELgp,Ri,Q. Then by Remark 4.4 there exists an entry of v(x,w) =

((g1(x), . . . , gn(x), f1(x), . . . , fk(x))x∈{0,1}µ ,y) that does not belong to (Ri)B.
P indicates V what this entry is and V checks7 that indeed the entry does not belong to
Ri. If this is the case, V accepts the proof, and the protocol terminates.

3: Otherwise, P and V execute Πlift
i = (Indexerlifti ,Plift

i ,Vlift
i ) (cf. Protocol 5), providing

(pp′,x;w) as input to Plift
i , and (vp′,x) as input to Vlift

i , where (vp′, pp′)← Indexerlifti (gp, i).
V accepts if and only if Vlift

i accepts at the end of the execution of Πlift
i .

If all the PIOPs Πi have k rounds of communication, then the PIOP in Protocol 7 has
k + 1 rounds of communication. The prover’s message spaces are the empty set (P does not
send any message before the verifier’s first challenge) and the message spaces of the PIOPs
Πi. Precisely, the j-th message space of the PIOP in Protocol 7 is

⋃
i∈[η]Mij whereMij is

the j-th message space of Πi. The challenge spaces of Protocol 7 are [η] and the challenge
spaces of the PIOPs Πi.

Theorem 4.5. Let gp be global parameters, let D be an integral domain, and let K be its
field of fractions. Let RELgp,K,Q be an algebraic indexed relation. Let Rgp = {Ri | i ∈ [η]} be
a finite collection of subrings of K, and let Φgp = {ϕi : Ri → R′

i | i ∈ [η]} be efficient ring
homomorphisms (cf. Definition 4.4). For each i ∈ [η], let Πi be a PIOP for the algebraic
indexed relation RELgp,R′

i,ϕi(Q) with soundness error εi.

7The check is made by V by either inspecting an appropriate entry of the vector y, or by querying some
of the oracles f1, . . . , fk, g1, . . . , gn at an appropriate point. Note that both P and V have the required access
to g1, . . . , gn since they received, respectively, pp and vp.
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Assume that RELgp,K,Q is compatible with Rgp and that (Rgp,Φgp) is λ-expanding. Then
Protocol 7 is a PIOP over K for the relation RELgp,K,Q with soundness error

εsound(gp, i,x) ≤ max
i∈[η]

εi(gp, i,x) +
B · (maxdegt(Q) + 1) + log(nmax(Q))

λ · (η − ξ)
+

ξ

η
, (10)

where
ξ =

((n+ k) · 2µ +m) ·B
λ

for all well-formed (i,x). Here maxdegp(Q) = maxQ∈Q(
∑

i degYi
(Q)) is the maximum of the

sum of partial degrees of the polynomials in Q; and nmax(Q)maxQ∈Q nm(Q), where nm(Q)
is the number of nonzero coefficients of Q. In particular, if maxi∈[η] εi, n, k, 2

µ,m, and B are
polynomial in λ, and if η = O(2λ), then εsound is negligible.

Further, Protocol 7 has knowledge soundness error εsound, and it has completeness error
the maximum completeness error of the PIOPs in {Πi | i ∈ [η]}. In particular, Protocol 7 is
perfectly complete if all {Πi | i ∈ [η]} are perfectly complete.

Proof. The statement regarding the completeness error of Protocol 7 follows immediately
from the fact that ϕi is a ring morphism for all i, and so if Q(v) = 0 for Q ∈ Q and a vector
v with entries in Ri, then ϕ(Q)(v) = 0. We next show that the soundness error of Protocol 7
satisfies inequality (10). Then, by Lemma 3.4, we obtain that the knowledge soundness error
of Protocol 7 satisfies the same bound.

Let P∗ be a malicious prover for Protocol 7. Let (i,x) be well-formed for RELgp,K,Q
and such that (i,x) ̸∈ LANG(RELgp,K,Q). Let (vp, pp) ← Indexer(gp, i). Let Ewf be the
event that V samples i ∈ [η] such that (i,x) is a well-formed index-instance pair for
ϕi(RELgp,Ri,Q), and let E be the event that V samples i ∈ [η] such that Ewf holds and
(i,x) ∈ LANG(ϕi(RELgp,Ri,Q)). Due to Lemma 4.3, Πlift

i has soundness error εi (for well
formed index-instance pairs for ϕi(RELgp,Ri,Q)). Hence,

Pr[⟨P∗(pp,x),V(vp,x)⟩ = 1 | ¬E ∧ Ewf ] ≤ max
i∈[η]

εi(gp, i,x).

Now, we have

Pr[⟨P∗(pp,x),V(vp,x)⟩ = 1]

=Pr[⟨P∗(pp,x),V(vp,x)⟩ = 1 | Ewf ] · Pr[Ewf ] + Pr[⟨P∗(pp,x),V(vp,x)⟩ = 1 | ¬Ewf ] · Pr[¬Ewf ]
≤Pr[⟨P∗(pp,x),V(vp,x)⟩ = 1 | Ewf ] + Pr[¬Ewf ]

≤

(
Pr[⟨P∗(pp,x),V(vp,x)⟩ = 1 | ¬E ∧ Ewf ] · Pr[¬E | Ewf ]

+ Pr[⟨P∗(pp,x),V(vp,x)⟩ = 1 | E ∧ Ewf ] · Pr[E | Ewf ] + Pr[¬Ewf ]

)
≤max

i∈[η]
εi(i,x) + Pr[E | Ewf ] + Pr[¬Ewf ].

We first bound Pr[¬Ewf ]. Let I0 ⊆ [η] be the set of indices i ∈ I0 such that (i,x) is not
a well-formed index-instance pair for the relation RELgp,Ri,Q. Then Pr[¬Ewf ] = |I0|/η. As
before, let v = ((g1(x), . . . , gn(x), f1(x), . . . , fk(x))x∈Bµ ,y). Then, since (i,x) is a well-
formed index-instance pair for RELgp,K,Q, we have that, for each i ∈ I0, at least one entry of
v does not belong to (Ri)B (cf. Remark 4.4). Let v0 be the entry of v that does not belong
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to the maximum possible number of subrings {(Ri)B | i ∈ I0}. Let J ⊆ I0 be such that
v0 ̸∈ (Rj)B for all j ∈ J . By the pigeonhole principle,

|J | ≥ |I0|
|v|

=
|I0|

(n+ k) · 2µ +m
.

Since (i,x) is well-formed for RELgp,K,Q, we have that v0 ∈ KB, and so v0 ∈ KB \
⋃

j∈J Rj .
Then, since we assumed that RELgp,K,Q is compatible with Rgp, we have that the bitstring
encoding of v0 has size at least λ · |J |, hence

λ · |I0|
(n+ k) · 2µ +m

≤ λ · |J | ≤ B.

It follows that
Pr[¬Ewf ] =

|I0|
η
≤ ((n+ k) · 2µ +m) ·B

λ · η
.

Next, we bound Pr[E | Ewf ]. Let EL be the event that (i,x) ∈ LANG(ϕi(RELgp,K,Q)). Let I
be the set of indices i ∈ [η] for which E holds. Let Iwf ⊆ [η] be the set of all i ∈ [η] such that
(i,x) is well-formed for ϕi(RELgp,Ri,Q). We have Iwf = [η] \ I0. Then

Pr[E | Ewf ] =
Pr[E ∧ Ewf ]
Pr[Ewf ]

=
Pr[E ∧ Ewf ]
1− |I0|/η

≤ η · Pr[E ∧ Ewf ]
η − ξ

, (11)

where
ξ =

((n+ k) · 2µ +m) ·B
λ

.

We proceed to bound Pr[E ∧ Ewf ] = Pr[EL ∧ Ewf ]. For each i ∈ I, let wi be such that
(i,x;wi) ∈ ϕi(RELgp,Ri,Q) (which exists by definition of E). Write gp = (k,m, n, µ,B), i =
([[g1]], . . . , [[gn]]), x = (y, [[f1]], . . . , [[fk]]), and wi = (fi1(X), . . . , fik(X)). By Definition 4.2,
since each (i,x;wi) ∈ ϕi(RELgp,Ri,Q), we have that for each i ∈ I and j ∈ [k], [[fj ]] is the
string of evaluations of fij(X) on {0, 1}µ (or some subset of Kµ that allows to fully describe
multilinear polynomials). It follows that, for all j ∈ [k] and i1, i2 ∈ I, fi1j(X) = fi2j(X) as
polynomials. Hence, denoting the polynomials {fij | i ∈ I} by fj , for all j ∈ [k], and letting
w = (f1(X), . . . , fk(X)), we have (i,x;w) ∈ ϕi(RELgp,Ri,Q) for all i ∈ I.

Denote v = ((g1(x), . . . , gn(x), f1(x), . . . , fk(x))x∈Bµ ,y). Since (i,x) is well-formed for
ϕi(RELgp,Ri,Q) if i ∈ I, we have that gj(x) ∈ (Ri)B for all i ∈ [η], j ∈ [n] and all x ∈ Bµ

(since the oracles [[gj ]] are strings of evaluations of a polynomial in {0, 1}µ), and that y is a
tuple of elements from (Ri)B . By similar reasons, fj(x) ∈ (Ri)B for all j ∈ [k], i ∈ [η],x ∈ Bµ.
Hence, v ∈ (Ri)

(n+k)·2µ+m
B , for all i ∈ [η].

Additionally, because RELgp,K,Q is compatible with {Ri | i ∈ [η]}, we have that all
coefficients of all polynomials of Q belong to D ∩ Ri. In particular, they belong to Ri.
We conclude that Q(v) ∈ Ri for all Q ∈ Q, and so ϕi(Q(v)) is well-defined. Now, since
(i,x;w) ∈ ϕi(RELgp,Ri,Q) for all i ∈ I, we have

ϕi(Q(v)) = 0 for all i ∈ [I]

⇔ Q(v) ∈
⋂
i∈[I]

kerϕi.

39



Hence, since we assumed ({Ri | i ∈ [η]}, {ϕi : Ri → R′
i | i ∈ [η]}) is λ-expanding and each

Q ∈ Q has coefficients in D of bit-size at most B, we have that, for all Q ∈ Q, at least one
entry v0 in v has an encoding with bit-size larger than

λ · |I| − (B + log(nm(Q)))

degp(Q)
≥ λ · Pr[E ∧ Ewf ] · η − (B + log(nm(Q)))

degp(Q)

≥λ · Pr[E | Ewf ] · (η − ξ)− (B + log(nm(Q)))

degp(Q)

where we have used (11). Above, nm(Q) denotes the number of nonzero coefficients of Q,
and degp(Q) =

∑
i∈[n] degYi

(Q) is the sum of partial degrees of Q. On the other hand, by
our previous arguments, the bit-size of v0 is at most B, and so

Pr[E | Ewf ] ≤
maxdegp(Q) ·B + (B + log(nmax(Q)))

λ · (η − ξ)
,

where maxdegp(Q) := maxQ∈Q(degp(Q)) and log(nmax(Q)) = maxQ∈Q log(nm(Q)). This
completes the proof that Protocol 7 has soundness error bounded as in Eq. (10).

4.3 Instantiation over Q and finite fields

We next instantiate Protocol 7 with the specific setting where K = Q, D = Z, Ri = Z(qi)

for a prime qi, and ϕi is the canonical projection ϕqi : Z(qi) → Fqi , for all i ∈ [η]. To do
so, it suffices to show that these subrings and homomorphisms satisfy the requirements in
Theorem 4.5.

Proposition 4.6. Consider the ring of integers Z, which is an integral domain, and its field
of fractions Q, i.e. the field of rational numbers. Let k ≥ 1 and let P = {q1, . . . , qm} be a
set of m different primes, each of bit-size at least k. Let ϕqi : Z(qi) → Fqi be the canonical
projections of the local ring Z(qi) ⊆ Q onto the finite field Fqi (cf. Section 3.2). Then the pair
({Z(qi) | i ∈ [m]}, {ϕqi | i ∈ [m]}) is k-expanding (Definition 4.7).

Proof. Recall that we encode rational numbers a/b in lowest form as strings of bits of size
2max{log(|a|+1), log(b)+1}+1 Section 3.2. The first condition in Definition 4.7 is satisfied
because each prime qi has bit-size larger than k, and

Q \
⋃
i∈I

Z(qi) =

{
a
b ∈ Q \ {0},

∣∣∣∣∣ b ≡ 0 mod
∏
i∈I

qi

}
,

for any I ⊆ [m]. Hence, any element from Q \ ∪i∈IZ(qi) has a representation a/b in lowest
form (cf. Section 3.2) with b >

∏
i∈I qi ≥ 2(k−1)·|I|. In particular, a/b has bit-size at least

k · |I|. This proves that Item 1 of Definition 4.7 holds. We now prove that Item 2 does as
well.

Let B,n ≥ 1 and P ∈ ZB[Y], where Y = (Y1, . . . , Yn). Assume first that P is multilinear.
Let y ∈ Qn be such that P (y) ∈ ∩i∈I kerϕqi \ {0} for some nonempty I ⊆ [m]. Write
y =

(
y1
y′1
, . . . , yny′n

)
where for all i ∈ [m], (yi, y′i) is in lowest form, i.e. yi, y′i ∈ Z, y′i ≥ 1, and
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gcd(yi, y
′
i) = 1. For any subset S ⊆ [n], we define integers

yS =
∏
i∈S

yi, y′S =
∏
i∈S

y′i, y′0 =
∏
i∈[n]

y′i, y′S =
∏

i∈[n]\S

y′i =
y′0
y′S

.

Further, let {cS | S ⊆ [n]} be the coefficients of P , so that P (y) =
∑

S⊆[n] cS · yS/y′S . Now,
since P (y) ∈

⋂
i∈I kerϕqi \ {0}, we have

P (y) =
a

b

∏
i∈I

qi (12)

for some a/b ∈ Q in lowest form, where in particular a, b ∈ Z, b ≥ 1. Moreover

gcd

(
a
∏
i∈I

qi, b

)
= 1, (13)

because gcd(a, b) = 1 by definition, and if gcd(b,
∏

i qi) ̸= 1, then because all primes qi are
pairwise different,

∏
i∈I qi/b is not divisible by at least one of the prime qi0 , i0 ∈ I. Further,

qi0 cannot divide a because if it did, gcd(a, b) would not be 1. Hence, we would have that
P (y) is not in ∩i∈I kerϕqi \ {0}, a contradiction.

Further, a ̸= 0 because P (y) ̸= 0. Note that since P ∈ ZB[Y], all coefficients of P are
integers of bit-size at most B. Multiplying (12) by y′0 on both sides we obtain

y′0 · P (y) =
∑
S⊆[n]

cS · yS · y′S = y′0 ·
a

b
·
∏
i∈[I]

qi ∈ Z,

where we the above expression belongs to Z because the elements cS , yS , y
′
S are all integers.

This implies that b divides y′0, because of Eq. (13). Moreover y′0 · (a/b) ̸= 0 because a ̸= 0 as
we argued, and y′0 ̸= 0 because it is the product of nonzero integers. Hence y′0 · a/b is an
integer, and it follows then that

∏
i∈I qi divides the integer

∑
S⊆[n] cS · yS · y′S . Then ,

∏
i∈I

qi ≤

∣∣∣∣∣∣
∑
S⊆[n]

cS · yS · y′S

∣∣∣∣∣∣ ≤
∑
S⊆[n]

|cS | · |yS | · |y′S | ≤ max
S⊆[n]

(|cS |) · nm · max
S⊆[n]

(|yS | · |y′S |),

where nm denotes the number of nonzero elements in the vector (cS)S⊆[n]. By assumption,
maxS⊆[n](|cS |) < 2B. Hence, setting Smax to be the subset achieving the maximum value
among |yS | · |y′S |, we have

|ySmax | · |y′Smax
| ≥

∏
i∈I qi

(nm · 2B)
> 2k·|I|−B−log(nm).

Then

log(|ySmax | · |y′Smax
|) =

∑
i∈Smax

log(|yi|) +
∑

i∈[n]\Smax

log(|y′i|) > k · |I| − (B + log(nm)).
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Hence, there must exist an index i ∈ Smax or j ∈ [n] \ Smax such that either log(|yi|) or
log(|y′j |) is strictly greater than (k · |I| − (B + log(nm)))/n. This proves that ({Z(qi) | i ∈
[m]}, ϕqi | i ∈ [m]) satisfies Property 2 of Definition 4.7 when the polynomial P is multilinear.

The case when P ∈ ZB[Y] is not multilinear can be treated by reducing it to the previous
case. Indeed, there exists a multilinear polynomial P ′ with n′ =

∑
i∈[n] degYi

(P ) variables
such that, for all y ∈ Qn, we have P (y) = P ′(y′), where y′ ∈ Qn′ is the vector y after
creating degYi

(P ) copies of yi, for each i ∈ [n]. Then the result follows.
More precisely, to create P ′, we introduce, for each i ∈ [n], degYi

(P ) fresh variables
Yi,1, . . . , · · ·Yi,degYi (P ), and then replace, for each i, each occurrence of a factor Y d

i (with d

maximal) in a monomial of P by the factor Yi,1 · · ·Yi,d.

Theorem 4.7 (PIOP over Q from PIOP over finite fields). Consider the integral domain
Z and its field of fractions Q. Fix global parameters gp = (k,m, n, µ,B). let η ≥ 1 and
Pλ = {qi | i ∈ [η]} be a set of η distinct primes, each of bit-size at least λ. Let ϕqi : Z(qi) → Fqi

be the canonical projection of Z(qi) onto Fqi.
Let RELgp,Q,Q be an algebraic indexed relation. Assume that Q consists of polynomials

with coefficients in ZB, and that B > maxi∈[η]{log(qi)}. Let Πi be PIOPs for the relations
RELgp,Fqi ,ϕqi (Q), i ∈ [η]. Then Protocol 7 instantiated by taking R = Q, Ri = Z(qi), ϕi = ϕqi

is a PIOP for the relation RELgp,Q,Q, with soundness and completeness errors prescribed by
Theorem 4.5.

Proof. Proposition 4.6 yields that the pair ({Z(qi) | qi ∈ Pλ}, {ϕqi | qi ∈ Pλ}) is λ-expanding.
Since Q ∈ Q has coefficients in ZB and ZB ⊆ Z(qi) for all i, RELgp,Q,Q is compatible
with {Z(qi) | qi ∈ Pλ}. Finally, we argue that the morphisms ϕqi are efficient for any
B > maxi∈[η]{log(qi)}. Indeed, Items 2 and 3 in Definition 4.4 hold trivially, and Item 1
holds because since B is large enough, we have ϕqi((Z(qi))B) = Fqi = (Fqi)B for all qi, where
the first equality is due to the fact that (Z(qi))B contains the integral interval [0, qi − 1]. The
theorem then follows from Theorem 4.5.

4.4 Application to CCS and lookup relations over Q

In this section, we reformulate the CCS and lookup relations from Section 3.5 as algebraic
indexed relations. Then we use Theorem 4.7 to construct a PIOP over Q for such relations
from known PIOPs for the finite-field version of these relations. The latter can be, for
example, the PIOP versions of SuperSpartan [STW23a] for the CCS case, and of Lasso or
LogUp [STW23b, PH23] in the lookup case. We refer to Section 2.2 for further details.

Informally speaking, notice that having a PIOP Πlookup,Q over Q for the lookup relation
effectively allows us to build PIOPs over Q for relations expressed over the ring of integers
Z. This is because one can always use Πlookup,Q to enforce witnesses to have all their entries
in a bounded integer set. We emphasize the fact that the latter results in a PIOP over
Q, i.e. a PIOP whose security holds against provers that are guaranteed to send oracles to
polynomials with coefficients in Q. In particular, such PIOP can be compiled with a PCS
for rational polynomials. This allows us to avoid making the limiting restriction of working
with PIOP’s over Z, which later need to be compiled with a PCS for integral polynomials,
which is a primitive that is difficult to construct. We refer to our technical overview for a
more thorough explanation of this matter.
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Lookup relations We describe an algebraic indexed relation RELgp,R,Qlookup
which, in

a sense that we will make precise later, is equivalent to the lookup relation defined in
Section 3.5.

Let gp = na, nt, B be global parameters with na, nt, B ≥ 1 and both na, nt powers of two.
Let W denote na + nt variables indexed as follows:

W = ((Wx)x∈{0,1}log(na) , (Wy)y∈{0,1}log(nt)).

We define the following collection of polynomials:

QLook =

Qx(W) =
∏

y∈{0,1}log(nt)

(Wx −Wy)

∣∣∣∣∣∣ x ∈ {0, 1}log(na)

 .

Assume R is an integral domain, and let a(X) and t(Y) be two multilinear polynomials on
log(na) and log(nt) variables, respectively, with coefficients in R. We have that Qx(a, t) = 0
if and only if some entry in t is equal to a(x), where a = (a(x))x∈{0,1}log(na) and t =
(t(y))y∈{0,1}log(nt) (here we crucially use the assumption that R is an integral domain). Hence,
if Qx(a, t) = 0 for all x ∈ {0, 1}log(na), then all the values in a appear in t.

With this in mind, we define the following algebraic indexed relation:

RELgp,D,QLook
=


(i,x;w)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

gp = (k = 2,m = 0, n = 1, µ = log(na) + log(nt), B),

i = ([[t]]), x = ([[a]]),

a(X) ∈ Rmultilin
B [X], X = (X1, . . . , Xlog(na)),

t(Y) ∈ Rmultilin
B [Y], Y = (Y1, . . . , Ylog(nt)),

w = (a(X)),

Qx(a, t) = 0 for all x ∈ {0, 1}log(na)


,

where a, t have the same meaning as above.
Then we have that (i,x;w) ∈ RELgp,R,QLook

if and only if (i,x;w) ∈ Lookgp′ where
Lookgp′ is defined as in Section 3.5, and gp′ = (R, na, nt, B).

Regarding the maximum of the sum of partial degrees, degp, we have

maxdegp(Q) = max
Qx∈QLook

degp(Qx) = max
Qx∈QLook

∑
W∈W

degW (Qx) = na + nt.

Remark 4.8. Notice that RELgp,R,QLook
and QLook do not fully fit into the definition of

algebraic indexed relation, because both a(X) and t(Y) should be polynomials on the
same variables, and the order of the entries in Qx is not consistent with the order used in
Definition 4.1. We opted for this for ease of presentation and readability. To fully adhere to
Definition 4.1, it suffices to formally consider a(X) and t(Y) as polynomials on the variables
(X,Y) (even though the variables Y do not appear in a(X) and X do not appear in t(Y)),
and reorder the way the variables in W are indexed.

Now assume R = Q. Let ϕq : Z(q) → Fq, for a prime q. Then RELgp,Fq ,ϕq(QLook) =
RELgp,Fq ,QLook

is a lookup relation expressed over the finite field Fq. Using any suitable family
of PIOPs for the lookup relations over finite fields (eg. [STW23b, PH23]), we obtain a PIOP
for RELgp,Q,QLook

from Theorem 4.7 with knowledge soundness and completeness errors as
prescribed in Theorem 4.5. This PIOP is the result of instantiating Protocol 7 accordingly.
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Remark 4.9 (Using Protocol 7 to prove range checks into big integer intervals). As we
discussed in Section 2.2, we are especially interested in using RELgp,Q,QLook

with t(Y) having as
coefficients the integers in an integer interval of the form [−2B+1, 2B−1], where B = poly(λ).
In this case, we have that maxdegp(Q) ≤ 2B+3+log(na). Say we want to prove statements
about such a relation with Protocol 7. Then the soundness and knowledge soundness error
of the resulting PIOP has a dominant factor of the form maxdegp(Q)/η in one of its term
(cf. Theorem 4.5), where, recall, η is the number of subrings and ring homomorphisms our
PIOP is built from, i.e. it is the number of morphisms ϕi that can be sampled by V in Step 1
of Protocol 7. Hence, to make sure the error stays negligible, one must choose η as, roughly,
2B+log(na)+λ.

Alternatively, one can write a different algebraic indexed relation for membership to the
range [−2B + 1, 2B − 1] that leverages Lasso’s notion of SOS decomposability [STW23b].
With such technique one can bring down the value of maxdegp(Q) as low as necessary, at the
expense of slightly increasing the number of witness vectors, and adding some extra small
linear constraints that will need to be proved by the PIOP.

Remark 4.10. Even though RELgp,Fq ,ϕq(QLook) = RELgp,Fq ,QLook
has relatively complicated

polynomial constraints in its definition, the relation is still equivalent to a lookup relation, in
the sense that (i,x;w) ∈ RELgp,Fq ,ϕq(QLook) if and only if (i,x;w) ∈ Lookgp′ , where gp′ is a
suitable choice of global parameters. Hence, one does not need to prove those polynomial
constraints directly. One can indeed use known lookup arguments such as Lasso and logUp
[STW23b, PH23].

Customizable Constraint Systems Next, we describe an algebraic indexed relation
RELgp,R,QCCS

which is equivalent to the CCS relation defined in Section 3.5, in the same sense
as seen above.

Fix global parameters gp = (k,m, n, µ,B) with k = 1. Let c = (c1, . . . , cq) ∈ Rm
B , and

let S = (S1, . . . , Sq) be q multisets whose elements belong to [n], each with size at most d,
for d an auxiliary parameter. Let µ1, µ2 ≥ 1 be numbers of variables, and write µ = µ1 + µ2.
Let 1 ≤ ℓ ≤ µ2, and fix n · 2µ + 2µ2 variables

M = (Mj(x,y))j∈[n], (x,y)∈{0,1}µ , Z = (Z(y))y∈{0,1}µ2 .

Then we define the collection of polynomials

QS,c,µ1,µ2,ℓ
CCS =


Qx(M,Z) =

∑
i∈[m]

ci ·

∏
j∈Si

 ∑
y∈{0,1}µ2

Mj(x,y) · Z(y)


Q′(M,Z) = Z(1,µ2... ,1) − 1

∣∣∣∣∣∣∣∣∣ x ∈ {0, 1}µ1

 .

For ease of notation, we denote the above collection of polynomials simply as QCCS . Then
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we consider the following algebraic indexed relation

RELgp,R,QCCS
=

(i,x;w)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

gp = (k = 1,m = 2ℓ, n, µ,B),

i = ([[M1]], . . . , [[Mn]]),

M1, . . . ,Mn ∈ R
multilin

B [X], X = (X1, . . . , Xµ),

x = (y, [[f1]]) for y ∈ R2ℓ

B ,

w = f1(X) ∈ Rmultilin

B [Xµ1+1,...,µ2−ℓ],

Xµ2 = (Xµ1+1, . . . , Xµ) ⊆ X,

Q((M1(x), . . . ,Mn(x))x∈{0,1}µ , (f1(y))y∈{0,1}µ2−ℓ ,y) = 0 for all Q ∈ QCCS



.

Then we have that (i,x;w) ∈ RELgp,R,QCCS
if and only if (i,x;w) ∈ CCSgp′ , where CCSgp is

defined as in Section 3.5, and gp′ = (R, 2µ1 , 2µ2 , ℓ, n, q, d,S, c).

Remark 4.11. Notice that, similarly to the case of QLook and RELgp,R,QLook
discussed in

Remark 4.8, when we definedQCCS and RELgp,R,QCCS
, we slightly deviated from Definition 4.1

in that we ordered the variable entries of the polynomials in Q differently. Again, this was
done for ease of presentation, but it should be clear how to reorder the variables to fit the
original Definition 4.1.

Regarding the sum of partial degrees, degp, we have degp(Q′) = 1 and

degp(Qx) ≤ (m+ 1) · 2µ2 · d,

where we recall that m = 2ℓ.
Now assume R = Q and c ∈ Zm

B . Let ϕq : Z(q) → Fq, for a prime q. Then
RELgp,Fq ,ϕq(QCCS) is a CCS relation expressed over the finite field Fq. Using any suit-
able family of PIOPs for CCS relations over finite fields (eg. [STW23a]), we obtain a PIOP
for RELgp,Q,QCCS

from Theorem 4.7 with knowledge soundness and completeness errors as
prescribed in Theorem 4.5. The PIOP is the result of instantiating Protocol 7 accordingly.

5 Zip: An efficient PCS from an IOP of proximity to the
integers

Zip is a Brakedown-like polynomial commitment scheme [GLS+23] for multilinear polynomials
with (bounded) rational coefficients. Zip is based on what we call an IOP of proximity (IOPP)
to the integers. In a nutshell, Zip is meant to be used to commit to polynomials with integer
coefficients of bit-size less than B′, but it only guarantees that the coefficients are rational
numbers of bit-size less than B, for certain B > B′. So, intuitively, Zip allows to prove
proximity to integers of B′ bits. This scenario is analogous to what one has with IOPPs to a
linear code (see e.g. [BSBHR18]). Such a primitive guarantees that a prover knows a word
that is close to being a codeword, but it is meant to be used by provers that actually know
the codeword.

We refer to Section 2.3 for an intuitive but detailed explanation of the ideas used in this
section.
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5.1 Projectable codes

Before describing Zip, we discuss linear codes over Q with integral generator matrices, and
introduce the notion of a family of projectable linear codes. In short, this is a set of linear
codes {Cλ | λ ≥ 1} with integral generator matrices Mλ, parameterized by the security
parameter λ, such that, for each λ, there is a large number of primes q such that ϕq(Mλ)
has full rank and generates a code with minimal distance similar to the minimal distance
of C. Recall that ϕq : Z(q) → Fq is the canonical projection of Z(q) onto Fq, and ϕq(Mλ) is
the result of applying ϕq to all components of Mλ. Zip requires working with such codes,
because part of its evaluation procedure is run modulo a random prime.

Let C be a linear code over Q of length n and dimension dim. Let MC be a generator
matrix of C. By EncC : Qdim → Qn we denote the linear map assigning to each vector
v ∈ Qdim an encoding in C, which is obtained by multiplying v with MC . If MC contains
only integer entries, i.e. if MC ∈ Zdim×n, we say that C is an integral linear code over Q.

If C is such a code, given any prime q, we define a new linear code Cq over Fq of length n
and of dimension dimq ≤ dim. Concretely, Cq is the Fq-vector space spanned by the rows of
ϕq(MC), where ϕq : Z(q) → Fq is the canonical projection of Z(q) onto Fq.

As we mentioned, dimq ≤ dim. Moreover, ϕq(MC) is a generator matrix of Cq if and only
if dimq = dim. Additionally, the relative distance of Cq, which we denote distq, is at most the
relative distance dist of C. We call Cq the q-projection of C.

Sometimes we denote the dimension and relative distance of a code C by dist(C) and
dim(C).

Definition 5.1 (Projectable family of linear codes). Let 0 < dist0 < 1, let C be an integral
linear code over Q, and let P be a finite set of primes. We say that C is projectable
with respect to (P, dist0), or just (P, dist0)-projectable, with error εproj if there are at least
(1 − εproj) · |P| primes in P such that dimq = dim and distq ≥ dist0, where dimq = dim(Cq)
and distq = dist(Cq).

We say that a prime q ∈ P is good with respect to C and dist0 if dimq = dim and
distq ≥ dist0, and denote the set of such primes by Pgood. Otherwise we say q is bad.

Often, C,P, dist0 and εproj are parameterized by the security parameter λ. In this case we
write C = Cλ, and say that {Cλ | λ} is a family of (Pλ, dist0)-projectable codes. For ease of
notation, we omit writing λ as subindex in other parameters and sets which may depend on
λ as well, such as dist0 and the dimension and lengths of the codes.

In Section 6 we describe a projectable family of codes with small projection error, large
distance parameter dist0, and with encoding matrices whose entries have bit-size of at most
4λ (and we conjecture in Remark 6.8 that this bit size can be reduced significantly).

Lemma 5.1. Let C be a (P, dist0)-projectable linear code over Q. Let Cq denote the q-
projection of C. Then for q ∈ Pgood, ϕq(MC) is a generator matrix of Cq. Denote by EncC
and EncCq the encoding maps for C and Cq consisting of multiplying a vector in Q or in Fq

by the matrix MC or ϕq(MC), respectively. Then, for all v ∈ Zdim
(q) ⊆ Qdim,

EncCq(ϕq(v)) = ϕq(EncC(v)).

Proof. Let dim denote the dimension of C and dimq the dimension of Cq. Since C is a
(P, dist0)-projectable linear code over Q, dimq = dim for q ∈ Pgood. Thus, the rank of ϕq(MC)
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is dimq = dim, making it a generator matrix for Cq. Hence, for v ∈ Zdim
(q) , since ϕq is a ring

homomorphism, we have

EncCq(ϕq(v)) = ϕq(v) · ϕq(MC) = ϕq(v ·MC) = ϕq(EncC(v)).

5.2 A Brakedown-type PCS from an IOP of Proximity to the Integers

In this section we describe Zip. We start by fixing some notation and terminology.

Preliminary terminology and notation Throughout the rest of Section 5.2 we let Pλ
be a set of primes each of bit-size at least λ, we fix a distance parameter 0 < dist0 < 1,
and let {Cλ | λ ≥ 1} be a (Pλ, dist0)-projectable family of linear integer codes over Q with
error εproj(λ), length n, and dimension dim (which may depend on λ), such as the family
described in Section 6. By Proposition 4.6, the family of rings and morphisms {Z(q) | q ∈ Pλ},
{ϕq : Z(q) → Fq | q ∈ Pλ} is λ-expanding (Definition 4.7).

We will use symbols like v or u to denote matrices. In this case, vi denotes the i-th row
of v, and vi,j denotes the (i, j)-th entry of v. Recall that, for any rational number v ∈ Q,
we denote its absolute value by |v|, and, given v a vector, we denote by ∥v∥∞ = maxi{|vi|}.
Similarly, if v is a matrix then ∥v∥∞ is the largest absolute value of one of the entries in v.

Recall from (Section 3.2) that we fix an encoding of Q as strings of bits such that any
a/b in lowest form has an encoding with at most 2max{log(|a| + 1), log(b + 1)} + 1 bits.
Following Remark 3.1, we often use instead the approximate upper bound 2(log(|a|) + log(b))
for this bit-size.

Let µ be an even number of variables, X = (X1, . . . , Xµ), and f ∈ Qmultilin[X] be a
multilinear polynomial on µ variables. Let vf = (f(x))x∈{0,1}µ be the vector of evaluations
of f on the hypercube {0, 1}µ. Denote dim =

√
2µ. Following, e.g. [GLS+23], we see vf as a

matrix from Qdim×dim, which we call the coefficient matrix of f . We use the well-known fact
[Tha22] that, for any q ∈ Qµ, there exists q1,q2 ∈ Qdim such that

f(q) = q1 · vf · qT
2 .

Precisely, q1 = (ẽq(x;q(1)))x∈{0,1}µ/2 and q1 = (ẽq(x;q(2)))x∈{0,1}µ/2 , where ẽq is the
equality multilinear polynomial (cf. Section 3.2) on µ/2 variables, q(1) = (q1, . . . ,qµ/2), and
q(2) = (qµ/2+1, . . . ,qµ).

Remark 5.2 (If q is integral, then so are q1 and q2). It follows that if q ∈ Zµ, then
q1 ∈ Zdim and q2 ∈ Zdim.

Description of Zip Next we describe Zip, our version of the Brakedown PCS [GLS+23] for
multilinear polynomials with bounded rational coefficients. Following [GLS+23], we present
the scheme as a PCS with oracles, in the sense of Definition 3.5. The oracles can then be
replaced by Merkle tree commitments using standard compilation methods, as outlined in
Section 5.5.

The global parameters of Zip are of the form gp = (µ,Bv, Bpt, δ, q0) where µ is an even
number of variables, Bv, Bpt ≥ 1 are bit-size bounds, δ is a distance parameter (for linear
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codes), and q0 is a prime of Ω(λ) bits. We further assume δ < dist0/3. If all these conditions
are met, we say that the global parameters gp are well-formed. We also implicitly include λ,Q,
Pλ, Cλ in gp, but omit writing or referring to them explicitly. Recall that by QB we denote
the set of rational numbers whose bit-size is less than B. We also let X = (X1, . . . , Xµ).

Given such parameters, Zip works as follows:

Commit(gp, f, aux): Takes global parameters gp, a multilinear polynomial

f ∈ Qmultilin
2·Bv+(6dim+2)·log(q0·dim)[X],

with coefficient matrix vf , and a dim× n matrix aux = û so that each row ûi of û is
δ-close to the codeword EncCλ(v

f
i ), for all i ∈ [dim], where vf

i is the i-th row of vf .

We place no constraint on the form of the entries of ûi that do not agree with EncCλ(v
f
i ).

This reflects the fact that, after replacing oracles by Merkle tree commitments, a prover
can potentially get away with making a few (but not many) entries in [[ûi]] be an
arbitrary string of bits. Regardless, we set a fixed interpretation of strings of bits
as rational numbers, as explained in Section 3.2, known and agreed upon between
the prover and the verifier. Under this interpretation, û is always filled with rational
numbers.
The commit procedure outputs as commitment the vector of oracles cm = ([[ûi]])i∈[dim],
and the hint hint = û.

Open(gp, cm, f, hint): Check that gp is well-formed and that f ∈ Qmultilin
2·Bv+(6dim+2)·log(q0·dim)[X].

Let vf be the coefficient matrix of f . Parse hint = {ûi}i∈dim. The opening procedure
returns 1 if and only if ûi is δ-close to EncCλ(v

f
i ) for all i ∈ [dim], and the oracles in cm

are oracles to the vectors (ûi)i∈[dim] (this can be checked by reading û and cm entirely).
We have the procedure stop and return 0 if at any point while reading the oracles in
cm or while reading the vectors in hint, some entry is seen to not be a rational number
or to have bit-size larger than log(∥MCλ∥∞ · dim) + 2 ·Bv + (6dim+ 2) · log(q0 · dim).

Eval = (Indexer,P,V). This is an IOP for the relation RELgp,Eval. The relation and the IOP
are described and discussed below.

Recall that vf denotes the coefficient matrix of f . As usual, the expression ∆(EncCλ(v
f
i ), ûi)

refers to the relative number of positions where EncCλ(v
f
i ) and ûi disagree.

RELgp,Eval =



i,x;
w

 =

([[û]], û),

(q, y),

f



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

gp = (µ,Bv, Bpt, δ, q0),

û = {ûi}i∈[dim] ∈ Qdim×n,

[[û]] = {[[ûi]]}i∈[dim],

q ∈ Zµ, ∥q∥∞ < 2Bpt ,

y ∈ Z, |y| < 2µ+Bv+µ·Bpt ,

f ∈ Qmultilin
2·Bv+(6dim+2)·log(q0·dim)[X],

vf = {vf
i }i∈[dim] ∈ Qdim×dim

2·Bv+(6dim+2)·log(q0·dim),

∆(EncCλ(v
f
i ), ûi) < δ for all i ∈ [dim],

f(q) = y
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Before describing the Zip evaluation IOP, we introduce some terminology. We say (i,x)
are well-formed if they satisfy all but the last three constraints from RELgp,Eval.

Definition 5.2 (Strong witnesses). Let (i,x) be a well-formed index-instance pair for RELEval,
and write i = ([[û]], û). We say that w = f is a strong witness for (i,x) if the following two
conditions hold:

• The witness w = f is such that f ∈ ZBv [X] (i.e. all coefficients of f are integer numbers
–as opposed to only rational– within the range [−2Bv + 1, 2Bv − 1]).

• We have (i,x;w) ∈ RELgp,Eval and Enc(vf
i ) = ûi for all i ∈ [dim].

In our schemes, we expect honest provers to only use strong witnesses. However, we
cannot fully enforce a dishonest prover to use such witnesses, and hence, in the definition
of RELgp,Eval, we allow for a broader class of witnesses. As explained previously, scenario is
analogous to when, in a finite field setting, one uses an IOPP (IOP of proximity) to construct
a PCS (see e.g. [GLS+23]): in most cases, the honest prover is expected to commit to one
(or more) codewords, but it is only possible to guarantee that the prover has committed
to a word that is only close to being a codeword. Additionally, full completeness is only
guaranteed in case the prover has committed to a codeword. We refer to Section 2.3 for
further intuitive explanation of this phenomenon.

We next describe the evaluation IOP of Zip. The indexer Indexer receives (gp, i) and
outputs

(pp, vp)← Indexer(gp, i), pp = (gp, û), vp = (gp, [[û]]).

The interactive phase between P(pp,x,w) and verifier V(vp,x) is described in Protocol 8.
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Protocol 8 Zip’s evaluation IOPP for RELEval.
Input: Let gp = (µ,Bv, Bpt, δ, q0) and i = ([[û]], û) with û = {ûi}i∈[dim] ∈ Qdim×n be
well-formed. Let x = (q, y) ∈ Zµ+1 with ∥q∥∞ < 2Bpt , |y| < 2µ+Bv+µ·Bpt . Let pp = (gp, û),
vp = (gp, [[û]]) be the output of Indexer(gp, i). V receives (vp,x) as input. P receives
(pp,x,w) with w = f where f ∈ Qmultilin

2·Bv+(6dim+2)·log(q0·dim)[X] and ∆(EncCλ(v
f
i ), ûi) < δ for

all i ∈ [dim], where vf is the coefficient matrix of f .
Testing phase:

1: V and P execute the testing procedure Protocol 9 with inputs (vp) and (pp, f), respectively.
V rejects if the verifier’s checks in Protocol 9 fail.
Otherwise, let sv ∈ [−dim · q0 · 2Bv , dim · q0 · 2Bv ]dim be the vector sent by P at Step 2 of
Protocol 9 and proceed to the evaluation phase.

Evaluation phase:
1: V samples a random prime q ∈ Pλ, and sends q to P.
2: If vf

i ̸∈ Zdim
(q) for some i ∈ [dim], P aborts. Otherwise, let ϕq : Z(q) → Fq be the canonical

projection of Z(q) onto Fq. Let q1,q2 ∈ Zdim be such that f(q) = q1 · vf · qT
2 . P sends V

the vector
svq =

∑
i∈[dim]

ϕq(q1,i) · ϕq(v
f
i ) ∈ Fdim

q .

// P is expected to use a strong witness, in which case vf
i ∈ Zdim ⊆ Zdim

(q) for all i. In this

case, ϕq(v
f
i ) is well-defined.

3: V randomly chooses a subset J ⊆ [dim] of size |J | = Θ(λ). For each j ∈ J :

• V queries the oracles [[ûi]] at position j, for each i ∈ [dim]. Let
û1,j , . . . , ûdim,j be the received values. If ûi,j is not an integer from
Zlog(∥MCλ∥∞·dim)+2·Bv+(6dim+2)·log(q0·dim) for some i ∈ [dim], j ∈ J , then V rejects.
// P is expected to use a strong witnesses, in which case û contains only integers
with the required bit-size.

• V checks whether

EncCλq
(svq)j =

∑
i∈[dim]

ϕq(q1,i) · ϕq(ûi,j), ϕq(y) =
∑

i∈[dim]

svq,i · ϕq(q2,i).
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Protocol 9 Zip’s testing protocol.
Input: Let gp, i, pp, vp,vf , f be as in Protocol 8. The prover receives pp, f as input, and
the verifier receives vp.
1: V sends P uniformly sampled elements r1, . . . , rdim ∈ [0, q0 − 1], where q0 is a prime.
2: P sends V the vector sv =

∑
i∈[dim] ri · v

f
i ∈ Qdim.

3: If for some j ∈ [dim], |svj | > dim · q0 · 2Bv or if svj is not an integer, V rejects. // vf is
expected to be the coefficient matrix of a strong witness f . In that case this check passes.

4: V randomly chooses a subset J ⊆ [n] with |J | = Θ(λ). For each j ∈ J :

• V queries the oracles [[ûi]] at position j, for each i ∈ [dim]. Let
û1,j , . . . , ûdim,j be the received values. If ûi,j is not an integer from
Zlog(∥MCλ∥∞·dim)+2·Bv+(6dim+2)·log(q0·dim) some i ∈ [dim], j ∈ J , V rejects. // Again,
P is expected to use a strong witnesses, in which case û contains only integers with
the appropriate bit-size8.

• V checks whether EncCλ(sv)j =
∑

i∈[dim] ri · ûi,j .

Remark 5.3 (Polynomial verifier). The verifier in Protocol 8 can be made to run in polyno-
mial time by making sure that, at Steps 3 and 4 of Protocol 9, V stops reading a value as soon
as the value is seen to have more bits than it is supposed to. For example, at Step 4, when try-
ing to read a value ûi,j , V reads the first log(∥MCλ∥∞ ·dim)+2 ·Bv + (6dim+ 2) · log(q0 · dim)
bits of the value. If the value still contains further bits, then V stops and rejects the proof.

5.3 Completeness

Following the notation and conventions of Section 5.2, recall that a strong witness w for
a well-formed index-instance pair (i,x) satisfies the properties (i,x;w) ∈ RELgp,Eval, and
w = f is such that f ∈ Zmultilin

Bv
[X], X = (X1, . . . , Xµ), and Enc(vf

i ) = ûi for all i ∈ [dim],
where vf is the coefficient matrix of f .

Theorem 5.4 (Completeness of Protocols 8 and 9 for strong witnesses). Let {Cλ | λ ≥ 1}
be a (Pλ, dist0)-projectable family of integer linear codes over Q with error εproj(λ). Let
(i,x;w) ∈ RELgp,Eval be such that w is a strong witness for (i,x). Then V(vp, i,x) accepts
after interacting with the honest prover P(pp, i,x;w) in Protocol 8 except with probability
εcomp(λ) = εproj(λ).

Proof. We follow the notation from Protocols 8 and 9, and assume the protocols are executed
honestly. Since w is a strong witness, for any choice of r1, . . . , rdim ∈ [0, q0 − 1] and all

8If P uses a strong witness, then û actually contains integer entries of much smaller bit-size, namely
Bv + log(dim · ∥MCλ∥∞). In Step 4 of Protocol 8, we could choose to have V reject if ûi,j has more than this
number of bits. This would hinder the completeness error in case P uses non-strong witness, which may be
a perfectly fine design choice. Note that the bound log(∥MCλ∥∞ · dim) + 2 ·Bv + (6dim+ 2) · log(q0 · dim)
corresponds to the size of the entries in û if P is using a witness f ∈ Q2·Bv+(6dim+2)·log(q0·dim)[X], which is a
valid witness, but not necessarily a strong witness.
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j ∈ [dim], v̄j is an integer and |v̄j | < dim · q0 · 2Bv . So V accepts Step 3 of Protocol 9 with
probability 1. Next, by linearity of the encoding map EncCλ and since ûi = EncC(vi) for all
i ∈ [dim] due to w being a strong witness, we have

EncCλ(v̄) = EncCλ

 ∑
i∈[dim]

ri · vf
i

 =
∑

i∈[dim]

ri · EncCλ(v
f
i ) =

∑
i∈[dim]

ri · ûi.

Hence, for all J ⊆ [n], the probability that V accepts at the end of Step 4 of Protocol 9 is 1.
We proceed to analyze Protocol 8. Again, by the fact that w is a strong witness, we

know that vf
i ∈ Zdim ⊂ Zdim

(q) for all i ∈ [dim] and q ∈ Pλ. Therefore, P will always proceed
to Step 3 of the evaluation phase of Protocol 8. By linearity of EncCλq

and ϕq,

EncCλq
(svq) =

∑
i∈[dim]

EncCλq
(ϕq(q1,i) · ϕq(v

f
i )) =

∑
i∈[dim]

ϕq(q1,i) · EncCλq
(ϕq(v

f
i )).

If EncCλq
(ϕq(v

f
i )) = ϕq(EncCλ(v

f
i )) = ϕq(ûi), then the verifier’s first check in Step 3 of

Protocol 8 passes for any choice of J ⊆ [n], since ∥û∥∞ ≤ 2Bv · dim · ∥MCλ∥∞, and û only
contains integer entries. By Lemma 5.1 we have that EncCλq

(ϕq(v
f
i )) = ϕq(EncCλ(v

f
i )) =

ϕq(ûi) if the prime q belongs to Pλgood. Hence, by definition of projectable family of codes,
V’s first check at Step 3 of Protocol 8 will pass with probability 1− εproj(λ). Finally, since
y = q1 · vf · qT

2 , we have

ϕq(y) = ϕq(q1) · ϕq(v
f ) · ϕq(q2)

T = svq · ϕq(q2)
T =

∑
i∈[dim]

svq,i · ϕq(q2,i),

finishing the proof.

5.4 Knowledge soundness

Theorem 5.5 (Knowledge soundness of Zip’s evaluation IOP Protocol 9). Protocol 8 is an
IOP for RELgp,Eval with knowledge soundness error

εks(gp, i,x, εP∗(gp, i,x))

≤n+ 1

q0
+ 2 · (1− δ)|J | +

(
1− 2dist0

3

)|J |
+

2 · (dim− 1)

εP∗(gp, i,x) · q0
+ θ + εproj(λ),

(14)

where εP∗(gp, i,x) is the probability that P∗(gp, i,x) convinces V(vp,x), i.e. εP∗(gp, i,x) =
Pr[⟨P∗(gp, i,x),V(vp,x)⟩ = 1], εproj(λ) is the error of the projectable code Cλ, and

θ =
2 · dim2 · (Bv + log(dim) + 2 · log(q0)) +Bv + µ ·Bpt + 3µ+ 2

λ · |Pλ|
.

Next, we explain how one can instantiate Protocol 8 in a way that makes εks as small as
practically needed.

Remark 5.6 (Obtaining a small knowledge soundness error). To make sure εks is small
enough for practical purposes, when εP∗ is not negligible, it suffices to:
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• Take q0 = O(2λ), n = poly(λ),dim = poly(λ), |J | such that (1− 2dist0/3)
|J | = negl(λ)

and (1− δ)|J | = negl(λ). This ensures that the first four terms in the right-hand side
of (14) are negligible in λ, whenever εP∗(gp, i,x)−1 is not negligible in λ.

• Take Pλ such that |Pλ| = O(2λ), and take Bv, Bpt, µ to be poly(λ), ensuring that θ is
negligible.

• In Section 6 we describe a projectable family of integer linear codes over Q, which
generalizes the JEA codes from [BFK+24]. In particular, in Remark 6.7 we outline how
to choose parameters so that εproj(λ) is sufficiently small. Note that this parameter
choice affects dist0, and thus |J |. In Remark 6.8 we conjecture and suggest how this
parameter choices can be improved.

The rest of this section is devoted to proving Theorem 5.5. We begin by stating a series
of auxiliary lemmas. Then, we will describe an extractor and use the lemmas to prove the
extractor is PPT and satisfies the probability bound claimed in Theorem 5.5.

5.4.1 Random linear combinations of large rational numbers

We start by stating two key auxiliary lemmas regarding the behavior of random linear
combinations of rational numbers when the combination coefficients are integers. Overall,
the two results amount to say that, if such a random linear combination results in a small
integer with high probability, then the rational numbers have bit-size not much larger than
the size of the combination coefficients.

Lemma 5.7. Let v = (v1, . . . , vn) ∈ Qn be a vector of n rational numbers, not all of them
zero. Let N > 0 be a positive rational number and let M > 1 be a positive integer. Then

P = Pr

 |∑
i∈[n]

ri · vi| < N

∣∣∣∣∣∣ ri ← [0,M − 1] for all i ∈ [n]

 ≤ min

{
1,

N

∥v∥∞ ·M

}
.

Proof. Assume without loss of generality that |vn| = ∥v∥∞ = maxi∈[n]{|vi|}. We have vn ̸= 0,
because not all the vi’s are zero. Let r = (r1, . . . , rn−1) ∈ [0,M − 1]n−1 be (n − 1) fixed
integers from [0,M − 1]. Consider first the probability

Pr = Pr

 |rn · vn +
∑

i∈[n−1]

ri · vi| < N

∣∣∣∣∣∣ rn ← [0,M − 1]

 .

Denote r · v =
∑

i∈[n−1] ri · vi. Assume first that r · v ≥ 0 and vn < 0. Write vn = −v′n with
v′n > 0. Let E1 be the event that r · v ≥ rn · v′n.

If E1 holds and, simultaneously |r · v − rn · v′n| < N , then we have |r · v − rn · v′n| =
r · v − rn · v′n < N, and so, since v′n > 0,

r · v
v′n
− N

v′n
< rn ≤

r · v
v′n

.
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Hence, rn, which is an integer, belongs to a rational interval of length N/v′n. In particular,
there are at most N/v′n values for rn such that E1 holds. Hence

Pr

 |rn · vn +
∑

i∈[n−1]

ri · vi| < N

∣∣∣∣∣∣ rn ← [0,M − 1],

E1 holds

 ≤ N

|vn| ·M
.

Now assume E1 does not hold. Then |r · v − rn · v′n| = rn · v′n − r · v < N, and so

r · v
v′n

< rn <
N

v′n
+

r · v
v′n

.

Again, the same reasoning gives

Pr

 |rn · vn +
∑

i∈[n−1]

ri · vi| < N

∣∣∣∣∣∣ rn ← [0,M − 1],

¬E1 holds

 ≤ N

|vn| ·M
.

The law of total probability now yields Pr ≤ N/(|vn| ·M).
Now assume r · v ≥ 0 and vn > 0. In that case |r · v + rnvn| ≥ |r · v − rnvn|, and then

Pr ≤ Pr

 |rn · (−vn) + ∑
i∈[n−1]

ri · vi| < N

∣∣∣∣∣∣ rn ← [0,M − 1]

 .

We know by our previous analysis that the right-hand side of the inequality above is at most
N/(|vn| ·M) as needed. The remaining cases, i.e. r · v ≤ 0, vn > 0, and r · v ≤ 0, vn < 0 all
reduce to the previous two cases since the absolute value is invariant under multiplication by
−1.

Now, using again the law of total probability,

P =
∑

r∈[0,M−1]n−1

Pr · Pr[r] ≤
N

|vn| ·M
·

 ∑
r∈[0,M−1]n−1

Pr[r]

 =
N

|vn| ·M
,

where P is the probability from the statement of the lemma that we want to bound, and
Pr[r] denotes the probability that sampling a tuple from [0,M − 1]n−1 uniformly at random
results in the tuple r.

Recall that, by gcd and lcm we denote the greatest common divisor and the lowest
common multiple of a tuple of integers, respectively.

Lemma 5.8. Let v = (v1, . . . , vn) ∈ Qn be a vector of n ≥ 1 rational numbers, not all of
them zero. For each i ∈ [n], write vi = ai/bi with ai, bi ∈ Z and gcd(ai, bi) = 1. Let M ≥ 1
be a positive integer, and assume there exists i ∈ [n] such that |bi| > M and vi ̸= 0. Then the
probability of uniformly sampling n integers r1, . . . , rn in the interval [0,M − 1] such that∑

i∈[n] rivi is an integer is at most 1/M . More formally,

P = Pr

∑
i∈[n]

ri · vi

 ∈ Z

∣∣∣∣∣∣ ri ← [0,M − 1] for all i ∈ [n]

 ≤ 1

M
.
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Proof. Assume without loss of generality that bn > M and vn ̸= 0. Let r = (r1, . . . , rn−1) ∈
[0,M − 1]n−1 be (n− 1) fixed integers from [0,M − 1]. Consider first the probability

Pr = Pr

rn · vn +
∑

i∈[n−1]

ri · vi

 ∈ Z

∣∣∣∣∣∣ rn ← [0,M − 1]

 .

Denote r · v =
∑

i∈[n−1] ri · vi. Observe that if r · v = 0, then
∑

i∈[n] ri · vi = rn · vn. But
rn · vn is an integer if and only if bn divides rn. However we assumed rn ∈ [0,M − 1], while
bn > M . Hence, in this case, Pr = 0.

Assume from now on that r · v ̸= 0, and write r · v = a/b with (a, b) in lowest form, i.e.
a, b ∈ Z, b ≥ 1, gcd(a, b) = 1. We have a ̸= 0. Let L = lcm(b, bn). Note that L ̸= 0 because
b, bn > 0. Let rn ∈ [0,M − 1], and assume rn · un + r · v ∈ Z. Multiplying and dividing by L
(which, as we argued, is not zero) we obtain that

rn · un + r · v ∈ Z ⇔ rn · an ·
L

bn
+ a · L

b
≡ 0 (mod L),

where, note L/b and L/bn are integers. Denote A = a · L/b and An = an · L/bn. We claim
that the congruence

rn ·An +A ≡ 0 (mod L) (15)

has at most one solution on rn satisfying rn ∈ [0,M − 1]. Indeed, let D = gcd(An, L), which
is not zero because L ≠ 0. Then (15) has a solution rn ∈ Z if and only if D divides A, and
in that case the set of integer solutions is

S =

{
r0n + µ · L

D
| µ ∈ Z

}
where r0n is any one solution. Denote r0n + µ · L/D by S(µ). Later we will prove that
L/D = bn. In that case, we argue that S contains at most one element from the interval
[0,M − 1]. Indeed, assume S contains one element from [0,M − 1], say S(µ0). Let k ∈ Z be
a nonzero integer and assume that S(µ0 + k) ∈ [0,M − 1]. Then, if k is positive,

M > S(µ0 + k) = r0n + (µ0 + k) · bn = r0n + µ0 · bn + k · bn = S(µ0) + k · bn ≥ k · bn > M,

where we have used that S(µ0 + k) < M because S(µ0 + k) ∈ [0,M − 1], that S(µ0) ≥ 0
because S(µ0) ∈ [0,M − 1], and that k · bn > M because we assumed that bn > M , and that
k ≥ 1. The above inequalities constitute a contradiction. Similarly, if k is negative, writing
k = −k′ for k′ ≥ 1,

0 < S(µ0 − k′) = r0n + (µ0 − k′) · bn = r0n + µ0 · bn − k′ · bn = S(µ0)− k′ · bn < M − k′ · bn.

This yields that k′ · bn < M , but then M < k′ · bn < M, again a contradiction. Hence, there
cannot be more than one element in S that belongs to [0,M − 1].

We now show that L/D = bn. Indeed, write L = lcm(b, bn) = b · bn/d, with d = gcd(b, bn).
Then

D = gcd(An, L) = gcd

(
an ·

L

bn
, L

)
= gcd

(
an ·

b · bn
d · bn

,
b · bn
d

)
=

b

d
· gcd

(
an ·

bn
bn

, bn

)
=

b

d
· gcd(an, bn) =

b

d
,
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and so
L

D
=

b · bn
d · bd

= bn.

Hence, we have shown that the congruence rn ·An+A ≡ 0 (mod L) has at most one solution
with rn ∈ [0,M − 1] and with An and A fixed constant. This implies that Pr ≤ 1/M . Then,
using the law of total probability as in Lemma 5.7,

P =
∑

r∈[0,M−1]n−1

Pr · Pr[r] ≤
1

M
,

where P is the probability from the statement of the lemma that we want to bound, and
Pr[r] denotes the probability that when uniformly sampling n− 1 elements in [0,M − 1], one
samples the vector r.

5.4.2 Auxiliary lemmas

Next we state and prove a series of lemmas regarding the probability of several kinds of
events occurring during the execution of Zip.

Definition 5.3 (Correlated codewords for an index-instance pair). Let gp = (µ,Bv, Bpt, δ, q0),
i = ([[û]], û) and x = (q, y) be well-formed for RELgp,Eval. Write û = {ûi}i∈[dim] ∈ Qdim×n.
Assume each ûi is δ-close to Cλ. Then, since δ is within the unique decoding radius (cf.
Section 3.3), there exist unique vectors vi ∈ Qdim such that ∆(EncCλ(vi), ûi) ≤ δ for all
i ∈ [dim]. In this event we define

Words(û) = v.

The value ∥Words(û)∥∞ = maxi,j∈[dim]×[n]{vi,j} will play an important role in the security
analysis of Protocol 8.

If ûi is not δ-close to Cλ for some i ∈ [dim], then we define ∥Words(û)∥∞ to be an empty
set, and we convene that ∥Words(û)∥∞ = 1.

Let P∗ be a malicious prover for Protocol 8. Let gp = (µ,Bv, Bpt, δ, q0), i = ([[û]], û),
and x = (q, y) be well formed, so that û = {ûi}i∈[dim] ∈ Qdim×n, q ∈ [−2Bpt , 2Bpt ]µ,
y ∈ Z, |y| < 2µ+Bv+µ·Bpt , and [[û]] = {[[ûi]]}i∈[dim]. Let (pp, vp) ← Indexer(gp, i), so that
pp = (gp, û) and vp = (gp, [[û]]).

We define Etest to be the event that V(vp,x) accepts at the end of the testing phase of
Protocol 8 during the execution of ⟨P∗(pp,x),V(vp, i,x)⟩.

Lemma 5.9 (The words ûi should have δ-correlated agreement). Assume that the words
(ûi)i∈[dim] do not have δ-correlated agreement in Cλ. Then

Pr[Etest] ≤
n

q0
+ (1− δ)|J |. (16)

Proof. By Lemma 3.2, Cλ has (δ, α, [0, q0 − 1])-correlated agreement with δ < dist/3 and
α = n/q0. Hence,

Pr

 ∑
i∈[dim]

∆(ri · ûi, Cλ) ≤ δ

∣∣∣∣∣∣ r1, . . . , rdim ← [0, q0 − 1]

 < α =
n

q0
.
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Assume V samples elements r1, . . . , rdim such that ∆(
∑

i∈[dim] ri ·ûi, Cλ) > δ. Then
∑

i∈[dim] ri ·
ûi agrees with a codeword on less than (1− δ) · n positions. Since at the end of the testing
phase, V checks whether

∑
i∈[dim] ri · ûi agrees with the codeword Enc(sv) on |J | random

positions, we have that V accepts with probability less than (1 − δ)|J |, and so Eq. (16)
follows.

From now on until the end of this subsection we assume the words (ûi)i∈[dim] have
δ-correlated agreement in Cλ. Let E ⊆ [n] be a maximal subset of [n] (with respect to
inclusion) such that each ûi agrees with a codeword v̂i from Cλ on the positions E, for all
i ∈ [dim]. Then, since we assumed the words (ûi)i∈[dim] have δ-correlated agreement and δ is
within the unique decoding radius, we have |E| ≥ (1 − δ) · n. Let vi ∈ Qdim be such that
EncCλ(vi) = v̂i for all i ∈ [dim], and denote the rows of v and v̂ as v = {vi}i∈[dim] ∈ Qdim×dim,
v̂ = {v̂i}i∈[dim] ∈ Qdim×n. Note that, by unicity, Words(û) = v.

Lemma 5.10 (sv should indeed be
∑

i∈[dim] ri · vi). Let E0 be the event that P∗(pp,x) sends
sv =

∑
i∈[dim] ri · vi at Step 2 of Protocol 9, where r1, . . . , rdim are V(vp,x)’s challenges sent

at Step 1 of Protocol 9. Then

Pr[Etest | ¬E0] < (1− δ)|J |.

Proof. Since δ is within the unique decoding radius, there is a unique codeword whose relative
Hamming distance from

∑
i∈[dim] ri · ûi is at most δ. Since each ûi agrees with v̂i on E and

|E| ≥ (1− δ) · n, we have that this codeword is sv. Now, assume P sends a vector sv′ with
sv′ ̸= sv at Step 2 of Protocol 9. Then, by uniqueness, the codeword EncCλ(sv

′) is such that
∆(EncCλ(sv

′),
∑

i∈[dim] ri · ûi) > δ. In particular, EncCλ(sv
′) and

∑
i∈[dim] ri · ûi agree on less

than (1− δ) · n positions. Hence, the probability that Etest occurs while E0 does not is less
than (1− δ)|J |.

We refer to Section 2.3 for an intuitive explanation of what is the role of the following
lemma regarding the knowledge soundness of Zip.

Lemma 5.11 (û should contain polynomially sized entries). Let E1 be the event that E0
occurs and V does not reject at Step 3 of Protocol 9. That is, E1 is the event where P∗(pp,x)
sends the vector sv =

∑
i∈[dim] ri · vi after receiving the challenges r1, . . . , rdim, and all entries

of sv are integers with absolute value at most dim · q0 · 2Bv . Then

Pr[E1 | E0] ≤ min

{
1,

dim · 2Bv + 1

∥Words(û)∥∞

}
,

where, recall, ∥Words(û)∥∞ = ∥v∥∞ = maxi,j∈[dim]{|vi,j |}. If ∥Words(û)∥∞ = 0 then we
convene that the right-hand side of the inequality above means 1.

Proof. Assume E0 occurs. If v consists entirely of zeros, then ∥Words(û)∥∞ = 0 and so the
inequality holds trivially. Otherwise, assume ∥Words(û)∥∞ > 0, and consider Lemma 5.7
when taking M = q0, N = dim · q0 · 2Bv + 1, n = dim, and the rational numbers v1, . . . , vn =
v1,j0 , . . . ,vdim,j0 , where j0 ∈ [dim] is a column of v that contains a largest entry (in absolute
value) of v. Note that not all the values v1, . . . , vn are zero, because Words(û) > 0. Then
the lemma yields that the probability that svj0 < dim · q0 · 2Bv is at most the probability
claimed in this lemma.
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Lemma 5.12. Suppose that Words{û} has a nonzero entry vi,j with vi,j = c/d with c, d ∈ Z,
c ̸= 0, gcd(c, d) = 1, and d > q0. Then

Pr[E1 | E0] ≤
1

q0
.

Proof. For E1 to occur, it must be the case that sv is a vector filled with integers. In particular,
it must be the case that svj is an integer. Now the lemma follows by applying Lemma 5.8 to
the rational numbers v1,j , . . . ,vdim,j , taking n = dim, M = q0.

Because of Lemma 5.12, from now on we assume that all denominators in the nonzero
entries of Words(û) (in lowest form) are positive integers in the range [1, q0].

Lemma 5.13. Under the assumption above, if E1 holds, then every entry in Words(û) = v
has bit-size at most

2 · log(∥Words(û)∥∞) + 4 · log(q0).

Proof. Since E1 holds, V does not reject at Step 3 of Protocol 9. By our assumption above,
each entry vi,j of v is a rational number of the form vi,j = ai,j/bi,j with ai,j , bi,j ∈ Z, bi,j ≥ 1,
gcd(ai,j , bi,j) = 1, and bi,j ≤ q0. Then, for all i, j ∈ [dim],

|ai,j | ≤ ∥Words(û)∥∞ · bi,j ≤ ∥Words(û)∥∞ · q0,

and so vi,j has bit-size at most (cf. Remark 3.1) 2·(log(|ai,j |)+log(bi,j))) ≤ 2·log(∥Words(û)∥∞)+
4 · log(q0).

Let Eproj be the event that, at Step 1 of the evaluation phase in Protocol 8, V samples a
prime q ← Pλ that is good with respect to Cλ (see Definition 5.1). By definition, Pr[¬Eproj] ≤
εproj(λ).

Let Elocal be the event that, in Step 1 of the evaluation phase (Protocol 8), V samples a
prime q ∈ Pλ such that v ∈ Zdim×dim

(q) .

Lemma 5.14. We have

Pr[¬Elocal] ≤
2 · dim2 · (log(∥Words(û)∥∞) + 2 · log(q0))

λ · |Pλ|
.

Proof. Assume E1 occurs. Let q be the prime sampled by V. For Elocal to not hold, there
must be i, j ∈ [dim] with vi,j ∈ Q \ Z(q). Hence

Pr[¬Elocal] ≤
∑

i,j∈[dim]

Pr[vi,j ̸∈ Z(q) | q ← Pλ].

Fix i, j ∈ [dim], and let Pλ(i, j) be such that vi,j ∈ Q \ Z(q) for all q ∈ Pλ(i, j). Since,
by Proposition 4.6, the families of subrings and homomorphisms {Z(q), ϕq | q ∈ Pλ} are
λ-expanding (recall we assumed that all primes in Pλ have bit-size at least λ), we have by
Item 2 of Definition 4.7 that the bit-size of vi,j is at least λ·|Pλ(i, j)|. Hence, λ·|Pλ(i, j)| ≤ L,
where L is the largest bit-size of an entry in v. Then

Pr[vi,j ̸∈ Z(q) | q ← Pλ] =
|Pλ(i, j)|
|Pλ|

≤ L

λ · |Pλ|
.

Finally, Lemma 5.13 yields that L ≤ 2 · log(∥Words(û)∥∞) + 4 · log(q0), and the lemma
follows.
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Let sv′ =
∑

i∈[dim] q1,i · vi. Recall that 0 < dist0 < 1 is a parameter such that the family
of linear codes {Cλ | λ ≥ 1} is (Pλ, dist0)-projectable.

Lemma 5.15 (svq should indeed be
∑

i∈[dim] ϕq(q1,i) · ϕq(vi)). Let E2 be the event that
Elocal ∧ Eproj ∧ E1 holds, and the vector svq sent by P∗ at Step 2 of the evaluation phase
(Protocol 8) satisfies svq = ϕq(sv

′). Then

Pr[Eaccept | (¬E2) ∧ Elocal ∧ Eproj ∧ E1] ≤
(
1− 2dist0

3

)|J |
.

Proof. Assume Elocal ∧ Eproj ∧ E1 occurs but E2 does not hold. Then svq ̸= ϕq(sv
′), and so, we

have EncCλq
(svq) ̸= EncCλq

(ϕq(sv
′)) (for any encoding map for Cλq, which since we assume q is

good with respect to Cλ, in this case consists of multiplication by the matrix ϕq(MCλ)). Let
Aq ⊆ [n] be the set of positions where EncCλq

(svq) and EncCλq
(ϕq(sv

′)) agree. Recall that v̂i

denotes the vector EncCλ(vi), and that v̂i agrees with ûi on all positions of the set E ⊆ [n].
Note we have |Aq| < n− distq · n, where distq is the relative distance of Cλq.

Before we continue, we argue that q1,i,q2,i, v̂i,j , ûi,j ∈ Z(q) for all i ∈ [dim] and j ∈ E.
Indeed, q1,i,q2,i ∈ Z(q) because q1,q2 are vectors filled with integer entries, by Remark 5.2.
Further, since Elocal is assumed to hold, vi,j ∈ Z(q). Then, since v̂i,j is the j-th component
of EncCλ(vi) and the generator matrix of Cλ is integer, we have that v̂i,j ∈ Z(q). Finally, if
j ∈ E then ûi,j = v̂i,j and so ûi,j ∈ Z(q) as well.

Then, using that these elements belong to Z(q) and thus their ϕq-image is well-defined,
we have for all j ∈ E \Aq:∑
i∈[dim]

ϕq(q1,i) · ϕq(ûi,j) =
∑

i∈[dim]

ϕq(q1,i) · ϕq(v̂i,j) = Since ûi agrees with v̂i on E, ∀i

ϕq

 ∑
i∈[dim]

q1,i · v̂i,j

 = ϕq

 ∑
i∈[dim]

q1,i · (EncCλ(vi))j

 =

Since taking the j-th coordinate
and ϕ are homomorphisms,
and by definition of v̂i

ϕq

 ∑
i∈[dim]

q1,i · EncCλ(vi)


j

= ϕq

EncCλ

 ∑
i∈[dim]

q1,i · vi


j

By linearity of the code

= ϕq(EncCλ(sv
′))j By definition of sv′

= EncCλq
(ϕq(sv

′))j By Lemma 5.1, because Eproj holds

̸= EncCλq
(svq)j Because j ̸∈ Aq.

Hence, if (¬E2)∧ Elocal ∧ Eproj ∧ E1 holds, V rejects if it samples j ∈ E \Aq. For each sampled
j ∈ [n], we have that j ∈ E \Aq with probability

|E \Aq|
n

≥ |E| − |Aq|
n

>
(1− δ) · n− (n− distq · n)

n
>

3dist0 − dist

3
≥ 2dist0

3
,

where in the last two inequalities we have used that distq ≥ dist0 (because q is good with
respect to Cλ since Eproj holds); δ < dist/3; and dist ≥ distq ≥ dist0. Hence, if E2 does not occur
and Elocal ∧ Eproj ∧ E1 does, then V accepts with probability at most (1− (2dist0/3))

|J | .
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Lemma 5.16 (y should be the correct evaluation of f at q). Let E3 be the event that E2
occurs and y = q1 · v · qT

2 . Let Eaccept be the event that the verifier accepts at the end of
Protocol 8. Then

Pr[Eaccept | (¬E3)∧E2] ≤
2 · dim2 · (log(∥Words(û∥∞)) + 2 · log(q0)) +Bv + µ ·Bpt + 3µ+ 2

λ · |Pλ|
.

Proof. Assume (¬E3) ∧ E2 holds. Then, if Eaccept holds we have

ϕq(y) =
∑

j∈[dim]

svq,j · ϕq(q2,j) Because Eaccept occurs

=
∑

j∈[dim]

(ϕq(sv
′))j · ϕq(q2,j) Because E2 occurs

= ϕq

 ∑
j∈[dim]

sv′
j · q2,j

 Because ϕq is a morphism and
(ϕq(a))j = ϕq(aj) for any vector a

= ϕq

 ∑
j∈[dim]

∑
i∈[dim]

q1,i · vi,j · q2,j

 By definition of sv′

= ϕq(q1 · v · qT
2 )

Hence,
y − q1 · v · qT

2 ∈ kerϕq \ {0}, (17)

where we have y − q1 · v · qT
2 ̸= 0 because we assumed ¬E3 holds. Note that q1,q2 ∈ Z(q) by

Remark 5.2. Because of this, and since Elocal is assumed to hold (and since Z(q) is a field),
all the applications of the map ϕq above are well-defined.

Define a polynomial P on variables (Vi,j)i,j∈[dim] as follows:

P (Vi,j)i,j∈[dim] = y −
∑

i,j∈[dim]

q1,i · q2,j · Vi,j .

Note that P is a linear polynomial on dim2 variables, with integer coefficients since y ∈ Z
and all components of q1,q2 are integers, by Remark 5.2). The polynomial P has at most
1 + dim2 nonzero coefficients, and the absolute value of its coefficients is at most

max{|y|, |q1,i · q2,j |}i,j∈[dim] ≤ max{|y|, 2Bpt·µ} ≤ 2µ+Bv+µ·Bpt ,

where we used |y| < 2µ+Bv+µ·Bpt because (i,x) is assumed to be well-formed. Note that
P (v) ∈ kerϕq \ {0}.

We have argued that (17) if Eaccept occurs, conditioned on (¬E3) ∧ E2 happening. The
randomness is taken over the sampling of q in Pλ. Hence, there are at least

Pr[Eaccept | (¬E3) ∧ E2] · |Pλ|

primes q ∈ Pλ such that (17) holds conditioned on ¬E3 ∧ E2 occurring, i.e. such that
P (v) ∈ kerϕq \ {0}. Then, since we chose {Z(q) | q ∈ Pλ}, {ϕq : Z(q) → Fq | q ∈ Pλ} to be
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λ-expanding (Definition 4.7), we have by definition that some entry in v has bit-size at least

λ · Pr[Eaccept | (¬E3) ∧ E2] · |Pλ| − (µ+Bv + µ ·Bpt − log(dim2 + 1))

dim2 .

On the other hand, by Lemma 5.13, all entries in Words(û) = v have bit-size at most
2 · log(∥Words(û)∥∞) + 4 log(q0). Hence

λ · Pr[Eaccept | (¬E3) ∧ E2] · |Pλ| − (µ+Bv + µ ·Bpt − log(dim2 + 1))

dim2

≤ 2 · log(∥Words(û)∥∞) + 4 · log(q0).

It follows that

Pr[Eaccept | (¬E3)∧E2] ≤
2 · dim2 · (log(∥Words(û∥∞)) + 2 · log(q0)) +Bv + µ ·Bpt + 3µ+ 2

λ · |Pλ|
,

where we have used that log(dim2 + 1) ≤ log(4dim2) = 2 log(2dim) = 2 + µ.

5.4.3 Description and analysis of the extractor

In Protocol 10 we describe a PPT extractor Ext that, for all malicious prover P∗ for
Protocol 8, and for all well-formed index-instance pair (i,x) for RELgp,Eval, the probability
that ⟨P∗(pp,x),V(vp,x)⟩ = 1 and (i,x;ExtP

∗
(gp, i,x)) ̸∈ RELgp,Eval is bounded by the

right-hand side of (14).

Protocol 10 Extractor Ext for Protocol 8.
Input: Let gp = (µ,Bv, Bpt, δ, q0) be well-formed global parameters for RELgp,Eval, and
let i = ([[û]], û), x = (q, y) with û = {ûi}i∈[dim] ∈ Qdim×n,q ∈ Zµ, ∥q∥∞ < 2Bpt ,
y ∈ Z, |y| < 2µ+Bv+µ·Bpt . Let pp = (gp, [[û]]) and vp = (gp, û). Let P∗ be a ma-
licious prover for Protocol 8. Ext receives (gp, i,x) as input, and black-box access to
P∗.
1: Initialize an empty list S.
2: Pick a nonzero vector r = (r1, . . . , rdim) ∈ [0, q0 − 1]dim uniformly at random. Give r to

P∗(pp,x) as if r was the first message sent by V(vp,x) in the testing phase of Protocol 8.

3: Let svr be the vector output by P∗(pp,x) in the testing phase (Protocol 9) after receiving
r.

4: Check whether all entries of svr are integers with absolute value at most dim · q0 · 2Bv . If
they are not, go back to Step 2.

5: Run Protocol 11 with input ([[û]], r, svr). Let b be the output of Protocol 11.
6: If b = 0, go back to Step 2. If b = 1, add r to the list S. If |S| < dim, go back to Step 2.

Otherwise, if |S| = dim, proceed to the next step.
7: Check whether the vectors contained in S = (r(1), . . . , r(dim)) are linearly independent

over Q. If they are not, output ⊥. Otherwise, if they are, compute and output r−1 · sv,
where r is the dim× dim matrix whose i-th row is the vector r(i), and sv is the dim× dim
matrix whose i-th row is the vector svr(i) , i ∈ [dim].
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Protocol 11 Testing subprocedure for the extractor Protocol 10.
Input: ([[û]], r, svr), where û′ = {û′

i}i∈[dim] ∈ Qdim×n, r = (r1, . . . , rdim) ∈ [0, q0 − 1]dim, and
svr ∈ Zdim

dim·q0·2Bv .

1: Let ⊥ be a special fresh symbol. For each i ∈ [dim], compute a string û′
i ∈ (Q∪ {⊥})n as

follows. In short, û′
i is the string obtained from ûi by replacing each of its entries with

bit-size larger than BBoundEnc (as defined below) with the symbol ⊥. This can be done
efficiently as follows:

• For each j ∈ [n], Ext queries the oracle [[ûi]] at position j and starts reading the
received value ûi,j .

• Ext either reads ûi,j in its entirety, or stops reading it after having read more bits
than

BBoundEnc = log(∥MCλ∥∞ · dim) + 2 ·Bv + (6dim+ 2) · log(q0 · dim).

• In the first case, Ext assigns the j-th entry û′
i,j of û′

i to be ûi,j . Otheriwse û′
i,j is

set as the symbol ⊥.

2: Compute the vector û′
r =

∑
i∈[dim] ri · û′

i, where we interpret ri · ⊥ = ⊥ and ⊥ + a =
a+⊥ = ⊥ for any integer a.

3: Count the number k of positions from [n] where û′
r and EncCλ(svr) agree. Every position

of û′
r occupied by the symbol ⊥ is counted as a position of disagreement with EncCλ(svr).

4: Output 1 if (k/n)|J | > εtest
2 , output b = 1. Otherwise, output b = 0. Here εtest is the

probability that V(vp,x) accepts at the end of Protocol 9 when interacting with P∗(pp,x).

Denote by Eaccept the event ⟨P∗(pp,x),V(v,x)⟩ = 1, and let εP∗ = εP∗(gp, i,x) =
Pr[Eaccept]. Denote

εks(gp, i,x, εP∗) = Pr
[
Eaccept ∧ ((i,x;w) ̸∈ RELgp,Eval)

∣∣∣ w← ExtP
∗
(gp, i,x)

]
Our goal is to prove that Protocol 10 runs in expected polynomial time on gp, i,x, ε−1

P∗ and
that εks satisfies the bound (14).

By Lemma 5.9, if the words û1, . . . , ûdim do not have δ-correlated agreement in Cλ, then

εks(gp, i,x, εP∗) ≤ Pr[Etest] ≤
n

q0
+ (1− δ)|J |,

and then the bound (14) is satisfied. Hence, we assume from now on that these words do
have δ-correlated agreement in Cλ. Then the matrix v = Words(û) = (vi)i∈[dim] ∈ Qdim×dim

is well defined (cf. Definition 5.3). Let E ⊆ [n] be a maximal correlated agreement (cf.
Definition 3.1) subset of [n] for the words û1, . . . , ûdim, i.e. E is a maximal (with respect to
inclusion) subset of [n] such that the codewords v̂i = EncCλ(vi) ∈ Cλ agree with ûi on E, for
all i ∈ [dim]. We have |E| ≥ (1− δ) · n.

8Note that Ext doesn’t know the value εtest. However, it can estime such value by running and rewinding
P∗ several times. See Remark 5.26 for further details.
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By Lemma 5.12, if some denominator in lowest form of a nonzero entry in v is larger
than q0, then εks(gp, i,x, εP∗) ≤ Pr[Etest] ≤ 1/q0, and then (14) is satisfied. Hence, we also
assume from now on that all denominators of the nonzero entries of v (in lowest form) lie in
the interval [1, q0]. Then, by Lemma 5.13, we have that every entry in v has bit-length at
most log(∥Words(û)∥∞) + 2 · log(q0).

Write gp = (λ, µ, Cλ,Pλ, Bv, Bpt, δ) and i = ([[û]], û), x = (q, y) with û = {ûi}i∈[dim] ∈
Qdim×n, q ∈ [0, q0 − 1]µ, y ∈ Z, |y| < 2µ+Bpt+µ·Bv , and [[û]] = {[[ûi]]}i∈[dim]. Assume
εP∗(gp, i,x) > 0, otherwise there is nothing to prove since εks(gp, i,x, εP∗) ≤ εP∗(gp, i,x).

As in Lemma 5.9, let Etest be the event that all of the checks made by V at Steps 3 and 4 of
the testing phase of Protocol 9 are correct, and let εtest = Pr[Etest]. Assume εP∗ ≥ 2 ·(1−δ)|J |.
Otherwise, εks ≤ εP∗ is bounded by the right-hand side of Eq. (14), regardless of whether
(i,x;w) ∈ RELgp,Eval or not, where w is the extractor’s output.

We will use the lemmas from the previous two sections to prove that this is indeed the
case. We set the following notation

BBoundEnc = log(∥MCλ∥∞ · dim) + 2 ·Bv + (6dim+ 2) · log(q0 · dim).

Given û ∈ Qdim×n we define

Big = {j ∈ [n] | ûi,j ̸∈ ZBBoundEnc
for some i ∈ [dim]}. (18)

Given r ∈ [0, q0 − 1]dim, let EBig be the event that V samples J ⊆ [n] such that J ∩ Big = ∅.
Let Er be the event that V sends the challenge vector r at Step 1 of Protocol 9. Let T be
the set of nonzero vectors from [0, q0 − 1]dim such that, if Er holds, then all of the verifier’s
checks in Steps 3 and 4 of Protocol 9 pass with probability strictly larger than εtest/2. In
other words,

T =
{
r ∈ [0, q0 − 1]dim

∣∣∣Pr[Etest | Er] > εtest/2
}
\ {0},

where 0 denotes the vector consisting entirely of zeros.
As in Lemma 5.10, let E0 be the event that, given r = (r1, . . . , rdim) at Step 1 of Zip’s

testing phase (Protocol 9), P∗ sends the vector
∑

i∈[dim] ri · vi.

Lemma 5.17. Let ET be the event that the verifier samples a vector r in T at Step 1 of
Protocol 9. Then, if ET occurs, also E0 occurs.

Proof. Due to Lemma 5.10 and our previous assumptions, Pr[Etest | ¬E0] ≤ (1 − δ)|J | ≤
εP∗/2 ≤ εtest/2. Hence, if V samples r ∈ T , then E0 must necessarily hold, because we have
Pr[Etest | Er] > εtest/2 ≥ Pr[Etest | ¬E0], where r ∈ T denotes the event that the sampled
vector r belongs to T .

Let T ′ be the set of nonzero challenge vectors r ∈ [0, q0 − 1]dim such that Protocol 11
outputs 1 when given ([[û]], r, svr) as input, where svr denotes the vector sent by P∗ at Step 2
of Protocol 9 after receiving the challenge vector r. In what follows, we let û′

r denote the
vector computed at Step 2 of Protocol 11 with input ([[û]], r, svr).

Lemma 5.18. We have that T ′ = T .

63



Proof. Let Big ⊆ [n] be defined as in (18). The event [Etest | Er] occurs if and only if EBig
does not occur, and if J is contained in the set of positions where

∑
i∈[dim] ri · ûi agrees with

EncCλ(svr). In that case, since J ∩ Big = ∅, such a set J is contained in the set of positions
where û′

r (as defined in Protocol 11) does not have the symbol ⊥, which is precisely the set
[n] \ Big. Hence [Etest | Er] occurs if and only if J is contained in the set of positions Sr ⊆ [n]
where

∑
i∈[dim] ri · û′

i agrees with EncCλ(svr), where û′
i has the meaning given in Protocol 11.

Formally,

Pr[Etest | Er] = Pr[J ⊆ Sr | Er] =
(
|Sr|
n

)|J |
.

Now assume r ∈ T ′. Then (|Sr|/n)|J | > εtest/2, and so, for such r,

Pr[Etest | Er] =
(
|Sr|
n

)|J |
>

εtest
2

.

Since, additionally, r is nonzero by definition of T ′, this means that r ∈ T . Conversely, if
r ∈ T , then Pr[Etest | Er] > εtest

2 by definition of T , and then since Pr[Etest | Er] = (|Sr|/n)|J |,
we have r ∈ T ′, where, again, we used the fact that r is nonzero. We conclude that
T ′ = T .

Lemma 5.19. The following inequality holds:

|T | ≥ q0
dim · εtest

2
.

Proof. Recall that T is the set of nonzero vectors r ∈ [0, q0 − 1]dim such that Etest holds
with probability larger than εtest/2 if r is the challenge vector sent by V. Let T0 be the
same set, but without the restriction that the set does not contain the zero vector. Clearly
|T0| ≤ |T | ≤ |T0|+ 1. We have

εtest =Pr[Etest | r ∈ T0] · Pr[r ∈ T0] + Pr[Etest | r ̸∈ T0] · Pr[r ̸∈ T0]

≤Pr[r ∈ T0] + (εtest/2) · (1− Pr[r ∈ T0]) = Pr[r ∈ T0] · (1− εtest/2) + εtest/2

≤Pr[r ∈ T0] + εtest/2,

and so |T0| ≥ (εtest/2) · q0dim, where by Pr[r ∈ T ] we denote the probability that the
vector r of challenges sent by V at Step 1 of Protocol 9 belongs to T . It follows that also
|T | ≥ (εtest/2) · q0dim.

We now state and prove an auxiliary lemma relating linear independence over a finite
field and over Q.

Lemma 5.20 (Linear independence in Fq implies linear independence in Q). Let n, k ≥ 1
and let w1, . . . ,wk be k n-dimensional vectors with integer entries. Let q be a prime and let
ϕq : Z→ Fq be the natural projection of Z onto Fq. Assume the vectors ϕq(w1), . . . , ϕq(wk)
are linearly independent over Fq and are not all zero. Then the vectors w1, . . . ,wk are linearly
independent over Q.
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Proof. Assume towards contradiction that the vectors w1, . . . ,wk are linearly dependent
over Q. Let c1, . . . , ck be k rational numbers, not all zero, such that

∑
i∈[k] ci ·wi = 0. By

multiplying each ci by the lowest common multiple of c1, . . . , ck, we can assume without loss
of generality that ci is an integer, for all i ∈ [k]. Further, we can assume without loss of
generality that there exists j ∈ [k] such that cj is not divisible by q, i.e. ϕq(cj) ̸= 0, since
otherwise we have

∑
i∈[k](ci/q

t) ·wi = 0 where t > 0 is the largest positive integer such that
qt divides each ci for all i ∈ [k]. Note that each coefficient ci/q

t is an integer.
Now, we have

∑
i∈[k] ϕq(ci) ·ϕq(wi) = 0. Note that not all the elements ϕq(c1), . . . , ϕq(ck)

are zero, because we assumed q does not divide cj . Since we assumed that the vectors
ϕq(w1), . . . , ϕq(wk) are linearly independent over Fq, the only possibility left is that ϕq(wi) =
0 for all i ∈ [k], which contradicts the hypothesis of the lemma. Hence, the vectors w1, . . . ,wk

had to be linearly independent over Q to begin with.

Lemma 5.21. Except with probability at most

2 · (dim− 1)

εtest · q0
(19)

the dim vectors in S at the end of the execution of ExtP
∗
(gp, i,x) are linearly independent over

Q. In particular, ExtP
∗
(gp, i,x) outputs a matrix v ∈ Qdim×dim (as opposed to the symbol ⊥)

with probability at least 1− (2 · (dim− 1))/(εtest · q0).

Proof. Let S = (r(1), . . . , r(dim)) be the list S at the end of executing ExtP
∗
(gp, i,x). By

definition of Ext, all of the vectors r(i) belong to T ′. In particular, all these vectors are
nonzero. For each i ∈ [dim], let El.d.Q,i be the event that the vectors r(1), . . . , r(i) are linearly
dependent over Q. As usual, let ϕq0 be the natural projection of Z onto Fq0 . Let El.d.Fq0 ,i

be
the event that the vectors ϕq0(r

(1)), . . . , ϕq0(r
(i)) are linearly dependent over Fq. Next, we

prove that
Pr[El.d.Q,i] ≤ Pr[El.d.Fq0 ,i

].

Indeed, assume El.d.Q,i occurs, so that the nonzero vectors r(1), . . . , r(i) are linearly dependent
over Q. We claim that El.d.Fq0 ,i

must hold as well. Indeed, if it does not, then by definition
the vectors ϕq0(r

(1)), . . . , ϕq0(r
(i)) are linearly independent over Fq0 . But then Lemma 5.20

implies that r(1), . . . , r(i) are linearly independent over Q, a contradiction (note that none of
the vectors ϕq0(r

(1)), . . . , ϕq0(r
(i)) is the zero vector because r(j) is non-zero fo all j ∈ [dim],

and ϕq0(r
(j)) = r(j), because all entries of r(j) belong to [0, q0 − 1]). Hence, Pr[El.d.Q,i] ≤

Pr[El.d.Fq0 ,i
], as needed.

We now prove that

Pr[El.d.Fq0 ,i
] ≤ 2 · (i− 1)

εtest · q0 − 2

for all i ∈ [dim]. We proceed by induction. If i = 1, then ϕq0(r
(1)) is linearly dependent

over Fq0 if and only if ϕq0(r
(1)) = r(1) is the zero vector. However, as already argued, by

definition of T , r(1) is not the zero vector. Hence ϕq0(r
(1)) is linearly dependent over Fq0

with probability 0, as needed.
Now assume that i ≥ 2. We have

Pr[El.d.Fq0 ,i
] ≤ Pr[El.d.Fq0 ,i

| ¬El.d.Fq ,i−1] + Pr[El.d.Fq0 ,i−1].
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By induction hypothesis, Pr[El.d.Fq ,i−1] ≤ 2 · (i − 2)/(εtest · q0). We proceed to bound
Pr[El.d.Fq0 ,i

| ¬El.d.Fq ,i−1]. Assume the vectors ϕq0(r
(1)), . . . , ϕq0(r

(i−1)) are linearly indepen-
dent over Fq. Then El.d.Fq0 ,i

holds if and only if ϕq0(r
(i)) is in the span of ϕq0(r

(1)), . . . , ϕq0(r
(i−1))

over the field Fq0 . There are at most q0
i−1 vectors in such span. Now, ϕq0(r

(i)) = r(i) is
sampled uniformly at random in [0, q0− 1]dim, and it is included in S if and only if it belongs
to T ′. By Lemmas 5.18 and 5.19, |ϕq0(T

′)| = |T ′| = |T | ≥ (εtest/2) · q0dim. Hence, letting
Espan,i be the event that ϕq0(r

(i)) is in the span of ϕq0(r
(1)), . . . , ϕq0(r

(i−1)) we have

Pr[Espan,i | r(i) ∈ T ′] =
Pr[Espan,i ∧ r(i) ∈ T ′]

Pr[r(i) ∈ T ′]
≤ q0

i−1(
εtest
2

)
· q0dim

≤ 2

εtest · q0
.

(Note that the probability that r(i) ∈ T ′, i.e. Pr[r(i) ∈ T ′], is nonzero because T ′ = T is
nonempty due to Lemma 5.19 and our assumption that εtest ̸= 0). Hence, we conclude that

Pr[El.d.Fq0 ,i
] ≤ 2

εtest · q0
+

2 · (i− 2)

εtest · q0
≤ 2 · (i− 1)

εtest · q0
.

In particular Pr[El.d.Fq0 ,dim
] ≤ 2 · (dim− 1)/(εtest · q0), as claimed.

Lemma 5.22. Suppose that ExtP
∗
(gp, i,x) outputs a matrix v ∈ Qdim×dim. Then v ∈

Qdim×dim
2·Bv+(6dim+2)·log(q0·dim).

Proof. By definition, v = r−1 ·sv, where r = (r(1), . . . , r(dim)) ∈ [0, q0−1]dim×dim with r(i) ∈ T ′

for all i ∈ [dim], and svr = (svr(1) , . . . , svr(dim)). We claim that all entries in sv are nonnegative
integers of size at most q0 · dim · 2Bv . Indeed, since T ′ = T by Lemma 5.18, for any i ∈ [dim]
we have that if V samples r(i), then P∗ passes the testing phase of Protocol 9 with probability
at least εtest/2, and so in particular, the vector svr(i) passes the checks at Step 3 of Protocol 9.
This proves the claim.

Then we have that each entry of v is a linear combination of a row in r−1 and the vector
sv. Using the adjugate formula for the inverse of r−1, we can write the (i, j)-th entry of
r−1 as Ni,j/D, where D is the absolute value determinant of r, and Ni,j is the product
of an entry in r and the determinant of certain minor of r, times, possibly −1. Using
standard expressions for D and Ni,j and coarse bounding arguments, and the fact that
all entries in r belong to the range [0, q0 − 1], we have log(D) ≤ dim · log(dim · q0), and
log(|Ni,j |) ≤ dim · log(dim · q0). We thus obtain that each entry of v can be written in the
form L/D, where L is a linear combination of elements of the form Ni,j and the entries in sv.
It follows that log(|L|) ≤ dim · log(dim · q0) + log(dim) + log(q0 · dim · 2Bv). Then, using our
representation of rational numbers as strings of bits (Section 3.2) and its bit-length bound
from Remark 3.1, we have that an entry in v has bit-size at most 2(log(|L|) + log(D)), and
the lemma follows. Note that L/D may not be in lowest form, in which case the bound
2(log(|L|) + log(D)) still applies since the lowest form representation of L/D is of smaller
size than L/D.

Let Eextraction be the event that ExtP
∗
(gp, i,x) outputs v ∈ Qdim×dim, where v = r−1 · sv as

defined in Protocol 10. Further, let Etotal be the event Eaccept ∧ (i,x,w) ̸∈ RELgp,Eval, where
w← ExtP

∗
(gp, i;x). Then

Pr[Etotal] ≤ Pr[Etotal | Eextraction] + Pr[¬Eextraction] ≤ Pr[Etotal | Eextraction] +
2 · (dim− 1)

εtest · q0
,
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where the last inequality holds due to Lemma 5.21. Further, since εtest ≥ εP∗ , we have

2 · (dim− 1)

εtest · q0
≤ 2 · (dim− 1)

εP∗ · q0

We next bound Pr[Etotal | Eextraction].

Lemma 5.23. The following holds:

Pr[Etotal | Eextraction] ≤ θ + εproj(λ) +

(
1− 2dist0

3n

)|J |
+ (1− δ)|J |,

where

θ =
2 · dim2 · (Bv + log(dim) + log(q0)) +Bpt · dim3 + dim2 +Bv + µ ·Bpt + 2 · µ+ 2

λ · |Pλ|
.

Proof. Assume Eextraction holds. Let S = (r(1), . . . , r(dim)) be the list after executing ExtP
∗
(i,x).

For each i ∈ [dim], let svr(i) ∈ Zdim be the vector sent by P∗ in Step 2 of Protocol 9 after
receiving r(i) in Step 1 of Protocol 9. Since r(i) ∈ T ′ by definition of Ext, we have by
Lemmas 5.17 and 5.18 that svr(i) =

∑
j∈[dim] r

(i)
j · vj , for all i ∈ [dim]. Hence, if Eextraction

occurs, we have that the output matrix v = r−1 · svr is precisely the dim× dim matrix whose
i-th row is the vector vi, for all i ∈ [dim].

Let fv ∈ Qmultilin[X] be the multilinear polynomial whose coefficient matrix is v. We claim
that for (i,x; fv) to not belong to RELgp,Eval, it must be the case that fv(q) ̸= y. Indeed,
all but the last three conditions in the definition of RELgp,Eval are met because (gp, i,x) are
well-formed for RELgp,Eval. On the other hand, since Eextraction holds, Lemma 5.22 guarantees
that

v ∈ Qdim×dim
2·Bv+(6dim+2)·log(q0·dim).

Further, for each i ∈ [dim], each vi is the unique vector from Qdim such that ∆(EncCλ(vi), ûi) <
δ, which we assumed exists (since, as we saw, otherwise Pr[Eaccept] < dim/q0). Hence,
(gp, i,x,w) satisfies all but the last condition in the definition of RELgp,Eval, and so it must
be the case that fv(q) = q1 · v · qT

2 ̸= y.
Next, we follow the notation used in Section 5.4.2. Namely, we define:

• E0 is the event that P∗(gp, i,x) sends sv =
∑

i∈[dim] ri · vi at Step 2 of Protocol 9

• E1 is the event that E0 occurs and V does not reject at Step 3 of Protocol 9.

• Elocal is the event that, in Step 1 of the evaluation phase (Protocol 8), V samples a
prime q ∈ Pλ such that sv′ ∈ Zdim

(q) , where sv′ =
∑

i∈[dim] q1,i · vi.

• Eproj is the event that, at Step 1 of the evaluation phase in Protocol 8, V samples a
prime q ∈ Pλ that is good with respect to Cλ (see Definition 5.1).

• E2 is the event that E1∧Elocal∧Eproj occurs and the vector svq sent by P in the evaluation
phase satisfies svq = ϕq(sv

′) (note that ϕq(sv
′) is well-defined because Elocal is assumed

to hold).
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• E3 is the event that E2 holds and y = q1 · v · qT
2 as rational numbers.

Then

Pr[Etotal | Eextraction]
≤Pr[Etotal | Eextraction ∧ E0] + Pr[Etotal | Eextraction ∧ ¬E0].

We have that Pr[Etotal | Eextraction ∧ ¬E0] ≤ Pr[Eaccept | Eextraction ∧ ¬E0] since, if Etotal occurs,
then so does Eaccept. Now, Eextraction and Eaccept are independent events, and so Pr[Eaccept |
Eextraction ∧ ¬E0] = Pr[Eaccept | ¬E0]. By Lemma 5.10, Pr[Eaccept | ¬E0] ≤ (1− δ)|J |. Next we
bound Pr[Etotal | Eextraction ∧ E0]. We have

Pr[Etotal | Eextraction ∧ E0]
≤Pr[Etotal | Eextraction ∧ E0 ∧ E1] · Pr[E1 | Eextraction ∧ E0] + Pr[Etotal | Eextraction ∧ E0 ∧ ¬E1].

Note that Pr[Etotal | Eextraction ∧ E0 ∧ ¬E1] = 0, since, if ¬E1 holds, then the verifier rejects at
Step 3 of the testing phase (Protocol 9), and so Eaccept cannot hold. In particular, neither
does Etotal. Also observe that Pr[E1 | Eextraction ∧ E0] = Pr[E1 | E0], because E1 and Eextraction
are independent events. By Lemma 5.11,

Pr[E1 | E0] ≤ min

{
1,

dim · q0 · 2Bv

∥Words(û)∥∞ · q0

}
.

Note that Pr[Etotal | Eextraction ∧ E0 ∧ E1] = Pr[Etotal | Eextraction ∧ E1], because if E1 holds, then
by definition so does E0. Next we have

Pr[Etotal | Eextraction ∧ E1] ≤ Pr[Etotal | Eextraction ∧ E1 ∧ ¬Elocal] · Pr[¬Elocal | Eextraction ∧ E1]
+ Pr[Etotal | Eextraction ∧ E1 ∧ Elocal]

≤Pr[¬Elocal | Eextraction ∧ E1] + Pr[Etotal | Eextraction ∧ E1 ∧ Elocal].

Similarly as before, since the event Eextraction and the event Elocal are independent, Pr[¬Elocal |
Eextraction ∧ E1] = Pr[¬Elocal | E1]. By Lemma 5.14,

Pr[¬Elocal | E1] ≤
2 · dim2 · (log(∥Words(û)∥∞) + 2 · log(q0))

λ · |Pλ|
.

So far we have seen that

Pr[Etotal | Eextraction] ≤ Pr[Eaccept | ¬E0]+Pr[E1 | E0]·(Pr[¬Elocal | E1]+Pr[Etotal | Eextraction∧E1∧Elocal]).

We proceed to bound Pr[Etotal | Eextraction∧E1∧Elocal]. To avoid cluttering the text, we denote
Etotal, Eextraction, Elocal simply by Eto, Eex, Elo for the duration of this proof, respectively. We
now have

Pr[Eto | Eex ∧ E1 ∧ Elo] ≤ Pr[Eto | Eex ∧ E1 ∧ Elo ∧ E3] + Pr[Eto | Eex ∧ E1 ∧ Elo ∧ (¬E3)].

We have Pr[Eto | Eex ∧ Eto ∧ Elo ∧ E3] = 0 because, as we argued, if (i,x;w) ̸∈ RELEval and
Eex = Eextraction happens, then fv(q) ̸= y and so E3 cannot hold, wherew = (fv)← ExtP

∗
(i,x).

Further, since Eto implies Eaccept,

Pr[Eto | Eex ∧ E1 ∧ Elo ∧ (¬E3)] ≤ Pr[Eaccept | Eex ∧ E1 ∧ Elo ∧ (¬E3)]
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Moreover, Pr[Eaccept | Eex ∧ E1 ∧ Elo ∧ (¬E3)] = Pr[Eaccept | E1 ∧ Elo ∧ (¬E3)] because Eex and
Eaccept are independent events. Hence, we proceed to bound Pr[Eaccept | E1 ∧ Elo ∧ (¬E3)]. We
have

Pr[Eaccept | E1 ∧ Elo ∧ (¬E3)]
≤Pr[Eaccept | E1 ∧ Elo ∧ (¬E3) ∧ E2] + Pr[Eaccept | E1 ∧ Elo ∧ (¬E3) ∧ (¬E2)].

By definition of E2, if E2 occurs, then so do E1 and Elo. Hence Pr[Eaccept | E1∧Elo∧(¬E3)∧E2] =
Pr[Eaccept | (¬E3) ∧ E2]. Now, by Lemma 5.16,

Pr[Eaccept | (¬E3)∧E2] ≤
2 · dim2 · (log(∥Words(û∥∞)) + 2 · log(q0)) +Bv + µ ·Bpt + 3µ+ 2

λ · |Pλ|
.

On the other hand,

Pr[Eaccept | E1 ∧ Elo ∧ (¬E3) ∧ (¬E2)] = Pr[Eaccept | E1 ∧ Elo ∧ (¬E2)]

because, by definition of E3, if E2 does not happen, then E3 cannot happen either. Now,

Pr[Eaccept | E1 ∧ Elo ∧ (¬E2)] ≤ Pr[Eaccept | E1 ∧ Elo ∧ (¬E2) ∧ Eproj] + Pr[¬Eproj].

By definition, Pr[¬Eproj] = εproj(λ), and by Lemma 5.15, Pr[Eaccept | E1 ∧Elo ∧ (¬E2)∧Eproj] ≤(
1− 2dist0

3

)|J |
. Overall, we have shown that

Pr[Etotal | Eextraction]

≤Pr[Eaccept | ¬E0] + Pr[E1 | E0] ·

(
Pr[¬Elocal | E1] + Pr[Eaccept | ¬E3 ∧ E2]

+ Pr[Eaccept | E1 ∧ Elo ∧ (¬E2) ∧ Eproj] + Pr[¬Eproj]

)
.

We next show that that the right-hand side of the above equality satisfies the bound stated
in the lemma. Indeed, first note that the right-hand side above is at most

Pr[Eaccept | ¬E0] +M · (Pr[¬Elocal | E1] + Pr[Eaccept | ¬E3 ∧ E2])
+ Pr[Eaccept | E1 ∧ Elo ∧ (¬E2) ∧ Eproj] + Pr[¬Eproj].

(20)

where

M = min

{
1,

dim · q0 · 2Bv

∥Words(û)∥∞ · q0

}
,

and where we have used Lemma 5.11, which states that Pr[E1 | E0] ≤M .
We next show that

M · log(∥Words(û)∥∞) ≤ Bv + log(dim). (21)

The reason this holds is that if ∥Words(û)∥∞ < dim·2Bv , then M = 1, and log(∥Words(û)∥∞) ≤
Bv + log(dim). On the other hand, if ∥Words(û)∥∞ ≥ dim · 2Bv , write ∥Words(û)∥∞ =
k · dim · 2Bv for some k ≥ 1. Then M = dim · 2Bv/ ∥Words(û)∥∞, and

dim · 2Bv

∥Words(û)∥∞
· log(∥Words(û)∥∞) =

log(k) +Bv + log(dim)

k
≤ Bv + log(dim),

where, in the last inequality, we used that k ≥ 1. This proves the inequality (21).
The bound in the lemma now follows by applying the bounds for the different terms in

(20) we have given during the course of the proof.
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We have proved that, if the words {ûi}i∈[dim] have δ-correlated agreement in Cλ, then

εks = Pr[Etotal] ≤ Pr[Etotal | Eextraction] +
2 · (dim− 1)

εtest · q0
.

Otherwise, we saw that εks ≤ n/q0 + (1− δ)|J |. We conclude that εks(i,x, εP∗(i,x)) satisfies
the bound stated in Theorem 5.5. Next, we prove that Ext runs in expected polynomial time.

Lemma 5.24. The extractor’s testing subprocedure Protocol 11 runs in time

poly(Bv, log(∥MC∥∞), log(q0), n, dim).

Proof. Recall that BBoundEnc = log(∥MCλ∥∞ ·dim)+2 ·Bv + (6dim+ 2) · log(q0 · dim). Step 1
of Protocol 11 can be performed in time at most dim ·n ·BBoundEnc. Step 2 requires computing
at most dim · n multiplications and additions of rational numbers whose bit-size is at most
BBoundEnc, and so it can be performed in the claimed polynomial time. Step 3 can also be
performed in polynomial time since it requires comparing the entries of the n-dimensional
vectors û′

r and EncCλ(svr), both of which have entries whose bit-size have length polynomial
on BBoundEnc.

Lemma 5.25. Protocol 10 runs in expected time poly(εP∗(gp, i,x)−1, Bv, log(∥MC∥∞),
log(q0), n, dim).

Proof. By Lemmas 5.18 and 5.19, the probability that a randomly sampled r ∈ [0, q0 − 1]dim

belongs to T ′ is at least εtest/2. By definition of T ′, a vector r is added to S if and only
if r ∈ T ′. Hence, the expected number of vectors r tried before S has size at least dim is
dim · 2 · ε−1

test, and so, in expectation, Protocol 10 passes

dim · 2 · ε−1
test ≥ dim · 2 · ε−1

P∗

times through Step 2 before reaching Step 7, where we have used that εP∗ ≤ εtest.
The lemma now follows, since each individual step in Protocol 10 can be performed in

polynomial time due to Lemma 5.24. In particular, in the last step, Ext can compute the
matrix v as v = r−1 · sv. Since each entry in r has bit size at most log(q0), the dim× dim
matrix r−1 can be computed in polynomial time, and in particular each entry in r−1 has
bit-size of polynomial size (cf. the proof of Lemma 5.22 for more details). Further, as argued
in the proof of Lemma 5.22, all entries in sv are integers with bit-size at most log(dim ·q0 ·Bv),
and so Ext can compute v in the claimed polynomial time.

This completes the proof of Theorem 5.5.

Remark 5.26 (Removing the dependence on the aborting probability). In the above proof
(concretely, in Protocol 11), it is assumed that the probability εtest with which the verifier
passes the testing phase is known to the extractor and that the running time of the extractor
depends in this error. To remove this dependency and construct an extractor that runs in
expected time independent of εtest, we can rely on a standard argument of Goldreich and
Kahan [GK96] where we estimate the aborting probability of the verifier in the testing phase
using rewinds, i.e. by repeatedly simulating executions of the evaluation IOP (Protocol 8)
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between P∗ and V. Note that V runs in polynomial time due to Remark 5.3. The application
of this technique to the Brakedown PCS has been described in the proof of [GLS+23, Lemma
3]. The adaptation of this lemma to our setting is straightforward by taking into account the
sizes of the challenges, its response, as well as the success probability and the running time
of our extractor.

5.5 Compiling Zinc-PIOP into a succinct argument using Zip and the COS
transformation

In this section, we provide an outline of how to use the Zinc PIOP from Section 4 and
Zip in order to obtain a succinct argument. In short, the Zinc PIOP is turned into an
IOP by replacing Zinc’s polynomial oracles with Zip’s oracle commitments. Then, the
resulting IOP is turned into a succinct argument by replacing all oracles by Merkle tree
commitments MT. The approach relies on standard compilation arguments, which can be
found in [BFS19, CHM+19, COS20, CY24]. However, in our context, a point deserving
special attention is how the global parameters of Zinc and Zip are set up, so that a secure
compiled protocol is ensured. Precisely, one has to make sure the bit-bounds B and Bv in
Zinc and Zip are chosen appropriately. An intuitive explanation of how this is done can be
found in Section 2.3.

Let RELgp,Q,Q be an algebraic indexed relation over Q, with gp = (k,m, n, µ,Bv,Q,Q).
Here, Bv is the bit-size of the integer witness coefficients we expect honest provers to use. In
other words, we expect honest provers to use witnesses w consisting of polynomials with
coefficients in ZBv (cf. the beginning of Section 2 for more information).

Let Pλ be a set of primes, and let {Cλ | λ ≥ 1} be a (Cλ, dist0)-projectable family of
linear integer codes over Q, following the same setting as in Section 6, of code-length n and
dimension dim (depending on λ).

Now let q0 be a prime and let B = Bv + (2dim+ 1) · log(q0 · dim), and take parameters
for our Zip PCS in IOP form gpZip = (µ,Bv, Bpt, δ, q0) (cf. Section 5.2). Let gp′ be a new
tuple of global parameters for RELgp′,Q,Q defined as gp′ = (k,m, n, µ,B,Q,Q). Precisely, gp′

is gp after replacing the bit-size bound Bv by the larger bound B. We refer to Section 2.3
for an explanation of the role and the need for the two bounds Bv and B.

Let ΠPIOP = (IndexerPIOP,PPIOP,VPIOP) be a PIOP over QB for the relation RELgp′,Q,Q.
We construct an IOP Πcompiled

IOP = (Indexercompiled
IOP ,Pcompiled

IOP ,Vcompiled
IOP ) for the relation RELgp′,Q,Q

by replacing each polynomial oracle [[h]] in RELgp′,Q,Q with a (non-polynomial) oracle to
the encoding of the coefficient matrix vh of the polynomial h, as defined in the Zip com-
mitment procedure, and by making the same replacement with the polynomial oracles sent
by P during the execution of ΠPIOP. We adjust the behavior of the indexer accordingly,
i.e., if IndexerPIOP outpus (vpPIOP, ppPIOP), then Indexercompiled

IOP outputs verifier and prover
parameters (vpcompiled

IOP , ppcompiled
IOP ) where vpcompiled

IOP is vpPIOP after replacing all oracles to a
polynomial h by the oracle to the encodings of the coefficient matrix vh; and ppcompiled

IOP is
the same as ppPIOP, where the polynomial h is replaced with its coefficient matrix vh. Now,
every time VPIOP would query a polynomial oracle during the execution of ΠPIOP, we have
PIOPcompiled instead report the corresponding evaluation, and then PIOPcompiled and VIOPcompiled

execute Zip’s evaluation IOP Protocol 8 to certify that the reported evaluation is indeed
correct.
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It remains to argue that the resulting IOP Πcompiled
IOP achieves knowledge soundness. To jus-

tify this, we construct an extractor ExtIOPcompiled that, when interacting with a malicious prover
P∗
IOPcompiled for ΠIOPcompiled , is able to extract the witness while relying on the extractor ExtPIOP

of the underlying ΠPIOP and the extractor ExtZip of the Zip evaluation IOP. Our extractor
ExtIOPcompiled works as follows: it receives the global paramaters gp′ and the index-instance pair
(i,x) from P∗

IOPcompiled , executes the indexer (vpcompiled
IOP , ppcompiled

IOP ) ← Indexercompiled
IOP (gp′, i,x)

and starts (simulating) an execution of Πcompiled
IOP between P∗

IOPcompiled and the verifier of
ΠIOPcompiled , where the verifier obtains the calculated vpcompiled

IOP , until the first oracle of the
index, as part of vpcompiled

IOP , is queried.9 Once this query is being asked, the extractor ExtZip of
the Zip IOP is executed to obtain the polynomial underlying the oracle. After the execution
of ExtZip has finished, P∗

IOPcompiled is rewound until the beginning of the execution of Πcompiled
IOP .

Next, another execution is simulated until the second oracle of the index, as part of vpcompiled
IOP ,

is being queried, and the extraction proceeds as described before. This is done until the coef-
ficient matrices v(1), . . . ,v(n) underlying all oracles of the index-instance pair are extracted,
and continues for all the coefficient matrix oracles v′(1), . . . ,v′(m) that are exchanged during
the protocol. We highlight that, when the oracles that are exchanged during the execution of
Πcompiled
IOP are extracted, the protocol is only rewound until after the extracted oracle has been

output by P∗
IOPcompiled . The execution then continues from this point on. In the final step, the

extractor ExtPIOP of the underlying PIOP ΠPIOP is executed interpreting the extracted ma-
trices v(1), . . . ,v(n),v′(1), . . . ,v′(m) as polynomials, and its output is used as the final output
for the witness w. An avid reader might have observed that the standard notion of knowledge
soundness does not capture the above described rewinding techniques. Fortunately, in a
work by Lindell [Lin01], the notion of witness-extended emulation has been introduced that
provides an additional procedure that allows to simulate the mentioned transcripts. Lindell
further proved that the notions of knowledge soundness and witness-extended emulation are
equivalent, which allows us to directly rely on this notion and concludes the argument.

The above described technique is an informal overview of the proof of [BFS20, Theorem
4]. We refer to this work for the formal details.

From ΠIOP to a succinct interactive argument for RELgp′,Q,Q. Next, we compile the
IOP Πcompiled

IOP = (Indexercompiled
IOP ,Pcompiled

IOP ,Vcompiled
IOP ) for the relation RELgp′,Q,Q obtained in

the previous section into a succinct argument Πsucc
ARG = (IndexersuccARG,P

succ
ARG,V

succ
ARG) for the same

relation by relying on the so-called COS transformation [COS20]. In more detail, the COS
transformation allows us to compile an IOP Πcompiled

IOP , with oracles contained in the index-
instance pair (i,x), into a SNARK. To do this, we extend the underlying indexer Indexercompiled

IOP
by committing to the oracle using Merkle trees MT into the indexer IndexersuccARG. In more
detail, the verifier parameters vpsuccARG output by IndexersuccARG contain Merkle commitments
to the oracles that are part of the index-instance pair, i.e., rt := MT.ComH(vh) where H
is a random oracle, and the output prover parameters ppsuccARG contain the corresponding
openings which, in our case, is simply the coefficient matrix vh of the polynomial h. The

9Here, we are assuming without loss of generality that all the oracles in the index-instance pair as well as
the ones that are exchanged during the protocol are queried. Oracles that are not being queried can simply
be omitted.
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remainder of the transformation proceeds as the iBCS transformation [CDGS23], i.e., instead
of sending oracles [[û]] to the verifier, the prover sends Merkle commitments to these oracles
rt′ := MT.ComH(û) and the final oracle queries are answered by providing the corresponding
openings to the Merkle commitments. To answer the queries made by the verifier Vsucc

ARG to the
Merkle commitments rt of the index, the prover Psucc

ARG relies on the corresponding openings û,
as part of ppsuccARG. For the queries to the Merkle commitments exchanged during the protocol
execution rt′, the prover Psucc

ARG relies on its knowledge of û. In the last step, the whole
protocol can be made non-interactive by applying the Fiat-Shamir transformation [FS86].
Therefore, obtaining a SNARK with preprocessing which follows from the succinctness of
the parameters vpsuccARG and ppsuccARG and the succinctness of the iBCS transformation.

A drawback of the above transformation is that it requires the underlying IOP Πcompiled
IOP

to satisfy state-restoration knowledge soundness for the resulting non-interactive argument
to be extractable. Since the Zip-IOP Πcompiled

IOP presented in this work only achieves standard
knowledge soundness and not state-restoration knowledge soundness, we conclude by realizing
a succinct interactive argument instead of a non-interactive one. We do this by executing the
compilation described above without applying the Fiat-Shamir transformation at the end, i.e,
we execute the iBCS transformation together with the modifed indexer IndexersuccARG. We refer
to this transformation as the iCOS transformation. It remains to argue that the resulting
interactive protocol achieves knowledge soundness, since the succinctness directly follows
from the succinctness of the applied Merkle commitments MT. Fortunately, in [CY24, Section
32.8.1] it has been shown how to reduce the security of the COS transformation to the security
of the BCS transformation (the non-interactive version of the iBCS transformation by applying
Fiat-Shamir [FS86]). The authors further extend this to the iBCS transformation [CY24,
Remark 32.8.7], i.e., the iCOS transformation is knowledge sound if the underlying iBCS
transformation is knowledge sound. It remains to argue the knowledge soundness of the iBCS
transformation which has been proven in [CDGS23] for general vector commitments VC and,
therefore, also holds for Merkle commitments MT in the random oracle model. This results
in our final succinct argument for the relation RELgp′,R,Q, relying on the IOP Πcompiled

IOP for
the same relation and the random oracle model.

6 Integral Juxtaposed Expand-Accumulate (JEA) codes over
Q

In this section we generalize the notion of Juxtaposed Expand-Accumulate (JEA) codes over
finite fields from [BFK+24]. In particular, we describe a version of such codes that are integral
over Q. We then prove that our codes have good dimension and distance properties, by
leveraging the results from [BFK+24]. We refer to Section 2.3.3 for an intuitive explanation
of the contents of this section.

Let n, d ≥ 1, and let A ∈ Zn×n be an upper-triangular matrix where all entries on and
above the main diagonal are equal to 1. We call A an accumulator matrix. Let S = [0, s− 1],
for some integer s > 1. Define sparse matrices E1, E2 ∈ Zd×n as follows:

• Let γ ≥ 1 be a constant and let t = γ log(n). Define the set S(n,t) := {x ∈ Sn | wt(x) =
t}, where wt(x) denotes the number of nonzero entries of the vector x. Denote sampling
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uniformly at random from S(n,t) by BP(d, n, t, S). E1 is the matrix constructed by
independently sampling each row from BP(d, n, t, S).

• Let 0 < p < 1 be a parameter such that p = t/n, with t as above. Denote by Berp(S) the
generalized Bernoulli distribution with parameter p and sampling set S, more precisely,
Berp(S) outputs a nonzero element s ∈ S with probability p and zero with probability
1− p. Let E2 be the matrix constructed by sampling each entry independently from
Berp(S).

We call E1 and E2 expander matrices. Note that all entries of E1 and E2 come from a
finite integral interval. Moreover, the choice of p and t guarantees that E1 and E2 have the
same sparsity, in expectation.

Remark 6.1 (On the rank of E1 and E2). For E2 to have rank d, there must exist at least one
non-singular d× d submatrix. By [VJS21, Corollary 1.3] the probability that a d× d matrix
sampled from Berp(S) is singular is 2d · (1− p)n + (1 +O(e−cpd)) · d · (d− 1)(p2 + (1− p)2)d,
for some constant cp > 0.

Regarding the matrix E1, we conjecture that the probability of E1 being singular is
negligible as well. We believe this follows from [COEG+20, Theorem 1.1] but we do not have
a concrete proof at the time of writing this work.

In any case, one can always append the identity matrix to E1. This ensures we obtain
the desired full rank. The downside, however, is that it increases the code length of CBer
(defined below).

Let MBP = E1 · A and MBer = E2 · A, where “·” denotes matrix multiplication. By
construction, these are matrices in Zd×n. Define integral linear codes CBP and CBer over Q
as the Q-vector spaces spanned by the rows of MBP and MBer respectively. When rk(E1) =
rk(E2) = d, the integral linear codes CBP and CBer have dimensions dim(CBP) = dim(CBer) = d
and code length n(CBP) = n(CBer) = n.

Definition 6.1 (Integral juxtaposed expand-accumulate code over Q). Let n, d, γ ≥ 1 and
let t = γ log(n), p = t/n. The integral juxtaposed expand-accumulate (JEA) code over Q,
denoted CJEA, is the integral linear code over Q parameterized by n, d, t, p whose codewords
are those in the image of the map

EncCJEA : Qdim → Qn,

v 7→ (v ·MBP)||(v ·MBer).

In other words, the codewords of CJEA are concatenations of codewords of the linear codes CBP
and CBer defined above. Assuming rk(E1) = rk(E2) = d, the dimension of CJEA is dim = d,
and its code length is n = 2n.

Remark 6.2 (JEA codes over finite fields). In [BFK+24], the authors consider JEA codes
over finite fields. These are codes obtained in the same way as above, except that the matrices
MBP,MBer are sampled by taking entries in a finite field F, rather than in Z as we did above.
For suitable distance choices distJEA the authors describe a bound εJEA(distJEA) such that
the resulting code has distance at least distJEA except with probability εJEA(distJEA). The
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authors provide both provable bounds and numerical concrete examples. For example, in
Section 6 of [BFK+24] it is argued how to achieve distJEA = 0.1 with a failure probability of
2−100.

In [BFK+24], it is also proved that for any distJEA < 1/2 · (5 · 25 · e), there is a constant
c∗ > 5 such that εJEA(distJEA) = O(n5−c∗). We refer to [BFK+24] for concrete (i.e. non-
asymptotic) expressions for εJEA.

A family of integral JEA codes with small projection error Let P be a finite set
of consecutive primes. We denote the smallest and largest primes in P by qmin and qmax,
respectively.

Our next goal is to show that, with high probability over the sampling of E1, E2, the
code CJEA is (P, distJEA)-projectable (cf. Definition 5.1) with small error εproj. We begin with
the following result regarding when the projection ϕq(M) of an integer matrix M preserves
the rank of M .

Lemma 6.3 (Rank is preserved modulo many primes). Let S = [0, s− 1], for some positive
integer s > 1, and let P and qmin be as above. For n > d, let M be a d × n matrix with
entries in S and rank rk(M) = d. Let ϕq : Z(q) → Fq, for q ∈ P, be the canonical projection.
Then

rk(M) = rk(ϕq(M)),

except for at most
d2 log(|S|) + 2 log(d)

log(qmin)

primes in P.

Proof. Denote byMns,d the set of non-singular d×d submatrices of M , i.e. matrices obtained
from M by deleting n− d columns at a time, whose determinant is nonzero. Mns,d is non-
empty since rk(M) = d. Observe that rk(ϕq(M)) ≤ rk(M) always holds. The inequality
becomes strict if all d× d submatrices of ϕq(M) have determinant zero. Index the primes in
P by [m]. Let Pbad = {q ∈ P | det(ϕq(Md)) = 0 for all Md ∈ Mns,d}. Index Pbad by a set
I ⊂ [m].

Write M = (mi,j)i∈[d],j∈[n]. Then any Md ∈Mns,d can be written as Md = (mi,j)i∈[d],j∈D,
for some D ⊆ [n], with |D| = d. Let D = {j1, . . . , jd}. Then P =

∑
σ∈Sd

sgn(σ)
∏d

i=1mσ(i),ji

is the determinant of Md, where Sd is the symmetric group on a set of d elements. P can be
viewed as a multilinear integral polynomial on d2 variables mσ(i),ji with at most d2 nonzero
coefficients, lying in the set {−1, 1}. Suppose that for m = (mσ(1),j1 , . . . ,mσ(d),jd), we have

P (m) ∈
⋂
i∈I

ker(ϕqi) \ {0}.

Since all Md ∈ Mns,d are non-singular, P (m) ̸= 0. Notice that the above statement is
equivalent to saying that the determinant of a d×d submatrix of M vanishes after projecting
to Fqi by ϕqi , for all qi ∈ Pbad. Since all submatrices of ϕqi(M), qi ∈ P , result from projecting
M through ϕqi , and both P and ϕqi are linear, finding an appropriate bound for |I| proves
our statement.
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Let R = Q,R = {Z(qi) | i ∈ [m]} and Φ = {ϕqi : Z(qi) → Fqi | i ∈ [m]}, and [m] as above.
By Proposition 4.6 (R,Φ) is a k-expanding family of homomorphisms, with k = log(qmin).
Hence, by Definition 4.7 there is a mσ(i),ji , i ∈ [d], with bit-size larger than

log(qmin) · |I| − log(d2)

d2

bits. But since mσ(i),ji ∈ S, has bit-size at most log(|S|), we obtain that

|I| < d2 log(|S|) + 2 log(d)

log(qmin)
,

finishing the proof.

Lemma 6.4. Let S = [0, s − 1], for some positive integer s > 1, and let q be a prime.
Let CJEA be an integral JEA code over Q, with generator matrices MBP and MBer as in
Definition 6.1, and with dimension dim and length n. Let 0 < distJEA < 1 be a suitable
distance parameter (cf. Remarks 6.2 and 6.7), γ ≥ 1, t = γ log(n) and p = t/n. Let Efull
be the event that ϕq(CJEA) has the same dimension as CJEA. Then, the probability that Efull
occurs but q is not good with respect to C, distJEA is at most

νλ(q) = 2t · dim · q

|S|
+

t · dim
q

+ εJEA(distJEA).

Proof. Let Ebad,q be the event that Efull holds and q is not good with respect to CJEA, distJEA.
Let Emod,q be the event that all entries of E1 and E2 belong to the interval [0, kq ·q−1], where
kq ≥ 0 is the largest nonnegative integer such that kq · q ≤ s− 1. Intuitively, [0, kq · q − 1]
is the largest interval contained in S such that sampling an element uniformly at random
in [0, kq · q − 1] and then reducing it modulo q is “equivalent” to sampling an element in Fq

uniformly at random.
We claim that

Pr[¬Emod,q] ≤ 2t · dim · q

|S|
.

Indeed, let Lq = [kq · q, s− 1]. Note that |Lq| < q since kq is maximal. Hence, the probability
that a uniformly sampled element in S belongs to Lq is at most q/|S|. It follows that the
probability that E1 has an entry in Lq is at most t · dim · q/|S|, while the probability that
E2 has an entry in Lq is at most dim · n · p · q/|S|. Since p = t/n, the claim follows.

Next observe that

Pr[Ebad,q] ≤ Pr[Ebad,q | Emod,q] + Pr[¬Emod,q].

We proceed to bound Pr[Ebad,q | Emod,q]. Let Eweight,q be the event that q does not divide any
nonzero entry of E1, with the randomness being over sampling the matrix E1. We have

Pr[Ebad,q | Emod,q] ≤ Pr[Ebad,q | Eweight,q ∧ Emod,q] + Pr[¬Eweight,q | Emod,q].

We claim that
Pr[¬Eweight,q | Emod,q] ≤

t · dim
q

. (22)
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Indeed, if Emod,q holds, then every nonzero entry of E1 is uniformly sampled in the interval
[0, kq · q − 1]. This interval contains at most kq · q/q = kq multiples of the prime q. Hence,
the probability that a uniformly sampled element in [0, kq · q − 1] is divisible by q is at most
kq/(kq · q) = 1/q. Since E1 has t · dim nonzero entries, the claim follows.

Next, notice that Pr[Ebad,q | Eweight,q ∧ Emod,q] is precisely the probability of sampling a
JEA code over Fq with the same parameters as ours, and with minimal distance less than
distJEA. Indeed, if Emod,q holds, then any element x ∈ Fq has exactly kq elements from ϕ−1

q (x)
in the interval [0, kq · q− 1]. Hence, for each x ∈ Fq, the probability of uniformly sampling an
element in x′ ∈ [0, kq · q − 1] such that ϕq(x

′) = x is the same as the probability of uniformly
sampling the element x in Fq, i.e. 1/q. Additionally, conditioned on Eweight,q occurring, we
have that sampling an element in [0, kq · q − 1] is equivalent to sampling a nonzero entry in
Fq. From Remark 6.2, we thus have Pr[Eq | Eweight,q ∧ Emod,q] ≤ εJEA(distJEA), where εJEA
is defined in Remark 6.2. The lemma now follows by putting all the obtained inequalities
together.

We next show that JEA codes can be instantated as a family of projectable codes.

Theorem 6.5 (Integral JEA codes over Q are (Pλ, distJEA)-projectable). Let S = [0, s− 1],
for some positive integer s > 1 depending on the security parameter λ, and let Pλ be a set of
consecutive primes, also parameterized by λ. Let qmin and qmax be the smallest and largest
primes in Pλ. Let CλJEA be a JEA code over Q, with generator matrices MBP and MBer,
again parameterized by λ. Let 0 < distJEA < 1 be an appropriate distance parameter (cf.
Remarks 6.2 and 6.7), γ ≥ 1, t = γ log(n) and p = t/n.

Then, the expected (with respect to sampling the generator matrices MBP,MBer of CλJEA)
number of primes in Pλ that are bad with respect to CλJEA, distJEA is at most

θ′λ = |Pλ| ·
(
2t · dim · qmax

|S|
+

t · dim
qmin

+ εJEA(distJEA)

)
+ 2

dim2 log(|S|) + 2 · log(dim)

log(qmin)
.

In particular, for all k ≥ 1, except with probability 1/k over the sampling of MBP,MBer, the
code CλJEA is (Pλ, distJEA)-projectable with error

εproj(λ) ≤
(
k · 2t · dim · qmax

|S|
+ k · t · dim

qmin
+ k · εJEA(distJEA)

)
+ 2 · k · dim

2 log(|S|) + 2 log(dim)

log(qmin) · |Pλ|
.

(23)

Proof. By Lemma 6.3, there are at most ηλ = 2dim2 log(|S|)+2 log(dim)
log(qmin)

primes among Pλ such
that CλJEA does not have dimension dimq = dim when projected by ϕq. Let Prank be the set
of such primes.

Let Pbad be the set of primes q ∈ Pλ such that dimq = dim and q is not good w.r.t. CλJEA.
Let Xq be a random variable such that Xq = 1 if q ∈ Pbad (after the matrices MBP,MBer

have been sampled), and Xq = 0 otherwise. Then

|Pbad| =
∑
q∈Pλ

Xq.
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Observe that the expectation of Xq is precisely the probability that q ∈ Pbad, which is at most
νλ(q) by Lemma 6.4. For all q ∈ Pλ, we have νλ(q) ≤

(
2t · dim · qmax

|S| + t·dim
qmin

+ εJEA(distJEA)
)
.

Let us denote the right-hand side in the previous inequality by ν ′λ. By linearity of expectation,
we have that |Pbad| is, in expectation, at most ν ′λ · |Pλ|. Markov’s bound now yields that, for
all k ≥ 1, except with probability 1/k, |Pbad| < k · ν ′λ · |Pλ|. Now, the set of bad primes is
Pbad ∪ Prank, and the result follows.

Next, we outline how one may choose parameters for our JEA codes so that the projection
error εJEA from Theorem 6.5 is small enough. We begin by stating an approximate relation
between qmax and the quantities |Pλ|, qmin.

Remark 6.6. Using the Prime Number Theorem, we can infer that the largest prime qmax

in P is at most, approximately, qmin + |P| · loge(qmin) and has bit-size at most log(qmax) ≤
log(qmin + |P| · log(qmin) · loge(2)). Here loge denotes the logarithm in base e.

Remark 6.7 (Obtaining a small projection error). To make sure the projection error εproj(λ)
in Eq. (23) is sufficiently small after sampling the matrices E1, E2 of the code CλJEA, one can
proceed roughly as follows, where we assume that t, n, dim are polynomial on λ.

• Take k ≈ 2λ to make sure the bound in (23) holds except with negligible probability.

• Take qmin ≈ k · 2λ ≈ 22λ, to make sure the second term in Eq. (23) is small enough.

• Configure the results from [BFK+24] (cf. Remark 6.2) so that k · εJEA(distJEA) ≈ 2−λ.

• Take Pλ so that |Pλ| ≈ k · 2λ ≈ 22λ, so that the last term in Eq. (23) is sufficiently
small.

• Take |S| ≈ k · qmax · 2λ. By Remark 6.6, qmax is approximately qmin+ |Pλ| · loge(qmin) ≈
22λ + 22λ ≈ 22λ, where, as done previously, we have used the approximations from the
items above. Hence, overall we take |S| to be, approximately, 24λ.

Remark 6.8 (Towards improving the projection error). The factor k in the error bound of
Theorem 6.5 is due to a straightforward application of Markov’s inequality on the average
probability derived from Lemma 6.4. This factor has a compounding effect on some many of
our parameter choices in Remark 6.7, adding a factor of 22λ in some of our parameters. We
believe a sharper usage of Lemma 6.4 can help mitigate this effect.

Precisely, if the variables {Xq | q ∈ Pλ} in the proof of Theorem 6.5 were independent,
then X =

∑
q∈Pλ

Xq would follow a binomial distribution. In that case one could use the
stronger Chernoff bounds so as to derive a better error. However, it is not clear that the
variables Xq are independent, strictly speaking. This could be at least because sampling
uniformly in S and then projecting modulo different primes q1, q2 does not result in uniform
distributions over Fq1 ,Fq2 , and it is unclear how to define a suitable event that would allow
us to assume that this is the case. We conjecture that the variables Xq are “close” to being
independent, and that Chernoff bounds can be still be used in some way so as to improve
the bound on εproj.

Similarly, our analysis of the projection error relies crucially on using the results from
[BFK+24] over finite fields. To do so, we need S to have size about the square of the size of
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the largest prime in P, so that the probability that E1 or E2 have entries in Lq (following
the notation of the proof of Lemma 6.4) is negligible. We conjecture that a more direct
analysis that does not invoke [BFK+24] could help reduce the size of S.
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A Correlated agreement for linear codes over infinite fields

In this section we prove the correlated agreement result from the Ligero paper [AHIV22] in
the case of δ < dist/3 but for infinite fields. The proof is essentially the same with minor
straightforward modifications. Recall that we write ∆ for the relative Hamming distance in
C, ∆(v, C) for the relative Hamming distance between v ∈ Kn and the closest codeword in C,
and dist for the relative distance of C. Additionally, for the purpose of this section, we define
E(v, C) to be the set of positions where v differs from the closest codeword in C. The goal is
to prove the following statement:

Lemma A.1 (Correlated agreement for linear codes over infinite fields, c.f. [AHIV22, Lemma
4.5]). Let C be a linear code over a field K with dimension dim, length n and relative distance
dist. Let K ⊆ K be a finite nonempty subset of K. Then C has (δ, α,K)-correlated agreement
as defined in 3.1 with δ < dist/3, α = n/|K|.

Following [AHIV22], we first need two preliminary results for linear codes over infinite
fields.

Lemma A.2 ([AHIV22, Lemma 4.3, Claim A.1]). Let C be a linear code over K of length n
and minimum distance dist, and let δ < dist/3. Let K be a finite subset of K with |K| > δ · n.
Let v1, . . . ,vk ∈ Kn and codewords c1, . . . , ck be such that each vi disagrees with ci on at
least δ · n positions. Then there exists a vector v∗ of the form v∗ =

∑
i∈[k] ri · vi, for ri ∈ K,

such that ∆(v∗, C) > δ.

Proof. The proof follows the proof of [AHIV22, Lemma 4.3, Claim A.1]. Let V k
K be the

K-span of the vectors {v1, . . . ,vk}, i.e. V k
K = {

∑
i∈[k] ri · vi | ri ∈ K, i ∈ [k]}. Suppose

∆(v∗, C) ≤ δ for all v∗ ∈ V k
K . Suppose v∗

0 ∈ V k
K maximizes the distance from C. Since for all

i ∈ [k], vi disagree with codewords ci on at least δ · n positions, E(vi, C) \E(v∗
0, C) ̸= ∅. Let

v∗
0 = u0+x0 and vi = ui+xi, for u0,ui ∈ C and x0,xi ∈ V k

K such that wt(x0),wt(xi) ≤ δ ·n.
We claim there is a ∈ K, such that for v̂ = v∗

0+avi, we have ∆(v̂, C) > ∆(v∗
0, C), contradicting

the choice of v∗
0. This follows by a union bound, noting that for any j ∈ E(v∗

0, C) ∪ E(vi, C)
there is at most one choice of a ∈ K, such that the j-th coordinate of v̂ is zero.
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Lemma A.3 ([AHIV22, Claim A.2]). Let C be an arbitrary linear code over K of length n
and minimum distance dist. Let K be a finite subset of K, such that |K| > n. Let δ < dist/3.
Then, for every u,v ∈ Kn defining an affine line lu,v = {u+ av : a ∈ K}, either:

1. For every x ∈ lu,v, we have ∆(x, C) ≤ δ, or

2. For at most n points x ∈ lu,v, we have ∆(x, C) ≤ δ.

Proof. For any two length n vectors u and v of weight at most δ · n, the affine line lu,v
contains N points of distance at most δ · n from C if and only if lu,v+c contains N points of
distance at most δ · n from C for any codeword c ∈ C. Hence, it suffices to prove the claim
for vectors u and v of weight at most δ · n. Let sup(u) and sup(v) denote the indexing sets
of non-zero positions of u and v respectively. We consider two cases:

Case 1: | sup(u) ∪ sup(v)| < δ · n. Hence, lu,v is entirely contained in the ball Bδ·n(0) of
radius δ · n around 0, i.e. Bδ·n(0) = {x ∈ Kn | ∆(x, 0) ≤ δ · n}, where 0 is the all 0s vector in
Kn. This proves part 1 of the statement.

Case 2: | sup(u) ∪ sup(v)| ≥ δ · n. Since wt(u),wt(v) ≤ δ · n, then | sup(u) ∩ sup(v)| ≤
δ · n− 1. For each of the coordinates in the intersection of the supports, there can be at most
one vector in lu,v such that the entry in that coordinate is 0. Therefore, there are at most

δ · n− 1 <
dist · n

3
− 1 <

n− dim

3
− 1 < n

vectors in lu,v contained in the ball Bδ·n(0), where 0 is the all 0s vector in Kn. Suppose there
exists a nonzero codeword c ∈ C such that lu,v intersects the ball Bδ·n(c). Then, there is a
vector w ∈ Kn such that wt(w) ≤ δ · n and c+w = u+ av, for some a ∈ K. Hence, c is
equal to the sum of three vectors each of weight at most δ · n which is strictly less than the
minimum distance in C, leading to a contradiction since c ∈ C.

Proof. (of Lemma A.1) To establish the (δ, α,K)-correlated agreement, we will prove the
counterpositive: Let v1, . . . ,vk be any words that agree on at most δ · n positions. Then

Pr

∆
∑

i∈[k]

ri · vi, C

 ≤ δ

∣∣∣∣∣∣ ri ← K, i ∈ [k]

 < α.

Let U be the k× dim-matrix with i-th row vi, i ∈ [k] and δ < dist/3 and α = n/|K|. The
agreement of v1, . . . ,vk on at most δ · n positions is equivalent to ∆(U, Ck) > δ, where Ck is
the k-interleaved code of C.

Let V k
K and V k

K denote the K-span and K-span of {v1, . . . ,vk} respectively (see the
beginning of this proof for an explanation of this terminology). Note that since K is not
closed under addition or scalar multiplication V k

K is not a vector subspace of Kn. The proof
closely follows [AHIV22, Lemma 4.5]. We consider two cases.

Case 1: (cf. [AHIV22, Case 1, Lemma 4.2]) Suppose there exists a vector v∗ ∈ V k
K such

that ∆(v∗, C) > 2δ. We can write any w∗ ∈ V k
K as w∗ = av∗ + x, where a ∈ K,x ∈ V k

K . We
argue that conditioned on any choice of x, there can be at most one choice of a such that
∆(av∗+x, C) ≤ δ. Suppose there exist a1, a2 ∈ K with a1 ̸= a2, such that ∆(a1v

∗+x, C) ≤ δ
and ∆(a2v

∗ + x, C) ≤ δ. By the triangle inequality ∆((a2 − a1)v
∗, C) ≤ 2δ. If a2 − a1 /∈ K,
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our claim follows. If a2 − a1 ∈ K, since a2 − a1 ̸= 0, ∆((a2 − a1)v
∗, C) = ∆(v∗, C) ≤ 2δ

contradicting our assumption ∆(v∗, C) > 2δ.
Note that the choice of x is conditioned on a. Since a ∈ K, there are exactly |K| options

for choosing it. Therefore,

Pr[∆(w∗, C) < δ | w← V k
K ] ≤ 1

|K|
.

Case 2: For every v∗ ∈ V k
K , we have ∆(v∗, C) ≤ 2δ. Since ∆(U, Ck) > δ, by Lemma A.2

there exists v∗ ∈ V k
K such that ∆(v∗, C) > δ. As in Case 1, we write points in V k

K as x+ av∗,
where a ∈ K and x ∈ V k

K . For any fixed x, we there exists an a such that ∆(x+ av∗, C) > δ.
By Lemma A.3 there are at most n values for a such that ∆(x+ av∗, C) ≤ δ. Since this is
true for each x, it is true for the entire V k

K . Therefore,

Pr

∆
∑

i∈[k]

ri · vi, C

 ≤ δ

∣∣∣∣∣∣ ri ← K, i ∈ [k]

 ≤ n

|K|
,

finishing the proof.
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