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Abstract. We present PIR protocols for offline/online two-server set-
ting where a client C wants to privately retrieve a batch of entries from
database of size N by interacting with a servers S1. The client has inter-
acted with a server S2 ahead of time, not colluding with S1. We present
simple protocols based on one-way functions that substantially improve
on the query complexity or runtime over existing works. Concrete in-
stantiations of our general paradigm lead to batch PIR protocols with
the following parameters:
– A protocol for batches of

√
N , where C, S1, and S2 each spend a

total of Õ(N) work and exchange Õ(
√
N) bits of communication.

This yields an amortized complexity of Õ(
√
N) work and Õ(1) com-

munication per query in the batch.
– A more balanced protocol for batches of size N1/3 in which C spends

a total of Õ(N2/3) work, S1 and S2 spend Õ(N) work, and the total
communication is of size Õ(N2/3).

Our protocols have immediate applications such as Private Set Intersec-
tion (PSI) in the two-server setting with preprocessing and unbalanced
set sizes.

1 Introduction

Private Information Retrieval (PIR) [CGKS95] is a cryptographic tool that al-
lows a client C to retrieve an entry DB[i] from a server S holding a database
DB without revealing to S the index i which is being retrieved. PIR plays a
crucial role in many privacy-sensitive applications such as private certificate
lookup, private contact discovery [BDG15, DRRT18], private DNS [SCH+21],
and many more. Two of the central performance metrics of PIR protocols are
1) the amount of communication that has to be exchanged between the client C
and the server S and 2) the amount of computation that both C and S have to
perform. Denoting as N the number of entries stored in DB, one can easily in-
fer various non-triviality requirements with respect to both communication and
computation. For example, the communication between C and S must be o(N),
as otherwise, there exists a trivial PIR protocol in which the client downloads
the entirety of DB. Another folklore result, which was first rigorously proven



by Beimel, Ishai, Malkin [BIM00], states that in any PIR protocol in which the
server S stores DB in the clear, S must traverse all of DB in order to ensure pri-
vacy (and therefore in incurring O(N) computation). As shown by Beimel et al.,
this lower bound holds even if the total computation is spread across two or more
servers, although in this case, the servers can split the work. Intuitively, this is
true because if S does not touch an entry DB[i] while executing the protocol, it
knows that the C could not possibly have queried this entry.

Fortunately, the work of Beimel et al. [BIM00] offers a way out of this quag-
mire. Namely, their key idea is to split a PIR protocol into two phases, an offline
phase which is independent of any queries C might ask and an online phase.
In this manner, it indeed becomes possible to reduce the amount of online time
required by the server S to o(N). A recent line of works on offline/oline PIR
initiated by the beautiful results of Corrigan-Gibbs and Kogan [CK20] shows
how to achieve practical protocols in this setting which incur minimal storage
on the server’s side. In these works, the client communicates with two non-
colluding servers, an offline server S1 and an online server S2. Inspired by these
advances in offline/online PIR, we present the first two-server protocols for the
offline/online setting in which the client efficiently retrieves a batch of entries
from DB.

1.1 Our Results

While processing a batch of queries instead of a single query at a time is a
well-known and thoroughly-explored technique in the setting of PIR, it has not
been well explored for the two-server offline/online setting. To close this gap,
we present two batch-PIR protocols in the semi-honest server setting with the
following properties:

– Our first scheme supports batches of size
√
N while communicating a total of

Õ(
√
N) communication between the client and the servers over both phases.

C has to store Õ(
√
N) bits in both phases and the work (computation cost)

is Õ(n) for C, S1 and S2. These costs translate to polylogarithmic per-
query communication and server computation in Õ(

√
N). Client storage,

communication and server computation match the lower bounds of [CHK22,
Yeo23] and the upper bound of [CK20] for two-server PIR. We improve upon
[CK20] in terms of per-query client computation (but still do not match any
known lower bound).

– To obtain a protocol with improved client-side computation, we also give a
protocol which achieves more balanced communication and computation pa-
rameters. This protocol has batch sizeN1/3, upload communication Õ(N2/3),
and download communication of Õ(N1/3). The total work for the client
shrinks to Õ(N2/3) while the work for the server stays at Õ(N).

A key novelty of our work over prior batch-PIR protocols is to set the size of
query batches to be a function of the database size N . This allows us to amortize
the communication and computation costs of our two phases across the number
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of queries in the batch and leads to significant per-query savings over all existing
works in this setting. Additionally, we also discuss a database private version of
our scheme, i.e. a version of the protocol where the client learns nothing about
the database beyond the legitimate PIR outputs.

We will now discuss two intriguing applications of our parameter settings,
which further motivate the notion of batch PIR.

Application One: Private Search. In recent years, there has been signif-
icant progress in private search [SSLD22, HDCGZ23, ABG+24, ZSF24]. The
idea behind private search is compelling—imagine a search engine like Google,
but where the server host remains unaware of users’ queries.

All private search protocols must address several key challenges. One major
difficulty arises from the fact that web pages and search queries exist in distinct
high-dimensional spaces. The first challenge, therefore, is to map queries into the
same space as the pages, ensuring that proximity between a query and a page
reflects relevance.

Additionally, these protocols must efficiently retrieve pages that are close to
the query’s mapped representation. Recent work has approached this problem
using variations of batch private information retrieval (PIR). For instance, [HD-
CGZ23] employs a PIR scheme that retrieves a single entry of size

√
N , while

[ZSF24] uses multiple consecutive batch PIRs with much smaller batch sizes.
Larger batch sizes in PIR expand the design space for private approximate near-
est neighbor search, offering new possibilities for more efficient private search
protocols.

Application Two: Two-Server Unbalanced PSI with Preprocessing.
Private Set Intersection (PSI) allows two or more parties to secure compute the
intersection of two sets, one held by a sender and one by a receiver, such that
the receiver learns the intersection of the two sets but nothing more about the
sender’s set. PSI is a very active area of research due to its immediate use-
fulness for many practical applications [KS05, PSZ14, HV17, RR17, KMP+17,
PSWW18, ABD+21, ALOS22].

Our first application is a novel two-server private set intersection (PSI) pro-
tocol in the two server setting with preprocessing described earlier. Very briefly,
in our PSI setting, the servers hold a set SS and the receiver holds a set SC and
we would like to let the receiver learn the intersection S ∩ T . We are interested
in a setting where |SS | ≫ |SC |, e.g. if |SC | = O(

√
|SS |).

All we need to achieve the above construction is the database-private PIR
protocol. PIR guarantees privacy of the client i.e. that the server will not learn
which entries of the database are retrieved. The database-private PIR has an
additional guarantee protecting server- namely that the semi-honest client will
not learn anything else about the database except the points he intended to
query. Given this protocol, the server S holding SS builds database storing 1
or 0 in each cell depending on if the corresponding element is in the set SS .
After the preprocessing phase, all the client C has to do is to send a batch query
corresponding to all the elements in SC .
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The database-private version of our first PIR protocol with batch size |SC |
directly yields a PSI protocol in which C communicates only |SC | bits while
relying only on minicrypt primitives. This type of PSI protocol (for the semi-
honest setting) can immediately be obtained by using our server-private version
of batch PIR.

Application Three: Private Statistics on large Sub-Populations. A sec-
ond, more direct application of our PIR protocols with large batch parameters
is to perform statistics on a sub-sample of a very large data pool in a privacy
preserving manner. As a simple example, a medical survey may be interested in
data points from individuals within a specific group according to gender, age,
diet, etc. Such sub-populations may be much smaller than the total number N
of all entries within a large medical database, yet still large enough to warrant
batch sizes which behave as a function of n, e.g.

√
N .

As a concrete concrete example, consider a medical database with ≈ 1010
entries, which is the order of magnitude for one entry per every human on earth.
For a database of this scale, our overhead in terms of communication and com-
putation is of order

√
1010 = 105 = 100000, which is a manageable work- and

communication overhead.

1.2 Our Techniques

Offline-Online PIR. Our constructions follow the general approach established
by the beautiful work of Corrigan-Gibbs and Kogan [CK20]. In the framework
of [CK20] there a two non-communcating servers, an offline server S1 and an
online server S2. In the offline-phase a client interacts with the offline-serve
and obtains a set of hints depending on server’s database DB. Importantly, this
offline-phase is independent of the client’s inputs. Furthermore, the total size of
the hints is sublinear in N , the size of the server’s database. In the online phase,
the client receives his input, namely an index q of a database item he wants to
retrieve. The client now retrieves a suitable hint h (depending on q) and uses it
to generate a message c to the online server, who processes this message using
the database DB and sends the response r back to the client. From this response
r as well as additional information provided in the hint h the client can now
recover the database item DB[q].

In terms of security, we require that the message c hides the index q from
the online server. Naturally, as the offline-phase is independent of the clients
inputs, the offline server by itself learns nothing about the clients queries ei-
ther. However, critically, privacy of the client’s queries additionally rests on the
assumption that the offline and online servers do not communicate.

It is this non-collusion requirement which facilitates the design of very effi-
cient two-server PIR protocols from symmetric key assumptions, that is without
resorting to public-key primitive.

The CK20 Protocol. In [CK20] this framework is instantiated as follows. In
the offline-phase, the client generates k pseudorandom sets S1, . . . ,Sk ⊆ [N ] of
size ≈

√
N , and sends these sets to the offline server. For each set Sj , the offline
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server computes the parity pj = ⊕x∈SjDB[x] and sends p1, . . . , pk back to the
client, who stores the pairs (Sj , pj). In order to reduce the storage overhead,
all the sets Sj are random shifts of a random set S. More concretely, for each
index j the client chooses a random shift ∆j ∈ [n] and sets Sj = {x + ∆j

mod n | x ∈ S}. Consequently, the client only has to store the set S as well as
the shifts ∆1, . . . ,∆k.

The online phase now proceeds as follows. Given a a query q ∈ [n], the client
searches for a a pair (Sj , pj) in its preprocessing for which q ∈ Sj . Now the
receiver punctures Sj at q, i.e. it computes S̄ = Sj \ {q} and sends S̄ to the
online server. The online server computes the parity p = ⊕x∈S̄DB[x] and sends
p back to the client, who can now recover DB[q] by computing

pj ⊕ p = (⊕x∈SjDB[x])⊕ (⊕x∈Sj\{q}DB[x]) = DB[q].

While this protocol is correct, there is a subtle issue concerning query privacy:
The punctured set S̄ actually does leak information about the query q to the
online server, namely the fact that the query q is not in S̄. Conversely, we can say
that the server knows that q lies in the uncertainty set [N ]\S̄. To compensate for
this leakage, [CK20] rely on a careful mechanism which introduces false positives,
i.e. with a certain small probability the client sends a set S̄ for which q ∈ S̄.
This mechanism in turn causes a correctness error, which is compensated by
repetition.

There is a growing body of work which extends upon this paradigm, as a
non-exhaustive sample e.g. [SACM21, LP23b, ZLTS23, ZPZS24, MIR23, GZS24,
LP23a]. Specifically, these works propose alternative mechanisms to represent the
sets Sj and ensure that the punctured set S̄ = Sj \ {q} hides the query q from
the server.
Our Approach. The starting point of this work is an attempt to construct sets
Sj for which both

1. membership can be tested very efficiently and
2. punctured sets have a compact representation which does not reveal non-

trivial information about the punctured point.

To address the first point, we derive the sets Sj from pseudorandom permu-
tations. Specifically, assume that N = 22k, i.e. we can represent all elements of
the [N ] as bit-strings of length 2k. Consequently, we can identify each element
x ∈ [N ] as (L,R) where L,R ∈ {0, 1}k. Let Π be a pseudorandom permutation
on {0, 1}2k. Our approach is to define the sets Sj as

Sj = {Πkj (∆,R) | R ∈ {0, 1}k},

where kj ← {0, 1}λ is a uniformly chosen key for Π and ∆ ← {0, 1}k is chosen
uniformly random. Such sets Sj have a compact representation, namely in the
form of the key kj and ∆. Furthermore, Sj admits a very fast membership test.
Namely, for a candidate element x ∈ [N ] we can compute (L,R)← Π−1kj

(x) and
test whether L = ∆. As a third point, such sets Sj are well-spread, as due to the
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pseudorandomness of Πkj
the set Sj is indistinguishable from uniform (against

distinguishers who do not see the key kj).

However, there is no efficient way to puncture such a set Sj without un-
rolling it into its explicit representation. To facilitate puncturing, we include an
additional round of a Feistel permutation. Specifically, let f be a pseudorandom
function mapping from {0, 1}k to {0, 1}k. We now define Sj as

Sj = {Πk′(∆⊕ fk′′(R), R) | R ∈ {0, 1}k},

where again k′ ← {0, 1}λ is a key for the permutation Π and k′′ ← {0, 1}λ is
a key for the pseudorandom function f . Note that the previous properties still
holds, i.e. we can test membership of an x ∈ [N ] by computing (L,R) = Π−1k′ (x)
and testing whether L⊕ fk′′(R) = ∆.

Moreover, if f is a puncturable PRF [BGI14], we can puncture such a set.
Specifically, by puncturing k′′ at R, we obtain a punctured set S̄j which does not
contain x, but where indeed all Π(L′, R) for L′ ∈ {0, 1}k are potential elements
of Sj . That is, from the view of an observer who only sees the punctured key
k∗, any of these 2k values could have been the point we punctured from Sj . We

call these 2k =
√
N values the uncertainty set of S̄j . Note that the size of this

uncertainty set given a punctured key is still a far cry away from the size of
uncertainty set of the explicit representation of S̄j . Specifically, for the explicit

representation of Sj the uncertainty set is [N ] \ Sj , and thus its size is N −
√
N .

Consequently, as for our approach the uncertainty sets are relatively small
there is no hope that a single punctured key substantially hides the punctured
point q.

Batching. This is where our second central theme comes into play: Batching. By
bundling together several queries q1, . . . , qk into a single batch-query (q1, . . . , qk)
(and suitably shuffling them by e.g. a random permutation), we can leverage
that the uncertainty sets of all punctured keys mutually conceil their punctured
queries. More broadly, if we can make sure that the union of all uncertainty
sets is all of [N ] then from the view of the online server the punctured keys
could (at least qualitatively) correspond to an arbitrary batch-query. Since each
uncertainty set is a (pseudorandom) set of size

√
N , this event will happen with

near certainty once k ≥ λ
√
N .

However, making this basic idea stochastically precise turns out to be the
most challenging aspect about our new technique.

To illustrate some of the challenges we face, consider the following naive
approach to process a batch-query. Assume the client has a preprocessing pool
P consisting of m ≥ k pairs of keys and hints P = {(k1, h1), . . . , (km, hm}).
Assume further the client has k queries q1, . . . , qk. In this naive approach the
client processes the queries qi one-by-one. That is, for each query qi the client
retrieves a preprocessing (kj , hj) for which qi ∈ Skj from the pool P and removes
this preprocessing from P. After m iterations of this procedure, the client has
obtained preprocessings for each query. It then randomly shuffles these queries
and sends them to the online server.
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While at first glance this procedure seems “reasonable”, a moment of reflec-
tion reveals a grave issue with this approach: Consider just the first query q1.
Initially the sets Ski in the pool are all independent of the queries. However, once
we take a set Sj which contains q1 out of the pool P, then the remaining sets
are ever so slightly biased away from q1. In a bit more detail, first recall that the
sets Si are pseudorandom sets of size

√
N . Hence, for a fixed query q1 initially

the expected number of sets Si in P is which contain q1 is k ·
√
N/N = k/

√
N .

However, after removing a set Sj from P which is guaranteed to contain q1, the

expected number of sets in P which contain q1 drops to k/
√
N − 1, which is a

noticeable difference.

Batch Unbiased Sampling. Hence, we need is a mechanism which matches
preprocessings with queries without introducing a bias into the pool of remaining
samples. Our core-mechanism to accomplish this will be sampling with replace-
ment, a technique inspired by the broken hint technique used in [GZS24]; every
time we take a set Sj out of the pool P based on the criterion that it contains
qi, we sample a fresh key k under the condition that Sk contains qi and insert
k back into the pool P. However, as this set Sk is generated during the online-
phase, the client does not know a hint h corresponding to it. Hence, it inserts
the dummy set Sk with the empty hint ⊥ into P, i.e. it inserts (k,⊥) into P.
This will ensure that the pool P remains unbiased.

However, this now introduces the issue that the population of dummy keys
without hints in P steadily increases, hence a query qi may be matched up with
a useless dummy set. To compensate for this issue without reintroducing a bias,
we need to (potentially) pair up each query with several keys, which introduces
a small amount of redundancy.

To deal with these technical issues, our actual batch unbiased sampling mech-
anism provided in Section 4 is somewhat more involved than described in this
outline.

At a very high level, our sampling mechanism proceeds in two stages. In the
first stage, which we refer to as the splitting stage, we distribute preprocessed
keys to bins corresponding to the queries in a way very similar to the one de-
scribed above. After puncturing the keys in each bin, the punctured keys are
again dissociated from the corresponding queries in a merging stage, which in-
deed results in a list of punctured keys which computationally hides the queries.

The analysis of our batch unbiased sampling mechanism constitutes the tech-
nical core of this work, and we think this notion may be interesting in its own
right.

Optimizations. We further discuss different trade-offs between batch size, online-
client effort, and per-query server effort.

To get different trade-offs between batch size, online-client effort, and per-
query server effort, we change our set representations slightly. In particular, we
explore a setting where the client computation is sublinear while the server cost
remains linear in the database size N . Thus, we want both the set and the
uncertainty set to be of size θ̃(N2/3). To achieve this task, we have to change
our set representations.
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We use the same pseudorandom permutation g as before, but with a split of
[N ] into [N2/3] × [N1/3] using the mapping Πk(∆ ⊕ L ⊕ fk′(R), R). With this,
our set would be of size N2/3 but the uncertainty set is now of size only N1/3.
Using the approach from above, this would force us to use batches of size N2/3

in order for the uncertainty sets in the batch to cover all of [N ]. Recall that the
client needs to search, on average N1/3 of them per query q, until it fins a set
which contains q. Thus, this results again in O(N) work for the client and we
are back to where we started.

Therefore, we instead puncture the key of f at N1/3 many random points.
Note that due to the way that our sets are represented, each such punctured point
increases the uncertainty set by N1/3 many points. Thus, overall, the uncertainty
sets in this approach grow to size N2/3. To keep these sets functional, all but
one of the N1/3 punctured point already need to be fixed in the pre-processing
phase and transmitted to the server during the online phase. Overall, the work
and storage requirements of the client reduce, per query, to O(N1/3) in both
phases and thus to a total of O(N2/3) in a query batch of size O(N1/3). The
communication in this approach increases, however, to O(N1/3) per query and
thus to O(N2/3) in the batch, as the client needs to transmit all of the punctured
points to the server.

All the parameters we instantiated in this paragraph can be chosen flexibly.
We discuss the exact trade-offs in the Section 3.

Database Privacy. Additionally, we will provide a small modification which
will augment our scheme with server privacy, also known as database privacy.
That is, a semi-honest client will learn nothing about the database DB beyond
the legitimate query responses DB[q1], . . . ,DB[qk]. We formalize this via a stan-
dard simulation-based notion, c.f. Definition 7.

Our base scheme is markedly not database private; the sets Sk together with
the hints h =

⊕
i∈Sk DB[i] reveal parities about DB.

The transformation to make our scheme server private is very natural. Besides
the database DB the offline and online servers also hold a joint PRF key K. The
basic idea is now to associate each set key ki with a randomly chosen nonce
ncei ← {0, 1}λ which is sent alongside ki to the servers. Both online and offline
servers now mask their response with PRFK(ncei). That is, the offline server
computes hi = PRFK(ncei)⊕

⊕
j∈Ski

DB[j] and the online server computes pi =

PRFK(ncei)⊕
⊕

j∈S̄k∗
i

DB[j]. The client can still recover DB[qi] by computing

hi ⊕ pi = PRFK(ncei)⊕
⊕
j∈Ski

DB[j]⊕ PRFK(ncei)⊕
⊕

j∈S̄k∗
i

DB[j]

= DB[qi].

For dummy queries, we will set the nonces ncei to fresh random value, conse-
quently the client will not learn anything from the corresponding masked parities.
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1.3 Related Work

To get an excellent overview of single-query PIR we recommend reading the
excellent related work sections of [CK20, ZPZS24].

Since the emergence of [CK20] there have been a few iterations on their tem-
plate. We give a short overview over the two server protocols is only based on
one-way functions. The set representation of TreePIR [LP23b] has a size that
is polylogarithmic in n, but the punctured representation does not allow the
server to uniquely determine the punctured set. Therefore, the server has to
communicate

√
N bits per query. In [ZPZS24, MIR23, HPPY24] the server can

uniquely determine the punctured set. Therefore, the server-to-client communi-
cation is constant but the punctured set representation is of size

√
N , so the per

query communication is still
√
N . [GZS24] interpolate between the two settings

with a protocol where the punctured set has a representation size N1/4 and the
server can compute N1/4 candidates of punctured set, where one of them will
be correct. This way they arrive at a protocol that has client-to-server commu-
nication of N1/4 and a server-to-client communication of N1/4. While each of
the protocols has advantages of their own, [GZS24] has the best communication
complexity as a two-server offline-online private information retrieval protocol,
which is why we compare against them. [GZS24] works particularly well in our
setting because after

√
N queries they have to redo the preprocessing and in our

setting this is where the protocol end. Therefore, no trick is required to amortize
the preprocessing.

In this section, we will focus on batch PIR with big batches. We will assume
a batch size of

√
N for the rest of this section, though the same points can be

made about N1/3.
There are a few approaches to batch PIR. One approach is to simply run

multiple instances of a single-query PIR protocol. When applying this approach
to non-preprocessing PIR schemes the server computation becomes unbearable,
as the server computation per query is linear in the database size. However, for
protocols where the server computation is sublinear in the database size, this
approach can be viable if the preprocessing can be reused. If we consider batch
sizes of size

√
N , then any PIR with

√
N per-query communication complexity

is beaten out by the trivial solution of downloading the entire database.
Another approach is to apply a batch code or a weaker variant called proba-

bilistic batch code [IKOS04, SWP09, LS15, SG16, ACLS18] to the database and
then use the single-query PIR protocol on smaller databases. Simplfied, a (prob-
abilistic) batch code has four parameters (n,N, k,m) it take as string x ∈ {0, 1}n
and encodes it into m strings y1, . . . , ym ∈ {0, 1}∗. It has the propery that whp.
one can recover any k-sized subsequence xi1 , . . . , xik by querying one element
from each yi. Finally, N is the size of all yi together. For our setting we use a
(n,O(n), O(

√
N),
√
N) batch code, which splits the database DB into O(

√
N)

many strings y1, . . . , y√N and then run a single-query PIR protocol on each of

them. The batch code then guarantees that whp. one can recover any
√
N entries

of DB by querying one element from each yi. One can combine batch codes with
any single-query PIR protocol. While this approach improves the parameters of
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a single-query PIR protocol, the parameters of our solution are better in com-
munication or computation complexity unless one is willing to use public-key
assumptions.

A notable example is in the offline/online setting are programmable dis-
tributed point functions (pDPFs) [BGIK22] which achieve a similar query com-
plexity and client storage as we do. For 1/poly privacy error the scheme is quite
efficient, however, their amplification to a negligible privacy error is quite in-
efficient. This amplification causes makes the complexity of the programmable
distributed point function to be at least be quadratic in its codomain. This prob-
lem only gets slightly reduced if we combine them with batch codes [IKOS04]
to adapt this protocol to the batch PIR setting. For a database of 235 bits or
roughly 4GB, batch size of

√
235, statistical security parameter κ = 40 and com-

putational security parameter λ = 128, their client has a runtime of ca. 2119

bit operations, which far from practical. In the same scenario our client needs
to make ca. 230 bit operations. These high computational costs are not only
concrete but also asymptotic, see Figure 1.

One can also use specific structure of PIR protocols improve their batch-
ing. For example [GKL10] modify the single-query PIR of [GR05] to improve its
batching. Similarly, when using a fully homomorphic encryption [Gen09, BV11,
GSW13] scheme to implement PIR, one can use a single circuit to make all

√
N

queries at once reducing the server-sided computation from O(N) per query to
O(N) total. None of these protocols are particularly practical, as they heavily
rely on public-key cryptography. Finally, in a recent breakthrough Lin, Mook
and Wichs [LMW23] provided the first single server PIR protocol with pre-
processing which achieves sublinear, in fact polylogarithmic online overhead for
the server. Their scheme is based on the Ring-LWE assumption with super-
polynomial modulus-to-noise ratio [LPR10].

2 Preliminaries and Definitions

We introduce some basic definitions and notations. We define [n] = {1, . . . , n}.
Usually denote a negligible function by negl, which means that for every positive
polynomial p(.) and all but finitely many n we have negl(n) < 1/p(n). Through-
out, let λ denote the security parameter. We use calligraphic letters S,R to
denote sets and write x←$ S to denote that x is sampled uniformly from S. We
write P=ℓ(R) for the set of all subset of R of size ℓ. We assume the standard
notions of PPT algorithms and write algorithms using serif-free letters, i.e., A.
We write y ← A(x) to denote that (probabilistic) algorithm A returns y on input
x. If A has access to an oracle O at runtime, we write AO.
Multiplicative Chernoff Bound. Suppose X1, . . . , Xn be n independent ran-
dom variables with a range {0, 1}. We call their sum X and the expected value
of the sum µ. Then for 0 < δ < 1 we can bound

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ
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Online Work Online Communication Storage Assum.

Batch Size
√
N

PIR + BC∗ Client: (λ+ t)
√
N (λ+ t)

√
N 0 PIR

Server:Nt

[LMW23]∗ Client:
√
Nt

√
Nt 0 RLWE

Server:
√
Nt

[CK20] Thm. 14 + BC Client: κ(N3/4λ+ t)/ logN κ
√
N(λ+ t/ logN) κN3/4t OWF

Server: N3/4λ logN

[BGIK22]+BC Client: κN3/2(logN)2 log κtλ
√
Ntλ

√
Nt OWF

Server: κN3/2(logN)2 log κtλ

[GZS24]∗ Thm. 5.1 Client: κ(Nλ+N3/4t) κN3/4(λ+ t) κ
√
Nt OWF

Server: κ(Nλ+N3/4t)

Ours Client: κ
√
N(λ+ t) κ

√
N(logNλ+ t) κ

√
Nt OWF

Server: κ(Nλ+
√
Nt)

Batch Size N1/3

PIR + BC∗ Client: (λ+ t)N1/3 (λ+ t)N1/3 0 PIR
Server: Nt

[LMW23]∗ Client: N1/3t N1/3t 0 RLWE

Server: N1/3t

[CK20] Thm. 14 + BC Client: κ(N2/3λ+ t)/ logN κN1/3(λ+ t/ logN) κN2/3t OWF

Server: N2/3λ logN

[BGIK22]+BC Client: κN5/3(logN)2 log κtλ N1/3tλ
√
Nt OWF

Server: κN5/3(logN)2 log κtλ

[GZS24]∗ Thm. 5.1 Client: κ(N5/6λ+N7/12t) κN7/12(λ+ t) κ
√
Nt OWF

Server: κ(N5/6λ+N7/12t)

Ours Client: κ(N2/3λ+N1/3t) κ(N2/3λ logN +N1/3t) κN1/3t OWF

Server: κ(Nλ+N1/3t)

Fig. 1. We compare our parameters of to other state of the art PIR schemes. N is the
database size, λ is the computational security parameter, κ is the statistical security
parameter and t is the size of a database entry. All values are given in terms of O.
We combine all one-time preprocessing PIR schemes with optimal batch codes (BC)
that split the database into

√
N or N1/3 blocks to adapt them to batch PIR. Choosing

blocksizes significantly deviating from this will blow worsen the weak points, storage
size for [CK20] and running times for [BGIK22]. The protocols with a ∗ only require
one server. The choice of cell color is purely subjective and is just meant as support to
interpret the table.
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and

Pr[X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)1−δ

)µ

Definition 1 ((Puncturable) Pseudorandom Function ((P)PRF)). A
pseudorandom function (PRF) with domain D and range R is a tuple of al-
gorithms f = (Gen,Eval) with the following properties.

– Gen is randomized and takes in the security parameter λ. It outputs a a key
k.

– Eval is deterministic and takes in a key k and x ∈ D. It outputs y ∈ R.

We use the abbreviated notation fk(x) := Eval(k, x). Moreover, for a subset
S ⊂ D, we write fk(S) := {fk(x) | x ∈ S}. For puncturable pseudorandom
functions (PPRF), we require the existence of an additional algorithm Puncture
with the following properties.

– Puncture is deterministic and takes in a key k and a set S ⊂ D. It outputs
a punctured key k∗.

Definition 2 (Security and Correctness for (P)PRFs). Let f = (Gen,Eval)
be a PRF with domain D and range R. We define the following security and cor-
rectness properties:

– Pseudorandomness of Outputs. f is said to be pseudorandom if for all
PPT algorithms A, we have that∣∣∣∣∣∣ Pr

k←Gen(λ)
[b← Afk(·)]− Pr

k←Gen(λ)
σ←$Σ

[b← Aσ | k ← Gen(λ)]

∣∣∣∣∣∣
is negligible and where Σ denotes the set of functions with domain D and
range R.

For PPRFs, we additionally require that:

– Pseudorandomness of Punctured Values. f is said to have pseudo-
randomness for punctured keys if, for all sets S ⊂ D, and PPT algorithms
A,∣∣∣∣∣∣∣ Pr
k←Gen(λ)

[b← A(Puncture(k,S), fk(S))]− Pr
k←Gen(λ)

r←$R|S|

[b← A(Puncture(k,S), r)]

∣∣∣∣∣∣∣
is negligible.

– Correctness of Puncturing. f is said to be correct if for all k ∈ Gen(λ)
and all S ⊂ D, the punctured key k∗ = Puncture(k,S) satisfies fk∗(x) =
fk(x), for all x ∈ D \ S.
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Definition 3 (Pseudorandom Permutation (PRP)). A pseudorandom func-
tion (PRP) on D is a triple of algorithms p = (Gen,Eval, Inv) with the following
properties.

– Gen is randomized and takes in the security parameter λ. It outputs a a key
k.

– Eval is deterministic and takes in a key k and x ∈ D. It outputs y ∈ D. We
require that Eval(k, ·) be bijective.

– Inv is deterministic and takes in a key k and y ∈ D. It outputs the inverse
x of y, i.e., such that Eval(k, x) = y.

We use the abbreviated notations pk(x) := Eval(k, x) and p−1k (y) := Inv(k, y).
Moreover, for a subset S ⊂ D, we write pk(S) := {pk(x) | x ∈ S} and p−1k (S) :=
{p−1k (y) | y ∈ S}.

Definition 4 (Security for PRPs with Poly-Sized Domains). Let p =
(Gen,Eval, Inv) be a PRP on D. We say that p is pseudorandom for polynomial
domain sizes if D is of polynomial size and for all ppt algorithms A, we have
that ∣∣∣∣∣∣ Pr

k←Gen(λ)
[b← A(p(D))]− Pr

k←Gen(λ)
π←$Π

[b← A(π(D))]

∣∣∣∣∣∣ ,
is negligible and where Π denotes the set of permutations on D.

Definition 5 (Pseudorandom Puncturable Set (PPRS)). A pseudoran-
dom puncturable set (PPRS) with range R and size ℓ, and uncertainty set size ℓ′

is tuple of algorithms p = (Gen,Expand, IntersectSet,Puncture, InUncertaintySet)
with the following properties.

– Gen is randomized and takes in the security parameter λ. It outputs a a key
k representing a set Sk ⊂ R of size ℓ.

– Expand is deterministic and takes in a key k. It outputs a set and outputs
the set Sk the key represents.

– IntersectSet is deterministic and takes as input a key k representing a set Sk
and a set Q and outputs their intersection.

– Puncture is deterministic and takes as input a key k representing a set Sk and
an element q ∈ R. It returns ⊥ if q ̸∈ Sk. Otherwise, it returns a punctured
key k∗ representing the punctured set Sk \ {q}.

– InUncertaintySet is deterministic and takes as input a punctured key k∗ and
an element q. It outputs 0 (accept) or 1 (reject). We refer to the set of values
q for which InUncertaintySet(k, q) = 1 as the uncertainty set S̃k∗ of k∗ and
require that S̃k∗ be of size ℓ′ for all syntactically well-formed punctured keys
k∗. 4

4 Intuitively, S̃k∗ represents all possible values at which the puncturing leading to the
key k∗ could have occurred.
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Definition 6 (Security and Correctness for PPRS). Let (Gen,Expand,
IntersectSet,Puncture, InUncertaintySet) be a PPRS with range R, size ℓ, and
uncertainty set size ℓ′. We define the following security and correctness proper-
ties.

– Pseudorandomness of Outputs. p is said to be pseudorandom if for all
PPT algorithms A, we have that∣∣∣∣ Pr

k←Gen(λ)
[b← A(Expand(k))]− Pr

S←$P=ℓ(R)
[b← A(S)]

∣∣∣∣
is negligible.

– Pseudorandomness of Uncertainty Sets. p is said have pseudorandom
uncertainty sets if for all PPT algorithms A, we have that∣∣∣∣∣∣∣∣∣ Pr

k←Gen(λ)
q←$Sk

k∗←Puncture(k,q)

[b← A(S̃k∗)]− Pr
S←$P=ℓ′ (R)

[b← A(S)]

∣∣∣∣∣∣∣∣∣
is negligible.

– Pseudorandomness of Punctured Elements. For a PPT algorithm A,
an element q ∈ R, and b ∈ {0, 1}, we define the experiment PPRS−KEYA

q,b

below as follows:
• If b = 0, sample a key k as k ← Gen(λ) conditioned on q ∈ Sk and

compute the punctured key k∗ as k∗ = Puncture(k, q).
• If b = 1, sample a key k as k ← Gen(λ) and sample the element q′

as q′ ← Sk. Compute the punctured key k∗ as k∗ = Puncture(k, q′),
conditioned on q ∈ S̃k.

• Run A on input k∗ and return A’s output b′.
p is said to have pseudorandomness for punctured keys if for all A and all
q ∈ R, ∣∣∣Pr[PPRS−KEYA

q,0 = 1]− Pr[PPRS−KEYA
q,1 = 1]

∣∣∣
is negligible.

We define private information retrieval for the specific communication pat-
tern our protocol has. Generally, private information retrieval does not have to
follow this specific pattern.

Definition 7 (Two-Server Batch Private Information Retrieval (PIR)).
A two server batch PIR scheme 2sbPIR consists of 6 PPT algorithms (client1,1,
server1, client1,2, client2,1, server2, client2,2) with the following syntax:

– client1,1(λ,N,B): Takes as input a security parameter λ, a database size N
and a batch parameter B and outputs a message c1 and a state st1.
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– server1(DB, c1,K): Takes as input a database DB ∈ {0, 1}N , a client message
c1 as well as optionally a key K ∈ {0, 1}λ and outputs a message s1

– client1,2(s1): Takes as input a server message s1 and a state st1 and outputs
a preprocessing H.

– client2,1(H,Q ∈ [N ]B): Takes as input a preprocessing H as well as a list of
queries Q and outputs a message c2 as well as a state st2.

– server2(DB, c2,K): Takes as input a database DB, a client message c2 as well
as optionally a key K. Outputs a message s2

– client2,2(st, s2): Takes as input a state st and a server message s2 and outputs
a list out.

The optional joint input K for the two servers is only needed if server privacy
is desired. In this case K ← {0, 1}λ is a uniformly random key.

We require the following properties:

– Statistical Correctness. For all databases DB ∈ {0, 1}N and query sets
Q ⊂ [N ], where |Q| = B we get that client(λ) interacting with server1(DB)
then client(H,Q) interacting with server2(DB) outputs query-database-entry
pairs (q1,DB[q1]), . . . , (qB ,DB[qB ]), where q1, . . . , qB are the B distinct ele-
ments of Q with all but negligible probability.

– Client Privacy. We require that for all PPT distinguishers D and all
databases DB there exists a PPT simulator SimC such that for all query-
sets Q the following holds:∣∣Pr[D(c2,K) = 1]− Pr[D(SimC(1

λ, N,B,DB,K),K)]
∣∣ ≤ negl(λ),

where K ← {0, 1}λ is chosen uniformly random and c2 is sampled by
• c1 ← client1,1(λ,N,B)
• s1 ← server1(DB, c1,K)
• H ← client1,2(s1)
• (c2, st)← client2,1(H,Q)

– Server Privacy. We require that for all PPT-distinguishers D and all
query-sets Q there exists a PPT simulator SimS such that for all databases
DB the following holds:∣∣Pr[D(viewclient(Q,DB)) = 1]− Pr[D(SimC(1

λ, N,B,Q))]
∣∣ ≤ negl(λ),

where viewclient(Q,DB) encompasses the entire view of a semi-honest client
(including all random coins) in a run of the protocol 2sbPIR with client input
Q and server input DB.

3 Puncturable Pseudorandom Sets

In our protocol, we use subsets of [N ], where we will assume, for simplicity,
that N is a power s.t. we can easily represent elements in binary. Our goal is to
puncture these sets at one of their elements. To implement this functionality, we
construct a type of pseudorandom set with two different types of representations.
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We call these representations pseudorandom and punctured. At the core of our
set representation is the following keyed permutation

gk′,k′′,∆(L,R) = pk′(L⊕ fk′′(R)⊕∆,R)

where pk′ is a pseudorandom permutation and f is a puncturable pseudorandom
function. It is fairly easy to see that g is a permutation by seeing that pk′ is a
permutation and (L,R) 7→ (L⊕ f(R)⊕∆,R) is a permutation.

The basic idea is that the set is described by the key k′ for the permutation,
the key k′′ for the function and a set V. Then the set

Sk′,k′′,∆,V = {gk′,k′′(0, x)|x ∈ [N2/3] \ V}

In our pseudorandom representation of S we have that V is also pseudorandom,
i.e. V = G(s) for some PRG G that takes as input a seed s ∈ {0, 1}λ and
outputs a subset of [N2/3] of size N1/3 − 1. So to be exact the pseudrandom
representation is

Sk′,k′′,∆,s = {gk′,k′′(0, x)|x ∈ [N2/3] \G(s)}

When we puncture a set Sk′,k′′,∆,s at an element q that means we want to
remove that element for which we know it is contained. We do this by computing
p−1k′ (q) = (L,R). Because we know that q is in the set we derive that L =
fk′′(R) ⊕∆. We then puncture k′′ at points V ∪ {R} and get a new punctured
key k̄. The description now becomes k′, k̄,∆,V ∪ {R} which represents the set

Sk′,k̄,∆,V∪{R} = {gk′,k̄(0, x)|x ∈ [N2/3] \ (V ∪ {R})}

This clearly doesn’t fully hide q from an adversary who gets to see (k′, k̄, ∆,V ∪
{R}). Indeed, the adversary learns that the punctured point q is in the following
set

S̃k′,k̄,∆,V∪{R} = {pk′(L′, R′)|L′ ∈ [N1/3], R′ ∈ V ∪ {R}}
We prove that this is all the adversary learns about the punctured as this will
be important in the analysis of our protocol.

Construction 1 We describe the algorithms required for the set more formally
and generally, as there are different trade-off when choosing a different split for
L and R and choosing the size of V . I.e. we split [N ] into [N/α] × [α] and
parameterize the size of V as β, where β < α. Let G be a PRF with domain
{0, 1}λ and range R ⊂ [α] of size β and let f denote a PPRF with domain
[α], range [N/α], and puncturing algorithm Puncturef . Moreover, let p, g denote
PRPs on [N ]. In the following, we find it convenient to view g and p as functions
[N/α]× [α] −→ [N ].

– Algorithm Gen: On input the security parameter λ, sample k′, k′′, s ←$

{0, 1}λ and ∆←$ [N/α]. Return k = (k′, k′′, ∆, s).
– Algorithm Expand: On input a key k = (k′, k′′, ∆, s), set V ← G(s) and

Ṽ = {0}×([α] \ V). Then compute Sk ← gk′,k′′,∆(Ṽ) and return Sk. Clearly,
Expand runs in time runs Õ(α) and returns Sk of size α− β.
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– Algorithm IntersectSet: On input a key k = (k′, k′′, ∆, s) and a set Q,
compute V ← G(s), and initialize I = ∅. For each q ∈ Q, compute (L′, R′)←
p−1k′ (q) and add q to I if R′ /∈ V and L′ = fk′′(R′)⊕∆. Return I. IntersectSet
runs in time Õ(β+ |Q|), which is faster than computing Expand(k)∩Q when
|Q|+ β ∈ o(α).

– Algorithm Puncture: On input a key k = (k′, k′′, ∆, s) and an element q,
return ⊥ if q /∈ Sk. Otherwise, compute V ← G(s) and (L,R) = p−1k′ (q). Set
k̄ ← Puncturef (k

′′,V ∪{R}) and return (k∗ = (k′, k̄, ∆,V ∪{R})). The above

algorithm runs in time Õ(β).
– Algorithm InUncertaintySet: On input a punctured key k∗ = (k′, k̄, V ∪{R}))

and an element q, let (L′, R′) ← pk′(q). Return 1 if R′ ∈ V ∪ {R} and 0
otherwise. This algorithm runs in time Õ(1).

For the sake of completeness we detail Expand and IntersectSet also for punctured
keys, but the only difference will be that V ∪ {R} is provided as an input rather
than obtaining it from s via G. (Clearly, this only decreases the running times).

– Algorithm Expand: On input a punctured key (k∗ = (k′, k̄, ∆,V ′ = V ∪
{R})), set Ṽ = {0} × ([α] \ V ′). Then compute Sk ← gk′,k′′,∆(Ṽ) and return
Sk∗ .

– Algorithm IntersectSet: On input a punctured key k∗ = (k′, k̄,∆,V ′ = V ∪
{R})) and a set Q, initialize I = ∅. For each q ∈ Q, compute (L′, R′) ←
p−1k′ (q) and add q to I if R′ /∈ Ṽ ′ and L′ = fk′′(R′)⊕∆. Return I.

3.1 Security

Theorem 1. The pseudorandom set in construction 1 is pseudorandom at punc-
tured points with respect to definition 6.

Proof. Assume there is a PPT-distinguisher D which distinguishes between b = 0
and b = 1 with non-negligible advantage ϵ. Consider the following sequence of
hybrids.

– Hybrid H0: This is the experiment with b = 0.
• Do

∗ Sample k = (k′, k′′, ∆, s)← Gen(1λ).
∗ Sample a random β-sized set V ⊂ [α] using random coins G(s).

• Until q ∈ {pk′(fk′′(x)⊕∆,x)|x ∈ [α] \ V}.
• Let (L,R)← p−1k′ (q)
• Let W ← V ∪ {R}.
• Puncture k′′ at W and call the result k̄.
• Let k∗ ← (k′, k̄,∆,W).

– Hybrid H1: This is a bridging step and distributed identically to H0.
• In H1, we sample V such that q ∈ {pk′(fk′′(x) ⊕∆,x)|x ∈ [α] \ V} and
set then sample (L,R)← p−1k′ (q).
• InH2 we first sample V, sample (L,R)← p−1k′ (q) and condition on R /∈ V
and L = fk′′(R)⊕∆.
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Hence, H2 is given as follows:

• Do

∗ Sample k = (k′, k′′, ∆, s)← Gen(1λ).
∗ Let (L,R)← p−1k′ (q).
∗ Sample a random β-sized set V ⊂ [α] using random coins G(s).
∗ Let W ← V ∪ {R}.
∗ Puncture k′′ at W and call the result k̄.
∗ Let k∗ ← (k′, k̄, ∆,W).

• Until R /∈ V and L = fk′′(R)⊕∆.

– HybridH2: This is identical toH1, except that we choose V as a truly uniform
set of size β instead of pseudorandomly. Computational indistinguishability
follows routinely from the pseudorandomness of G(s).

– Hybrid H3: In this hybrid, we replace fk′′(R) by a uniformly random value.
Computational indistinguishability follows routinely from the puncturing se-
curtity of f , as we puncture k′′ on W and R ∈ W. Consequently, we can
drop the loop exit condition L = fk′′(R) ⊕ ∆ as fk′′(R) ⊕ ∆ is now dis-
tributed uniformly and independently of all other values. Furthermore, we
can include the condition R /∈ V directly into the sampling process for V.
Hence we can write H3 as follows:

• Sample k = (k′, k′′, ∆, s)← Gen(1λ).
• Let (L,R)← p−1k′ (q).
• Sample a random β-sized set V ⊂ [α] \ {R}.
• Let W ← V ∪ {R}.
• Puncture k′′ at W and call the result k̄.
• Let k∗ ← (k′, k̄, ∆,W).

We remark that nowW is now a uniformly random subset of size β+1 of [α]
subject to there being an L ∈ [N/α] and an R ∈ W such that pk′(L,R) = q.

– Hybrid H4: In this hybrid, we sample W differently, namely

• Sample a random β-sized set V ⊂ [α].
• Sample R′ uniformly at random from [α] \ V.
• Let W ← V ∪ {R′}.
• Reject and resample if R /∈ W, where pk′(L,R) = q.

Note that a setW sampled this way is uniformly random under the condition
that R ∈ W. By the above remark, H3 and H4 are identically distributed.
Hence, we can write H4 as

• Do

∗ Sample k = (k′, k′′, ∆, s)← Gen(1λ).
∗ Sample a random β-sized set V ⊂ [α].
∗ Sample R′ uniformly at random from [α] \ V.
∗ Let W ← V ∪ {R′}.
∗ Let (L,R)← p−1k′ (q).
∗ Puncture k′′ at W and call the result k̄.
∗ Let k∗ ← (k′, k̄, ∆,W).

• Until R ∈ W.
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– Hybrid H6: This hybrid is identically distributed to hybrid 4, except that we
sample set set V pseudorandomly using coins G(s), computational indistin-
guishability again follows routinely from the pseudorandomness of G(s).

– Hybrid H5: In this hybrid we replace the condition R ∈ W with q ∈
{pk′(L,R)|L ∈ [N/α], R ∈ W}. Note that the two conditions are equivalent
as (L,R)← p−1k′ (q). Furthermore, instead of sampling R′ uniformly random
from [α] \ V, we sample q′ uniformly random from {pk′(fk′′(x) ⊕∆,x)|x ∈
[α] \ V} and set (L′, R′) ← p−1k′ (q′). Note that that these two procedures
produce the same distribution for R′. We can write H5 as
• Do

∗ Sample k = (k′, k′′, ∆, s)← Gen(1λ).
∗ Sample a random β-sized set V ⊂ [α] using coins G(s).
∗ Sample q′ ←$ {pk′(fk′′(x)⊕∆,x)|x ∈ [α] \ V}
∗ Set (L′, R′)← p−1k′ (q′)
∗ Let W ← V ∪ {R′}.
∗ Puncture k′′ at W and call the result k̄.
∗ Let k∗ ← (k′, k̄, ∆,W).

• Until q ∈ {pk′(L,R)|L ∈ [N/α], R ∈ W}.
This is identically distributed to the experiment with bit b = 1. Hence this
concludes the proof.

Theorem 2. The pseudorandom set in construction 1 is pseudorandom accord-
ing to Definition 6.

Proof. The key k has the structure (k′, k′′, ∆, s) and the set is described by
Sk′,k′′,∆,s = {gk′,k′′(0, x)|x ∈ [α]\G(s)}, where gk′,k′′,∆(L,R) = pk′(L⊕fk′′(R)⊕
∆,R), pk′ is a pseudorandom permutation and f is a puncturable pseudorandom
function.

In a standard hybrid argument we can argue that pk′ is indistinguishable
from a random permutation using its pseudorandomness. Because permutations
are a group and g is just a composition of p and (L,R) 7→ (L⊕ fk′′(R)⊕∆,R)
we can also argue that g is computationally indistinguishable from a random
permutation.

Evaluating a random permutation α − β many fixed points is the same as
choosing α− β many distinct elements at random.

Theorem 3. The uncertainty set in construction 1 is pseudorandom according
to Definition 6.

Proof. Note first that puncturing a set S̃k at a random point in q ← S̃k is
equivalent to sampling a uniformly random R ← [α] and puncturing the PRF
key k′′ at R.

By the PRP security of p we can replace pk′ by a uniformly random permu-
tation π. Consequently,

S̃k∗ = {π(L′, R′) | L′ ∈ [n/α], R′ ∈ V ∪ {R}}

is a uniformly random set of size (β + 1) ·N/α.
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4 Batch Unbiased Sampling

In the upcoming PIR protocol, we need to carefully sample pseudorandom sets
in two different ways. First, we have a list of sets with hints and we need pick out
the ones that are useful to us while not introducing any unpredictable bias. Then,
we modify these useful set and integrate them back into a population of dummy
sets, that are independent of the queries, without disturbing the distribution.
The sampling procedures are entirely independent of the application and might
be of independent interest.

Split Sampling. In the following, we detail a process that allows us to, from a
list of unbiased samples, collect samples into lists such that the lists follow the
underlying distribution under the condition that they fulfill certain predicates.

Let φ1, . . . , φn be predicates on some finite domain X. Define the following
algorithm SplitSamp, which takes as input κn samples (ai)i∈[κn] from X with
associated auxiliary information (auxi)i∈[κn] and outputs n lists (A′i)i∈[n].

SplitSamp((ai, auxi)i∈[κn]) :

– Let A(0) ← ((al, auxl))l∈[κn] be a copy of the input list of pairs with
auxiliary information.

– Let t← 0.
– For i ∈ [n]:
• Let A′i be a output list of tuples. We will fill this list up in the process.
• For l ∈ [κn]:

∗ If φi(a
(t)
l ) holds, where a

(t)
l is the l-th entry of A(t):

· Append (a
(t)
l , aux

(t)
l ) to A′i.

· Sample a∗ ← χ conditioned on φi(a
∗) holding

· Let A(t+1) be a copy of A(t), where we replace (a
(t)
l , aux

(t)
l ) by

(a∗,⊥).
· Let t← t+ 1.

– Output (A′i)i∈[n].

On a high level the algorithm goes through the list of samples and puts them
into the lists A′i where each of these lists corresponds to a predicate φi. To keep
the distribution the same between A(t) and A(t+1) we replace the samples that
we take out of A(t) by ones that follow the same distribution.

We prove two theorems about this algorithm. The first one captures be-
haviour that is independent of specifics about the conditions (φi)i∈[n].

Theorem 4. Let n ∈ N. Fix a distribution χ supported on X. Assume now that
(ai)i∈[κn] are κn independent samples of χ. Now let (A′i)i∈[n] be the output of
SplitSamp((ai, auxi)i∈[κn]) and parse A′i = (a′i,j , aux

′
i,j)i∈[n],j∈[li], where li is the

length of A′i. For all i ∈ [n] the following holds: (a′i,j)j∈[li] is a list of independent
samples of χ under the condition that φi holds for each sample.

Lemma 1. For all t with A(t) = ((a
(t)
i , aux

(t)
i ))i∈[κn] we have that (a

(t)
i )i∈[κn]

follows the distribution of κn independent samples from χ.
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Proof (Proof of Lemma 1). (a
(0)
i )i∈[κn] follow the distribution χ by definition. For

any t ≥ 0 the only difference is that we sample a
(t)
i as a

(t+1)
i where φj(a

(t+1)
i ) =

1 = φj(a
(t)
i ) for some i ∈ [κn], j ∈ [n]. Therefore (a

(t)
i )i∈[κn] and (a

(t+1)
i )i∈[κn]

are identically distributed.

Proof (Proof of Theorem 4). Fix an i ∈ [n]. We only have to argue about the
i-th run of the outer loop of SplitSamp as all operations with regard to A′i happen
in that run of the loop. Let ti,l be the value that t has at the beginning of the
i-th run of the outer loop and the l run of the inner loop. As the inner loop
in the l-th run only ever does operations on the l-th element of A(ti,l) we have

for all l ∈ [κn] that a
(ti,l)
l = a

(ti,0)
l . By Lemma 1 we get that a

(ti,l)
l follows the

distribution χ for all l ∈ [κn]. a
(ti,l)
l gets added to A′i if φi(a

(ti,l)
l ) = 1. Therefore,

if it is in A′i it follows the distribution χ under the condition that φi holds.

This next theorem captures the behaviour of SplitSamp if there are certain
relation between the predicates and the distribution χ.

Theorem 5. Let n ∈ N. Fix a distribution χ supported on X as well as predi-
cates (φi)i∈[n] on X. Assume that there are constants c, c′ > 0 such that following
holds. Let x← χ, then for all i ∈ [n]

1. the probability (over the choice of x← χ) that φi(x) = 1 is less than c/n
2. the probability (over the choice of x ← χ) that φi(x) = 1 and for all j ̸= i

φj(x) = 0 is at least c′/n

Assume now that (ai)i∈[κn] are κn independent samples of χ and let (auxi)i∈[κn]
be their associated auxiliary information. Now let (A′i)i∈[n] be the output of
SplitSamp((ai, auxi)i∈[κn]). For all i ∈ [n] the following holds:

– The size of A′i at most κ3c/2, except with negligible in λ probability over all
random choices.

– there are at least c′κ/2 distinct pairs (a∗1, aux
∗
1), . . . , (a

∗
c′κ/2, aux

∗
c′κ/2) in A′i

such that each of these pairs was in the input list (ai, auxi)i∈[κn], except with
negligible probability over all random choices.

Proof. The proof follow directly from the upcoming lemmas 2 and 3

Lemma 2. For all i ∈ [n] there are at least c′κ/2 distinct sample-auxiliary-
information pairs (a∗1, aux

∗
1), . . . , (a

∗
κ, aux

∗
κ) in A′i such that each of these pairs

was in the input list (ai, auxi)i∈[κn], except with negligible probability over all
random choices.

Proof. For all i ∈ [n], by the structure of SplitSamp, we get that if for an element
(a, aux) of A φi(a) = 1 holds, but for all j < i we have φj(a) = 0, then (a, aux)
will end up in A′i. Therefore, it is enough to analyse the number of elements
(a, aux) in the initial list A such that φi(a) = 1 and but φj(a) = 0 for j ̸= i.

By precondition 2 of Theorem 5 we know that a random sample of χ fulfills
only φi with probability > c′n−1. A contains κn independent samples of χ.
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So, in expectation it contains c′κ such samples. Let S be the random variable
that describes the number of such samples. By multiplicative Chernoff bound

we get that Pr[S ≤ κc′/2] ≤
(

e−1/2

(−1/2)−1/2

)c′κ

< 0.9c
′κ, which is negligible in κ.

Therefore, the number of samples in A′i which satisfy only φi is > c′κ/2 with all
but negligible probability.

Lemma 3. For all i ∈ [n], the length li of list A′i satisfies li ≤ κ3c/2 with all
but negligible probability.

Proof. By the structure of SplitSamp for each i ∈ [κn], j ∈ [n] we take a pair
(a, aux) and add (a, aux) to A′j if φj(a) = 1. By Lemma 1 it holds that for all

i ∈ [κn], t ∈ N a
(t)
i is identically distributed to χ. Therefore, it is enough to

analyse the number of elements in a freshly sampled list A to determine how
many are put into A′i.

A has κn elements and the first coordinate of an element has a probability of
fulfilling φi with probability < cn−1 by precondition 1 of Theorem 5. Therefore,
the expected number of elements where the first coordinate fulfills φi is cκ.
Let S be the random variable that describes the number of such samples. By

multiplicative Chernoff bound we get that Pr[S ≥ κ3c/2] ≤
(

e1/2

(3/2)3/2

)cκ

< 0.9cκ,

which is negligible in κ. Therefore, the number of samples in A′i is ≤ κ3c/2 with
all but negligible probability.

Merge Sampling In the following, we detail a sampling procedure that takes as
inputs lists of samples, where each list follows the distribution χ, except that
they are conditioned on fulfilling different predicates. In each list some of the
samples are “useful” (aux ̸= ⊥). Our procedure outputs a list of samples, where
each output follows the distribution χ and there are useful samples from each
input list.

Let φ1, . . . , φn be predicates on some finite domain X. Define the following
algorithm MergeSamp, for some constant 0 < c, c†, which takes as input n lists of
samples (A′i)i∈[n], with each entry being a pair of values from X with associated
auxiliary information aux and outputs a list A of pairs from the same domains.

MergeSamp((A′i)i∈[n]) :

– For i ∈ [2cκn/c†]:

• Sample a
(0)
i from χ.

• Let aux
(0)
i be ⊥.

• For j ∈ [n]:

∗ If φj(a
(j−1)
i ) holds and lj ̸= 0, where lj is the length of A′j :

· Let (a
(j)
i , aux

(t)
i )← (a′j,lj , auxj,lj ).

· Remove (a′j,lj , auxj,lj ) from A′j .
∗ Else:

· Let (a
(j)
i , aux

(j)
i )← (a

(j−1)
i , aux

(j−1)
i )

– Output A = ((a
(n)
i , aux

(n)
i ))i∈[2cκn/c†].
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Remark 1. Note that MergeSamp always outputs a list of fixed length 2cκn/c†.
(This will be a crucial feature in the proof of Theorem 9)

About this algorithm too we prove two different theorems. The first one is
independent of specifics of the predicates.

Theorem 6. Let n ∈ N. Fix a distribution χ on X as well as predicates (φi)i∈[n]
on X. Parse entries of the lists in the following ways A′i = ((a′i,j , auxi,j))j∈[li],
where li is the length of A′i. Assume for each i ∈ [n], j ∈ [li] we have that a′i,j is
a sample from χ under the condition that φi(a

′
i,j) = 1 holds.

We get that all elements (ai)i∈[2cκn/c†], where ((ai, auxi))i∈[2cκn/c†] are the
elements of A← MergeSamp((A′i)i∈[n]), are distributed like independent samples
from χ.

Proof. Follows directly from the upcoming Lemma 4 and the fact that A =

((a
(n)
i , aux

(n)
i ))i∈[2cκn/c†].

Lemma 4. For all j1, . . . , j2cκn/c† ∈ [n] ∪ {0} we have (a
(ji)
i )i∈[2cκn/c†] are in-

dependent samples from χ.

Proof. We prove by induction. For j1 = · · · = j2cκn/c† = 0 the claim follows

because (a
(0)
i )i∈[n] are all fresh independent samples of χ. Fix an i ∈ [2c†κn].

Now we prove the induction step from ji to ji + 1. If φji+1(a
(ji)
i ) = 1 and A′ji

is not empty then a
(ji+1)
i is a new independent sample of χ under the condition

that φji+1 holds. It is independent because A′ji+1 are independent samples of χ
under the condition that φji+1 hold and we only use them because we remove

them from A′ji+1 upon use. Further, replacing a
(ji)
i by a

(ji+1)
i because they are

both samples of χ under the condition that φji+1 holds. The statement follows
by induction.

Theorem 7. Let n ∈ N. Fix a distribution χ on X as well as predicates (φi)i∈[n]
on X. Assume that there are constants c, c′, c†, c∗ > 0 such that the following
holds.

1. Let x ← χ, then for all i ∈ [n] the probability (over the choice of x ← χ)
that φi(x) = 1 is > c†n−1

2. Let x ← χ under the condition that φi(x) = 1, then for all i ∈ [n] the
probability (over the choice of x← χ) for all j ̸= i φj(x) = 0 is less than c∗.

Parse entries of the lists in the following ways A′i = ((a′i,j , auxi,j))j∈[li], where
li is the length of A′i. Assume there are ≤ cκ elements in each A′i and ≥ c′κ
elements in A′i such that auxi,j ̸= ⊥ Further, assume for each i ∈ [n], j ∈ [li] we
have that a′i,j is a sample from χ under the condition that φi(a

′
i,j) = 1 holds.

Now let A ← MergeSamp((A′i)i∈[n]) and parse A = ((ai, auxi))i∈[2c†κn]. We
get that for all i ∈ [n] there is an element (a′i, auxi) from A′i with auxi ̸= ⊥ in A
with all but negligible probability.
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Lemma 5. If all the precondition of Theorem 7 are met, at the end of the sam-
pling process for all j ∈ [n] we have that A′j is empty.

Proof (Proof of Lemma 5). For each i ∈ [2cκn/c†] we remove the last element
from A′j if φj(a) holds and A′j is not empty yet. By Lemma 4 we know that a
follows the distribution χ. We know that A′j is no longer than cκ. By precondition
1 of Theorem 7 of MergeSamp we know that the probability of a sample of χ
fulfilling φj is> c†n−1. Therefore, the expected number of elements that fulfill φj

is 2cκ. Let S denote the number of times φj gets checked inMergeSamp and holds

true. By multiplicative Chernoff bound we get that Pr[S ≤ cκ] ≤
(

e−1/2

(1/2)1/2

)2cκ

<

0.92cκ, which is negligible in κ. Therefore, the number of times φj gets checked
in MergeSamp and holds is > κc with all but negligible probability.

Proof (Proof of Theorem 7). For each j ∈ [n] a precondition of Theorem 7 states
the number of elements of A′j for which aux ̸= ⊥ is ≥ c′κ. By Lemma 5 all of
them are moved from A′j at some point.

By the structure of MergeSamp once a sample-auxiliary information pair

(a′j,i, auxj,i) becomes (a
(j)
i , aux

(j)
i ) for some i it ends up in A unless φj′(aj,i) = 1

for some j′ > j. By precondition 2 of Theorem 7 this happens with probability
< c∗. Because there are ≥ c′κ pairs such that the auxiliary information is ̸= ⊥
and the processes are independent the probability that no pair (aj,i, auxj,i) with

aux ̸= ⊥ is in A is < c∗c
′κ, which is negligible in κ.

5 Two-Server Batch PIR

In the following we show how to use puncturable pseudorandom sets from Con-
struction 1 with parameters α = N/B and β = N/B2 and batch unbiased
sampling to create a two server batch PIR protocol.

Construction 2 In the following we describe the client and server algorithms of
the PIR protocol. Let p = (Gen,Expand, IntersectSet,Puncture, InUncertaintySet)
be a PPRS with range [N ] and size ℓ.

– Offline Phase/Preprocessing:
• Algorithm client1,1: On input the computational security parameter λ,
statistical security parameter κ, the database size N , and the batch pa-
rameter B, generate keys ki via Genf (λ) for all i ∈ [κB] the client gener-
ates ki ← Gen(λ) and chooses a uniformly random nonce ncei ← {0, 1}λ.
It outputs a list c1 = (ki, ncei) and a state st1 = c1.

• Algorithm server1: On input the database DB, a list c1 = (ki, ncei) and
a key K, where the keys ki represent sets Ski , i ∈ [κB], compute the hint

hi = PRFK(ncei)⊕
⊕
j∈Ski

DB[j]

for all i ∈ [κB] and output them as a list s1.
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• Algorithm client1,2: On input a list s1 of hints and a state st1 consisting
of the keys hi, i ∈ [κB], create and returns, as the preprocessing, the list
of pairs H = ((ki, hi, ncei))i∈[λB] together with the database size N and
the batch size B.

– Online Phase:
• Algorithm client2,1: On input a preprocessing H and a list of queries
Q ∈ [N ]B do as follows:

∗ Let (A′j)j∈[B] ← SplitSamp((ai = ki, auxi = (hi, ncei))i∈[λB]) with the
predicates (φj)j∈[B] where φj(k) computes qj ∈ IntersectSet(k,Q)

∗ For each j ∈ [B] parse A′j as (ai,j = ki,j , auxi,j = (hi,j , ncei,j))i∈[|A′
j |]

∗ For each j ∈ [B], i ∈ [|A′j |] let k∗i,j ← Puncture(ki,j , qj).
∗ For each j ∈ [B] set A′′j = {k∗i,j , (hi,j , qj , ncei,j)}i∈[|A′

j |]
∗ Let A← MergeSamp({A′′j }j∈[B]) with the predicates {φj}j∈[B] where
φj(k) computes InUncertaintySet(k, qj)

∗ Parse A = {(ai = k∗i , auxi = (qi, hi, ncei))}i∈[|A|]
∗ For all i ∈ [|A|] for which ncei = ⊥ reset ncei ← {0, 1}λ to a uni-
formly random value.

∗ Output c2 = {k∗i , ncei}i∈[|A|] and st2 = A.
• Algorithm server2: On input a list of punctured keys c2 = {(k∗i , ncei)}i∈[|A|]
and a database DB and a PRF key K, compute, for each i ∈ [|A|], the
parity

pi = PRFK(ncei)⊕
⊕

j∈Sk∗
i

DB[j]

and output the list s2 = {pi}i∈[|A|].
• Algorithm client2,2: On input a list of parities s2 and a state st2 =
A = {(ai = k∗i , auxi = (qi, hi, ncei))}i∈[|A|], initialize the empty output
list out. For i ∈ [|A|] do:

∗ If (hi, qi, ncei) ̸= ⊥ and W does not contain an element with first
component qi then include (qi, pi ⊕ hi) into the list out.

Output the list out. 5

Theorem 8. The PIR in construction 2 satisfies computational correctness (see
Definition 7) if the punctured pseudorandom sets have pseudorandom outputs
and pseudorandom uncertainty sets (see Definition 6).

Proof. Theorem 5 gives us a tool to upper bound the number of elements in
each bin A′i, as well as a lower bound on the number of useful elements in each
bin, that is the elements that are endowed with a hint that comes from the
preprocessing H.

Specifically, the distribution χ in Theorem 5 corresponds to the distribution
Sk for a fresh key k, The parameter n corresponds to B, and φj corresponds to
qj ∈ Sk, which is equivalent to qj ∈ IntersectSet(k,Q).

However, in order to apply Theorem 5, we first have to establish its precon-
ditions. Specifically, we need to bound the following probabilities:

5 Since our algorithm returns the replies to the queries in Q in unordered fashion, we
add the database position qi to the replies.
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– For each q ∈ Q we need to upper-bound the probability that q is in a freshly
generated Sk

– For each q ∈ Q we need to lower-bound the probability that q ∈ Sk, but no
other q′ ∈ Q \ {q} is in Sk (again for a freshly sampled k)

The sets Sk follow rather complicated and thus hard to analyze distributions,
which makes it hard to compute the above probabilities directly for the Sk. How-
ever, we can use the fact that these distributions are pseudorandom (Theorem 2)
to bound these two probabilities. Specifically, bounding these probabilities for
truly random sets is rather routine.

By construction, the sets Sk have size exactly α− β, which we call ℓ, in the
following we only need that there exist constants c̃, c > 0

c̃N/B < ℓ < cN/B.

which follows from the choice of parameters α = N/B and β = N/B2.
Now fix an element q ∈ Q. With the above we have Pr[q ∈ Sk] < c N

BN =
c/B − negl(κ). This establishes the first precondition of Theorem 5.

Fix a q ∈ Q. We will now bound the probability that a Sk contains q but no
other q′ ∈ Q. Let T ⊆ [N ] be a uniformly chosen set of size ℓ. We can bound
this probability that T contains q but doesn’t contain any q′ ∈ Q \ {q} by

Pr[q ∈ T and T ∩ (Q \ {q}) = ∅] = Pr[q ∈ T ] · Pr[T ∩ (Q \ {q}) = ∅|q ∈ T ]

=
ℓ

N
·

∏
i∈[B−1]

(
1− ℓ− 1

(N − i)

)

> c̃
N

BN
·
(
1− cN/B

N −B

)B

> c̃/B ·
(
1− 2c

B

)B

(1)

>
c̃ · e−4c

B
(2)

The inequality 1 holds for N > 2B, which we can assume without loss of
generality because our protocol becomes worse than the trivial solution for 2B ≥
N , and inequality 2 holds as B ≥ 4c using the first-order approximation 1−x ≥
e−2x for x ∈ [0, 1/2].

Consequently, by Theorem 2 we also get that

Pr[q ∈ Sk and Sk ∩ (Q \ {q}) = ∅] ≥ Pr[q ∈ T and T ∩ (Q \ {q}) = ∅]− negl(κ)

>
c̃ · e−4c

B
− negl(κ).

We can now invoke Theorem 5 and conclude that for each j ∈ [B] we have
A′j is at most λ3c/2 long and contains at least c′λ/2 elements with hints that
come from H.
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Theorem 7 gives us a tool guarantee that A contains at least one element
that is endowed with a hint for q that comes from the preprocessing H for all
q ∈ Q.

Specifically, the distribution χ in Theorem 7 corresponds to the distribution
S̃k∗ for a fresh key k, uniform q ←$ Sk, and k∗ ← Puncture(k, q). The parameter
n corresponds to B, and φj corresponds to qj ∈ S̃k∗ .

Next, we want to invoke Theorem 7. To establish the preconditions we need
to bound the following probabilities:

– For each q ∈ Q we need to lower-bound the probability that q is in S̃k∗ for
a freshly generated k, uniformly random q′ ←$ Sk and k∗ ← Puncture(k, q′)

– For each q ∈ Q, we want to lower-bound the probability that (Q\{q})∩S̃k∗ =
∅ for a freshly generated k conditioned q ∈ Sk with k∗ ← Puncture(k, q)

As above, we will rely on the fact that the sets S̃k∗ are pseudorandom (Theo-
rem 2) to bound these two probabilities.

By construction, the sets S̃k∗ have size exactly (N/α) · (β+1), which we call
ℓ′, in the following we only need that there exist constants c̃, c > 0

c̃N/B < ℓ′ < cN/B.

which follows from the choice of parameters α = N/B and β = N/B2.

Now fix an element q ∈ Q. With the above we have Pr[q ∈ S̃k∗ ] > c̃ N
BN =

c̃/B − negl(κ). This establishes the first precondition of Theorem 7.

Fix a q ∈ Q. We will now bound the probability that for k ← Gen(λ) under
the condition that q ∈ Sk and k∗ ← Puncture(k, q) we have for no other q′ ∈ Q
that q′ ∈ S̃k∗ . Let T ⊆ [N ] be a uniformly chosen set of size ℓ′ under the condition
that it contains q. We can bound this probability that T doesn’t contain any
other q′ ∈ Q by

Pr[T ∩ (Q \ {q})] =
∏

i∈|[B−1]|

1− ℓ− 1

(N − i)

>

(
1− cN/B

N −B

)B

>

(
1− 2c

B

)B

(3)

> e−4c (4)

The inequality 3 holds for N > 2B, which we can assume without loss of
generality because our protocol becomes worse than the trivial solution for 2B ≥
N , and the inequality 2 holds as B ≥ 4c by using the first-order approximation
1− x ≥ e−2x for x ∈ [0, 1/2].
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Consequently, by Theorem 1 and Theorem 3 we also get that

Pr
k←Gen(λ)|q∈Sk
k∗←Puncture(k,q)

[S̃k∗ ∩ (Q \ {q}) = ∅] ≥ Pr[T ∩ (Q \ {q}) = ∅]− negl(κ)

> e−4c − negl(κ).

This establishes the second precondition of Theorem 7.
We can now invoke Theorem 5 and conclude that for each q ∈ Q we have

A contains at least one element (k∗i , (q
∗
i , hi, ncei)) such that q = q∗i , k∗i =

Puncture(k, q) where (ki, hi, ncei) is in H with all but negligible probability.
Therefore, we have that hi = PRFK(ncei)⊕

⊕
j∈Sk

DB[j], and from the correct-
ness of the puncturable pseudorandom set we get that Sk∗

i
= Ski \ {q}. For this

element the client gets a response p = PRF(ncei)⊕
⊕

j∈Sk∗
i

DB[j], which means

p ⊕ h =
⊕

j∈Sk
DB[j] ⊕

⊕
j∈Sk∗ DB[j] = DB[q]. Thus the protocol is computa-

tionally correct.

Theorem 9. The PIR construction 2 satisfies computational privacy (see Def-
inition 7).

We prove this statement using the properties of SplitSamp, the puncturable
pseudorandom sets, and MergeSamp in Appendix A.1.

Theorem 10. Given that PRF is a pseudorandom function, the Construction 2
satisfies server privacy.

Proof. Our simulator is given as follow:

– When interacting with the offline-phase, the for each (ki, ncei) the simulator
chooses a fresh uniformly random bit ri ← {0, 1} and sets hi = ri. It further
stores the tuple (ncei, ki, ri)

– For each pair (k∗i , ncei) in the online phase, the simulator first checks if
there is a tuple (ncej , kj , rj) stored in the step phase. If so it sets {qi} =
Skj \ Sk∗

i
and sets its response to pi = rj ⊕ DB[qi]. Otherwise if not such

tuple (ncej , kj , rj) was stored it sets pi to a uniformly random value.compute

Consider the following hybrids:

– Hybrid 0: This is the real experiment.
– Hybrid 1: This is identical to the real experiment, except that the experiment

aborts if two different queries use the same nonce. By a birthday union bound
this event has only negligible probability O(N · 2−λ/2), hence hybrid 0 and
hybrid 1 are statistically close

– Hybrid 2: In this hybrid we replace the pseudorandom function PRFK by
a uniformly random function R. Computational indistinguishability follows
routinely from the PRF security of PRF.

– Hybrid 3: In this hybrid we compute all hj via hj = rj and all corresponding
pi via pi = rj ⊕DB[qi]. This is identically distributed to hybrid 2, as by the
condition introduced in hybrid 1 no nonce nce is used twice.
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– Hybrid 4: In this hybrid we undo the modification of hybrid 1. Hence the
statistical distance between hybrids 3 and 4 is at most O(N · 2−λ/2). This is
the ideal experiment.

This concludes the proof.

Remark 2. The protocol has the following runtimes and communication sizes:

– Offline client computation: θ̃(B)
– Offline server computation: θ̃(N)
– Offline communication: θ̃(B)
– Client storage between offline and online stage: θ̃(B)
– Online client computation: θ̃(N/B +B2)
– Online server computation: θ̃(N)
– Online communication: θ̃(N/B)

where θ̃ ignores all log factors and λ.

We prove the remark in Appendix A.2.
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A Proofs for Construction 2

A.1 Proof of Theorem 9

Here, we prove Theorem 9, which establishes the security of Construction 2.

Proof. The simulator for the 2sbPIR scheme given in Construction 2 is very
simple: It generates c2 by generating 2cλn/c† fresh keys, each punctured at a
uniformly random point.

Sim(1λ, N,B) :
– For i ∈ [2cλn/c†]:
• Let k ← Gen(λ)
• Sample q ←$ Sk uniformly at random
• Let k∗i ← Puncture(k, q)
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– Output c2 = (k∗i )i∈[2cλn/c†].

We will now argue that the message c2 generated by client2,1 in a real
run of the protocol is computationally indistinguishable from the output of
Sim(1λ, N,B) in the view of the second server.

– Hybrid 0: This is the real experiment, i.e. we compute c2 as in the real run
of the protocol. Specifically, c2 is generated as follows.
1. (A′j = (ai,j = ki,j , auxi,j = hi,j)i∈[|Aj |])j∈[B] ← SplitSamp((ai = ki, auxi =

hi)i∈[M ]) with the predicates (φj)j∈[B] where φj(k) computes whether
qj ∈ IntersectSet(k,Q)

2. For each j ∈ [B], i ∈ [|A′j |] let k∗i,j ← Puncture(ki,j , qj).
3. For each j ∈ [B] set A′′j = (k∗i,j , hi,j)i∈[|A′

j |]
4. A ← MergeSamp((A′′j )j∈[B]) with the predicates (φj)j∈[B] where φj(k)

computes InUncertaintySet(k, qj)
5. Parse A = ((ai = k∗i , auxi = (qi, hi)))i∈[|A|]
6. Set c2 = (k∗i )i∈[|A|]

– Hybrid 1: This hybrid is identical to hybrid 0, except that we modify step 2 in
the generation of c2. Specifically, instead of setting k∗i,j ← Puncture(ki,j , qj)
we do the following:
• Sample a fresh key k as k ← Gen(λ).
• Sample an element q′ as q′ ← Sk.
• Compute the punctured key k∗ as k∗ = Puncture(k, q′), conditioned on

q ∈ S̃k (i.e. reject an resample if this condition does not hold)
• Set k∗i,j = k∗

We claim that hybrid 0 and hybrid 1 are computationally indistinguishable.
First, observe that by Theorem 5 it holds that for each j ∈ [B] the keys
(ki,j)i∈[A′

j ]
in hybrid 0 are all uniform conditioned on qj ∈ IntersectSet(ki,j ,Q)

holding, which is equivalent to qj ∈ Ski,j
.

Hence, the punctured keys k∗i,j in hybrid 0 follow the same distribution as in
the pseudorandomness of punctured elements game (Definition 6) for b = 0.
On the other hand, in hybrid 1 all keys k∗i,j follow the same distribution as in
the pseudorandomness of punctured elements game (Definition 6) for b = 1.
Thus, a sequence of λB sub-hybrids going over all elements in all bins j ∈
[B], we can use the pseudorandomness of punctured elements property to
establishes computational indistinguishability of hybrids 0 and 1.

– Hybrid 2: In this hybrid we choose c2 = Sim(1λ, N,B), i.e. this is the ideal
experiment.
We claim that hybrid 1 and hybrid 2 are identically distributed.
First note that in hybrid 1 for all j ∈ [B] A′′j is a list of tuples (k∗i,j , auxi,j)
such that each k∗i,j is uniform under the condition that qj ∈ Ski,j . Hence the
preconditions of Theorem 6 are satisfied, which establishes that the output
A = ((ai = k∗i , auxi = (qi, hi)))i∈[|A|] of MergeSamp((A′′j )j∈[B]) is such that
all k∗i are uniformly chosen keys punctured at uniformly random points in
their domain.
Note that it always holds that |A| = 2cλn/c†. This means that c2 = (k∗i )i∈|A|
follows exactly the distribution generated by Sim(1λ, N,B).

This concludes the proof.
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A.2 Proof of Remark 2

Here, we prove Remark 2 that establishes the runtime and communication of
Construction 2.

Proof. For database of size N and batch size B we choose parameters for the
puncturable pseudorandom set α = N/B and β = N/B2. In the first phase,
client generates λB new keys and receives λB responses. Generating a new key
takes time θ̃(1). Therefore, the runtime is θ̃(B). The server has to compute λB
inner products where the non-zero entries are elements of the pseudorandom
sets. These sets have size α − β ∈ θ̃(N/B). Therefore the runtime of server1 is
θ̃(N). Overall, the communication between client and server1 is λB many keys
and one bit-responses totalling to θ̃(B) communication.

The list A has length θ̃(B). server2 has to compute an inner product for each
uncertainty set. The number of non-zero entries are the number of elements in
the uncertainty set, which have size (N/α)(β + 1) = B(N/B2 + 1) = θ̃(N/B).
Therefore, the computation of server2 is θ̃(λN). The punctured representation
of these sets are of size θ̃(λ + β). So the communication in the second phase is
θ̃(λB(N/B2)) = θ̃(λN/B).

We know analyse the runtime of the client in the second phase. It operates in
three stages: SplitSamp, puncturing, andMergeSamp. First we analyse SplitSamp.

In SplitSamp has to compute IntersectSet(k,Q) and sample a new set under
the condition that a certain φ holds θ̃(λB) many times because these operations
only have to be done once per key in (A′j)j∈[B]. In Theorem 8 we prove that∑

j∈[B] |A′j | ∈ θ̃(λB). Because IntersectSet(k,Q) takes time θ̃(N/B2 + B) and

sample a new set under the condition that a certain φ holds his in θ̃(1) this part
takes time θ̃(N/B+B2). Once IntersectSet(k,Q) is computed for all the relevant
sets it is a constant time operation to look up q ∈ IntersectSet(k,Q) for a specific
q and k. This operation has to be done λB2 many times in SplitSamp. Therefore,
the runtime of SplitSamp is θ̃(N/B +B2).

Then each key in (A′j)j∈[B] has to be punctured. Puncturing costs time

θ̃(N/B2) and has to be done for θ̃(B) many elements. Therefore, the runtime
for this step is in θ̃(N/B).

In MergeSamp the inner loop gets run θ̃(B2) many times and the operation
therein are in θ̃(1). Thus, the computation of the client is in θ̃(N/B +B2).
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