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Abstract. A secret sharing scheme allows a trusted dealer to divide
a secret among multiple parties so that a sufficient number of them
can recover the secret, while a smaller group cannot. In CRYPTO’21,
Goyal, Song, and Srinivasan introduced Traceable Secret Sharing (TSS),
which enhances traditional secret sharing by enabling the identification
of parties involved in secret reconstruction, deterring malicious behavior
like selling shares. Recently, Boneh, Partap, and Rotem (CRYPTO’24)
presented two more efficient TSS schemes. However, these existing TSS
schemes assume that all distributed shares are valid and shareholders
act honestly during the secret reconstruction phase. In this paper, we
introduce Traceable Verifiable Secret Sharing (TVSS), a concept de-
signed to ensure both traceability and verifiability in the face of ma-
licious actions by either the dealer or shareholders. We propose a general
strategy for transforming a Shamir-based, computationally secure Verifi-
able Secret Sharing (VSS) scheme into an efficient TVSS scheme. Build-
ing on this strategy, we construct two practical TVSS schemes in the
honest-majority setting, based on well-known VSS schemes proposed by
Feldman (SFCS’87) and Pedersen (CRYPTO’91). Our proposed TVSS
schemes retain public shareholder indexes, enhancing flexibility in de-
signing accountable threshold protocols (e.g., Distributed Key Genera-
tion protocols) using TVSS. Compared to the original VSS schemes, the
individual share size in the new TVSS schemes increases by only a single
field element and is just two or three times the size of the main secret.
Motivated by a recent study on Accountable Threshold Cryptosystems
(ATCs) by Boneh, Partap, and Rotem (CRYPTO’24), and by leveraging
our proposed Feldman-based TVSS scheme, we also introduce an effi-
cient ATC based on ElGamal cryptosystem. This new ATC enables a
tracer to uniquely identify the parties involved in the decryption process
while introducing minimal overhead to existing actively secure (and/or
robust) threshold protocols built on the ElGamal cryptosystem.

Keywords: Verifiable Secret Sharing · Traceable Secret Sharing · Trace-
able Verifiable Secret Sharing · Shamir Secret Sharing



1 Introduction

An (n, t)-secret sharing scheme [26] allows a trusted dealer to distribute a secret
among n parties such that any t+1 or more parties can recover the secret, while
up to t parties learns nothing about the secret. These schemes are fundamen-
tal in cryptography and have numerous applications in multi-party computation
and threshold cryptography, such as threshold decryption [11,12], threshold sig-
natures [10,28], and threshold verifiable unpredictable functions [21]. They also
enable distributed schemes, such as e-voting systems and anonymous credentials.

In this study, we focus exclusively on the well-known Shamir’s Secret Sharing
(SSS) protocol [26] and its verifiable variants, as it is currently a widely used
secret sharing scheme. In a standard (n, t)-SSS, a trusted dealer shares a secret
among n parties using a secret degree-t polynomial, with each party receiving a
unique evaluation of the polynomial as their individual share of the main secret.
Later, if needed, any t + 1 shares can collectively reconstruct the secret polyno-
mial and, consequently, the main secret or perform computations that require
the main secret. However, standard SSS has two limitations: first, it does not
protect against malicious dealers who may distribute invalid shares, nor against
malicious shareholders who could provide invalid shares during the reconstruc-
tion process. Second, it fails to ensure accountability during the reconstruction
phase and does not safeguard against untrustworthy shareholders who could be
bribed to sell their shares without fear of being identified. To overcome these
challenges, various extensions and modifications have been introduced to im-
prove secret sharing schemes, particularly SSS. Verifiable Secret Sharing (VSS)
protocols have been proposed to address the first issue, allowing parties to verify
the shares received from the dealer as well as those broadcast by other parties
during the secret reconstruction phase [2, 9, 15, 24]. To tackle the second issue,
recently Traceable Secret Sharing (TSS) has been developed which allows for
tracing the shareholders involved in the reconstruction of the secret [6, 19].

1.1 Verifiable Secret Sharing

The initial Verifiable Secret Sharing (VSS) was introduced by Chor, Goldwasser,
Micali, and Awerbuch [9], by allowing parties to verify the shares. Later, Feld-
man [15] used the homomorphism property of Discrete Logarithm (DL) and
proposed the first efficient, non-interactive VSS (in the happy path) based on
SSS in the honest-majority setting which can achieve Information-Theoretic (IT)
binding and computational hiding (a.k.a. unpredictability). In Feldman VSS [15]
a dealer publishes homomorphic commitments (using discrete logarithm) to the
coefficients of the secret polynomial used in SSS. These commitments enable the
parties to verify the validity of their shares during the sharing phase, as well
as the published shares during the reconstruction phase. Similar to the original
SSS, one advantage of Feldman’s VSS is that the individual shares are the same
size as the main secret. However, one drawback of Feldman’s VSS scheme is that
the shared secret requires high entropy. Given the commitments, an adversary
can learn the secret in the exponent, i.e., gs, and if there is insufficient entropy,
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they can solve the DL problem to recover the secret s. To address this con-
cern, Pedersen [24] proposed his well-known homomorphic commitment scheme
and subsequently revisited Feldman’s construction, introducing a new variant
that achieves IT hiding (a.k.a., statistical secrecy) and computational binding
under the DL problem [24]. Compared to Feldman’s scheme, Pedersen’s VSS
doubles the size of individual shares, increasing them from 1 field element to
2 elements, while eliminating the requirement for a high-entropy secret. Sim-
ilar to the original SSS, Pedersen VSS can achieve statistical secrecy against
up to t malicious shareholders. In a recent work [2], Atapoor, Baghery, Cozzo,
and Pedersen (ABCP) proposed a practical Shamir-based VSS scheme in the
honest-majority setting that operates with hash-based (or, more generally, non-
homomorphic) commitments. Compared to Feldman’s scheme, the ABCP VSS
scheme triples the size of individual shares, increasing them from 1 field element
to 3 elements, while accommodating low-entropy secrets and non-homomorphic
(e.g., hash-based) commitments.

In the reconstruction phase of all VSS schemes, including [2, 15, 24], each
party publishes their individual share. The published shares are then verified
using the verification algorithm of the respective VSS scheme, and at least t+ 1
valid shares are used to interpolate the secret polynomial and reconstruct the
main secret. It is important to note that, similar to the original Shamir scheme,
in all the practical VSS schemes mentioned, given any t+1 individual shares, one
can generate the shares of all parties. In other words, the secret reconstruction
phase is not accountable, making it challenging to trace and identify the exact
parties involved in the reconstruction phase of all VSS schemes.

1.2 Traceable Secret Sharing

In CRYPTO’21, Goyal, Song, and Srinivasan [19] introduced Traceable Secret
Sharing (TSS), which enhances traditional secret sharing by enabling the iden-
tification of parties involved in secret reconstruction, thereby discouraging ma-
licious behavior such as selling shares. In traditional secret sharing (and VSS)
schemes, a secret is divided into shares, and any qualified set of shareholders
can reconstruct the main secret. However, in TSS, the goal is not only to allow
reconstruction by a sufficiently large number of shareholders but also to trace
the shareholders who contribute their shares to the reconstruction process. This
property is formally referred to as traceability, which is not guaranteed in stan-
dard secret sharing schemes. In addition to the requirements of a standard secret
sharing scheme, a TSS scheme must satisfy non-imputability, which ensures that
no malicious tracer can falsely accuse a particular (honest) shareholder, even
if they have access to the shares of all other parties (except for the targeted
individual). The motivation behind TSS is to prevent malicious actions, such as
illicit reconstructions or leaks, by introducing accountability mechanisms while
keeping the individual shares private.

The authors in [19] provide formal definitions of TSS and its security require-
ments, along with various constructions based on SSS. The main idea behind
their construction is to partition each party’s share into two parts: the first part
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is a secret known only to that party and unknown to the dealer, while the second
part is a share of a secret known only to the dealer (and unknown to any indi-
vidual party). Intuitively, the first part, which is unknown to the dealer, allows
to achieve non-imputability against a malicious dealer, while the whole shares
enables the dealer (or a tracer) to identify the parties involved in the secret
reconstruction [19]. However, their TSS scheme has some limitations: first, the
size of the individual shares grows quadratically with the size of the secret; sec-
ond, parties cannot verify the shares received from the dealer; and finally, their
protocol assumes that the parties act honestly during the reconstruction phase.

Very recently, Boneh, Partap, and Rotem [6] in CRYPTO’24 presented two
more efficient TSS schemes, one of which is constructed based on SSS. The au-
thors focus on optimizing the share size within TSS schemes and, similar to
SSS, assume that a trusted dealer generates the shares and distributes them
among the parties, while separating a malicious tracer from the trusted dealer.
In the TSS scheme by Goyal, Song, and Srinivasan [19], the parties participate
two-by-two in a two-party protocol with the dealer to generate the shares. Al-
though this is excessive for a TSS scheme, it could be accomplished by a trusted
dealer who is separate from the tracer, as demonstrated in [6]. Main contribu-
tion in [6] is reducing the share size to a constant size, assuming the existence
of a reconstruction box containing up to t (hardcoded honest) shares. Given
the complementary set of shares, the box can reconstruct and return the main
secret. In their Shamir-based TSS scheme, to trace the parties involved in the
reconstruction of the secret, the tracer must query the reconstruction box twice.
Moreover, their tracing approach involves querying invalid shares to the recon-
struction box [6]. As a VSS scheme rejects invalid shares, their tracing strategy
is not suitable for building a TVSS. This raises an interesting research question
on developing traceable verifiable secret sharing schemes in [6], which we explore
in this paper.

1.3 Our Contributions

Traceable Verifiable Secret Sharing (TVSS). In this paper, we introduce
Traceable Verifiable Secret Sharing (TVSS) as an enhancement of both Verifi-
able Secret Sharing (VSS) and Traceable Secret Sharing (TSS) schemes, and we
provide formal definitions for computationally secure TVSS schemes.

A TVSS scheme consists of six polynomial-time algorithms: Initial, Share,
Verify, Reconstruct, VerifTrace, and Judge. The first four algorithms are inherited
from a VSS scheme [15], while the last two are essential for implementing trace-
ability in secret sharing [19]. Roughly speaking, a TVSS scheme simultaneously
achieves the properties of both VSS [2, 15, 24] and TSS [6, 19] schemes, which
are formally defined in Section 3. Similar to a VSS scheme, a TVSS scheme
enables parties to use the Verify algorithm and check the validity of the dis-
tributed shares during the Sharing phase and the published shares during the
reconstruction phase.

In common VSS schemes [2, 3, 15, 24], the Reconstruct algorithm typically
assumes that parties broadcast the plain values of their shares. After verifying
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these shares using the scheme’s Verify algorithm, the Reconstruct algorithm re-
turns either a verified reconstructed secret or a ⊥ symbol if it fails to collect at
least t+ 1 valid shares. In TVSS schemes, we extend the Reconstruct algorithm.
First, inspired by current actively-secure threshold protocols, like [17, 24], we
allow parties to broadcast a function of their shares instead of the plain values,
also addressing scenarios where a malicious shareholder might sell a function of
their shares, as explored in TSS schemes [19]. To maintain verifiability, when
parties reveal a function of their shares, they must also provide proof that these
values are derived from the original shares, and they know (or hold) the shares.
Second, the Reconstruct algorithm is modified to ensure it produces proof of cor-
rect execution and valid outputs. When parties reveal their shares, this proof
may simply be the shares themselves, as these are sufficient for an external party,
such as a tracer or judge, to verify the validity of the reconstructed secret and
identify the parties involved in the reconstruction phase. If shareholders reveal a
function of their shares along with a valid proof, the reconstruction algorithm can
return either the individual proofs provided by the parties or a single aggregated
proof on behalf of all parties involved in the reconstruction. This latter option
may lead to more efficient protocols in terms of communication and computa-
tion. Third, the Reconstruct algorithm is modified to return the valid collected
shares along with individual proofs, even if they are fewer than the threshold
value t + 1 and insufficient to reconstruct the secret. It returns the ⊥ symbol
only if it fails to collect at least one valid share. This modification allows the
output of the Reconstruct algorithm to be used to trace the parties involved in
the reconstruction phase, even if their number is below the qualified threshold.

Similar to TSS schemes [6, 19], a TVSS scheme also ensures that parties
involved in the reconstruction of the secret or a function of their shares can
be uniquely traced and identified. We achieve this, using the Trace algorithm
and the output of new Reconstruct algorithm. Additionally, as defined by Goyal
et al. [19] for a TSS scheme, a TVSS scheme guarantees the non-imputability
property, meaning that a malicious dealer (or tracer), even if colluding with
all other shareholders, cannot produce valid evidence for the Judge algorithm
to falsely implicate an honest participant. This feature is crucial for protecting
honest shareholders from a malicious dealer’s attempts to implicate them.

General Strategy for Building TVSS. We present a general strategy to con-
vert a Shamir-based VSS scheme in the honest-majority setting into an efficient
TVSS scheme with minimal computation and communication overhead. Like
the original VSS scheme, we assume each party has access to a secure broadcast
channel and private communication with the dealer. Our approach is inspired
by the two-party protocol between the dealer and each shareholder in Goyal et
al.’s TSS scheme [19], as well as the design of the ABCP VSS scheme [2], where
part of the individual shares is specific to each party. The key idea is to take a
Shamir-based VSS scheme and extend it by augmenting individual shares with
additional shares specific to each party, as in [19]. However, in our case, these
new shares are sampled by the parties themselves, while the dealer and other
parties only have access to their commitments.
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Practical TVSS Schemes. Using the proposed strategy, we build two practical
TVSS schemes based on the well-known VSS schemes proposed by Feldman [15]
and Pedersen [24] in the honest-majority setting. Our focus is on these estab-
lished VSS schemes; however, we believe that our strategy is general enough to
be applied to recently proposed VSS schemes, such as [2, 3], which are based
on non-homomorphic commitments. Unlike the TSS schemes proposed in [6,19],
and similar to the standard SSS [26] and its verifiable variants [2, 3, 15, 24], our
proposed TVSS schemes retain shareholder indexes (i.e., their unique evaluation
points) as public information. This enhances their flexibility in building other
accountable threshold protocols, particularly in the context of distributed VSS
and Distributed Key Generation (DKG) [1,17,24] protocols, where parties need
to know the indexes or evaluation points of all other participants. In terms of
efficiency, in both of our proposed TVSS schemes, compared to their VSS vari-
ants [15, 24], the size of individual shares increases by only one additional field
element. Refer to Table 1 for a compact and high-level comparison.

Table 1. Comparison of key features and share sizes in various relevant constructions.
SS: Secret Sharing, VSS: Verifiable Secret Sharing, TSS: Traceable Secret Sharing,
TVSS: Traceable Verifiable Secret Sharing. |s| denotes the size of the main secret. ✓:
Satisfied. ✗: Not satisfied.

Scheme Verifiability Traceability Non-Imputability Share Size

SS-Shmair [26] ✗ ✗ ✗ 1|s|
VSS-Feldman [15] ✓ ✗ ✗ 1|s|
VSS-Pedersen [24] ✓ ✗ ✗ 2|s|
VSS-ABCP [2] ✓ ✗ ✗ 3|s|
TSS-GSS [19] ✗ ✓⋆ ✓ O(|s|2)
TSS-BPR [6] ✗ ✓⋆ ✓ 2|s|

TVSS-Feldman (Sec. 4.1) ✓ ✓ ✓ 2|s|
TVSS-Pedersen (Sec. 4.2) ✓ ✓ ✓ 3|s|

⋆ In these schemes, the tracer must query the reconstruction box twice, and in our case only once.

Accountable Threshold Cryptosystems. Recently, Boneh, Partap, and
Rotem [5] introduced and studied the concept of accountability in threshold de-
cryption protocols, where dishonest parties may collude to sell their decryption
shares without fear of identification. Motivated by their work, as a sample appli-
cation of new TVSS schemes, we leverage our new Feldman-based TVSS scheme
(from Section 4.1) and construct a practical Accountable Threshold Cryptosys-
tem (ATC) based on the ElGamal cryptosystem [14].

To this end, we first present the syntax for an ATC that extends existing non-
accountable threshold cryptosystems by incorporating a tracing mechanism. This
mechanism allows a tracer to uniquely identify and trace the parties involved in
the decryption process. In terms of efficiency, our proposed ATC adds minimal
computational overhead compared to alternative actively secure (and/or robust)
non-accountable threshold cryptosystems based on the ElGamal cryptosystem.
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We provide detailed discussions on the efficiency of the new ATC and compare
it with the protocol of Boneh, Partap, and Rotem [5] later in Section 5.

Comparison of Trust Assumptions in TSS and TVSS. Previous works on
TSS [6,19] rely on two key assumptions regarding participants behavior: first, the
dealer is honest and correctly distributes secret shares. Second, malicious parties
who sell their shares act honestly (and naively) from the buyer’s perspective.
The second assumption is problematic for the following reason: These works
assume that malicious parties provide a reconstruction box containing hard-
coded honest shares, which answers secret reconstruction queries an arbitrary
number of times. In their Shamir-based TSS schemes, tracing strategies [6, 19]
rely on multiple (i.e., two) queries to this reconstruction box to identify malicious
parties. However, if the reconstruction box were designed to self-destruct after
a single query, this tracing strategy and model would fail. In such a scenario, a
malicious party could sell shares once without being caught, making the tracing
mechanism ineffective. Consequently, we remain skeptical that previous works
fully address the risks posed by malicious share-selling.

In contrast, our work introduces traceability and verifiability to secret shar-
ing, strengthening security and accountability in the following ways. First, our
schemes ensure correct share distribution, eliminating reliance on the honest
dealer assumption. Second, unlike previous works that depend on unrealistic
reconstruction boxes for tracing, our approach guarantees verification and trace-
ability in every execution of the protocol. We address malicious behavior in share
trading through two key mechanism: 1) Verification Before Use: A buyer will
not purchase an invalid share (e.g., an incomplete or non-verifiable share), as
any end application (e.g., an Accountable Threshold Cryptosystem) enforces a
verification procedure (i.e., the VerifTrace algorithm) to confirm both validity
and legitimacy before use. 2) Identity Binding to Shares: Each share is cryp-
tographically linked to the identity of shareholder, deterring shareholders from
selling their shares. This ensures that the protocol maintains non-imputability
while allowing any illicit share transaction to be directly traced back to the seller,
creating a strong disincentive for malicious behavior. Practical implications of
our TVSS schemes is that they provide strong guarantee that only valid shares
can be traded and used. Additionally, they establish a direct mechanism to link
shares to their sellers. Thus, our approach effectively mitigates the risks associ-
ated with malicious behavior in share trading and provides a more secure and
accountable framework for real-world applications of T(V)SS.

1.4 Outline

In Section 2, we provide an overview of some preliminary concepts and defini-
tions. In Section 3, we formally introduce the syntax of traceable verifiable secret
sharing schemes and discuss their security properties. In Section 4, we propose
two practical TVSS schemes based on well-known VSS schemes of Feldman and
Pedersen. In Section 5, using our new Feldman-based TVSS scheme, we present a
practical accountable threshold cryptosystem. Finally, in Section 6, we conclude
the paper and discuss some potential future work.
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2 Preliminaries

Notation. We let λ denotes a security parameter and 1λ its unary representa-
tion. A function that is negligible in the security parameter λ is simply called
negligible. We use the assignment operator ← to denote uniform sampling from
a set Ξ, e.g. x ← Ξ. We write ZN := Z/NZ and ZN [X]t for polynomials of
degree t in the variable X and with coefficients in ZN , i.e. the polynomial ring
over ZN . For n ∈ N, we write [n] = {1, . . . , n}. PPT stands for probabilistic
polynomial time and all algorithms are PPT, unless mentioned.

Definition 2.1 (Discrete Logarithm Problem (DLP) [13]). Let G be a
cyclic group of prime order p with generator g. The DLP is hard if for all PPT
adversaries A: Pr[∀ G← G | x← A(g,G) : G = gx] ≤ negl(λ).

We refer the reader to Appendix A for detailed preliminaries on Secret Shar-
ing and Shamir’s Scheme (App. A.1), Traceable Secret Sharing (App. A.2),
Sigma Protocols and Non-Interactive Zero-Knowledge Proofs, the Fiat-Shamir
Transform (App. A.3), Public-Key Cryptosystems and ElGamal’s Scheme
(App. A.4), Commitment Schemes (App. A.5), and Distributed Key Genera-
tion Protocols (App. A.6).

3 Traceable Verifiable Secret Sharing

In this section, we formally define Traceable Verifiable Secret Sharing (TVSS)
as an extension of both VSS [2, 15, 24] and TSS [6, 19] and present the syntax.
Our definition naturally combines the syntax of computationally secure VSS and
TSS schemes in the honest-majority setting, as outlined in [2,15,19], with some
subtle modifications and extensions.

In the reconstruction phase of typical VSS schemes, at least t+ 1 sharehold-
ers reveal the plain values of their shares, e.g., si. These revealed shares are
then verified using the protocol’s transcript and the VSS scheme’s verification
algorithm. Once a set of t + 1 valid shares (that pass the verification) is iden-
tified, they are used to reconstruct the main secret, e.g., s. In our definitions
and protocols, we extend the functionality of the reconstruction phase in two
key directions. First, we extend the syntax to allow reconstruction with fewer
than t + 1 parties. This modification is inspired by recent works on traceable
secret sharing protocols [6, 19], which permit an unqualified set of shareholders
(fewer than t + 1 parties) to reconstruct and potentially sell a function of their
shares. Second, we enable shareholders participating in the reconstruction phase
to reveal a function of their shares rather than the plain share values. This ap-
proach is commonly employed in actively secure real-world threshold protocols,
such as distributed key generation (DKG) protocols [24] and threshold decryp-
tion schemes [11, 12], where shareholders reveal a function of their shares (e.g.,
gsi) and provide proof that the function was correctly computed using the orig-
inal share si. Consequently, if the parties choose to reveal a function of their
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shares, such as zi = F (si), they are required to attach a non-interactive (pos-
sibly zero-knowledge) proof demonstrating that zi has been correctly computed
from the original share si. This modification also allows for the formalization of
the share-selling scenario as defined in traceable secret sharing (TSS) schemes,
where shareholders can sell a function of their shares rather than the shares
themselves [6, 19].

3.1 Syntax and Requirements

A TVSS scheme is a 6-tuple (Initial, Share, Verify, Reconstruct, VerifTrace, Judge)
of polynomial-time algorithms. The first four algorithms (Initial, Share, Verify,
Reconstruct) are inherited from a VSS scheme [15], while (VerifTrace, Judge)
are defined specifically to enable traceability in secret sharing [19]. We formally
define the syntax of TVSS schemes as follows:

Definition 3.1 (Traceable Verifiable Secret Sharing). Given an injective
function F (·), an (n, t)-TVSS consists of six PPT algorithms, defined as follows:

1. Initial: During this phase, the initialization is completed, public parameters
are generated, and then distributed to all parties.

2. Share(1λ, n, t, s)→ ({si}ni=1, πshare, tk, vk): Given 1λ, the integers (n, t), and
a secret s as inputs, the algorithm shares the secret s and obtains the shares
s1, · · · , sn along with a proof πshare, which is generated to verify the validity
of these shares. Additionally, it generates a pair of tracing and verification
keys (tk, vk). It then outputs ({si}ni=1, πshare, tk, vk).

3. Verify(n, t, {si}ni=1, πshare) → true/false: Given the integers (n, t), shares
{si}ni=1, and proof πshare as inputs, the algorithm checks the validity of the
shares and returns either true (accept) or false (reject).

4. Reconstruct({si}i∈Q, πshare, F (·)) → {F (s), πrec}/{{F (sj)}j∈V , πrec}/⊥:
Given the function F (·)—which could also be the identity function Iden(·)—
the proof πshare, and the shares {si}i∈Q, the algorithm operates as follows:
Each party i ∈ Q publishes (F (si), πi), where πi serves as a proof of the
validity of F (si). If F (·) is the identity function Iden(·), then πi is not re-
quired.4 All parties then verify the published {(F (si), πi)}i∈Q and gather the
valid pairs. From the set of valid pairs, they construct an n-bit string who,
where each bit indicates whether the corresponding party has provided a valid
proof.5 Let {(F (sj), πj)}j∈V denote the set of these valid pairs, where V ⊆ Q
is the set of their indexes. It acts as follows:

- If |V | = 0, returns ⊥.

4 Note that, in certain cases, such as round-robin threshold protocols [1], parties may
update the output from the previous party using their shares, rather than indepen-
dently publishing a function of their share. In this case, the party must provide proof
to verify the correctness of the update.

5 For example, if who = 010011, it means that parties 1, 2, and 5 have provided valid
proofs and participated in the reconstruction. As we will show later, the string who
is defined solely for efficiency purposes.
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- If |V | ≥ t + 1, reconstructs F (s) and generates an associated proof πrec

where s is the main secret.6 The algorithm then returns (F (s), πrec).
Additionally, the string who is included in the proof πrec.

- If 0 < |V | < t + 1, returns the set {F (sj)}j∈V and an associated proof
πrec for their validity. Similarly, the string who is included in πrec.

5. VerifTrace({F (s), πrec}/{{F (sj)}j∈V , πrec}, tk) → {b, I, πtrace}: Given a
function of the secret or its shares and the corresponding proof, i.e.
{F (s), πrec} or {{F (sj)}j∈V , πrec}, and a (public or private) tracing key
tk, it checks the validity of πrec. If the verification fails, it returns {0, ∅, 0n}.
Otherwise, it identifies a subset I ⊆ V of valid identities. It then outputs 1, I
along with a proof πtrace.

6. Judge(I, πtrace, vk) → true/false: This is a deterministic algorithm that
takes a set I, a proof πtrace, and a verification key vk as inputs. It outputs
either true, indicating that the proof successfully verifies the parties in I are
accurately traced, or false, indicating that the proof is rejected.

3.2 Security Properties

A TVSS scheme must fulfill the properties of both VSS [2,15,24] and TSS [6,19]
protocols. Specifically, a TVSS scheme should ensure the following properties:
correctness, verifiability, unpredictability (or secrecy), traceability, and non-
imputability, as defined below. We adapt some of these definitions from prior
works [6, 15,19,22].

Definition 3.2 (Perfect Correctness). For any integers n > 1 and t < n a
TVSS is called correct, if we have:

Pr

[
({si}ni=1, πshare, tk, vk)← Share(1λ, n, t, s),

(s′, πrec)← Reconstruct({si}i∈V, |V |≥t+1, πshare, Iden(·)) : s′ = s

]
= 1 ,

Pr

({si}ni=1, πshare, tk, vk)← Share(1λ, n, t, s),

(b,Q′, πtrace)← VerifTrace(Reconstruct({si}i∈Q, πshare, F (·)), tk) :

b = 1 ∧Q′ = Q

 = 1 ,

where V is the set of honest parties, Q is set of honest parties participated in the
reconstruction phase, where 0 < |Q| ≤ n, and Iden(·) is the identity function.

Definition 3.3 (Verifiability). For any integers n ≥ 2t + 1 and t ≥ 0, a
TVSS is called verifiable if for any PPT adversaries A, we have:

Pr


({si}ni=1, πshare, tk, vk)← A(1λ, n, t);

Verify(n, t, {si}ni=1, πshare) = true :

∃s,∀V ∈ [n], |V | ≥ t + 1;

(s, πrec)← Reconstruct({si}i∈V , πshare, Iden(·))

 ≥ 1− negl(λ) ,

where V is the set of honest parties, and Iden(·) is the identity function.

6 It is important to note that, in this scenario, we assume any qualified set of parties
can compute F (s).
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Informally, the verifiability property ensures that even if the dealer is dis-
honest, any execution of the sharing phase determines a unique value s which
will be reconstructed at the reconstruction phase.

Definition 3.4 (Unpredictability). For any integers n > 1 and t < n a
TVSS is called unpredictable if for all PPT adversaries A we have:

Pr

[
({si}ni=1, πshare, tk, vk)← Share(1λ, n, t, s);Q ⊂ [n]; |Q| ≤ t;

s′ ← A(1λ, n, t, {si}i∈Q, πShare) : s′ = s

]
≤ negl(λ) .

Definition 3.5 (Statistical Secrecy). For any integers n > 1 and t < n a
TVSS achieves the secrecy property if for all adversaries A, we have:

Pr

(m0,m1)← A(1λ, n, t); b← {0, 1};
({si}ni=1, πshare, tk, vk)← Share(1λ, n, t,mb);Q ⊂ [n]; |Q| ≤ t;

b′ ← A(1λ, n, t, {si}i∈Q, πshare,m0,m1) : b′ = b

 ≤ 1

2
+negl(λ) .

In some literature, this property is referred to as IND2-Secrecy [22], while in
others, it is called Privacy [19]. In this work, we use the term Secrecy.

Definition 3.6 (Traceability). For any integers n > 1 and t < n, a TVSS is
called traceable if for all PPT adversaries A, and any set Q ⊆ [n], we have:

Pr


({si}ni=1, πshare, tk, vk)← Share(1λ, n, t, s);

{F (s), πrec}/{{F (sj)}j∈Q, πrec} ← A({si}i∈Q, πshare, F (·));
(b, I, πtrace)← VerifTrace({F (s), πrec}/{{F (sj)}j∈Q, πrec}, tk) :

(b = 1 ∧ I ⊆ Q ∧ Judge(I, πtrace, vk) = true) ∨ (b = 0)

 ≥ 1−negl(λ) .

Informally, the traceability property ensures that if the Reconstruct algorithm
is executed maliciously by a PPT adversary, and it generates a verifiable output,
the VerifTrace algorithm will identify the parties with valid shares.

Definition 3.7 (Non-imputability). For any integers n > 1 and t < n, a
TVSS is called non-imputable if for all PPT adversaries A, we have:

Pr

({si}ni=1, πshare, tk, vk)← Share(1λ, n, t, s);

(1, I, πtrace)← A({si}i∈[n]\i∗ , πshare, tk) :

Judge(I, πtrace, vk) = true ∧ i∗ ∈ I

 ≤ negl(λ) .

Informally, the non-imputability property guarantees that even if a PPT
adversary has access to the shares of all honest parties except one, denoted as
Pi∗ , it cannot produce any valid proof that falsely implicates Pi∗ in misbehavior.
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3.3 Building a TVSS from a VSS Scheme

Next, we introduce a generic technique that allows a computationally secure
Shamir-based Verifiable Secret Sharing (VSS) scheme to be converted into a
Traceable VSS (TVSS) scheme.

Generally speaking, this approach redefines each party’s share to consist of
two components, i.e., si := (fi, γi). The first component (e.g., fi) is sampled by
the dealer using Shamir’s secret sharing scheme with parameters (n, t), while the
second component (e.g., γi) is an independently sampled random element cho-
sen by each party Pi. Our technique is inspired by the traceable secret sharing
scheme introduced by GSS’21 TSS [19], where the dealer engages in a two-party
protocol with each shareholder. In the end, each party receives a share composed
of two components, with the dealer only knowing one of those parts. After the
sharing phase concludes, all parties learn the commitments to everyone’s shares.
However, in their TSS scheme, the size of the individual shares in GSS’21 is
quadratic in secret size. In contrast, our proposed TVSS scheme requires shares
that are only twice as large as the secret. By structuring each share to include
both a dealer-generated component and a shareholder-generated component, we
not only ensure the verifiability of the shared secret but also achieve traceability
and non-imputability. Specifically, our constructed TVSS scheme achieves verifi-
ability, unpredictability, and robustness against up to t malicious parties, while
also ensuring non-imputability even when an adversary controls the dealer and
up to n− 1 other parties. The main idea is that, even if the adversary has con-
trol over the dealer and all but one party, they cannot fully determine the share
of the remaining party. This is because the independently sampled component
(e.g., γi) remains private to each party, and only commitments to these shares
are made public. As a result, the adversary cannot gain complete knowledge of
the target party’s share. These commitments are later used in the VerifTrace
algorithm to verify the validity of the reconstructed secret or shares.

Let Γ ′ := (Initial′,Share′,Verify′,Reconstruct′) be a secure Shamir-based
VSS scheme. Using the proposed technique, we construct a new TVSS scheme
Γ := (Initial,Share,Verify,Reconstruct,VerifTrace, Judge) as outlined in Figure 1.
This new scheme retains the foundational principles of the original VSS while
incorporating additional functionalities, traceability and non-imputability, by
extending the share generation and reconstruction processes to include individ-
ually sampled components by each party, as well as mechanisms for tracing the
parties involved in the reconstruction phase.

New TVSS schemes extends the reconstruction phase of typical VSS schemes
in two key ways, offering greater flexibility while still ensuring accountability.
First, shareholders are permitted to run the reconstruction algorithm even with
an unqualified set of parties. Second, they can publish a function of their shares
rather than the plain values. These enhancements allow any set of parties to
reconstruct a function of their shares, and if the number of parties exceeds t,
forming a qualified set, they can reconstruct the main secret or a function of it.

To maintain verifiability in the reconstruction phase and ensure accountabil-
ity, when parties choose to reveal a function of their shares, such as zi = F (fi),
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Initial: As in the Initial′ algorithm of Γ ′, parties {Pi}ni=1 generate the necessary parameters for
the commitment scheme C and the NIZK proof scheme ΠNIZK. We assume the existence of a
dealer D and the set of parties {Pi}ni=1 who will receive the shares.

Share: Given (n, t) and the secret s := f0, the dealer D proceeds as in the Share′ algorithm
of Γ ′ and privately distributes the shares, i.e., {fi}ni=1, to the parties while publishing a
proof πD. Moreover, in addition to Γ ′, each party Pi samples a random secret, γi, and
broadcasts a commitment to it, denoted c′i = C(γi). At the end of this phase, parties obtain
the proof πshare = tk = vk := (πD, c′1, . . . , c

′
n), and each party Pi stores its individual

share si consisting of two components, si := (fi, γi), jointly determined by the dealer and
the shareholder itself.

Verify: the parties proceed with the verification phase of the underlying VSS scheme. Given the
proof πshare := (πD, c′1, . . . , c

′
n) and the shares, i.e., si := (fi, γi) for i = 1, . . . , n, the

parties proceed with the verification phase of the underlying VSS scheme. The parties also
verify the well-formedness of {c′i}

n
i=1 published by the parties. Any participant who fails to

broadcast a valid commitment or submits a wrong commitment is disqualified. Ultimately,
the parties reach a consensus either on an approved set Q of qualified participants or reject
the final verification.

Reconstruct: Given a function F (·), which can also be the identity function, the proof πshare :=
(πD, c′1, . . . , c

′
n), and the shares, i.e., {si := (fi, γi)}i∈Q, the parties proceed as follows.

- Each party Pi, for i ∈ Q, publishes (zi = F (fi), πi), where πi is a non-interactive proof
(or argument) generated by NIZK proof scheme ΠNIZK to ensure that zi = F (fi) is
computed correctly and the party knows the original si := (fi, γi), that are generated
and committed in the sharing phase. Note that if the function F (·) is the identity
function, then πi will be si := (fi, γi), as si itself can be verified using πshare.

- Given πshare, the broadcasted values {zi := F (fi), πi}i∈Q are verified and the valid
ones are collected. Let {zj = F (fj), πj)}j∈V be the set of valid pairs, and V denotes
the set of their indexes. From the set of valid pairs, they construct an n-bit string who,
where each bit indicates whether the corresponding party has provided a valid proof.

- If |V | = 0, the protocol returns ⊥;
- If t + 1 ≤ |V |: the protocol reconstructs z := F (f0) and generates associated proof

πrec := {πj}j∈V , to show that z is computed correctly by the parties indicated in who
and they know {sj}j∈V . Finally, it returns (z = F (f0), πrec := {who, πj}j∈V ). If F (·)
be the identity function, then {πj}j∈V can be the set of shares {sj}j∈V .

- If 0 < |V | < t+1: the protocol returns {zj := F (fj)}j∈V and a proof πrec := {πj}j∈V

to show that {zj}j∈V are computed correctly by the parties indicated in who and they
know {sj}j∈V .

VerifTrace: Given {z := F (f0), πrec := {who, πj}j∈V } or {{zj := F (fj)}j∈V , πrec :=
{who, πj}j∈V }, generated by Reconstruct, and tracing key tk := πshare = (πD, c′1, . . . , c

′
n),

it verifies the proofs πrec := {who, πj}j∈V using the tracing key tk and determines the
set I ⊆ V as the set of valid ones. Finally, it returns the set I and πtrace := (z :=
F (f0) or {zj := F (fj)}j∈V , {πj}j∈I) if |I| > 0; otherwise, it returns {0, ∅, 0n}.

Judge: Given an alleged subset I, and a proof πtrace := (z = F (f0) or {zj =
F (fj)}j∈I , {πj}j∈I), and vk := πshare = (πD, c′1, . . . , c

′
n), it verifies if πtrace is valid and

outputs true or false.

Fig. 1. A general framework for constructing a TVSS scheme Γ from a computationally
secure Shamir-based VSS scheme Γ ′, a secure commitment scheme C(·), and a secure
NIZK proof scheme ΠNIZK.

they must provide a proof πi, generated by a NIZK proof system ΠNIZK. This
proof demonstrates that zi was correctly computed from the original share fi and
that the party Pi knows the original share value si := (fi, γi), which was gen-
erated during the sharing phase. These individual proofs are then collected and
combined into a final proof πrec, which is published to verify that the reconstruc-
tion phase has been executed correctly. We highlight that in new TVSS schemes,
malicious parties may attempt to sell only part of their shares to avoid identifi-
cation. For example, they might try to sell only fi instead of (fi, γi). However,
this would not be sufficient for the buyer to generate ΠNIZK (and subsequently
πrec). Thus, as mentioned before, a buyer will not purchase an incomplete share
(e.g., just fi instead of (fi, γi)), since generating the proof ΠNIZK and passing the
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VerifTrace algorithm require both secret values, (fi, γi). As a practical example,
consider an access control system based on our TVSS schemes. In such a system,
parties would need to know two passwords, (f0, γ0), to gain access to a service.
Therefore, even if a buyer manages to obtain and generate the first password,
f0, the system would still deny access, as the second component, γ0, is required.

Efficiency and Security. In terms of efficiency, the new TVSS scheme Γ ′ has
asymptotically the same computational costs as the underlying VSS scheme Γ .
We will discuss the specific computational costs for the VerifTrace and Judge
algorithms, as well as the security of the resulting TVSS scheme, later in the
context of particular instantiations and the proposed protocols.

4 Practical TVSS Schemes

Our proposed simple strategy (in Section 3.3) is general enough to be used
with various computationally secure VSS schemes. As to build a TVSS scheme
Γ , it only requires a secure commitment scheme C and a VSS scheme Γ ′. In
this section, we employ the Feldman and Pedersen VSS schemes with DL-based
commitment schemes for C and construct two efficient TVSS schemes based on
Shamir secret sharing. The resulting TVSS schemes present various trade-offs in
terms of efficiency and security.

4.1 An Efficient TVSS based on Feldman VSS

Feldman VSS. One of the well-known and widely used computationally secure
VSS schemes is Feldman’s protocol, which was proposed by Feldman in [15].
In his scheme, given (n, t) and a group generator g, to share a high-entropy
secret f0 ∈ Zq, the dealer acts as follows. It first does Shamir secret sharing
using a secret polynomial f(X) := f0 + a1X + · · · + atX

t, and privately sends
the shares si := fi = f(i) to each party Pi. Then, it publishes commitments
c0 = gf0 , c1 = ga1 , . . . , ct = gat as the proof πshare. The proof πshare allow the
parties to verify the validity of their shares in the sharing phase, as well as the
published shares during the reconstruction phase.

To verify the share fi, given, πshare := (c0, c1, . . . , ct), party Pi checks if

gfi =
∏t

j=0 c
ij

j , (1)

and outputs true or false. For n ≥ 2t + 1, if all n parties return true, then
the final Verification returns true. Otherwise, any conflict between the dealer
and the parties is resolved using a well-known conflict resolution approach, as
employed in earlier VSS schemes such as Feldman and Pedersen.

Traceable Variant of Feldman VSS. Using our proposed general construction
from Figure 1, we build a TVSS scheme based on Feldman VSS by instantiating
the underlying VSS scheme Γ ′ with Feldman VSS and the commitment scheme
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C(·) using the Discrete Logarithm (DL). Specifically, we define the commitment
to each party’s random value γi ←$ Zq as c′i := C(γi) := gγi , where g is the same
group generator used in Feldman VSS. This ensures that the commitments are
compatible with the cryptographic assumptions of the original VSS scheme, while
also enabling efficient verification and traceability. During the sharing phase, as
in the original Feldman VSS scheme, each party also receives share fi from
the dealer, and sets his share si := (fi, γi). The share verification and conflict
resolution phases are carried out almost identically to the original VSS scheme.
The primary difference is that, in addition to the usual verification step, each
party Pi must also verify the well-formedness of the commitments c′j for j =
1, . . . , n, j ̸= i published by all the other parties. If any party Pi fails to broadcast
a well-formed commitment c′i, it will be disqualified from the protocol. This
additional step ensures that each party’s commitment is well-formed, and can
be opened latter in the reconstruction phase.

In the reconstruction phase of new TVSS scheme, any set of shareholders
can compute either the plain value or a function of their shares. If the number
of participating (honest) shareholders is at least t + 1, i.e., a qualified set, they
can also compute the plain value or a function of the main secret, such as f0
or z = F (f0). If a party Pi chooses to publish a function of their shares, such
as zi = F (fi), they must provide a non-interactive proof that zi is correctly
computed from fi and they know the original share si := (fi, γi), sampled in the
sharing phase. More formally, each party Pi needs to use a NIZK proof scheme,

e.g., Π
(1)
NIZK, and generate a proof for the relation R

(1)
i , defined as follows,

R
(1)
i = {(g, F (·), zi, yi, c′i, (fi, γi)) | zi = F (fi) ∧ yi = gfi ∧ c′i = gγi}, (2)

where yi = gfi =
∏t

j=0 c
ij

j can be publicly (pre)computed using (a valid) πshare

and the public index i. Let πi be the individual NIZK proof (or argument) pub-

lished by party Pi, which is generated by a NIZK proof scheme Π
(1)
NIZK. In practice,

depending on the function F (·), the proof scheme Π
(1)
NIZK can be constructed using

different families of zero-knowledge proof systems (possibly with non-malleable
proofs), e.g., sigma protocols [25] and zk-SNARKs [20]. If party Pi reveals the
plain values of their shares, i.e., F (x) is the identity function, then πi will be
equal to si := (fi, γi), as the plain values of shares can be verified using πshare

and intuitively in that case the shares themselves can serve as a sound (but
non-zero-knowledge) proof. At the end of the reconstruction phase, the overall
proof πrec can be generated using the set of valid individual proofs, indicated
by an n-bit string who, and their corresponding statements. In the general (non-
optimized) case, πrec consists of all valid proofs, i.e., πrec := {who, πj}j∈V and
its statement would be {zj , c′j , yj}j∈V where V is the set of valid indices (i.e., the
indices of parties who have published valid proofs) and can be deduced from the
string who. In concrete applications, e.g., DL-based protocols, depending on the

function F (·) and the underlying NIZK proof scheme Π
(1)
NIZK one might be able

to generate a single and compact proof for all parties. The proof πrec guarantees
correctness of the revealed shares (or a function of them) and ensures that the
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Initial: Let G be a group with generator g, where the DL problem is hard. The group generator g

and the public parameters for the NIZK proof scheme Π
(1)
NIZK are shared with all the parties.

Share: Given (n, t), and a random secret s := f0 ∈ Zq , the protocol proceeds as follows:

- The dealer samples a random degree-t polynomial f(x) = f0 + a1X + . . . , atX
t, with

random coefficients from Zq , such that f(0) = f0. Next, the dealer computes fi := f(i)

for i ∈ [n] and privately sends fi to party Pi. Then, the dealer computes c0 = gf0 , c1 =
ga1 , . . . , ct = gat and publishes a proof πD := (c0, . . . , ct).

- In the same round, for i ∈ [n], each party Pi samples a random secret γi ∈ Zq , and
broadcasts the commitment c′i := gγi .

- At the end, each party Pi stores its individual share si := (fi, γi) and the public proof,
the tracing and the verification keys πshare = tk = vk := (πD, c′1, . . . , c

′
n) which are

generated jointly by the dealer and the parties.
Verify: Given πshare = (c0, c1, . . . , ct, c

′
1, . . . , c

′
n) and the shares, i.e., si := (fi, γi) for i ∈ [n],

the parties proceed as follows:

1) Each party Pi checks if gfi =
∏t

j=0 ci
j

j , and broadcasts a complaint against the dealer

if the verification failed. Party Pi also checks if c′k ∈ G for k ∈ [n], and k ̸= i. In
case a commitment c′k is missing or it is not well-formed, party Pi disqualify Pk and
broadcasts a complaint against it.

2) If the number of parties complaining against party Pk exceeds a threshold value t, the
party Pk is disqualified. Similarly, if the number of shareholders complaining against the
dealer exceeds a threshold value t, the dealer will be disqualified, and the verification
process will result in a false outcome.

3) If a shareholder Pi raises a complaint against the dealer, the dealer will respond by
broadcasting fi so that everyone can verify it using the verification equation. If the
verification succeeds, the protocol continues as normal. However, if it fails, the dealer
will be disqualified, resulting in a ‘false‘ verification outcome. Since the disqualification
decision is based solely on publicly shared information, all honest shareholders will
eventually agree either on a qualified set of parties Q ⊆ {P1, P2, . . . , Pn} or on rejecting
the final verification.

Reconstruct: Given a function F (·), which can be the identity function as well, the proof πshare :=
(c0, c1, . . . , ct, c

′
1, . . . , c

′
n), and the shares {si := (fi, γi)}i∈Q, the parties proceed as follows.

- Each party Pi, for i ∈ Q, publishes (zi = F (fi), πi), where πi is a non-interactive

proof (or argument) generated by Π
(1)
NIZK for the relation R

(1)
i defined in equation (2).

The proof π ensures that zi is computed correctly and Pi knows the original share
si := (fi, γi). Note that if F (·) is the identity function, then the proof πi will be equal
to si := (fi, γi), as the share si itself can be verified using πshare.

- Given πshare, the broadcasted values {zi := F (fi), πi}i∈Q are verified using the veri-

fication algorithm of Π
(1)
NIZK and the valid ones are collected. Let {zj = F (fj), πj)}j∈V

be the set of valid pairs, V be the set of their indexes, and who be an n-bit string where
each of its bit indicates whether the corresponding party has provided a valid proof.

- If |V | = 0, the protocol returns ⊥;
- If t + 1 ≤ |V |: the protocol reconstructs z = F (f0) and generates associated proof

πrec := {who, πj}j∈V , to show that z is computed correctly and the parties indicated
in who know {sj}j∈V . Finally, it returns (z = F (f0), πrec). Note that if F (·) is the
identity function, then the proofs {πj}j∈V would be the set of shares {sj}j∈V .

- If 0 < |V | < t + 1: the protocol returns {zj := F (fj)}j∈V and a proof πrec :=
{who, πj}j∈V to show that {zj}j∈V are computed correctly by the parties indicated in
who and they know {sj}j∈V .

VerifTrace: Given {z := F (f0), πrec} or {{zj := F (fj)}j∈V , πrec}, generated by Reconstruct, and

tracing key tk := πshare = (c0, c1, . . . , ct, c
′
1, . . . , c

′
n), it computes yj :=

∏t
k=0 cj

k

k for all
the parties j ∈ V (deducible from who) and then verifies the proofs πrec := {who, πj}j∈V

using the verification algorithm of Π
(1)
NIZK and commitment values {yj , c

′
j}j∈V , and finally

determines I ⊆ V as the set of valid ones. Finally, it returns 1, I and πtrace := (z =
F (f0) or {zj = F (fj)}j∈I , {πj}j∈I) if |I| > 0; otherwise, it returns {0, ∅, 0n}.

Judge: Given an alleged set I, and a proof πtrace := (z = F (f0) or {zj = F (fj)}j∈I , {πj}j∈I),

and vk := πshare = (c0, c1, . . . , ct, c
′
1, . . . , c

′
n), using the verification algorithm of Π

(1)
NIZK, it

verifies if πtrace is valid and outputs true or false.

Fig. 2. An efficient TVSS scheme based on the Feldman VSS scheme.

reconstruction was performed correctly by a set of valid shareholders. Figure 2
describes the algorithms of resulting TVSS scheme and we prove its security in
the following theorem.
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Theorem 4.1 (TVSS based on Feldman VSS). Let Π
(1)
NIZK := (Setup,P,V)

be a NIZK proof scheme for the relation R
(1)
i defined in Eq. (2) that satisfies Cor-

rectness, and Soundness (or Knowledge Soundness), as defined in Section A.3.
Then under the discrete logarithm assumption, the protocol presented in Fig-
ure 2 constitutes a secure TVSS scheme that satisfies the properties of Correct-
ness, Verifiability, Unpredictability, Traceability and Non-imputability as defined
in Definitions 3.2 to 3.4, 3.6 and 3.7.

Proof. Correctness of the Reconstruction Algorithm. By the correctness
of the Feldman VSS, the secret value s is constructed with a probability 1.

Correctness of the Trace Algorithm. We show the correctness by analyzing
two cases based on the size of Q:

- When 0 < |Q| ≤ t, the reconstruction algorithm returns {F (fj), πj ,who}j∈Q
where πj is a non-interactive proof (or argument) generated by Π

(1)
NIZK

for the relation R
(1)
j defined in equation (2). The trace algorithm given

{F (fj), πj ,who}j∈Q and the tracing key tk := πshare = (c0, c1, . . . , ct,

c′1, . . . , c
′
n), computes yj :=

∏t
k=0 c

jk

k for j ∈ Q (which can be deduced
from the n-bit string who) and then verifies the proofs {πj}j∈Q using the

verification algorithm of Π
(1)
NIZK and commitment values {yj , c′j}j∈Q. By the

completeness property of Π
(1)
NIZK, all proofs will be accepted. Finally, it re-

turns Q and πtrace := ({F (fj)}j∈Q, {πj}j∈Q).
- When |Q| ≥ t + 1, the reconstruction algorithm returns {F (s), πj ,who}j∈Q

where πj is a non-interactive proof (or argument) generated by Π
(1)
NIZK for the

relation R
(1)
j defined in equation (2). Similarly, by the completeness property

of Π
(1)
NIZK, all proofs {πj}j∈Q will be accepted. Therefore, the trace algorithm

returns Q and πtrace := ({F (s)}j∈Q, {πj}j∈Q).

Verifiability. It holds directly by the verifiability of the Feldman VSS. (Note
that, the only difference between the verification in Figure 2 and Feldman
scheme is that the parties check if c′j are broadcast and well-formed. Since
V contains honest parties, this extra check does not affect the output of
verification algorithm in Figure 2.)

Unpredictability. The unpredictability of the protocol in Figure 2 holds
clearly by the unpredictability of the Feldman VSS which is proven under the
discrete logarithm assumption. The reason is that, for each i, the extra compo-
nent of si, which is γi, is chosen by the party i randomly and, independently
from fi. Therefore, the adversary can sample them itself and broadcast gγi for
all i ∈ Q instead of receiving them from the share algorithm. This reduces the
unpredictability of Figure 2 scheme to the unpredictability of the Feldman VSS.

Traceability. The Share algorithm given (1λ, n, t, s), where s is a random secret
from Zq, first samples a random degree-t polynomial f(x) = s+a1X+ . . . , atX

t,
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with random coefficients from Zq. Then it outputs si := (fi, γi), where fi = f(i),
and πshare = tk = vk := (c0, . . . , ct, c

′
1, . . . , c

′
n) where c0 = gs, c1 = ga1 , . . . , ct =

gat , and for any i ∈ [n], c′i = gγi . Then the adversary given {si}i∈Q, πshare, F (·)
for a set Q ⊆ [n] returns either {z := F (s), πrec} or {{zj := F (fj)}j∈Q, πrec}
where πrec = {πj ,who}j∈Q. The tracing algorithm VerifTrace in Fig. 2 given the

tracing key tk := πshare = (c0, c1, . . . , ct, c
′
1, . . . , c

′
n), it computes yj :=

∏t
k=0 c

jk

k

for j ∈ Q (which can be deduced from the n-bit string who) and then verifies

the proofs πrec := {πj ,who}j∈Q using the verification algorithm of Π
(1)
NIZK and

commitment values {yj , c′j}j∈[n]. For any statement (ci, c
′
i, F (·)), which the veri-

fication algorithm of Π
(1)
NIZK on at least one of the proofs in πrec := {πj ,who}j∈Q

returns 1, the tracing algorithm puts i in I. If there is no statement (ci, c
′
i, F (·))

which has an accepting proof in πrec := {πj ,who}j∈Q, it returns {0, ∅, 0n}. If I
is non-empty, the tracing algorithm returns 1, I, πtrace = {πi}i∈I . Analyzing the
following cases concludes the proof:

- If the tracing algorithm returns {0, ∅, 0n}, nothing is left to prove.
- Assume that with a non-negligible probability ϵ, there is an index i∗ ∈ I such

that i∗ /∈ Q. That is, the adversary does not know the corresponding witness
si∗ := (fi∗ , γi∗) for the statement (ci∗ , c

′
i∗ , F (·)), however the verification

algorithm of Π
(1)
NIZK on πi∗ returns 1 with a non-negligible probability ϵ.

Since Π
(1)
NIZK is knowledge sound (with respect to the Definition A.10), there

is an efficient extractor which returns the witness si∗ := (fi∗ , γi∗) with a
non-negligible probability, which breaks the Discrete Logarithm problem.

- It is trivial that Judge in Fig. 2 outputs true because it executes the verifica-

tion algorithm of Π
(1)
NIZK on πtrace = {πi}i∈I similar to the tracing algorithm.

Non-imputability. The Share algorithm given (1λ, n, t, s), where s is a ran-
dom secret from Zq, first samples a random degree-t polynomial f(x) = s +
a1X+ . . . , atX

t, with random coefficients from Zq. Then it outputs si := (fi, γi),
where fi = f(i), and πshare = tk = vk := (c0, . . . , ct, c

′
1, . . . , c

′
n) where

c0 = gs, c1 = ga1 , . . . , ct = gat , and for any i ∈ [n], c′i = gγi . Then the adversary
given {si}i∈[n]\i∗ , πshare, F (·) returns (1, I, πtrace = {πi}i∈I). The Judge algo-
rithm in Figure 2 given the tracing key vk := πshare = (c0, c1, . . . , ct, c

′
1, . . . , c

′
n),

it uses pre-computed values yj :=
∏t

k=0 c
jk

k for j ∈ [n] and then verifies the

proofs πrec := {πj}i∈I using the verification algorithm of Π
(1)
NIZK and commit-

ment values {yj , c′j}j∈[n]. If all the verification pass, it returns true. Otherwise,
it returns false.

Assume that the Judge algorithm returns true and i∗ ∈ I. That means the
adversary has returned an accepting proof πi∗ for the statement (ci∗ , c

′
i∗ , F (·)),

without knowing the corresponding witness si∗ := (fi∗ , γi∗). Since Π
(1)
NIZK is

knowledge sound (with respect to the Definition A.10), there is an efficient ex-
tractor which returns the witness si∗ := (fi∗ , γi∗) with a non-negligible probabil-
ity, which breaks the Discrete Logarithm problem. This completes the proof. ⊓⊔

Efficiency. The resulting TVSS scheme introduces minimal overhead compared
to the performance of the Feldman VSS. During the sharing phase, the dealer
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performs the same computations as in the original Feldman VSS. Each party Pi

only needs to sample a random secret γi and compute a single exponentiation
to generate the commitment c′i = gγi . The size of the individual shares, (fi, γi),
is merely twice the size of the shares in the Feldman VSS, or equivalently, twice
to the size of the main secret s = f0.

In the verification phase, in the optimistic scenario, each party Pi needs
to verify their share fi using Eq. (1) and also check the well-formedness of
commitments c′k for k = 1, ..., n and k ̸= i. The former check requires t + 1
small exponentiations, while the latter is a straightforward group membership
test that can be performed efficiently.

In the reconstruction phase of the new TVSS scheme, each participant may

need to use a NIZK proof scheme Π
(1)
NIZK and publish a proof πi for the relation

R
(1)
i (defined in Eq. (2)). However, if the parties reveal the plain values of their

shares (as in typical VSS schemes), the proof πi will be equal to the share
si := (fi, γi). It is important to note that in practical threshold protocols based
on VSS, such as DKG schemes or threshold signing or decryption protocols,
parties typically do not reveal the plain values of their shares. Instead, they
reveal a function of their shares along with a NIZK proof. The efficiency of proof
πi depends on the chosen function F (·) and the specific NIZK proof scheme used,

i.e., Π
(1)
NIZK. We will discuss concrete protocols later in this paper. The set of valid

proofs constitutes the collective proof πrec, which we will explore in detail in the
context of specific protocols in subsequent sections.

During the tracing phase, a tracer needs to verify the proof πrec using the

verification algorithm of Π
(1)
NIZK, which has computational cost linear in the num-

ber of valid proofs published during the reconstruction phase. Similarly, the
efficiency of the Judge algorithm will primarily depend on the time required to
verify each proof πi multiplied by the number of parties in the alleged set I.

4.2 An Efficient TVSS based on Pedersen VSS

Similar to the Feldman VSS scheme, our proposed TVSS scheme in Section 4.1
requires a high entropy secret and achieves unpredictability (defined in Def. 3.4)
which is a weaker security notion compared to Secrecy, defined in Def. 3.5.

Pedersen VSS. In [24], Pedersen introduced his well-known commitment scheme
and subsequently proposed a variant of the Feldman VSS scheme that can func-
tion with a low-entropy secret f0 as well and achieve information-theoretic se-
crecy. To share a given secret f0, Pedersen’s VSS follows a similar approach
to Feldman’s scheme, where the dealer commits to the coefficients of the se-
cret polynomial f(X) := f0 + a1X + · · · + atX

t using a discrete logarithm-
based homomorphic commitment. However, unlike Feldman’s scheme, in this
case the dealer uses Pedersen commitment. More precisely, the dealer addition-
ally samples another secret polynomial r(X) := r0 + b1X + · · · + btX

t and
privately sends the shares si := (fi, ri) = (f(i), r(i)) to each party Pi. Then,
given two random group generators (g, h), the dealer publishes commitments
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c0 = gf0hr0 , c1 = ga1hb1 , . . . , ct = gathbt as the proof πshare. Similar to Feldman
VSS, this proof πshare enables the parties to verify the validity of their shares
during the sharing phase and to validate the published shares during the recon-
struction phase. To verify the share si := (fi, ri), given πshare := (c0, c1, . . . , ct),
party Pi checks if

gfihri =
∏t

j=0 c
ij

j , (3)

and outputs true or false, similar to the verification procedure in Feldman
VSS. Compared to Feldman’s scheme, Pedersen’s VSS doubles the size of in-
dividual shares, but it allows the protocol to operate with low-entropy secrets
and provides a stronger security guarantee. During the reconstruction phase,
each party Pj must publish their share si := (fj , rj). These, published shares
are then verified using πshare and Eq. (3) and only the valid shares are used to
reconstruct the secret f0.

Traceable Variant of Pedersen VSS. Next, we build a TVSS scheme based on
Pedersen VSS by instantiating the underlying VSS scheme Γ ′ in Figure 1 with
Pedersen VSS and similarly the commitment scheme C(·) using the discrete
logarithm. Specifically, as in the Feldman-based TVSS scheme, we define the
commitment to each party’s random value γi ←$ Zq as c′i = C(γi) := gγi , where
g is the same group generator used in Pedersen VSS. Compared to the original
Pedersen VSS, this modification increases the size of each party’s share by 1
filed element, but it facilitates efficient verification and traceability. At the end
of sharing phase, as in the original Pedersen VSS scheme, each party also receives
secrets (fi, ri) from the dealer, and sets their individual share as si := (fi, ri, γi).
The share verification and conflict resolution phases proceed similarly to the
TVSS scheme outlined in Figure 2. The primary difference is that if party Pi

raises a complaint against the dealer, the dealer broadcasts both (fi, ri) to allow
everyone to verify the shares using the verification equation given in Eq. (3).

Similar to the reconstruction phase of our initial TVSS scheme in Figure 2,
any set of shareholders can compute the plain value or a function of their shares.
Moreover, any set of at least t + 1 honest shareholders can also compute the
plain value or a function of the main secret, such as s := f0 or y0 = F (f0).
A key distinction from the initial TVSS scheme (given in Figure 2), is that if
parties reveal a function of their shares, such as zi = F (fi), they must provide a
non-interactive proof that zi is correctly computed and they know the original
share si = (fi, ri, γi), generated in the sharing phase. Specifically, each party Pi

is required to use a NIZK argument, e.g., Π
(2)
NIZK, and generate a proof for the

relation R
(2)
i , defined as follows:

R
(2)
i = {(g, F (·), zi, yi, c′i, (fi, ri, γi)) | zi = F (fi) ∧

yi = gfihri ∧ c′i = gγi},
(4)

where yi = gfihri =
∏t

j=0 c
ij

j can be publicly (pre)computed using πshare and
the public index i. Similar to the case of initial TVSS scheme from Figure 2, let
πi be the individual NIZK argument published by party Pi, which is generated
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by a NIZK proof scheme Π
(2)
NIZK. Depending on the specific function F (·) used,

the proof scheme Π
(2)
NIZK can be constructed using various families of ZK proofs.

Similarly, if party Pi reveals the plain values of their shares, then πi will be
equal to si := (fi, ri, γi), as the plain values of shares can be verified directly
using the proof πshare. As with our initial TVSS scheme depicted in Figure 2,
at the conclusion of the reconstruction phase, the collective proof πrec can be
generated from the set of valid individual proofs and their associated statements.
The proof πrec ensures the integrity and correctness of the revealed shares (or
a function thereof) and certifies that the reconstruction process was executed
correctly by a set of valid shareholders.

Figure 3 outlines the algorithms of the new TVSS scheme based on Pedersen
VSS. The security of this scheme is established in the subsequent theorem.

Theorem 4.2 (TVSS based on Pedersen VSS). Let Π
(2)
NIZK := (Setup,P,V)

be a NIZK argument for the relation R
(2)
i defined in Eq. (4) that satisfies Cor-

rectness, and Soundness (or Knowledge Soundness), as defined in Section A.3.
Then under the discrete logarithm assumption, the protocol presented in Figure 3
is a secure TVSS scheme that satisfies the properties of Correctness, Verifiabil-
ity, Statistical Secrecy, Traceability and Non-imputability as defined in Defini-
tions 3.2, 3.3 and 3.5 to 3.7.

Proof. The proof is given in App. B.1. ⊓⊔

Efficiency. Our second TVSS scheme offers efficiency nearly identical to that of
the first scheme presented in Figure 2, with only minimal overhead compared to
the performance of the original Pedersen VSS.

In the sharing phase, the dealer operates as in Pedersen VSS, while each party
Pi computes a single commitment c′i = gγi , which requires one exponentiation.
The size of individual shares, si := (fi, ri, γi), is only three times the size of main
secret, increasing by only one field element compared to the original Pedersen
VSS scheme. To verify the secrets (fi, ri) received from the dealer, each party
Pi computes Eq. (3), which requires t + 1 small exponentiations. Each party Pi

also checks the well-formedness of commitments c′k for k = 1, ..., n and k ̸= i;
this is a simple group membership test that can be executed efficiently. In the

reconstruction phase, each participant may need to use a NIZK argument Π
(2)
NIZK

and publish πi for the relation R
(2)
i (defined in Eq. (4)). The efficiency of Π

(2)
NIZK

depends on the function F (·) and the specific NIZK proof scheme used. As
in Figure 2, the set of valid proofs constitutes the collective proof πrec, which we
will examine in detail in the context of specific protocols in later sections. During

the tracing phase, a tracer verifies πrec using the verification algorithm of Π
(2)
NIZK,

which has a computational cost that is linear in the number of valid parties
that participated in the reconstruction phase. As in the initial TVSS scheme
(from Figure 2), the efficiency of the Judge algorithm will primarily depend on
the time required to verify each proof πi (using the verification algorithm of

Π
(2)
NIZK) multiplied by the number of parties in the alleged set I.
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Initial: Let G be a group with hard DL, and two random generators (g, h). The group generators

(g, h) and all necessary parameters for the NIZK argument Π
(2)
NIZK are shared with all the

parties.
Share: Given (n, t), and a secret s := f0 ∈ Zq the protocol proceeds as follows:

- Given secret f0, the dealer samples a random secret r0 ∈ Zq and a two random degree-t

polynomials f(x) = f0 +a1X+ . . . , atX
t and r(x) = r0 +b1X+ . . . , btX

t, with f(0) =
f0, r(0) = r0 and random coefficients {aj , bj}tj=1 from Zq . Next, the dealer computes

fi := f(i) and ri := r(i) for i = 1, . . . , n and privately sends (fi, ri) to party Pi.

Then, the dealer computes commitments c0 = gf0hr0 , c1 = ga1hb1 , . . . , ct = gathbt

and publishes a proof πD := (c0, . . . , ct).
- In the same round, for i ∈ [n], each party Pi samples a random secret γi ∈ Zq , and

broadcasts the commitment c′i := gγi .
- At the end, each party Pi stores its individual share si := (fi, ri, γi) and the public

proof, the tracing and the verification keys πshare = tk = vk := (πD, c′1, . . . , c
′
n) =

(c0, c1, . . . , ct, c
′
1, . . . , c

′
n).

Verify: Given πshare = (c0, c1, . . . , ct, c
′
1, . . . , c

′
n), and the shares, i.e., si := (fi, ri, γi) for i =

1, . . . , n, the parties proceed as follows:

1) Each party Pi checks if gfihri =
∏t

j=0 ci
j

j , and broadcasts a complaint against the

dealer if the verification failed. Party Pi also check if c′k ∈ G for k = 1, . . . , n, and
k ̸= i. The rest of this step and step 2 are the same as in Figure 2.

3) In case a shareholder Pi complains against the dealer, the dealer will broadcast (fi, ri)
to enable everyone to verify it using the verification equation from Eq. (3). The rest of
this step is the same as in Figure 2.

Reconstruct: Given F (·), which can be the identity function as well, the proof πshare :=
(c0, c1, . . . , ct, c

′
1, . . . , c

′
n), and the shares {si := (fi, ri, γi)}i∈Q, the parties act as below:

- Each party Pi, for i ∈ Q, publishes (zi = F (fi), πi), where πi is a non-interactive

argument generated by Π
(2)
NIZK for the relation R

(2)
i in equation (4). The proof ensures

that zi is computed correctly and Pi knows the original share si := (fi, ri, γi). Again,
if F (·) is the identity function, then πi can be equal to (fi, ri, γi), as the share itself
can be verified using πshare.

- Given πshare, the published values {zi := F (fi), πi}i∈Q are verified using the verifica-

tion algorithm of Π
(2)
NIZK and the valid ones are collected. Let {zj = F (fj), πj)}j∈V be

the set of valid pairs, V be the set of their indexes, and who be an n-bit string where
encodes the indexes in set V and each of its bit indicates whether the corresponding
party has provided a valid proof.

- If |V | = 0, the protocol returns ⊥;
- If t + 1 ≤ |V |: the protocol reconstructs z := F (f0) and generates associated proof

πrec := {πj ,who}j∈V , to show that z is computed correctly the the parties indicated
by who and they know {sj}j∈V . Finally, it returns (z = F (f0), πrec = {πj ,who}j∈V ).
Note that again if F (·) is the identity function, then the proofs {πj}j∈V can be the set
of shares {sj}j∈V .

- If 0 < |V | < t + 1: the protocol returns {zj = F (fj)}j∈V and a proof πrec :=
{πj ,who}j∈V to show that {zj}j∈V are computed correctly by the parties indicated by
who and they know {sj}j∈V .

VerifTrace: Given {z := F (f0), πrec} or {{zj := F (fj)}j∈V , πrec}, generated by Reconstruct, and

tracing key tk := πshare = (c0, c1, . . . , ct, c
′
1, . . . , c

′
n), it computes yj :=

∏t
k=0 cj

k

k for
j ∈ V (which can be deduced from who) and then verifies the proofs πrec := {πj}j∈V using

the verification algorithm of Π
(2)
NIZK and the commitment values {yj , c

′
j}j∈V and determines

I ⊆ V as the set of valid ones. Finally, it returns 1, I and πtrace := (z = F (f0) or {zj =
F (fj)}j∈I , {πj}j∈I) if |I| > 0; otherwise, it returns {0, ∅, 0n}.

Judge: Given an alleged set I, and a proof πtrace := (z = F (f0) or {zj = F (fj)}j∈I , {πj}j∈I),

and vk := πshare = (c0, c1, . . . , ct, c
′
1, . . . , c

′
n), using the verification algorithm of Π

(2)
NIZK, it

verifies if πtrace is valid and outputs true or false.

Fig. 3. An efficient TVSS scheme based on the Pedersen VSS scheme.

In Section 5, we present concrete traceable threshold protocols based on our
new TVSS schemes (given in Figure 2 and 3), detailing their specific reconstruc-
tion and tracing algorithms, along with the underlying NIZK proof schemes.
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5 Accountable Threshold Cryptosystems

In threshold cryptography [11, 12], the single party (represented by the secret
key) is distributed among a group of n parties, such that at least t + 1 parties
are required to recover the secret or perform computations involving the secret
key. Particularly, in a threshold cryptosystem, the key difference from a stan-
dard cryptosystem ΠEnc = (KeyGen,Enc,Dec), lies in the distribution of the key
generation and decryption algorithms, i.e., (KeyGen, Dec). In a standard cryp-
tosystem, a single party generates the key pair (pk, sk). One can encrypt messages
using the public key pk, and decrypt ciphertexts using the private key sk. How-
ever, in an (n, t)-threshold cryptosystem, the key generation is distributed among
n parties which results in (pk, {ski}ni=1), each party i receiving a share ski of the
secret key sk. The decryption process is also collaborative, requiring at least t+1
parties to use their individual key shares to produce partial decryptions, which
are then combined using the Combine algorithm to recover the original message.
For actively secure (and/or robust) decryption, commitments to the individual
shares of the parties are also required, i.e., pki = C(ski) for i = 1, . . . , n, as these
commitments allow the parties to prove that decryption is performed correctly.
This distribution of the decryption process enhances both security and fault tol-
erance, as no single party holds the full secret key sk, reducing the risk of key
compromise. Despite these modifications, the encryption algorithm Enc remains
the same as in standard cryptosystems, allowing any party to encrypt using the
public key pk without requiring access to the threshold-specific operations.

As mentioned above, in a typical (n, t)-threshold cryptosystem, any t+1 par-
ties can jointly decrypt a ciphertext. However, like other non-accountable thresh-
old protocols, canonical threshold cryptosystems are vulnerable when parties be-
have dishonestly. Specifically, due to the lack of accountability, parties might be
incentivized to sell their key shares without fear of detection. This vulnerability
poses significant risks in various applications of threshold cryptosystems, such
as private voting, sealed-bid auctions, etc.

In this section, we discuss how our proposed Feldman-based TVSS scheme
(cf. Figure 2) can be leveraged to build an Accountable Threshold Cryptosystem
(ATC). Our approach builds on existing non-accountable threshold cryptosys-
tems but incorporates a tracing mechanism that allows a tracer to uniquely
identify and trace the parties involved in the decryption process. The proposed
protocol is based on the standard ElGamal cryptosystem [14] and can be easily
extended to its lifted variant, which supports additive homomorphism. Before
presenting our construction, we outline the syntax and security requirements
essential for these schemes.

5.1 Syntax and Requirements

An Accountable Threshold Cryptosystem (ATC) is defined as a 6-tuple
(KeyGen,Enc,Dec,Combine,VerifTrace, Judge) of PPT algorithms. The algo-
rithms (KeyGen,Enc,Dec,Combine) are inherited from a standard threshold de-
cryption scheme [11,12], while the algorithms (VerifTrace, Judge) are designed to
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implement traceability in threshold decryption protocols, similar to Traceable
Verifiable Secret Sharing (TVSS) schemes (cf. Section 3). We formally define
the syntax of ATC schemes as follows, which is adapted from [5,12],

Definition 5.1 (Accountable Threshold Cryptosystem (ATC)). An
(n, t)-accountable threshold cryptosystem ΠATC over message space M and ci-
phertext space C consists of the following PPT algorithms:

- KeyGen(1λ, n, t) → (pk, {ski}ni=1, vk, tk): Given the security parameter λ in
its unary representation, and integers (n, t), this algorithm generates and re-
turns a public key pk, individual secret shares {ski}ni=1, a pair of verification
and tracing keys (vk, tk).

- Enc(pk,m) → ct: Given a public key pk and a message m ∈ M as inputs,
this algorithm returns a ciphertext ct ∈ C.

- Dec(ski, ct) → (di, πi): Given a secret key share ski and a ciphertext ct, the
decryption algorithm returns a partial decryption di along with an associated
proof πi, which is generated to prove knowledge of si and the correctness of
the partial decryption value di.

- Combine({(di, πi)}i∈Q, ct, vk) → ({m,πdec}/{{dj}j∈V , πdec}/⊥): Given the
partial decryption values along with the associated proofs for a set of Q ⊆ [n],
i.e. {(di, πi)}i∈Q, the verification key vk, and the ciphertext ct ∈ C, the
algorithm first verifies the proofs {πi}i∈Q based on {di}i∈Q, and stores the
set of valid pairs, i.e., {(di, πi)}i∈V⊆Q. From the set of valid pairs, it forms
an n-bit string who, where each bit indicates whether the corresponding party
has provided a valid proof.7 It then acts as follows:

- If |V | = 0, it returns ⊥.

- If |V | ≥ t + 1, it uses {dj}j∈V to decrypt the ciphertext ct, computes
the message m, and generates an associated proof πdec, and returns
(m,πdec). Additionally, the string who is included in the proof πdec.

- If 0 < |V | < t + 1, it returns the set {dj}j∈V along with an associated
proof πdec for their validity. Similarly, the string who is included in πrec.

- VerifTrace ((m,πdec)/({dj}j∈V , πdec), ct, tk)→ (b, I, πtrace): Given a message
m ∈ M , or a set of decryption shares {dj}j∈V and the corresponding proof
πdec generated by the Combine algorithm, i.e., (m,πdec)/({dj}j∈V , πdec), the
ciphertext ct ∈ C, along with the tracing key tk, the algorithm first verifies
πdec. If the verification fails, it returns {0, ∅, 0n}. Otherwise, it identifies a
subset I ⊆ V of valid identities and returns (1, I, πtrace), where πtrace is the
proof of valid tracing.

- Judge(I, πtrace, vk) → true/false: Given a subset I ∈ [n], a proof πtrace,
and a verification key vk, the algorithm outputs either true, indicating that
the proof confirms that the parties in I are accurately traced, or false, in-
dicating rejection.

7 Similar to the case of TVSS (given in Def. 3.1), for instance, if who = 010011, it
means that parties 1, 2, and 5 have provided valid proofs and participated in the
decryption. Similarly, the string who is defined solely for efficiency purposes.
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1. (Q, st)← A
(
1λ, n, t

)
;

2. (pk, {ski}i∈[n], vk, tk)← KeyGen(1λ, n, t) ;
3. (m0,m1)← A (st, {ski}i∈Q, pk, vk, tk) ;
4. b← {0, 1}, ctb ← Enc(pk,mb) ;
5. b′ ← A(st, pk, vk, ctb) ;
6. return (b == b′ ∧ |Q| < t+ 1) ;

Fig. 4. GameCPA
A : The IND-CPA security game.

Security Requirements. An accountable threshold cryptosystem ΠATC must sat-
isfy the following security properties:

Definition 5.2 (Correctness). For a given integer n > 1 and t < n, an ATC
ΠATC is called correct, if we have:

Pr

[
∀m ∈M,Q ⊆ [n], |Q| ≥ t + 1; (pk, {ski}i∈[n], vk, tk)← KeyGen(1λ, n, t);

ct← Enc(pk,m); (m′, πdec)← Combine({Dec(ski, ct)}i∈Q, ct, vk) : m′ = m

]
= 1

Additionally,

Pr

∀m ∈M,Q ⊆ [n], (pk, {ski}i∈[n], vk, tk)← KeyGen(1λ, n, t); ct← Enc(pk,m);

(1, Q′, πtrace)← VerifTrace(Combine ({Dec(ski, ct)}i∈Q, ct, vk) , ct, tk) :

Q′ = Q

 = 1

Definition 5.3 (IND-CPA Security). Let the advange of an adversary A
against the IND-CPA security GameCPA

A (cf. Figure 4), be defined as follows:

AdvCPA
A (λ) = Pr

[
GameCPA

A = 1
]
.

An ATC ΠATC , is called IND-CPA secure if for all PPT adversaries A, we have:

AdvCPA
A (λ) ≤ 1

2 + negl(λ) .

Definition 5.4 (Traceability). For n > 1 and t < n, an ATC ΠATC satisfies
the traceability if for all adversaries A, and any set Q ⊆ [n], we have:

Pr


(pk, {ski}i∈[n], vk, tk)← KeyGen(1λ, n, t);

(ct, (m,πdec)/({dj}j∈Q, πdec))← A(1λ, n, t, pk, vk, {ski}i∈Q);

(b, I, πtrace)← VerifTrace((m,πdec)/({dj}j∈Q, πdec), ct, tk) :

(b = 1 ∧ I ⊆ Q ∧ Judge(I, πtrace, tk) = true) ∨ (b = 0)

 ≥ 1−negl(λ) .

Definition 5.5 (Non-imputability). For any integers n > 1 and t < n, an
ATC ΠATC satisfies the non-imputability if for all adversaries A and ciphertext
ct ∈ C, we have:

Pr

(pk, {ski}i∈[n], vk, tk)← KeyGen(1λ, n, t);

(1, I, πtrace)← A(1λ, n, t, pk, vk, tk, {ski}i∈[n]\i∗ , ct) :

Judge(I, πtrace, vk) = true ∧ i∗ ∈ I

 ≤ negl(λ) .
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Setup: Given 1λ, the parties sample (or agree on) a cyclic group G with hard DL and
two random generators (g, h), and then share pp := (g, h) with all the parties.

P: Given the public parameters pp := (g, h), the statement x := (di, c, pki), and
witness w := (fi, γi) ∈ Zq, the prover acts as follows:
- Samples (r1, r2)←$ Zq and commits to them as R1 = cr1 and R2 = gr1hr2 .
- Computes the challenge e = H(di, c, pki, R1, R2), where H : {0, 1}⋆ → Zq is
modeled as a random oracle.

- Finally, computes z1 = r1 + efi and z2 = r2 + eγi and publishes the proof
π := (R1, R2, z1, z2).

V: Given the public parameters pp := (g, h), the statement x := (di, c, pki), and
the proof π = (R1, R2, z1, z2), the verifier computes the challenge value e =
H(di, c, pki, R1, R2) and checks if:

cz1
?
= R1 dei and gz1hz2 ?

= R2 pkei

and returns true if the check passes, and false otherwise.

Fig. 5. ΠDec
NIZK: An efficient NIZK argument of knowledge for RDec

i , as defined in Eq. (5).

5.2 An Efficient Accountable Threshold Cryptosystem

Next, we introduce an efficient accountable threshold cryptosystem ΠElGamal
ATC

based on the ElGamal cryptosystem [14]. This protocol leverages the TVSS
scheme we previously defined and built in Section 4.1, and integrates account-
ability features into the threshold decryption process.

Concrete Example of Π
(1)
NIZK for Use in ΠElGamal

ATC . Before presenting the
full construction of new protocol ΠElGamal

ATC , we first construct a concrete NIZK
proof scheme, denoted as ΠDec

NIZK, which is essential for ensuring both the correct-
ness and traceability of the decryption process. The NIZK argument ΠDec

NIZK is

a specific instantiation of Π
(1)
NIZK used in the reconstruction phase of our initial

TVSS scheme. More precisely, ΠDec
NIZK is tailored to a special case of the relation

R
(1)
i defined in Eq. (2), with two key modifications. First, the function F (·) is

instantiated as the exponentiation function, meaning di = cfi , where c ∈ G and
fi ∈ Zq. Second, to achieve a better efficiency, the commitment values yi = gfi

and c′i = gγi are combined using an additional random group generator h ∈ G,
resulting in pki = gfihγi .8

In summary, the new NIZK argument ΠDec
NIZK allows a prover to generate a

proof π for the relation RDec
i , defined as follows:

RDec
i = {(g, h, c, di, pki, (fi, γi)) | di = cfi ∧ pki = gfihγi}, (5)

where x := (g, h, c, di, pki) ∈ G is the statement, and w := (fi, γi) ∈ Zq is the
witness value.

8 Note that this optimization can be avoided, though it would double the size of
verification and tracing keys, i.e., {c′i, yi}i∈[n] instead of {pki}i∈[n], and turn ΠDec

NIZK

into a proof of knowledge protocol, rather than an argument of knowledge.
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We present the details of the NIZK argument ΠDec
NIZK in Figure 5. This ar-

gument is constructed by combining a Schnorr Σ-protocol with an additional
Σ-protocol to prove knowledge of the values (fi, γi) in the Pedersen commitment
pki = gfihγi . The protocol is then converted into a non-interactive argument of
knowledge using the Fiat-Shamir transform in the random oracle model.

Intuitively, the new NIZK argument enables each participant in the decryp-
tion protocol to prove that their partial decryption has been done correctly, while
also showing that they possess knowledge of their individual shares si := (fi, γi).

Theorem 5.1 (NIZK Argument of Knowledge for RDec
i ). Let H be a

random oracle, defined as H : {0, 1}⋆ → Zq. Under the discrete logarithm as-
sumption, the proof scheme ΠDec

NIZK, as outlined in Figure 5, is a secure NIZK
argument of knowledge for the relation RDec

i in the random oracle model.

Proof. The proof is given in App. B.2. ⊓⊔

Construction of the New ATC. Figure 6 outlines the construction of our
proposed ATC ΠElGamal

ATC . Essentially, this scheme incorporates traceability into
a standard ElGamal-based threshold decryption scheme. The integration is
achieved through the use of the NIZK argument ΠDec

NIZK defined earlier (cf. Fig-
ure 5), ensuring that only authorized participants can contribute to decryption
while preserving the confidentiality of their inputs. This scheme combines the
security of ElGamal encryption with enhanced traceability, providing both cor-
rectness and accountability throughout the decryption process.

Theorem 5.2 (Accountable Threshold Decryption). Let ΠDec
NIZK :=

(Setup,P,V) be a NIZK proof scheme for the relation RDec
i , defined in Eq. (5)

that satisfies Correctness and Soundness (or Knowledge Soundness), as defined
in Section A.3 and ElGamal cryptosystem guarantees correctness and IND-CPA
security, as defined in Section A.4. Then, the proposed scheme in Figure 6 is
a secure ATC scheme and satisfies correctness, IND-CPA, traceability and non-
imputability properties, defined in Definitions 5.2 to 5.5.

Proof. The proof is given in App. B.3. ⊓⊔

Distributed Key Generation (for ΠElGamal
ATC ). Our definition of ATC (as

given in Definition 3.1) and the construction proposed in Figure 6 assume a
centralized key generation process. However, just as a standard VSS scheme
can be extended into a Distributed Key Generation (DKG) protocol, like the
Pedersen DKG protocol [17, 24], our proposed TVSS schemes from Sections 4.1
and 4.2 can similarly be adapted to create a (biased or fully secure) DKG protocol
for ΠElGamal

ATC , executed by n decryptors.
Using a DKG protocol, the secret polynomial and the corresponding commit-

ments to the shares are generated in a fully distributed manner by the parties
themselves, rather than by a trusted authority. A standard approach, based on
Feldman (or Pedersen) VSS schemes, is described in [23]. In this approach, each
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KeyGen: Given 1λ, and the integer values (n, t), the algorithm proceeds as follows:
- It samples a cyclic group G with a prime order q and two random generators (g, h),

where DL is hard. It then sets pp := (g, h) as the public parameters for the NIZK proof

scheme ΠDec
NIZK .

- Given n, for i = 1, . . . , n, it samples a random secret share γi ∈ Zq .
- Given (n, t), it samples a random secret key f0 ∈ Zq , and then secret shares it using

Shamir’s scheme and obtains the shares {fi}ni=1.
- For i = 1, . . . , n, it sets the individual shares ski := (fi, γi) and then computes Pedersen

commitments pki := gfihγi .

- It sets pk = gf0 , and vk := tk := (pp, pk1, . . . , pkn), and returns (pk, {ski}
n
i=1, vk, tk).

Note that, at the end of the key generation phase, the encryptor only stores the public key
pk, while each shareholder i learns their individual share ski = (fi, γi), in addition to the
public parameters.

Enc: Given the public key pk and a message m ∈ G, it first samples a randomizer r ← Z∗
q and

then computes and returns the ElGamal ciphertext ct := (c1, c2) = (m · pkr, gr).
Dec: Given a ciphertext ct = (c1, c2) and a secret share ski = (fi, γi), it first computes the partial

decryption value di := c
fi
2 . Then, using pp := (g, h), the statement x := (di, c2, pki), and

the witness value w := (fi, γi), it runs the NIZK argument of knowledge ΠDec
NIZK (outlined

in Figure 5) and obtains a proof πi. Finally, it returns (di, πi).
Combine: Given the partial decryption values and the proof {(di, πi)}i∈Q for the set Q ⊆ [n],

the verification key vk := (pp, pk1, . . . , pkn), and the ciphertext ct = (c1, c2), it first verifies
{(di, πi)}i∈Q and stores the set of valid pairs, i.e., {(di, πi)}i∈V ⊆Q. From the set of valid
pairs, the algorithm constructs an n-bit string who, where each bit indicates whether the
corresponding party has provided a valid proof. Then, the algorithm acts as follows:

- If |V | = 0, returns ⊥.
- If |V | ≥ t + 1, for each i ∈ V , it computes the Lagrange coefficients Li. Then, it

computes m = c1/
(∏

i∈V d
Li
i

)
. Finally, it returns (m,πdec), where πdec consists of

all the proofs provided by the decryptors in V and the string who, i.e., {πi,who}i∈V .
- If 0 < |V | < t + 1, it returns ({di}i∈V , πdec), where πdec = {πi,who}i∈V .

VerifTrace: Given a message m ∈M or a set of decryption shares {dj}j∈V (where the set V can be
deduced from the string who), the corresponding proof πdec generated by the Combine algo-
rithm, the ciphertext ct := (c1, c2), along with the tracing key tk := (pp, pk1, . . . , pkn), the al-
gorithm first verifies πdec = {πi,who}i∈V using the verification algorithm V (outlined in Fig-
ure 5). If the verification fails for all indexes j ∈ V , it returns {0, ∅, 0n}. Otherwise, it iden-
tifies the set of valid ones I ⊆ V and returns (1, I, πtrace), where πtrace := {ct, dk, πk}k∈I ,
and I ⊆ V .

Judge: Given a set of decryptors I, a proof πtrace := {ct, dk, πk}k∈I , and the verification key
vk := (pp, pk1, . . . , pkn), it runs the verification algorithm V (outlined in Figure 5) for all
k ∈ I and returns true if all the checks passed. Otherwise, it returns false.

Fig. 6.ΠElGamal
ATC : An efficient accountable cryptosystem based on ElGamal encryption.

party Pi acts as the dealer once, generating a polynomial f (i) of the correct
degree. They privately send the share f (i)(j) to party Pj for j ∈ {1, . . . , n}\{i}.
Each party then computes their own share by summing all the shares they have
received. This process implicitly defines the secret polynomial f =

∑n
i=1 f

(i),
with each player’s share f(j) =

∑n
i=1 f

(i)(j) being the sum of their individual
shares. The secret value is implicitly defined as f0 = f(0) =

∑n
i=1 f

(i)(0), which
remains unknown to all players, assuming an honest-majority setting and proper
protocol execution.

Since some parties (up to t) may behave maliciously, it is crucial that all
parties verify the correctness of the shares they receive, ensuring they originate
from a polynomial of degree at most t. If a malicious adversary uses a polynomial
of a degree greater than t, both verification and reconstruction will fail. Once
the verification process is completed using the Feldman VSS scheme, all (or a
subset of non-disqualified) parties use their individual public keys hi = gsi for
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i = 1, . . . , n to compute the final public key pk, given by

pk = gf0 = gf(0) =
∏

i∈Q gL
Q
0,isi ,

where LQ
0,i =

∏
j∈Q, j ̸=i

j
j−i is a Lagrange coefficient, and Q denotes a qualified

set of parties.
Our analysis shows that this approach can also be applied to our proposed

TVSS schemes (described in Figure 2 and Figure 3). In other words, the new
TVSS schemes can similarly be used to construct a (biased or fully secure) robust
DKG protocol for ATC ΠElGamal

ATC (as described in Figure 6), allowing the n
decryptors to generate the parameters (pk, {ski}ni=1, vk, tk) in a fully distributed
manner. At the end of the DKG protocol, each party (i.e., decryptor) will learn
their individual share ski := (fi, γi) along with the public elements (pk, vk, tk).

Efficiency and Comparisons. Although our proposed ATC based on ElGa-
mal decryption, ΠElGamal

ATC , introduces accountability, it adds minimal overhead
compared to a non-accountable, actively secure, and robust threshold cryptosys-
tem based on the ElGamal cryptosystem. Recall that in such a non-accountable
threshold decryption protocol, parties still provide a NIZK proof for the cor-
rectness of decryption, but it is slightly (i.e., about 20%) more efficient than
the NIZK proof scheme ΠDec

NIZK used in our ATC. The reason is that in the non-
accountable case, each party uses the Chaum-Pedersen DL equality NIZK pro-
tocol [7] and generates a proof to show that di = cfi ∧ pki = gfi , instead of
generating a NIZK proof for the relation RDec

i , defined in relation (5).
To be more precise, compared to an actively secure and robust threshold

cryptosystem based on the ElGamal cryptosystem, during the key generation of
our new ATC, the parties need to generate the elements (pp, pk, pk1 := gf1hγ1 ,
· · · , pkn := gfnhγn) instead of (pp, pk, pk1 := gf1 , · · · , pkn := gfn), which has the
same computational cost asymptotically. We see that the public key size remains
the same in both cases. Note that in the new ATC, both (vk, tk) are equal to
(pp, pk1, . . . , pkn), and in both schemes, the encryptor only requires (pp, pk).

The encryption phase operates identically to the standard ElGamal scheme.
In the decryption phase, each party Pi computes a partial decryption di, similar
to the standard ElGamal scheme. However, as in the non-accountable actively
secure threshold decryption protocol based on ElGamal, each party also gen-
erates a proof πi using ΠDec

NIZK, which, as mentioned earlier, has asymptotically
the same cost as in the non-accountable case, and concretely adds a constant
number of exponentiations in group G to each party’s cost.

When combining the partial decryptions, as in the non-accountable actively
secure case, the validity of the proofs {πi}i∈Q is verified using the public keys
and the verification algorithm for ΠDec

NIZK. This again has asymptotically the same
cost as in the non-accountable case, and concretely requires 5|Q| exponentiations
instead of 4|Q| (in Chaum-Pedersen DL equality proof [7]). Once valid proofs
|V | ≥ t+1 are collected, similar to threshold ElGamal, each party computes the
Lagrange coefficients and performs |V | exponentiations and |V | + 1 multiplica-
tions to obtain the message m.
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In our case, to achieve traceability, this computation is done even if |V | <
t + 1, and parties cannot recover the message m. Finally, the trace and judge
algorithms, similar to the verification part of the Combine algorithm, require to
run the verification of ΠDec

NIZK which requires at most 5|V | exponentiations, where
|V | is the number of valid parties participating in the decryption phase.

Related Work. As mentioned in introduction, in a recent related work by Boneh,
Partap, and Rotem [5] at Crypto’24, the authors studied the threshold decryp-
tion protocols in the case where dishonest parties may collude to sell their de-
cryption shares without fear of identification. This is quite relevant to our studied
research question in this section, as in our proposed ATC protocol the decryp-
tion process is accountable and the participants in the decryption phase can
be uniquely identified. In [5], the authors define a decoder function D(·), which
is created by a quorum of t + 1 or more parties and can decrypt ciphertexts.
The tracing algorithm with a black-box access to this decoder function identifies
some members of the malicious quorum. The paper adapts ideas from traditional
traitor tracing schemes [8], where individual secret keys can be traced to those
who create unauthorized decoders. To extend this idea to threshold setting, the
authors present several new cryptographic techniques, including a confirmation
algorithm that allows a verifier to confirm that a given subset of parties was
involved in creating the malicious decoder. This is particularly relevant in prac-
tical applications like blockchain encrypted mempools, where validators might
be bribed to reveal decryption keys prematurely.

A key technical difference between our ATC and their scheme lies in the trac-
ing mechanisms. In their scheme, the tracing algorithm requires black-box access
to a decoder box, which is queried with (at least two) malformed ciphertexts.
The decoder successfully decrypts some ciphertexts and outputs “fail” on oth-
ers. They, show that this success and failure pattern reveals at least one traitor
whose key was used to create construct the decoder box. In contrast, our scheme
does not rely on querying the decryption process with several (malformed) ci-
phertexts. Instead, our ATC protocol embeds accountability directly into each
decryptor’s decryption share by attaching a proof that validates both the cor-
rectness of the partial decryption and the identity of the decryptor. Intuitively,
this can be seen as an accountable signature published by each party participated
in the decryption protocol. As a result, our protocol is ready to use in practical
applications and any set of decryptors involved in the decryption phase can be
traced and held accountable without the need for additional tracing queries.

6 Conclusion

In conclusion, we introduced the concept of Traceable Verifiable Secret Sharing
(TVSS), extending the traditional Verifiable Secret Sharing (VSS) and Traceable
Secret Sharing (TSS) schemes. Our construction builds upon Shamir’s Secret
Sharing scheme, ensuring both the verifiability and traceability of shares, even
in the presence of malicious dealers or shareholders. The concept of traceability
provides accountability by enabling the identification of participants involved
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in the secret reconstruction process, deterring malicious behavior such as share
selling. We proposed a general strategy to build TVSS schemes from VSS proto-
cols, and based on that, proposed new variants of the well-known VSS schemes
by Feldman [15] and Pedersen [24] that can achieve traceability. The resulting
TVSS schemes can be used to build various accountable threshold protocols. As
an example, we demonstrated how one of our proposed TVSS schemes can be
used to construct a practical accountable threshold cryptosystem based on El-
Gamal cryptosystem, illustrating the broader applicability of TVSS in threshold
cryptography. We believe the underlying technique is general enough to be used
by other cryptosystems as well.

Future work could focus on improving the efficiency of our proposed protocols
and exploring further applications of new TVSS schemes. We believe that in some
concrete cases, it may be possible to maintain accountability while aggregating
the individual proofs generated during the reconstruction phase of TVSS schemes
to create more compact proofs. We leave this as an interesting future research
question. Our general strategy and constructed TVSS schemes are designed for
honest-majority and asynchronous networks. Further research could explore the
construction of similar protocols in asynchronous networks.
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A Preliminaries

A.1 Secret Sharing and Shamir’s Scheme

Secret sharing schemes allow a secret to be divided into multiple shares, enabling
any quorum of shareholders to reconstruct the secret, while smaller groups are
unable to learn anything about the main secret.

Definition A.1 (Secret Sharing [27]). For any two positive integers (n, t),
an (n, t)-secret sharing scheme consists of two PPT algorithms, Share and
Reconstruct. Share is a randomized function that takes a secret s ∈ Zp, and
outputs Share(n, t, s) → (s1, . . . , sn). Two main properties are correctness and
security, defined as follows:

- Correctness: For any s and a set of parties Q ⊆ [n] s.t. |Q| > t, we have,

Pr

[
∀s, (s1, . . . , sn)← Share(1λ, n, t, s)

s′ ← Reconstruct ({si}i∈Q) : s′ = s

]
= 1 .

- Security: For any secret s and a set of parties Q ⊆ [n], for all unbounded
adversaries A we have,

Pr

[
Q← A(1λ, n, t), (s1, . . . , sn)← Share(1λ, n, t, s)

s∗ ← A({si}i∈Q) : |Q| ≤ t ∧ s∗ = s

]
= 1/p .

Shamir Secret Sharing (SSS) scheme [26] is a widely used protocol, which is
formally defined below.

Definition A.2 (Shamir Secret Sharing (SSS) [26]). In an (n, t)-SSS, to
distribute a secret s ∈ Zp among n parties, the dealer creates a random poly-
nomial f(x) ∈ Zp[X] of degree t such that f(0) = s. The dealer then evaluates
f(x) at each shareholder’s public index and securely provides each shareholder
with their share si = f(i) for i ∈ [n]. To reconstruct the secret, a subset S ⊆ [n]
can be used to compute the Lagrange coefficients Li :=

∏
j∈S,j ̸=i j/(j − i), which

are then combined with the shares to recover the secret: s = f(0) =
∑

i∈S siLi.

A.2 Traceable Secret Sharing

As discussed in Section 1, Goyal et al. [19] introduced the concept of Traceable
Secret Sharing (TSS), which enables traceability to identify the shareholders
who participate in the secret reconstruction phase. Below, we recall the formal
definition of TSS by synthesizing definitions from existing TSS schemes in the
literature [6, 19] and slightly modify them.

Definition A.3 (Traceable Secret Sharing (TSS) schemes). An (n, t)-
TSS consists of five PPT algorithms of (Initial, Share, Reconstruct, Trace, Judge)
defined as follows:
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- Initial → (pp): The initialization phase generates the set of common public
parameters, pp.

- Share(1λ, n, t, s)→ ({shi}ni=1): Given the security parameter 1λ, the secret s,
and integers (n, t), the algorithm shares the secret s and obtains the shares
s1, · · · , sn.

- Reconstruct({si}i∈Q) → (s/⊥): Given a set of shares si for shareholders
i ∈ Q, it returns the secret s if |Q| > t, otherwise it outputs ⊥.

- TraceRec({F (shj)}j∈V , F (s), tk)→ ((I, πtrace)/⊥): Given a function of main
secret obtained from the Reconstruct algorithm and shares, and an optional
(public or private) tracing key tk, this algorithm has access to a reconstruc-
tion oracle Rec. It then outputs either a subset I ⊂ [n] along with an associ-
ated proof πtrace or ⊥.

- Judge(vk, I, πtrace) → true/false: It is a deterministic algorithm that,
given a verification key vk, a subset I, and an associated proof πtrace, out-
puts either true, indicating acceptance of the proof that the parties in I are
malicious, or false, indicating rejection.

A.3 Sigma Protocols and Non-Interactive Zero-Knowledge Proofs

Given a security parameter λ, let X = X(λ) and W = W (λ) be two sets and R
be a relation on X ×W that defines the following language,

 L = {x ∈ X : ∃ ω ∈W, R(x, ω) = 1}.

For an element x ∈  L, a corresponding element ω ∈ W is referred to as a
witness if R(x, ω) = 1. Let R(λ) be a PPT algorithm that generates pairs (x, ω)
satisfying R, i.e. R(x, ω) = 1.

A sigma-protocol (Σ-protocol) for the relation R is a 3-round interactive
protocol between two PPT algorithms: a prover P and a verifier V. P holds
a witness ω for x ∈  L and V is given x. P first sends a value a (so called the
commitment) to V, and then V answers with a challenge c , and finally P answers
with z. V accepts or rejects the proof. The triple trans = (a, c, z) is called a
transcript of the Σ-protocol. A Σ-protocol is supposed to satisfy Completeness,
Honest Verifier Zero-Knowledge (HVZK), and Special Soundness defined below.

Definition A.4 (Completeness). A Σ-protocol ΠΣ with parties (P,V) is
complete for R, if for all (x, ω) ∈ R we have,

Pr [trans(P(R, x, ω)↔ V(R, x)) is accepted by V] = 1 ,

where trans denotes the transcript of the protocol.

Definition A.5 (Honest Verifier Zero-Knowledge). A Σ-protocol ΠΣ sat-
isfies HVZK for R, if there exists a PPT algorithm S that given x ∈ X, can
simulate the trans of the scheme, s.t. for all x ∈  L, (x, ω) ∈ R we have,

trans(P(R, x, ω)↔ V(R, x)) ≈ trans(S(R, x)↔ V (R, x))

where trans(P(·) ↔ V(·)) indicates the transcript of ΠΣ with (P,V), and ≈ de-
notes the indistinguishability of transcripts.
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Definition A.6 (Special Soundness). A Σ-protocol ΠΣ with parties (P, V )
is special sound for R, if there exists a PPT extractor Ext, such that for any
x ∈  L, given two valid transcripts (a, c, z) and (a, c′, z′) for the same message,
a, but c ̸= c′, then Ext(a, c, z, c′, z′) outputs a witness ω for the relation R.

Public-coin Σ-Protocols. A sigma protocol ΠΣ is called public-coin if the chal-
lenge value c is a public and random string rather than something derived in a
complex or private way.

Non-Interactive Zero-Knowledge (NIZK) Proof Systems. As previously
noted, zero-knowledge proofs are interactive protocols, while Non-Interactive
Zero-Knowledge (NIZK) proofs [4,18] eliminate the need for interaction between
the prover and the verifier. A NIZK for the relation R consists of three PPT
algorithms ΠNIZK = (Setup,P,V), that are defined as follows.

- Setup(1λ)→ pp: Given the security parameter λ in its unary representation,
outputs public parameters pp.

- P(pp, x, w) → π: Given the public parameters pp, a statement x, and a
witness w, it generates a non-interactive proof π.

- V(pp, x, π) → false/true: Given the public parameters pp, a statement x,
and a proof π, it outputs either true (accept) or false (reject).

A NIZK proof scheme must satisfy Completeness, Soundness, and Zero-
Knowledge (ZK), as defined below. The definition of completeness for NIZK is
analogous to the completeness property of a Σ-protocol (as defined in Def. A.4),
which can also be expressed as follows:

Definition A.7 (Completeness). A NIZK proof system, ΠNIZK, satisfies com-
pleteness if for all (x,w) ∈ R, honestly generated proofs are always accepted by
the verifier, i.e.,

∀(x,w) ∈ R, Pr [V(pp, x,P(pp, x, w)) = true] = 1.

Definition A.8 (Zero-Knowledge (ZK)). A NIZK proof system ΠNIZK sat-
isfies zero-knowledge if there exists a PPT simulator S such that for all x ∈ L,
where L is the language corresponding to relation R, the simulator can generate
a proof that is indistinguishable from the real proof:

∀ PPTA,∃S, {S(pp, x)} ≈ {P(pp, x, w)} .

Note that, Zero-Knowledge (ZK) is an amplified version of HVZK, defined
in Def. A.5, as it guarantees privacy against even a malicious verifier.

Definition A.9 (Soundness). A NIZK proof system, ΠNIZK, satisfies sound-
ness if no PPT adversary A can generate a valid proof for an invalid statement
x /∈ L with more than negligible probability. More formally, for all PPT adver-
saries A we have,

Pr
[
Setup(1λ)→ pp, A(pp, x, w)→ π : V(pp, x, π) = true ∧ x /∈ L

]
≤ negl(λ).
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NIZK Proof of Knowledge. In addition to the standard soundness property, a
NIZK proof system can satisfy a stronger notion known as knowledge soundness.
When a NIZK proof system satisfies knowledge soundness, it is referred to as a
NIZK proof of knowledge. Unlike standard soundness, which merely ensures that
a prover cannot convince the verifier of a false statement, knowledge soundness
guarantees that if a prover can generate a valid proof for a statement, then there
exists an efficient extractor that can extract the corresponding witness from the
prover. This strengthens the proof system by ensuring not only that a valid proof
implies the truth of the statement, but also that the prover actually possesses
the knowledge (i.e., the witness) required to construct the proof.

Definition A.10 (Knowledge Soundness). A NIZK proof system ΠNIZK

satisfies knowledge soundness if for any PPT adversary A that can produce a
valid proof for some statement x, there exists an efficient extractor, ExtA, that
can extract the corresponding witness w. Formally, for all PPT adversaries A,
if:

Pr

[
Setup(1λ)→ pp, A(pp, x)→ π, ExtA(pp, x, π)→ w :

V(pp, x, π) = true ∧ (x,w) ̸∈ R

]
≤ negl(λ) .

Fiat-Shamir Transform. The Fiat-Shamir transform [16] enables the conver-
sion of a secure public-coin Σ-protocol for a relation R into a NIZK proof scheme
for the same relation. This transformation is achieved by replacing the challenge
issued by the verifier with a challenge sampled from a random oracle, thereby
eliminating the interaction between the prover and the verifier. In a public-coin
Σ-protocol, the verifier sends a random challenge c to the prover in the second
round. The Fiat-Shamir Transform substitutes this interactive challenge with
a hash function H(·), modeled as a random oracle, that takes the public pa-
rameters, the statement being proved, and the prover’s previous messages as
inputs. Specifically, the challenge is computed as c = H(pp, x, a), where pp rep-
resents the public parameters, x is the statement, and a is the prover’s initial
commitment. In the random oracle model, this transformation ensures that the
challenge is both unpredictable and uniformly random, thereby preserving the
security properties of the original protocol and achieving ZK instead of HVZK.

A.4 Public Key Cryptosystems and ElGamal’s Scheme

Public-Key Encryption (PKE) is a fundamental cryptographic technique that
allows a user to encrypt a message using a recipient’s public key, ensuring confi-
dentiality. The corresponding secret key, which is held securely by the recipient,
is used to decrypt the ciphertext and recover the original plaintext.

Definition A.11 (PKE Schemes). For a given λ, message space M , and
ciphertext space C, a PKE scheme is defined by the following PPT algorithms:

- KeyGen(1λ) → (pk, sk): Given the security parameter λ in its unary repre-
sentation, it outputs the public/secret key pair (pk, sk).
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- Enc(pk,m) → ct: Given a public key pk, a message m ∈ M , the encryption
algorithm outputs a ciphertext ct.

- Dec(sk, ct) → m/⊥: Given the secret key sk, a ciphertext ct ∈ C, it returns
either the message m or a failure symbol ⊥ if the ciphertext is invalid.

A PKE scheme must satisfy the following security properties.

Definition A.12 (Correctness). A PKE scheme is called correct if we have,

Pr
[
∀ λ,m ∈M, (pk, sk)← KGen(1λ) : Dec(sk,Enc(pk,m)) = m

]
= 1 .

Definition A.13 (IND-CPA Security). A PKE scheme is said to be IND-
CPA secure if for all PPT adversaries A we have,

Pr

[
(pk, sk)← KGen(1λ), (m0,m1, st)← A(pk), b← {0, 1}
ctb ← Enc(pk,mb), b

′ ← A(st, pk, ctb) : b′ = b ∧m0 ̸= m1

]
≤ 1

2
+ negl(λ).

ElGamal Cryptosystem. ElGamal cryptosystem (a.k.a., encryption) [14] is a
well-known PKE scheme, defined over a cyclic group G of prime order p with
generator g. The scheme operates as follows:

- KeyGen(1λ): Choose a secret key sk ← Z∗p and compute the public key as

pk = gsk. Output (pk, sk).
- Enc(pk,m): To encrypt a message m ∈ G using the public key pk, pick a

random r ←$ Zp and compute and output the ciphertext ct := (c1, c2) =
(m · pkr, gr).

- Dec(sk, ct): To decrypt a ciphertext ct = (c1, c2) using the secret key sk,

compute and output: m = c1/c
sk
2 .

The correctness of ElGamal encryption is trivial and its IND-CPA security
can be proved based on Decisional Diffie-Hellman (DDH) problem.

A.5 Commitment Schemes

Definition A.14 (Commitment Scheme). A commitment scheme, C, con-
sists of the following PPT algorithms:

- Initial(1λ) → ppc: The initial algorithm outputs the set of public parameters
pp.

- Com(pp,m, τ) → cm: The commitment algorithm takes as input pp and a
message m along with a trapdoor τ , and outputs a commitment cm.

- Verify(pp, cm,m′, τ ′) → true/false: Verification is a deterministic algo-
rithm which takes as input pp, a commitment cm, a message m′, along with
an opening value τ ′, and outputs either true (accept) or false (reject).

Informally, the main security properties required for a commitment scheme
are correctness, hiding, and binding. Correctness means that commitments gen-
erated correctly will pass the verification phase. The hiding property ensures that
the commitment hides all information about the committed value. Meanwhile,
binding guarantees that once a commitment is made, the committer cannot open
it to reveal two different messages.
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Pedersen Commitment Scheme [24]. Over a cyclic group G of prime order
p with generator g, the Pedersen commitment scheme allows to commit to a
scalar message m ∈ Zp and is perfectly hiding and computationally binding. It
consists of the following polynomial-time algorithms:

- Initial(1λ): Sample r ←$ Zp and set h = gr. Output pp := (g, h).
- Com(pp,m, τ): Compute cm← gτhm. Output cm.
- CVerify(pp, cm,m′, τ ′): Compute cm′ ← gτ

′
hm′

. Return cm == cm′.

A.6 Distributed Key Generation Protocols

Distributed Key Generation (DKG) protocols [24] allow multiple parties to col-
laboratively and securely generate key pairs without relying on a trusted third
party. To carry out any operation involving the secret key, a sufficiently large
subset of participants must cooperate, while any smaller group cannot gain any
knowledge of the secret key. These generated keys can be used in various ap-
plications, particularly in threshold cryptosystems, such as threshold signatures
and threshold encryption.

Definition A.15 (Distributed Key Generation (DKG) [24]). More
formally, an (n, t)-DKG is an interactive protocol among a set of parties
(P1, . . . , Pn) that generates a tuple of public keys (pk, pk1, . . . , pkn) and a corre-
sponding tuple of secret key shares (sk1, . . . , skn) such that only party Pi knows
the share ski.

- Consistency: A DKG is referred to as (t)-Consistent if, by the end of the
protocol, all honest parties agree on a consistent public key pk and the vector
of public keys (pk1, . . . , pkn), even when up to t parties are corrupted.

- Security: Additionally, as long as fewer than t+1 parties are corrupted, there
exists a polynomial f(x) ∈ Zp[X]t of degree d ≤ t such that ∀i ∈ [n] : ski =
f(i). In case of DKG for discrete logarithm, the global public key can then
be computed as pk = gf(0), where g is the generator of a cyclic group G.

B Security Proofs

B.1 Proof of Theorem 4.2

Proof. Correctness of the Reconstruction Algorithm. By the correctness
of the Pedersen VSS, the secret value s is constructed with a probability 1.

Correctness of the Trace Algorithm. We show the correctness by analyzing
two cases based on the size of Q:

- When 0 < |Q| ≤ t, the reconstruction algorithm returns {F (fj), πj ,who}j∈Q
where πj is a non-interactive proof (or argument) generated by Π

(2)
NIZK for

the relation R
(2)
j defined in equation (4). The trace algorithm VerifTrace
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given {F (fj), πj ,who}j∈Q and the tracing key tk := πshare = (c0, c1, . . . , ct,

c′1, . . . , c
′
n), computes yj :=

∏t
k=0 c

jk

k for j ∈ Q (which can be deduced
from the n-bit string who) and then verifies the proofs {πj}j∈Q using the

verification algorithm of Π
(2)
NIZK and commitment values {yj , c′j}j∈Q. By the

completeness property of Π
(2)
NIZK, all proofs will be accepted. Finally, it returns

Q and πtrace := ({F (fj)}j∈Q, {πj}j∈Q).
- When |Q| ≥ t + 1, the reconstruction algorithm returns {F (s), πj ,who}j∈Q

where πj is a non-interactive proof (or argument) generated by Π
(2)
NIZK for the

relation R
(2)
j defined in equation (4). Similarly, by the completeness property

of Π
(2)
NIZK, all proofs {πj}j∈Q will be accepted. Therefore, the VerifTrace trace

algorithm returns Q and πtrace := ({F (s)}j∈Q, {πj}j∈Q).

Verifiability. It holds directly by the verifiability of the Pedersen VSS. (Note
that, the only difference between the verification in Figure 3 and in Feldman
scheme is that the parties check if c′j are broadcast and well-formed. Since
V contains honest parties, this extra check does not affect the output of
verification algorithm in Figure 3.)

Statistical Secrecy. The statistical secrecy of the protocol in Figure 3 is
guaranteed by the statistical secrecy properties of the Pedersen VSS, which
stem from the perfect hiding property of the Pedersen commitment scheme.
The reason is that, for each i, the additional component of si, denoted as γi, is
chosen by party i randomly and independently of fi. Therefore, the adversary
can sample them itself and broadcast gγi for all i ∈ Q instead of receiving them
from the share algorithm. This reduces the secrecy of Figure 3 scheme to the
secrecy of the Pedersen VSS.

Traceability. The Share algorithm given (1λ, n, t, s), where s is a secret from
Zq, samples a random secret r0 ∈ Zq and a two random degree-t polynomials
f(x) = s + a1X + . . . , atX

t and r(x) = r0 + b1X + . . . , btX
t, and random

coefficients {aj , bj}tj=1 from Zq. Then it outputs si := (fi, ri, γi), where fi = f(i),
ri = r(i), and πshare = tk = vk := (c0, . . . , ct, c

′
1, . . . , c

′
n) where c0 = gshr0 , c1 =

ga1hb1 , . . . , ct = gathbt , and for any i ∈ [n], c′i = gγi . Then the adversary given
{si}i∈Q, πshare, F (·) for a set Q ⊆ [n] returns either {z := F (s), πrec} or {{zj :=
F (fj)}j∈Q, πrec} where πrec = {πj ,who}j∈Q. The tracing algorithm VerifTrace in
Figure 3 given the tracing key tk := πshare = (c0, c1, . . . , ct, c

′
1, . . . , c

′
n), computes

yj :=
∏t

k=0 c
jk

k for j ∈ Q (which can be deduced from the n-bit string who) and
then verifies the proofs πrec := {πj ,who}j∈Q using the verification algorithm

of Π
(1)
NIZK and commitment values {yj , c′j}j∈[n]. For any statement (ci, c

′
i, F (·)),

which the verification algorithm of Π
(2)
NIZK on at least one of the proofs in πrec :=

{πj ,who}j∈Q returns 1, the tracing algorithm puts i in I. If there is no statement
(ci, c

′
i, F (·)) which has an accepting proof in πrec := {πj ,who}j∈Q, it returns

{0, ∅, 0n}. If I is non-empty, the tracing algorithm returns 1, I, πtrace = {πi}i∈I .
Analyzing the following cases finishes the proof:
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- If the tracing algorithm returns {0, ∅, 0n}, nothing is left to prove.

- Assume that with a non-negligible probability ϵ, there is an index i∗ ∈ I such
that i∗ /∈ Q. That is, the adversary does not know the corresponding witness
si∗ := (fi∗ , ri∗ , γi∗) for the statement (ci∗ , c

′
i∗ , F (·)), however the verification

algorithm of Π
(2)
NIZK on πi∗ returns 1 with a non-negligible probability ϵ. Since

Π
(2)
NIZK is knowledge sound (with respect to the Definition A.10), there is an

efficient extractor which returns the witness si∗ := (fi∗ , ri∗ , γi∗) with a non-
negligible probability, which breaks the Discrete Logarithm problem.

- It is trivial that Judge in Figure 3 outputs true because it executes the

verification algorithm of Π
(2)
NIZK on πtrace = {πi}i∈I similar to the tracing

algorithm.

Non-imputability. The Share algorithm given (1λ, n, t, s), where s is a secret
from Zq, samples a random secret r0 ∈ Zq and a two random degree-t polyno-
mials f(x) = s + a1X + . . . , atX

t and r(x) = r0 + b1X + . . . , btX
t, and random

coefficients {aj , bj}tj=1 from Zq. Then it outputs si := (fi, ri, γi), where fi = f(i),
ri = r(i), and πshare = tk = vk := (c0, . . . , ct, c

′
1, . . . , c

′
n) where c0 = gshr0 , c1 =

ga1hb1 , . . . , ct = gathbt , and for any i ∈ [n], c′i = gγi . Then the adversary given
{si}i∈[n]\i∗ , πshare, F (·) returns (1, I, πtrace = {πi}i∈I). The Judge algorithm in
Figure 3 given the tracing key vk := πshare = (c0, c1, . . . , ct, c

′
1, . . . , c

′
n), uses

pre-computed values yj :=
∏t

k=0 c
jk

k for j ∈ [n] and then verifies the proofs

πrec := {πj}i∈I using the verification algorithm of Π
(2)
NIZK and commitment val-

ues {yj , c′j}j∈[n]. If all the verification pass, it returns true. Otherwise, it returns
false.

Assume that the Judge algorithm returns true and i∗ ∈ I. That means the
adversary has returned an accepting proof πi∗ for the statement (ci∗ , c

′
i∗ , F (·)),

without knowing the corresponding witness si∗ := (fi∗ , ri∗ , γi∗). Since Π
(2)
NIZK

is knowledge sound (with respect to the Definition A.10), there is an efficient
extractor which returns the witness si∗ := (fi∗ , ri∗ , γi∗) with a non-negligible
probability, which breaks the DL problem. This complete the proof. ⊓⊔

B.2 Proof of Theorem 5.1

Proof. We present the proof for the interactive protocol, as the final NIZK argu-
ment is obtained by directly applying Fiat-Shamir transform on the Σ-protocol.

Completeness. When both P and V are honest, R1 = cr1 , R2 = gr1hr2 , z1 =
r1 + efi and z2 = r2 + eγi. Substituting P’s response into V’s checks:

cz1 = cr1+efi = cr1zei = R1d
e
i ,

gz1hz2 = gr1+efihr2+eγi = gr1hr2 pkei = R2 pkei .

Both checks hold, so V will accept the proof, and completeness is satisfied.
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Honest Verifier Zero-Knowledge (HVZK). HVZK means that an honest verifier
learns nothing from the proof beyond the truth of the statement, and there exists
a simulator that can generate a valid transcript without access to the witness.
To prove HVZK, we need to construct a simulator that, given the challenge e,
can create a valid transcript (R1, R2, z1, z2) without knowing (fi, γi).

- Simulation: Given the challenge value e, the simulator picks random values
z′1 and z′2 from Zq, and computes the commitments as R′1 = cz

′
1d−ei and

R′2 = gz
′
1hz′

2 pk−ei . The simulator outputs the proof π = (R′1, R
′
2, z
′
1, z
′
2).

- Verification: Using the challenge value e, the verifier checks:

cz
′
1

?
= R′1d

e
i and gz

′
1hz′

2
?
= R′2 pkei .

Both conditions hold because of the simulator’s construction, and the distri-
bution of simulated proof is indistinguishable from the real one. Therefore,
the verifier cannot distinguish a real proof from a simulated one and HVZK
is satisfied.

Special Soundness. Special soundness means that given two valid transcripts for
the same commitment (R1, R2) but with different challenges, it is possible to
extract the witness fi and γi. Let’s assume there are two valid proofs:

π1 = (R1, R2, z1, z2) with challenge e,

π2 = (R1, R2, z
′
1, z
′
2) with challenge e′, where e ̸= e′.

From the verifier’s checks for both proofs:

cz1 = R1d
e
i and cz

′
1 = R1d

e′

i .

Dividing these two equations gives:

cz1−z
′
1 = de−e

′

i ⇒ di = c
z1−z′1
e−e′ .

Thus, we can extract fi as: fi =
z1−z′

1

e−e′ mod q. Similarly, from the second check:

gz1hz2 = R2 pkei and gz
′
1hz′

2 = R2 pke
′

i ,

dividing these gives:

g(z1−z
′
1)h(z2−z′

2) = pke−e
′

i ⇒ pki = g
z1−z′1
e−e′ h

z2−z′2
e−e′ .

Considering the fact that logg(h) is (computationally) unknown for the prover,

this allows us to extract γi as: γi =
z2−z′

2

e−e′ mod q. Thus, given two valid tran-
scripts with different challenges, we can extract the witness (fi, γi), satisfying
special soundness.

Since the Σ-protocol satisfies completeness, HVZK, and special soundness,
and is a public-coin protocol, it can be transformed into a NIZK argument of
knowledge using the Fiat-Shamir transform and a random oracle H. ⊓⊔
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B.3 Proof of Theorem 5.2

Proof. To prove this theorem, we apply a technique similar to the one used in
the proof of Theorem 4.1.
Correctness of the Combine Algorithm. By the correctness of the threshold
ElGamal encryption [11, 12], with a sufficiently large set of partial decryptions,
the plaintext m can be retrieved with a probability 1.
Correctness of the Trace Algorithm. We show the correctness of the trace
algorithm by analyzing two cases based on the cardinality of the set Q. W.l.o.g,
we assume Q = V = I.

- When 0 < |Q| ≤ t, the combine algorithm returns ({dj , πj}j∈Q,who),
where πj is a non-interactive proof (or argument) generated by ΠDec

NIZK for
the relation RDec

j defined in Eq. (5) obtained from πdec. The trace algo-
rithm given {dj , πj}j∈Q and the tracing key tk = (pp, {pki}i∈[n]), verifies
the proofs {πj}j∈Q using the verification algorithm of ΠDec

NIZK. By the com-
pleteness property of ΠDec

NIZK, all proofs will be accepted. Finally, it returns
πtrace := {ct, dj , πj}j∈Q.

- When |Q| ≥ t + 1, the combine algorithm returns (m,πdec), where πdec :=
{πi,who}i∈Q and πj is a non-interactive proof (or argument) generated by
ΠDec

NIZK for the relation RDec
j defined in Eq. (5). Similarly, by the completeness

property of ΠDec
NIZK, all proofs {πj}j∈Q will be accepted. Therefore, the trace

algorithm returns (1, Q, πtrace), where πtrace := {ct, dj , πj}j∈Q.

IND-CPA. Given the IND-CPA security of ElGamal encryption (cf. Sec-
tion A.4) and information theoretical security of Shamir Secret sharing (cf. Sec-
tion A.1), next we prove the IND-CPA security of the proposed ATC (cf. Fig-
ure 6).

Let there is an adversary A that can break the IND-CPA security of ATC,
we will use A to build an adversary B that can break the IND-CPA security of
standard ElGamal with the same probability. The adversary B interacts with
the standard ElGamal challenger in the following way. First, the adversary A
provides the list of corrupted parties Q to B. Once B receives public the group
description (G, g) and a public key pk′ from the standard ElGamal challenger
sets this the global public key of ATC pk := pk′ and simulates the public keys,
{pki}i∈[n], as follows:

- W.l.o.g., let |Q| = t. For all i ∈ Q, B samples random values ski ← Zq,
and defines the corresponding public key as pki := gski . Note that, due to
the information-theoretic security of the Shamir secret sharing scheme, the
uniformly random secret shares are indistinguishable from those generated
by the standard Share algorithm.

- To generate the public key of the honest parties k ∈ H,H := [n] \ Q, B
proceeds as follows:

1. For all i ∈ T̃ := Q ∪ {0}, it computes the Lagrange coefficients, Lki =∏
j∈T̃ ,j ̸=i (j − k)/(j − i).
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2. It takes the public keys of corrupted parties {pki}i∈Q and the global

public key pk and then computes pkk := pkLk0
∏

i∈Q pkLki
i .

- B then samples h ← G and sets vk := tk := (pp, pk1, . . . , pkn), where pp :=
(g, h).

After receiving ({ski}i∈Q, pk, vk, tk), A chooses two distinct messages m0 and
m1 and sends them to B. Then B forwards (m0,m1) to the standard ElGamal
challenger, who encrypts one of them based on the random bit β, and returns the
ciphertext ctβ to B. B then passes this ciphertext to A. Afterwards A returns the
bit b′, and B uses A’s guess as its own guess in the standard ElGamal IND-CPA
game.

Since the encryption process in both standard and threshold ElGamal is
identical, the ciphertext that A sees is indistinguishable from what it would
see in the ATC setting. As a result, if A can successfully distinguish between
encryptions in IND-CPA game for the ATC, then B can also do so against the
IND-CPA game for the standard ElGamal, thus breaking the IND-CPA security
of standard ElGamal. This concludes the IND-CPA security of new ATC.
Traceability. In the traceability game, defined in Definition 5.4, the adversary
given a set of secret keys {ski}i∈Q returns either {m,πdec} or {{dj}j∈Q, πdec}
where πdec = {πj ,who}j∈Q. The tracing algorithm VerifTrace by taking the trac-
ing key πtrace := ({dj}j∈Q, {πj}j∈Q), verifies the proofs πdec := {πj}j∈Q using
the verification algorithm of ΠDec

NIZK and partial ciphertext dj and ciphertext ct.
For any statement x, which the verification algorithm of ΠDec

NIZK on at least one of
the proofs in πdec := {πj}j∈Q accepts, the tracing algorithm updates I = I∪{i},
otherwise it returns {0, ∅, 0n}. If I is non-empty, the tracing algorithm returns
(1, I, πtrace = {πi}i∈I). Analyzing the following cases concludes the proof:

- If the tracing algorithm returns {0, ∅, 0n}, nothing is left to prove.
- Assume that with a non-negligible probability ϵ, there is an index i∗ ∈ I

s.t. i∗ /∈ Q. That is, the adversary does not know the corresponding wit-
ness ski∗ := (fi∗ , γi∗) for the statement (di∗ , ct), however the verification
algorithm of ΠDec

NIZK on πi∗ returns 1 with a probability ϵ. This breaks the
knowledge-soundness of ΠDec

NIZK. Therefore, I ⊆ Q.
- It is trivial that Judge in Figure 6 outputs true because it executes the

verification algorithm of ΠDec
NIZK on πtrace := {ct, dj , πj}j∈I similar to the

tracing algorithm.

Non-imputability. In the non-imputability game, defined in Definition 5.5, the
adversary given a set of secret keys of all parties except the challenger party i∗,
i.e. {ski}i∈[n]\{i∗} returns (1, I, πtrace). The Judge algorithm in Figure 6 given
the tracing key tk = {pki}i∈[n], verifies the proofs πtrace := {ct, dj , πj}j∈I using
the verification algorithm of ΠDec

NIZK and ciphertext ct. If all the verifications pass,
it returns true. Otherwise, it returns false.

Assume that the Judge algorithm returns true and a subset I s.t. i∗ ∈ I.
That means the adversary has returned an accepting proof πi∗ for the statement
(g, h, di∗ , c, pki∗), without knowing the corresponding witness ski∗ := (fi∗ , γi∗)
which breaks the knowledge-soundness of ΠDec

NIZK. This concludes the proof. ⊓⊔
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