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This paper presents a novel single-trace side-channel attack on FALCON—a lattice-based post-
quantum digital signature protocol recently approved for standardization by NIST. We target the
discrete Gaussian sampling operation within the FALCON key generation scheme and use a single
power measurement trace to succeed. Notably, negating the ‘shift right 63-bit’ operation (for 64-bit
values) leaks critical information about the ‘-1’ vs. ‘0’ assignments to intermediate coefficients.
These leaks enable full recovery of the generated secret keys. The proposed attack is simulated
on the ELMO simulator running both reference and optimized software implementation from
FALCON’s NIST Round 3 package. Statistical analysis with 20k tests reveals a full key-recovery
success rate of 100% for FALCON-512. This work highlights the vulnerability of current software
solutions to single-trace attacks and underscores the urgent need to develop single-trace resilient
software for embedded systems in the presilicon phase.

1. INTRODUCTION

Widely adopted encryption schemes such as RSA [1] and elliptic curve cryptosystems [2] rely on
problems such as the discrete logarithm [3] and integer factorization [4]. Unfortunately, quantum
computers have been proven to solve these problems with exponential speedup [5], which motivates
the need for alternatives.

To address this issue, the National Institute of Standards and Technology (NIST) initiated
a standardization process for quantum-resilient (also known as post-quantum) cryptographic
schemes that can withstand quantum cryptanalysis [6]. This standardization process selected
three digital signature schemes: CRYSTALS-Dilithium [7], SPHINCS+ [8], and FALCON [9]. NIST
selected FALCON due to its small signature sizes, which make it especially favorable for embedded
systems applications.

While the chosen algorithms are claimed to be mathematically robust, their practical implemen-
tations may be vulnerable to side-channel attacks (SCA). These attacks exploit implementation
characteristics such as execution time, power consumption, and electromagnetic radiation to extract
secret values. An attacker can execute these attacks with only a few side-channel measurements
from the physical device. The most extreme form of these attacks, known as single-trace attacks
(a.k.a., simple power analysis), allows the adversary to extract secrets using measurements from
just a single program execution. These attacks are perilous because single-trace measurements
bypass common defenses like masking [10]. Moreover, they can also target subroutines such as
key generation that generate a new secret each time it executes. FALCON is especially suitable
for embedded system deployment, making it a prime target for side-channel attacks. Given the
imminent real-world deployment of NIST’s post-quantum algorithms, there is a critical need to
expose these attacks and inform effective defenses.

Conducting physical side-channel measurements on PQC implementations is costly and time-
consuming. Moreover, discovering these vulnerabilities post-deployment is often too late, as
the security of critical systems may already be compromised. Therefore, it is crucial to identify
potential leaks during the "pre-production" phase, while these algorithms are still in development.
Furthermore, hardware variability necessitates a statistical approach to identify side-channel
vulnerabilities independent of specific devices.



Off-the-shelf tools like the ELMO [11] statistical leakage simulator provide a cost-effective
platform for simulating the power consumption of cryptographic implementations on low-power
microprocessors. ELMO comprises two main components: an emulator and a set of leakage models.
The emulator simulates the ARM M0 core, including its 3-stage pipeline, by executing Thumb
assembly instructions. The leakage models then use the instruction flow produced by the emulator
to predict power consumption, with minimal noise. Unlike other power simulators, ELMO does not
depend on fixed assumptions about the processor’s power model. Instead, it employs a statistical
model-building process that evaluates the significance of ’promising’ variables influencing power
consumption. This nuanced approach allows ELMO to capture power consumption behaviors
essential for accurately predicting and identifying potential side-channel leaks.

The primary objective of this project is to use a statistical leakage simulator to identify single-trace
side-channel vulnerabilities in FALCON. By simulating power traces of FALCON implementations,
this study aims to uncover and validate leakage points that could compromise their security. Unlike
traditional side-channel analysis, which relies on physical measurements and device-specific
characteristics, this project employs a statistical approach to reveal generic vulnerabilities in PQC
algorithms.

We begin by setting up the ELMO simulator environment, including its configuration to emulate
the execution on the ARM Cortex-M0 architecture. Then, we configure varying cryptographic
inputs and keys to produce traces that reflect different operational scenarios. Once the simulated
power traces are generated, we peform single-trace side-channel analysis using statistical tech-
niques to identify leakage points. This approach enables a systematic exploration of potential
vulnerabilities without the variability constraints of physical measurements. After identifying
observable vulnerabilities, a thorough statistical analysis is performed to quantify the extent of
leakage and the impact on FALCON’s security scheme.

We report the finding of a new single-trace side-channel vulnerability that enables complete
recovery of the session secret key using only side-channel information. This vulnerability resides
in the discrete Gaussian sampling subroutine of FALCON’s reference software implementation
and is orthogonal to the vulnerability disclosed in the prior attack [12]. Compared to previous
work, our attack eliminates the need for lattice reduction and avoids computationally intensive
post-processing.

We first present the leaky operations used in the implementation and show how they leak
important intermediate ‘0’ and ‘-1’ value assignments. Furthermore, we discuss the algorithm and
demonstrate how these assignments can lead to full secret key recovery. We demonstrate how to
locate these vulnerable operations in the power trace. We use statistical methods to extract these
assignments with high accuracy and efficiency. Finally, we provide visualizations of our attack
results and quantify our attack’s success rate.

The contributions of this paper are as follows:

• We reveal a new side-channel vulnerability in FALCON’s key generation process that could
lead to full secret key recovery using only a single power measurement.

• We applied the attack on the ELMO simulator running reference and optimized software
implementations from the FALCON NIST submission package. Our attacks extracted the full
key recovery with success rate of 100%. The attack remains effective in both the reference and
optimized implementations, as the same exploitable leakage exists in both versions.
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2. BACKGROUND AND RELATED WORK

This section starts with an overview of FALCON and explains its secret polynomials. For brevity,
we omit the details in FALCON’s key generation process. Following this, we discuss the related
work and ELMO’s power model. Finally, we outline our threat model.

A. The Generation of FALCON’s Secret Polynomials
FALCON stands for Fast-Fourier Lattice-Based Compact Signature Over NTRU. It is a digital
signature scheme designed for the post-quantum era, meaning it would take a quantum computer
a significant amount of time to break the mathematical trapdoors used in this algorithm. FALCON
consists of three main parts: key generation, signature generation, and signature verification. The
key generation process defines the NTRU-Lattice components f and g. The session’s public key,
secret key, and signature are derived from f and g without involving any randomness, as specified
in Algorithm S1. This paper focuses on the discrete Gaussian sampling subroutine that generates f
and g with the format shown below:

f (x) = f0 + f1x + f2x2 + f3x3 + · · ·+ fn−1xn−1 (S1)

g(x) = g0 + g1x + g2x2 + g3x3 + · · ·+ gn−1xn−1 (S2)

The coefficients of f and g (namely, f0, f1, ..., fn−1 and g0, g1, ..., gn−1) are sampled individually
using a discrete Gaussian distribution. The mean of this distribution is 0, while the standard
deviation is determined by the degree n and the parameter q. Degree n is defined by the user,
which is either 512 or 1024, and q is set to 12289.

The Gaussian sampling method generates values through iterative sampling performed during
lines 3 and 4 of Algorithm S1. Within the sampling process, each iteration generates a random
number to determine if the sample should be zero or non-zero. If the sample is non-zero, another
random value is used to select a threshold-based index from a pre-computed table that aligns with
the desired distribution. The sample’s sign is then randomly set to positive or negative as the
sample mean is 0. The signed sample is accumulated to a final sum, which is returned as the output
after multiple iterations. While the mathematical details of this process are beyond the scope of
the discussion, section 3 will demonstrate how the software implementation facilitates full key

Algorithm S1. NTRUGen(ϕ, q)

Require: A monic polynomial ϕ ∈ Z[x] of degree n, a modulus q
Ensure: Polynomials f , g, F, G

1: σf ,g ← 1.17
√

q/2n
2: for i← 0 to n− 1 do
3: fi ← DZ,σf ,g,0
4: gi ← DZ,σf ,g,0

5: f ← ∑i fixi ▷ f ∈ Z[x]/(ϕ)
6: g← ∑i gixi ▷ g ∈ Z[x]/(ϕ)
7: (F, G)← NTRUSolven,q( f , g) ▷ Compute F, G such that f G− gF = q mod ϕ
8: if (F, G) =⊥ then
9: restart

return f , g, F, G
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recovery.

B. Related Work
Prior works on the single-trace side-channel analysis of lattice cryptosystems have targeted several
vulnerable components of the algorithm, such as the number theoretic transform (NTT) [13–15],
discrete Gaussian sampling [16], polynomial multiplication [17–19], message encoding/decod-
ing [20–23], and other elements such as ω-small sampling [24], cumulative distribution table (CDT)
sampling [25, 26], Fujisaki-Okamoto Transform [27]. Although FALCON incorporates some of
these components, it also includes distinct operations such as fast Fourier sampling and floating-
point arithmetic. Earlier attacks cannot be trivially extended to the implementation of these units.
Side-channel vulnerabilities in FALCON’s software implementation remain largely unexplored.
Previous studies have investigated multi-trace attacks on FALCON [28–30]; however, its suscepti-
bility to single-trace attacks remains largely unknown, aside from a vulnerability [12] on the base
sampler. This gap necessitates further investigation.

C. ELMO’s Power Model and Effectiveness
ELMO, short for Emulator for power Leakage M0, is a power simulator that simulates power
consumption by processing compiled binary code and generating power traces as if the target
code were running on an ARM Cortex-M0. The simulator was first introduced in 2017 and has
been adopted in several side-channel work [31–33] that verified its effectiveness including the most
recently published side-channel attack on FALCON [12]. The simulation process follows these
steps: first, the input is processed by Thumbulator [34], an open-source tool that extracts data flow
and debug information. Next, this extracted information is fed into a pre-trained linear regression
model. The format of the model is:

y = δ +
[
Ip|Is|D|DxIp|DxIs

]
β + ε

Within this formula, y represents the simulated power measurements, while ε is a constant noise
term. Terms δ and β are pre-trained weight and bias terms. The terms Ip, Is, D, DxIp, and DxIs
are extracted from Thumbulator, with detailed information provided in Table S1. However, the
key takeaway is that the power model places significant emphasis on the Hamming Weight of
an instruction’s operand and the Hamming Distance of its previous value. This means that if the
Hamming Weight of a register value changes significantly, the power simulations will reflect this
change. This characteristic is crucial, as the discovered leakage points leverage this property.

D. Threat Model
We adopt the well-established threat model for single-trace side-channel attacks [16, 24], assuming
an adversary with physical access to the target device who can measure power consumption
during cryptographic operations. The adversary is assumed to possess knowledge of the executing
software, approximate the timing of specific computations, and intercept communication channels
to capture exchanged public messages. During the characterization phase, the attacker can supply
random inputs and analyze the software’s power behavior with known values. However, at
runtime, they are restricted to capturing a single power trace in their attempt to deduce the entire
secret key. Other attacks such as fault injection, buffer overflow, and attacks targeting operating
systems are considered out of scope.
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Notation Description

Ip decoded previous instructions

Is decoded subsequent instructions

D operand bits and bit transitions on hardware BUS Lines,
concatenated

DxIp Hamming weights of two operands and their Hamming
distances between current and previous instructions

DxIs Hamming weights of two operands and their Hamming
distances between current and subsequent instructions

Table S1. Notation Definitions

3. UNDERLYING MECHANISM OF THE ATTACK

In this section, we first demonstrate how the target bit shift operation leaks intermediate secret
variables. We also present proof-of-concept studies that validate this vulnerability. Subsequently,
we explain how these leaked variables enable full recovery of FALCON’s secret polynomial.

A. The Operations That Leak
This section describes how negating the ‘shift 63-bit’ operation can leak the value assignments of 0
and -1 and preliminary results are presented to substantiate this claim.

For a 64-bit variable, the ‘right shift 63-bit’ operation (expressed as ‘(x ≫ 63)’ in software)
shifts the most significant bit (MSB) to the least significant bit (LSB) and clears all other bits. This
operation produces only two possible outcomes: ‘0’ or ‘1.’ The negation of this result changes the
value to either ‘0’ or ‘-1,’ represented in two’s complement as all 0’s or all 1’s, respectively. When
the processor writes the result, the ‘-1’ case exhibits a Hamming Weight (HW) of 64, while the ‘0’
case has a HW of 0. Consequently, the ‘-1’ case results in higher power consumption compared
to the ‘0’ case.

Figure S1 illustrates the results of an experiment validating the preceding argument. The
experiment involves performing a negation operation on a 64-bit value using the assembly code
shown in Listing 1, aligning with the FALCON implementation. The sbc.w instruction is employed
for two’s complement negation (sign inversion) of the 64-bit value. The power consumption of

Fig. S1. Power traces of the leaky operation with varying inputs are presented. The trace in blue
depicts the power consumption during the leaky operation when the secret is assigned the value
‘0’, while the trace in orange shows the power consumption when the secret is assigned ‘-1.’ A
distinct difference in power consumption between the two cases is observable.
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the operation −(x) was measured, with x taking a value of either 1 or 0 (the result of x ≫ 63).
Assembly NOP instructions were inserted around the operation to isolate it. We plotted the two
graphs on top of each other to show the difference, the blue graph shows the results when x is 0,
indicating a peak voltage drop of only 40 mV. The orange graph illustrates the results when x is 1,
revealing a peak voltage drop of 70 mV. Additionally, the power spike is more pronounced in the
‘-1’ case compared to the ‘0’ case, demonstrating the vulnerability. We then employed the same set
of operations on ELMO to obtain the average power trace. We observed a clear difference between
case ‘0’ and case ‘-1’, as shown in Figure S2.
B. Only a Few Variables Needed
This subsection explains how an adversary can recover FALCON’s base component f and g using
only a few intermediate variables. Recall, that the variables of f and g are generated using a discrete
Gaussian sampling process. The reference C code implementation of this process from the NIST
submission package is outlined in Listing 2. This subroutine is called n times to generate n variables
for the polynomial that forms the base component of the NTRU lattice. The parameter n is the
degree of the polynomial specified by the user. This code implementation is composed of a set of
nested loops. The outer loop executes twice, while the inner loop executes 26 times for each outer
loop execution.

Within Listing 2, line 20 contains the generated variable. To extract the generated secret coefficient,
we trace the changes to this variable backward in this subroutine. Line 19 performs a pass-by-value
operation followed by a pass-by-reference operation, but numerically it simplifies to val = val +
v. Consequently, the adversary requires the value of v to deduce the returned result. In Line 18, v
is XORed with -neg and added to neg, implying that the adversary must know both v and neg to
determine val. We therefore identify the two attack points in this algorithm that will lead to full
recovery on f and g. They are line 16 to learn the value of v and line 18 to learn the value of neg
(both highlighted in Orange).

Line 16 is our first attack point because the value of -(t & (f ˆ 1)) can only take on ‘0’ or ‘-1’.
The reason is that t and f (not to be confused with the base lattice component f ) can only take ‘0’
or ‘1’ due to the ‘shift 63-bit’ operation on line 8 and line 15, which clears everything other than the
most significant bit (MSB). The negation of t & (f ˆ 1) thus turns into a negation of ‘0’ or ‘1’. The
negation result, expressed in two’s complement, will be all 0s (for 0) or all 1s (for -1). This will
cause a significant power consumption difference of the target device because the Hamming
Weight (HW) of these two results differs by 64. Additionally, in line 16, k is the sequence of the

Fig. S2. simulated power traces of the leaky operation with varying inputs are presented. The
trace in blue depicts the power consumption during the leaky operation when the secret is as-
signed the value ‘0’, while the trace in orange shows the power consumption when the secret is
assigned ‘-1.’ A distinct difference in power consumption between the two cases is observable.
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Listing 1. Assembly instructions corresponding to −(x)
negs r2 , r2 ;
sbc .w r3 , r3 , r3 , l s l # 1 ;
s t r d r2 , r3 , [ r7 , # 2 4 ] ;

Listing 2. Gaussian sampling implementation from NIST submission package
1 mkgauss(RNG_CONTEXT *rng , unsigned logn){
2 ...
3 for (u = 0; u < g; u++) {
4 ...
5 r = get_rng_u64(rng);
6 neg = (uint32_t)(r >> 63);
7 r &= ~(( uint64_t)1 << 63);
8 f = (uint32_t)((r - gauss_1024_12289 [0]) >> 63);
9 v = 0;

10 r = get_rng_u64(rng);
11 r &= ~(( uint64_t)1 << 63);
12 for (k = 1; k < (sizeof gauss_1024_12289)
13 / (sizeof gauss_1024_12289 [0]); k++){
14 uint32_t t;
15 t = (uint32_t)((r - gauss_1024_12289[k]) >> 63) ^ 1;
16 v |= k & -(t & (f ^ 1)); // Highlighted
17 f |= t;}
18 v = (v ^ -neg) + neg; // Highlighted
19 val += *( int32_t *)&v;}
20 return val;}

inner loop execution (a known number between 1 and 26). An adversary can infer the value of v by
exploiting this vulnerability.

Line 18 is our second attack point because -neg can only take ‘0’ or ‘-1’. This is due to the ‘shift
63-bit’ operation on line 6. The negation of neg on line 18 creates a similar vulnerability compared
to our first attack point because of the HW difference. An adversary can infer the value of neg by
attacking this vulnerability.

Since the attack points reside within a loop, and the current loop execution relies on the value
of v generated from the previous loop iterations. Therefore, the attack success rate must be
sufficiently high to ensure successful recovery. An incorrectly inferred intermediate value will
result in outcomes that differ from the ground truth.

4. EXPERIMENTAL SETUP

We utilized the submission package from the NIST reference software implementation. The code
was compiled using the gcc-arm-none-eabi-4_8-2014q1 compiler with -O0 optimization flag.
We built ELMO’s source code using -O0 optimization flag. The power simulator was also set to
Cycle Accurate mode to offer more correspondence with real-world power measurements. We
also collected measurement traces from a real-world target device and compared their power
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Fig. S3. Simulated full power trace of the subroutine. The two outer loop executions and the 26
inner loop executions are clearly observable.

Fig. S4. Measured power trace of the subroutine running on the target device is shown. The two
outer loop executions and the 26 inner loop executions are clearly observable.

trace shapes with the simulated results. The target device is an ARM Cortex-M4F CPU operating
at 30MHz, which is a canonical setting to test side channels on embedded applications [24, 29].
Measurements were captured with a PicoScope 3206D oscilloscope, set to a sampling rate of
250MHz, using a Tektronix CT1 passive current probe with a bandwidth of 1–1000 MHz at 3 dB.
No external amplification was applied to enhance the measurements. We omit a detailed analysis
of the real-world measurements, as it falls outside the scope of this paper.

5. EXPLOITING THE FOUND VULNERABILITY

This section presents the proposed attack strategy for recovering the secret polynomials in FALCON.
We will inspect the power trace and discuss how we identify the point of interest. As noted in
the previous section, the attack requires a profiling stage in which the adversary has physical
access to the hardware and software. During this stage, multiple measurements from different
software inputs are used to build a profile that helps determine when the leakage occurs. However,
once the profile is obtained, the adversary can infer the secret polynomial using a single power
measurement.

A. Inspecting the Power Trace
Figure S3 shows the full power trace obtained when executing the discrete Gaussian sampling
subroutine. The two outer loop executions and the 26 inner loop executions within each outer
loop are distinguishable, reflecting the code’s structure shown in Listing 2. We observe a recurring
pattern for each inner loop execution approximately every 55 time samples, and for each outer loop
execution, that is 1700 samples. Since the discrete Gaussian sampling subroutine is executed n times
during the key generation process, the resulting power trace patterns will be easily distinguishable.
The physically measured power traces demostrated very similar characteristics as the simulated
one, as shown in Figure S4.
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Fig. S5. The average power trace for the first vulnerability -(t & (f ˆ 1)). The two cases from
the first to the third outer loop is shown. Green vertical lines indicate inner loop executions,
while black squares highlight regions of interest. The secret assignments, happening at the point
of interest (POI) are identifiable through the average power traces.

B. Pinpointing the Point of Interest
We visually identify the secret intermediate coefficient assignments within the zoomed-in version
of the average power trace as the area of interest and use the sum of square difference method to
identify the point of interest(POI). For the vulnerability -(t & (f ˆ 1)), we first assign values
to variable r and adjust the values in the matrix gauss_1024_12289 so that the value of -(t & (f
ˆ 1)) in the first and third inner loop executions can be manually controlled. We then take 20k
simulated measurements, setting -(t & (f ˆ 1)) to ‘-1’ in the first loop and ‘0’ in the third for the
first 10k, and reversing these settings for the next 10k.

Figure S5 represents the full simulated power trace, zoomed in between time samples 300 and
500. We identify this segment as the first three inner loop iterations, based on the recurring lowest
point in the power trace every 55 samples, which aligns with our observations during power trace
analysis. We marked out the boundary of power trace for each of the inner loop using green lines
for the user to distinguish them easier. To enhance visibility of power consumption differences
between the two cases, we overlay their corresponding traces in a single graph. For both cases,
most sections of the power trace remain identical. However, the highlighted region exhibits a
distinct difference corresponding to the secret intermediate assignments. Specifically, during the
first to third loop iterations, the orange trace represents the secret coefficient assignments ‘0’, ‘0’,
‘-1’, while the blue trace corresponds to ‘-1’, ‘0’, ‘0’. This aligns with the power simulation results,
where ‘-1’ produces a higher-magnitude trace, and ‘0’ results in a lower-magnitude trace.

To identify the point of maximum divergence between the two cases, we apply the sum of
squared differences (SOSD) method [35]. The most significant deviation occurs in the third inner
loop at time sample 480.

Similarly, for the second leaky operation, we controlled the value assignment of -neg and
analyzed the corresponding power traces, as shown in Figure S6. We focused on the power trace
segment between the end of the last inner loop and the start of the second outer loop. Applying the
SOSD method, we identified the point of interest at time sample 1936.
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Fig. S6. The average power trace for the second vulnerability -(neg). The two cases between the
two outer loops is shown. SOSD is employed to identify the point of interest (POI). The secret
assignments, happening at the POI are identifiable through the average power traces.

Fig. S7. The average trace around the leaky operations for the two attack points is depicted. The
left figure corresponds to the first attack point, while the right figure represents the second attack
point. At both attack points, there are only two possible cases: ‘0’ and ‘-1’. It is observed that the
power consumption for case ‘-1’ is higher than for case ‘0’.

6. RESULTS AND ANALYSIS

In this section, analyze of the simulated side-channel information and present the results. We
omit the results obtained from physical measurement for brevity. We begin by demonstrating that
our attack successfully distinguishes between different intermediate value assignments through
graphical visualizations. We then quantify our attack success rate. Finally, we analyze the impact
of the proposed attack on the security of FALCON.

A. Attack Results
The left graph in Figure S7 shows the average power trace of the 10 samples around the point
of interest (POI) when attacking -(t & (f ˆ 1)). The right graph of Figure S7 illustrates the
separation between cases ‘0’ and ‘-1’ as revealed by our attack for -neg, using average traces. The
horizontal axis represents time samples, while the vertical axis reflects power consumption. Our
observations reveal that the average power consumption for case ‘-1’ is higher than for case ‘0’.

We then quantified the attacker’s success rate by modeling the power distribution to derive a
theoretical estimate. We selected the point of highest divergence between the two cases as the POI
to build our attacker’s model, though multiple POIs could be chosen to enhance the success rate on
noisier platforms. For this POI, we calculated the average power µi and variance of power vi.

Table S2 presents the average power µi and power variance vi for cases 0 and -1 at the two attack
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Statistics -(t & (f ˆ 1)) case -1 -(t & (f ˆ 1)) case 0 -neg case -1 -neg case 0

Mean -783.8 395 -4829.78 -1254.05

Variance 1.3× 10−20 1.3× 10−22 0 5.17× 10−26

Table S2. Result Statistics

points, -(t & (f ˆ 1)) and -neg. The variance vi is nearly negligible, as simulation results are free
from noise introduced by physical measurements. Consequently, an attack can perfectly distinguish
between the two cases using the model built from the simulated power traces. The obtained model
was applied to 20k collected measurements to derive classification labels. A comparison with the
ground truth shows that in practice we didn’t see any samples causing a false misidentification.

B. The Effect on FALCON’s Security Schemes
Each discrete Gaussian sampling subroutine execution involves running the outer loop twice and
running the inner loop 52 times. Our Attack on -(t & (f ˆ 1)) accomplished 100% accuracy and
attack on -neg achieved 100% accuracy. Consequently, the overall success rate of our attack to
extract one coefficient in FALCON is 100%.

Providing the success rate above, our overall success rate for inferring the two full secret polyno-
mials, both f and g, for FALCON-512 is:

((100%)512)2 = 100%

For FALCON-1024, Our overall success rate for inferring the two full secret polynomials is:

((100%)1024)2 = 100%

We assert that this vulnerability represents a significant compromise of the FALCON cryptographic
scheme.

7. DISCUSSIONS

In this section, we discuss defense methods and related issues. We also comment on the drawbacks
of our attack.

A. Defense Methods
Defenses against single-trace side-channel vulnerabilities can be implemented at both the hardware
and software levels. On the hardware side, constant power consumption hardware designs can
mitigate information leakage [36, 37]. On the software side, techniques such as hiding can be
implemented, where noise or random delays are introduced to reduce the correlation between
power consumption and executed operations [38].

B. Applicability to Other Implementations
Our proposed attack also applies to other algorithms that negate a right-shifted 63-bit value (for 64-
bit variables) on secret intermediate variables. The identified vulnerability exists in both FALCON’s
optimized and reference implementations, as the discrete Gaussian sampling subroutine is the
same. Though we implemented our attack on the implementation of FALCON-512, such an attack
also efficiently breaks FALCON-1024.
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C. Calibration Factors of the Experiments
The generated power trace varies depending on the simulator’s mode of operation. ELMO supports
two modes: Cycle-Accurate (CA) and Instruction-Accurate (IA). The CA mode generates a power
measurement per clock cycle, while the IA mode produces a measurement per instruction execution.
For this attack, we utilized the CA mode, as it provides simulation results more closely aligned with
real-world measurements, particularly for instructions spanning multiple clock cycles. Switching
to IA mode could alter the power trace shape, potentially revealing different points of interest.

For physical measurements, the platform’s noise level decreases as the device’s operating fre-
quency is lowered. To reduce noise in our experiments, we set the development board to its
minimum frequency of 30 MHz as in prior work [24]. Earlier works have conducted single-trace
side-channel attacks at even lower frequencies, such as 8 MHz for attacks on the NTT [14]. Since
our clock frequency is higher than in these studies, analyzing higher frequencies may require more
sophisticated equipment for power measurement, additional probes for near-field electromagnetic
leakage detection, or noise reduction through amplification and post-processing.

D. Drawbacks of Our Attack
Software configurations and peripheral settings could impact the power consumption of the target
device. For example, changing the compiler options or flags could change the instruction sequence
or add/remove some instructions. Our attack was conducted at the compiler optimization level
-O0, where we achieved a high attack success rate. We used -O0 because it preserves the intended
structure and sequence of the originally developed code. An exhaustive evaluation of all compiler
optimization settings and flags is left for future work.

Our attack was conducted on ELMO, which power model was built on a single device. For
physical attacks to succeed on devices of different makes and models, it is essential to develop
distinct power profiles that account for device-specific features such as pipelining and out-of-order
execution. Even for devices of the same make and model, variations arising from manufacturing
differences, device aging, and environmental conditions must still be considered. Overcoming
these challenges may require advanced machine learning-based profiling techniques [39, 40] or
building the template again on each new device under test. It is important to recognize that the
challenge of cross-device single-trace side-channel attacks on post-quantum cryptosystems remains
an open problem, as noted in several previous studies [14, 18, 21, 25, 41, 42]. It is also worth noting
that simulated power traces are free from noises generated from physical measurements. For such
attack to succeed with noise on specific devices, more advanced techniques may be required.

8. CONCLUSION

Although lattice cryptography is a versatile tool that offers quantum resilience at a reasonable
cost, it includes unique operations that have not been thoroughly analyzed for side-channel
vulnerabilities. This paper highlights a critical vulnerability in the software implementation of
FALCON, specifically in the negation of the right-shift 63-bit operation. We have demonstrated
that the discrete Gaussian sampling implementation in FALCON can expose intermediate value
assignments, leading to full secret key recovery. Our results confirm the practicality of this attack
on a power simulator. The vulnerability we uncovered is distinct from prior single-trace attacks
and, by definition, from multi-trace attacks. As a result, the defenses proposed or implemented
for other vulnerabilities must be re-evaluated, as they are likely ineffective against this specific
form of leakage. We emphasize that this is an attack paper, and our primary goal is to inform the
implementers of these algorithms about the vulnerabilities they introduce.
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9. APPENDIX

This research, supported by the National Science Foundation (Grant No. 2241879), aligns with the
concurrent paper published on HAWK 6 signature scheme [43] but differs in methodology and
vulnerability scope.

The student focuses on side-channel attacks on cryptosystems using physical hardware. There-
fore, this research project is original and does not overlap with any research assignments provided
by the advisor, nor does it coincide with past or concurrent class projects. The student conducted
the simulation and analyzed the results independently. While the use of the ELMO simulator is
established, its application in discovering and validating single-trace side-channel vulnerabilities
in post-quantum cryptographic protocols represents a novel approach. The study’s novelty lies in
the statistical evaluation of PQC implementations, contributing new insights into the security of
these emerging cryptographic standards.

This document has been refined using generative AI tools to enhance the writing and language
within each section. However, the core ideas, research, and results are solely the student’s work.
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