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Abstract. Recent applications and attacks have highlighted the need for authenticated encryption
(AE) schemes to achieve the so-called committing security beyond privacy and authenticity. As a
result, several generic solutions have been proposed to transform a non-committing AE scheme to a
committing one, for both basic unique-nonce security and advanced misuse-resistant (MR) security.
We observe that all existing practical generic transforms are subject to at least one of the follow-
ing limitations: (i) not committing to the entire encryption context, (ii) involving non-standard
primitives, (iii) not being a black-box transform, (iv) providing limited committing security. Fur-
thermore, so far, there has been no generic transform that can directly elevate a basic AE scheme to
a committing AE scheme that offers MR security. Our work fills these gaps by developing black-box
generic transforms that crucially rely on hash functions, which are well standardized and widely
deployed.
First, we construct three basic transforms that combine AE with a single hash function, which
we call HtAE, AEaH and EtH. They all guarantee strong security, and EtH can be applied to both
AE and basic privacy-only encryption schemes. Next, for MR security, we propose two advanced
hash-based transforms that we call AEtH and chaSIV. AEtH is an MRAE-preserving transform that
adds committing security to an MR-secure AE scheme. chaSIV is the first generic transform that
can directly elevate basic AE to one with both committing and MR security; moreover, chaSIV also
works with arbitrary privacy-only encryption schemes. Both of them feature a simple design and
ensure strong security.
For performance evaluation, we compare our transforms to similar existing ones, both in theory
and through practical implementations. The results show that our AEaH achieves the highest prac-
tical efficiency among basic transforms, while AEtH excels in MRAE-preserving transforms. Our
MRAE-lifting transform chaSIV demonstrates comparable performance to MRAE-preserving ones
and surpasses them for messages larger than approximately 360 bytes; for longer messages, it even
outperforms the benchmark, non-committing standardized AES-GCM-SIV.
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1 Introduction

Symmetric encryption is widely used in practice to ensure the privacy and authenticity of data. Such en-
cryption schemes are often referred to as authenticated encryption (AE) [4], which were initially designed
to address practical shortcomings of basic encryption schemes that provide only privacy. Their syntax
also evolves from probabilistic [15] to nonce-based with associated data [27], with nonces to avoid reliance
on good randomness for their security and associated data to capture unencrypted but authenticated
data.

In the past few years, a series of applications and attacks [1, 11, 16, 23] motivated another level of
security for symmetric encryption. Such so-called committing security requires the ciphertext to be a
commitment to the encryption inputs, e.g., to the key K, to the message M , or even to all inputs
including the nonce N and associated data AD. For example, the latter most secure case requires that
no efficient adversary can find two distinct tuples (K1, N1, AD1,M1) 6= (K2, N2, AD2,M2) such that they
are encrypted to the same ciphertext. Authenticated encryption schemes that further satisfy committing
security are often called committing authenticated encryption.

It has been shown in recent works [1, 9, 11, 16, 23, 24] that almost none of the existing
AE schemes achieves committing security, including the most popular ones, e.g., AES-GCM [12],
ChaCha20/Poly1305 [5, 6], CCM [34], OCB [29], AES-GCM-SIV [17], etc. In order to construct commit-
ting AE schemes, one approach is to directly add committing security to existing AE schemes through
dedicated modifications. For example, Bellare and Hoang [2] proposed specific adjustments to AES-GCM
and AES-GCM-SIV, resulting in schemes that achieve both AE security (privacy and authenticity) and
committing security. However, such dedicated schemes require a deep understanding of the modified
constructions, which could make them difficult for practitioners, especially non-experts, to implement
correctly, as committing AE schemes are not yet standardized.

The other approach is to build committing AE from generic transforms. Although some of the above
dedicated schemes may perform better in practice, the generically transformed schemes enjoy good
modularity and flexibility. Such schemes are usually simpler, and they allow the component primitives
to be instantiated with any constructions that satisfy the required syntax and security.

In this work, we ask how easy one can generically transform authenticated encryption (and even basic
privacy-only encryption) to committing authenticated encryption, using standardized primitives. Before
delving into our constructions, we first discuss existing generic transforms proposed in previous works
and motivate our work on generic transforms and the use of hash functions.

1.1 Generic Transforms in Previous Works

We summarize the existing generic transforms in Table 1. The study of committing security for authen-
ticated encryption schemes is initialized by Farshim et al. [13]. They proposed a generic transform EtM
built from a pseudorandom generator (PRG), an AE scheme and a message authentication code (MAC).
Their construction guarantees ciphertexts committing to the key by relying on non-standard security
from PRG and MAC, e.g., PRG being right collision-resistant. Soon after, Grubbs et al. [16] proposed
two generic commit-then-encrypt constructions CtE1 and CtE2 that combine a commitment scheme with
AE. Such schemes ensure committing security to the message, in order to satisfy the security goals of
message franking, a mechanism that verifies abuse reports. Their CtE1 transform relies on standard com-
mitments, while CtE2 requires a non-standard property (i.e., unique commitments) for its commitment
component. Then, a follow-up work [11] on message franking introduced a more efficient transform based
on a new primitive called encryptment, but the resulting committing security still targets the message
only. Later, Albertini et al. [1] explored vulnerabilities in real-world systems resulting from lack of key
commitment and proposed a simple generic solution called CommitKeyΠ. This construction makes use of
a collision-resistant pseudorandom function (PRF), a non-standard primitive, and provides committing
security to both the key and the nonce.

To better mitigate the potential risks arising from insufficient committing security and to ease the
burden on practitioners in understanding the nuances of different committing targets, recent efforts
focus on building schemes with strong context-committing security. That is, the resulting ciphertext
must commit to the entire context : key, nonce, associated data, and message.

Bellare and Hoang [2] proposed the first generic transform that provides the above strong context-
committing security. Their transform, which we denote by HtE ◦ UtC, consists of two component trans-
forms: first, UtC adds key commitment to an AE scheme, and then HtE elevates the key-committing AE
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Construction Committing
Target Transform Method Non-Standard

Primitive
Black-Box
Transform

EtM [13] K PRG-then-Encrypt-then-MAC PRG, MAC 3

CtE1/CtE2 [16] M Commit-then-AE Commit for CtE2 3

CE [11] M Encryptment-then-AE Encryptment 3

CommitKeyΠ [1] K,N PRF-then-AE PRF 3

N1 [33] K,N,AD,M Encrypt-and-MAC (N1 [26]) Encrypt, MAC 3

EaM/SIV [8] K,N,AD,M (N1, A2)/A4 [26] Encrypt, MAC 3

KEtM [8] K,N,AD,M KDF-then-(N2, A6) [26] KDF, MAC 3

HtE ◦ UtC [2] K,N,AD,M Hash-then-PRF-then-AE PRF 3

HtE ◦ RtC [2] K,N,AD,M Hash-then-PRF-then-AE-then-Hash PRF 3

CTX [9] K,N,AD,M AE-then-Hash - 7

CTY [3] K,N,AD,M AE-then-Hash - 7

PACT/comPACT [7] K,N,AD,M AE-and-Hash-then-Encipher - 3

HtAE (this work) K,N,AD,M Hash-then-AE - 3

AEaH (this work) K,N,AD,M AE-and-Hash - 3

EtH (this work) K,N,AD,M Encrypt-then-Hash - 3

AEtH (this work) K,N,AD,M Hash-then-AE - 3

chaSIV (this work) K,N,AD,M PRF-and-Hash-then-Encrypt - 3

Table 1: Comparison of practical generic transforms to construct committing AE. The “Non-Standard
Primitive” column lists the component primitives that are tailored to ensure some form of committing
security but are not yet standardized, whereas “-” indicates that all component primitives are already
standardized. The red-colored component primitive imposes a hard limit on the achievable committing
security of the associated transforms.

to a context-committing one. The authors also proposed another transform HtE ◦ RtC to add context-
committing security to a misuse-resistant AE scheme. The security of both UtC and RtC relies on that
of a non-standard primitive that they introduced and named committing PRFs.

In a work contemporary to [2], Chan and Rogaway [9] proposed a generic transform called CTX
that also achieves context-committing security. CTX is very simple and efficient: it just adds a hash
computation to an AE scheme. A recent work by Bellare and Hoang [3] improved CTX to an even more
efficient transform called CTY, in which the associated data input to the underlying AE is omitted.
However, both CTX and CTY require the underlying AE to produce a separate authentication tag,
rendering them not black-box transforms. As a result, they cannot accommodate AE schemes that
use the authentication tag for decryption or do not produce a separate authentication tag, including
those based on design paradigms such as synthetic IV (SIV), MAC-then-Encrypt (MtE) and Encode-
then-Encipher (EtE). The latter has become more important lately, as NIST plans to develop a new
block cipher mode of operation called accordion mode [10], with one of its main applications being the
construction of authenticated encryption schemes using the EtE paradigm.

The above CTX/CTY limitation was also observed by a very recent work by Bhattacharjee et al. [7].
To support arbitrary AE schemes, they proposed two generic transforms, PACT and comPACT, with
PACT further preserving the advanced security of the underlying AE in the presence of nonce misuse. At
the end of these transforms, instead of hashing the AE authentication tag as in CTX/CTY, they encrypt
the authentication tag (or one block of the AE ciphertext) with a block cipher. As a result, PACT and
comPACT incur no extra ciphertext expansion, i.e., the resulting ciphertext is of the same length as the
AE ciphertext; their committing security, however, is also limited to at most half the block size (e.g., up
to 64 bits when AES is used) due to birthday attacks, and it cannot be expanded.

There are two other recent works [8, 33] that explored the possibility to develop generic transforms
by generically composing an encryption scheme and a MAC. As shown in Table 1, their resulting trans-
forms all involve primitives that have not been standardized. Naito et al. [25] also proposed a generic
transform, which exploits message redundancy to achieve beyond-birthday-bound committing security.
Though theoretically intriguing, their transform is not well-suited for practical use, as the sufficient
message redundancy required to achieve good committing security is typically unavailable. Also, their
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transform demands specific adjustments to the underlying encryption scheme based on the exact message
redundancy, which is unrealistic or at least cumbersome in practice.

1.2 Motivation

Similar to classical AE generic composition (e.g., Encrypt-then-Mac) [4], black-box generic transforms
for committing AE are important to investigate in both theory and practice. They provide modularity,
flexibility, broader applicability, and robustness in cryptographic protocols. However, so far, no existing
generic transform for committing AE serves as a good counterpart to Encrypt-then-MAC. From our
discussion on previous works, all existing practical generic transforms suffer from at least one of the
following limitations: (i) not context-committing, (ii) involving primitives not yet standardized, (iii) not
being a black-box transform, (iv) providing limited committing security. Our goal is to develop practical
black-box context-committing generic transforms using standard primitives, such that their committing
security can be expanded as needed.

Furthermore, we observe that, all practical instantiations of the existing generic transforms that ensure
context-committing security were proved secure under idealized assumptions.3 For example, security
proofs of CTX/CTY instantiations were performed in the random oracle model, and the security of the
practical committing PRF instantiation proposed by [2] (that underlies UtC and RtC transforms) was
proved in the ideal cipher model.

Since idealized assumptions are currently inevitable for practical constructions and hash functions are
well standardized and widely deployed, it is both natural and appealing to develop generic transforms
that combine AE with hash functions and prove their security in the random oracle model. Additionally,
given that hash-based commitment schemes are both straightforward and efficient, hash functions serve
as attractive candidates for constructing simple and practical schemes with committing security. These
considerations motivate our focus on using hash functions to develop generic transforms, which aligns
with the design choices of existing transforms such as CTX/CTY and PACT/comPACT.

We emphasize that our work is not aimed at developing a committing AE scheme with the best prac-
tical performance, as generic transforms typically fall short in that regard, and dedicated schemes like
those proposed in [2] are better suited for that purpose. Nevertheless, we strive to make our generic trans-
forms as straightforward and efficient as possible, ensuring they are easy for practitioners to understand
and implement, thereby facilitating the adoption and deployment of committing AE. The simplicity of
our design is particularly useful, given that committing AE schemes are currently not yet standardized
and practitioners may need to develop their own implementations.4 As a result, our work focuses on
exploring various simple paradigms for constructing generic transforms using hash functions, rather than
minimizing the ciphertext expansion (i.e., ciphertext length minus plaintext length) as was done in [3,9].
Even so, as we will show, some of our transforms do exhibit compact ciphertext expansion.

Finally, to the best of our knowledge, there is currently no generic transform that can directly elevate
an AE scheme to a committing one with advanced misuse-resistant security. Such a transform can be
highly useful in practice when misuse-resistant AE schemes are either unavailable (e.g., in Mozilla NSS
or libsodium) or inefficiently implemented (e.g., in wolfSSL) within the chosen cryptographic library. Our
work also aims to fill this gap.

1.3 Our Contributions

Basic transforms. As motivated above, we first explore black-box generic transforms that combine AE
with a single hash function. To this end, similar to the classical generic composition approaches presented
in the design of authenticated encryption schemes [4], we also consider three transform methods: Hash-
then-AE (HtAE), AE-and-Hash (AEaH) and Encrypt-then-Hash (EtH). For each transform method, we
propose a hash-based transform. We call these transforms basic transforms and naturally name them
HtAE, AEaH, EtH, respectively. Their encryption processes are illustrated in Figure 1.

As shown in the figure, all basic transforms follow a very straightforward and clean design. We note
that the first two transforms are built from an AE scheme, while the last EtH transform can directly
3 Note that it is possible to prove instantiations of generic transforms secure in the standard model, e.g., HtE◦UtC
with its underlying committing PRF instantiated with hardcore predicates [2, 13], but such constructions are
only theoretical.

4 We remark that standardization can be a lengthy process. For example, NIST’s lightweight cryptography,
started in 2015, selected Ascon in 2023, published a draft standard in 2024 [32], and will require more time for
widespread adoption.
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E.Enc
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Fig. 1: Our three basic transforms HtAE,AEaH and EtH.

elevate a basic privacy-only encryption scheme to a committing AE scheme. From the figure, one can
also observe that the encryption and hash computations in our second transform AEaH are independent
by design and hence fully parallelizable, while the other two transforms have to run their two component
primitives sequentially.

We prove that all basic transforms achieve both AE security and strong committing security. For
committing security, in addition to the primary context-committing (CMT) notion, we also consider
the context-discovery (CDY) notion proposed in [24]. CMT and CDY are very relevant notions; they
can be viewed as analogous to collision-resistance and preimage-resistance for hash functions. As shown
in [24], CDY can be implied by CMT when the encryption algorithm is “context-compressing”, i.e.,
ciphertexts are decryptable under multiple contexts. However, using generic transforms to construct AE
with strong committing security usually results in larger ciphertext expansion, which may lead to “non-
context-compressing” encryption algorithms. Therefore, we also include CDY for our security analysis.
CDY security was also analyzed in [8] for their transforms built from generic compositions. However, to
the best of our knowledge, so far no AE-based transforms have been analyzed for CDY security.

For performance, we compare our two AE-based transforms with other similar existing transforms, and
show that HtAE and AEaH are both more efficient than their comparable counterparts. Our comparison
also implies that AEaH achieves the highest efficiency. To understand the practical performance of our
basic transforms and some relevant existing ones, we implement these transforms using OpenSSL and
wolfSSL libraries,5 and measure their overhead relative to the widely used (non-committing) AE scheme,
AES-GCM [12]. Our results show that, for all tested message lengths (16 to 2048 bytes), the total cost of
the most efficient transform, AEaH, is at most three times that of AES-GCM.

Advanced transforms. Next, to achieve (nonce-)misuse-resistant (MR) security, we propose two ad-
vanced hash-based transforms.

Our first transform is designed to add committing security to AE schemes that already provide MR
security. Such a so-called MRAE-preserving transform follows the AE-then-Hash (AEtH) style, and hence
we name it AEtH. Its encryption process is illustrated in Figure 2 on the left. As shown in the figure,
instead of hashing the entire AE ciphertext, AEtH hashes only the last block (or any block) of it to
improve efficiency while preserving security.

Next, we construct the first generic transform that can directly “lift” a basic (unique-nonce) AE
scheme to one with both committing and MR security. Our design of such a MRAE-lifting transform is
5 While OpenSSL is arguably the most widely used cryptographic library, wolfSSL, despite its lower conventional
popularity, still powers cryptography in billions of devices [21], making it a valuable second choice for our
experiments.
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Fig. 2: Our two advanced transforms AEtH and chaSIV. X |m denotes last m bits of a bitstring X. τ
denotes the ciphertext expansion of the AE scheme AE and r denotes the nonce size of the encryption
scheme E.

very simple. It can be viewed as a composition of HtAE and the SIV mode [30]: just replace the MAC in
SIV with a hash function and add a PRF to re-key the underlying encryption scheme per distinct nonce.
We therefore name this transform chaSIV, short for committing hash-based SIV, with its encryption
process illustrated in Figure 2 on the right. As shown in the figure, chaSIV can be built from a basic
privacy-only encryption scheme, so like EtH it can be applied to both AE and privacy-only encryption.

We prove that both of our advanced transforms achieve the desired strong committing misuse-resistant
security. Then, we compare their concrete security when instantiated with consistent standardized prim-
itives. The results show that our chaSIV, despite its simple design and MRAE-lifting power, achieves
security comparable to that of our MRAE-preserving transform AEtH.

Finally, we compare the performance of our advanced transforms with other similar existing MRAE-
preserving transforms. Both the theoretical and implementation results show that CTX [9] and our
AEtH (essentially a black-box generalization of CTX) exhibit the highest efficiency. In OpenSSL, our
MRAE-lifting transform chaSIV demonstrates similar performance to CTX and AEtH and surpasses
them for messages longer than about 360 bytes; surprisingly, for messages longer than 1024 bytes, our
committing AE chaSIV even outperforms the benchmark, non-committing standardized misuse-resistant
AE AES-GCM-SIV [17]. Then, in wolfSSL, chaSIV outperforms all other transforms across all message
sizes, including the non-committing benchmark AES-SIV [19], the only misuse-resistant AE available in
wolfSSL; the result is mainly due to the slow implementation of AES-SIV, which is used by all MRAE-
preserving transforms.

2 Notation and Definitions

In the section, we introduce some notation, recall preliminary definitions of the building blocks, and
define certain notions that we will use in this work.

Notation. Let ε denote the empty string and {0, 1}∗ denote the set of all finite binary strings. For
a binary string X, let |X| denote its bit length. For a binary string X, where |X| ≥ n, the last (i.e.,
rightmost) n bits of X is denoted by X |n. Let the special symbol ⊥ (which is outside {0, 1}∗) denote
uninitialized state or failure. Let x← y denote assigning y to x. For a randomized algorithm A, let x $← A
denote running A and assigning the output to x; if A is deterministic, we write x ← A instead. For a
finite set S, let |S| denote its size and S $← S denote sampling S from S uniformly at random. For two
sets X and Y, let X ∪← Y denote X ← X ∪ Y. For a real number r, let dre denote the smallest integer
that is larger than or equal to r. For a function H that takes only one input, H(x1, x2, . . . , xn) indicates
that the inputs x1, x2, . . . , xn are injectively encoded to a single input before being fed into H; note that
they can be simply concatenated when the first n− 1 inputs are of fixed lengths. For an adversary A (an
algorithm), the notation AO denotes that A has oracle access to O(·).

2.1 Pseudorandom Functions and Hash Functions

Pseudorandom functions (PRFs). For a function F : {0, 1}κ × {0, 1}∗ → {0, 1}n, consider two
PRF games associated with an adversary A. In the “real” world, A has oracle access to the function



8 S. Chen and V. Karadžić

Game CRAH

(X1, X2)
$← A

return H(X1) = H(X2)

Game rCRAH′

(X1, X2)
$← A ; (Y1,L, Y1,R)← H′(X1) ; (Y2,L, Y2,R)← H′(X2)

return Y1,R = Y2,R

Fig. 3: The collision-resistance game (left) for a hash function H : {0, 1}∗ → {0, 1}v, and the right-
collision-resistance game (right) for a hash function H′ : {0, 1}∗ → {0, 1}v × {0, 1}w.

FK(·) = F(K, ·), where K is randomly sampled from {0, 1}κ; in the “ideal” world, it has oracle access to
a random function f(·), where f is uniformly sampled from F , the family of all functions with domain
{0, 1}∗ and range {0, 1}n. In the end, A outputs a bit b′ guessing which world it was in. Its PRF advantage
measure is defined as

Advprf
F (A) = Pr

[
K

$← {0, 1}κ : AFK ⇒ 1
]
− Pr

[
f

$← F : Af ⇒ 1
]
.

F is called a PRF if the above advantage is sufficiently small for any efficient adversary A.

Hash functions. An (unkeyed) hash function H : {0, 1}∗ → Y maps a binary string X ∈ {0, 1}∗ to
an element Y from the message digest space Y. In this work, we consider two types of digest spaces
Y = {0, 1}u and Y = {0, 1}v × {0, 1}w = {0, 1}v+w, where u, v, w are integers. That is, the second type
is a special case of the first type, with the digest space explicitly divided into two parts.

As shown in Figure 3, we consider two collision resistance notions for hash functions. The first security
game CRAH defines the “regular” collision resistance for a hash function H with digest space Y = {0, 1}u,
where the adversary wins by finding a collision, i.e., two distinct messages hashing to the same digest.
Then, the second security game rCRAH′ defines a so-called right collision resistance notion for a hash
function H′ with digest space Y = {0, 1}v ×{0, 1}w, where the adversary wins by finding a collision only
on the right part of the digest space {0, 1}w. Their advantage measures are defined respectively as

Advcr
H (A) = Pr

[
CRAH ⇒ 1

]
and Advrcr

H′ (A) = Pr
[
rCRAH′ ⇒ 1

]
.

From the above definitions, it is clear that right collision resistance implies collision resistance. It is
generally believed that the practical SHA-2/3 hash families satisfy both collision resistance notions, but
the security of right collision resistance is restricted by the right-part digest length w.

2.2 Symmetric Encryption

A (nonce-based) symmetric encryption (SE) scheme SE specifies a pair of deterministic algorithms
(Enc,Dec) and is associated with a key space {0, 1}κ, nonce space N ⊆ {0, 1}∗, associated data space
AD ⊆ {0, 1}∗, and message space M ⊆ {0, 1}∗. Its encryption algorithm SE.Enc takes as input a key
K ∈ {0, 1}κ, nonce N ∈ N , associated data AD ∈ AD, message M ∈ M, and outputs a ciphertext
C ∈ {0, 1}∗. Its decryption algorithm SE.Dec takes as input a key K, nonce N ∈ N , associated data
AD ∈ AD, ciphertext C ∈ {0, 1}∗, and outputs either a message M ∈ M or the special symbol ⊥
indicating decryption failure. Correctness requires that SE.Dec(K,N,AD,SE.Enc(K,N,AD,M)) = M
holds for all K ∈ {0, 1}κ, N ∈ N , AD ∈ AD, M ∈M.

The above SE syntax actually coincides with the syntax of an authenticated encryption (AE) scheme
AE. For simplicity, we also abuse the same SE syntax to capture a basic nonce-based encryption scheme E,
for which the associated data is ignored and correctness requires that E.Dec(K,N,E.Enc(K,N,M)) = M
holds for all K ∈ {0, 1}κ, N ∈ N , M ∈ M. A basic nonce-based encryption scheme E is said to be
tidy [26] if M ← E.Dec(K,N,C) implies E.Enc(K,N,M) = C. Tidiness is a natural requirement for
practical nonce-based encryption schemes to avoid unnecessary degeneration and mitigate security risks.
Correctness and tidiness together imply that functions E.Enc(K,N, ·) and E.Dec(K,N, ·) are the inverse
of each other.

We assume a symmetric encryption scheme SE (and also implicitly E) is further associated
with a linear-time computable ciphertext-length function SE.clen such that |SE.Enc(K,N,AD,M)| =
SE.clen(|M |) holds for all K,N,AD,M . In this work, we consider only “natural” SE schemes that satisfy
minM∈M{SE.clen(|M |) − |M |} = τ > 0, where the constant τ is called ciphertext expansion of SE. We
note that, in order to achieve practical security, ciphertext expansions of real-world deployed AE schemes
are usually of sufficient length, e.g., 96 or 128 bits.
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Game REALASE

K
$← {0, 1}κ

b′
$← AEnc

return b′

Oracle Enc(N,AD,M)

C ← SE.Enc(K,N,AD,M)

return C

Game RANDASE

b′
$← AEnc

return b′

Oracle Enc(N,AD,M)

C
$← {0, 1}SE.clen(|M|)

return C

Game INT-CTXTASE

K
$← {0, 1}κ ; Q ← ∅

win← 0

AEnc,Ver

return win

Oracle Enc(N,AD,M)

C ← SE.Enc(K,N,AD,M)

Q ∪← {(N,AD,C)}
return C

Oracle Ver(N,AD,C)

M ← SE.Dec(K,N,AD,C)

if M 6= ⊥ ∧ (N,AD,C) 6∈ Q :

win← 1

return M 6= ⊥

Fig. 4: The privacy games, real (top left) and random (top right), and the authenticity game (bottom)
for a symmetric encryption scheme SE.

For security of an SE scheme, in addition to AE security notions (i.e., privacy and authenticity), we
also consider two committing security notions: context committing (CMT) and context discovery (CDY).
Here “context” refers to the encryption input (K,N,AD,M). These committing security notions can be
viewed as analogous to collision-resistance and preimage-resistance for hash functions. If a symmetric
encryption scheme is expected to ensure both AE security and committing security, it is called committing
authenticated encryption.

AE security. We recall the basic privacy and authenticity notions as defined in [27], for which the
adversary is required to be nonce-respecting, i.e., it never repeats a nonce for its encryption queries.
Besides, we also consider the stronger nonce-misuse resistant notions and a weaker privacy notion.

For privacy, consider the two privacy games shown in Figure 4 that define the notion of IND$-CPA:
indistinguishability from random bits under chosen-plaintext attack. In both games the adversary A has
access to an encryption oracle Enc, which returns the encrypted ciphertext in the “real” world REALASE
and returns random bits in the “ideal” world RANDASE. In the end, A outputs a bit b′ guessing which
world it was in. Its IND$-CPA advantage measure is defined as

Advind$-cpa
SE (A) = Pr

[
REALASE ⇒ 1

]
− Pr

[
RANDASE ⇒ 1

]
.

If the adversary is restricted to make at most one query to its encryption oracle, the resulting weaker
privacy notion is named one-time IND$-CPA (or simply OT-IND$-CPA), with its advantage measure
denoted by Advot-ind$-cpa

SE (A).
For authenticity, consider the authenticity game INT-CTXTASE also shown in Figure 4 that defines

ciphertext integrity (INT-CTXT). Here, the adversary A wins by forging a new tuple (N,AD,C) that
can be successfully decrypted. Its INT-CTXT advantage measure is defined as

Advint-ctxt
SE (A) = Pr

[
INT-CTXTASE ⇒ 1

]
.

Note that the above also defines privacy and authenticity security for a nonce-based encryption scheme
E when associated data is ignored [28]. In this work, when such encryption schemes are concerned, we
implicitly refer to those that ensure only privacy but not authenticity. These basic encryption schemes
usually serve as a component of AE schemes and hence have simpler and more efficient instantiations
than AE schemes.

MRAE security. We also consider the stronger (nonce-)misuse-resistant (MR) AE security, for which
the adversary is no longer required to be nonce-respecting. However, to avoid trivial wins, the adversary
is not allowed to repeat a query to its encryption oracle. The misuse-resistant AE security notions are
named MR-IND$-CPA and MR-INT-CTXT respectively, with advantage measures defined in the same
way and denoted by Advmr-ind$-cpa

SE (A) and Advmr-int-ctxt
SE (A).

Context-committing security. The context-committing game shown in Figure 5 defines the CMT-3
notion proposed by [2] that we simply call CMT, which is conceptually simpler than but security-
wise equivalent to their strongest CMT-4 notion. The adversary wins by finding two different contexts
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Game CMTASE

((K1, N1, AD1,M1), (K2, N2, AD2,M2))
$← A

C1 ← SE.Enc(K1, N1, AD1,M1) ; C2 ← SE.Enc(K2, N2, AD2,M2)

return C1 = C2 ∧ (K1, N1, AD1) 6= (K2, N2, AD2)

Fig. 5: The context-committing game for a symmetric encryption scheme SE.

Game CDYASE,S

C
$← S ; (K,N,AD,M)

$← A(C)

return SE.Enc(K,N,AD,M) = C

Context selector S$

K
$← {0, 1}κ ; N

$← N ; AD
$← AD ; M

$←M
return SE.Enc(K,N,AD,M)

Fig. 6: The context-discovery game parameterized by a context selector S for a symmetric encryption
scheme SE (left) and the context selector S$ (right).

encrypting to the same ciphertext. Its advantage measure is defined as

Advcmt
SE (A) = Pr

[
CMTASE ⇒ 1

]
.

Context-discovery security. We follow [8] to consider a simplified version of the context-discovery
security notion proposed by [24], which we call CDY. As shown in Figure 6, the CDY game is parame-
terized by a so-called context selector S. The adversary is challenged with a ciphertext C selected by S
and wins by finding a context (K,N,AD,M) that encrypts to C. We define its advantage measure as:

Advcdy
SE,S(A) = Pr

[
CDYASE,S ⇒ 1

]
.

In Figure 6 we also specify a context selector S$ that we think is of particular interest. S$ just samples
the challenge context uniformly at random, with this context selector S$ the CDY notion can be viewed
as one-wayness of the encryption algorithm. For simplicity, we write CDY$ to denote this notion and its
advantage measure is therefore defined as:

Advcdy$
SE (A) = Advcdy

SE,S$
(A) = Pr

[
CDYASE,S$

⇒ 1
]
.

The above context selector S$ also occurred in the proof of Theorem 1 in [24]. This theorem shows that
CMT implies CDY$ for symmetric encryption schemes that are “context-compressing”, i.e., ciphertexts
are decryptable under multiple contexts. This property is satisfied by many standardized AE schemes
(e.g., AES-GCM) and their unstandardized CMT-secure variants (e.g., those proposed in [2]). Neverthe-
less, it is still interesting to explore both CMT and CDY$ security for committing AE schemes that
are generically transformed from AE schemes, e.g., HtE ◦ UtC [2], CTX [9], CTY [3], and the hash-based
constructions that we will present in this work. Such schemes may involve larger ciphertext expansion
due to the added committing security, and hence may not be context-compressing, especially when the
AD size is small.

We note that Bhaumik et al. [8] proved CDY security for some SE schemes constructed from generic
compositions, but their proofs can only work with context selectors that have no access to the underlying
MAC component. As a result, the context selectors considered in [8] are actually quite restrictive, e.g.,
they cannot even capture the above S$ that encrypts a random context; also, such selectors may not
produce a valid challenge ciphertext, for which CDY security trivially holds and is hence meaningless.
Therefore, we focus on context selector S$ when analyzing CDY security of our constructions, but one
can easily adapt our CDY$ security proofs to handle arbitrary context selectors that have no access to
the encryption algorithm.

3 Basic Transforms

We begin by exploring generic transforms that combine an AE scheme with a hash function, aiming for
the resulting schemes to achieve both AE security and committing security. We refer to constructions in
this section as basic transforms, as the more advanced MRAE security is not considered here.
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HtAE.Enc(K,N,AD,M)

(Ke, T )← H(K,N,AD)

C ← AE.Enc(Ke, N, ε,M)

return (C, T )

HtAE.Dec(K,N,AD, (C, T ))

(Ke, T
′)← H(K,N,AD)

if T ′ 6= T : return ⊥
M ← AE.Dec(Ke, N, ε, C)

return M

NK ADM

TC

H

AE.Enc

Fig. 7: The pseudocode (left) of HtAE transform and the graphical illustration (right) of its encryption
algorithm.

Similar to the classical generic composition paradigms for the design of authenticated encryption
schemes [4], we also consider three transform methods: Hash-then-AE (HtAE), AE-and-Hash (AEaH)
and Encrypt-then-Hash (EtH). The latter transform is named Encrypt-then-Hash because it can be
applied to both AE and basic privacy-only encryption schemes.

In the following, we first present our basic transforms and their security results individually, comparing
each to similar existing transforms. Then, we compare the security guarantees of our basic transforms,
deferring their performance comparison to a later section, where we also compare the performance of
advanced transforms.

3.1 Hash-then-AE (HtAE)

For the Hash-then-AE (HtAE) transform, we present the HtAE construction. HtAE is built from a hash
function H : {0, 1}∗ → {0, 1}κ × {0, 1}t and an authenticated encryption scheme AE with key space
{0, 1}κ. For simplicity, we consider HtAE with the same key space {0, 1}κ. Its pseudocode and the
graphical illustration of its encryption algorithm HtAE.Enc are shown in Figure 7.

To encrypt, HtAE first computes the hash function H with the input (K,N,AD) to derive an sym-
metric key Ke and a committing tag T , then initializes the underlying AE scheme AE with key Ke and
uses it to encrypt the input message M with nonce N and empty associated data, and finally outputs
the derived AE ciphertext C together with T . To decrypt, HtAE also computes the hash function H to
derive an symmetric key Ke and a committing tag T ′, then checks if this tag T ′ is equal to the input
committing tag T and outputs ⊥ on failure; if the check passes, it uses AE to decrypt the input ciphertext
C under key Ke with nonce N and empty associated data, and finally outputs the decrypted message
M .

We present the security guarantees of HtAE in the following theorems, with proofs in Ap-
pendix B.1∼B.4.

Theorem 1. Let the underlying hash function of HtAE be modeled as a random oracle H. For any
efficient adversary A making qe and qh queries respectively to oracles Enc and H, there exists an efficient
adversary B such that

Advind$-cpa
HtAE (A) ≤ qeAdvot-ind$-cpa

AE (B) +
qh
2κ
.

Theorem 2. Let the underlying hash function of HtAE be modeled as a random oracle H. For any
efficient adversary A making qe, qv, qh queries respectively to oracles Enc, Ver, H, there exists an efficient
adversary B such that

Advint-ctxt
HtAE (A) ≤ (qe + qv)Advint-ctxt

AE (B) +
qh
2κ
.

Theorem 3. For any efficient adversary A, there exists an efficient adversary B (that can be constructed
from A) such that

Advcmt
HtAE(A) ≤ Advrcr

H (B).

Remark 1. The above theorem reduces CMT security of HtAE to right collision resistance of H to avoid
idealized assumptions, but one can also easily prove it in the random oracle model. We follow the same
style when analyzing CMT security of our other transforms.



12 S. Chen and V. Karadžić

AEaH.Enc(K,N,AD,M)

C ← AE.Enc(K,N, ε,M)

T ← H(K,N,AD)

return (C, T )

AEaH.Dec(K,N,AD, (C, T ))

M ← AE.Dec(K,N, ε, C)

if M = ⊥ ∨ H(K,N,AD) 6= T :

return ⊥
return M

K N ADM

TC

HAE.Enc

Fig. 8: The pseudocode (left) of AEaH transform and the graphical illustration (right) of its encryption
algorithm.

Theorem 4. Let the underlying hash function of HtAE be modeled as a random oracle H. For any
efficient adversary A making qh random oracle queries, we have

Advcdy$
HtAE(A) ≤ 1

|AD|
· qh + 1

2κ
+
qh + 1

2t
.

Remark 2. As implied in the proof, if there is no associated data (i.e., AD = ∅), the above security
bound still holds without the |AD| term.

Comparison with CommitKeyΠ and HtE ◦UtC. Among the existing transforms, CommitKeyΠ [1] and
HtE ◦ UtC [2] follow a similar paradigm to our HtAE. They are also designed to first derive a fresh
encryption key Ke for each distinct nonce and then feed this Ke to the underlying AE. As discussed
below, our HtAE can be viewed as a simpler hash-based counterpart.

– Instead of computing a single hash, CommitKeyΠ uses two separate collision-resistant PRFs to derive
the encryption key Ke and the committing tag T , respectively. It is quite similar to our HtAE, as
in practice collision-resistant PRFs can be instantiated with hash functions. However, CommitKeyΠ
incurs one more primitive call (and hence is slower than HtAE) and does not ensure CMT security.

– HtE◦UtC improved CommitKeyΠ by first computing a hash and then calling a more efficient primitive
called committing PRF. Nevertheless, this transform still makes two primitive calls to derive Ke and
T . As we will show later in Section 5, our HtAE outperforms HtE◦UtC even when the committing PRF
is instantiated with the practical block-cipher-based construction proposed in [2]. More importantly,
unlike hash functions, their practical instantiation is not yet standardized.

3.2 AE-and-Hash (AEaH)

Then, for the AE-and-Hash (AEaH) transform, we present the AEaH construction. AEaH is built from a
hash function H : {0, 1}∗ → {0, 1}t and an authenticated encryption scheme AE with key space {0, 1}κ.
Again, for simplicity, we consider AEaH with the same key space {0, 1}κ. Its pseudocode and the graphical
illustration of its encryption algorithm AEaH.Enc are shown in Figure 8.

To encrypt, AEaH performs two separate computations: (i) using the underlying AE scheme AE to
encrypt the input messageM under the input key K with the input nonce N and empty associated data,
to derive an AE ciphertext C, (ii) computing the hash function H(K,N,AD), to derive a committing
tag T . Finally, it outputs (C, T ) as its ciphertext. To decrypt, AEaH performs two similar separate
computations: (iii) using AE to decrypt the input ciphertext C under the input key K with the input
nonce N and empty associated data, to derive a decrypted message M , (iv) computing H(K,N,AD), to
derive a committing tag T ′. Then, it checks if AE decryption succeeds (i.e., M 6= ⊥) and if T ′ is equal
to the input committing tag T , and finally it outputs M if the check passes or outputs ⊥ otherwise.

We note that computations (i) and (ii) are independent of each other, as are (iii) and (iv), so in
practice they can be executed in parallel.

The security guarantees of AEaH are presented in the following theorems, with proofs in Ap-
pendix B.5∼B.8.

Theorem 5. Let the underlying hash function of AEaH be modeled as a random oracle H. For any
efficient adversary A making qe and qh queries respectively to oracles Enc and H, there exists an efficient
adversary B such that

Advind$-cpa
AEaH (A) ≤ 2 ·Advind$-cpa

AE (B) +
qh
2κ
,
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where B makes at most qe + 1 encryption queries and its one extra encryption query (if any) is on a
κ-bit message.

Theorem 6. Let the underlying hash function of AEaH be modeled as a random oracle H. For any
efficient adversary A making qe, qv, qh queries respectively to oracles Enc, Ver, H, there exists an efficient
adversary B such that

Advint-ctxt
AEaH (A) ≤ 2 ·Advint-ctxt

AE (B) +
qv
2t
,

where B makes qe encryption queries and at most qv + qh verification queries.

Theorem 7. For any efficient adversary A, there exists an efficient adversary B (that can be constructed
from A) such that

Advcmt
AEaH(A) ≤ Advcr

H (B).

Theorem 8. Let the underlying hash function of AEaH be modeled as a random oracle H and let τ be the
ciphertext expansion of the underlying AE scheme AE. For any efficient adversary A making qh random
oracle queries, there exists an efficient adversary B such that

Advcdy$
AEaH(A) ≤ Advot-ind$-cpa

AE (B) +
qh + 1

2τ
+
qh + 1

2t
.

Comparison with comPACT. The recently proposed comPACT [7] is the most similar existing transform
to AEaH. In fact, it computes the AE ciphertext C and H digest T in the same way as in AEaH. However,
comPACT uses the H digest T as an encryption key rather than a committing tag. More precisely, it
applies a block cipher under key T to encrypt the authentication tag (or at most one last block) of the
derived AE ciphertext C, denoted by TC , to produce T ∗C ; it then outputs C with TC replaced by the
modified tag T ∗C .

The extra tag encryption in comPACT is adopted to reduce ciphertext expansion; however, as men-
tioned in the Introduction, the maximum committing security of the resulting scheme is thus restricted
to half the block size. In contrast, our AEaH can provide stronger committing security by choosing a hash
function with large enough digest size. By construction, it is obvious that AEaH has higher efficiency
than comPACT, and our AEaH is fully parallelizable.

3.3 Encrypt-then-Hash (EtH)

Finally, we present the EtH construction for the Encrypt-then-Hash transform. Here, we use “Encrypt” to
emphasize that our EtH transform can be applied to both AE schemes and basic privacy-only encryption
schemes. In this section, we adopt the syntax and security of a basic encryption scheme E to describe our
construction and analyze the security results, but one can also easily adapt the construction and results
to capture arbitrary AE schemes.

EtH is built from a hash function H : {0, 1}∗ → {0, 1}t and a symmetric encryption scheme E with
key space {0, 1}κ. Again, for simplicity, we consider EtH with the same key space {0, 1}κ. Its pseudocode
and the graphical illustration of its encryption algorithm EtH.Enc are shown in Figure 9.

To encrypt, EtH first uses the underlying AE scheme E to encrypt the input message M under the
input key K with the input nonce N , to derive an E ciphertext C; then it computes the hash function
H with input (K,N,AD,C), to derive a committing tag T ; finally it outputs (C, T ) as its ciphertext.
To decrypt, EtH first computes the hash function H to derive a committing tag T ′, then checks if this
tag T ′ is equal to the input committing tag T and outputs ⊥ on failure; if the check passes, it uses E to
decrypt the input ciphertext C under key K with nonce N and outputs the decrypted message M .

We present the security guarantees of EtH in the following theorems, with proofs in Ap-
pendix B.9∼B.12. We note that our security results for EtH do not require the underlying basic encryption
scheme E to be tidy.

Theorem 9. Let the underlying hash function of EtH be modeled as a random oracle H. For any efficient
adversary A making qe and qh queries respectively to oracles Enc and H, there exists an efficient adversary
B such that

Advind$-cpa
EtH (A) ≤ 2 ·Advind$-cpa

E (B) +
qh
2κ
,

where B makes at most qe + 1 encryption queries and its one extra encryption query (if any) is on a
κ-bit message.
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EtH.Enc(K,N,AD,M)

C ← E.Enc(K,N,M)

T ← H(K,N,AD,C)

return (C, T )

EtH.Dec(K,N,AD, (C, T ))

T ′ ← H(K,N,AD,C)

if T ′ 6= T : return ⊥
M ← E.Dec(K,N,C)

return M

K N ADM

TC

H

E.Enc

Fig. 9: The pseudocode (left) of EtH transform and the graphical illustration (right) of its encryption
algorithm.

Theorem 10. Let the underlying hash function of EtH be modeled as a random oracle H. For any
efficient adversary A making qe, qv, qh queries respectively to oracles Enc, Ver, H, there exists an efficient
adversary B such that

Advint-ctxt
EtH (A) ≤ Advind$-cpa

E (B) +
qh
2κ

+
qv
2t
,

where B makes qe + 1 encryption queries and its one extra encryption query is on a κ-bit message.

Remark 3. The above theorem reduces the INT-CTXT security of EtH to the IND$-CPA security of E,
because the underlying basic encryption scheme E may not have authenticity security. However, if our
Encrypt-then-Hash transform is built from an authenticated encryption scheme AE, one can perform a
proof (omitted here) very similar to that of Theorem 6 to reduce the INT-CTXT security of our transform
to the INT-CTXT security of the underlying AE.

Theorem 11. For any efficient adversary A, there exists an efficient adversary B (that can be con-
structed from A) such that

Advcmt
EtH(A) ≤ Advcr

H (B).

Theorem 12. Let the underlying hash function of EtH be modeled as a random oracle H. For any
efficient adversary A making qh random oracle queries, there exists an efficient adversary B such that

Advcdy$
EtH (A) ≤ Advind$-cpa

E (B) +
qh + 1

2κ
+
qh + 1

2t
,

where B makes two encryption queries and one of them is on a κ-bit message.

Comparison with CTY. Among the existing transforms, CTY [3] is the most similar to EtH. It also
follows the Encrypt-then-Hash paradigm, but it is built from AE schemes that produce a separate
authentication tag and hashes only this tag rather than the entire AE ciphertext.

With practical instantiations, CTY usually has better performance than EtH, even when the un-
derlying encryption scheme of EtH is instantiated with basic privacy-only encryption. For example, as
demonstrated by our implementation results in Section 5, CTY instantiated with AES-GCM runs faster
than EtH instantiated with AES-CTR (i.e., AES in counter mode) for common message sizes, because
hashing the entire ciphertext (as in EtH) is typically slower than MACing it within AE (as in CTY).

However, CTY is not a black-box transform and cannot be applied to basic privacy-only encryption
schemes; our EtH, by contrast, can work with arbitrary AE and basic privacy-only encryption schemes,
making it a more powerful generic transform. Additionally, when instantiated with basic encryption
schemes that do not incur ciphertext expansion (e.g., with AES-CTR), our EtH exhibits the same compact
ciphertext expansion as CTY.

3.4 Security Comparison

Now, we compare the security guarantees of our three basic transforms: HtAE, AEaH, EtH, when instan-
tiated with the same or consistent component primitives.
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AE security. All of our basic transforms achieve AE security.
To achieve IND$-CPA security, HtAE requires only one-time IND$-CPA security for its underlying AE,

while AEaH and EtH require the regular IND$-CPA security. This is because, for each HtAE encryption
with a distinct nonce, a fresh AE key Ke is derived and used solely for encrypting that one message.

For INT-CTXT security, the guarantees for our basic transforms are similarly aligned, except for
EtH with basic privacy-only encryption instantiation. In this case, as remarked for Theorem 10, the
INT-CTXT security of EtH has to rely on the IND$-CPA security of the underlying basic encryption
scheme E.

Committing security. All of our basic transforms achieve committing security.
To achieve CMT security, AEaH and EtH rely on collision resistance of the underlying hash function,

while HtAE requires the stronger right collision resistance. As a result, to ensure the same level of CMT
security, the hash function used in HtAE must have a larger digest size compared to the other two
transforms, leading to more constraint choices for hash instantiations.

For CDY$ security, however, HtAE has a better security bound than the other two transforms. As
shown in Theorem 4, its CDY$ security does not rely on the security of its underlying AE, which means
HtAE can still ensure context-discovery security even if AE is broken. This is because revealing the AE key
Ke used in HtAE does not help with determining the input key K. In contrast, AEaH and EtH directly
use the same input key K for encryption, so breaking the underlying encryption scheme would reveal
the input message, key and nonce. As discussed in the end of Section 2.2, CDY$ security is of particular
interest when the associated data space AD has small size, and in this case breaking the encryption
scheme compromises CDY$ security. Therefore, AEaH and EtH have to rely on the privacy security of
the underlying encryption scheme to ensure context-discovery security; however, they require only very
minimal one-time or two-time IND$-CPA security for privacy.

4 Advanced Transforms

In this section, we present our two advanced generic transforms. The first simpler transform adds commit-
ting security to an AE scheme while preserving its misuse-resistance security, while the second transform
directly “lifts” a basic encryption scheme to a committing AE that is secure against nonce misuse.

In the following, we first present our advanced transforms and their security results individually, com-
paring the first with similar existing MRAE-preserving transforms. Then, we instantiate our transforms
with consistent standardized component primitives and compare their security guarantees.

4.1 MRAE-Preserving Transform AEtH

For our MRAE-preserving transform, we present the AEtH construction, which follows the AE-then-Hash
paradigm. AEtH is built from a hash function H : {0, 1}∗ → {0, 1}t and an authenticated encryption
scheme AE with key space {0, 1}κ. For simplicity, we consider AEtH with the same key space {0, 1}κ. Its
pseudocode and the graphical illustration of its encryption algorithm AEtH.Enc are shown in Figure 10.

As shown in the figure, AEtH is very similar to our basic EtH transform (see Figure 9), except that
the basic encryption scheme E in EtH is replaced with AE in AEtH and only the last τ bits of the AE
ciphertext is fed into the hash function. Here τ refers to the ciphertext expansion of the underlying AE,
but it can be adjusted for stronger security when the length of the AE ciphertext is guaranteed to have
more than τ bits.

To encrypt, AEtH first uses the underlying AE scheme AE to encrypt the input message M under
the input key K with the input nonce N and associated data AD, to derive an AE ciphertext C; then it
computes the hash function H with input (K,N,AD,C|τ ), to derive a committing tag T ; finally it outputs
(C, T ) as its ciphertext. To decrypt, AEtH first computes the hash function H to derive a committing
tag T ′, then checks if this tag T ′ is equal to the input committing tag T and outputs ⊥ on failure; if
the check passes, it uses AE to decrypt the input ciphertext C under key K with the input nonce N and
associated data AD, and outputs the decrypted message M .

The security guarantees of AEtH are presented in the following theorems, with proofs in Ap-
pendix B.13∼B.16.

Theorem 13. Let the underlying hash function of AEtH be modeled as a random oracle H. For any
efficient adversary A making qe and qh queries respectively to oracles Enc and H, there exists an efficient
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AEtH.Enc(K,N,AD,M)

C ← AE.Enc(K,N,AD,M)

T ← H(K,N,AD,C|τ )

return (C, T )

AEtH.Dec(K,N,AD, (C, T ))

T ′ ← H(K,N,AD,C|τ )

if T ′ 6= T : return ⊥
M ← AE.Dec(K,N,AD,C)

return M

K N ADM

TC

H

AE.Enc

C|τ

Fig. 10: The pseudocode (left) of AEtH transform and the graphical illustration (right) of its encryption
algorithm.

adversary B such that

Advmr-ind$-cpa
AEtH (A) ≤ 2 ·Advmr-ind$-cpa

AE (B) +
q2e

2τ+1
+
qh
2κ
,

where B makes at most qe + 1 encryption queries and its one extra encryption query (if any) is on a
κ-bit message.

Remark 4. We remark that the q2e
2τ+1 term is suboptimal with respect to the allowed number of encryp-

tions, e.g., it restricts qe ≤ 248.5 for τ = 128 (the typical expansion size) with a 2−32 advantage. This,
however, could be circumvented by (i) padding all messages with l bits before encryption and then feed-
ing τ + l bits of the derived AE ciphertext into H, or (ii) excluding short messages from the message
space, which ensures sufficiently long ciphertexts. We note that some other advanced transforms such as
CTX [9] and PACT [7] also suffer from the above suboptimal term.6 The above circumvention ideas can
be applied to CTX, but fail for PACT, as the expansion size τ of PACT is fixed to the block size by design
due to the added block cipher encryption.

Theorem 14. Let the underlying hash function of AEtH be modeled as a random oracle H. For any
efficient adversary A making qe, qv, qh queries respectively to oracles Enc, Ver, H, there exists an efficient
adversary B such that

Advmr-int-ctxt
AEtH (A) ≤ 2 ·Advmr-int-ctxt

AE (B),

where B makes qe encryption queries and at most qv + qh verification queries.

Theorem 15. For any efficient adversary A, there exists an efficient adversary B (that can be con-
structed from A) such that

Advcmt
AEtH(A) ≤ Advcr

H (B).

Theorem 16. Let the underlying hash function of AEtH be modeled as a random oracle H and let τ
be the ciphertext expansion of the underlying AE scheme AE. For any efficient adversary A making qh
random oracle queries, there exists an efficient adversary B such that

Advcdy$
AEtH(A) ≤ Advot-ind$-cpa

AE (B) +
qh + 1

2τ
+
qh + 1

2t
.

Comparison with existing MRAE-preserving transforms. There are three existing transforms
that also preserve MRAE security: HtE ◦ RtC [2], CTX [9] and PACT [7]. We compare them to our AEtH
as follows:

– The HtE ◦ RtC transform follows the same approach as HtE ◦ UtC, with RtC applied to a misuse-
resistant AE scheme rather than a basic one. As a result, HtE ◦ RtC still suffers from the expensive
cost to re-key the underlying AE per distinct nonce, resulting in worse performance than our AEtH.
Furthermore, like HtE◦UtC, the HtE◦RtC transform also makes use of the non-standard committing
PRF primitive.

6 The term did not appear explicitly in the original work that presents CTX [9], since the authors proved only
AE security in the basic nonce-respecting setting. However, due to the very similar design of CTX and our
AEtH, our security proof can be directly applied to CTX to derive almost identical bounds.
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chaSIV.Enc(K,N,AD,M)

Ke ← F(K,N)

T ← H(K,N,AD,M)

Ne ← T|r
C ← E.Enc(Ke, Ne,M)

return (C, T )

chaSIV.Dec(K,N,AD, (C, T ))

Ke ← F(K,N)

Ne ← T|r
M ← E.Dec(Ke, Ne, C)

if M = ⊥ : return ⊥
T ′ ← H(K,N,AD,M)

if T ′ 6= T : return ⊥
return M

K N ADM

TC

H

E.Enc

F

Ke

T|r

Fig. 11: The pseudocode (left) of chaSIV[F,H,E] transform and the graphical illustration (right) of its
encryption algorithm.

– Our AEtH can be viewed as a black-box generalization of the CTX transform, where CTX is restricted
to hash a separate authentication tag of the underlying AE ciphertext rather than any part of it.
The performance of CTX and AEtH are hence almost the same, with CTX saving τ -bit ciphertext
output.

– The black-box transform PACT [7] is the heavier variant of comPACT, aiming to preserve misuse-
resistance security. The only difference between PACT and comPACT is that, in PACT, the underlying
AE inputs AD rather than an empty string as associated data, where the same difference also applies
to CTX and CTY. As with comPACT, PACT applies an additional block cipher encryption after
hashing, leading to slower performance than our AEtH.

4.2 MRAE-Lifting Transform chaSIV

Finally, we present our MRAE-lifting transform named chaSIV, which stands for committing hash-based
SIV. Like our EtH transform, this advanced chaSIV can also be applied to both AE schemes and basic
privacy-only encryption schemes. In this section, we adopt the syntax and security of a basic encryption
scheme E to describe our construction and analyze the security results, but one can easily adapt the
construction and results to capture arbitrary AE schemes.

As its name indicates, chaSIV follows the synthetic IV (SIV) paradigm [30]: it just replaces the MAC
in SIV with a hash function and adds a PRF to re-key the underlying encryption scheme per distinct
nonce. As a result, in addition to hash function H : {0, 1}∗ → {0, 1}t and an encryption scheme E with
key space {0, 1}κ, chaSIV also makes use of a PRF F : {0, 1}κ × {0, 1}r → {0, 1}κ. For chaSIV to be
properly defined, we require t ≥ r, i.e., the committing tag size must be at least the nonce size, which
holds for all natural and practical choices of t and r. As with our previous transforms, we consider chaSIV
with the same key space {0, 1}κ. Its pseudocode and the graphical illustration of its encryption algorithm
chaSIV.Enc are shown in Figure 11.

To encrypt, chaSIV first uses PRF F under the input key K to derive the encryption key Ke for the
underlying E. Then, it hashes the whole context with H to derive a committing tag T . The last r bits of T
are then used as a nonce for E to encrypt the input message M and get ciphertext C. Finally, it outputs
(C, T ) as its ciphertext. To decrypt, chaSIV derives Ke as is done in encryption and takes the last r bits
of the input committing tag T as nonce Ne. Then, it uses E to decrypt the input ciphertext C under the
key Ke with nonce Ne. If decryption fails, it outputs ⊥; otherwise, chaSIV gets the decrypted message
M and computes the hash function H over (K,N,AD,M) to derive T ′. Finally, it checks if T ′ = T and
outputs ⊥ on failure; otherwise, it outputs M .

The security guarantees of chaSIV are presented in the following theorems, with proofs in Ap-
pendix B.17∼B.20.

Theorem 17. Let the underlying hash function of chaSIV be modeled as a random oracle H. For any
efficient adversary A making qh queries to oracle H and querying oracle Enc with Qe distinct nonces,
where the i-th nonce is repeated Ri times for i ∈ {1, . . . , Qe}, there exist efficient adversaries B and C
such that

Advmr-ind$-cpa
chaSIV (A) ≤ Qe ·Advind$-cpa

E (B) + 2 ·Advprf
F (C) +

∑Qe
i=1R

2
i

2r
+
qh
2κ
,

where B makes at most maxi∈{1,...,Qe}{Ri} encryption queries and C makes at most Qe + 1 PRF oracle
queries.
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Remark 5. Note that here we do not have the suboptimal quadratic term that appeared in Theorem 13.
Instead, we have

∑Qe
i=1 R

2
i

2r , which typically allows for more encryptions for a common nonce size, e.g.,
r = 96, since in practice the number of repetitions is usually not high, e.g., hundreds for random nonces.

Theorem 18. Let the underlying hash function of chaSIV be modeled as a random oracle H. For any
efficient adversary A making qh, qv queries respectively to oracles H,Ver and querying oracles Enc,Ver
with a total of Q distinct nonces, there exists an efficient adversary B such that

Advmr-int-ctxt
chaSIV (A) ≤ Advprf

F (B) +
qh
2κ

+
qv
2t
,

where B makes at most Q+ 1 PRF oracle queries.

Remark 6. The above theorem requires the underlying encryption scheme E to be tidy. In our entire
work, this is the only theorem that relies on tidyness.

Theorem 19. For any efficient adversary A, there exists an efficient adversary B (that can be con-
structed from A) such that

Advcmt
chaSIV(A) ≤ Advcr

H (B).

Theorem 20. Let the underlying hash function of chaSIV be modeled as a random oracle H. For any
efficient adversary A making qh random oracle queries, there exists an efficient adversary B such that

Advcdy$
chaSIV(A) ≤ Advprf

F (B) +
qh + 1

2κ
+
qh + 1

2t
,

where B makes only one PRF oracle query.

4.3 Security Comparison

We now compare the security guarantees of our advanced transforms, AEtH and chaSIV, when instantiated
with consistent component primitives. Since they respectively employ misuse-resistant AE and basic
encryption schemes, which typically have quite different concrete security bounds, we focus on specific
consistent primitives when comparing their security. In particular, we consider the misuse-resistant AE
AE instantiated with AES-GCM-SIV, basic encryption scheme E instantiated with AES-CTR, and the PRF
F of chaSIV instantiated with AES.

MRAE security. Both of our advanced transforms achieve MRAE security. We next compare their
concrete security under the aforementioned instantiations.

As proved in [18], the dominating terms of the MRAE security bound for AES-GCM-SIV are
3Q
296 ,

QB2
max

2129 , lmax
∑Q
i=1 R

2
i

2126 , where Q is the number of distinct nonces queried across both encryption and
decryption/verification oracles, lmax is the maximum message length in blocks, and Bmax is the maximum
number of blocks queried per nonce (i.e. Bmax ≤ maxi{Ri} · lmax). Plugging these terms into Theorem 13
(with τ = 128) and Theorem 14 yields the dominating terms of the MRAE security bound for our AEtH:
3Q
295 ,

QB2
max

2128 , lmax
∑Q
i=1 R

2
i

2125 , q2e
2129 .

Then, for B queried blocks, the dominating term of both the IND$-CPA security bound for AES-CTR
and the PRF security bound for AES is B2

2128 , as shown in [20,28]. Plugging these terms into Theorem 17
(with r = 96) and Theorem 18 yields the dominating terms of the MRAE security bound for our chaSIV:
QeB

2
max

2128 ,
∑Qe
i=1 R

2
i

296 , 3(Q+1)2

2128 .
By comparing the above dominating terms, we observe that AEtH and chaSIV achieve very similar

concrete security.7 When nonce repetitions are considered, 3(Q+1)2

2128 is better than q2e
2129 , e.g., with at

least 3 repetitions per nonce on average; this aligns with our remarks for Theorem 13 and Theorem 17.
Therefore, chaSIV has only one slightly worse term compared to AEtH: for lmax < 229 we could have∑Qe

i=1 R
2
i

296 >
lmax

∑Q
i=1 R

2
i

2125 . However, for common nonce repetitions in practice, e.g., at most 210 on average,∑Qe
i=1 R

2
i

296 is typically good enough, allowing Qe = 244 with a 2−32 advantage, very close to the Q limit
imposed by the 3(Q+1)2

2128 term.

7 We remark that actually the existing MRAE-preserving transforms HtE ◦ RtC [2], CTX [9], PACT [7] all show
very similar MRAE concrete security, as their security bounds are mostly dominated by the MRAE security
of the underlying AE.
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Committing security. Both of our advanced transforms achieve committing security. Their CMT se-
curity bounds are identical, both relying on the collision resistance of the underlying hash function. They
offer very similar CDY$ security, with AEtH relying on one-time IND$-CPA security of its underlying AE,
while chaSIV relies on PRF security (with a single query) of its underlying F; in concrete instantiations,
these IND$-CPA and PRF bounds become minor. The dominating terms for CDY$ security of AEtH
is determined by the sizes of the committing tag and ciphertext expansion, while those for chaSIV are
similarly determined by the sizes of the committing tag and the key.

5 Performance Evaluation

Finally, we evaluate the performance of our basic and advanced transforms, along with relevant existing
transforms, both in theory and through implementations.

Theoretical evaluation. For theoretical performance evaluation, we focus on the following factors of
the considered transforms: ciphertext expansion, number of cryptographic passes over specific targets,
key consistency across encryptions/decryptions, and parallelizability. We also include the minimal as-
sumptions made by the transforms on the component encryption primitive to capture their primitive
applicability. The results are summarized in Table 2.

As shown in the table, HtE ◦ UtC exhibits the worst efficiency among the AE-based basic transforms
because it involves more computation passes and, more crucially, re-keys its AE component for each
encryption/decryption. Similarly, HtE ◦ RtC runs the slowest among the MRAE-preserving advanced
transforms.

To reduce ciphertext expansion, CTY and comPACT introduce an additional cryptographic pass over
TC , the separate authentication tag (or the last block) of the derived AE ciphertext. This extra pass,
besides requiring more computation, renders such transforms non-parallelizable. Furthermore, to support
black-box transforms, comPACT encrypts TC rather than hashing it, using a non-fixed key. Similar
operations are performed by their advanced transform variants, CTX and PACT, but the cryptographic
pass over TC is now employed by all MRAE-preserving transforms to achieve misuse-resistant security.
This makes all such MRAE-preserving transforms non-parallelizable.

As motivated in the Introduction, our transforms prioritize black-boxness and design simplicity over
minimizing ciphertext expansion. As shown in Table 2, when ciphertext expansion is not a primary con-
cern, our AEaH exhibits the best performance among the AE-based basic transforms; additionally, AEaH
is fully parallelizable, making it even more attractive. Similarly, our AEtH, along with CTX, outperforms
other MRAE-preserving advanced transforms.

Among the transforms presented in the table, our EtH and chaSIV are the only ones that support basic
privacy-only encryption schemes, and using these schemes results in compact ciphertext expansion. We
observe that, when instantiated with AE, EtH guarantees the same security as AEaH but exhibits strictly
worse performance. Therefore, EtH is primarily designed to accommodate basic encryption schemes.
However, it is useful to apply chaSIV to both basic and authenticated encryption schemes, as AE schemes
may not be misuse-resistant and hence cannot be accommodated by MRAE-preserving transforms. The
performance of EtH and chaSIV is compared to other transforms through implementations, as we will
show shortly.

Finally, we note that while the primary standardized misuse-resistant AE, AES-GCM-SIV, requires
re-keying across distinct nonces, some schemes do support key consistency. For example, Deoxys-II [22],
the winner of the CAESAR competition for the defense-in-depth category, is one such scheme. This
suggests that advanced fixed-key transforms, e.g., CTX and our AEtH, may offer potential performance
benefits when used with suitable AE schemes.

Implementation results. To assess the practical efficiency of our transforms and relevant others, we
implemented their encryption algorithms using both OpenSSL (version 3.3.2) and wolfSSL (version 5.7.0).
For basic transforms we used AES-GCM speed (CPU cycles per byte) as a benchmark, and for advanced
transforms we used AES-GCM-SIV (resp. AES-SIV) in OpenSSL (resp. wolfSSL). Performance is tested
with message lengths ranging from 16 to 2048 bytes, using a 5-byte associated data that matches the
length of the authenticated but unencrypted part of the TLS 1.3 header. Further testing details are
presented in Appendix A. The results are presented in Figure 12 for basic transforms and Figure 13 for
advanced ones.

For all AE-based transforms, we instantiate the basic (unique-nonce) AE with AES-GCM; the misuse-
resistant AE is instantiated with AES-GCM-SIV in OpenSSL and AES-SIV in wolfSSL, as the latter is the
only misuse-resistant AE available in wolfSSL. The basic privacy-only scheme E in EtH and chaSIV is
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Construction Min. Assm. on
Enc. Primitive

Ciphertext
Expansion

Passes over
(K,N,AD,M,C, TC)

Fixed
Key Parallel.

HtE ◦ UtC [2] AE-secure τ + t (2, 2, 1, 1, 0, 0) 7 7

CTY [3] AE-secure t (1, 1, 1, 1, 0, 1) 3 7

comPACT [7] AE-secure τ (1, 1, 1, 1, 0, 1) (7) (7)

HtAE (this work) AE-secure τ + t (1, 1, 1, 1, 0, 0) 7 7

AEaH (this work) AE-secure τ + t (1, 1, 1, 1, 0, 0) 3 3

EtH (this work) IND$-CPA-secure t (1, 1, 1, 1, 1, 0) 3 7

HtE ◦ RtC [2] MRAE-secure τ + t (2, 2, 1, 1, 0, 1) 7 7

CTX [3] MRAE-secure t (1, 1, 2, 1, 0, 1) 3 7

PACT [7] MRAE-secure τ (1, 1, 2, 1, 0, 1) (7) (7)

AEtH (this work) MRAE-secure τ + t (1, 1, 2, 1, 0, 1) 3 7

chaSIV (this work) IND$-CPA-secure t (2, 2, 1, 2, 0, 0) 7 7

Table 2: Theoretical performance evaluation of our generic transforms and relevant others. Ciphertext
expansion is measured in terms of bit length, where τ is the ciphertext expansion of the component
encryption scheme and t is the size of the committing tag. For the ciphertext C derived from the
component encryption scheme, let TC denote its separate authentication tag (if any) or its last block.
The (7) symbol indicates partial satisfaction of the key consistency (as shown in the “Fixed Key” column)
or parallelizability properties.

instantiated with AES-CTR in OpenSSL and AES-GCM in wolfSSL, as AES-CTR is significantly slower
than AES-GCM in wolfSSL. All encryption schemes use a 128-bit key, i.e., κ = 128. For HtE◦UtC/HtE◦RtC,
we instantiate their underlying committing PRF with the CX scheme proposed and suggested by the
authors in [2]. The block ciphers used in CX and comPACT/PACT are instantiated with AES under a
128-bit key. The PRF F in chaSIV is also instantiated with AES under a 128-bit key; if the input nonce is
shorter than the block size, it is automatically padded by the libraries. The hash functions are instantiated
with truncated SHA-512 in all implemented transforms, with a 128- or 256-bit output depending on the
transform.

As shown in Figure 12, our implementation results demonstrate that AEaH has the highest efficiency
among basic transforms, which matches our theoretical discussions. For all tested message lengths, the
overhead of AEaH is no more than twice the benchmark. Furthermore, we note that the AEaH transform is
implemented sequentially, so we expect that an implementation fully utilizing its parallelizability could
perform even better. For EtH, one may notice the sudden increase in its efficiency overhead. This is
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Fig. 12: Encryption speed overhead of basic transforms compared to AES-GCM. Smaller is better.
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Fig. 13: Encryption speed overhead of advanced transforms compared to AES-GCM-SIV in OpenSSL and
AES-SIV in wolfSSL. Smaller is better.

because for message length of 79 bytes the hash function input reaches 112 bytes,8 which triggers a
doubling of the padded input processed by SHA-512, causing the hashing cost to surpass the underlying
MACing cost of the AE component in other transforms. However, for short messages (e.g., less than 64
bytes), EtH shows the highest efficiency.

For advanced transforms, as shown in Figure 13, our results demonstrate that AEtH/CTX and chaSIV
achieve the best performance across all tested message sizes. Their overhead is within 1.5 times the
benchmark in both libraries. In wolfSSL, due to the slow AES-SIV implementation, we notice that chaSIV,
which does not rely on AES-SIV, outperforms all other transforms by a large margin. In OpenSSL, chaSIV
outperforms AEtH/CTX for messages longer than about 360 bytes, and even surpasses the benchmark
AES-GCM-SIV for messages exceeding 1024 bytes. The results show that our chaSIV not only is the first
committing MRAE-lifting transform but also has great practical potential.

Implementation benefits of our transforms. During our implementation process, we found that
our transforms are very easy to implement. If the practitioners are familiar with the cryptographic
library they use, implementing our transforms would take just a couple of lines of code per functionality
(e.g., encryption algorithm). Unfortunately, this is not the case for some of the other transforms. For
example, implementing the decryption algorithm of CTY is tricky and inefficient (e.g., in OpenSSL) or
even impossible (e.g., in wolfSSL) using the standard API functions in commonly used cryptographic
libraries. This is because the API functions for AES-GCM decryption are not designed for (or do not
allow at all) decrypting only the core part of the ciphertext (i.e., without the authentication tag) and
recalculating the original authentication tag, which is needed for a final verification check in CTY.

6 Conclusion

Our work explored hash-based black-box generic transforms to add strong committing security to au-
thenticated encryption schemes. To this end, we proposed three basic transforms and two advanced
transforms, all exhibiting a simple design and strong security. As part of this effort, we developed the
first generic transform that directly elevates a basic encryption scheme to a committing and misuse-
resistant authenticated encryption scheme. By focusing on a straightforward design and relying crucially
on efficient and well-standardized hash functions, we hope that our transforms will promote the adoption
and deployment of committing authenticated encryption.
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of Science and Technology. Vukašin Karadžić is funded by the German Federal Ministry of Education
and Research and the Hessen State Ministry for Higher Education, Research and the Arts within their
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8 Apart from the 79 message bytes, there is a 16-byte key, 12-byte nonce and 5-byte additional data, all of which
sums up to 112 bytes.
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A Performance Testing Details

For each tested message length (ranging from 16 bytes to 2048 bytes) and every tested transform, we
start the experiment by running the encryption 500 times to “warm-up” the cache, and then run 1000
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and AES-GCM-SIV/AES-SIV for advanced transforms in the same way described above. The tests are run
on a notebook using Intel Core i5-8265U CPU (Skylake microarchitecture), with the base frequency of
1.6GHz and the hyper-threading, frequency scaling and turbo mode functionalities disabled.

B Security Proofs

Our proofs follow the game-based technique (see [31] for a tutorial) and some proofs require a hybrid
argument (see [14] for a tutorial). In the proofs, when the hash function H is modeled as a random oracle
H, the random oracle H is instantiated via lazy sampling, i.e., an independent random output is sampled
for each distinct H query and the same output is returned for the same query.

B.1 Proof of Theorem 1 (IND$-CPA Security of HtAE)

Proof. We define three games G0 ∼ G2 as shown in Figure 14.
Game G0 is the same as REALAHtAE (see Figure 4) equipped with a random oracle H. Therefore, we
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GA0 ⇒ 1

]
= Pr

[
REALAHtAE ⇒ 1

]
.

Game G1 is the same as game G0, except that the AE key Ke and committing tag T are now sampled
uniformly at random from the set {0, 1}κ × {0, 1}t in the encryption oracle Enc. We claim that G0 and
G1 behave identically until the bad event happens, where the adversary A ever queries H with an input
that is prefixed with the key K sampled in the beginning of the games. The only syntactical difference
between the two games is the generation of Ke and T . Recall that A is nonce-respecting, i.e., it never
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Game G0 , G1

K
$← {0, 1}κ

TH[·]← ⊥

b′
$← AH,Enc

return b′

Oracle H(X)

if A queries H(X) ∧X = (K, ∗) :

bad← true

if TH[X] = ⊥ : TH[X]
$← {0, 1}t

return TH[X]

Oracle Enc(N,AD,M)

(Ke, T )
$← {0, 1}κ × {0, 1}t

(Ke, T )← H(K,N,AD)

C ← AE.Enc(Ke, N, ε,M)

return (C, T )

Game G2

TH[·]← ⊥

b′
$← AH,Enc

return b′

Oracle H(X)

if TH[X] = ⊥ : TH[X]
$← {0, 1}t

return TH[X]

Oracle Enc(N,AD,M)

T
$← {0, 1}t

C
$← {0, 1}AE.clen(|M|)

return (C, T )

Fig. 14: Games G0 ∼ G2 in the proof of Theorem 1, where G0 contains boxed content while G1 does
not.

repeats a nonce for its encryption queries. Therefore, if bad does not occur, then in both games the AE
key Ke and committing tag T are random strings that are independent of A’s view, and hence games
G0 and G1 are identical-until-bad. By the Difference Lemma of the game-based proof technique [31], we
have

Pr
[
GA0 ⇒ 1

]
− Pr

[
GA1 ⇒ 1

]
≤ Pr[bad]. (1)

Then, note that K is independent of A’s view, because Ke and T do not reveal any information about
the random oracle input K. Since K is sampled from {0, 1}κ uniformly at random and A makes at most
qh random oracle queries, we have

Pr[bad] ≤ qh
2κ
. (2)

Game G2 is the same as game G1, except that in the Enc oracle both the committing tag T and the
AE ciphertext C are sampled uniformly at random. To bound the gap between G1 and G2, we apply a
hybrid argument as follows. Consider a sequence of hybrid games H0,H1, . . . ,Hqe such that G1 = H0

and G2 = Hqe . Game Hi is the same as game G1, except that the output of the first i Enc queries
are replaced by independent random strings as in G2. By construction, consecutive games Hi−1 and Hi

are the same except for the i-th Enc query. We can construct an adversary Bi against the IND$-CPA
security of the underlying AE such that it simulates A’s view in Hi−1 in the real world and Hi in the
ideal world. To do so, Bi simulates A’s views in Hi−1 and Hi in the same way following their game
procedures, except that, for the i-th Enc query Bi samples a random T and calls its own encryption
oracle Enc′ to simulate the AE ciphertext C. Finally, Bi outputs the bit that A outputs. By construction,
we have Pr

[
HAi−1 ⇒ 1

]
−Pr

[
HAi ⇒ 1

]
= Advot-ind$-cpa

AE (Bi), because Bi makes only one Enc′ query. With
a hybrid argument, there exists an efficient adversary B such that

Pr
[
GA1 ⇒ 1

]
− Pr

[
GA2 ⇒ 1

]
= Pr

[
HA0 ⇒ 1

]
− Pr

[
HAqe ⇒ 1

]
=

qe∑
i=1

(
Pr
[
HAi−1 ⇒ 1

]
− Pr

[
HAi ⇒ 1

])
≤ qeAdvot-ind$-cpa

AE (B).
(3)

Finally, we observe that game G2 is identical to RANDAHtAE (see Figure 4) equipped with a random
oracle H. This is because, in game G2, for each Enc query with a distinct nonce, its output is an
independent uniform random string sampled from {0, 1}HtAE.clen(|M |) = {0, 1}AE.clen(|M |)+t. Therefore, we
have

Advind$-cpa
HtAE (A) = Pr

[
GA0 ⇒ 1

]
− Pr

[
GA2 ⇒ 1

]
. (4)

The proof is concluded by combining equations (1)∼(4). ut

B.2 Proof of Theorem 2 (INT-CTXT Security of HtAE)

Proof. We define two games G0 and G1 as shown in Figure 15.
Game G0 is the same as INT-CTXTAHtAE (see Figure 4) equipped with a random oracle H. Therefore,

we have Pr
[
GA0 ⇒ 1

]
= Advint-ctxt

HtAE (A).
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Game G0, G1

K
$← {0, 1}κ

TH[·]← ⊥
Q← ∅
win← 0

AH,Enc,Ver

return win

Oracle H(X)

if A queries H(X)

∧X = (K, ∗) :

bad← true

abort
if TH[X] = ⊥ :

TH[X]
$← {0, 1}κ+t

return TH[X]

Oracle Enc(N,AD,M)

(Ke, T )← H(K,N,AD)

C ← AE.Enc(Ke, N, ε,M)

Q ∪← {(N,AD, (C, T ))}
return (C, T )

Oracle Ver(N,AD, (C, T ))

(Ke, T
′)← H(K,N,AD)

if T ′ 6= T : return false

M ← AE.Dec(Ke, N, ε, C)

if M 6= ⊥ ∧ (N,AD, (C, T )) 6∈ Q :

win← 1

return M 6= ⊥

Adv. BEnc′,Ver′

K
$← {0, 1}κ

î
$← [qe + qv]

T̂
$← {0, 1}t

TH[·]← ⊥

AH,Enc,Ver

Oracle H(X)

if A queried H(X)

∧X = (K, ∗) :

abort
if TH[X] = ⊥ :

TH[X]
$← {0, 1}κ+t

return TH[X]

Oracle Enc(N,AD,M)

if (N,AD) is the î-th
distinct pair :

T ← T̂

C ← Enc′(N, ε,M)

else

(Ke, T )← H(K,N,AD)

C ← AE.Enc(Ke, N, ε,M)

return (C, T )

Oracle Ver(N,AD, (C, T ))

if (N,AD) is the î-th
distinct pair :

if T 6= T̂ : return false

return Ver′(N, ε, C)

else

(Ke, T
′)← H(K,N,AD)

if T 6= T ′ : return false

M ← AE.Dec(Ke, N, ε, C)

return M 6= ⊥

Fig. 15: Games G0, G1 and the adversary B in the proof of Theorem 2, where G1 aborts when bad occurs
while G0 does not.

Game G1 is the same as game G0, except that it aborts when the bad event bad occurs, which is
triggered when adversary A queries H with an input that is prefixed with the key K sampled in the
beginning of the games. Since K is sampled from {0, 1}κ uniformly at random and it is independent of
A’s view, the probability that bad occurs is at most qh/2κ. By construction, G0 and G1 are identical-
until-bad. Therefore, by the Difference Lemma of the game-based proof technique [31], we have

∣∣Pr
[
GA0 ⇒ 1

]
− Pr

[
GA1 ⇒ 1

]∣∣ ≤ Pr[bad] ≤ qh
2κ
. (5)

Finally, we bound A’s winning probability Pr
[
GA1 ⇒ 1

]
by constructing an adversary B against the

INT-CTXT security of the underlying AE. To simulate A’s view in G1, adversary B first samples a
random key K $← {0, 1}κ. Then, for each random oracle query made by A on an input X not prefixed
with K, adversary B simulates H(X) via lazy sampling. For encryption and verification queries on input
(N,AD, ·) made by A, we note that each distinct (N,AD) pair determines an independent key Ke for the
underlying AE. Therefore, to simulate responses to such queries, B first randomly picks one of such distinct
(N,AD) pairs, say the î-th distinct pair denoted by (N̂ , ÂD), and then samples an independent random
committing tag T̂ $← {0, 1}t. For each encryption or verification query on input (N,AD, ·) 6= (N̂ , ÂD, ·),
B can easily simulate its response: it first derives an AE key Ke and a committing tag T by simulating
the output of H(K,N,AD) via lazy sampling, then it uses (Ke, T ) to simulate the rest of the oracle. For
a (N̂ , ÂD, ·) query, B does not simulate the random oracle output but instead calls its own INT-CTXT
Enc′/Ver′ oracle to simulate the answer. A code-based description of B is shown in Figure 15.

Note that, if bad does not occur, then A’s random oracle queries do not contain any information about
the AE keys. Therefore, by construction of B, it simulates A’s view in G1 perfectly. Then, suppose A wins
by querying Ver(N∗, AD∗, (C∗, T ∗)) and B happens to pick the correct (N,AD) pair (i.e., (N̂ , ÂD) =
(N∗, AD∗)), we show that B also wins in its INT-CTXTBAE game. By definition of the winning condition
of A, we know (C∗, T ∗) was not output by any Enc(N∗, AD∗, ·) query and Ver(N∗, AD∗, (C∗, T ∗)) = 1.
By construction of B, the latter implies that T̂ = T ∗ and Ver′(N∗, ε, C∗) = 1, so it suffices to show that
C∗ was not output by any Enc′(N∗, ε, ·) query made by B. This is true by observing that the committing
tag for an Enc(N∗, AD∗, ·) query (i.e., an Enc(N̂ , ÂD, ·) query) is T ∗ (i.e., T̂ ). That is, if C∗ was output
by an Enc′(N∗, ε, ·) query, then A must have queried Enc(N∗, AD∗, ·) that output (C∗, T ∗), which is a
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contradiction. Therefore, B also wins. Since there are at most qe + qv distinct (N,AD) pairs, we have

1

qe + qv
Pr
[
GA1 ⇒ 1

]
≤ Advint-ctxt

AE (B). (6)

The proof is concluded by combining equations (5) and (6). ut

B.3 Proof of Theorem 3 (CMT Security of HtAE)

Proof. In order to win the CMTAHtAE game (see Figure 5),A needs to output two tuples (K1, N1, AD1,M1),
(K2, N2, AD2,M2) such that they are encrypted to the same ciphertext and (K1, N1, AD1) 6=
(K2, N2, AD2). By construction of HtAE, this implies that the hashes of (K1, N1, AD1) and (K2, N2, AD2)
collide in the right part (i.e. the committing tag T ), which breaks right collision resistance of H. There-
fore, we can construct B as follows: it first invokes A, then extracts (K1, N1, AD1) and (K2, N2, AD2)
from A’s output and outputs this pair. ut

B.4 Proof of Theorem 4 (CDY$ Security of HtAE)

Proof. In the CDYAHtAE,S$
game (see Figure 6), A gets a challenge ciphertext (C, T ) output by

the context selector S$ and wins by outputting a context tuple (K ′, N ′, AD′,M ′) such that
HtAE.Enc(K ′, N ′, AD′,M ′) = (C, T ). Therefore, if A wins, then the committing tag T ′ derived from
(C ′, T ′)← HtAE.Enc(K ′, N ′, AD′,M ′) must be equal to T . This can only happen in two cases: (1) when
a random oracle query was made on the exact tuple (K,N,AD) sampled by S$ (together with a random
M) to derive the challenge ciphertext (C, T ), or (2) when one of the random oracle queries (not on
input (K,N,AD)) outputs a committing tag equal to T . The former occurs with probability at most
(qh + 1)/2κ|AD|, because by construction of HtAE the randomly sampled K and AD are independent of
A’s view; the latter occurs with probability at most (qh + 1)/2t, because the random oracle H outputs
independent random committing tags for distinct inputs. Note that the denominators are qh + 1 because
A made qh random oracle queries and the challenger made one last H query to compute the encryption
of A’s output. Therefore, we have

Advcdy$
HtAE(A) ≤ 1

|AD|
· qh + 1

2κ
+
qh + 1

2t
. (7)

ut

B.5 Proof of Theorem 5 (IND$-CPA Security of AEaH)

Proof. We define three games G0 ∼ G2 as shown in Figure 16.
Game G0 is the same as REALAAEaH (see Figure 4) equipped with a random oracle H. Therefore, we

have Pr
[
GA0 ⇒ 1

]
= Pr

[
REALAAEaH ⇒ 1

]
.

Game G1 is the same as game G0, except that the committing tag T is now sampled randomly from
the set {0, 1}t in the encryption oracle Enc. We claim that G0 and G1 behave identically unless the
bad event happens, where the adversary A ever queries H with an input that is prefixed with the key K
used in Enc. The only syntactical difference between the two games is the generation of T . Recall that
A is nonce-respecting, i.e., it never repeats a nonce for its encryption queries. Therefore, if bad does not
occur, then in both games the committing tag T is a random string that is independent of A’s view,
and hence games G0 and G1 are identical-until-bad. By the Difference Lemma of the game-based proof
technique [31], we have

Pr
[
GA0 ⇒ 1

]
− Pr

[
GA1 ⇒ 1

]
≤ Pr[bad]. (8)

Next, we bound Pr[bad] by considering a game G∗ also shown in Figure 16. Here G∗ is just defined
to clarify the bad event, such that A wins in G∗ if and only if A triggers bad in game G0/G1. Formally,
we define a set Q∗ that records all the keys contained in the random oracle H queries made by A, then
let G∗ return 1 if and only if Q∗ contains the key K used in Enc. Therefore, we have

Pr[bad] = Pr
[
GA∗ ⇒ 1

]
. (9)

Then, we bound Pr
[
GA∗ ⇒ 1

]
by constructing an adversary B1 against the IND$-CPA security of the

underlying AE. B1 starts by initializing the set Q∗ and the table TH (to an empty set and empty table,
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Game G0 , G1

K
$← {0, 1}κ

TH[·]← ⊥

b′
$← AH,Enc

return b′

Oracle H(X)

if A queries H(X) ∧X = (K, ∗) :

bad← true

if TH[X] = ⊥ : TH[X]
$← {0, 1}t

return TH[X]

Oracle Enc(N,AD,M)

C ← AE.Enc(K,N, ε,M)

T
$← {0, 1}t

T ← H(K,N,AD)

return (C, T )

Game G∗

K
$← {0, 1}κ

Q∗ ← ∅
TH[·]← ⊥

b′
$← AH,Enc

return K ∈ Q∗

Oracle H(X)

(K′, ∗)← X

Q∗ ∪←
{
K′
}

if TH[X] = ⊥ : TH[X]
$← {0, 1}t

return TH[X]

Oracle Enc(N,AD,M)

C ← AE.Enc(K,N, ε,M)

T
$← {0, 1}t

return (C, T )

Game G2

TH[·]← ⊥

b′
$← AH,Enc

return b′

Oracle H(X)

if TH[X] = ⊥ : TH[X]
$← {0, 1}t

return TH[X]

Oracle Enc(N,AD,M)

C
$← {0, 1}AE.clen(|M|)

T
$← {0, 1}t

return (C, T )

Fig. 16: Games G0 ∼ G2 and G∗ in the proof of Theorem 5, where G0 contains boxed content while G1

does not.

respectively), and then it runs A. To answer A’s encryption query on input (N,AD,M), B1 calls its own
encryption oracle with input (N, ε,M) and gets back C, then samples a random committing tag T from
{0, 1}t and returns (C, T ) back to A. For A’s random oracle query X = (K ′, ∗), B1 records K ′ in Q∗
and answers the query via lazy sampling. After A terminates, B1 ignores its output and queries its own
encryption oracle with input (N∗, ε, 0κ) and gets back C∗, where N∗ is a nonce different from those used
in previous encryption queries. Then, for each key Ki ∈ Q∗, B1 computes Ci ← AE.Enc(Ki, N

∗, ε, 0κ)
and checks if Ci = C∗ holds. If this holds for any of the keys in Q∗, B1 guesses that it was in the real
world REALB1

AE and outputs 1; otherwise, it outputs 0, guessing that it was in the ideal world RANDB1

AE.
If B1 was in the real world, then it simulates A’s view in G∗ perfectly and hence we have

Pr
[
GA∗ ⇒ 1

]
≤ Pr

[
REALB1

AE ⇒ 1
]
. Here we have an inequality to capture “false positives” in the above

Ci = C∗ check. On the other hand, if B1 was in the ideal world, the probability that a random cipher-
text C∗ equals AE.Enc(Ki, N

∗, ε, 0κ) for some Ki ∈ Q∗ is at most |Q∗|/2AE.clen(κ). Since |Q∗| ≤ qh,
we have Pr

[
RANDB1

AE ⇒ 1
]
≤ qh/2

AE.clen(κ). Recalling that Advind$-cpa
AE (B1) = Pr

[
REALB1

AE ⇒ 1
]
−

Pr
[
RANDB1

AE ⇒ 1
]
and AE.clen(κ) ≥ κ, we have

Advind$-cpa
AE (B1) ≥ Pr

[
GA∗ ⇒ 1

]
− qh

2AE.clen(κ)
≥ Pr

[
GA∗ ⇒ 1

]
− qh

2κ
, (10)

and it follows from equations (8)∼(10) that

Pr
[
GA0 ⇒ 1

]
− Pr

[
GA1 ⇒ 1

]
≤ Advind$-cpa

AE (B1) +
qh
2κ
. (11)

We continue by making a game hop from G1 to G2. As shown in Figure 16, game G2 is the same as
game G1, except that now in the encryption oracle Enc the ciphertext C is also sampled uniformly at
random. We bound the gap between G1 and G2 by constructing an adversary B2 against the IND$-CPA
security of the underlying AE. B2 just simulates A’s view as the challenger in G1/G2 does, but for A’s
encryption query, B2 calls its own encryption oracle to get C and then finish the rest of the simulation.
It is easy to see that B2 simulates A’s view in G1 in the real world and G2 in the ideal world. In the
end, adversary B2 outputs the bit that A outputs. Therefore, we have

Pr
[
GA1 ⇒ 1

]
− Pr

[
GA2 ⇒ 1

]
≤ Advind$-cpa

AE (B2). (12)
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Finally, we observe that game G2 is identical to RANDAAEaH (see Figure 4) equipped with a random
oracle H. This is because, in game G2, for each Enc query with a distinct nonce, its output is an
independent uniform random string sampled from {0, 1}HtAE.clen(|M |) = {0, 1}AE.clen(|M |)+t.

The proof is concluded by combining equations (11) and (12). ut

B.6 Proof of Theorem 6 (INT-CTXT Security of AEaH)

Proof. We define two games G0 and G1 as shown in Figure 17.

Game G0 , G1

K
$← {0, 1}κ

TH[·]← ⊥
TT [·]← ⊥
Q ← ∅
win← 0

AH,Enc,Ver

return win

Oracle H(X)

if A queries H(X)

∧X = (K, ∗) :

bad← true

if TH[X] = ⊥ :

TH[X]
$← {0, 1}t

return TH[X]

Oracle Enc(N,AD,M)

C ← AE.Enc(K,N, ε,M)

if TT [(N,AD)] = ⊥ :

TT [(N,AD)]
$← {0, 1}t

T ← TT [(N,AD)]

T ← H(K,N,AD)

Q ∪← {(N,AD, (C, T ))}
return (C, T )

Oracle Ver(N,AD, (C, T ))

if TT [(N,AD)] = ⊥ :

TT [(N,AD)]
$← {0, 1}t

T ′ ← TT [(N,AD)]

T ′ ← H(K,N,AD)

if T 6= T ′ : return false

M ← AE.Dec(K,N, ε, C)

if M 6= ⊥ ∧ (N,AD, (C, T )) 6∈ Q :

win← 1

return M 6= ⊥

Game G∗

K
$← {0, 1}κ

TH[·]← ⊥
TT [·]← ⊥
Q∗ ← ∅

AH,Enc,Ver

return K ∈ Q∗

Oracle H(X)

(K′, ∗)← X

Q∗ ∪←
{
K′
}

if TH[X] = ⊥ :

TH[X]
$← {0, 1}t

return TH[X]

Oracle Enc(N,AD,M)

C ← AE.Enc(K,N, ε,M)

if TT [(N,AD)] = ⊥ :

TT [(N,AD)]
$← {0, 1}t

T ← TT [(N,AD)]

return (C, T )

Oracle Ver(N,AD, (C, T ))

if TT [(N,AD)] = ⊥ :

TT [(N,AD)]
$← {0, 1}t

T ′ ← TT [(N,AD)]

if T 6= T ′ : return false

M ← AE.Dec(K,N, ε, C)

return M 6= ⊥

Fig. 17: Games G0, G1 and G∗ in the proof of Theorem 6, where G0 contains boxed content while G1

does not.

Game G0 is the same as INT-CTXTAAEaH (see Figure 4) equipped with a random oracle H. (Note that
the TT operations can be ignored in G0.) Therefore, we have Pr

[
GA0 ⇒ 1

]
= Advint-ctxt

AEaH (A).
Game G1 is the same as game G0, except that the committing tag T is now lazily sampled from the

table TT in both oracles, where the table is indexed by the queried (N,AD) pair. We claim that G0 and
G1 behave identically unless the bad event happens, which occurs if the adversary A ever queries H with
an input that is prefixed with the keyK. The only syntactical difference between the two games are in the
generation of T . If bad does not occur, in both games the committing tag T is either randomly sampled
for a new (N,AD) pair, or gets the same previously sampled value if (N,AD) is repeated; hence the two
games are indeed identical-until-bad. By the Difference Lemma of the game-based proof technique [31],
we have

Pr
[
GA0 ⇒ 1

]
− Pr

[
GA1 ⇒ 1

]
≤ Pr[bad]. (13)

Next, similar to the proof of Theorem 5, we bound Pr[bad] by considering a game G∗ also shown in
Figure 17. G∗ is defined such that A wins in G∗ if and only if A triggers bad in G0/G1. Therefore, we
have

Pr[bad] = Pr
[
GA∗ ⇒ 1

]
. (14)

Then, we bound Pr
[
GA∗ ⇒ 1

]
by constructing an adversary B1 against the INT-CTXT security of the

underlying AE. B1 starts by initializing the set Q∗ and tables TH,TT (to an empty set and empty tables,
respectively), and then it runs A. To answer A’s encryption query on input (N,AD,M), B1 calls its own
encryption oracle Enc′ with input (N, ε,M) and gets back C, then lazily samples T with the help of table
TT . At the end, it returns (C, T ) back to A. To answer A’s verification query on input (N,AD, (C, T )),
B1 lazily samples T ′ with the help of the table TT and checks if T ′ equals T . If not, B1 returns false,
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otherwise it calls its own verification oracle Ver′ with input (N, ε, C) and forwards the answer back to A.
For A’s random oracle query X = (K ′, ∗), B1 records K ′ in Q∗ and answers the query via lazy sampling
using the table TH. After A terminates, B1 picks a nonce N∗ that is different from those used by A
in encryption oracle queries; then, for each key Ki ∈ Q∗, B computes Ci ← AE.Enc(Ki, N

∗, ε, 0κ) and
queries its own verification oracle with (N∗, ε, Ci).

The above adversary B1 correctly simulates the A’s view in G∗, and we claim that, if A wins in
G∗, then B1 wins in its INT-CTXTB1

AE game. If A wins, then the AE key K (sampled by B1’s challenger)
must be included in the set Q∗. Since B1 enumerated all keys in Q∗ to compute ciphertexts with a new
nonce, the ciphertext derived from the correct key K must be a valid forgery for B1 to win in its game.
Therefore, we have

Pr
[
GA∗ ⇒ 1

]
≤ Advint-ctxt

AE (B1). (15)

and it follows from equations (13)∼(15) that

Pr
[
GA0 ⇒ 1

]
− Pr

[
GA1 ⇒ 1

]
≤ Advint-ctxt

AE (B1). (16)

Finally, we bound A’s winning probability Pr
[
GA1 ⇒ 1

]
by constructing another INT-CTXT adver-

sary B2 against the underlying AE. Adversary B2 is the same as adversary B1, except that B2 terminates
immediately after A terminates, i.e., B2 does not record keys in Q∗ or make the final verification queries
after A terminates. Clearly, B2 correctly simulates A’s view in G1. Now, suppose A wins by querying
Ver(N∗, AD∗, (C∗, T ∗)). By definition of the winning condition of A, we know (C∗, T ∗) was not output
by any Enc(N∗, AD∗, ·) query and Ver(N∗, AD∗, (C∗, T ∗)) = 1. By construction of B2, the latter implies
that T ∗ = TT [(N∗, AD∗)] and Ver′(N∗, ε, C∗) = 1. There are two cases. If C∗ was not output by any
Enc′(N∗, ε, ·) query made by B2, then B2 wins in its INT-CTXTB2

AE game. Otherwise, A must have queried
Enc(N∗, ÂD, ·) with some ÂD 6= AD∗ that output (C∗, T̂ ), because any Enc(N∗, AD∗, ·) query will pro-
duce the committing tag T ∗. Then, since B2 is nonce-respecting, it has never made an Enc(N∗, AD∗, ·)
query to learn TT [(N∗, AD∗)]. Therefore, B2 can only guess T ∗ when making verification queries. Since
it can make qv verification queries and T ∗ is randomly sampled from {0, 1}t, the probability that B2 wins
is at most qv/2t. Therefore, we have

Pr
[
GA1 ⇒ 1

]
≤ Advint-ctxt

AE (B2) +
qv
2t
. (17)

The proof is concluded by combining equations (16) and (17). ut

B.7 Proof of Theorem 7 (CMT Security of AEaH)

Proof. In order to win the CMTAAEaH game (see Figure 5), A needs to output two tuples
(K1, N1, AD1,M1), (K2, N2, AD2,M2) such that they are encrypted to the same ciphertext and
(K1, N1, AD1) 6= (K2, N2, AD2). By construction of AEaH, this implies that the hashes of (K1, N1, AD1)
and (K2, N2, AD2) collide, which breaks the collision resistance of H. Therefore, we can construct B as
follows: it first invokes A, then extracts (K1, N1, AD1) and (K2, N2, AD2) from A’s output and outputs
this pair. ut

B.8 Proof of Theorem 8 (CDY$ Security of AEaH)

Proof. We define two games G0 and G1 as shown in Figure 18.
Game G0 is the same as CDYAAEaH,S$

(see Figure 6) equipped with a random oracle H. Therefore, we
have Pr

[
GA0 ⇒ 1

]
= Advcdy

AEaH,S$
(A) = Advcdy$

AEaH(A).
Game G1 is the same as game G0, except that the committing tag T , calculated by the challenger,

is now independent of queries to the random oracle H. We claim that G0 and G1 behave identically
unless the bad event happens, where the random oracle H is ever queried with an input that is prefixed
with the key K sampled by the challenger. This is because, if bad does not occur, then T in G0 is also
independent of random oracle queries made by A and by the challenger (to compute T ′). Therefore, by
the Difference Lemma of the game-based proof technique [31], we have

Pr
[
GA0 ⇒ 1

]
− Pr

[
GA1 ⇒ 1

]
≤ Pr[bad]. (18)

Next, similar to the proof of Theorem 5, we bound Pr[bad] by constructing a game G∗ also shown in
Figure 18. G∗ is defined such that A wins in G∗ if and only if A triggers bad in game G0/G1 when (1)
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Game G0 , G1

TH[·]← ⊥ ; K
$← {0, 1}κ ; N

$← N ; AD
$← AD ; M

$←M

C ← AE.Enc(K,N, ε,M) ; T
$← {0, 1}t

TH[(K,N,AD)]← T

(K′, N ′, AD′,M ′)
$← AH(C, T )

C′ ← AE.Enc(K′, N ′, ε,M ′) ; T ′ ← H(K′, N ′, AD′)

return (C′, T ′) = (C, T )

Oracle H(X)

if X = (K, ∗) :

bad← true

if TH[X] = ⊥ : TH[X]
$← {0, 1}t

return TH[X]

Game G∗

TH[·]← ⊥ ; K
$← {0, 1}κ ; N

$← N ; AD
$← AD ; M

$←M

C ← AE.Enc(K,N, ε,M) ; T
$← {0, 1}t

Q∗ ← ∅

(K′, N ′, AD′,M ′)
$← AH(C, T )

H(K′, N ′, AD′)

return K ∈ Q∗

Oracle H(X)

(K∗, ∗)← X

Q∗ ∪← {K∗}

if TH[X] = ⊥ : TH[X]
$← {0, 1}t

return TH[X]

Fig. 18: Games G0,G1 and G∗ in the proof of Theorem 8, where G0 contains boxed content while G1

does not.

A queried the random oracle H with an input prefixed with K or (2) A output (K ′, N ′, AD′,M ′) with
K ′ = K and then H(K ′, N ′, AD′) was queried by the challenger. Therefore, it holds that

Pr[bad] = Pr
[
GA∗ ⇒ 1

]
. (19)

Then, we bound Pr
[
GA∗ ⇒ 1

]
by constructing an adversary B against the one-time IND$-CPA security

of the underlying AE. B starts by initializing the set Q∗ and the table TH (to an empty set and empty
table, respectively). Then it samples the tuple (N,AD,M) uniformly at random, and calls its own
encryption oracle with input (N, ε,M) to derive C. It then samples T randomly and runs A with input
(C, T ). For A’s each random oracle queryX = (K∗, ∗), B recordsK∗ inQ∗ and answers the query via lazy
sampling. After A terminates and outputs (K ′, N ′, AD′,M ′), B “queries” the random oracle H with the
input (K ′, N ′, AD′) and does the following. For each keyKi ∈ Q∗, B computes Ci ← AE.Enc(Ki, N, ε,M)
and checks if Ci = C. If this holds for any of the keys in Q∗, B guesses that it was in the real world
REALBAE and outputs 1; otherwise, it outputs 0, guessing that it was in the ideal world RANDBAE.

If B was in the real world, then it simulates A’s view in G∗ perfectly and hence we have
Pr
[
GA∗ ⇒ 1

]
≤ Pr

[
REALBAE ⇒ 1

]
. Here we have an inequality to capture “false positives” in the

above Ci = C check. On the other hand, if B was in the ideal world, the probability that a ran-
dom ciphertext C equals AE.Enc(Ki, N, ε,M) for some Ki ∈ Q∗ is at most |Q∗|/2AE.clen(|M |). Since
|Q∗| ≤ qh + 1, we have Pr

[
RANDBAE ⇒ 1

]
≤ (qh + 1)/2AE.clen(|M |). Recall that Advot-ind$-cpa

AE (B) =

Pr
[
REALBAE ⇒ 1

]
− Pr

[
RANDBAE ⇒ 1

]
and AE.clen(|M |) ≥ τ , we have

Advot-ind$-cpa
AE (B) ≥ Pr

[
GA∗ ⇒ 1

]
− qh + 1

2τ
, (20)

and it follows from equations (18)∼(20) that

Pr
[
GA0 ⇒ 1

]
− Pr

[
GA1 ⇒ 1

]
≤ Advot-ind$-cpa

AE (B) +
qh + 1

2τ
. (21)

Finally, we observe that in game G1 the committing tag T in the challenge ciphertext (C, T ) is
independent of random oracle queries and hence independent of T ′, so in order for A to win one of
the random oracle queries must output a committing tag equal to the independent random T . This
probability is bounded by (qh + 1)/2t. Therefore, we have

Pr
[
GA1 ⇒ 1

]
≤ qh + 1

2t
. (22)

The proof is concluded by combining equations (21) and (22). ut
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B.9 Proof of Theorem 9 (IND$-CPA Security of EtH)

Proof. We define three games G0 ∼ G2 as shown in Figure 19.

Game G0 , G1

K
$← {0, 1}κ

TH[·]← ⊥

b′
$← AH,Enc

return b′

Oracle H(X)

if A queries H(X) ∧X = (K, ∗) :

bad← true

if TH[X] = ⊥ : TH[X]
$← {0, 1}t

return TH[X]

Oracle Enc(N,AD,M)

C ← E.Enc(K,N,M)

T
$← {0, 1}t

T ← H(K,N,AD,C)

return (C, T )

Game G∗

K
$← {0, 1}κ

Q∗ ← ∅
TH[·]← ⊥

b′
$← AH,Enc

return K ∈ Q∗

Oracle H(X)

(K′, ∗)← X

Q∗ ∪←
{
K′
}

if TH[X] = ⊥ : TH[X]
$← {0, 1}t

return TH[X]

Oracle Enc(N,AD,M)

C ← E.Enc(K,N,M)

T
$← {0, 1}t

return (C, T )

Game G2

TH[·]← ⊥

b′
$← AH,Enc

return b′

Oracle H(X)

if TH[X] = ⊥ : TH[X]
$← {0, 1}t

return TH[X]

Oracle Enc(N,AD,M)

C
$← {0, 1}E.clen(|M|)

T
$← {0, 1}t

return (C, T )

Fig. 19: Games G0 ∼ G2 and G∗ in the proof of Theorem 9, where G0 contains boxed content while G1

does not.

Game G0 is the same as REALAEtH (see Figure 4) equipped with a random oracle H. Therefore, we
have Pr

[
GA0 ⇒ 1

]
= Pr

[
REALAEtH ⇒ 1

]
.

Game G1 is the same as game G0, except that the committing tag T is now sampled randomly from
the set {0, 1}t in the encryption oracle Enc. We claim that G0 and G1 behave identically unless the
bad event happens, where the adversary A ever queries H with an input that is prefixed with the key K
used in Enc. The only syntactical difference between the two games is the generation of T . Recall that
A is nonce-respecting, i.e., it never repeats a nonce for its encryption queries. Therefore, if bad does not
occur, then in both games the committing tag T is a random string that is independent of A’s view,
and hence games G0 and G1 are identical-until-bad. By the Difference Lemma of the game-based proof
technique [31], we have

Pr
[
GA0 ⇒ 1

]
− Pr

[
GA1 ⇒ 1

]
≤ Pr[bad]. (23)

Next, similar to the proof of Theorem 5, we bound Pr[bad] by considering a game G∗ also shown
in Figure 19. Here G∗ is just defined to clarify the bad event, such that A wins in G∗ if and only if A
triggers bad in game G0/G1. Therefore, we have

Pr[bad] = Pr
[
GA∗ ⇒ 1

]
. (24)

Then, we bound Pr
[
GA∗ ⇒ 1

]
by constructing an adversary B1 against the IND$-CPA security of the

underlying E. B1 starts by initializing the set Q∗ and the table TH (to an empty set and empty table,
respectively), and then it runs A. To answer A’s encryption query on input (N,AD,M), B1 calls its own
encryption oracle with input (N,M) and gets back C, then samples a random committing tag T from
{0, 1}t and returns (C, T ) back to A. For A’s random oracle query X = (K ′, ∗), B1 records K ′ in Q∗
and answers the query via lazy sampling. After A terminates, B1 ignores its output and queries its own
encryption oracle with input (N∗, 0κ) and gets back C∗, where N∗ is a nonce different from those used
in previous encryption queries. Then, for each key Ki ∈ Q∗, B1 computes Ci ← E.Enc(Ki, N

∗, 0κ) and
checks if Ci = C∗ holds. If this holds for any of the keys in Q∗, B1 guesses that it was in the real world
REALB1

E and outputs 1; otherwise, it outputs 0, guessing that it was in the ideal world RANDB1

E .
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If B1 was in the real world, then it simulates A’s view in G∗ perfectly and hence we have
Pr
[
GA∗ ⇒ 1

]
≤ Pr

[
REALB1

E ⇒ 1
]
. Here we have an inequality to capture “false positives” in the above

Ci = C∗ check. On the other hand, if B1 was in the ideal world, the probability that a random ci-
phertext C∗ equals E.Enc(Ki, N

∗, 0κ) for some Ki ∈ Q∗ is at most |Q∗|/2E.clen(κ). Since |Q∗| ≤ qh,
we have Pr

[
RANDB1

E ⇒ 1
]
≤ qh/2

E.clen(κ). Then, recall that Advind$-cpa
E (B1) = Pr

[
REALB1

E ⇒ 1
]
−

Pr
[
RANDB1

E ⇒ 1
]
and E.clen(κ) ≥ κ, we have

Advind$-cpa
E (B1) ≥ Pr

[
GA∗ ⇒ 1

]
− qh

2E.clen(κ)
≥ Pr

[
GA∗ ⇒ 1

]
− qh

2κ
, (25)

and it follows from equations (23)∼(25) that

Pr
[
GA0 ⇒ 1

]
− Pr

[
GA1 ⇒ 1

]
≤ Advind$-cpa

E (B1) +
qh
2κ
. (26)

We continue by making a game hop from G1 to G2. As shown in Figure 19, game G2 is the same as
game G1, except that now in the encryption oracle Enc the ciphertext C is also sampled uniformly at
random. We bound the gap between G1 and G2 by constructing an adversary B2 against the IND$-CPA
security of the underlying E. B2 just simulates A’s view as the challenger in G1/G2 does, but for A’s
encryption query, B2 calls its own encryption oracle to get C and then finish the rest of the simulation.
It is easy to see that B2 simulates A’s view in G1 in the real world and G2 in the ideal world. In the
end, adversary B2 outputs the bit that A outputs. Therefore, we have

Pr
[
GA1 ⇒ 1

]
− Pr

[
GA2 ⇒ 1

]
≤ Advind$-cpa

E (B2). (27)

Finally, we observe that game G2 is identical to RANDAEtH (see Figure 4) equipped with a random
oracle H. This is because, in game G2, for each Enc query with a distinct nonce, its output is an
independent uniform random string sampled from {0, 1}EtH.clen(|M |) = {0, 1}E.clen(|M |)+t.

The proof is concluded by combining equations (26) and (27). ut

B.10 Proof of Theorem 10 (INT-CTXT Security of EtH)

Proof. We define three games G0 ∼ G2 as shown in Figure 20.
Game G0 is the same as INT-CTXTAEtH (see Figure 4) equipped with a random oracle H. Therefore,

we have Pr
[
GA0 ⇒ 1

]
= Advint-ctxt

EtH (A).
Game G1 is the same as G0, except that the verification oracle does not check if the ciphertext C can

be successfully decrypted (note that the TT operations can be ignored in G1). As a result, the winning
condition in G1 is relaxed, i.e., if A wins in G0 then it must also win in G1. To see this, suppose A wins
in G0 by querying (N∗, AD∗, (C∗, T ∗)) and before this query A did not already win in G1. In this case,
A’s views in G0 and G1 are identical. This is because before that winning query each verification query
with a valid T must satisfy (N,AD, (C, T )) ∈ Q (otherwise A wins in G1), which implies that M 6= ⊥
and hence the verification oracle returns true in both games. Then, by the winning condition in G1, the
above query also allows A to win in G1. Therefore, we have

Pr
[
GA0 ⇒ 1

]
≤ Pr

[
GA1 ⇒ 1

]
. (28)

Game G2 is the same as G1, except that the committing tag is now lazily sampled from the table
TT in both oracles, where the table is indexed by the (N,AD,C) triple. We claim that G1 and G2

behave identically unless the bad event happens, which occurs if the adversary A ever queries H with an
input that is prefixed with the key K. The only syntactical difference between the two games are in the
generation of T . If bad does not occur, in both games the committing tag T is either randomly sampled
for a new (N,AD,C) triple or equal to the same previously sampled value if (N,AD,C) is not new.
Hence the two games are indeed identical-until-bad. By the Difference Lemma of the game-based proof
technique [31], we have

Pr
[
GA1 ⇒ 1

]
− Pr

[
GA2 ⇒ 1

]
≤ Pr[bad]. (29)

Next, similar to the proof of Theorem 5, we bound Pr[bad] by considering a game G∗ also shown in
Figure 20. G∗ is defined such that A wins in G∗ if and only if A triggers bad in game G1/G2. Therefore,
we have

Pr[bad] = Pr
[
GA∗ ⇒ 1

]
. (30)
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Game G0

K
$← K

TH[·]← ⊥
Q ← ∅
win← 0

AH,Enc,Ver

return win

Oracle H(X)

if A queries H(X)

∧X = (K, ∗) :

bad← true

if TH[X] = ⊥ :

TH[X]
$← {0, 1}t

return TH[X]

Oracle Enc(N,AD,M)

C ← E.Enc(K,N,M)

T ← H(K,N,AD,C)

Q ∪← {(N,AD, (C, T ))}
return (C, T )

Oracle Ver(N,AD, (C, T ))

T ′ ← H(K,N,AD,C)

if T ′ 6= T : return false

M ← E.Dec(K,N,C)

if M 6= ⊥ ∧ (N,AD, (C, T )) 6∈ Q :

win← 1

return M 6= ⊥

Game G1 , G2

K
$← K

TH[·]← ⊥
TT [·]← ⊥
Q ← ∅
win← 0

AH,Enc,Ver

return win

Oracle H(X)

if A queries H(X)

∧X = (K, ∗) :

bad← true

if TH[X] = ⊥ :

TH[X]
$← {0, 1}t

return TH[X]

Oracle Enc(N,AD,M)

C ← E.Enc(K,N,M)

if TT [(N,AD,C)] = ⊥ :

TT [(N,AD,C)]
$← {0, 1}t

T ← TT [(N,AD,C)]

T ← H(K,N,AD,C)

Q ∪← {(N,AD, (C, T ))}
return (C, T )

Oracle Ver(N,AD, (C, T ))

if TT [(N,AD,C)] = ⊥ :

TT [(N,AD,C)]
$← {0, 1}t

T ′ ← TT [(N,AD,C)]

T ′ ← H(K,N,AD,C)

if T ′ 6= T : return false

if (N,AD, (C, T )) 6∈ Q :

win← 1

return true

Game G∗

K
$← {0, 1}κ

TH[·]← ⊥
TT [·]← ⊥
Q∗ ← ∅

AH,Enc,Ver

return K ∈ Q∗

Oracle H(X)

(K′, ∗)← X

Q∗ ∪←
{
K′
}

if TH[X] = ⊥ :

TH[X]
$← {0, 1}t

return TH[X]

Oracle Enc(N,AD,M)

C ← E.Enc(K,N,M)

if TT [(N,AD,C)] = ⊥ :

TT [(N,AD,C)]
$← {0, 1}t

T ← TT [(N,AD,C)]

return (C, T )

Oracle Ver(N,AD, (C, T ))

if TT [(N,AD,C)] = ⊥ :

TT [(N,AD,C)]
$← {0, 1}t

T ′ ← TT [(N,AD,C)]

if T ′ 6= T : return false

return true

Fig. 20: Games G0 ∼ G2 and G∗ in the proof of Theorem 10, where G1 contains boxed content while
G2 does not.

Then, we bound Pr
[
GA∗ ⇒ 1

]
by constructing an adversary B against the IND$-CPA security of the

underlying E. B starts by initializing the set Q∗ and tables TH,TT (to an empty set and empty tables,
respectively), and then it runs A. To answer A’s encryption query on input (N,AD,M), B calls its own
encryption oracle Enc′ with input (N,M) and gets back C, then lazily samples T with the help of table
TT . At the end, it returns (C, T ) to A. To answer A’s verification query on input (N,AD, (C, T )), B
lazily samples T ′ with the help of the table TT and checks if T ′ = T . If not, B returns false, otherwise it
returns true. For A’s random oracle query X = (K ′, ∗), B records K ′ in Q∗ and answers the query via
lazy sampling of the table TH. After A terminates, B picks a nonce N∗ that is different from those used
previous encryption queries and then calls its own encryption oracle with input (N∗, 0κ) to get back C∗.
Then, for each key Ki ∈ Q∗, B computes Ci ← E.Enc(Ki, N

∗, 0κ) and checks if Ci = C∗ holds. If this
holds for any of the keys in Q∗, B guesses that it was in the real world REALBE and outputs 1; otherwise,
it outputs 0, guessing that it was in the ideal world RANDBE .

If B was in the real world, then it simulates A’s view in G∗ perfectly and hence we have
Pr
[
GA∗ ⇒ 1

]
≤ Pr

[
REALBE ⇒ 1

]
. Here we have an inequality to capture “false positives” in the above

Ci = C∗ check. On the other hand, if B was in the ideal world, the probability that a random cipher-
text C∗ equals E.Enc(Ki, N

∗, 0κ) for some Ki ∈ Q∗ is at most |Q∗|/2E.clen(κ). Since |Q∗| ≤ qh, we have
Pr
[
RANDBE ⇒ 1

]
≤ qh/2

E.clen(κ). Recalling that Advind$-cpa
E (B) = Pr

[
REALBE ⇒ 1

]
− Pr

[
RANDBE ⇒ 1

]
and E.clen(κ) ≥ κ, we have

Advind$-cpa
E (B) ≥ Pr

[
GA∗ ⇒ 1

]
− qh

2E.clen(κ)
≥ Pr

[
GA∗ ⇒ 1

]
− qh

2κ
, (31)
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and it follows from equations (29)∼(31) that

Pr
[
GA1 ⇒ 1

]
− Pr

[
GA2 ⇒ 1

]
≤ Advind$-cpa

E (B) +
qh
2κ
. (32)

Finally, it is left to bound Pr
[
GA2 ⇒ 1

]
. Suppose A wins by querying Ver(N∗, AD∗, (C∗, T ∗)), then

we know (C∗, T ∗) was not output by any Enc(N∗, AD∗, ·) query and Ver(N∗, AD∗, (C∗, T ∗)) = 1. The
latter implies that T ∗ = TT [(N∗, AD∗, C∗)]. If C∗ was output by an Enc(N∗, AD∗, ·) query, then T ∗ =
TT [(N∗, AD∗, C∗)] is the output committing tag and this contradicts with the above winning condition.
Therefore, A has never learned TT [(N∗, AD∗, C∗)] by encryption queries and hence it can only guess T ∗
when making verification queries. Since A can make qv verification queries and T ∗ is randomly sampled
from {0, 1}t, the probability that A wins is at most qv/2t. Therefore, we have

Pr
[
GA2 ⇒ 1

]
≤ qv

2t
. (33)

The proof is concluded by combining equations (28), (32) and (33). ut

B.11 Proof of Theorem 11 (CMT Security of EtH)

Proof. In order to win the CMTAEtH game (see Figure 5), A needs to output two tuples (K1, N1, AD1,M1),
(K2, N2, AD2,M2) such that they are encrypted to the same ciphertext (C, T ) and (K1, N1, AD1) 6=
(K2, N2, AD2). By construction of EtH, this implies that the hashes of (K1, N1, AD1, C) and
(K2, N2, AD2, C) collide. Therefore, we can construct B as follows: it first invokes A, then extracts
(K1, N1, AD1) and (K2, N2, AD2) from A’s output. It continues by computing C and outputting the
tuple pair ((K1, N1, AD1, C), (K2, N2, AD2, C)). ut

B.12 Proof of Theorem 12 (CDY$ Security of EtH)

Proof. We define two games G0 and G1 as shown in Figure 21.

Game G0 , G1

TH[·]← ⊥ ; K
$← {0, 1}κ ; N

$← N ; AD
$← AD ; M

$←M

C ← E.Enc(K,N,M) ; T
$← {0, 1}t

TH[(K,N,AD,C)]← T

(K′, N ′, AD′,M ′)
$← AH(C, T )

C′ ← E.Enc(K′, N ′,M ′) ; T ′ ← H(K′, N ′, AD′, C′)

return (C′, T ′) = (C, T )

Oracle H(X)

if X = (K, ∗) :

bad← true

if TH[X] = ⊥ : TH[X]
$← {0, 1}t

return TH[X]

Game G∗

TH[·]← ⊥ ; K
$← {0, 1}κ ; N

$← N ; AD
$← AD ; M

$←M

C ← E.Enc(K,N,M) ; T
$← {0, 1}t

Q∗ ← ∅

(K′, N ′, AD′,M ′)
$← AH(C, T )

C′ ← E.Enc(K′, N ′,M ′) ; H(K′, N ′, AD′, C′)

return K ∈ Q∗

Oracle H(X)

(K∗, ∗)← X

Q∗ ∪← {K∗}

if TH[X] = ⊥ : TH[X]
$← {0, 1}t

return TH[X]

Fig. 21: Games G0,G1 and G∗ in the proof of Theorem 12, where G0 contains boxed content while G1

does not.

Game G0 is the same as CDYAEtH,S$
(see Figure 6) equipped with a random oracle H. Therefore, we

have Pr
[
GA0 ⇒ 1

]
= Advcdy

EtH,S$
(A) = Advcdy$

EtH (A).
Game G1 is the same as game G0, except that the committing tag T , calculated by the challenger,

is now independent of queries to the random oracle H. We claim that G0 and G1 behave identically
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unless the bad event happens, where the random oracle H is ever queried with an input that is prefixed
with the key K sampled by the challenger. This is because, if bad does not occur, then T in G0 is also
independent of random oracle queries made by A and by the challenger (to compute T ′). Therefore, by
the Difference Lemma of the game-based proof technique [31], we have

Pr
[
GA0 ⇒ 1

]
− Pr

[
GA1 ⇒ 1

]
≤ Pr[bad]. (34)

Next, similar to the proof of Theorem 5, we bound Pr[bad] by constructing a game G∗ also shown in
Figure 21. G∗ is defined such that A wins in G∗ if and only if A triggers bad in game G0/G1 when (1)
A queried the random oracle H with an input prefixed with K or (2) A output (K ′, N ′, AD′,M ′) with
K ′ = K and then H(K ′, N ′, AD′, C ′) was queried by the challenger. Therefore, we have

Pr[bad] = Pr
[
GA∗ ⇒ 1

]
. (35)

Then, we bound Pr
[
GA∗ ⇒ 1

]
by constructing an adversary B against the IND$-CPA security of the

underlying encryption scheme E. B starts by initializing the set Q∗ and the table TH (to an empty set
and empty table, respectively). Then it samples the tuple (N,AD,M) uniformly at random, and calls
its own encryption oracle with input (N,M) to derive C. It then samples T randomly and runs A with
input (C, T ). For A’s each random oracle query X = (K∗, ∗), B records K∗ in Q∗ and answers the query
via lazy sampling. After A terminates and outputs (K ′, N ′, AD′,M ′), B takes a nonce N∗ 6= N , and
queries its own encryption oracle with the input (N∗, 0κ) to get back C ′. Then it “queries” the random
oracle H with the input (K ′, N ′, AD′, C ′) and continues as follows. For each key Ki ∈ Q∗, B computes
Ci ← E.Enc(Ki, N

∗, 0κ) and checks if Ci = C. If this holds for any of the keys in Q∗, B guesses that it
was in the real world REALBE and outputs 1; otherwise, it outputs 0, guessing that it was in the ideal
world RANDBE .

If B was in the real world, then it simulatesA’s view inG∗ perfectly and hence we have Pr
[
GA∗ ⇒ 1

]
≤

Pr
[
REALBE ⇒ 1

]
. Here we have an inequality to capture “false positives” in the above Ci = C check.

On the other hand, if B was in the ideal world, the probability that a random ciphertext C equals
E.Enc(Ki, N

∗, 0κ) for some Ki ∈ Q∗ is at most |Q∗|/2κ. Since |Q∗| ≤ qh +1, we have Pr
[
RANDBE ⇒ 1

]
≤

(qh + 1)/2κ. Recalling that Advind$-cpa
E (B) = Pr

[
REALBE ⇒ 1

]
− Pr

[
RANDBE ⇒ 1

]
, we have

Advind$-cpa
E (B) ≥ Pr

[
GA∗ ⇒ 1

]
− qh + 1

2κ
, (36)

and it follows from equations (34)∼(36) that

Pr
[
GA0 ⇒ 1

]
− Pr

[
GA1 ⇒ 1

]
≤ Advind$-cpa

E (B) +
qh + 1

2κ
. (37)

Finally, we observe that in game G1 the committing tag T in the challenge ciphertext (C, T ) is
independent of random oracle queries and hence independent of T ′, so in order for A to win one of
the random oracle queries must output a committing tag equal to the independent random T . This
probability is bounded by (qh + 1)/2t. Therefore, we have

Pr
[
GA1 ⇒ 1

]
≤ qh + 1

2t
. (38)

The proof is concluded by combining equations (37) and (38). ut

B.13 Proof of Theorem 13 (MR-IND$-CPA Security of AEtH)

Proof. We define four games G0 ∼ G3 as shown in Figure 22.
Game G0 is the same as REALAAEtH (see Figure 4) equipped with a random oracle H. Therefore, we

have Pr
[
GA0 ⇒ 1

]
= Pr

[
REALAAEtH ⇒ 1

]
.

Game G1 is the same as G0, except that the committing tag is now lazily sampled from the table
TT in Enc oracle, where the table is indexed by the queried (N,AD,C|τ ) triple. We claim that G0 and
G1 behave identically unless the bad event happens, which occurs if the adversary A ever queries H
with an input that is prefixed with the key K. The only syntactical difference between the two games is
in the generation of T . If bad does not occur, in both games the committing tag T is either randomly
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Game G0 , G1

K
$← {0, 1}κ

TH[·]← ⊥ ; TT [·]← ⊥

b′
$← AH,Enc

return b′

Oracle H(X)

if A queries H ∧X = (K, ∗) :

bad← true

if TH[X] = ⊥ : TH[X]
$← {0, 1}t

return TH[X]

Oracle Enc(N,AD,M)

C ← AE.Enc(K,N,AD,M)

if TT [(N,AD,C|τ )] = ⊥ :

TT [(N,AD,C|τ )]
$← {0, 1}t

T ← TT [(N,AD,C|τ )]

T ← H(K,N,AD,C|τ )

return (C, T )

Game G∗

K
$← {0, 1}κ

Q∗ ← ∅
TH[·]← ⊥ ; TT [·]← ⊥

b′
$← AH,Enc

return K ∈ Q∗

Oracle H(X)

(K′, ∗)← X

Q∗ ∪←
{
K′
}

if TH[X] = ⊥ : TH[X]
$← {0, 1}t

return TH[X]

Oracle Enc(N,AD,M)

C ← AE.Enc(K,N,AD,M)

if TT [(N,AD,C|τ )] = ⊥ :

TT [(N,AD,C|τ )]
$← {0, 1}t

T ← TT [(N,AD,C|τ )]

return (C, T )

Game G2, G3

TH[·]← ⊥

b′
$← AH,Enc

return b′

Oracle H(X)

if TH[X] = ⊥ : TH[X]
$← {0, 1}t

return TH[X]

Oracle Enc(N,AD,M)

C
$← {0, 1}AE.clen(|M|)

if TT [(N,AD,C|τ )] = ⊥ :

TT [(N,AD,C|τ )]
$← {0, 1}t

T ← TT [(N,AD,C|τ )]

T
$← {0, 1}t

return (C, T )

Fig. 22: Games G0 ∼ G3 and G∗ in the proof of Theorem 13, where G0 and G3 contain boxed content
while G1 and G2 do not.

sampled for new (N,AD,C |τ ) triple, or gets the same previously sampled value if (N,AD,C |τ ) is not
new. Hence the two games are indeed identical-until-bad. By the Difference Lemma of the game-based
proof technique [31], we have

Pr
[
GA0 ⇒ 1

]
− Pr

[
GA1 ⇒ 1

]
≤ Pr[bad]. (39)

Next, similar to the proof of Theorem 5, we bound Pr[bad] by considering a game G∗ also shown
in Figure 22. Here G∗ is just defined to clarify the bad event, such that A wins in G∗ if and only if A
triggers bad in game G0/G1. Therefore, we have

Pr[bad] = Pr
[
GA∗ ⇒ 1

]
. (40)

Then, we bound Pr
[
GA∗ ⇒ 1

]
by constructing an adversary B1 against the MR-IND$-CPA security

of the underlying AE. B1 starts by initializing the set Q∗ and tables TH,TT (to an empty set and empty
tables, respectively), and then it runs A. To answer A’s encryption query on input (N,AD,M), B1 calls
its own encryption oracle with input (N,AD,M) and gets back C, then lazily samples T with the help
of table TT . At the end, it returns (C, T ). For A’s random oracle query X = (K ′, ∗), B1 records K ′ in Q∗
and answers the query via lazy sampling. After A terminates, B1 ignores its output and queries its own
encryption oracle with input (N∗, AD∗, 0κ) and gets back C∗, where N∗ is a nonce different from those
used in previous encryption queries and AD∗ is any valid additional data.Then, for each key Ki ∈ Q∗,
B1 computes Ci ← AE.Enc(Ki, N

∗, AD∗, 0κ) and checks if Ci = C∗ holds. If this holds for any of the keys
in Q∗, B1 guesses that it was in the real world REALB1

AE and outputs 1; otherwise, it outputs 0, guessing
that it was in the ideal world RANDB1

AE.
If B1 was in the real world, then it simulates A’s view in G∗ perfectly and hence we have

Pr
[
GA∗ ⇒ 1

]
≤ Pr

[
REALB1

AE ⇒ 1
]
. Here we have an inequality to capture “false positives” in the above

Ci = C∗ check. On the other hand, if B1 was in the ideal world, the probability that a random
ciphertext C∗ equals AE.Enc(Ki, N

∗, AD∗, 0κ) for some Ki ∈ Q∗ is at most |Q∗|/2AE.clen(κ). Since
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|Q∗| ≤ qh, we have Pr
[
RANDB1

AE ⇒ 1
]
≤ qh/2

AE.clen(κ). Then, recalling that Advmr-ind$-cpa
AE (B1) =

Pr
[
REALB1

AE ⇒ 1
]
− Pr

[
RANDB1

AE ⇒ 1
]
and AE.clen(κ) ≥ κ, we have

Advmr-ind$-cpa
AE (B1) ≥ Pr

[
GA∗ ⇒ 1

]
− qh

2AE.clen(κ)
≥ Pr

[
GA∗ ⇒ 1

]
− qh

2κ
, (41)

and it follows from equations (39)∼(41) that

Pr
[
GA0 ⇒ 1

]
− Pr

[
GA1 ⇒ 1

]
≤ Advmr-ind$-cpa

AE (B1) +
qh
2κ
. (42)

We continue by making a game hop from G1 to G2. As shown in Figure 22, game G2 is the same as
game G1, except that now in the encryption oracle Enc the ciphertext C is sampled uniformly at random.
We bound the gap between G1 and G2 by constructing an adversary B2 against the MR-IND$-CPA
security of the underlying AE. B2 just simulates A’s view as the challenger in G1/G2 does, but for
A’s encryption query, B2 calls its own encryption oracle to get C and then it finishes the rest of the
simulation. It is easy to see that B2 simulates A’s view in G1 in the real world and G2 in the ideal world.
In the end, adversary B2 outputs the bit that A outputs. Therefore, we have

Pr
[
GA1 ⇒ 1

]
− Pr

[
GA2 ⇒ 1

]
≤ Advmr-ind$-cpa

AE (B2). (43)

We make the final game hop from G2 to G3 and for this we define a bad event bad′. We say that
bad′ occurs if A queried the encryption oracle with input (N,AD,M) where the table TT was already
defined for an entry (N,AD,C|τ ). If bad′ does not happen, games G2 and G3 behave identically, i.e. the
committing tag T will be a random string for A’s every query. The games G2 and G3 behave identically
if it does not happen for some encryption query (N,AD,M) that the table TT was already set at point
(N,AD,C|τ ). By the Difference Lemma of the game-based proof technique [31], we have

Pr
[
GA2 ⇒ 1

]
− Pr

[
GA3 ⇒ 1

]
≤ Pr

[
bad′

]
=

(
qe
2

)
1

2τ
≤ q2e

2τ+1
, (44)

where we bound the probability of bad′ happening by the probability that a collision in C |τ value for
two different queries occurs.

Finally, we observe that game G3 is identical to RANDAAEtH (see Figure 4) equipped with a random
oracle H. This is because, in game G3, for each Enc query, its output is an independent uniform random
string sampled from {0, 1}AEtH.clen(|M |) = {0, 1}AE.clen(|M |)+t.

The proof is concluded by combining equations (42)∼(44). ut

B.14 Proof of Theorem 14 (MR-INT-CTXT Security of AEtH)

Proof. We define two games G0 and G1 as shown in Figure 23.
Game G0 is the same as INT-CTXTAEtH (see Figure 4) equipped with a random oracle H. Therefore,

we have Pr
[
GA0 ⇒ 1

]
= Advint-ctxt

AEtH (A).
Game G1 is the same as G0, except that the committing tag is now lazily sampled from the table

TT in both oracles, where the table is indexed by the (N,AD,C |τ ) triple. We claim that G0 and G1

behave identically unless the bad event happens, which occurs if the adversary A ever queries H with
an input that is prefixed with the key K. The two syntactical difference between the two games are
in the generation of T . If bad does not occur, in both games the committing tag T is either randomly
sampled for new (N,AD,C |τ ) triple, or gets the same previously sampled value if (N,AD,C |τ ) is not
new. Hence the two games are indeed identical-until-bad. By the Difference Lemma of the game-based
proof technique [31], we have ∣∣Pr

[
GA0 ⇒ 1

]
− Pr

[
GA1 ⇒ 1

]∣∣ ≤ Pr[bad]. (45)

Next, similar to the proof of Theorem 5, we bound Pr[bad] by considering a game G∗ also shown in
Figure 23. G∗ is defined such that A wins in G∗ if and only if A triggers bad in G0/G1. Therefore, we
have

Pr[bad] = Pr
[
GA∗ ⇒ 1

]
. (46)

Then, we bound Pr
[
GA∗ ⇒ 1

]
by constructing an adversary B1 against the INT-CTXT security of the

underlying AE. B1 starts by initializing the set Q∗ and tables TH,TT (to an empty set and empty tables,
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Game G0 , G1

K
$← K

TH[·]← ⊥
TT [·]← ⊥
Q← ∅
win← 0

AH,Enc,Ver

return win

Oracle H(X)

if A queries H(X)

∧X = (K, ∗) :

bad← true

if TH[X] = ⊥ :

TH[X]
$← {0, 1}t

return TH[X]

Oracle Enc(N,AD,M)

C ← AE.Enc(K,N,AD,M)

if TT [(N,AD,C|τ )] = ⊥ :

TT [(N,AD,C|τ )]
$← {0, 1}t

T ← TT [(N,AD,C|τ )]

T ← H(K,N,AD,C|τ )

Q ∪← {(N,AD, (C, T ))}
return (C, T )

Oracle Ver(N,AD, (C, T ))

if TT [(N,AD,C|τ )] = ⊥ :

TT [(N,AD,C|τ )]
$← {0, 1}t

T ′ ← TT [(N,AD,C|τ )]

T ′ ← H(K,N,AD,C|t)

if T ′ 6= T : return false

M ← AE.Dec(N,AD,C)

if M 6= ⊥ ∧ (N,AD, (C, T )) 6∈ Q :

win← 1

return M 6= ⊥

Game G∗

K
$← {0, 1}κ

TH[·]← ⊥
TT [·]← ⊥
Q∗ ← ∅

AH,Enc,Ver

return K ∈ Q∗

Oracle H(X)

(K′, ∗)← X

Q∗ ∪←
{
K′
}

if TH[X] = ⊥ :

TH[X]
$← {0, 1}t

return TH[X]

Oracle Enc(N,AD,M)

C ← AE.Enc(K,AD, ε,M)

if TT [(N,AD,C|τ )] = ⊥ :

TT [(N,AD,C|τ )]
$← {0, 1}t

T ← TT [(N,AD,C|τ )]

return (C, T )

Oracle Ver(N,AD, (C, T ))

if TT [(N,AD,C|τ )] = ⊥ :

TT [(N,AD,C|τ )]
$← {0, 1}t

T ′ ← TT [(N,AD,C|τ )]

if T 6= T ′ : return false

M ← AE.Dec(N,AD,C)

return M 6= ⊥

Fig. 23: Games G0, G1 and G∗ in the proof of Theorem 10, where G0 contains boxed content while G1

does not.

respectively), and then it runs A. To answer A’s encryption query on input (N,AD,M), B1 calls its own
encryption oracle with input (N,AD,M) and gets back C, then lazily samples T with the help of table
TT . At the end, it returns (C, T ) back to A. To answer A’s verification query on input (N,AD, (C, T )),
B1 lazily samples T ′ with the help of the table TT and checks if T ′ equals T . If not, B1 returns false,
otherwise it calls its own verification oracle with input (N,AD,C) and forwards the answer back to A.
For A’s random oracle query X = (K ′, ∗), B1 records K ′ in Q∗ and answers the query via lazy sampling
using the table TH. After A terminates, B1 picks a nonce N∗ that is different from those used by A in
encryption oracle queries; then, for each key Ki ∈ Q∗, B computes Ci ← AE.Enc(Ki, N

∗, AD, 0κ) and
queries its own verification oracle with (N∗, AD,Ci).

The above adversary B1 correctly simulates the A’s view in G∗, and we claim that, if A wins in
G∗, then B1 wins in its INT-CTXTB1

AE game. If A wins, then the AE key K (sampled by B1’s challenger)
must be included in the set Q∗. Since B1 enumerated all keys in Q∗ to compute ciphertexts with a new
nonce, the ciphertext derived from the correct key K must be a valid forgery for B1 to win in its game.
Therefore, it holds that

Pr
[
GA∗ ⇒ 1

]
≤ Advmr-int-ctxt

AE (B1). (47)

Now we bound Pr
[
GA1 ⇒ 1

]
by constructing another MR-INT-CTXT adversary B2 against the under-

lying AE. Adversary B2 is the same as adversary B1, except that B2 terminates immediately after A
terminates, i.e., B2 does not record keys in Q∗ or make the final verification queries after A terminates.
Clearly, B2 correctly simulates A’s view in G1. We continue by showing that if A wins, then adversary B2
also wins in its INT-CTXTB2

AE game. Suppose A wins by querying Ver(N∗, AD∗, (C∗, T ∗)). By definition
of the winning condition of A, we know (C∗, T ∗) was not output by any Enc(N∗, AD∗, ·) query and
Ver(N∗, AD∗, (C∗, T ∗)) = 1. By construction of B2 , the latter implies that T ∗ = TT [(N∗, AD∗, C∗|τ )]
and Ver′(N∗, AD∗, C∗) = 1, so it suffices to show that C∗ was not output by any Enc′(N∗, AD∗, ·) query
made by B2. Suppose otherwise, that C∗ was output by some query to Enc′(N∗, AD∗, ·). In that case,
(C∗, T ∗) would have been returned by Enc oracle to A since we know T ∗ = TT [(N∗, AD∗, C∗|τ )]. That
would be a contradiction. Therefore, B2 also wins and it holds that

Pr
[
GA1 ⇒ 1

]
≤ Advmr-int-ctxt

AE (B2). (48)

The proof is concluded by combining equations (45)∼(48). ut
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B.15 Proof of Theorem 15 (CMT Security of AEtH)

Proof. In order to win the CMTAAEtH game (see Figure 5),A needs to output two tuples (K1, N1, AD1,M1),
(K2, N2, AD2,M2) such that they are encrypted to the same ciphertext and (K1, N1, AD1) 6=
(K2, N2, AD2). By construction of AEtH, this implies that the hashes of (K1, N1, AD1, C |τ ) and
(K2, N2, AD2, C |τ ) collide, which breaks collision resistance of H. Therefore, we can construct B as
follows: it first invokes A, then extracts (K1, N1, AD1) and (K2, N2, AD2) from A’s output. It continues
by computing C and outputting the tuple pair ((K1, N1, AD1, C|τ ), (K2, N2, AD2, C|τ )). ut

B.16 Proof of Theorem 16 (CDY$ Security of AEtH)

Proof. We define two games G0 and G1 as shown in Figure 24.

Game G0 , G1

TH[·]← ⊥ ; K
$← {0, 1}κ ; N

$← N ; AD
$← AD ; M

$←M

C ← AE.Enc(K,N,AD,M) ; T
$← {0, 1}t

TH[(K,N,AD,C|τ )]← T

(K′, N ′, AD′,M ′)
$← AH(C, T )

C′ ← AE.Enc(K′, N ′, AD′,M ′) ; T ′ ← H(K′, N ′, AD′, C′|τ )

return (C′, T ′) = (C, T )

Oracle H(X)

if X = (K, ∗) :

bad← true

if TH[X] = ⊥ : TH[X]
$← {0, 1}t

return TH[X]

Game G∗

TH[·]← ⊥ ; K
$← {0, 1}κ ; N

$← N ; AD
$← AD ; M

$←M

C ← AE.Enc(K,N,AD,M) ; T
$← {0, 1}t

Q∗ ← ∅

(K′, N ′, AD′,M ′)
$← AH(C, T )

C′ ← AE.Enc(K′, N ′, AD′,M ′) ; H(K′, N ′, AD′, C′|τ )

return K ∈ Q∗

Oracle H(X)

(K∗, ∗)← X

Q∗ ∪← {K∗}

if TH[X] = ⊥ : TH[X]
$← {0, 1}t

return TH[X]

Fig. 24: Games G0,G1 and G∗ in the proof of Theorem 16, where G0 contains boxed content while G1

does not.

Game G0 is the same as CDYAAEtH,S$
(see Figure 6) equipped with a random oracle H. Therefore, we

have Pr
[
GA0 ⇒ 1

]
= Advcdy

AEtH,S$
(A) = Advcdy$

AEtH(A).
Game G1 is the same as game G0, except that the committing tag T , calculated by the challenger,

is now independent of queries to the random oracle H. We claim that G0 and G1 behave identically
unless the bad event happens, where the random oracle H is ever queried with an input that is prefixed
with the key K sampled by the challenger. This is because, if bad does not occur, then T in G0 is also
independent of random oracle queries made by A and by the challenger (to compute T ′). Therefore, by
the Difference Lemma of the game-based proof technique [31], we have

Pr
[
GA0 ⇒ 1

]
− Pr

[
GA1 ⇒ 1

]
≤ Pr[bad]. (49)

Next, similar to the proof of Theorem 5, we bound Pr[bad] by constructing a game G∗ also shown in
Figure 24. G∗ is defined such that A wins in G∗ if and only if A triggers bad in game G0/G1 when (1) A
queried the random oracle H with an input prefixed with K or (2) A output (K ′, N ′, AD′,M ′) with K ′ =
K and then H(K ′, N ′, AD′, C ′|τ ) was queried by the challenger, where C ′ ← AE.Enc(K ′, N ′, AD′,M ′).
Therefore, it holds that

Pr[bad] = Pr
[
GA∗ ⇒ 1

]
. (50)

Then, we bound Pr
[
GA∗ ⇒ 1

]
by constructing an adversary B against the one-time IND$-CPA security

of the underlying AE. B starts by initializing the set Q∗ and the table TH (to an empty set and empty
table, respectively). Then it samples the tuple (N,AD,M) uniformly at random, and calls its own
encryption oracle with input (N,AD,M) to derive C. It then samples T randomly and runs A with
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input (C, T ). For A’s each random oracle query X = (K∗, ∗), B records K∗ in Q∗ and answers the query
via lazy sampling. After A terminates and outputs (K ′, N ′, AD′,M ′), B “queries” the random oracle H
with the input (K ′, N ′, AD′, C ′ |τ ), where C ′ ← AE.Enc(K ′, N ′, AD′,M ′), and does the following. For
each key Ki ∈ Q∗, B computes Ci ← AE.Enc(Ki, N,AD,M) and checks if Ci = C. If this holds for any
of the keys in Q∗, B guesses that it was in the real world REALBAE and outputs 1; otherwise, it outputs
0, guessing that it was in the ideal world RANDBAE.

If B was in the real world, then it simulates A’s view in G∗ perfectly and hence we have
Pr
[
GA∗ ⇒ 1

]
≤ Pr

[
REALBAE ⇒ 1

]
. Here we have an inequality to capture “false positives” in the

above Ci = C check. On the other hand, if B was in the ideal world, the probability that a ran-
dom ciphertext C equals AE.Enc(Ki, N,AD,M) for some Ki ∈ Q∗ is at most |Q∗|/2AE.clen(|M |). Since
|Q∗| ≤ qh + 1, we have Pr

[
RANDBAE ⇒ 1

]
≤ (qh + 1)/2AE.clen(|M |). Recalling that Advot-ind$-cpa

AE (B) =

Pr
[
REALBAE ⇒ 1

]
− Pr

[
RANDBAE ⇒ 1

]
and AE.clen(|M |) ≥ τ , we have

Advot-ind$-cpa
AE (B) ≥ Pr

[
GA∗ ⇒ 1

]
− qh + 1

2τ
, (51)

and it follows from equations (49)∼(51) that

Pr
[
GA0 ⇒ 1

]
− Pr

[
GA1 ⇒ 1

]
≤ Advot-ind$-cpa

AE (B) +
qh + 1

2τ
. (52)

Finally, we observe that in game G1 the committing tag T in the challenge ciphertext (C, T ) is
independent of random oracle queries and hence independent of T ′, so in order for A to win one of
the random oracle queries must output a committing tag equal to the independent random T . This
probability is bounded by (qh + 1)/2t. Therefore, we have

Pr
[
GA1 ⇒ 1

]
≤ qh + 1

2t
. (53)

The proof is concluded by combining equations (52) and (53). ut

B.17 Proof of Theorem 17 (MR-IND$-CPA Security of chaSIV)

Proof. We start by defining three games G0 ∼ G2 as shown in Figure 25.
Game G0 is the same as REALAchaSIV (see Figure 4) equipped with a random oracle H. Therefore, we

have Pr
[
GA0 ⇒ 1

]
= Pr

[
REALAchaSIV ⇒ 1

]
.

Game G0 , G1

K
$← {0, 1}κ

TH[·]← ⊥

b′
$← AH,Enc

return b′

Oracle H(X)

if A queries H(X) ∧X = (K, ∗) :

bad← true

if TH[X] = ⊥ : TH[X]
$← {0, 1}t

return TH[X]

Oracle Enc(N,AD,M)

Ke ← F(K,N)

T ← H(K,N,AD,M)

T ← {0, 1}t

Ne ← T|r
C ← E.Enc(Ke, Ne,M)

return (C, T )

Game G∗

K
$← {0, 1}κ

Q∗ ← ∅
TH[·]← ⊥

b′
$← AH,Enc

return K ∈ Q∗

Oracle H(X)

(K′, ∗)← X

Q∗ ∪←
{
K′
}

if TH[X] = ⊥ : TH[X]
$← {0, 1}t

return TH[X]

Oracle Enc(N,AD,M)

Ke ← F(K,N)

T ← {0, 1}t

Ne ← T|r
C ← E.Enc(Ke, AD,M)

return (C, T )

Fig. 25: Games G0,G1 and G∗ in the proof of Theorem 17, where G0 contains boxed content while G1

does not.
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Game G1 is the same as G0, except that the committing tag is now sampled randomly from the set
{0, 1}t in the encryption oracle Enc. We claim that G0 and G1 behave identically unless the bad event
happens, which occurs if the adversary A ever queries H with an input that is prefixed with the key
K. The only syntactical difference between the two games is in the generation of T . Recall that A will
never repeat (N,AD,M) input, therefore, if bad does not occur, in both games the committing tag T is
random string that is independent of A’s view. Hence, games G0 and G1 are indeed identical-until-bad.
By the Difference Lemma of the game-based proof technique [31], we have

Pr
[
GA0 ⇒ 1

]
− Pr

[
GA1 ⇒ 1

]
≤ Pr[bad]. (54)

Next, similar to the proof of Theorem 5, we bound Pr[bad] by considering a game G∗ also shown
in Figure 25. Here G∗ is just defined to clarify the bad event, such that A wins in G∗ if and only if A
triggers bad in game G0/G1. Therefore, we have

Pr[bad] = Pr
[
GA∗ ⇒ 1

]
. (55)

Then, we bound Pr
[
GA∗ ⇒ 1

]
by constructing an adversary C1 against the PRF security of the

underlying F. C1 starts by initializing the set Q∗ and table TH (to an empty set and empty table,
respectively), and then it runs A. To answer A’s encryption query on input (N,AD,M), C1 calls its own
PRF oracle with input N to getKe back. Then it samples T at random and calculates C ← E.Enc(Ke, T|r
,M), returning (C, T ) back to A. For A’s random oracle query X = (K ′, ∗), C1 records K ′ in Q∗ and
answers the query via lazy sampling. After A terminates, C1 ignores its output and queries its own PRF
oracle with input N∗ and gets back K∗e , where N∗ is a nonce different from those used in previous PRF
queries. Then, for each key Ki ∈ Q∗, C1 computes Ke,i ← F(Ki, N

∗) and checks if Ke,i = K∗e holds. If
this holds for any of the keys in Q∗, C1 guesses that it was interacting with the real PRF F and outputs
1; otherwise, it outputs 0, guessing that it was interacting with a truly random function.

If C1 had access to real F, then it simulates A’s view inG∗ perfectly and hence we have Pr
[
GA∗ ⇒ 1

]
≤

Pr
[
CFK1 ⇒ 1

]
. Here we have an inequality to capture “false positives” in the above Ke,i = K∗e check. On

the other hand, if C1 was in the ideal world, the probability that a random output K∗e equals F(Ki, N
∗)

for some Ki ∈ Q∗ is at most |Q∗|/2κ. Since |Q∗| ≤ qh, we have Pr
[
Cf1 ⇒ 1

]
≤ qh/2κ. Then, recalling that

Advprf
F (C1) = Pr

[
CFK1 ⇒ 1

]
− Pr

[
Cf1 ⇒ 1

]
we have

Advprf
F (C1) ≥ Pr

[
GA∗ ⇒ 1

]
− qh

2κ
, (56)

and it follows from equations (54)∼(56) that

Pr
[
GA0 ⇒ 1

]
− Pr

[
GA1 ⇒ 1

]
≤ Advprf

F (C1) +
qh
2κ
. (57)

We continue by making a game hop from G1 to G2 by replacing F invocations with invocations to
a random function f. This a standard game hop where a PRF adversary C2 simulates G1 / G2 while
having access to its own PRF oracle. Therefore, it holds

Pr
[
GA1 ⇒ 1

]
− Pr

[
GA2 ⇒ 1

]
≤ Advprf

F (C2). (58)

Next, we define two more games G3 and G4 as shown in Figure 26. In game G3 we define a bad event
bad′ which captures the event that there is a collision in derived nonce Ne for some nonce N queried by
A. Since the underlying E is secure only in a nonce-respecting case, we need to make sure there will be
no collisions in derived nonce for different instances of E, where these instances of E directly correspond
to nonces that are queried by A. In order to define the bad event bad′, we also introduce the table TN in
game G3, where the elements of the table will be sets containing derived nonces of a E instance indexed
by nonce that was queried by A. Games G2 and G3 are identical-until-bad and so it holds

Pr
[
GA2 ⇒ 1

]
− Pr

[
GA3 ⇒ 1

]
≤ Pr

[
bad′

]
≤ R2

1

2r
+ · · ·+

R2
Qe

2r
, (59)

where the individual summands represent the standard collision birthday bound.
GameG4 is the same as gameG3, except that now C in encryption oracle is always sampled uniformly

at random. To bound the gap between G3 and G4, we apply a hybrid argument as follows. Consider
a sequence of hybrid games H0,H1, . . . ,HQe such that G3 = H0 and G4 = HQe . Now, let QN =
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Game G2

TH[·]← ⊥

b′
$← AH,Enc

return b′

Oracle H(X)

if TH[X] = ⊥ : TH[X]
$← {0, 1}t

return TH[X]

Oracle Enc(N,AD,M)

Ke ← f(N)

T ← {0, 1}t

Ne ← T|r
C ← E.Enc(Ke, Ne,M)

return (C, T )

Game G3

TH[·]← ⊥
TN [·]← ⊥

b′
$← AH,Enc

return b′

Oracle H(X)

if TH[X] = ⊥ : TH[X]
$← {0, 1}t

return TH[X]

Oracle Enc(N,AD,M)

Ke ← f(N)

T ← {0, 1}t

Ne ← T|r
if Ne ∈ TN [N ] :

bad′ ← true

abort
TN [N ] ∪← {Ne}
C ← E.Enc(Ke, Ne,M)

return (C, T )

Game G4

TH[·]← ⊥

b′
$← AH,Enc

return b′

Oracle H(X)

if TH[X] = ⊥ : TH[X]
$← {0, 1}t

return TH[X]

Oracle Enc(N,AD,M)

T ← {0, 1}t

C ← {0, 1}|M|

return (C, T )

Fig. 26: Games G2 ∼ G4 in the proof of Theorem 17.

{N1, ..., NQe} be the list of nonces queried by A. Game Hi is the same as game G3, except that the
output of all queries that have been made (to E) with a nonce Nj , with j ≤ i, are replaced by independent
random strings as in G4. By construction, consecutive games Hi−1 and Hi are the same except for the
queries made to E with nonce Ni. We can construct an adversary Bi against the IND$-CPA security of
the underlying E such that it simulates A’s view in Hi−1 in the real world and Hi in the ideal world. To
do so, Bi simulates A’s views in Hi−1 and Hi in the same way following their game procedures, except
that, for Enc queries made with nonce Ni, Bi samples a random T and calls its own encryption oracle
Enc′ to simulate the E ciphertext C. Finally, Bi outputs the bit that A outputs. By construction, we
have Pr

[
HAi−1 ⇒ 1

]
−Pr

[
HAi ⇒ 1

]
= Advind$-cpa

E (Bi). With a hybrid argument, there exists an efficient
adversary B such that

Pr
[
GA3 ⇒ 1

]
− Pr

[
GA4 ⇒ 1

]
= Pr

[
HA0 ⇒ 1

]
− Pr

[
HAk ⇒ 1

]
=

Qe∑
i=1

(
Pr
[
HAi−1 ⇒ 1

]
− Pr

[
HAi ⇒ 1

])
≤ QeAdvind$-cpa

E (B).

(60)

Finally, we observe that game G4 is identical to RANDAchaSIV (see Figure 4) equipped with a random
oracle H. This is because, in game G4, for each Enc query, its output is an independent uniform random
string sampled from {0, 1}|M |+t. Therefore, we have

Advmr-ind$-cpa
chaSIV (A) = Pr

[
GA0 ⇒ 1

]
− Pr

[
GA4 ⇒ 1

]
. (61)

The proof is concluded by combining equations (57)∼(61). ut

B.18 Proof of Theorem 18 (MR-INT-CTXT Security of chaSIV)

Proof. We start by defining three games G0 ∼ G2 as shown in Figure 27.
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Game G0

K
$← {0, 1}κ

TH[·]← ⊥
Q ← ∅
win← 0

AH,Enc,Ver

return win

Oracle H(X)

if A queries H(X)

∧X = (K, ∗) :

bad← true

if TH[X] = ⊥ :

TH[X]
$← {0, 1}t

return TH[X]

Oracle Enc(N,AD,M)

Ke ← F(K,N)

T ← H(K,N,AD,M)

Ne ← T|r
C ← E.Enc(Ke, Ne,M)

Q ∪← {(N,AD, (C, T ))}
return (C, T )

Oracle Ver(N,AD, (C, T ))

Ke ← F(K,N) ; Ne ← T|r
M ← E.Dec(Ke, Ne, C)

T ′ ← H(K,N,AD,M)

if T 6= T ′ : return false

if M 6= ⊥ ∧ (N,AD, (C, T )) 6∈ Q :

win← 1

return M 6= ⊥

Game G1 ,G2

K
$← {0, 1}κ

TH[·]← ⊥
TT [·]← ⊥
Q ← ∅
win← 0

AH,Enc,Ver

return win

Oracle H(X)

if A queries H(X)

∧X = (K, ∗) :

bad← true

if TH[X] = ⊥ :

TH[X]
$← {0, 1}t

return TH[X]

Oracle Enc(N,AD,M)

Ke ← F(K,N)

if TT [(N,AD,M)] = ⊥ :

TT [(N,AD,M)]
$← {0, 1}t

T ← TT [(N,AD,M)]

T ← H(K,N,AD,M)

Ne ← T|r
C ← E.Enc(Ke, Ne,M)

Q ∪← {(N,AD, (C, T ))}
return (C, T )

Oracle Ver(N,AD, (C, T ))

Ke ← F(K,N) ; Ne ← T|r
M ← E.Dec(Ke, Ne, C)

if TT [(N,AD,M)] = ⊥ :

TT [(N,AD,M)]
$← {0, 1}t

T ′ ← TT [(N,AD,M)]

T ′ ← H(K,N,AD,M)

if T 6= T ′ : return false

if (N,AD, (C, T )) 6∈ Q :

win← 1

return true

Game G∗

K
$← {0, 1}κ

Q∗ ← ∅
TH[·]← ⊥
TT [·]← ⊥

b′
$← AH,Enc

return K ∈ Q∗

Oracle H(X)

(K′, ∗)← X

Q∗ ∪←
{
K′
}

if TH[X] = ⊥ :

TH[X]
$← {0, 1}t

return TH[X]

Oracle Enc(N,AD,M)

Ke ← F(K,N)

if TT [(N,AD,M)] = ⊥ :

TT [(N,AD,M)]
$← {0, 1}t

T ← TT [(N,AD,M)]

Ne ← T|r
C ← E.Enc(Ke, AD,M)

return (C, T )

Oracle Ver(N,AD, (C, T ))

Ke ← F(K,N) ; Ne ← T|r
M ← E.Dec(Ke, Ne, C)

if TT [(N,AD,M)] = ⊥ :

TT [(N,AD,M)]
$← {0, 1}t

T ′ ← TT [(N,AD,M)]

if T 6= T ′ : return false

return true

Fig. 27: Games G0 ∼ G2 and G∗ in the proof of Theorem 18, where G1 contains boxed content while
G2 does not.

Game G0 is the same as INT-CTXTAchaSIV (see Figure 4) equipped with a random oracle H. Therefore,
we have Pr

[
GA0 ⇒ 1

]
= Pr

[
INT-CTXTAchaSIV ⇒ 1

]
.

Game G1 is the same as G0, except that the verification oracle does not check if the ciphertext C can
be successfully decrypted (note that the TT operations can be ignored in G1). As a result, the winning
condition in G1 is relaxed, i.e., if A wins in G0 then it must also win in G1. To see this, suppose A wins
in G0 by querying (N∗, AD∗, (C∗, T ∗)) and before this query A did not already win in G1. In this case,
A’s views in G0 and G1 are identical. This is because before that winning query each verification query
with a valid T must satisfy (N,AD, (C, T )) ∈ Q (otherwise A wins in G1), which implies that M 6= ⊥
and hence the verification oracle returns true in both games. Then, by the winning condition in G1, the
above query also allows A to win in G1. Therefore, we have

Pr
[
GA0 ⇒ 1

]
≤ Pr

[
GA1 ⇒ 1

]
. (62)

Game G2 is the same as G1, except that the committing tag is now lazily sampled from the table
TT in both oracles, where the table is indexed by the (N,AD,M) triple. We claim that G1 and G2

behave identically unless the bad event happens, which occurs if the adversary A ever queries H with an
input that is prefixed with the key K. The only syntactical difference between the two games is in the
generation of T . If bad does not occur, in both games the committing tag T is either randomly sampled
for a new (N,AD,M) triple or equal to the same previously sampled value if (N,AD,M) is not new.
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Hence the two games are indeed identical-until-bad. By the Difference Lemma of the game-based proof
technique [31], we have

Pr
[
GA1 ⇒ 1

]
− Pr

[
GA2 ⇒ 1

]
≤ Pr[bad]. (63)

Next, similar to the proof of Theorem 5, we bound Pr[bad] by considering a game G∗ also shown
in Figure 27. Here G∗ is just defined to clarify the bad event, such that A wins in G∗ if and only if A
triggers bad in game G1/G2. Therefore, we have

Pr[bad] = Pr
[
GA∗ ⇒ 1

]
. (64)

Then, we bound Pr
[
GA∗ ⇒ 1

]
by constructing an adversary B against the PRF security of the under-

lying F. B starts by initializing the set Q∗ and table TH (to an empty set and empty table, respectively),
and then it runs A. During the simulation of encryption and verification oracles for A, the adversary B
will keep track of nonces queried by A. If A makes a query with a new nonce N , B will query its own
PRF oracle to get Ke back and save the result (N,Ke) internally. Then, if A makes a query with a nonce
that already “appeared” before, B will just fetch the previous result Ke that corresponds to the queried
nonce.

To answer A’s encryption query on input (N,AD,M), B calls its own PRF oracle with input N , or
fetches a previous result if the nonce is not new, to get Ke. Then it lazily samples T with the help of
table TT and calculates C ← E.Enc(Ke, T |r,M), returning (C, T ) back to A. To answer A’s verification
query on input (N,AD, (C, T )), B calls its own PRF oracle with input N , or fetches a previous result
if the nonce is not new, to get Ke. Then it calculates M ← E.Dec(Ke, T

′ |r, C). It continues by lazily
sampling T ′ with the help of table TT and checking if T ′ = T . If not, B returns false to A; otherwise, it
returns true to A. For A’s random oracle query X = (K ′, ∗), B records K ′ in Q∗ and answers the query
via lazy sampling. After A terminates, B ignores its output and queries its own PRF oracle with input
N∗ and gets back K∗e , where N∗ is a nonce different from those used in previous PRF queries. Then, for
each key Ki ∈ Q∗, B computes Ke,i ← F(Ki, N

∗) and checks if Ke,i = K∗e holds. If this holds for any
of the keys in Q∗, B guesses that it was interacting with the real PRF F and outputs 1; otherwise, it
outputs 0, guessing that it was interacting with a truly random function.

If B had access to real F, then it simulates A’s view in G∗ perfectly and hence we have Pr
[
GA∗ ⇒ 1

]
≤

Pr
[
BFK ⇒ 1

]
. Here we have an inequality to capture “false positives” in the above Ke,i = K∗e check. On

the other hand, if B was in the ideal world, the probability that a random output K∗e equals F(Ki, N
∗)

for some Ki ∈ Q∗ is at most |Q∗|/2κ. Since |Q∗| ≤ qh, we have Pr
[
Bf ⇒ 1

]
≤ qh/2κ. Then, recalling that

Advprf
F (B) = Pr

[
BFK ⇒ 1

]
− Pr

[
Bf ⇒ 1

]
we have

Advprf
F (B) ≥ Pr

[
GA∗ ⇒ 1

]
− qh

2κ
, (65)

and it follows from equations (63)∼(65) that

Pr
[
GA1 ⇒ 1

]
− Pr

[
GA2 ⇒ 1

]
≤ Advprf

F (B) +
qh
2κ
. (66)

Now it is left to bound Pr
[
GA2 ⇒ 1

]
. Suppose A wins by querying Ver(N∗, AD∗, (C∗, T ∗)) and that

the winning tuple decrypts toM∗. We know A did not query (N∗, AD∗,M∗) previously to the encryption
oracle because by the tidyness of E, if A did make such a query, result of E.Enc(Ke, N

∗,M∗) would be
exactly C∗. Then, since T ∗ = TT [(N∗, AD∗,M∗)], that previous encryption oracle would have returned
(C∗, T ∗) which is a contradiction with (C∗, T ∗) 6∈ Q part of the winning condition. Therefore, the only
way A can win is by querying Ver and trying to “guess” T ∗ such that T ∗ = TT [(N∗, AD∗,M∗)].

The probability that A wins with its first verification query is 1
2t since we know TT [(N∗, AD∗,M∗)]

would be sampled after A has made its guess T ∗. For its second verification query, assuming the first
was unsuccessful, A can either query new (N∗, AD∗) pair, leading again to the winning probability 1

2t .
Otherwise, it can try to guess TT [(N∗, AD∗,M∗)] from its first verification query. The probability that
it wins is (1− 1

2t )
1

2t−1 = 1
2t , where the first multiplicative term is the probability that A did not win in

its first query. For the subsequent verification queries the adversary can only follow the same strategy,
either trying to guess the tag for new (N∗, AD∗,M∗) tuple or trying to guess the tag for one of the “old”
tuples. In both cases, the probability that it succeeds is 1

2t . Therefore, in total,

Pr
[
GA2 ⇒ 1

]
≤ qv

2t
. (67)

The proof is concluded by combining equations (62), (66) and (67). ut
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B.19 Proof of Theorem 19 (CMT Security of chaSIV)

Proof. In order to win the CMTAchaSIV game (see Figure 5), A needs to output two tuples
(K1, N1, AD1,M1), (K2, N2, AD2,M2) such that they are encrypted to the same ciphertext and
(K1, N1, AD1) 6= (K2, N2, AD2). By construction of chaSIV, this implies that the hashes of
(K1, N1, AD1,M1) and (K2, N2, AD2,M2) collide, which breaks collision resistance of H. Therefore, we
can construct B as follows: it first invokes A, then extracts (K1, N1, AD1) and (K2, N2, AD2) from A’s
output. At the end, it outputs the tuple pair ((K1, N1, AD1,M1), (K2, N2, AD2,M2)). ut

B.20 Proof of Theorem 20 (CDY$ Security of chaSIV)

Proof. We define two games G0 and G1 as shown in Figure 28.

Game G0 , G1

TH[·]← ⊥ ; K
$← {0, 1}κ ; N

$← N ; AD
$← AD ; M

$←M

Ke ← F(K,N) ; T
$← {0, 1}t

TH[(K,N,AD,M)]← T

Ne ← T|r ; C ← E.Enc(Ke, Ne,M)

(K′, N ′, AD′,M ′)
$← AH(C, T )

K′e ← F(K′, N ′) ;T ′ ← H(K′, N ′, AD′,M ′)

Ne ← T|r ; C′ ← E.Enc(K′e, N
′
e,M

′)

return (C′, T ′) = (C, T )

Oracle H(X)

if X = (K, ∗) :

bad← true

if TH[X] = ⊥ : TH[X]
$← {0, 1}t

return TH[X]

Game G∗

TH[·]← ⊥ ; K
$← {0, 1}κ ; N

$← N ; AD
$← AD ; M

$←M

Ke ← F(K,N) ; T
$← {0, 1}t

Ne ← T|r ; C ← E.Enc(Ke, Ne,M)

Q∗ ← ∅

(K′, N ′, AD′,M ′)
$← AH(C, T )

H(K′, N ′, AD′,M ′)

return K ∈ Q∗

Oracle H(X)

(K∗, ∗)← X

Q∗ ∪← {K∗}

if TH[X] = ⊥ : TH[X]
$← {0, 1}t

return TH[X]

Fig. 28: Games G0,G1 and G∗ in the proof of Theorem 20, where G0 contains boxed content while G1

does not.

Game G0 is the same as CDYAchaSIV,S$
(see Figure 6) equipped with a random oracle H. Therefore, we

have Pr
[
GA0 ⇒ 1

]
= Advcdy

chaSIV,S$
(A) = Advcdy$

chaSIV(A).
Game G1 is the same as game G0, except that the committing tag T , calculated by the challenger,

is now independent of queries to the random oracle H. We claim that G0 and G1 behave identically
unless the bad event happens, where the random oracle H is ever queried with an input that is prefixed
with the key K sampled by the challenger. This is because, if bad does not occur, then T in G0 is also
independent of random oracle queries made by A and by the challenger (to compute T ′). Therefore, by
the Difference Lemma of the game-based proof technique [31], we have

Pr
[
GA0 ⇒ 1

]
− Pr

[
GA1 ⇒ 1

]
≤ Pr[bad]. (68)

Next, similar to the proof of Theorem 5, we bound Pr[bad] by constructing a game G∗ also shown in
Figure 28. G∗ is defined such that A wins in G∗ if and only if A triggers bad in game G0/G1 when (1)
A queried the random oracle H with an input prefixed with K or (2) A output (K ′, N ′, AD′,M ′) with
K ′ = K and then H(K ′, N ′, AD′, C ′) was queried by the challenger. Therefore, we have

Pr[bad] = Pr
[
GA∗ ⇒ 1

]
. (69)
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Then, we bound Pr
[
GA∗ ⇒ 1

]
by constructing an adversary B against the PRF security of the un-

derlying F. B starts by initializing the set Q∗ and table TH (to an empty set and empty table, re-
spectively), and then it runs A. Then it samples the tuple (N,AD,M) uniformly at random, and
calls its own PRF oracle with input N to derive Ke. It continues by sampling T , setting Ne ← T |r,
calculating C ← E.Enc(Ke, Ne,M) and running A with (C, T ). For A’s each random oracle query
X = (K∗, ∗), B records K∗ in Q∗ and answers the query via lazy sampling. After A terminates and
outputs (K ′, N ′, AD′,M ′), B “queries” the random oracle H with the input (K ′, N ′, AD′,M ′) and con-
tinues as follows. For each key Ki ∈ Q∗, B computes Ke,i ← F(Ki, N) and checks if Ke,i = Ke. If this
holds for any of the keys in Q∗, B guesses that it was interacting with the real PRF F and outputs 1;
otherwise, it outputs 0, guessing that it was interacting with a truly random function.

If B had access to real PRF, then it simulates A’s view in G∗ perfectly and hence we have
Pr
[
GA∗ ⇒ 1

]
≤ Pr

[
BFK ⇒ 1

]
. Here we have an inequality to capture “false positives” in the above

Ke,i = Ke check. On the other hand, if B was in the ideal world, the probability that a random
output Ke equals F(Ki, N) for some Ki ∈ Q∗ is at most |Q∗|/2κ. Since |Q∗| ≤ qh + 1, we have
Pr
[
Bf ⇒ 1

]
≤ (qh + 1)/2κ. Then, recalling that Advprf

F (B) = Pr
[
BFK ⇒ 1

]
− Pr

[
Bf ⇒ 1

]
we have

Advprf
F (B) ≥ Pr

[
GA∗ ⇒ 1

]
− qh + 1

2κ
, (70)

and it follows from equations (68)∼(70) that

Pr
[
GA0 ⇒ 1

]
− Pr

[
GA1 ⇒ 1

]
≤ Advprf

F (B) +
qh + 1

2κ
. (71)

Finally, we observe that in game G1 the committing tag T in the challenge ciphertext (C, T ) is
independent of random oracle queries and hence independent of T ′, so in order for A to win one of
the random oracle queries must output a committing tag equal to the independent random T . This
probability is bounded by (qh + 1)/2t. Therefore, we have

Pr
[
GA1 ⇒ 1

]
≤ qh + 1

2t
. (72)

The proof is concluded by combining equations (71) and (72). ut


	Introduction
	Generic Transforms in Previous Works
	Motivation
	Our Contributions

	Notation and Definitions
	Pseudorandom Functions and Hash Functions
	Symmetric Encryption

	Basic Transforms
	Hash-then-AE (HtAE)
	AE-and-Hash (AEaH)
	Encrypt-then-Hash (EtH)
	Security Comparison

	Advanced Transforms
	MRAE-Preserving Transform AEtH
	MRAE-Lifting Transform chaSIV
	Security Comparison

	Performance Evaluation
	Conclusion
	Performance Testing Details
	Security Proofs
	Proof of Theorem 1 (IND$-CPA Security of HtAE)
	Proof of Theorem 2 (INT-CTXT Security of HtAE)
	Proof of Theorem 3 (CMT Security of HtAE)
	Proof of Theorem 4 (CDY$ Security of HtAE)
	Proof of Theorem 5 (IND$-CPA Security of AEaH)
	Proof of Theorem 6 (INT-CTXT Security of AEaH)
	Proof of Theorem 7 (CMT Security of AEaH)
	Proof of Theorem 8 (CDY$ Security of AEaH)
	Proof of Theorem 9 (IND$-CPA Security of EtH)
	Proof of Theorem 10 (INT-CTXT Security of EtH)
	Proof of Theorem 11 (CMT Security of EtH)
	Proof of Theorem 12 (CDY$ Security of EtH)
	Proof of Theorem 13 (MR-IND$-CPA Security of AEtH)
	Proof of Theorem 14 (MR-INT-CTXT Security of AEtH)
	Proof of Theorem 15 (CMT Security of AEtH)
	Proof of Theorem 16 (CDY$ Security of AEtH)
	Proof of Theorem 17 (MR-IND$-CPA Security of chaSIV)
	Proof of Theorem 18 (MR-INT-CTXT Security of chaSIV)
	Proof of Theorem 19 (CMT Security of chaSIV)
	Proof of Theorem 20 (CDY$ Security of chaSIV)


