
Fine-Grained Complexity in a World without Cryptography

Josh Alman 1, Yizhi Huang 1, and Kevin Yeo 1,2

1Columbia University
2Google

Abstract

The study of fine-grained cryptography has proliferated in recent years due to its allure of
potentially relying on weaker assumptions compared to standard cryptography. As fine-grained
cryptography only requires polynomial gaps between the adversary and honest parties, it seems
plausible to build primitives relying upon popular hardness assumptions about problems in P
such as k-SUM or Zero-k-Clique. The ultimate hope is that fine-grained cryptography could still
be viable even if all current cryptographic assumptions are false, such as if P = NP or if we
live in Pessiland where one-way functions do not exist.

In our work, we consider whether this approach is viable by studying fine-grained complexity
when all standard cryptographic assumptions are false. As our main result, we show that many
popular fine-grained complexity problems are easy to solve in the average-case when one-way
functions do not exist. In other words, many candidate hardness assumptions for building
fine-grained cryptography are no longer options in Pessiland. As an example, we prove that
the average-case k-SUM and Zero-k-Clique conjectures are false for sufficiently large constant k
when no one-way functions exist. The average-case Zero-k-Clique assumption was used to build
fine-grained key-exchange by Lavigne et al. [CRYPTO’19]. One can also view the contrapositive
of our result as providing an explicit construction of one-way functions assuming nωk(1) average-
case hardness of k-SUM or Zero-k-Clique for all constant k.

We also show that barriers for reductions in fine-grained complexity may be explained by
problems in cryptography. First, we show that finding faster algorithms for computing discrete
logarithms is equivalent to designing average-case equivalence between k-SUM and k-CYC (an
extension of k-SUM to cyclic groups). In particular, finding such a reduction from k-CYC to
k-SUM could potentially lead to breakthrough algorithms for the discrete logarithm, factoring,
RSA and quadratic residuosity problems. Finally, we show that discrete logarithms with pre-
processing may be reduced to the k-CYC-Index problem, and we present faster algorithms for
average-case k-SUM-Index and k-CYC-Index.

1 Introduction

In modern cryptography, cryptographic primitives that aim for security against super-polynomial
time adversaries are typically built from a wide-range of standard assumptions including one-way
functions (OWF), structured algebraic problems from number theory such as factoring, discrete
logarithm, RSA and quadratic residuosity and geometric problems from lattices including learning

This is the full version of the paper that appears in the proceedings of Eurocrypt 2025 [7].

1

https://orcid.org/0009-0002-2204-1359
https://orcid.org/0000-0002-6592-7769
https://orcid.org/0009-0009-4997-6307

parity with noise (LPN) and shortest vector problems (SVP). Even though they are all standard
assumptions, they remain unproven, and proving them appears far beyond current techniques, since
it requires proving P ̸= NP and much more including that NP ̸⊆ BPP, and it must be possible
to efficiently sample hard instances with known solutions in polynomial time. These requirements
correspond to Impagliazzo’s worlds [53] of Algorithmica where NP ⊆ BPP, Heuristica where NP
problems are easy in the average-case and Pessiland where hard instances with known solutions
cannot be efficiently sampled and OWFs do not exist. In other words, modern cryptography
requires assumptions that we are very far from proving unconditionally (and could be false for all
we know).

This has motivated the study of fine-grained cryptography where the goal is to only obtain
polynomial time gaps between adversaries and honest parties, with the weaker goal to only obtain
security against adversaries with polynomial running time O(nc) for a fixed constant c. This
difference is substantial as it enables plausible construction of cryptographic primitives that are
secure even if P = NP, since it could potentially rely only upon the (average-case) polynomial
time hardness of problems in P. It is conceivable the fine-grained approach could lead to secure
protocols even if all standard cryptographic assumptions are false.

Even though fine-grained cryptography no longer requires assuming P ̸= NP, it still requires
the polynomial-time hardness of problems in P. This is exactly where the area of fine-grained
complexity comes into play: substantial work has been able to prove a large web of reductions
starting from a core set of problems with well-founded hardness assumptions including the orthog-
onal vectors (OV), k-SUM, Zero-k-Clique and all-pairs shortest path (APSP) problems and all of
their variants. For these core problems, there is a simple algorithm in time Õ(nc) for some constant
c > 1. Yet, there has been no progress in developing nc−Ω(1) time algorithms even after decades of
research. So, we assume that such faster algorithms do not exist.

The first work to build fine-grained cryptography from fine-grained complexity assumptions is
Ball et al. [11, 12] that developed proofs of work from the worst-case hardness of OV, 3-SUM or
APSP. Recently, it was shown that permissionless consensus may also be built assuming worst-
case hardness of OV [10]. Unfortunately, these are the only primitives that are known to be built
from worst-case hardness of fine-grained problems. In fact, Ball et al. [11] presented barriers to
constructing fine-grained OWFs from worst-case assumptions using current techniques. To circum-
vent this obstacle, recent works [63, 35] showed that fine-grained OWFs and key-exchange may
be constructed using the average-case hardness of k-SUM and Zero-k-Clique. Somewhat tangen-
tially, it was shown that public-key encryption may be built using weaker LPN variants assuming
average-case hardness of k-XOR [6]. Nevertheless, the current state-of-the-art heavily relies upon
the average-case hardness of standard fine-grained problems to obtain fine-grained constructions of
important cryptographic primitives.

Going back to the high-level goal, we recall that the ultimate hope of fine-grained cryptography
is to build secure protocols even if all standard cryptographic assumptions are false. In particular,
we want secure protocols even if we live in Pessiland where OWFs do not exist. Therefore, we can
ask the following:

What happens to popular fine-grained complexity problems
in the average-case if one-way functions do not exist?

This question is of particular importance since the fine-grained constructions of fundamental prim-
itives including one-way functions and key exchange critically rely upon average-case hardness.

2

Interestingly, we present strong evidence that many of the popular fine-grained complexity prob-
lems are easy on average when no OWFs exist. This includes the k-SUM and Zero-k-Clique problems
that were used in the construction of fine-grained OWFs and key-exchange [63].

We can also consider the question in the reverse direction. Even though there has been extraor-
dinary progress in understanding the relationships between problems in fine-grained complexity,
there remain many prominent problems whose relationships remain elusive. For example, there is
a class of problems generalizing k-SUM which we call k-LISTG, where one fixes a group ensemble
G = {G(n)} (i.e., a group G(n) for each input size n), and given k lists of n elements from G(n),
one would like to determine whether one can pick an element from each list which sum (under the
G(n) operation) to a given target t ∈ G(n). When G(n) is the additive group of integers modulo

m(n), this is the k-SUM problem, but when G(n) is the group Zm(n)
2 it is the k-XOR problem, when

G(n) is the multiplicative group modulo m(n), we call this the k-PROD problem, and when G(n) is
another cyclic group (such as a cyclic subgroup of an elliptic curve group which arises frequently in
cryptosystems) we call this the k-CYCG problem. In general, the best known algorithms for all these
problems run in time Θ(n⌈k/2⌉) as long as |G(n)| is not too small, and many known fine-grained
results can be proved in the same way for all these problems (e.g., [81, 36, 1, 78, 41]), but there are
no known nontrivial fine-grained reductions showing that the hardness of one implies the hardness
of another [54]. There is a limited number of known approaches to proving barriers against fine-
grained reductions, which all do not appear to apply here [27, 17, 18]. One may wonder whether
the lack of progress can be explained through the cryptographic lens. This leads to the following:

Are there any potential reductions between fine-grained problems
that would have major implications in cryptography?

This would act as a barrier for showing such reductions. We show one manifestation of this
phenomenon: we prove that efficient, average-case reductions from either k-PROD or k-CYCG to
k-SUM could potentially lead to surprising algorithmic speed-ups for a wide-range of number-
theoretic cryptographic assumptions including discrete logarithm, factoring, RSA and quadratic
residuosity.

1.1 Our Contributions

Limits of FGC without Crypto. In view of the construction of fine-grained cryptography in
[63] based on average-case fine-grained assumptions, we consider whether the assumptions still hold
if we are in a world without cryptography. Indeed, in a world with cryptography, there is no need
for fine-grained cryptography which only gives weaker guarantees.

We focus particularly on the following two conjectures about average-case k-SUM and average-
case Zero-k-Clique (for definitions of the two problems, see Section 2.2), as these problems were
considered by [63].

Conjecture 1 (AVG-k-SUM Conjecture, Informal). Any n⌈k/2⌉−Θ(1)-time algorithm does not
solve the k-SUM search problem on average with inverse polynomial failure probability.

Conjecture 2 (AVG-Zero-k-Clique Conjecture, Informal). Any nk−Θ(1)-time algorithm does not
solve the Zero-k-Clique search problem on average with inverse polynomial failure probability.

The AVG-Zero-k-Clique Conjecture, in particular, is widely cited and applied in prior work on
average-case fine-grained hardness [74, 63, 41, 6]. We show that:

3

Theorem 1.1 (Informal). If one-way functions do not exist, then the AVG-k-SUM Conjecture and
the AVG-Zero-k-Clique Conjecture are false.

In fact, we prove an even stronger refutation assuming no one-way functions, showing that as k
grows larger, one can achieve a very fast running time whose exponent does not grow with k at all:

Theorem 1.2 (Informal). If one-way functions do not exist, then there exists a universal constant
c, such that for all k > 0, there is an O(nc)-time algorithm that solves k-SUM on average with
inverse polynomial failure probability, for infinitely many n.1

Theorem 1.3 (Informal). If one-way functions do not exist, then there exists a universal constant
c, such that for all k > 0, there is an O(nc)-time algorithm that solves Zero-k-Clique on average
with inverse polynomial failure probability, for infinitely many n.

Thus, in a world without cryptography, one should not aim to design fine-grained cryptosystems
based on the AVG-k-SUM Conjecture or the AVG-Zero-k-Clique Conjecture for large k. We note
that our results can also be viewed in the contrapositive: if the AVG-k-SUM Conjecture (or the
AVG-Zero-k-Clique Conjecture) is true, then there exist one-way functions. Thus, progress on
proving these conjectures in fine-grained complexity can be seen as progress on establishing the
foundations of cryptography. As an example, a worst-case to average-case reduction for either
k-SUM or Zero-k-Clique would allow us to build one-way functions from worst-case assumptions.

The prior work [63] constructs both fine-grained one-way functions and fine-grained key ex-
change protocols based on the hardness of k-SUM and Zero-k-Clique. Our results imply limitations
on how secure these constructions can be if there are no one-way functions. The fine-grained
one-way function construction in [63] is actually based on weaker conjectures than the AVG-k-SUM
Conjecture (or the AVG-Zero-k-Clique Conjecture). Namely, if for some k, k-SUM (or Zero-k-Clique)
is hard on average for O(n1+γ)-time algorithms (or O(n2+γ), resp.) for some constant γ > 0, then
their fine-grained one-way function is also secure against O(n1+γ)-time (or O(n2+γ)-time, resp.)
adversaries. Thus, the conclusion of our result implies that there exists a constant c > 0 such that
the fine-grained one-way function construction of [63] cannot be secure against nc-time adversaries.

As for the fine-grained key exchange construction in [63], their construction is based on the
AVG-Zero-k-Clique Conjecture. Namely, if for some k, Zero-k-Clique is hard on average for O(nk−δ)-
time algorithms for any δ > 0, then their key exchange construction takesO(nk+2) time and is secure
against O(n2k−δ)-time adversaries. They take k to be arbitrarily large to achieve a gap arbitrarily
close to 2 in the running time exponent of the key-exchanging parties and that of the adversary.
However, our results show that one cannot pick arbitrarily large k, and the gap achievable by their
construction must be bounded below 2.

One can also view our results in the contrapositive direction, where they provide another char-
acterization (and construction) of one-way functions based on average-case k-SUM hardness:

Theorem 1.4 (Informal, contrapositive of Theorem 1.2). Suppose solving k-SUM on average with
inverse polynomial failure probability requires nωk(1) time. Then, one-way functions exist.

It is often conjectured that k-SUM requires time Ω(n⌈k/2⌉) in the average case (Conjecture 1
above); Theorem 1.4 shows that a much weaker form of this conjecture suffices to imply the existence
of one-way functions.

1It seems necessary for our consequences of one-way functions not existing to hold only infinitely often, since
“one-way functions” and “infinitely often one-way functions” are not known to be equivalent.

4

Our results here generalize to all problems that have “planting algorithms”. Roughly speaking, a
planting algorithm is an algorithm f that takes a uniformly random input r and outputs an instance
f(r) that always has a solution, such that from r we can also efficiently compute a solution to f(r).
This is similar to “plantability” defined in [63], which also requires the output distribution of f to
be close to the uniform distribution over all instances with exactly one solution.

In the informal statements of Theorems 1.2 and 1.3 above, we didn’t mention the exact formation
of k-SUM. Actually, in this work, for k-SUM, we mainly consider the variant where there are k lists
of numbers, instead of one list, and where the numbers are elements in a finite cyclic group Zm,
instead of integers. We are also focusing on the search version, as there is a simple reduction from
decision to search. For the exact definition we use for k-SUM, and a discussion of different variants,
please see Section 2.2. Similarly, for Zero-k-Clique, we consider the variant where the underlying
graph is a complete k-partite graph, instead of a complete graph, and where the edge weights are
elements in Zm, instead of integers. For the exact definition we use for Zero-k-Clique, please see
Section 2.4.

There are also different variants of average-case search k-SUM or Zero-k-Clique with respect to
the modulus and the input distribution. We are actually able to extend Theorems 1.2 and 1.3 for
different distributions and modulus regimes:

• The uniform distribution over all instances. Note that when m(n) = Θ(nk+Ω(1)), it becomes
trivial since almost every instance does not have a solution.

• The planted distribution, which is the distribution obtained from “planting” a solution in a
uniformly sampled instance.

• The uniform distribution over all instances with a solution.

• The uniform distibution over all instances with exactly one solution, for m(n) ≥ nk.

Note that we always consider the modulus m as a function on n, because the properties of k-SUM
and Zero-k-Clique, including the probability that a uniform instance has a solution, depends on the
relation between m and nk. See Section 2.2 for a detailed discussion.

We remark that for the case where the input distribution is uniform over all instances and
m≪ nk, there is Wagner’s algorithm [80], which is incomparable to our result: Wagner’s algorithm
is unconditional and has running time no(k) where the exponent grows with k, while ours is based
on the non-existence of one-way functions and has running time nc for constant c independent of
k. For details of Wagner’s algorithm, see Appendix A.1.

Cryptographic Barriers to Fine-Grained Reductions. Even though there has been sub-
stantial progress in relating problems in fine-grained complexity (see, for instance, the survey [82]
for a list of many problems in diverse areas of algorithms which are known to be hard assuming
common assumptions like SETH or the hardness of OV, k-SUM, or APSP), there remain many open
questions about relations between certain problems of interest. One could also wonder whether the
lack of these reductions relate to potential questions in cryptography. In our work, we present one
instance of this phenomenon where we show that the DLog problem in cryptography is exactly the
barrier for a fine-grained reductions between either the k-CYC or k-PROD and k-SUM problems.
This is somewhat surprising as k-SUM, k-PROD and k-CYC seem to be nearly identical problems:
they all work over different representations of the cyclic group.

5

Theorem 1.5 (Informal). The DLogG problem for group ensemble G of order m can be solved
in m1/2−Ω(1) time if and only if there exists an efficient reduction from average-case k-CYCG to
average-case k-SUM over Zm in time nk/2−Ω(1). If the reduction runs in poly(n) time for k = ω(1),
then there exists sub-exponential time algorithms for DLogG.

Notably, DLogG is known to be solvable in O(m1/2) time in generic groups, and Theorem 1.5
says that whether one can improve on this for a particular G is equivalent to whether one can give
an efficient average-case fine-grained reduction from k-CYCG to k-SUM. We will observe below
that a reduction in the other direction is not too difficult to achieve. Perhaps most strikingly, the
interpretation of Theorem 1.5 is very different depending on the ensemble G.

Consider first when G is the multiplicative group Z×m(n). In this case, k-CYCG is the problem
k-PROD we defined earlier. DLog over the multiplicative group is very well-studied, and although
there is no known algorithm which provably runs in m1/2−Ω(1) time, a line of work has given
candidate algorithms which heuristically run in sub-exponential time (see Section 9.2 of [59]). Our
Theorem 1.5 thus yields a candidate fine-grained equivalence between k-PROD and k-SUM, which
would show that each can be solved in time n⌈k/2⌉−Ω(1) in the average case if and only if the other
can, but proving the correctness of this reduction requires proving the running time of the candidate
DLog algorithms.

By contrast, consider when G is a cyclic group where we believe DLogG is hard and requires
m1/2−o(1) time, such as popular elliptic curve groups used in practice (see [45, 60]). In this case,
Theorem 1.5 gives a barrier to reducing from k-CYCG to k-SUM. This is, to our knowledge,
the first barrier to a fine-grained reduction based on cryptographic assumptions. Notably, using
known connections with DLog over Z×m (see [9] for example), we can extend this to show that an
efficient reduction from k-PROD to k-SUM would yield sub-exponential time algorithms for several
cryptographic number-theoretic assumptions.

Theorem 1.6 (Informal). If there exists a poly(n) time reduction from average-case k-PRODm to
average-case k-SUMm for k = ω(1), then there exists sub-exponential time algorithms for factoring,
RSA and quadratic residuosity.

Next, we also consider reductions in the preprocessing setting. Since practical cryptography
often works over particular well-studied groups, it is natural to study preprocessing versions of prob-
lems over those groups. We show that prior reductions from DLog to k-CYC shown in [34, 80] may
be extended to the preprocessing setting as well. In particular, we show that DLog with preprocess-
ing may be reduced to the average-case k-CYC-Index problem that extends the k-SUM-Index prob-
lem [38, 49, 51, 62] to cyclic groups. Finally, we provide evidence that the average-case k-SUM-Index
and k-CYC-Index problems are easier than their worst-case counterparts by presenting improved
algorithms.

Theorem 1.7 (Informal). There exists average-case algorithms for k-SUM-Index and k-CYC-Index
using space S and query time T such that S2T = Õ(n2(k−1)). For space S = Õ(nk−1−δ), the
algorithm uses query time T = Õ(n2δ) for δ ≥ 0.

This improves upon previous worst-case constructions for k-SUM-Index [51, 62] that required
query time T = Õ(n3δ) for space S = Õ(nk−1−δ).

6

1.2 Technical Overview

k-SUM parameter regimes. In this section, we give an overview of the techniques we use to prove
our results. We will focus here particularly on the k-SUM problem, as this case already illustrates
the main ideas.

Before getting into it, we briefly discuss the importance of the modulusm in the k-SUM problem.
The case when m≪ nk is referred to as the “dense regime”, since this is the regime where a random
instance will likely have many solutions. Similarly, the case when m ≫ nk is referred to as the
“sparse regime”, since this is the regime where a random instance is unlikely to have any solutions.
The intermediate case m = Θ(nk) is perhaps the most well-studied, since it is when the decision
version of k-SUM is most interesting. Many prior works have developed techniques which focus
on only one of the regimes; for instance, Wagner’s algorithm [80] can solve k-SUM in n⌈k/2⌉−Ω(1)

time in the dense regime m < nk(1−Ω(1)), and recent work [6] has shown how to amplify error
probabilities in the sparse regime. Our results hold for all modulus choices, and we will need to
handle separate intricacies which arise in each regime.

k-SUM and Zero-k-Clique algorithms when one-way functions don’t exist. We focus in this
overview on k-SUM; the more general proofs for Zero-k-Clique and more general problems with
planting algorithms are similar.

Consider the following “planting algorithm” that always outputs an instance of k-SUM with a so-
lution: the algorithm takes as input a choice of indices corresponding to a solution (y1, y2, . . . , yk) ∈
[n]k and a k-SUM instance (L1, L2, . . . , Lk−1, L

′
k) where each Li is a list of n elements in Zm,

while L′k is a list of n − 1 elements that can be viewed as removing Lk[yk] from a list Lk of n
elements. The algorithm then outputs (L1, L2, . . . , Lk−1, L

∗
k) where L∗k is obtained by inserting

L∗k[yk] := −(L1[y1] + L2[y2] + · · · + Lk−1[yk−1]) at the yk-th position of L′k. We can see that this
algorithm outputs a k-SUM instance with solution (y1, y2, . . . , yk), and moreover, every k-SUM in-
stance with a solution is a possible output of the algorithm (when the input is a solution and the
instance with the solution element in the k-th list removed). We note that the fine-grained one-way
function construction in [63] is also based on planting algorithms, but we will discuss shortly that
their proof technique does not suffice for our result.

Our main observation is that, when the modulus m ≥ nk, the length of input of the planting
algorithm, k log n+(kn−1) logm, is less than the length of output, kn logm. In this case, we call the
planting algorithm “expanding”. Since every k-SUM instance with a solution is a possible output
of the algorithm, the planting algorithm can be viewed as a way to “compress” any k-SUM instance
with a solution. On the other hand, a uniformly sampled instance, which is just a random string,
should not be compressible. Therefore, intuitively, if we were able to compute the Kolmogorov
complexity of a string, which measures how compressible the string is, then we would be able to
distinguish between an instance with a solution and a uniformly sampled instance. Unfortunately,
it is well known that Kolmogorov complexity is uncomputable.

To get around this, we use the fact that our planting algorithm is efficient. We instead use
time-bounded Kolmogorov complexity Kt, which is defined as the length of the shortest program
that outputs a string x in at most t(|x|) time. Since the planting algorithm is efficient (actually
linear-time), the argument above still holds for Kt when t(N) is a super-linear polynomial. So, if
we are able to compute Kt-complexity, we will be able to distinguish between an instance with a
solution and a uniformly sampled instance.

Liu and Pass [66] showed that the existence of one-way functions is equivalent to the average-
case hardness of Kt-complexity for any (large enough) polynomial t. Therefore, when one-way

7

functions do not exist, this approach gives an algorithm that solves k-SUM for modulus m ≥ αnk

for some constant α > 1 for infinitely many n, and the algorithms have running time close to that
of the algorithm computing Kt-complexity, which is independent of k.

By delving deeper into the proof of equivalence between the hardness of Kt-complexity and
the existence of one-way functions, we are able to streamline this proof by using universal one-way
functions. For a fixed polynomial time bound T (·), the universal one-way function is defined as

uT (M,x) := (M,UT (M,x))

where M is the description of a Turing machine and UT (M,x) is the output of a universal Turing
machine simulating M on input x for time T (|x|). It can be shown that if there is a weak inverter
for uT that runs in (·)c time for some constant c, then for any function f that runs in T (·) time,
there is a weak inverter for f that runs in (·)c time. For more details on universal one-way functions,
we refer the reader to Appendix H or [47, Section 2.4.1].

Since there is no machine that runs in polynomial time that can simulate every polynomial-
time Turing machine, universal one-way functions can only be constructed for machines that have
running time bounded by a fixed polynomial, and this is one of the reasons why universal one-way
functions are not used very often in cryptography. However, they are good for our purposes since
the planting algorithms for k-SUM run in linear time. Then, by using an inverter for universal
one-way functions on the planting algorithm, we obtain an algorithm for k-SUM for infinitely many
n over the planted distribution, which is the output distribution of the planting algorithm when
the input is from the uniform distribution.

When the modulus satisfies m ≫ nk, the planted distribution is very close to the uniform
distribution, so we automatically get an algorithm for k-SUM over uniform distribution in that
case. However, when m is around nk, the total variation distance between the two distributions
are constant. In this case, we make use of the “expanding” property of the planting algorithm,
that is, the output length is greater than the input length, and the surjective property, that is,
every instance with a solution is a possible output of the planting algorithm, to bound the error
probability of the inverter on the uniform distribution.

When m≪ nk, the planting algorithm is no longer expanding, so the inverter does not work on
the uniform distribution. However, in this case, we are able to show an average-case fine-grained
reduction to the case where m is around nk, by dividing the instance into n/m1/k sub-instances of
k-SUM each of size m1/k and uses the algorithm in the previous case (when m is around nk) on
each sub-instance.

We emphasize that the details here, and particularly the error analysis, require particular care.
For instance, the construction of fine-grained one-way functions in [63] is also based on planting
algorithms for k-SUM. However, their error analysis only uses the fact that the distance between
the planted distribution and the uniform distribution is constant when m ≥ nk, and so they use
a stronger version of the AVG-k-SUM conjecture with constant failure probability. Furthermore,
to the best of our knowledge, the known hardness amplification [6] for AVG-k-SUM only reduces
from failure probability of o(1/ log n) to 1−Ω(1/poly log(n)), falling short of 1/poly(n). It therefore
seems difficult to use the proof techniques in [63] to achieve our desired inverse polynomial error
probability. We get around this and achieve our desired error probability by giving a better analysis
with the expanding property of the planting algorithm when m ≥ nk.

DLog Barrier to k-SUM and k-CYC Reductions. The core intuition comes from the existence of
Wagner’s k-SUM algorithm [80] that solves k-SUM in n⌈k/2⌉−Ω(1) time for the dense setting where

8

nk ≫ m and k ≥ 4. In contrast, these algorithms do not easily extend to the k-PROD or k-CYC
problem and there do not exist algorithms that beat the trivial O(n⌈k/2⌉) algorithm even in the
dense setting. In fact, we show that if one could find such an algorithm, it would lead to the fastest
known algorithms for DLog in many popular elliptic curve groups used in practice (see Appendix A).
Using the above as guidance, we can formulate the DLogG conjecture that there exists some group
ensemble G = {G(n)} with groups of order m = poly(n) such that there is no algorithm solving
DLogG in time m1/2−Ω(1).2 This conjecture matches known lower bounds for computing discrete
logarithms in the generic group model [79].

We use the above intuition for the first direction. Towards a contradiction, suppose there
existed an efficient, average-case reduction from k-CYCG to k-SUM. Then, we show that there
exists faster n⌈k/2⌉−Ω(1) time algorithms for DLog contradicting the above conjecture by relying
upon on Wagner’s algorithm. It is not hard to see that DLog over group G of size m with generator
g and target t can be reduced to a random, dense k-CYC instance over in the following way (also
done in [34, 80]). We generate k random lists of n ≫ m1/k where each element of the lists are
generated by first picking a random exponent x from [m] and computing gx. It is not hard to see
that there exists some k-tuple whose product equals t except with small probability since nk ≫ m.
Afterwards, we can reduce the k-CYC instance to a k-SUM instance and apply Wagner’s algorithm
resulting in a n⌈k/2⌉−Ω(1) = m1/2−Ω(1) algorithm that contradicts the DLog conjecture. It turns
out that the above reduction works even for groups with composite order. Therefore, we can
use DLog over composite order groups to extend the result to the factoring, RSA and quadratic
residuosity problems (see [9]). In other words, this is a barrier to reductions between k-SUM and
k-CYC (k-PROD) as it would result in breakthrough algorithms for DLog and other cryptographic
problems.

For the other direction, we suppose DLog is easy in some group G. Then, we can construct an
efficient, average-case reduction from k-CYC to k-SUM. The reduction executes the DLog algorithm
for all nk elements in the random k-CYC instance that immediately results in a random k-SUM
instance.

Average-Case k-SUM-Index and k-CYC-Index Algorithms. For our improved algorithms for
both k-SUM-Index and k-CYC-Index, we extend the prior worst-case constructions in [62, 51]. Both
problems receive k − 1 lists of size n as input and the goal is to output a (k − 1)-tuple whose sum
(product) equals a query target. The prior works relied upon the Fiat-Naor inversion algorithm [44]
that use space S and time T to invert functions f : X → X such that S3T = Õ(|X |3). Prior
works [62, 51] showed there exists algorithms with space S = Õ(nk−1−δ) and query time T = Õ(n3δ)
for any δ ≥ 0.

For the average-case, we note the k − 1 input lists consisting of n uniformly random group
elements. Our idea is to, instead, use Hellman’s algorithm [52] for inverting random functions that
only requires space S and T such that S2T = Õ(|X |2). Even though the resulting function is not
fully random, we show that the collision probability is sufficiently small that Hellman’s algorithm is
still applicable and efficient (using the analysis in [44]). As a result, we obtain better average-case
algorithms for both k-SUM-Index and k-CYC-Index that use space S = Õ(nk−1−δ) and query time
T = Õ(n2δ) for any δ ≥ 0. We note that our algorithm requires less query time for the same space
usage.

2The parameter n for DLogG can be viewed as the security parameter λ that allows a cryptographic protocol to
pick a group that is secure against poly(λ) adversaries.

9

1.3 Related Works

Fine-Grained Complexity. The worst-case complexity of many problems has been studied in
fine-grained complexity (see [46, 13, 2, 3, 61, 62, 51] and references therein). We point readers to
this survey [82] for more details.

The average-case hardness of various fine-grained problems have also been studied. Starting
from Wagner’s algorithm [80], there has been a line of work trying to construct faster algorithms
for k-SUM and/or k-XOR in the dense setting such as [70, 73, 71, 40, 65]. Several works have
shown that these kind of algorithms are optimal for k-SUM using reductions from worst-case lattice
problems in the dense case [25] as well as showing lower bounds for higher density variants of k-SUM
assuming average-case hardness of lower density variants of k-SUM [41].

Another line of work has attempted to prove that average-case hardness of problems may be
based on weaker assumptions. The first set of problems whose average-case hardness could be based
on worst-case assumptions was presented in [11]. Factored versions of popular fine-grained problems
were introduced in [35] whose average-case hardness may be based on the worst-case hardness of
standard fine-grained problems. The same work also showed average-case reductions from the
search to the decision variants of Zero-k-Clique. Relatedly, prior works have also shown worst-case
to average-case reductions for counting k-cliques [48, 21]. Finally, a recent work [6] studied the
average-case hardness of k-SUM and k-XOR in the sparse setting and presented reductions from
planted to non-planted distributions, search to decision as well as hardness amplification.

There are many pairs of problems, particularly problems at the core of hardness assumptions,
for which researchers have been unable to give fine-grained reductions. In some cases, there are
known barrier results explaining why fine-grained reductions may be difficult. [27] showed that,
assuming a nondeterministic analogue of the Strong Exponential Time Hypothesis (SETH), one
cannot reduce from k-SAT to APSP or k-SUM in a way that shows that SETH implies the APSP or
k-SUM conjectures. [17, 18] used the existence and conjectured non-existence of efficient polynomial
formulations of problems to prove it’s unlikely that SETH could even imply a super-linear lower
bound for k-SUM. These known techniques do not seem to give barriers for reducing between k-CYC
problems like we do in Theorem 1.5 above, since those problems have similar nondeterministic and
polynomial formulation complexity.

Fine-Grained Cryptography. The idea of trying to build fine-grained cryptographic protocols
with polynomial gaps between the adversaries and honest parties relying on fine-grained conjec-
tures has been studied previously. Prior works have shown that it is possible to construct proof
of works [11, 12] from worst-case assumptions. More recently, it was shown that fine-grained
permissionless consensus could be constructed in the random beacon model from the worst-case or-
thogonal vectors conjecture [10]. Other works have also considered building fine-grained primitives
from average-case conjectures. For example, it was shown that fine-grained constructions for one-
way functions and key-exchange from average-case fine-grained complexity assumptions [63, 35].
More recent work [26] presents fine-grained one-way functions from strong one-way average-case
hardness as well as impossibility results for fine-grained one-way functions from weaker average-case
hardness assumptions. Prior works also studied one-way functions and pseudorandom generators
against NC1 and AC0 circuit adversaries [37] as well as fine-grained key exchange where security is
proven in the generic group model [4, 15] that do not utilize fine-grained assumptions. In a some-
what different direction, it was shown that certain average-case assumptions about k-XOR enables
building public-key encryption from weaker variants of LPN [6]. Beyond constructions, we note
that fine-grained complexity problems have often appeared in various applications of cryptography

10

such as k-SUM and k-XOR in cryptanalysis [29, 56, 16, 73, 24, 65, 42]. Finally, cryptographic prim-
itives have been also built using problems similar to planted distributions studied in average-case
fine-grained conjectures such as planted cliques [58, 8] as well as planted subset sum [67].

2 Preliminaries and Definitions

2.1 Notation

For a finite set S we use U(S) to denote the uniform distribution over S. For a positive integer n,
we use [n] to denote the set {1, 2, . . . , n}. Given a list of L of length n, we denote the i-th entry by
L[i] for any i ∈ [n]. For two strings x, y, we use x∥y to denote their concatenation.

2.2 k-SUM, k-PROD and k-CYC

We start with preliminary definitions to define problems and input distributions. In many cases,
our notation follow similarly to prior work such as [6].

Group Ensembles. In the majority of our problems, we will consider an infinite sequence of
finite abelian groups G = {G(n)}n∈N+ that we denote as the group ensemble. One can view a group
ensemble as defining the underlying group G(n) drawing n elements each uniformly at random from
G. For convenience, we may drop the subscript and denote group ensembles by G = {G(n)}. We
may also drop the superscript and refer to the group as G when n can be inferred. At times, we
may denote the group ensemble along with an operation as (G,⊙). When it is clear from context,
we will typically use + for additive groups and · for multiplicative groups. In our work, we will
exclusively consider group ensembles with efficient algorithms for sampling and performing group
operations.

Definition 2.1 (Efficient Group Ensembles). A group ensemble G = {G(n)} with group operation
⊙ is efficient if it satisfies the following properties:

• There exists an algorithm that given as input n ∈ N+ samples a random element from G(n)

according to D(n) in time O(polylog|G(n)|).

• There exists an algorithm that given as inputs n ∈ N+ and x, y ∈ G(n) is able to compute the
output of the group operation x⊙ y in time O(polylog|G(n)|).

Groups Ensembles Instantiations. In our work, we will especially interested in two specific
group ensembles that will directly correlate to k-SUM, k-PROD and k-CYC. Each group ensemble
is parameterized by a function m(n) that denotes the size of the group with respect to the input
size n.

• The group ensemble for k-SUM will defined by the additive group of integers modulo m(n)
denoted by Zm(n) as follows:

G
(m)
k-SUM = {Zm(n)}n∈N+ .

• The group ensemble for k-PROD will defined by the multiplicative group of integers modulo
m(n) denoted by Z×m(n) as follows:

G
(m)
k-PROD = {Z×m(n)}n∈N+ .

11

• The group ensemble for k-CYC will defined using any infinite sequence of cyclic groups of
order m(n) denoted by Gm(n) as follows:

G
(m)
k-CYC = {Gm(n)}n∈N+ .

• The group ensemble for k-LIST will defined using any infinite sequence of abelian groups of
order m(n) denoted by Gm(n) as follows:

G
(m)
k-LIST = {Gm(n)}n∈N+ .

We choose to be specific for k-SUM and k-PROD to work over the integers modulo m(n) whereas
we are generic for k-CYC and consider arbitrary cyclic groups of size m(n) with an identity element
1. We do this to allow readers to easily infer whether we are working with k-SUM, k-PROD or
k-CYC throughout the work. We choose more generality of k-CYC as we will consider relations with
discrete logarithms and Diffie-Hellman problems where we wish to cover all possible types of cyclic
groups used currently in practice such as NIST P-256, Curve25519 and DSA. For convenience, we
will drop the function notation and consider the group size by m in many places.

Finally, we note our definition of group ensembles is general enough that it can be extended to
other problems such as k-XOR where we would define the group ensembles as Galois fields of size
2m(n) where m(n) is the number of bits.

k-LIST Search Problems. In our work, we will consider the average-case variants of k-SUM,
k-PROD and k-CYC. Therefore, we will only consider inputs that are drawn from the distribution
equipped with each group ensemble (and not define a worst-case version of these problems). For
the input distribution, we will consider the case where the inputs are k lists, L1, . . . , Lk each of size

n and where each element is drawn uniformly at random G(n) that we denote by D(n)
U .

We start with the search version of the problems where the goal is to output a sequence of k
indices, y1, . . . , yn ∈ [n]k corresponding to a solution. Suppose the group operation is denoted by
⊙ and the identity of the group is denoted 1. Then, a solution means that L[y1]⊙ . . .⊙ L[yk] = 1.

Definition 2.2 (k-LISTG Search Problem). For k ≥ 0 and group ensemble (G,⊙), an algorithm
A correctly solves the k-LISTG search problem if it outputs the following in each corresponding
scenario:

• If there exists a solution (y1, . . . , yk) ∈ [n]k such that L1[y1]⊙ . . .⊙Lk[yk] = 1, then A outputs
any such solution.

• If no solution exists, A outputs ⊥.

We say algorithm A has error probability γ(n) if

Pr[A(L1, . . . , Lk) is correct] ≥ 1− γ(n)

where the randomness is over the internal coin tosses of A and random choice of L1, . . . , Lk from

D(n)
U .

For convenience and simplicity, we will consider error probability as γ dropping the function
notation in many places.

Naturally, we can now define the k-SUM, k-PROD and k-CYC problems where we plug in the
correct group ensemble along with the group identity.

12

Definition 2.3 (k-SUM Search Problem). The k-SUMm search problem is the k-LIST search prob-

lem with group ensemble (G
(m)
k-SUM,+).

Definition 2.4 (k-PROD Search Problem). The k-PRODm search problem is the k-LIST search

problem with group ensemble (G
(m)
k-PROD, ·).

Definition 2.5 (k-CYC Search Problem). The k-CYCG search problem is the k-LIST search problem
with cyclic group ensemble (G, ·).

We will omit the superscript m and G when it is obvious from context.

Existence of Solutions. Before we present our conjectures, we start by discussing the probability
that there exists a solution. Note, one could consider a trivial algorithm to solve the search problem
if the probability that there exists a solution is very small. The naive algorithm simply outputs ⊥
and is incorrect with the same probability that a solution exists. Therefore, we must pick the group
size m = m(n) carefully to ensure that there exists a solution with some reasonable probability.
We can compute the probability that there exists a solution for either k-SUM and k-CYC. For the
case when nk/2 ≤ m, we show

nk

m
−
(
nk

2

)
m2
≤ Pr[L1, . . . , Lk contains a solution] ≤ nk

m

where the probability is over the random choice of L1, . . . , Lk from the uniform distribution D(n)
U .

When m < nk, we are able to show that

Pr[L1, . . . , Lk contains a solution] ≥ 1− 21−n/m
1/k

where the probability is also over the uniform distribution of L1, . . . , Lk. For the proof of these
bounds please see Appendix B.

We note that prior work [6] considered densities that approximated the number of expected
solutions. For our work, we will only care whether solutions exist with probability larger than the
corresponding target error probability to rule out the trivial algorithm. So, we will only be in error
probability γ < nk/m.

Our Conjectures. We now state our average-case fine-grained conjectures with respect to k-SUM,
k-PROD and k-CYC. In general, we will consider error probabilities 1/poly(n) and group sizes
m = Θ(nk). Note, this implies that solutions will exist with probability Ω(1) meaning that our
choice of group size m and error γ rules out the trivial algorithm of outputting ⊥ is not possible.

Conjecture 3 (AVG-k-SUM Conjecture). For any integer k ≥ 3, group size m = Θ(nk) and con-
stant ϵ > 0, there exists no algorithm that solves the k-SUMm search problem with error 1/poly(n)
in time O(n⌈k/2⌉−ϵ).

Note, we require that m = O(nk) to rule out the trivial algorithm of outputting ⊥. It turns
out that it is also important that m = Ω(nk) due to known faster algorithms. For the case
when m = O(nk−ϵ) for some constant ϵ > 0, there are well-known algorithms [80] that solve the
problem in O(n⌈k/2⌉−ϵ

′
) time for some constant ϵ′ > 0 (see Appendix A). We note there also exists

algorithms to solve the problem in O(n+m logm) time using fast Fourier transforms (see Chapter
30.1 in [28]) even in the worst-case. Note, this runs faster than the conjectured runtime above

13

when m = O(n⌈k/2⌉−ϵ) for any constant ϵ > 0. Therefore, it is critical that we consider large
enough modulus m = Ω(nk). As a note, it is possible to expand our conjecture to encompass both
slightly smaller and larger moduli. For example, we could consider nk−o(1) ≤ m ≤ nk+o(1). To our
knowledge, there are no algorithms beating our conjecture for m = nk−o(1). For m = nk+o(1), we
note that a solution exists with probability 1/no(1) > 1/poly(n) meaning the trivial algorithm of
outputting ⊥ is ruled out. To be passive, we only consider modulus of size m = Θ(nk).

Conjecture 4 (AVG-k-PROD Conjecture). For any integer k ≥ 3, group size m = Θ(nk) and
constant ϵ > 0, there exists no algorithm that solves the k-PRODm search problem with error
1/poly(n) in time O(n⌈k/2⌉−ϵ).

Conjecture 5 (AVG-k-CYC Conjecture). For any integer k ≥ 3, cyclic group ensemble G with size
m = Θ(nk) and constant ϵ > 0, there exists no algorithm that solves the k-CYCG search problem
with error 1/poly(n) in time O(n⌈k/2⌉−ϵ).

Interestingly, unlike the k-SUM problem, we are unaware of any faster algorithms for k-PROD
or k-CYC in the random setting where the group size m is small such as m = O(nk−ϵ) for some
constant ϵ > 0. In particular, the faster algorithms for k-SUM do not seem to directly translate
k-CYC (see Appendix A for more details). Nevertheless, we use the same choice of m = Θ(nk) to
allow easily working with both k-SUM and k-CYC together.

Decision Variants. We can also consider the decision version of the problems where it simply
suffices for a correct algorithm A to detect whether a solution or not and output the corresponding
bit. Note, the decision problem is easier than the search problem, but there are prior reductions
(such as [6]) that show the problems are equivalent in the sparse regime when m ≥ c · nk for some
constant c > 1. In our work, we will mostly concern ourselves with the search problems. However,
these reductions mean our results also apply to the decision variants. We formally present the
decision problems in Appendix C as well as their relations with the search problem.

Planted Variants. We can also consider the search problem over a modified distribution where
a random solution is planted to ensure a solution always exists (regardless of the choice of m). In

more detail, the k lists are first drawn from D(n)
U . Afterwards, a uniformly random set of indices

y1, . . . , yk ∈ [n]k are chosen and the entry L1[y1] is modified to ensure that y1, . . . , yk is a solution
such that L1[y1]⊙ . . .⊙Lk[yk] = 1. In this case, it only makes sense to consider the search problem
as the decision problem is trivial. Once again, there are known relations between the search and
planted search variants of k-SUM, k-PROD and k-CYC presented in [6] in the dense setting where
m ≤ c·nk for some constant c < 1. We present formal definitions and their relations in Appendix D.

Single List Variants. In our problems, we consider the inputs to be k lists each of size n.
However, we note that many prior works have considered a slightly different variant where the
input is a single list of size n. The goal remains the same with the exception that all k elements
of the solution come from the same list now. These are known to be equivalent in the worst-case,
but it is unclear if they are equivalent in the average-case setting that we focus on in our work. In
Appendix E, we show that any algorithm for the k list variant may be used to solve the single list
variant in the sparse regime when m ≥ c ·nk for some constant c > 1. Even though this is only one
direction, it allows us to relate some of our results to the single list variant as well.

14

2.3 k-SUM, k-PROD and k-CYC with Preprocessing

Next, we consider variants in the indexing or preprocessing setting that are more akin to data
structure problems. In these problems, the lists are given ahead of time and may be preprocessed
by (computationally unbounded) algorithms into a data structure of bounded size S. Afterwards,
the data structure is given some queries that wish to be answered quickly in time T .

The indexing problems for k-SUM were first studied by Demaine and Vadhan [38] with several
follow-ups [49, 51, 62]. In this case, the input consists of k−1 lists of size n that may be preprocessed
into some data structure DS. Afterwards, a query algorithm receives a target t and data structure
DS with the goal of finding k− 1 entries one from each list that sum to the target t. We generalize
this to arbitrary groups as follows:

Definition 2.6 (k-LIST Indexing Problem). For k ≥ 0 and group ensemble (G,⊙), a tuple of
algorithms (P,Q) solves the k-LIST indexing problem if the preprocessing algorithm P (L1, . . . , Lk)
outputs some data structure DS such that the query algorithm Q outputs the following in each
corresponding scenario:

• Given target t ∈ G, Q(t,DS) outputs (y1, . . . , yk−1) ∈ [n]k−1 satisfying the equation L1[y1]⊙
. . .⊙ Lk−1[yk−1] = t if such a solution exists.

• Given target t ∈ G, Q(t,DS) outputs ⊥ if no solution exists.

We say algorithm A has error probability γ(n) if

Pr[Q(t,DS) is correct | DS← P (L1, . . . , Lk−1)] ≥ 1− γ(n)

where the randomness is over the internal coin tosses of P and Q, the random choice of L1, . . . , Lk−1
from D(n)

U and uniformly random t.

Once again, we can now define k-SUM, k-PROD and k-CYC indexing search problems by plug-
ging in the according group ensemble.

Definition 2.7 (k-SUM-Index Problem). The k-SUM-Indexm problem is the k-LIST indexing prob-

lem with group ensemble (G
(m)
k-SUM,+).

Definition 2.8 (k-PROD-Index Problem). The k-PROD-Indexm problem is the k-LIST indexing

problem with group ensemble (G
(m)
k-PROD, ·).

Definition 2.9 (k-CYC-Index Problem). The k-CYC-IndexG problem is the k-LIST indexing problem
with cyclic group ensemble G.

Note, there are a couple straightforward algorithms. The first completely foregoes any non-
trivial usage of the space S and simply stores the k − 1 lists using S = O(nk) = O(n) space
since we suppose k is constant. Afterwards, we run the trivial algorithm to solve k-SUM that
runs in time T = O(n⌈(k−1)/2⌉). On the other extreme, one could use the space to store all
possible k-tuples sorted using space S = O(nk−1) and answer queries in T = Õ(1) time. Lastly,
prior works [51, 62] have shown algorithms obtaining algorithms with space S and query time T
satisfying S3T = Õ(n3(k−1)). For any δ > 0, this means there exists algorithms S = Õ(nk−1−δ)
space and query time T = Õ(n3δ). One can naturally conjecture that no algorithm can beat either
of the above trivial algorithms. In our work, we will be interested in the average-case variant with
k − 1 lists each consisting of n random elements first studied in [51]. We present our k-SUM-Index
conjecture below:

15

Conjecture 6 (AVG-k-SUM-Index Conjecture). For every constant ϵ > 0, constant k ≥ 3 and group
size m = Θ(nk), there exists no algorithm that solves the k-SUM-Indexm problem in space S and
time T satisfying ST 2 = O(nk−1−ϵ) with error probability 1/poly(n).

We note our above conjecture is weaker than the 3SUM-Indexing conjectures from prior works [38]
where it is assumed that no algorithm obtains ST = Ω(n2) as we consider a quadratic relation with
the running time T . For example, our conjecture states that there exists no algorithm with time
T = O(n1/2−ϵ) when using linear space while prior works have conjectured that there exists no lin-
ear space algorithm with time T = O(n1−ϵ). Indeed, our conjecture is only tight with the algorithm
that utilizes S = O(nk−1) space and T = Õ(1) time. The algorithm on the other end using linear
space of S = O(n) and time T = O(n⌈(k−1)/2⌉) would result in ST 2 = O(nk) for odd k. For even
k, it would be ST 2 = O(nk+1). In fact, one could also present another conjecture for this setting
where for any linear space algorithm with S = O(n) would require time T = O(n⌈(k−1)/2⌉). Prior
works have done the opposite where the conjecture that algorithms with fixed time T = Õ(1) must
use space S = Ω(n2) such as [38, 49].

Similar to our prior choices of m, we require sufficiently large m = Ω(nk−1) as, otherwise, one
can run faster algorithms for k-SUM [80] to solve the problem in time T = O(n(k−1)/2−ϵ) for some
ϵ > 0 and using space S = O(n) that would contradict the conjecture.

Naturally, we can also present a conjecture for k-PROD-Index and k-CYC-Index. We use the
same parameters as our k-SUM-Index as the trivial algorithms are essentially the same in either
case.

Conjecture 7 (AVG-k-PROD-Index Conjecture). For every constant ϵ > 0, constant k ≥ 3 and
group size m = Θ(nk), there exists no algorithm that solves the k-PROD-Indexm problem in space
S and time T satisfying ST 2 = O(nk−1−ϵ) with error 1/poly(n).

Conjecture 8 (AVG-k-CYC-Index Conjecture). For every constant ϵ > 0, constant k ≥ 3 and cyclic
group ensemble G with size m = Θ(nk), there exists no algorithm that solves the k-CYC-IndexG

problem in space S and time T satisfying ST 2 = O(nk−1−ϵ) with error 1/poly(n).

2.4 Zero-k-Clique

In the Zero-k-Clique problem, informally, we are given a complete k-partite graph in which each
edge has a weight, and the goal is to find a k-clique such that the weights of all edges in the clique
sum to 0, or declare that no such clique exists.

In our work, we will consider the average-case variants of Zero-k-Clique problem. For the input
distribution, we will consider the complete k-partite graph where every edge weight is uniformly
sampled from the additive group of integers modulo m denoted by Zm.

Definition 2.10 (Zero-k-Clique search problem). For k > 0, an algorithm A correctly solves the
Zero-k-Cliquem problem if, on input of complete k-partite graph G, it outputs the following in each
corresponding scenario:

• If there exists a clique of size k whose edge weights sum to zero, A outputs such a zero clique.

• If no such solution exists, A outputs ⊥.
We say algorithm A has error probability γ(n) if

Pr[A(G) is correct] ≥ 1− γ(n)

over the internal coin tosses of A and random choice of G.

16

2.5 Discrete Logarithms

In our work, we will explore the relations between various fine-grained conjectures and discrete
logarithm and other assumptions used in cryptography. Given a description of cyclic group G
along with a generator g, the goal is to take an input of the form y = gx and computing x.
The assumption that computing discrete logarithms is not computationally tractable lies at the
foundation of many cryptography primitives including key exchange [39], public-key encryption [43,
31] and signatures [77, 55].

Definition 2.11 (DLog Problem). For group ensemble (G, ·), an algorithm A solves the DLogG

problem if, on input n and y ∈ G(n), it outputs x such that y = gx. An algorithm A has error
probability γ(m) if

Pr[y = gx | x← A(n, gx)] ≥ 1− γ(m)

where the randomness is over the choice of y and internal coin tosses of A.

Proving that computing discrete logarithms is computationally intractable remains elusive in
general models. However, there is significant work in the generic group model [72, 79, 68] where
algorithms can only use group operations as a blackbox. In some sense, algorithms in the generic
group model are generic since they should apply to every group regardless of their underlying struc-
ture. More formally, the generic group model uses a random injective function σ mapping integers
in Zm representing the set of possible discrete logarithm answers to a set of labels L representing
group elements in G with generator g. The group G can be described as {σ(0), σ(1), . . . , σ(n− 1)}
that is equivalent to {1, g, . . . , gn−1}.

In the generic group model, prior works have had success in proving lower bounds on the effi-
ciency of algorithms computing discrete logarithms. Shoup [79] proved that any generic algorithm
for solving discrete logarithms requires Ω(m1/2) time for cyclic groups G of order m. While the
generic group model seems restrictive, it remains important as the best algorithms for popular el-
liptic curve groups used in practice are generic group model algorithms [45, 60]. Using the generic
group as guidance, we can construct conjectures similar to fine-grained complexity with respect to
discrete logarithms as follows:

Definition 2.12 (DLog Conjecture). There exists an ensemble of cyclic groups (G, ·) of order
m = poly(n) such that, for every constant ϵ > 0, there exists no algorithm that solves the DLogG

problem in time O(m1/2−ϵ) with error 1/poly(m).

Similar to the indexing versions of k-SUM and k-CYC, we can consider the discrete logarith-
mic with preprocessing algorithm. In particular, a preprocessing algorithm can construct a data
structure of size S for a specific group G and generator g. Afterwards, a query algorithm is given a
target y = gx with the goal of outputting x efficiently. In the generic group model, Corrigan-Gibbs
and Kogan [30] showed that no generic algorithms with S space and T time can achieve better
than ST 2 = Ω(m) for groups of order m and constant error probability. Once again, the best
known algorithms for popular groups used in practice are generic algorithms matching this bound
(see [69, 64, 19]). Therefore, we can make a similar conjecture about the preprocessing case.

Definition 2.13 (DLog-Preprocess Conjecture). There exists an ensemble of cyclic groups (G, ·) of
order m = poly(n) such that, for every constant ϵ > 0, there exists no algorithm that solves the
DLog-PreprocessG problem in space S and time T satisfying ST 2 = O(m1−ϵ) with error probability
1/poly(m).

17

Fixed vs. Random Generator. As a note, we consider the problem where the generator is fixed
and, essentially, part of the cyclic group’s description. Prior works have also studied the setting
where the generator is randomly selected and also given as input. The fixed and random generator
problems are known to be equivalent for the constant error probability case in the generic group
model. However, prior work [14] showed that algorithms for the random generator problem are
more inefficient in the sub-constant error probability. It turns out all our results and reductions are
agnostic to this difference and may be proved in either setting. For example, it is easy to extend
our result to the random generation setting if one wishes to consider the sub-constant error.

3 Algorithms when One-Way Functions Don’t Exist

In this section, we discuss the algorithmic consequences for fine-grained problems when one-way
functions do not exist. Our main goal is to prove Theorem 1.2 and Theorem 1.3.

Lemma from Universal One-Way Functions. We call a function f length-regular if for any
two inputs x1, x2 such that |x1| = |x2|, it is also true that |f(x1)| = |f(x2)|. We call a length-
regular function length-increasing if for any two inputs x1, x2 such that |x1| < |x2|, it is also true
that |f(x1)| < |f(x2)|. Note that it thus holds that |x| ≤ |f(x)| for any x.

We will use the following lemma that is proved via universal one-way functions. Basically, it
states that, if there is no one-way function, then there exists a universal constant c such that every
nℓ-time function can be inverted in nℓc time for infinitely many n.

Lemma 3.1. If one-way functions do not exist, then for any constant d > 0, there exists a constant
c > 2, such that for any constant ℓ ≥ 2 and any nℓ-time (length-increasing) Turing machine M
where n is the input length, there exists a (possibly randomized) algorithm A such that for infinitely
many n,

Pr
x←U({0,1}n)

[M(A(1n,M(x))) = M(x)] ≥ 1− 22|M |

nℓd

where |M | is the length of the code of M , and the running time of A(1n,M(x)) is nℓc for x ∈ {0, 1}n.

3.1 Planting algorithms and general statements

In this section, we define planting algorithms for search problems. Roughly speaking, a planting
algorithm efficiently generates an instance of the problem with a solution from some randomness.
Moreover, we can efficiently find a solution using the randomness.

Definition 3.2 (Planting algorithm for search problems). Let P (1n) be a search problem where
n is a size parameter such that the length of instances is a strictly increasing polynomial of n to
be denoted by N(n). A pair of (deterministically) polynomial-time computable functions (f, g) is
called a planting algorithm for P if the following hold:

• There is a function NI(n) that is a strictly increasing polynomial of n. We call NI the input
length of (f, g).

• f takes x ∈ {0, 1}NI(n) as input and outputs an instance y ∈ {0, 1}N(n) of P (1n) that has a
solution.

• g takes x ∈ {0, 1}NI(n) as input and outputs a solution to f(x).

18

We call a planting algorithm (f, g) T (·)-time if both f(x) and g(x) can be computable in time
T (|x|).

We also define properties for planting algorithms, which will be helpful when we analyse the
failure probability for k-LISTG over uniform input distribution.

Definition 3.3. Let P (1n) be a search problem and (f, g) be a planting algorithm for P with input
length NI .

• (f, g) is surjective if for any instance y ∈ {0, 1}N(n) of P (1n) that has a solution, there exists
x ∈ {0, 1}NI(n) such that f(x) = y.

• (f, g) is β(·)-almost-expanding if for all n that NI(n) ≤ N(n) + β(n).

• (f, g) is β(·)-almost-good if it is β(·)-almost-expanding and surjective.

Below we show that, for a generic problem P , if there exists a almost-good planting algorithm
that runs in a fixed polynomial time, then there is an algorithm that solves P on average over
uniform distribution in a fixed polynomial time with inverse polynomial failure probability.

Theorem 3.4. If one-way functions do not exist, then for any constant d > 0, there exists a
constant c > 2, such that for any search problem P (1n) of which n is a size parameter and N(n) ≥ n
is the length of a instance, for any constant ℓ ≥ 2 and any function β(·), if there exists a β(·)-
almost-good (·)ℓ-time planting algorithm (f, g) for P with input length NI(n), then there is an
O((NI(n))

ℓc)-time algorithm A that solves P over U({0, 1}N(n)) for infinitely many n with failure
probability at most 22|f |+β(n)/(NI(n))

ℓd, where |f | is the code length of the (·)ℓ-time algorithm for
f .

Proof. Suppose f is a function defined only over input length NI(n) where NI is a polynomial, we
use padding to extend f to a function f ′ over every input length as follows: for every input length
N ′I such that NI(n) ≤ N ′I ≤ NI(n+ 1), for any input z ∈ {0, 1}n′

, let z = x∥z′ where |x| = NI(n)
and define f ′(z) = f(x)∥z′.

By Lemma 3.1, assuming one-way function does not exist, for any constant d > 0, there exists
a constant c > 2 such that for any constant ℓ ≥ 2, if (f, g) is a (·)ℓ-time planting algorithm for P ,
let f ′ be defined as in the previous paragraph, then there exists an (N ′I)

ℓc-time algorithm B′ such
that for infinitely many N ′I ,

Pr
x←U({0,1}N

′
I)

[f ′(B′(1N
′
I , f ′(x))) = f ′(x)] ≥ 1− 22|f |

(N ′I)
ℓd
,

which implies that there exists an O((NI(n))
ℓc)-time algorithm B such that for infinitely many n,

Pr
x←U({0,1}NI (n))

[f(B(1NI(n), f(x))) = f(x)] ≥ 1− 22|f |

(NI(n))ℓd
.

Let A be the following algorithm:

1. On input y, find the unique n such that N(n) = |y|.

2. Run B(1NI(n), y), and suppose the output is x′.

19

3. If f(x′) = y, output g(x′), otherwise output ⊥, indicating there is no solution.

Since the running time of B is (NI(n))
ℓc, the running time of A is O((NI(n))

ℓc).
Note that by definition of planting algorithms, when y does not have a solution, y is not in the

image of f , so f(x′) ̸= y and the output of A(y) is always correct in this case. We thus have

Pr
y←U({0,1}N(n))

[The output of A(y) is not correct]

=
1

2N(n)

∑
y∈{0,1}N(n)

Pr[The output of A(y) is not correct]

=
1

2N(n)

∑
y∈f({0,1}NI (n))

Pr[The output of A(y) is not correct]

≤ 1

2N(n)

∑
y∈f({0,1}NI (n))

Pr[f(B(1NI(n), y)) ̸= y] (By definition g(x′) outputs a solution to y if f(x′) = y)

≤ 1

2N(n)

∑
x∈{0,1}NI (n)

Pr[f(B(1NI(n), f(x))) ̸= f(x)] (Since (f, g) is surjective)

=
2NI(n)

2N(n)
Pr

x←U({0,1}NI (n))
[f(B(1NI(n), f(x))) ̸= f(x)]

≤ 2NI(n)

2N(n)
· 22|f |

(NI(n))ℓd

≤ 22|f |+β(n)

(NI(n))ℓd
(Since (f, g) is expanding, NI(n) ≤ N(n) + β(n))

for infinitely many n.

We also show a similar result for the planted distribution instead of the uniform distribution.

Theorem 3.5. If one-way functions do not exist, then for any constant d > 0, there exists a
constant c > 2, such that for any search problem P (1n) of which n is a size parameter and N(n) ≥ n
is the length of a instance, for any constant ℓ ≥ 2, if there exists a (·)ℓ-time planting algorithm
(f, g) for P with input length NI(n), then there is an O((NI(n))

ℓc)-time algorithm A that solves P
over f(U({0, 1}NI(n))) for infinitely many n with failure probability at most 22|f |/(NI(n))

ℓd, where
|f | is the code length of the (·)ℓ-time algorithm for f .

Proof. Similar to the proof of Theorem 3.4, we can pad a function f defined only over input length
NI(n) into a function f ′ defined over every input length.

Then by Lemma 3.1, assuming one-way function does not exist, for any constant d > 0, there
exists a constant c > 2 such that for any constant ℓ ≥ 2, if (f, g) is a (·)ℓ-time planting algorithm
for P , then there exists an (NI(n))

ℓc-time algorithm B such that for infinitely many n,

Pr
x←U({0,1}NI (n))

[f(B(1NI(n), f(x))) = f(x)] ≥ 1− 22|f |

(NI(n))ℓd
.

Let A be the following algorithm:

20

1. On input y, find the unique n such that N(n) = |y|.

2. Run B(1NI(n), y), and suppose the output is x′.

3. If f(x′) = y, output g(x′), otherwise output ⊥, indicating there is no solution.

Since the running time of B is (NI(n))
ℓc, the running time of A is O((NI(n))

ℓc).
We have

Pr
y←f(U({0,1}NI (n)))

[The output of A(y) is not correct]

= Pr
x←U({0,1}NI (n))

[The output of A(f(x)) is not correct]

≤ Pr
x←U({0,1}NI (n))

[f(B(1NI(n), f(x))) = f(x)] (By definition g(x′) outputs a solution to y if f(x′) = y)

≤ 22|f |

(NI(n))ℓd

for infinitely many n.

3.2 Results for k-LISTG

In this subsection, we will always consider the k-LISTG problem where the group size m(n) := |G(n)|
strictly increases with n.

We first show that there is a quadratic-time 2k log2 log2 n-almost-good planting algorithm for
search k-LISTG.

Example 3.6 (Planting algorithm for search k-LISTG). We define a function fk,m as follows:

1. Parse the input as (y1, y2, . . . , yk, L1, L2, . . . , Lk−1, Lk[1 : yk − 1], Lk[yk + 1 : n]), where
y1, . . . , yk ∈ [n], L1, . . . , Lk−1 ∈ (G(m))n, Lk[1 : yk − 1] ∈ (G(m))yk−1, and Lk[yk + 1 : n] ∈
(G(m))n−yk−1.

2. Let Lk[yk] = (L1[y1]⊙ L2[y2]⊙ · · · ⊙ Lk−1[yk−1])
−1, and let Lk be Lk[1 : yk − 1], Lk[yk] and

Lk[yk + 1, n] concatenated.

3. Output (the encoding of) (L1, L2, . . . , Lk).

We also define a function gk,m as follows:

1. Parse the input as (y1, y2, . . . , yk, L1, L2, . . . , Lk−1, Lk[1 : yk − 1], Lk[yk + 1 : n]), where
y1, . . . , yk ∈ [n], L1, . . . , Lk−1 ∈ (G(m))n, Lk[1 : yk − 1] ∈ (G(m))yk−1, and Lk[yk + 1 : n] ∈
(G(m))n−yk−1.

2. Output (y1, y2, . . . , yk).

Note that fk,m(y1, y2, . . . , yk, L1, L2, . . . , Lk−1, Lk[1 : yk − 1], Lk[yk + 1 : n]) is always an instance
of k-LISTG that has a solution (y1, . . . , yk), which is also gk,m(y1, y2, . . . , yk, L1, L2, . . . , Lk−1, Lk[1 :
yk − 1], Lk[yk + 1 : n]). Clearly the running time of fk,m and gk,m are quasilinear in the input
length, so (fk,m, gk,m) is a (·)2-time planting algorithm.

21

Moreover, for any k-LISTG instance (L1, L2, . . . , Lk) that has a solution, suppose (y1, y2, . . . , yk)
is a solution. Let Lk[1 : yk − 1] be the first yk − 1 numbers in the list Lk and Lk[yk + 1 : n] be the
last n−yk+1 numbers in Lk, and then fk,m(y1, y2, . . . , yk, L1, L2, . . . , Lk−1, Lk[1 : yk−1], Lk[yk+1 :
n]) = (L1, L2, . . . , Lk). Therefore, (fk,m, gk,m) is surjective.

The input length of fk,m is k log2 n+((k−1)n+n−1) log2m, and its output length is kn log2m,
so (fk,m, gk,m) is (2k log2 log2 n)-almost-expanding if and only if k log2 n ≤ 2k log2 log2 n + log2m,
i.e. m ≥ nk/(log2 n)

2k.

Search k-LISTG on uniform distribution. We first show that when one-way functions do not
exist and the group size m ≥ nk/(log2 n)

2k, then k-LISTG can be solved in a fixed polynomial time
with inverse polynomial failure probability.

Corollary 3.7. If one-way functions do not exist, then for any constant d > 0, there exists a
constant c > 4 such that the following holds for all k. Let G = {G(m)} be a group ensemble
such that m(n) ≥ nk/(log2 n)

2k for sufficiently large n. Then, there exists an O((n logm)c)-time
algorithm A that solves search k-LISTG over uniform distribution for infinitely many n with failure
probability O((log2 n)

2k/(n logm)d).

Proof. Apply Theorem 3.4 with the good quasi-linear-time planting algorithm (fk,m, gk,m) in Ex-
ample 3.6. Note that for fixed function m, the code length of fk,m is log2 k +O(1).

We also state the contrapositive of Corollary 3.7 here.

Corollary 3.8 (Contrapositive of Corollary 3.7). If there exists a constant d > 0, such that for
any constant c > 4, there exists a k such that there is no O((n logm)c)-time algorithm that solves
search k-LISTG over uniform distribution with failure probability O((log2 n)

2k/(n logm)d) where
G = {G(m)} is a group ensemble such that m(n) ≥ nk/(log2 n)

2k for sufficiently large n, then
one-way functions exist.

We also show a result similar to above when the group size m ≤ nk/(log2 n)
2k, by using a

average-case fine-grained reduction stated as below.

Lemma 3.9. There is an oracle algorithm A satisfying the following: there exists a constant n0 > 0
such that for all k, for all n ≥ n0, for all (2k)k ≤ m ≤ nk/(log2 n)

2k, if there exists an (possibly
randomized) algorithm B solving search k-LISTG for size ⌊m1/k⌋ over a group G(m) of size m on
the uniform distribution with failure probability at most 1/8, then A solves search k-LISTG for size
n over G(m) on uniform distribution in Õ(n logm) time making (log2 n)

2 oracle calls, with failure
probability at most 1/nlogn if each oracle query of A is answered using a call to B with the query
as the input and the output as the answer.

Proof. Let n′ = ⌊m1/k⌋ and s = (log2 n)
2, then n′ ≤ n/s. The oracle algorithm A works as follows:

1. Parse the input as (L1, L2, . . . , Lk) where L1, . . . , Lk ∈ (G(m))n.

2. For j ∈ [s], let L
(j)
i := Li[(j − 1)n′ + 1 : jn′], which is the sublist of Li containing the

((j − 1)n′ + 1)-th to (jn′)-th elements.

22

3. For every j ∈ [s], make the query Qj := (L
(j)
1 , L

(j)
2 , . . . , L

(j)
k) to the oracle. If there exists

j ∈ [s] such that the oracle response is (y1, y2, . . . , yk) ∈ [n′]k such that

k⊙
i=1

Li[(j − 1)n′ + yi] =
k⊙

i=1

L
(j)
i [yi] = 0,

then output ((j − 1)n′ + y1, (j − 1)n′ + y2, . . . , (j − 1)n′ + yk). If there is no such j satisfying
the above, then output ⊥.

Note that on uniform input distribution, the oracle queries Qj are independent and uniform. For
a fixed j, by Lemma B.1, the probability that Qj as an instance of search k-LISTG of size n′ over
G(m) has a solution is at least

(n′)k

m
−
(
(n′)k

2

)
m2

≥ m2 − (m− (n′)k)2

2m2
≥ 1

2
−

(
1−

(
n′

n′ + 1

)k
)2

≥ 1

4
.

Since the distribution of Qj is uniform, the oracle response is the correct solution to search k-LISTG

of size n′ over G(m) with probability at least 7/8. Therefore, algorithm A finds a solution with
probability at least 1− (1/4− 1/8)s = 1/nlogn on the uniform distribution, because Qj , j ∈ [s] are
independent.

On the other hand, when the input does not have a solution, it is easy to see that for any j ∈ [s],
Qj does not have a solution, so in this case A outputs ⊥, which is correct.

Therefore, A solves search k-LISTG of size n over G(m) on uniform distribution with failure
probability at most 1/nlogn. The running time of A is Õ(n logm), with s oracle queries.

Using the above reduction, we have:

Theorem 3.10. If one-way functions do not exist, then for any constant d > 0, there exists a
constant c > 4 such that the following holds for all k. Let G = {G(m)} be a group ensemble such
that m(n) ≤ nk/(log2 n)

2k and (m(n))1/k ≤ (m(n− 1))1/k + 1 for sufficiently large n. Then, there
exists an Õ(mc/k +n logm)-time algorithm A that solves search k-LISTG over uniform distribution
for infinitely many n with failure probability at most 1/nlogn.

Proof. Define n′ : Z>0 → Z>0, n 7→ ⌊(m(n))1/k⌋, then we have for all k, n′(n) ≤ n/(log2 n)
2,

n′(n) ≤ n′(n− 1) + 1, and n′(n) ≥ ⌊n1/k⌋.
If one-way functions do not exist, then by Corollary 3.7, for any constant d > 0, there exists

a constant c > 0 such that for all k, there exists an O((n′ logm)c)-time algorithm B that solves
k-LISTG of size n′ over G(m) over uniform distribution for infinitely many n with failure probability
O((log2 n

′)2k/(n′ logm)d) ≤ 1/8 (note that we get infinitely many n′ from Corollary 3.7, but it
implies infinitely many n since n′(n) ≤ n′(n− 1) + 1).

Therefore by Lemma 3.9, for all k, we have an algorithm A′ that runs in Õ((n logm)) time,
makes (log2 n)

2 oracle calls that is answered with B, and solves k-LISTG of size n over G(m) on
uniform distribution with failure probability at most 1/nlogn for infinitely many n. We replace the
oracle calls to B with a simulation of B, and thus for all k we get an algorithm that solves search
k-LISTG of size n over G(m) over uniform distribution for infinitely many n with failure probability
at most 1/nlogn, and has a running time

Õ((m1/k · logm)c · (log2 n)2 + n logm) = Õ(mc/k + n logm).

23

Search k-LISTG on the planted distribution. In the planted distribution, we first uniformly
sample an instance and then “plant” a random solution into it.

Corollary 3.11. If one-way functions do not exist, then for any constant d > 0, there exists a
constant c > 4 such that the following holds. Let m be a function. Let (fk,m, gk,m) be the planting
algorithm from Example 3.6. Then, for all k there exists an O((kn logm)c)-time algorithm A that
solves search k-LISTG over the planted distribution (i.e. fk,m(U(Zm × [n]k ×Zkn−1

m))) for infinitely
many n with failure probability O(k2/(kn logm)d).

Proof. Apply Theorem 3.5 with the quasi-linear-time planting algorithm (fk,m, gk,m) in Exam-
ple 3.6. For fixed function m, the code length of fk,m is log k +O(1).

Search k-LISTG on uniform distribution over instances with a solution.

Theorem 3.12. If one-way functions do not exist, then for any constant d > 0, there exists a
constant c > 4 such that the following holds for all k. Let G = {G(m)} be a group ensemble
such that m(n) ≥ nk/(log2 n)

2k. Then, for all k there exists an O((n logm)c)-time algorithm A
that solves search k-LISTG over the uniform distribution over all instances that have a solution for
infinitely many n with failure probability O((log n)2k/(n logm)d).

Proof. Let (fk,m, gk,m) be the planting algorithm for search k-LISTG from Example 3.6. Let A
be the algorithm in Corollary 3.11 that solves search k-LISTG over the distribution fk,m(U([n]k ×
(G(m))kn−1)) for infinitely many n with failure probability O(1/(n logm)2d).

Let S be the set of k-LISTG instances that have a solution, then the support of fk,m(U([n]k ×
(G(m))kn−1)) is S since (fk,m, gk,m) is surjective. Therefore, for any y ∈ S,

Pr
x←fk,m(U([n]k×(G(m))kn−1))

[x = y] ≥ 1

nkmkn−1 .

For a fixed n, if m ≥ e−1/2nk, then by Lemma B.1,

|S| ≥ mkn

(
nk

m
−
(
nk

2

)
m2

)
= nkmkn−1 · 2m+ 1− nk

2m
≥ nkmkn−1

6
.

If m ≤ e−1/2nk, then by Lemma B.2,

|S| ≥ mkn

(
1− 1

2n/m
1/k−1

)
≥ nkmkn−1 · m

nk
· (1− 21−e

1/(2k)
) ≥ nkmkn−1

(3k + 1)(log2 n)
2k

since m ≥ nk/(log2 n)
2k.

24

We thus have, for infinitely many n,

Pr
x←U(S)

[A(x) is not a solution to x]

=
∑
y∈S

Pr[A(x) is not a solution to x | x = y] Pr
x←U(S)

[x = y]

≤ nkmkn−1

|S|
∑
y∈S

Pr[A(x) is not a solution to x | x = y] Pr
x←fk,m(U([n]k×(G(m))kn−1))

[x = y]

=
nkmkn−1

|S|
Pr

x←fk,m(U([n]k×(G(m))kn−1))
[A(x) is not a solution to x]

≤ (3k + 1)(log2 n)
2k ·O(1/(n logm)2d)

≤ O(1/(n logm)d).

Theorem 3.13. If one-way functions do not exist, then for any constant d > 0, there exists a
constant c > 4 such that the following holds for all k. Let G = {G(m)} be a group ensemble such
that m(n) ≤ nk/(log2 n)

2k and (m(n))1/k ≤ (m(n − 1))1/k + 1 for sufficiently large n. Then,
there exists an Õ(mc/k + n logm)-time algorithm A that solves search k-LISTG over the uniform
distribution over instances with a solution for infinitely many n with failure probability 1/nlogn.

Proof. By Lemma B.2, when sampling from the uniform distribution over all instances, the proba-
bility that the instance has a solution is at least 1−1/nlogn ≥ 1/2. So the statement above directly
follows from Theorem 3.10, as the failure probability here is at most twice the failure probability
in Theorem 3.10.

Search k-LISTG on the uniform distribution over all instances with exactly one solution.
We also show the following, as the uniform distribution over solutions with exactly one solution is
what [63] used.

Theorem 3.14. If one-way functions do not exist, then for any constant d > 0, there exists a
constant c > 4 such that the following holds for all k. Let G = {G(m)} be a group ensemble such
that m(n) ≥ nk. Then, there exists an O((n logm)c)-time algorithm A that solves search k-LISTG

over the uniform distribution over all instances that have exactly solution for infinitely many n with
failure probability O(1/(n logm)d).

The proof is almost the same as the case where m ≥ e−1/2nk in the proof of Theorem 3.12,
since the same lower bound in Lemma B.1 also works for instances with exactly one solution. The
proof is thus omitted.

3.3 Results for Zero-k-Clique

We give a planting algorithm for Zero-k-Clique and show Zero-k-Clique results similar to those for
k-LISTG below.

Example 3.15 (Planting algorithm for search Zero-k-Clique). Consider the search problem Zero-k-Clique
of size n over Zm, in which m is regarded as a function of (k, n). Let J := {(i1, i2) | 1 ≤ i1 < i2 ≤
k} × [n]2. We define a function f zkc

k,m as follows:

25

1. Parse the input as ((yi)i∈[k], (e{(i1,j1),(i2,j2)})(i1,i2,j1,j2)∈J\(k−1,k,yk−1,yk)), where yi ∈ [n] and
e{(i1,j1),(i2,j2)} ∈ Zm.

2. Let
e{(k−1,yk−1),(k,yk)} = −

∑
1≤i1<i2≤k,(i1,i2)̸=(k−1,k)

e{(i1,yi1),(i2,yi2)}.

3. Output (the encoding of) (e{(i1,j1),(i2,j2)})(i1,i2,j1,j2)∈J .

We also define a function gzkck,m as follows:

1. Parse the input as ((yi)i∈[k], (e{(i1,j1),(i2,j2)})(i1,i2,j1,j2)∈J\(k−1,k,yk−1,yk)), where yi ∈ [n] and
e{(i1,j1),(i2,j2)} ∈ Zm.

2. Output (yi)i∈[k].

Note that f zkc
k,m((yi)i∈[k], (e{(i1,j1),(i2,j2)})(i1,i2,j1,j2)∈J\(k−1,k,yk−1,yk)) is always an instance of Zero-k-Clique

of size n over Zm that has a solution (y1, . . . , yk) = gzkck,m((yi)i∈[k], (e{(i1,j1),(i2,j2)})(i1,i2,j1,j2)∈J\(k−1,k,yk−1,yk)).

Clearly that the running time of f zkc
k,m and gzkck,m are quasilinear in the input length, so (f zkc

k,m, gzkck,m)

is a (·)2-time planting algorithm.
Moreover, for any instance (e{(i1,j1),(i2,j2)})(i1,i2,j1,j2)∈J of Zero-k-Clique with size n over Zm that

has a solution, suppose (y1, y2, . . . , yk) is a solution. Then, (f zkc
k,m, gzkck,m) is surjective, since

f zkc
k,m((yi)i∈[k], (e{(i1,j1),(i2,j2)})(i1,i2,j1,j2)∈J\(k−1,k,yk−1,yk)) = (e{(i1,j1),(i2,j2)})(i1,i2,j1,j2)∈J .

The input length of f zkc
k,m is k log2 n + (12k(k − 1)n2 − 1) log2m, and its output length is

1
2k(k − 1)n2 log2m, so (f zkc

k,m, gzkck,m) is (2k log2 log2 n)-almost-expanding if and only if k log2 n ≤
2k log2 log2 n+ log2m, i.e. m ≥ nk/(log2 n)

2k.

Corollary 3.16. If one-way functions do not exist, then for any constant d > 0, there exists a
constant c > 4 such that the following holds for all k. Let m : Z>0 → Z>0 be any function on
n strictly increasing with n and computable in poly log(n) time, such that m(n) ≥ nk/(log2 n)

2k

for sufficiently large n. Then, there exists an O((n2 logm)c)-time algorithm A that solves search
Zero-k-Clique for size n over Zm over uniform distribution for infinitely many n with failure prob-
ability O((log2 n)

2k/(n2 logm)d).

Proof. Apply Theorem 3.4 with the good quasi-linear-time planting algorithm (f zkc
k,m, gzkck,m) in Ex-

ample 3.15. Note that for fixed function m, the code length of f zkc
k,m is log2 k +O(1).

We can actually prove a similar result for Zero-k-Clique for every result about k-LISTG stated
in Section 3.2 in similar fashions, and we omit them for brevity.

4 Relations between k-SUM, k-CYC and DLog

In this section, we present relationships between k-SUM, k-CYC and DLog. First, we show that
there is an inherent barrier in being able to prove equivalences between k-SUM and k-CYC. In
particular, proving an equivalence would show the DLog conjecture is false. In other words, this

26

provides a strong barrier in proving reductions from k-CYC to k-SUM. The above results remains
true even if we replace k-CYC with k-PROD. Next, we extend relationships between DLog and
k-CYC to the setting of preprocessing. Finally, we present faster algorithms for k-SUM-Index and
related problems in the average-case setting improving upon previous worst-case algorithms [51, 62].

4.1 Barriers to k-CYC, k-PROD and k-SUM Reductions

First, we note that one direction between k-SUM and k-CYC is quite easy. In particular, it is quite
straightforward to construct an algorithm for k-SUM if one is given an efficient algorithm for k-CYC.
If one is given an instance of k-SUM, it can easily be converted into k-CYC in the following way.
Any element in an input list x ∈ Zm can be mapped to gx ∈ G where g is a generator of the cyclic
group for the k-CYC problem. Since the input to k-SUM is random over Zm, the input to k-CYC
also remains uniformly random G assuming |G| = m. This is due to the fact that exponentiation
in cyclic groups is efficient.

The reverse direction seems more challenging where we wish to solve k-CYC using an algorithm
for k-SUM. If one wanted to extend the original approach, it would require essentially solving
discrete logarithms to essentially map elements of the form gx ∈ G for k-CYC to obtain x ∈ Zm

for k-SUM. In this section, we will show that solving discrete logarithms efficiently is indeed
fundamental to enabling efficient reductions from k-CYC to k-SUM.

To do this, we start with relations between DLog and k-CYC. This was observed previously by
Dai [34] and Wagner [80] that show algorithms for k-CYC may be used to solve the DLog problem
(see Theorem G.1 in Appendix G). In other words, we know that efficient algorithms for k-CYC
would end up leading to faster algorithms for DLog. As a note, while there are faster algorithms
for k-SUM by Wagner [80] in certain dense settings, we are unaware of any such faster algorithms
for k-CYC to date. See Appendix A for more details about Wagner’s k-SUM algorithm [80] and
why it cannot be used for k-CYC.

This is where the barrier for reductions between k-SUM and k-CYC come into play. If an efficient
reduction existed that reduces random input instances of k-CYC to random input instances of
k-SUM, then we could apply the faster algorithms of Wagner [80]. This would immediately translate
into faster algorithms for DLog. The above intuition leads to a barrier for showing equivalences
between k-SUM and k-CYC. It turns out that k-SUM and k-CYC are equivalent if and only if the
DLog conjecture is false. To start, we prove the direction where the equivalence implies that the
DLog conjecture is false.

Theorem 4.1. For any constant ϵ > 0 and k ≥ 4, suppose that there exists an efficient reduction
in time O(nk/2−ϵ) from a random instance of size n for k-CYCG over group ensemble G of order m
to a random instance of size O(n) for k-SUMm over group Zm. Then, the DLog conjecture for G
is false.

Proof. Suppose there exists an algorithm A that maps random instances of k-CYCG to random
instances of k-SUMm in time O(nk/2−ϵ) for some constant ϵ > 0 and k ≥ 4. We use A to show that
we can construct an algorithm A′ that solves the DLog problem on input gx in time O(m1/2−ϵ′)
for some constant ϵ′ > 0. First, we map an instance of DLogG to a random and dense instance
of k-CYCG. For any constant 0 < c < 2ϵ/k, we will create k lists each consisting of n = m(1+c)/k

uniformly random elements from G. For the input gx, we see the expected number of k-tuple
solutions whose product is gx is at least (m(1+c)/k)k/m = m1+c. Therefore, at least one solution
for gx will exist except with 1/poly(n) probability using Lemma B.1.

27

Afterwards, we execute the algorithm A to map the random instance of k-CYCG into a random
instance of k-SUMm with k lists of size O(n). Note, the execution of A takes time O(nk/2−ϵ) =
O(m(k/2−ϵ)·((1+c)/k)) = O(m1/2+c/2−ϵ(1+c)/k). We see that c/2 < ϵ/k < ϵ(1 + c)/k by our choice of
constant c. Therefore, the algorithm A runs in time O(nk/2−ϵ′) for some constant ϵ′ > 0 depending
only on k, c and ϵ. Finally, we run algorithm of Wagner [80] to solve random instances of k-SUMm

in the dense setting when k ≥ 4. In particular, these algorithms are able to run in time O(nk/2−ϵ′′)
for some constant ϵ′′ > 0 assuming nk ≥ m1+δ for some constant δ > 0 (see Theorem A.1 in
Appendix A). In our case, we note that nk = mk(1+c)/k = m1+c where c > 0 is a constant.
Therefore, we can solve the random instance of k-SUM in time O(nk/2−ϵ′′). As a result, we obtain
an algorithm for DLogG in m1/2−Ω(1) time.

As a note, we point out that our reduction from DLog to k-CYC is similar to the one in
Theorem G.1 with one main difference. In the prior reduction, it suffices to map an instance of
DLog over group order m into k lists of size n = Õ(m1/k). In our above reduction, it is critical
that we actually map to a dense instance where n = O(m(1+c)/k) for some constant c > 0 as this
enables us to apply the algorithm of Wagner [80] to obtain faster algorithms.

Next, we prove that the opposite direction is also true. In particular, if the DLog may be
solved efficiently, one can construct an efficient reduction from k-CYC to k-SUM. This essentially
formalizes the trivial algorithm that we presented at the beginning of Section 4.1.

Theorem 4.2. Suppose the DLogG conjecture is false for group ensemble G of order m. For
every n ≥ 1, there exists some constant k ≥ 4 such that there exists an efficient reduction in time
O(nk/2−ϵ) from a random instance of size n for k-CYCG to a random instance of size n for k-SUMm

for some constant ϵ > 0.

Proof. Since the DLog conjecture is false, there exists some algorithm A running in time O(m1/2−ϵ)
for some constant ϵ > 0. For any n, pick constant k ≥ 4 such that n = m1/k < mϵ. Our
reduction runs by running algorithm A on all nk = O(n) elements in the k input lists for k-CYC
to compute their discrete logarithms. This immediately results in a random instance of size n for
k-SUM. The running time of the reduction is O(nm1/2−ϵ) = O(m1/k ·m1/2−ϵ) = O(m1/2−ϵ′) where
ϵ′ = 1/k − ϵ > 0 is a constant since k and ϵ are constant.

Implications to Other Number-Theoretic Assumptions. We note that Theorem 4.1 has
implications to other cryptographic assumptions. First, we know that if discrete logarithms can be
computed in T (n) time, then both the computational and decisional Diffie-Hellman assumptions
may be solved in T (n) time as well. Therefore, we immediately get that an efficient reduction
between k-CYC and k-SUM would immediately imply that the equivalent conjectures for computa-
tional and decisional Diffie-Hellman would be false.

Similar results can be obtained for the factoring, RSA and quadratic residuosity assumptions
if we consider reductions from k-PROD over Z×m where m is a composite number. Therefore,
an efficient reduction between k-PRODm and k-SUMm over composite group orders m immediately
implies faster algorithms for DLog over Z×m. It is known that computing DLog over composite group
orders enables factoring [9]. So, we may extend Theorem 4.1 showing that an equivalence between
k-SUM and k-PROD would also imply faster algorithms for the factoring, RSA and quadratic
residuosity problems (see Appendix F).

Sub-Exponential Algorithms. We can extend Theorem 4.1 to also consider slightly more effi-
cient reductions between from k-CYC to k-SUM. In particular, if the reductions run in poly(n) time

28

for some super-constant k = ω(1), then we can obtain sub-exponential algorithms for DLog as well
as the other related number-theoretic assumptions. See Appendix F.1 for further details.

4.2 Reductions between DLog-Preprocess and k-CYC-Index

As we stated earlier, prior works [34, 80] have shown relations between k-CYC and DLog. In this
work, we show that the same relationship may be extended to the preprocessing variants of each
problem and show a reduction between DLog-Preprocess and k-CYC-Index.

Theorem 4.3. For any constant k ≥ 3, if the AVG-k-PROD-IndexG conjecture is true for group
ensemble G, then the DLog-PreprocessG conjecture is true.

Proof. Let m be the group orders for the ensemble G. Suppose we have the tuple of algorithms
(P,Q) for preprocessing and querying that contradicts the AVG-k-PROD-Index conjecture for some
constant k ≥ 3 such that ST 2 = O(nk−1−ϵ) for some constant ϵ > 0. We will pick some n =
Õ(m1/(k−1)) with the following guarantee. Instantiate k − 1 lists, L1, . . . , Lk−1 consisting of n
elements chosen uniformly at random in the following way. To generate an element, we pick a
random integer z from [m] and compute gz as the uniformly random element from G. We record
both z and gz. For sufficiently large n = Õ(m1/(k−1)), we note there exists some set of indices
(y1, . . . , yk−1) ∈ [n]k−1 such that L1[y1] · · ·Lk−1[yk−1] = t except with 1/poly(n) probability for
every t ∈ G using Lemma B.1. Then, we run the preprocessing algorithm P (L1, . . . , Lk−1) for
k-CYC-Index on inputs of the k − 1 lists L1, . . . , Lk−1 to obtain some data structure with space S.

We receive a query of the form t = gx that is a uniformly random element from G. We execute
querying algorithm Q with target t and the preprocessed data structure as input. The algorithm Q
outputs some (y1, . . . , yk−1) ∈ [n]k−1 such that L1[y1] · · ·Lk−1[yk−1] = t. By simply summing the
corresponding k−1 exponents as elements in Zm, we compute x. Note, we solve the DLog-Preprocess
problem with space S and query time T such that

ST 2 = O(nk−1−ϵ) = Õ(|G|(k−1−ϵ)/(k−1)) = Õ(|G|1−ϵ/(k−1))

that contradicts the DLog-Preprocess conjecture for G.

This implies that, if one wishes to find faster algorithms for k-CYC-Index, then one should not
try and construct algorithms that apply to every group. In particular, the above reduction would
end up producing a generic algorithm for DLog-Preprocess that would contradict known generic
group lower bounds [30].

4.3 Average-Case k-SUM-Index and k-CYC-Index Algorithms

Finally, we present new algorithms for both k-SUM-Index, k-PROD-Index and k-CYC-Index with
improved space-time trade-offs compared to prior works. As we discussed in Section 2.3, there are
some trivial algorithms for these problems. One simply stores the lists in linear space S = O(n) and
runs the best algorithms without preprocessing in time O(n⌈(k−1)/2⌉). The other extreme stores all
k-tuples using S = Õ(nk) space and answers queries in T = Õ(1) time.

Recent works [62, 51] presented algorithms with better space-time trade-offs for arbitrary space
usages achieving S3T = Õ(n3(k−1)) for k-SUM-Index. This means there exists algorithms using
space S = Õ(nk−1−δ) and query time T = Õ(n3δ) for any δ > 0. At a high level, these algorithms
relied upon the Fiat-Naor function inversion algorithms [44]. The function of interest is defined as

29

f(y1, . . . , yk−1) = L1[y1]⊙ . . .⊙ Lk−1[yk−1] assuming any group G with group operation ⊙. It can
be easily seen that answering a query for target t ∈ G is equivalent to computing f−1(t). These
worst-case algorithms may be extended to k-CYC-Index in a straightforward manner with the same
efficiency guarantees.

We present a new algorithm for the average-case versions of k-SUM-Index and k-CYC-Index that
we study in this paper. In particular, we note that the function f(y1, . . . , yk−1) = L1[y1] ⊙ . . . ⊙
Lk−1[yk−1] contains significant amounts of randomness as each of the n elements in the k lists are
random. This leads us to the idea of trying to use Hellman’s algorithm [52] for inverting random
functions. However, we note that the function itself is not a random function as the outputs of a
large subsets of elements in the domain may be highly correlated. Nevertheless, we can rely on the
analysis of Hellman’s algorithm by Fiat and Naor [44] that characterizes the efficiency of Hellman’s
algorithm with respect to collision probabilities. If q is the collision probability, then Hellman’s
algorithm satisfies S2T = Õ(q · |X |3) (see Theorem G.2).

We construct our function f that we use for our data structure in the following way. We start
with the easy case where nk−1 = m. In this case, we can immediately define f : [nk−1] → [m] as
f(y1, . . . , yk−1) = L1[y1] ⊙ . . . ⊙ Lk−1[yk−1]. As a note, we will use the trivial bijection between
(k − 1)-tuples from [n]k−1 and the set [nk−1]. To expand to more applications, we modify f for
the case where m > nk−1. In this case, we define f : [m] → [m] as a piecewise function. For any
x ∈ [m], we define f(x) = f(y + 1) where y = x mod nk−1. Note, f(x) can be computed efficiently
in Õ(k) = Õ(1) time. Our algorithm is applying Hellman’s algorithm [52] to this function f for
inversion for both preprocessing and querying. For a query target t, we execute the query of
Hellman’s algorithm to compute x = f−1(t). Lastly, we compute y = x mod nk−1 and return the
(k − 1)-tuple in [n]k−1 corresponding to y + 1 ∈ [nk−1].

Theorem 4.4. For any constant k ≥ 4 and group ensemble G with group order m such that
nk−1 ≤ m = Θ(nk−1), there exists algorithms for k-SUM-IndexG, k-PROD-IndexG and k-CYC-IndexG

that uses space S and time T with error probability 1/poly(n) such that S2T = Õ(n2(k−1)).

Proof. We start by proving that the probability q that two random elements in the domain of
f map to the same element in the image is O(1/nk−1). The analysis applies all three problems
k-SUM-Index, k-PROD-Index and k-CYC-Index since the elements are sampled uniformly at random
from the respective groups (in fact, it applies to all groups). Pick two random elements x, y ∈ [m]
and compute the probability f(x) = f(y) in two cases. First, if x = y mod nk−1, we know that
f(x) = f(y). If this is not true, then x and y correspond to two different (k − 1)-tuples that differ
in at least one entry. So, the probability that f(x) = f(y) is at most 1/m. Altogether, we get the
probability as follows:

q ≤ Pr[f(x) = f(y) | x ̸= y mod nk−1] + Pr[x = y mod nk−1]

≤ 1

m
+

1

nk−1 = O

(
1

nk−1

)
.

We can now apply Theorem G.2 and obtain an algorithm that inverts function f with space S and
time T such that S2T = Õ(qn3(k−1)) = Õ(n2(k−1)).

In other words, there exists an algorithm with space S = Õ(nk−1−δ) and query time T = Õ(n2δ)
for any δ > 0. This beats the prior worst-case algorithms [62, 51] that obtain require T = Õ(n3δ)
for the same space usage. One way to view this result is that this is evidence that k-SUM-Index,
k-PROD-Index and k-CYC-Index are easier in the average-case compared to the worst-case.

30

Acknowledgements

The authors were supported in part by NSF Grant CCF-2238221 and a grant from the Simons
Foundation (Grant Number 825870 JA). The research was partially supported by a Google Cy-
berNYC grant, an Amazon Research Award and an NSF grant CCF-2312242. Yizhi Huang was
also supported in part by NSF grants CCF-2106429 and CCF-2211238.

References

[1] A. Abboud, S. Feller, and O. Weimann. On the fine-grained complexity of parity problems.
In International Colloquium on Automata, Languages, and Programming. Schloss Dagstuhl-
Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 2020.

[2] A. Abboud and K. Lewi. Exact weight subgraphs and the k-sum conjecture. In F. V. Fomin,
R. Freivalds, M. Z. Kwiatkowska, and D. Peleg, editors, ICALP 2013, Part I, volume 7965 of
LNCS, pages 1–12. Springer, Heidelberg, July 2013.

[3] A. Abboud and V. V. Williams. Popular conjectures imply strong lower bounds for dynamic
problems. In 55th FOCS, pages 434–443. IEEE Computer Society Press, Oct. 2014.

[4] A. Afshar, G. Couteau, M. Mahmoody, and E. Sadeghi. Fine-grained non-interactive key-
exchange: constructions and lower bounds. In Annual International Conference on the Theory
and Applications of Cryptographic Techniques, pages 55–85. Springer, 2023.

[5] D. Aggarwal and U. Maurer. Breaking RSA generically is equivalent to factoring. In A. Joux,
editor, EUROCRYPT 2009, volume 5479 of LNCS, pages 36–53. Springer, Heidelberg, Apr.
2009.

[6] S. Agrawal, S. Saha, N. I. Schwartzbach, A. Vanukuri, and P. N. Vasudevan. k-sum in the
sparse regime: Complexity and applications. In Annual International Cryptology Conference,
pages 315–351. Springer, 2024.

[7] J. Alman, Y. Huang, and K. Yeo. Fine-grained complexity in a world without cryptography.
In Eurocrypt 2025, 2025.

[8] B. Applebaum, B. Barak, and A. Wigderson. Public-key cryptography from different assump-
tions. In L. J. Schulman, editor, 42nd ACM STOC, pages 171–180. ACM Press, June 2010.

[9] E. Bach. Discrete logarithms and factoring. University of California at Berkeley, 1984.

[10] M. Ball, J. Garay, P. Hall, A. Kiayias, and G. Panagiotakos. Towards permissionless consen-
sus in the standard model via fine-grained complexity. In Annual International Cryptology
Conference, pages 113–146. Springer, 2024.

[11] M. Ball, A. Rosen, M. Sabin, and P. N. Vasudevan. Average-case fine-grained hardness. In
H. Hatami, P. McKenzie, and V. King, editors, 49th ACM STOC, pages 483–496. ACM Press,
June 2017.

31

[12] M. Ball, A. Rosen, M. Sabin, and P. N. Vasudevan. Proofs of work from worst-case assumptions.
In H. Shacham and A. Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of LNCS,
pages 789–819. Springer, Heidelberg, Aug. 2018.

[13] I. Baran, E. D. Demaine, and M. Pǎtraşcu. Subquadratic algorithms for 3sum. Algorithmica,
50(4):584–596, 2008.

[14] J. Bartusek, F. Ma, and M. Zhandry. The distinction between fixed and random generators
in group-based assumptions. In A. Boldyreva and D. Micciancio, editors, CRYPTO 2019,
Part II, volume 11693 of LNCS, pages 801–830. Springer, Heidelberg, Aug. 2019.

[15] B. Bauer, G. Couteau, and E. Sadeghi. Fine-grained non-interactive key exchange, revisited.
In Annual International Cryptology Conference, pages 286–312. Springer, 2024.

[16] A. Becker, J.-S. Coron, and A. Joux. Improved generic algorithms for hard knapsacks. In
K. G. Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 364–385. Springer,
Heidelberg, May 2011.

[17] T. Belova, A. Golovnev, A. S. Kulikov, I. Mihajlin, and D. Sharipov. Polynomial formulations
as a barrier for reduction-based hardness proofs. In Proceedings of the 2023 Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 3245–3281. SIAM, 2023.

[18] T. Belova, A. S. Kulikov, I. Mihajlin, O. Ratseeva, G. Reznikov, and D. Sharipov. Compu-
tations with polynomial evaluation oracle: ruling out superlinear seth-based lower bounds.
In Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1834–1853. SIAM, 2024.

[19] D. J. Bernstein and T. Lange. Non-uniform cracks in the concrete: The power of free pre-
computation. In K. Sako and P. Sarkar, editors, ASIACRYPT 2013, Part II, volume 8270 of
LNCS, pages 321–340. Springer, Heidelberg, Dec. 2013.

[20] A. Blum, A. Kalai, and H. Wasserman. Noise-tolerant learning, the parity problem, and the
statistical query model. Journal of the ACM (JACM), 50(4):506–519, 2003.

[21] E. Boix-Adserà, M. Brennan, and G. Bresler. The average-case complexity of counting cliques
in Erdős-Rényi hypergraphs. In D. Zuckerman, editor, 60th FOCS, pages 1256–1280. IEEE
Computer Society Press, Nov. 2019.

[22] D. Boneh et al. Twenty years of attacks on the rsa cryptosystem. Notices of the AMS,
46(2):203–213, 1999.

[23] A. Bostan, P. Gaudry, and É. Schost. Linear recurrences with polynomial coefficients and
application to integer factorization and cartier–manin operator. SIAM Journal on Computing,
36(6):1777–1806, 2007.

[24] C. Bouillaguet, C. Delaplace, and P.-A. Fouque. Revisiting and improving algorithms for the
3xor problem. IACR Transactions on Symmetric Cryptology, pages 254–276, 2018.

[25] Z. Brakerski, N. Stephens-Davidowitz, and V. Vaikuntanathan. On the hardness of average-
case k-sum. Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, 2021.

32

[26] C. Brzuska and G. Couteau. On building fine-grained one-way functions from strong average-
case hardness. In O. Dunkelman and S. Dziembowski, editors, EUROCRYPT 2022, Part II,
volume 13276 of LNCS, pages 584–613. Springer, Heidelberg, May / June 2022.

[27] M. L. Carmosino, J. Gao, R. Impagliazzo, I. Mihajlin, R. Paturi, and S. Schneider. Nonde-
terministic extensions of the strong exponential time hypothesis and consequences for non-
reducibility. In Proceedings of the 2016 ACM Conference on Innovations in Theoretical Com-
puter Science, pages 261–270, 2016.

[28] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms. MIT
press, 2022.

[29] J.-S. Coron and A. Joux. Cryptanalysis of a provably secure cryptographic hash function.
Cryptology ePrint Archive, 2004.

[30] H. Corrigan-Gibbs and D. Kogan. The discrete-logarithm problem with preprocessing. In J. B.
Nielsen and V. Rijmen, editors, EUROCRYPT 2018, Part II, volume 10821 of LNCS, pages
415–447. Springer, Heidelberg, Apr. / May 2018.

[31] R. Cramer and V. Shoup. A practical public key cryptosystem provably secure against adaptive
chosen ciphertext attack. In H. Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS, pages
13–25. Springer, Heidelberg, Aug. 1998.

[32] R. E. Crandall and C. Pomerance. Prime numbers: a computational perspective, volume 2.
Springer, 2005.

[33] D. Dachman-Soled, J. Loss, and A. O’Neill. Breaking rsa generically is equivalent to factoring,
with preprocessing. Cryptology ePrint Archive, 2022.

[34] W. Dai. Personal Communication with David Wagner.

[35] M. Dalirrooyfard, A. Lincoln, and V. V. Williams. New techniques for proving fine-grained
average-case hardness. In 61st FOCS, pages 774–785. IEEE Computer Society Press, Nov.
2020.

[36] M. Dalirrooyfard, A. Lincoln, and V. V. Williams. New techniques for proving fine-grained
average-case hardness. In 2020 IEEE 61st Annual Symposium on Foundations of Computer
Science (FOCS), pages 774–785. IEEE, 2020.

[37] A. Degwekar, V. Vaikuntanathan, and P. N. Vasudevan. Fine-grained cryptography. In M. Rob-
shaw and J. Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS, pages 533–562.
Springer, Heidelberg, Aug. 2016.

[38] E. Demaine and S. Vadhan. Some notes on 3sum. Unpublished note, 2001.

[39] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions on Infor-
mation Theory, 22(6):644–654, 1976.

[40] I. Dinur. An algorithmic framework for the generalized birthday problem. Designs, Codes and
Cryptography, 87:1897–1926, 2019.

33

[41] I. Dinur, N. Keller, and O. Klein. Fine-grained cryptanalysis: Tight conditional bounds for
dense k-sum and k-xor. Journal of the ACM, 71(3):1–41, 2024.

[42] Y. Dodis, D. Khovratovich, N. Mouha, and M. Nandi. T5: Hashing five inputs with three com-
pression calls. In 2nd Conference on Information-Theoretic Cryptography, ITC 2021, page 24.
Schloss Dagstuhl-Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 2021.

[43] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete logarithms.
In G. R. Blakley and D. Chaum, editors, CRYPTO’84, volume 196 of LNCS, pages 10–18.
Springer, Heidelberg, Aug. 1984.

[44] A. Fiat and M. Naor. Rigorous time/space trade-offs for inverting functions. SIAM Journal
on Computing, 29(3):790–803, 2000.

[45] D. Freeman, M. Scott, and E. Teske. A taxonomy of pairing-friendly elliptic curves. Journal
of Cryptology, 23(2):224–280, Apr. 2010.

[46] A. Gajentaan and M. H. Overmars. On a class of o (n2) problems in computational geometry.
Computational geometry, 5(3):165–185, 1995.

[47] O. Goldreich. Foundations of Cryptography. Cambridge University Press, 2001.

[48] O. Goldreich and G. N. Rothblum. Counting t-cliques: Worst-case to average-case reductions
and direct interactive proof systems. In M. Thorup, editor, 59th FOCS, pages 77–88. IEEE
Computer Society Press, Oct. 2018.

[49] I. Goldstein, T. Kopelowitz, M. Lewenstein, and E. Porat. Conditional lower bounds for
space/time tradeoffs. In Algorithms and Data Structures: 15th International Symposium,
WADS 2017, St. John’s, NL, Canada, July 31–August 2, 2017, Proceedings 15, pages 421–436.
Springer, 2017.

[50] S. Goldwasser and S. Micali. Probabilistic encryption & how to play mental poker keeping
secret all partial information. In Providing sound foundations for cryptography: on the work
of Shafi Goldwasser and Silvio Micali, pages 173–201. 2019.

[51] A. Golovnev, S. Guo, T. Horel, S. Park, and V. Vaikuntanathan. Data structures meet cryptog-
raphy: 3SUM with preprocessing. In K. Makarychev, Y. Makarychev, M. Tulsiani, G. Kamath,
and J. Chuzhoy, editors, 52nd ACM STOC, pages 294–307. ACM Press, June 2020.

[52] M. Hellman. A cryptanalytic time-memory trade-off. IEEE transactions on Information
Theory, 26(4):401–406, 1980.

[53] R. Impagliazzo. A personal view of average-case complexity. In Proceedings of Structure in
Complexity Theory. Tenth Annual IEEE Conference, pages 134–147. IEEE, 1995.

[54] Z. Jafargholi and E. Viola. 3sum 3 sum, 3xor 3 xor, triangles. Algorithmica, 74:326–343, 2016.

[55] D. Johnson, A. Menezes, and S. Vanstone. The elliptic curve digital signature algorithm
(ecdsa). International journal of information security, 1:36–63, 2001.

[56] A. Joux. Algorithmic cryptanalysis. Chapman and Hall/CRC, 2009.

34

[57] A. Joux, D. Naccache, and E. Thomé. When e-th roots become easier than factoring. In
K. Kurosawa, editor, ASIACRYPT 2007, volume 4833 of LNCS, pages 13–28. Springer, Hei-
delberg, Dec. 2007.

[58] A. Juels and M. Peinado. Hiding cliques for cryptographic security. Designs, Codes and
Cryptography, 20(3):269–280, 2000.

[59] J. Katz and Y. Lindell. Introduction to Modern Cryptography. CRC Press, 2020.

[60] N. Koblitz, A. Menezes, and S. Vanstone. The state of elliptic curve cryptography. Designs,
codes and cryptography, 19:173–193, 2000.

[61] T. Kopelowitz, S. Pettie, and E. Porat. Higher lower bounds from the 3SUM conjecture. In
R. Krauthgamer, editor, 27th SODA, pages 1272–1287. ACM-SIAM, Jan. 2016.

[62] T. Kopelowitz and E. Porat. The strong 3sum-indexing conjecture is false. arXiv preprint
arXiv:1907.11206, 2019.

[63] R. LaVigne, A. Lincoln, and V. V. Williams. Public-key cryptography in the fine-grained
setting. In A. Boldyreva and D. Micciancio, editors, CRYPTO 2019, Part III, volume 11694
of LNCS, pages 605–635. Springer, Heidelberg, Aug. 2019.

[64] H. T. Lee, J. H. Cheon, and J. Hong. Accelerating ID-based encryption based on trapdoor DL
using pre-computation. Cryptology ePrint Archive, Report 2011/187, 2011. https://eprint.
iacr.org/2011/187.

[65] G. Leurent and F. Sibleyras. Low-memory attacks against two-round even-mansour using the
3-XOR problem. In A. Boldyreva and D. Micciancio, editors, CRYPTO 2019, Part II, volume
11693 of LNCS, pages 210–235. Springer, Heidelberg, Aug. 2019.

[66] Y. Liu and R. Pass. On one-way functions and kolmogorov complexity. In FOCS, pages
1243–1254. IEEE, 2020.

[67] V. Lyubashevsky, A. Palacio, and G. Segev. Public-key cryptographic primitives provably
as secure as subset sum. In D. Micciancio, editor, TCC 2010, volume 5978 of LNCS, pages
382–400. Springer, Heidelberg, Feb. 2010.

[68] U. Maurer. Abstract models of computation in cryptography. In Cryptography and Coding:
10th IMA International Conference, Cirencester, UK, December 19-21, 2005. Proceedings 10,
pages 1–12. Springer, 2005.

[69] J. P. Mihalcik. An analysis of algorithms for solving discrete logarithms in fixed groups. PhD
thesis, Citeseer, 2010.

[70] L. Minder and A. Sinclair. The extended k-tree algorithm. Journal of Cryptology, 25(2):349–
382, Apr. 2012.

[71] M. Nandi. Revisiting security claims of XLS and COPA. Cryptology ePrint Archive, Paper
2015/444, 2015.

35

https://eprint.iacr.org/2011/187
https://eprint.iacr.org/2011/187

[72] V. I. Nechaev. Complexity of a determinate algorithm for the discrete logarithm. Mathematical
Notes-New York, 55(1):165–172, 1994.

[73] I. Nikolic and Y. Sasaki. Refinements of the k-tree algorithm for the generalized birthday
problem. In T. Iwata and J. H. Cheon, editors, ASIACRYPT 2015, Part II, volume 9453 of
LNCS, pages 683–703. Springer, Heidelberg, Nov. / Dec. 2015.

[74] S. Pettie. Higher lower bounds from the 3sum conjecture,
https://simons.berkeley.edu/talks/higher-lower-bounds-3sum-conjecture.

[75] J. M. Pollard. A monte carlo method for factorization. BIT, 15(3):331–334, Sept. 1975.

[76] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

[77] C.-P. Schnorr. Efficient identification and signatures for smart cards. In G. Brassard, editor,
CRYPTO’89, volume 435 of LNCS, pages 239–252. Springer, Heidelberg, Aug. 1990.

[78] A. Schrottenloher. Improved quantum algorithms for the k-xor problem. In International
Conference on Selected Areas in Cryptography, pages 311–331. Springer, 2021.

[79] V. Shoup. Lower bounds for discrete logarithms and related problems. In W. Fumy, editor,
EUROCRYPT’97, volume 1233 of LNCS, pages 256–266. Springer, Heidelberg, May 1997.

[80] D. Wagner. A generalized birthday problem. In M. Yung, editor, CRYPTO 2002, volume 2442
of LNCS, pages 288–303. Springer, Heidelberg, Aug. 2002.

[81] J. R. Wang. Space-efficient randomized algorithms for k-sum. In European Symposium on
Algorithms, pages 810–829. Springer, 2014.

[82] V. V. Williams. On some fine-grained questions in algorithms and complexity. In Proceedings
of the international congress of mathematicians: Rio de janeiro 2018, pages 3447–3487. World
Scientific, 2018.

A Algorithms for Average-Case k-SUM in Dense Setting

In this section, we revisit the algorithms of Wagner [80] that follows the approach of Blum, Kalai
and Wassermann [20] for solving average-case k-SUM in the dense setting where n is sufficiently
large that there are many solutions with high probability (that is, nk ≫ m). In particular, these
algorithms outperform the trivial n⌈k/2⌉ algorithms for k-SUM. We note that there exists follow-up
works (such as [73, 71, 40, 65]) presenting improvements of Wagner’s algorithm.

A.1 k-SUM Algorithm of Wagner [80]

For simplicity, we start by presenting the k-SUMm algorithm for k = 4 over group Zm. We will
generalize later to larger k ≥ 4. We focus specifically on the setting where n = m1/3 and consider
the more general case of nk = m1+c for some constant c > 0 later as done in [70]. In this case,
we see that nk ≫ m meaning that we should expect at least many solutions in expectation. By
applying the algorithm of Wagner [80] with the correct parameters, k-SUMm may be solved in time

36

O(n⌈k/2⌉−ϵ) for some constant ϵ > 0 depending only on k and c that beats the naive algorithm for
k-SUMm.

At a high level, the algorithm works as follows for k = 4 where n = m1/3 for constant 0 < c < 1.
We will pair the input lists into two groups of two. To process L1 and L2, we will essentially find at
most n pairs whose sum is at most n. We note this can be computed in Õ(n) time in the following
way. First, we sort both lists in ascending order. Then, we keep two pointers in L1 pointing to the
smallest and largest entries that are at most ℓ. Then, we iterate through L2 in ascending order and
use as well as adjust the pointers in L1 to help find pairs of solutions. So, this allows us to find
solution pairs that we denote L12 in time Õ(n). We can also do this as well for the lists L3 and L4

and get at most n pairs of solutions whose sum is at least m− n modulo m that we denote L34.
Lastly, we run the trivial 2-SUM algorithm to find a solution in L12 and L34 in time Õ(n) time.

Note that L12 contains at most n pairs whose sum is at most n modulo m. Similarly, L34 contains
at most n pairs whose sum is at least m−n modulo m. Therefore, the algorithm runs in time Õ(n)
time altogether.

Next, we analyze the probability that the algorithm finds a solution. Note that the number
of expected pairs of solutions in L12 and L34 is n2/n = n. Therefore, we expect the number of
solutions in the last step to be

min{n,E[|L12|]} ·min{n,E[|L34|]}
n

=
Ω(n2)

n
= Ω(n).

Therefore, the last step executing the trivial 2-SUM algorithm will find a solution except with
1/poly(n) probability by applying Lemma B.1.

The total runtime of this algorithm is Õ(k ·n) = Õ(n) since each of the list merges requires Õ(n)
time. It is not hard to see that this algorithm may be generalized to arbitrary k ≥ 4. At a high
level, we create a binary tree of height O(log k) where the leaf nodes are each of the individual k
lists. Afterwards, we essentially merge lists two at a time until reaching the root and obtaining the
solution. As a note, we can relax the requirement to be simply that n = m(1+c)/k for any constant
c > 0. Furthermore, we note that prior work [70] has considered smaller lists and presented time
bounds for these settings.

Theorem A.1 ([80, 70]). For any k ≥ 4, constant c > 0 and m ≤ nk/(1+c), there exists an
algorithm for k-SUMm in time O(m1/2−ϵ) with error probability 1/poly(n) for some constant ϵ > 0.

We note that there are other choices of parameters that result in smaller running times if
one is allowed to freely choose the size of the input lists n sufficiently large with respect to the
group size m. More generally, it is always possible to run Wagner’s algorithm on input lists of
size n = m1/(1+⌊log k⌋) and obtain algorithms that run in time Õ(n) = Õ(m1/(1+⌊log k⌋)) for any
k ≥ 4. For k = 4, this results in algorithms running in time Õ(m1/3). This leads us to the following
corollary that shows Wagner’s algorithm runs in sub-exponential time for sufficiently large k = ω(1).

Theorem A.2 ([80]). For any k = ω(1) and m ≤ n1+log k, there exists an algorithm for k-SUMm

in time mo(1) with error probability 1/poly(n).

A.2 Inapplicability to k-PROD and k-CYC

In the prior section, we have shown that Wagner’s algorithm [80] can beat the trivial k-SUMm

algorithm in the dense setting where nk ≫ m. One may wonder whether the same algorithm could

37

also be used to solve k-PRODm or k-CYCG in the similar dense setting. Somewhat surprisingly,
we show that the algorithm does not seem easily adaptable to k-PROD or k-CYC. Additionally,
we also show that if Wagner’s algorithm were adaptable to k-PROD or k-CYC, it would end up
speeding up algorithms known for DLog in their respective groups providing additional evidence
that it may be quite challenging to modify Wagner’s algorithm to work for k-PROD or k-CYC.

Obstacles with List Merging. Recalling the key step of list merging in the k-SUM algorithm, it
first sorts the two lists L1 and L2, and then keep two pointers in L1 while traversing the other L2

in ascending order. When traversing the second list y ∈ L2, we guarantee that all possible x ∈ L1

such that x+y ≤ n modulo m are between the two pointers maintained in L1. Immediately, we see
that this algorithm is not possible for k-PROD or k-CYC. Generalizing the idea, suppose we have
any subset S of a cyclic group G of size n and we wish to find pairs of solution (x, y) ∈ L1 × L2

such that x · y ∈ S. To our knowledge, there is no way to pick subset S such that a variant of the
two pointer-style algorithm still succeeds at finding pairs of solutions. In general, we are unaware
of any Õ(n) algorithm that allows merging two lists of size n that allows us to find Ω(n) pairs of
solutions whose product appears in some subset S of size n.

Relation to DLog. To give some additional evidence that extending Wagner’s algorithm [80]
to k-PROD or k-CYC will be challenging, we show the implications to DLog if such an extension
were possible. As shown by prior works [34, 80] and discussed in Section 4.1, it is known that
faster algorithms for k-CYC would immediately imply faster algorithms for DLog. In particular,
suppose that one could essentially extend Wagner’s algorithm and show something equivalent to
Theorem A.1 for k-CYC for some group G of order m. Using these reductions, we could attempt to
solve DLog by constructing k lists of random group elements that are chosen by picking a random
exponent x ∈ [m] and computing gx. With knowledge of the all discrete logarithms of each input
element, we can pick k lists of n ≥ m(1+c)/k random elements for some constant c > 1. Finally,
we can apply this new algorithm to obtain an algorithm for DLog that runs in time O(m1/2−ϵ) for
some constant ϵ > 0. This would be a breakthrough as it would result in better algorithms for
solving DLog for a wide-range of popular elliptic curve groups used in practice such as NIST P-256
where the best algorithms remain Õ(m1/2). We point readers to [45, 60] for more details about the
state-of-the-art algorithms for DLog in these elliptic curve groups.

The same holds true even for k-PROD where we consider multiplicative groups over the integers
Z×m where m is prime. Even though there are sub-exponential algorithms for DLog over Z×m, these
are heuristic algorithms that do not have provable running times. The best provable running time
algorithms remain Õ(m1/2). Therefore, if one could adapt Wagner’s algorithm for k-PROD, it would
also lead to a breakthrough in algorithms with provable running times of O(m1/2−ϵ) for constant
ϵ > 0 solving DLog over Z×m.

B Existence of Solution

Below we give estimations on the probability that a uniformly sampled k-SUM(m,n) instance has
a solution. We use the fact that the sum (product) of uniformly sampled group elements is also
uniformly distributed. First, we have the following lemma:

Lemma B.1. For a k-SUMm instance of size n z = (L1, L2, . . . , Lk), the probability that z has a
solution is at most nk/m, and the probability that z has exactly one solution is at least nk/m −(
nk

2

)
/m2 (so the probability that z has a solution is also at least nk/m−

(
nk

2

)
/m2).

38

Proof. For any (y1, y2, . . . , yk) ∈ [n]k, the probability that (y1, y2, . . . , yk) is a solution to z is 1/m.
Since there are nk possible solutions, by union bound, the probability that z has a solution is
upper-bounded by nk/m.

For any distinct (y1, y2, . . . , yk), (y
′
1, y
′
2, . . . , y

′
k) ∈ [n]k, the probability that both are solutions

to z is 1/m2. The reason is as follows.
Let A = {i : yi = y′i}, then for any fixed (Li[yi])i∈A, since |A| < n,

Pr
(Li[yi])i/∈A←U([n]k−|A|)

[(y1, y2, . . . , yk) is a solution to z] = 1/m,

Pr
(Li[y′i])i/∈A←U([n]k−|A|)

[(y′1, y
′
2, . . . , y

′
k) is a solution to z] = 1/m,

and (Li[yi])i/∈A and (Li[y
′
i])j /∈A are independent.

Since there are
(
nk

2

)
possible ((y1, y2, . . . , yk), (y

′
1, y
′
2, . . . , y

′
k)) ∈ ([n]k)2, by inclusion-exclusion

principle, the probability that z has exactly one solution is lower-bounded by nk/m−
(
nk

2

)
/m2.

Lemma B.1 only gives a non-trivial bound when m ≥ nk/2. When this is not the case, we have
the following bound, which is proved based on Lemma B.1.

Lemma B.2. For a uniform k-SUM(m,n) instance z = (L1, L2, . . . , Lk) where m < nk, the prob-

ability that z has a solution is at least 1− 1/2n/m
1/k−1.

Proof. Let n′ := ⌈m1/k⌉ ≤ n, and for 1 ≤ j ≤ n/n′, let zj be the k-SUM(m,n′) instance (L1[(j −
1)n′+1 : jn′], L2[(j− 1)n′+1 : jn′], . . . , Lk[(j− 1)n′+1 : jn′]) where Li[(j− 1)n′+1 : jn′] denotes
the list consisting of the ((j − 1)n′ + 1)-th to (jn′)-th elements of Li.

It is easy to see that z1, z2, . . . , z⌊n/n′⌋ are independent uniform k-SUM(m,n′) instance. More-
over, if there exists j such that zj has a solution, then z also has a solution. By Lemma B.1, for

a fixed j, the probability that zj has a solution is at least (n′)k/m−
(
(n′)k

2

)
/m2 ≥ 1/2. Therefore,

the probability that z has a solution is at least 1− 1/2⌊n/n
′⌋ ≥ 1− 1/2n/m

1/k−1.

Similar to Lemma B.1 for k-SUM, we also have the following for Zero-k-Clique.

Lemma B.3. Let J := {(i1, i2) | 1 ≤ i1 < i2 ≤ k} × [n]2. For a uniform Zero-k-Clique(m,n)
instance z = (e{(i1,j1),(i2,j2)})(i1,i2,j1,j2)∈J , the probability that z has a solution is at most nk/m, and

the probability that z has exactly one solution is at least nk/m−
(
nk

2

)
/m2 (so the probability that z

has a solution is also at least nk/m−
(
nk

2

)
/m2).

The proof is almost the same as the proof of Lemma B.1 and is thus omitted.

C Decision k-SUM and k-CYC

We present the formal definitions of the search problems where it suffices for a correct algorithm to
simply determine whether there exists a solution or not. We only present the definitions for k-SUM
and k-CYC, but the definition of k-PROD follows in a similar manner.

Definition C.1 (k-LIST Decision Problem). For k ≥ 0 and group ensemble (G,⊙), an algorithm
A correctly solves the k-LISTG decision problem if it outputs the following in each corresponding
scenario:

39

• If there exists a solution, A outputs 1.

• If no solution exists, A outputs 0.

We say algorithm A has failure probability ϵ(n) if

Pr[A(L1, . . . , Lk) is correct] ≥ 1− ϵ(n)

where the randomness is over the internal coin tosses of A and random choice of L1, . . . , Lk from

D(n)
U .

Once again, by plugging in the correct group ensemble, we will obtain the corresponding decision
problems for k-SUM and k-CYC.

Definition C.2 (k-SUM Decision Problem). The k-SUM decision problem is the k-LIST decision

problem with group ensemble (G
(m)
k-SUM,+).

Definition C.3 (k-CYC Decision Problem). The k-CYCG decision problem is the k-LIST decision
problem with cyclic group ensemble G.

Next, we can present conjectures for the decisions variants of both k-SUM and k-CYC following
similar ideas as the search variants. In general, we will use the same group sizes of m = Θ(nk) to
rule out trivial algorithms as well as faster algorithms for the dense setting.

Definition C.4 (AVG-k-SUM Decision Conjecture). For any integer k ≥ 3, group size m = Θ(nk)
and constant ϵ > 0, there exists no algorithm that solves the k-SUMm decision problem with error
1/poly(n) in time O(n⌈k/2⌉−ϵ).

Definition C.5 (AVG-k-CYC Decision Conjecture). For any integer k ≥ 3, group size m = Θ(nk)
and constant ϵ > 0, there exists no algorithm that solves the k-PRODm decision problem with error
1/poly(n) in time O(n⌈k/2⌉−ϵ).

Finally, we discuss the equivalences between the search and decision variants of k-SUM and
k-CYC. First, it is clear that one direction is true. If one can solve the search variants of k-SUM and
k-CYC, one can easily solve the decision k-SUM and k-CYC problems. For the opposite direction,
we show an equivalence for the sparse regime where m ≥ c · nk for some constant c > 1. We note
that prior work [6] has considered similar reductions but with two main differences. First, their
reduction considers decisions algorithms with o(1) error probability and converts it into algorithms
for the planted search problems with O(1) error probability. Secondly, they consider the case
with a single list of n elements. We present a similar, but slightly different, algorithm that will
maintain 1/poly(n) error probability for the case of k input lists. Furthermore, we consider relations
between the decision and (non-planted) search problems. We present the algorithm below that uses
algorithm A for the decision problem:

A′(L1, . . . , Lk) :

1. For i = 1, . . . , O(log n):

(a) For j = 1, . . . , cj = O(2k log n):

i. Construct L′1, . . . , L
′
k by sampling a random half from L1, . . . , Lk.

40

ii. Initialize counter cnt← 0.

iii. For k = 1, . . . , O(log n):

A. Construct X1, . . . , Xk by starting with L′1, . . . , L
′
k and padding with random

elements until each are size n.

B. If A(L′1, . . . , L
′
k) = 1, increment cnt by 1.

iv. If cnt shows at least γ of trials are true, set L1 ← L′1, . . . , Lk ← L′k and go to next
iteration of Step 1

v. If j = cj , then return ⊥.

2. Run trivial algorithm on remaining lists L1, . . . , Lk and return answer.

Theorem C.6. For all k ≥ 3 and (group ensemble G such that) m ≥ c · nk for some constant
c > 1, suppose there exists an algorithm that runs in time in T (n) and solves the k-SUMm (k-CYCG)
decision problem with error probability 1/poly(n). Then, for any constant 0 < ϵ < 1, there exists
an algorithm that solves the k-SUMm (k-CYCG) search problem that runs in time Õ(T (n)+n) with
error probability 1/poly(n).

Proof. We will show that A′ is an algorithm that solves the search problem assuming A is an
algorithm for the decision problem. We show that A′ maintains the following loop invariant for
index i where it will only continue to the next iteration if L1, . . . , Lk contains a solution. If so, the
modified lists will also contain a solution.

Suppose the input lists L1, . . . , Lk contain at least one solution. We note that the solution is
sampled into L′1, . . . , L

′
k with probability 1/2k. So, there exists at least one loop that samples the

solution except with probability n−100 since we run cj = O(2k log n) iterations for j. Assuming
L′1, . . . , L

′
k contain a solution, we note that A returns 1 with probability 1 − 1/poly(n) for any

constant 0 < γ < 1. By Chernoff’s bound, we can immediately see that this will trigger halving the
lists and going back to Step 1 except with probability n−100. In contrast, suppose that L′1, . . . , L

′
k

do not contain a solution. Since m ≥ c · nk, we know that the input lists X1, . . . , Xk contain a
solution with probability at most nk/m = 1/c for some constant c > 1. We pick any constant
γ > 1/c. Then, A returns 1 with probability 1/poly(n) meaning that 2/3 of trials will succeed only
with probability n−100. As a result, it will never be that the input lists L1, . . . , Lk are halved such
that they do not include a solution except with probability O(2k log2 n) ·n−100 < n−99 if L1, . . . , Lk

originally contained a solution. Therefore, we see that all O(log n) iterations of i will halve lists
and keep a solution except with probability at most n · n−99 = n−98. In that case, the algorithm
will run the trivial algorithm and return a correct solution.

For the other case, suppose that L1, . . . , Lk does contain a solution. Then, we can see that
L′1, . . . , L

′
k never contains a solution too. Using the same argument, we see that A′ will output ⊥

except with probability O(2k log n) · n−100 < n−99.
Finally, for the runtime, we note that we run algorithm A on inputs lists of size n O(2k log3 n)

times. Additionally, we run the trivial algorithm on O(1) input lists that runs in O(1) time.
Therefore, if A runs in time T (n), then A′ runs in time Õ(T (n)) as claimed.

In other words, whenever the group size m(n) > c · nk for some constant c > 1, we can
essentially use the fact that the decision and search problems of k-SUM and k-CYC are equivalent.
Additionally, our algorithm and analysis may easily adapted to the case of a single input list as
well by adjusting m accordingly as studied in [6].

41

D Planted k-SUM and k-CYC

We formally present definitions of the planted problems. At a high level, they will take a random

instance from D(n)
U and embed a random solution into the instance. In this case, it is clear that

only the search problem is interesting as a solution always exists. We start by defining the planted

distribution D(n)
P using the group ensemble G = {G(n)} with group operation ⊙:

D(n)
P :

1. Generate k lists, L1, . . . , Lk of size n where each element of all k lists is drawn uniformly at
random from G(n).

2. Pick uniformly random indices y1, . . . , yk from [n]k.

3. Pick random j ∈ [k].

4. Set Lj [yj]← (L1[y1]⊙ . . .⊙ Lj−1[yj−1]⊙ Lj+1[yj+1]⊙ . . .⊙ Lk[yk])
−1.

5. Return L1, . . . , Lk.

We are now ready to present the planted search problems using the above distribution D(n)
P .

Definition D.1 (k-List Planted Search Problem). For k ≥ 0 and group ensemble (G,⊙), an
algorithm A correctly solves the k-list planted search problem if it outputs (y1, . . . , yk) ∈ [n]k

satisfying the equation L1[y1]⊙ . . .⊙Lk[yk] = 1. We say algorithm A has failure probability ϵ(n) if

Pr[A(L1, . . . , Lk) is correct] ≥ 1− ϵ(n)

where the randomness is over the internal coin tosses of A and random choice of L1, . . . , Lk from

D(n)
P .

By plugging in the correct ensemble, we obtain the planted search versions of k-SUM and k-CYC.

Definition D.2 (k-SUM Planted Search Problem). The k-SUMm planted search problem is the

k-LIST planted search problem with group ensemble (G
(m)
k-SUM,+).

Definition D.3 (k-CYC Planted Search Problem). The k-CYCG planted search problem is the
k-LIST planted search problem with cyclic group ensemble G.

Finally, we present the conjectures for the planted search versions of k-SUM and k-CYC.

Definition D.4 (AVG-k-SUM Planted Conjecture). For any integer k ≥ 3, group size m = Θ(nk)
and constant ϵ > 0, there exists no algorithm that solves the k-SUMm planted search problem with
error 1/poly(n) in time O(n⌈k/2⌉−ϵ).

Definition D.5 (AVG-k-CYC Decision Conjecture). For any integer k ≥ 3, cyclic group ensemble G
with size m = Θ(nk) and constant ϵ > 0, there exists no algorithm that solves the k-CYCG planted
search problem with error 1/poly(n) in time O(n⌈k/2⌉−ϵ).

42

Finally, we consider relations between the planted search and search problems. We note that
we can essentially treat the planted search and search problems as equivalent in the dense setting
where m(n) ≤ c · nk for any constant c < 1 using the results in [6] where it was shown that

the planted distribution D(n)
P and non-planted distribution D(n)

U have at most 1/poly(n) statistical
distance meaning that algorithms for the planted search problem will also work for the standard
search problem. We note the prior work considered one single input list as opposed to k input lists,
but the proof remains identical.

Theorem D.6 ([6]). For all constant k ≥ 3 and (group ensemble G such that) m ≤ c ·nk for some
constant c < 1, suppose there exists an algorithm that runs in time T (n) and solves the k-SUMm

(k-CYCG) planted search problem with error probability 1/poly(n). Then, there exists an algorithm
that solves the k-SUMm (k-CYCG) search problem in time T (n) with error probability 1/poly(n).

Additionally, we note that equivalences were shown even when m = nk in [6]. However, these
reductions incur larger error probability increases.

E Single-List k-SUM and k-CYC

We present another common variant of k-SUM and k-CYC where the input consists of a single list
of size n. As a caveat, we will focus on the setting where we insist the k indices of the solution have
to be unique. In the worst-case, these are equivalent. However, we are unaware of an equivalence in
the average-case. We choose the unique index solution setting as we are able to present a reduction
to the k-list search problem.

Definition E.1 (Single List Search Problem). For k ≥ 0 and group ensemble (G,⊙), an algorithm A
correctly solves the k-LIST single list search problem if it outputs the following in each corresponding
scenario:

• If there exists a solution, A outputs y1 ̸= . . . ̸= yk ∈ [n]k satisfying the equation L[y1]⊙ . . .⊙
L[yk] = 1.

• If no solution exists, A outputs ⊥.

We say algorithm A has failure probability ϵ(n) if

Pr[A(L) is correct] ≥ 1− ϵ(n)

where the randomness is over the internal coin tosses of A and random choice of L from D(n)
U .

Definition E.2 (k-SUM Single List Search Problem). The k-SUM single list search problem is the

single list search problem with group ensemble (G
(m)
k-SUM,+).

Definition E.3 (k-CYC Single List Search Problem). The k-CYC single list search problem is the
single list search problem with cyclic group ensemble G.

Next, we show that there exists a way to reduce random input instances of the single list search
problem into random input instances of the k-LIST search problem. We present the reduction
algorithm A′ below that uses an algorithm A that solves the k-LIST search problem.

A′(L):

43

1. For i = 1, . . . , O(kk · log n):

(a) Initialize empty lists L1, . . . , Lk.

(b) For each x ∈ L, pick uniformly random i ∈ [k] and append x to Li.

(c) For j = 1, . . . , O(log n):

i. Pad each Li to size n by appending uniformly random elements.

ii. Execute r ← A(L1, . . . , Lk).

iii. If r ̸= ⊥:
A. If r = (y1, . . . , yk) ∈ [n]k is a valid solution in L, return r.

2. Return ⊥.

Theorem E.4. For all constant k ≥ 3 and (group ensemble G such that) m ≥ c · nk for some
constant c > 1, suppose there exists an algorithm that runs in time T (n) and solves the k-SUMm

(k-CYCG) search problem with error 1/poly(n). Then, there exists an algorithm that solves the
k-SUMm (k-CYCG) single list search problem in time Õ(T (n) + n) with error 1/poly(n).

Proof. Suppose that L contains a solution. For any iteration of i, we know the probability that the
k different summands appear in different lists. This occurs with probability at least 1/kk = Θ(1)
since k is constant. Since there are O(kk · log n) iterations, we know that there exists at least one
iteration of i where the each entry of the solution appears in different lists except with probability
n−c

′
for any constant c′ > 0. Now, consider any iteration of j assuming the solution appears in

different lists. We note the probability that an additional solution that contains one of the padding
random elements is at most nk/m = 1/c. As j iterates O(log n), we know there exists one iteration
of j where no additional solution contained a random padded element exists. In this case, we know
that A′ will return the correct solution with probability at least 1/poly(n). Additionally, we note
that A′ never returns an incorrect non-⊥ solution (such as one including a padded random element).
So, if A′ breaks out during any of the iterations for j, it will return a correct solution. Therefore, if
there is a solution in L, A′ returns it with probability 1/poly(n)− 1/nc = 1/poly(n) for sufficiently
large c. Similarly, if no solution exists in L, then A will always return ⊥.

Suppose A runs in time T (n). Note, that we run A at most O(kk log2 n) = O(log2 n) times.
Additionally, there is at most Õ(n) running time for preparing the inputs to A as well as checking
solutions. Altogether, A′ has running time Õ(T (n) + n) time.

F Extensions of Theorem 4.1

We present some extensions of the DLog barrier for k-CYC to k-SUM reductions in Theorem 4.1. In
particular, we show that one can construct sub-exponential algorithms when assuming slightly more
efficient reductions and larger k = ω(1). Finally, we show the implications of the results towards
other number-theoretic assumptions and compare with the current state-of-the-art algorithms.

F.1 Sub-Exponential Algorithms using k = ω(1) Reductions

In Theorem 4.1, we showed any reduction running in time nk/2−Ω(1) would result in faster algorithms
for DLog running in time m1/2−Ω(1) for groups G of order m. This would result in polynomial time
speed-ups in m for DLog compared to the best known algorithms that run in time Õ(m1/2) for

44

popular elliptic curve groups (see [45, 60] for details). We show that one can essentially consider
a variant of Theorem 4.1 where we consider poly(n) time reductions for super-contant choices
of k = ω(1). This would immediately result in sub-exponential time algorithms for the DLog
problem as well as the related number-theoretic problems (such as the factoring, RSA and quadratic
residuosity problems). These algorithms run in time mo(1) that is sub-exponential in the input size
of O(logm).

Theorem F.1. For any k = ω(1) and cyclic group ensemble G with size m, suppose that there exists
an efficient reduction in time poly(n) from a random instance of size n for k-CYCG to a random
instance of size O(n) for k-SUMm. Then, there exists a sub-exponential mo(1) time algorithm solving
DLogG.

Proof. The proof follows identically to Theorem 4.1 where we first map a random instance of DLogG

to a random dense instance of k-CYCG where n = m(1+c)/k for some constant c > 0. Afterwards,
we use the reduction to obtain a random k-SUMm instance with input lists of size O(n). Finally,
we execute Wagner’s algorithm (see Theorem A.2) that solves the random k-SUMm instance in
time mo(1) for some constant ϵ > 0. As a result, we obtain an algorithm for DLog that runs in
Õ(n) +mo(1) = mo(1) time as n = m(1+c)/k = mo(1) since k = ω(1).

As an immediate corollary, we also obtain sub-exponential time algorithms for related number-
theoretic algorithms using prior works [9] showing that DLog over composite order groups enables
factoring.

Corollary F.2. For any k = ω(1), suppose that there exists an efficient reduction in time poly(n)
from a random instance of size n for k-PRODm to a random instance of size O(n) for k-SUMm.
Then, there exists a sub-exponential mo(1) time algorithms for the factoring, RSA and quadratic
residuosity problems.

F.2 Factoring

We show the implications of Corollary F.2 for factoring z-bit integers. The current, state-of-the-
art factoring algorithms can be divided into two categories: algorithms with provable running
time guarantees and algorithms with heuristic running time guarantees. The fastest algorithms for
factoring used in practice today typically fall from the latter group with only heuristic running time
guarantees such as the quadratic sieve and the general number field sieve (see Chapter 6 in [32]
for more details). Given an z-bit integer input, both of these algorithms are conjectured to run in
sub-exponential 2o(z) time.

For the category of algorithms with provable running times, the best algorithm remains variants
of the Pollard-Strassen method [75] that runs in time 2z/4+o(1) when given a z-bit integer input.
There are also algorithms that run in time 2z/5+o(1) time assuming the generalized Riemann hypoth-
esis [23]. It remains a major barrier to obtain provably secure algorithms in time 2z/4−Ω(1) without
relying on other number-theoretic conjectures. Relating back to Corollary F.2, we immediately see
that an average-case reduction from k-PROD to k-SUM in poly(n) time for k = ω(1) would result
in a provably sub-exponential algorithm for factoring that would be a huge breakthrough in the
area. In fact, any nk/5+o(1) reduction for k ≥ 16 from k-PROD to k-SUM would result in a provably
2z/5+o(1) time algorithm for factoring that would also be a substantial breakthrough.

45

F.3 RSA and Quadratic Residuosity

Next, we show implications of reductions from k-PROD to k-SUM with respect to the state-of-the-
art algorithms for the RSA problem [76]. Recall that the RSA problem considers a modulus of
the form m = pq where p and q are prime numbers. The public parameters of the RSA problem
are some modulus m and public exponent e ∈ Z∗ϕ(m). For a random target t ∈ Zm, the goal is to
output some element x ∈ Zm such that xe = t. In other words, the output x is the e-th root of the
target t in Zm. It is well known that factoring the modulus m into its factors p and q is sufficient
to solve the RSA problem (see [22] for example). Prior works have also shown some evidence that
solving the RSA problem seems equivalent to factoring. For example, any algorithms that solve
the RSA problem in the generic ring model (analogous to the generic group model) would result
in a factoring algorithm as well [5]. This ends up being true even in the case of preprocessing [33].
There is prior work [57] that have obtained algorithms for computing e-th roots faster than factoring
that modify the quadratic sieve and general number field sieve algorithms. Once again, these rely
upon algorithms with only heuristic running time guarantees. Using Corollary F.2, we obtain
provably sub-exponential time algorithms for RSA (via factoring) that would also constitute a
major breakthrough in RSA attacks.

It turns out that the landscape is similar for the quadratic residuosity problem [50]. Again, the
problem consists of a public modulus m = pq where the prime factors p and q are hidden. Given
an integer a such that

(
a
m

)
= 1 using the Legendre symbol, the goal is to determine whether a is a

quadratic residue modulo m. That is, determine if there exists b such that a = b2 mod m. To our
knowledge, the best attacks on the quadratic residuosity assumption with provable time guarantees
are the factoring algorithms. Therefore, Corollary F.2 would again constitute a huge breakthrough
in attacks with provable running times for the quadratic residuosity problem.

F.4 Computational and Decisional Diffie-Hellman

We can also consider relations with the computational Diffie-Hellman (CDH) and decisional Diffie-
Hellman (DDH) problems. It is clear that any algorithms that successfully solves the DLog problem
may be immediately used to solve either the CDH or DDH problems. It turns out that the best
algorithms for either CDH or DDH on popular elliptic curve groups remain the best generic algo-
rithms for solving DLog [45, 60] that run in time Õ(m1/2) for groups of order m. In the generic
group model, prior work [30] has been shown that the efficiencies for all three of DLog, CDH and
DDH are the same (in the constant error regime). Therefore, Theorem 4.1 and Corollary F.2
would result in faster algorithms for both CDH and DDH constituting another breakthrough in
cryptographic attacks.

G Supplementary Material for Section 4

The first result from prior works by Dai [34] and Wagner [80] essentially shows that faster algorithms
for k-CYC would result in faster algorithms for DLog.

Theorem G.1 ([34, 80]). For all k ≥ 3 and group ensemble G such that m = Θ(nk), suppose there
exists an algorithm that runs in time T (n) for the k-CYCG search problem with error probability
1/poly(n). Then, there exists an algorithm that solves the DLogG problem in time Õ(T (n)) with
error probability 1/poly(n).

46

The other result is Hellman’s algorithm [52] as well as the analysis by Fiat and Naor [44] for
inverting random functions.

Theorem G.2 ([52, 44]). Given a function f : X → X where the probability that any two random
elements map to the same image of f is q. There exists an algorithm that uses space S and time
T to compute inverses of f with error probability 1/poly(|X |) such that S2T = Õ(q · |X |3).

H Universal One-way Function

This appendix section gives a self-contained discussion of what we need for universal one-way
functions, adapted from [47, Section 2.4.1]

Recall that we call a function f length-regular if for any two inputs x1, x2 such that |x1| = |x2|,
it is also true that |f(x1)| = |f(x2)|, and we call a length-regular function length-increasing if for
any two inputs x1, x2 such that |x1| < |x2|, it is also true that |f(x1)| < |f(x2)|.

We assume every function we discuss is length-increasing, unless otherwise stated. This is
without loss of generality, because for every function f computable in p(·) time where p is an
increasing function, we can instead consider the function f ′ defined as f ′(x) = f(x)∥10p(|x|)−|f(x)|.
It is easy to see that f ′ can be computed in Õ(p(·)) time, and any algorithm inverting f ′ can
be easily converted into an algorithm inverting f and vice versa, up to a logarithmic factor time
overhead.

Lemma H.1. Suppose ℓ ≥ 2 is a constant and f : {0, 1}∗ → {0, 1}∗ is a function computable in nℓ

time where n is the input length. Then there exists a function g : {0, 1}∗ → {0, 1}∗ computable in
N2 time where N is the input length, such that, if there exists a (possibly randomized) algorithm
B, constant d > 0, constant c ≥ 2, a function ε : Z>0 → [0, 1] and infinitely many N such that

Pr
y←U({0,1}N)

[g(B(1N , g(y))) = g(y)] ≥ 1− ε(N)

and B runs in N c time when the input is g(y) and y ∈ {0, 1}N , then there exists a (possibly
randomized) algorithm A and infinitely many n such that

Pr
x←U({0,1}n)

[f(A(1n, f(x))) = f(x)] ≥ 1− ε(nℓ)

and A(1n, f(x)) runs in nℓ(c+1) time for x ∈ {0, 1}n.

Proof. Define g as follows: for any n > 0, x ∈ {0, 1}n, nℓ−n ≤ t ≤ (n+1)ℓ−(n+1) and x′ ∈ {0, 1}t,
let g(x∥x′) := f(x)∥x′. (Note that if f is length-increasing, then g is also length-increasing.)

Suppose there is an algorithm B, d > 0, c ≥ 2 and infinitely many N as in the lemma statement.
Let A be the following algorithm:

1. Suppose the input is (1n, z).

2. For every nℓ − n ≤ t ≤ (n+ 1)ℓ − (n+ 1), uniformly sample zi ← {0, 1}t.

3. For every nℓ − n ≤ t ≤ (n+ 1)ℓ − (n+ 1), run B(1n+t, z∥zt) for (n+ t)c time, and if B halts
and outputs an (n+ t)-bit string, let the output be denoted by xt, otherwise let xt = ⊥.

47

4. If any t satisfies g(xt) = z∥zt, output the n-bit prefix of xt, otherwise output ⊥ (if there are
more than one t that satisfies this, choose one of them arbitrarily).

Since there are O(nℓ−1) possibilities fo t and the running time of B is (n+ t)c, the running time of
A is O(nℓ−1) · Õ((n+ t)c), which is at most nℓ(c+1) when n is sufficiently large.

For any N that satisfies the lemma statement, let (n, t) be the unique pair such that nℓ ≤
N < (n + 1)ℓ and n + t = N . Note that if g(xt) = z∥zt, then f(n-bit prefix of xt) = z and
t-bit suffix of xt = zt. We thus have

Pr
x←U({0,1}n)

[f(A(1n, f(x))) = f(x)]

≥ Pr
x←U({0,1}n),zt←U({0,1}t)

[f(n-bit prefix of B(1N , f(x)∥zt)) = f(x)]

≥ Pr
x←U({0,1}n),zt←U({0,1}t)

[f(n-bit prefix of B(1N , f(x)∥zt))∥(t-bit suffix of B(1N , f(x)∥zt)) = f(x)∥zt]

= Pr
x←U({0,1}n),zt←U({0,1}t)

[g(B(1N , g(x∥z))) = g(x∥z) ∧ |B(1N , g(x∥z))| = N]

= Pr
y←U({0,1}N)

[g(B(1N , g(y))) = g(y)]. (Since g is length-increasing)

≥ 1− ε(N) ≥ 1− ε(nℓ).

Since there are infinitely many N that satisfy the lemma statement, there is also infinitely many n
that satisfy the above.

Let Q : {0, 1}∗ ×{0, 1}∗ → {0, 1}∗, (M,x) 7→ 0|M |−11∥M∥x. It is easy to see that given a string
y, there is either at most one pair (M,x) such that Q(M,x) = y. Q can be understood as an
encoding of two strings into one string. Note that |Q(M,x)| = 2|M |+ |x|.

Lemma H.2. Let U be a universal Turing machine with logarithmic overhead in the running time.
Consider the following function u : {0, 1}∗ → {0, 1}∗ defined as follows:

u(Q(M,x)) := Q(M,U |x|
2
(M,x)).

That is, u parses the input as (M,x) and simulates M on input x with at most |x|2 time, and then
outputs M the output of M (encoded with Q). If the input cannot be parsed as (M,x), let u output
0|Q(M,x)|2+1, which u never outputs if the input can be parsed as (M,x).

If there exists a (possibly randomized) algorithm B, constant d > 0, constant c ≥ 2, a function
ε : Z>0 → [0, 1] and infinitely many N such that

Pr
y←U({0,1}N)

[u(B(1N , u(y))) = u(y)] ≥ 1− ε(N)

and B runs in N c time when the input is u(y) and y ∈ {0, 1}N , then for any quadratic-time length-
increasing Turing machine M , there exists a (possibly randomized) algorithm A and infinitely many
n such that

Pr
x←U({0,1}n)

[M(A(1n,M(x))) = M(x)] ≥ 1− 22|M |ε(n)

and A(1n,M(x)) runs in nc+1 time for x ∈ {0, 1}n.

Proof. Suppose there is an algorithm B, constant d > 0, constant c ≥ 2 and infinitely many N that
satisfies the lemma statement. Let A be the following algorithm:

48

1. Suppose the input is (1n, z).

2. Run B(12|M |+n, Q(M, z)) for (2|M | + n)c time. If B halts and outputs an (2|M | + n)-bit
string, parse the output as Q(M ′, x′). Otherwise let M ′ = ⊥ and x′ = ⊥.

3. If M ′ = M and M(x′) = z, output x′, otherwise output ⊥.

Since the running time of B is (2|M | + n)c, the running time of A is at most nc+1 when n is
sufficiently large.

For any N that satisfies the lemma statement, let n = N − 2|M |. We have

Pr
x←U({0,1}n)

[M(A(1n,M(x))) = M(x)]

= Pr
x←U({0,1}n)

[M ′ = M ∧M(A(1n,M(x))) = M(x)] (A does not output ⊥ only if M = M ′)

= Pr
x←U({0,1}n)

[(M ′,M ′(A(1n,M(x)))) = (M,M(x))]

= Pr
x←U({0,1}n)

[u(B(1N , Q(M,M(x)))) = Q(M,M(x))]

= Pr
x←U({0,1}n)

[u(B(u(Q(M,x)))) = u(Q(M,x))]

= Pr
y←U({0,1}2|M|+n)

[u(B(u(y))) = u(y) | the (2|M |)-bit prefix of y is 0|M |−11∥M]

≥
Pr

y←U({0,1}2|M|+n)
[u(B(u(y))) = u(y)]− Pr

y←U({0,1}2|M|+n)
[the (2|M |)-bit prefix of y is not 0|M |−11∥M]

Pr
y←U({0,1}2|M|+n)

[the (2|M |)-bit prefix of y is 0|M |−11∥M]

= 1− 22|M |

nd
.

Since there are infinitely many N that satisfy the lemma statement, there is also infinitely many n
that satisfy the above.

Now we prove Lemma 3.1.

Proof of Lemma 3.1. Let u be the function as defined in Lemma H.2. Since there is no one-way
function, for any constant d > 0, there exists an Nd-time algorithm B such that for infinitely many
N ,

Pr
y←U({0,1}N)

[u(B(1N , u(y))) = u(y)] ≥ 1− 1

Nd
.

We apply Lemma H.2 and then Lemma H.1 to reach the conclusion.

49

	Introduction
	Our Contributions
	Technical Overview
	Related Works

	Preliminaries and Definitions
	Notation
	k-SUM, k-PROD and k-CYC
	k-SUM, k-PROD and k-CYC with Preprocessing
	Zero-k-Clique
	Discrete Logarithms

	Algorithms when One-Way Functions Don't Exist
	Planting algorithms and general statements
	Results for k-LISTG
	Results for Zero-k-Clique

	Relations between k-SUM, k-CYC and DLog
	Barriers to k-CYC, k-PROD and k-SUM Reductions
	Reductions between DLog-Preprocess and k-CYC-Index
	Average-Case k-SUM-Index and k-CYC-Index Algorithms

	Algorithms for Average-Case k-SUM in Dense Setting
	k-SUM Algorithm of Wagner C:Wagner02
	Inapplicability to k-PROD and k-CYC

	Existence of Solution
	Decision k-SUM and k-CYC
	Planted k-SUM and k-CYC
	Single-List k-SUM and k-CYC
	Extensions of Theorem 4.1
	Sub-Exponential Algorithms using k = (1) Reductions
	Factoring
	RSA and Quadratic Residuosity
	Computational and Decisional Diffie-Hellman

	Supplementary Material for sec:reductions
	Universal One-way Function

