
On Quantum Money and Evasive Obfuscation

Mark Zhandry
NTT Research

mzhandry@gmail.com

Abstract

We show a black box barrier against constructing public key quantum money from obfusca-
tion for evasive functions. As current post-quantum obfuscators based on standard assumptions
are all evasive, this shows a fundamental barrier to achieving public key quantum money from
standard tools. Our impossibility applies to black box schemes where (1) obfuscation queries
made by the mint are classical, and (2) the verifier only makes (possibly quantum) evaluation
queries, but no obfuscation queries. This class seems to capture any natural method of using
obfuscation to build quantum money.

1 Introduction
Wiesner’s quantum money [Wie83] is the original quantum cryptographic protocol, dating back
to 1970 (though not published until much later). Wiesner’s scheme, however, has a number of
undesirable drawbacks [Aar09, Lut10]. To remedy these problems, Aaronson [Aar09] proposes the
goal of constructing public key quantum money, where banknotes can be verified by anyone, while
only the mint has the ability to generate new notes. We will henceforth use the term “quantum
money” to refer to its public key variant, which in the last 15 years has become one of the central
goals in the field of quantum cryptography. Unfortunately, while there have been a number of
proposals for quantum money [Aar09, FGH+12, AC12, Kan18, Zha19, KSS21, KLS22, LMZ23,
Zha24], many of them were subsequently broken [LAF+10, CPDDF+19, Rob21, LMZ23], and the
bulk of the ones that remain (e.g. [FGH+12, Kan18, KSS21, LMZ23, Zha24]) rely on new and
poorly understood computational assumptions.

The closest we have to a proof relative to standard assumptions is using obfuscation. Gen-
eral purpose program obfuscation, formalized by [BGI+01] and first constructed by [GGH+13],
has been a powerful tool for cryptography. Since its introduction, obfuscation has enabled numer-
ous novel applications in cryptography and more generally computer science theory (e.g. [SW14,
HSW14, BZ14, BPR15, CHN+16, CPR17, GSWW22]). In the setting of quantum money, Ben-
David and Sattath [BDS16] propose instantiating the hidden subspace framework of [AC12] with
general purpose program obfuscation. Zhandry [Zha19] subsequently proves the scheme is secure
assuming a notion of obfuscation called indistinguishability obfuscation (iO), or an even weaker
form of obfuscation implied by iO referred to as subspace-hiding obfuscation. This, however, punts
the analysis of quantum money security to the study of obfuscation, and while there are several
candidate post-quantum iO constructions (e.g. [GGH15, BGMZ18, BDGM20, WW21]), they too
rely on new and poorly understood computational assumptions, some of which have been chal-
lenged [HJL21, JLLS23].

1

The difficulty of building quantum money extends to many other related unclonable objects.
For example, quantum copy protection [Aar09] for either programs producing digital signatures
or for programs decrypting ciphertexts of a public key encryption scheme would imply quantum
money. Likewise, certain forms of software leasing [AL21] imply quantum money. Essentially, any
kind of unclonable object that admits public verification likely can be used to realize quantum
money. As such, any attempt to build these objects would first have to build quantum money
along the way.

In this work, we make progress towards justifying the difficulty of building public key quantum
money by showing a black box impossibility for a natural class of protocols build from evasive
obfuscation.

The Evasive Barrier. In a pair of beautiful concurrent works [GKW17, WZ17], it was shown how
to obfuscate a class of functions called compute-and-compare (C&C) programs. These programs
represent the state-of-the-art for what is achievable from standard post-quantum lattice-based
assumptions, namely Learning with Errors (LWE). C&C programs are very general, encompassing
many natural programs, such as pattern matching with wildcards, hyperplane membership, certain
programs involving decryption functions, and more. This generality has led to a number of classical
and quantum applications (e.g. [CVW+18a, BKP19, BS20, AL21, ABG+21, Zha21, CLLZ21]).
Some works [Tsa22, VWW22] even construct “Null iO”, a type of obfuscation for all-zeros circuits,
which includes as a special case witness encryption [GGSW13]. Their assumption is a plausible yet
non-standard variant of LWE called “evasive LWE.”

Unfortunately, C&C obfuscation, Null iO, and witness encryption only apply to sub-classes
of evasive functions. These are (distributions over) functions where any input is negligibly likely
to be accepted by the function. For example, in hyperplane membership, a random hyperplane
(with random offset from the origin) of low dimension is chosen. In this case, C&C obfuscation
guarantees that nothing is learned about the hyperplane. But nothing is guaranteed if, say, there
were a certain point p and the hyperplane is chosen from a non-uniform distribution that contains
p with noticeable probability.

That LWE seems limited to evasive functions is a well-known barrier, and is closely related
to other well-known barriers. An example is the fact that LWE can be used to realize predicate
encryption [GVW15, WZ17], which can be seen as an evasive form of functional encryption, while
general functional encryption from LWE remains out of reach. It should be noted that obfuscation
for general evasive functions is at the same time much more extensive than what is currently
achievable from LWE and even its non-standard variants.

Given that obfuscation is one of the most promising routes toward convincing quantum money
schemes, but techniques from standard assumptions seem limited to evasive obfuscation, it is there-
fore natural to ask: can quantum money be built from obfuscation for evasive function families?

Possible strategies for using evasive obfuscation. The subspace-hiding obfuscation used to
achieve quantum money in [Zha19] looks tantalizingly similar to the hyperplane obfuscation that can
be achieved using C&C obfuscation. Indeed, both obfuscate subspaces/hyperplanes. However, the
security notion is different in some important ways. Hyperplane obfuscation via C&C obfuscation
must be evasive, and loses all security guarantees if a single accepting input is known. Meanwhile,
subspace hiding obfuscation is inherently non-evasive. For starters, as defined in [Zha19], subspace
hiding obfuscation obfuscates spaces S that pass through the origin. These can never be evasive,

2

since the origin is an accepting input. The origin can be easily excluded in order to obfuscate with
C&C obfuscation, and also later work [CLLZ21] extend to cosets, which do not pass through the
origin at all. But even here, the notion of subspace-hiding obfuscation is still inherently non-evasive.
This is because the security model for subspace-hiding obfuscation additionally gives the adversary
a description of a non-trivial subspace T of S, and requires S to still be hidden. But such T trivially
allows the adversary to find accepting inputs, violating evasiveness.

On the other hand, in the actual security game for quantum money, the adversary is never given
such a subspace T . Instead, T is only an artifact of the security proof in [Zha19]. This means that
subspace-hiding obfuscation is potentially stronger than what is actually needed to prove security.
Given how close subspace-hiding is to what can be achieved by C&C obfuscation, it is natural to
wonder if a better proof strategy could avoid giving the adversary points in S, thereby allowing a
security proof under evasive subspace obfuscation.

Digging deeper, while the quantum money security game does not explicitly hand out accepting
inputs to S, it does give the adversary the ability to compute an accepting input to S. Indeed,
the adversary is given, in addition to an obfuscation of S (and also and obfuscation of S⊥), a valid
quantum money state, which is a uniform superposition over S. By measuring the money state,
the adversary obtains an element in S. Likewise, the adversary can measure the money state in
the Fourier basis to obtain an element in S⊥. However, it does not appear possible to obtain an
accepting input in both S and S⊥ simultaneously1. Oone may hope that this means that one of S
and S⊥ may remain evasive.

Another direction would be to divide the subspace S into two pieces S0, S1, and obfuscate each
piece separately. For instance, if S is a subspace of Fn2 , then S0, S1 could actually be two affine
sets. The adversary can measure the banknote superposition, which gives an accepting input to S0
or S1, violating the evasiveness of one of the spaces. But importantly, no inputs are generated for
the other space. Therefore, it may seem that we can invoke evasive obfuscation for at least one of
S0, S1.

It is also possible to move beyond subspaces, and perhaps obfuscate more complex sets S.
For example, if one could find an (evasive) set S such that the Fourier transform of the uniform
superposition over S has small support S′, then the money state could be the uniform superposition
over S, and the mint would output obfuscations of S and S′. Linear subspaces with S′ = S⊥ are
but one example of such sets. Could more general sets be obfuscated sufficiently using evasive
obfuscation to get secure quantum money?

A Black Box Impossibility. In this work, we make a significant step toward answering the
above in the negative, by showing a black box barrier to achieving quantum money from evasive
obfuscation. In particular, approaches like those above cannot work to yield quantum money from
evasive obfuscation. Our main theorem is the following:

Theorem 1. There is no black box construction of quantum money from evasive obfuscation where
(1) obfuscation queries made by the mint are classical, and (2) the verifier makes no obfuscation
queries.

The class of quantum money schemes captured by Theorem 1 capture most natural approaches
to building quantum money via obfuscation. Indeed, [AC12] has this form. Additionally, all existing

1Aside from the obvious point at the origin, which can be eliminated by moving to cosets.

3

constructions of copy protection using obfuscation [AL21, ALL+21, CLLZ21, LLQZ22] are also of
a similar form. We give a more in-depth discussion of such schemes in Section 3 below.

Our notion of evasive obfuscation also encompasses one-way functions as a special case, and so
as a corollary, we also separate a natural class of quantum money protocols from one-way functions.

Our results help explain the difficulties in constructing public key quantum money, and give
guidance for future attempts at building it from evasive obfuscation – including one-way functions
– by showing a wide class of natural schemes that must be avoided in any attempted construction.
This is only the second known barrier for public key quantum money (following [AHY23]), and to
the best of our knowledge the first barrier for constructing anything from evasive obfuscation, be
it quantum protocols or otherwise. See Section 3 for a more thorough discussion of related work
and interpretation of our results.

2 Proof Overview

2.1 How to model evasive obfuscation

We follow the typical approach in black box separation literature, and specify oracles relative to
which evasive obfuscation exists, but quantum money of a particular flavor does not. The starting
point is the natural approach to providing oracles for ideal obfuscation: provide a random oracle
O mapping programs plus random coins to bit-strings that acts as the obfuscator, and an oracle E
used to evaluate the obfuscated program. E will take as input an “obfuscated program” P̂ , which is
just a bit-string produced by O, and an input x. It inverts O to obtain the original un-obfuscated
program P such that O(P) = P̂ , and then outputs P (x). Since we are interested in modeling
quantum computation, we will allow these oracles to be accessed on quantum superpositions on
inputs. It is straightforward to show that these oracles implement any reasonable notion of ob-
fuscation, including evasive obfuscation but also the widely-used indistinguishability obfuscation
(iO) or virtual black box (VBB) obfuscation, which is known to be impossible in the standard
model [BGI+01].

The problem is that quantum money actually exists relative to this oracle! Indeed, this oracle
can be used to implement the subspace membership oracles of [AC12] which are shown to give rise
to quantum money. In fact, it was shown by [Zha19] that even iO suffices for building quantum
money. So we need to ensure somehow that our oracles do not give iO.

Our solution is a simple tweak to E above. Whenever P (x) would accept, in addition to
outputting 1, E also outputs the code of the original un-obfuscated program P . Importantly, for
rejecting inputs E still outputs only 0, giving no information about P other than the fact that
P (x) = 0. For evasive obfuscation, the adversary will never be able to find an accepting input,
meaning this change to E does not affect the adversary’s view. Thus the oracles remain secure for
evasive programs. However, for non-evasive programs, all security is compromised since a single
accepting input reveals the original program in the clear.

Remark 1. Our oracles are in fact not far from what happens in the case of LWE-based obfuscators
for C&C programs and Null iO [GKW17, WZ17, Tsa22, VWW22], and related candidates for iO
based on lattices [GGH15, HHSS17]. Indeed, in these constructions, an accepting input leads to
certain leakage, which has been exploited in attacks [CGH17, CVW18b] to obtain information about
the original program.

4

As is typical in the black box separation literature, we will restrict the adversary to polynomially-
many queries to O, E , but we allow for unbounded computation outside the queries. This is to rule
out trivial constructions that simply assume a standard-model quantum money scheme (such as
one based on existing candidates for iO) and ignore the oracle. By giving the adversary unbounded
power outside the oracles, all such standard-model constructions are insecure, and the only way to
obtain a secure scheme is to use the given oracles. Thus this model captures schemes that actually
use evasive obfuscation as their source of security. Proving an impossibility in this model thus
justifies the impossibility of using evasive obfuscation to construct quantum money.

2.2 Our impossibility

We now turn to actually proving that quantum money is impossible in our oracle model. Let Gen
be the note generation procedure, and Ver the verifier. Per [AC12], we will only consider the case
of a “mini-scheme”, where there is only a single banknote. That is, Gen samples a serial number
σ and money state $, and Ver verifies that $ is a valid banknote with respect to serial number σ.
The adversary is given σ, $, and tries to construct two (potentially entangled) banknotes $1, $2 that
both pass verification with respect to σ.

Recall we restrict to protocols where the mint’s obfuscation queries are classical, and the verifier
makes no obfuscation queries. A standard argument shows we can assume the mint makes no
verification queries, and the verifier only evaluates programs obfuscated by the mint. We call such
schemes “respecting.”

Step 1: Measuring a random query. Our starting point is the following: suppose Ver’s queries
to E place very little weight on any accepting inputs to programs queried by the mint. In this case,
we can actually simulate Ver’s queries to E by ourselves by simply responding to each query with
reject. This will introduce some error related to the weight of accepting inputs in the queries, which
is small by assumption. Thus we get an approximately correct verifier that makes no queries at
all. It is easy to see that such a verifier is impossible in our model, since the adversary can use its
unbounded computation to brute-force arbitrarily-many states that are accepted by the verifier.

On the other hand, if Ver’s queries place significant weight on accepting inputs to programs
queried by the mint, then we can measure a random query and we will find an accepting input
with reasonable probability. Then we can run E on the measured query, and since E accepts, we
actually learn one of the original un-obfuscated programs. If the mint only obfuscated a single
program, we can again simulate Ver’s queries since we now have de-obfuscated the only program
and can evaluate it without making queries. As before, we can use our unbounded computation to
brute-force many accepting money states.

But what if the mint obfuscates many programs, and Ver places significant weight on accepting
inputs to the various different programs? For example, this occurs in our example of splitting the
subspace S into two obfuscated spaces S0, S1. Ver will test membership in S by testing membership
in S0 ∪ S1, which involves making superposition queries to each of the spaces S0, S1.

When we measure a query, we are likely to find an accepting input — and hence the original
un-obfuscated program — for one of the obfuscated programs. But the other programs so far will
remain secure, meaning we cannot simulate Ver’s queries on these programs. The problem is that
our measurement has now destroyed the one money state we have. Thus, we may not be able to
produce even a single valid money state from what we have, let alone two. And we cannot brute-

5

force the state since we still have to make queries to E to evaluate the remaining secure programs,
and we are query-bounded.

Step 2: State repair. Our solution to the above problem is to repair the quantum money
state after measuring a random query. Specifically, we employ the quantum state repair procedure
of [CMSZ22]. This procedure gives the following informal guarantee: suppose a state is accepted by
some binary-outcome measurement M1, and then is fed into another multi-outcome measurement
M2. Applying M2 may have destroyed the state and M1 may no longer accept, but by repairing
the state using the procedure in [CMSZ22] we return to a state accepted by M1, though it may be
different than the original accepting state.

In our case, M1 will be Ver(σ, ·), and M2 will be our measurement of a random query to E . After
repairing the state, we therefore have simultaneously one of the original un-obfuscated programs,
but also a quantum money state that passes verification. We can therefore repeat the process,
measuring a random query again, potentially getting another one of the original programs. Since
there are only a polynomial number of programs, after sufficiently-many iterations of this process,
we will eventually stop obtaining new programs. At this point the query weight on programs we do
not have is small, meaning we can approximately simulate Ver’s queries and perform the brute-force
search for money states.

There are several caveats to getting the repair procedure to work here. Some will be discussed
below. But here, we briefly point out that the repair procedure runs in time that grows with the
number of measurement outcomes of M2. In particular, in our oracle setting, the number of queries
the above strategy must make grows with the number of possible measurement outcomes, which
must therefore be polynomial. This means we cannot naively measure the query, as the query
domain contains exponentially many (obfuscated-program, input-to-program) pairs. However, we
can take the number of possible query responses to actually be a polynomial: if the mint obfuscates
P programs, the response can be 0 for a rejecting input, or 1 together with one of the P original
un-obfuscated programs in the case of accepting inputs. Therefore, by only measuring the query
response as opposed to the query itself, we obtain the information we are after (the original program)
while only having polynomially-many outcomes.

When applied to our running example of splitting the space S into separate spaces S0, S1, the
point is that it actually is true that one of the obfuscations of S0, S1 may remain secure if we
are only given these two obfuscations, but fails since we must give out more than obfuscations
of S0, S1 to have a secure scheme. In more detail, recall that by measuring the banknote (which
recall is a uniform superposition over S), the adversary will learn an input to one of S0, S1 but
not both. Using our evasive obfuscation oracle, the adversary will therefore learn one of the spaces
S0, S1, but not both. With only knowledge of one of S0, S1, the adversary is unable to produce two
valid banknotes. The problem is that in [AC12], having a membership tester for S (which in our
case is obtained by membership testing for S0, S1) is not enough to give a secure quantum money
scheme. Instead, the verifier also needs to be able to check membership in the dual space S⊥ in
order to give a secure scheme. But once we give out any means to verify banknotes securely (say
through obfuscating S⊥ or other means), we can run state repair to get back to a valid banknote.
Once we have a valid banknote, we can measure again, and with reasonable probability we will
learn the other space. Once we learn both S0, S1, we therefore know S and can easily forge new
banknotes. Observe that this argument is very general, as it did not actually use that S0, S1 or S⊥
were subspaces, or any details about how verification works.

6

Compatible verifiers. Besides requiring M2 to have polynomially-many outcomes, there are
other requirements we need to be aware of to get state repair from [CMSZ22] to work. First, we
need that M1 — that is, Ver — is projective, or at least a relaxation called almost projective.
While many quantum money schemes such as [AC12] are indeed projective, this is not a normal
requirement to be a valid money scheme. Using dilation, we can assume Ver is projective over
the joint system of the money state and some ancilla qubits that are initialized to |0⟩. We could
try defining the money state as this joint system, but the naive solution may not be secure: an
adversary may be able to fool Ver into accepting bad money states if those states have the ancilla
qubit set to something other than |0⟩. After all, Ver is only guaranteed to work correctly when the
ancilla is initialized |0⟩, but an adversary that supplies the ancilla can initialize it to anything. Of
course, we could have Ver first perform a measurement to check that the ancilla are |0⟩, but now
Ver is not projective any more since measuring for |0⟩ and evaluating Ver might be incompatible
measurements.

A more subtle issue is that state repair requires M2 to be projective as well, meaning measuring
Ver’s queries needs to be projective. In general, this is not the case. Indeed, the queries will
be written to some ancilla qubits in order to be sent to the oracle. One can try to un-compute
the query post-measurement by running the verifier in reverse, but because of the measurement,
the ancilla in general will remain, and may be entangled with the money state. This means the
measurement cannot be projective on the money state itself. The measurement will be projective
on the joint system including the ancilla, but in this case we run into the issue above that Ver could
be fooled by initializing a bad ancilla.

Our solution is to view Ver as a projective measurement over the joint system of money state
and ancilla, but carefully re-design Ver to ensure that it remains secure. Essentially, Ver now per-
forms a mixture of two projective measurements: the original verification viewed as a projection
over the joint system, and the projection of the ancilla onto |0⟩. By using techniques developed
by [MW04, Zha20], we can implement a measurement that is a weighted average of both measure-
ments. Importantly, by carefully choosing the relative weights of the two measurements, we can
enforce that any state which passes our new verification has almost all its mass on states accepted
by each of the two projections. This allows us to show that our new verifier is both correct and
secure. The resulting verifier is also almost projective [Zha20], which is sufficient for state repair.

This solution also resolves the issue of M2 being projective: M2 considered as a measurement
over the joint system including the ancilla is projective.

Remark 2. An interesting consequence is that, once the verifier is (almost) projective, we can
amplify correctness without further blowing up the note size: basically, when generating a note,
check if the note is accepted by verification, and if not, discard the note and start over. This gives
an alternative means to amplify correctness of weakly correct schemes, which may be more efficient
in terms of storage requirements than the naive solution of parallel repetition.

3 Discussion, Other Related Work, and Open Questions
Additional Motivation: black box separations for quantum protocols. Black box separa-
tions are a useful tool for understanding the (in)feasibility of constructing certain objects. Besides
helping to explain why the community has not been able to give better constructions, black box
separations also guide future research efforts by showing what types of constructions cannot work.

7

In our case, our results show that any quantum money construction from evasive obfuscation must
either be non-respecting or make non-black-box use of the obfuscator.

While numerous separations are known in the classical setting, the literature on black box
separations for quantum protocols is relatively sparse, with only a few prior results [HY20, ACC+22,
CLM23, AHY23]. As such, there are relatively few known techniques for proving such separations.

At a technical level, a common classical technique for black box separations (and the general
approach we employ in our separation) is to run one or more of the cryptographic algorithms
several times, view the queries the algorithms make to their oracles, then use this information in
some way. For example, many separations will use this information to try to “compile out” the
use of the oracle from the algorithm, by using the information to simulate the oracle responses.
Unfortunately, viewing adversary’s queries, and in particular the compiling out approach, can be
difficult to adapt to the quantum setting. The reason is that, if the algorithm makes quantum
queries to the oracle, then it is impossible to observe the query without perturbing the algorithm’s
state. Once even a small amount of information is extracted from the queries, this perturbation
may make it hard or impossible to continue running the algorithm.

Perhaps because of challenges like these, existing quantum separations have been limited to
separating from relatively simple objects like one-way functions or one-way permutations.

Our work demonstrates how quantum state repair can, at least in certain cases, be used to
compile out oracle queries from quantum protocols. By using our new technique, we are able
to separate quantum money from evasive obfuscation, a very powerful and structured object. Our
ideas therefore further the set of techniques available for proving separations in the quantum setting.

On our restricted class of protocols. We briefly discuss our restrictions on protocols handled
by Theorem 1, by arguing that such protocols capture essentially any natural construction using
obfuscation, including all known obfuscation-based approaches to quantum money. First, it is
unclear what use the verifier would have in actually obfuscating programs, since the point of
obfuscating a program is to hide something, but the verifier does not need to hide anything from
itself. So it seems natural verifiers would not make use of the obfuscation functionality, just
the evaluation functionality. It is also unclear what the mint would accomplish by obfuscating
a superposition of programs: since obfuscated programs are random strings, it is possible to show
that the superposition of obfuscated programs is indistinguishable from being fully measured. In
this case, we might as well have just measured the query in the first place, meaning only classical
queries are required.

There may be some room to do non-trivial things by having the mint only produce a few bits of
an obfuscated program. In this case, superpositions are distinguishable from measured. However,
it is impossible to evaluate a program from just a few bits of its description, so it is unclear how to
use program obfuscation in this way.

Implications. Our result separates a natural class of quantum money schemes from evasive
obfuscation. This captures natural approaches to adapt [AC12] to the evasive setting. It also
captures certain natural attempts to build quantum money from one-way functions. Indeed, any
evasive obfuscator for, say, point functions is in particular trivially a one-way function. Applying
our impossibility rules out construction of quantum money from a one-way function f , where the
mint only makes classical queries to f , and the verifier cannot evaluate f , but can instead submit
(superpositions of) pairs (x, y), to which it receives in response a (superposition of) bits indicating

8

if y = f(x).
More generally, our impossibility seems to capture natural constructions involving the evasive

obfuscation of non-cryptographic functions. Care must be taken, however, when trying to interpret
our results when applying evasive obfuscation to cryptographic programs. The motivation for
considering cryptographic programs is that evasive obfuscation for such programs yields a number of
powerful cryptographic objects, and we may hope to additionally get a separation from those objects
through our impossibility. For example, evasive obfuscation applied to a one-way function (as
opposed to considering the evasive obfuscator as the one-way function) gives public key encryption.
We may therefore hope to conclude that there is no black box construction of quantum money from
public key encryption. The problem is that our proof works in a model where we allow the adversary
to be computationally unbounded. While we model the evasive obfuscator as an oracle and restrict
the number of queries, any other cryptographic object that we may apply the evasive obfuscator to
will be trivially broken in our model.

We could try to fix this issue by modeling the supposed cryptographic object as an oracle, and
bound the queries to the oracle. This will require updating our model of evasive obfuscation to
work with query-aided programs that may make queries to the cryptographic object. For example,
we could model a one-way function by a random oracle, and then allow the evasive obfuscator to
operate on programs that make random oracle queries. However, our impossibility will run the
verifier for the quantum money scheme an exponential number of times. While we take care to
first remove evasive obfuscation queries from the verifier (so that the impossibility only needs a
polynomial number of queries to the evasive obfuscator), if the original verifier made any queries to
the oracle implementing the additional cryptographic object, our impossibility will end up making
an exponential number of queries to the object. Therefore, we need to restrict to protocols where
the verifier makes no queries to the additional cryptographic object.

We now consider the application to public key encryption. Evasive obfuscation yields public
key encryption as follows: the secret key is an input x to a one-way function f , and the public
key is the output y = f(x). The ciphertext is an obfuscation of the program that takes as input
a candidate secret key x′, and outputs the message m if and only if f(x′) = y. As a consequence
of the above discussion, we get an impossibility of constructing quantum money from public key
encryption, subject to the following restrictions:

• The mint only encrypts using classical keys/messages/randomness.

• Verification cannot run key generation (as it would require making queries to f) and cannot
encrypt messages (as it would require obfuscating programs).

While this gives some separation from public key encryption, it is unclear how meaningful it may
be.

Existing black box separations for quantum money. The only prior black box separation
for quantum money is the recent work of [AHY23]. That work shows it is impossible to build a
black box construction of quantum money from random oracles, assuming that verification makes
only classical queries to the underlying hash function. In particular, this shows that it is impossible
to build quantum money of this form from collision resistance or one-way functions, the latter which
can be seen as a special case of evasive obfuscation for point functions. Thus, our work complements
theirs by offering more barriers to constructing quantum money from standard assumptions.

9

Other approaches to quantum money from lattices. Obfuscation is not the only approach to
building quantum money. In particular, [Zha19] discusses a potential approach to building quantum
money from lattice assumptions by constructing hash functions that are not collapsing [Unr16]. The
recent candidate quantum money scheme of [KLS22] can also be seen as following this high-level
idea. Unfortunately, [LZ19] show that Ajtai’s [Ajt96] function based on lattices is collapsing. More
recently, [LMZ23] show that a wide class of lattice-based quantum money schemes based on this
approach cannot be secure. Combined with our work, this shows that all known approaches to
building quantum money from tools implied by standard lattices are unlikely to work.

4 Preliminaries

4.1 Basic Quantum Preliminaries

Much of this section is taken almost verbatim from [CMSZ22]. A (pure) quantum state is a vector
|ψ⟩ in a complex Hilbert space H with ∥|ψ⟩∥ = 1; in this work, H is finite-dimensional. We denote
by S(H) the space of Hermitian operators on H. A density matrix is a positive semi-definite
operator ρ ∈ S(H) with Tr(ρ) = 1. A density matrix represents a probabilistic mixture of pure
states (a mixed state); the density matrix corresponding to the pure state |ψ⟩ is |ψ⟩⟨ψ|. Typically
we divide a Hilbert space into registers, e.g. H = H1 ⊗ H2. We sometimes write, e.g., ρH1 to
specify that ρ ∈ S(H1).

A unitary operation is a complex square matrix U such that UU † = I. The operation U
transforms the pure state |ψ⟩ to the pure state U |ψ⟩, and the density matrix ρ to the density
matrix UρU †.

A projector P is a Hermitian operator (P † = P) such that P 2 = P . A projective measurement
is a collection of projectors P = (Pi)i∈S such that ∑i∈S Pi = I. This implies that PiPj = 0
for distinct i and j in S. The application of P to a pure state |ψ⟩ yields outcome i ∈ S with
probability pi = ∥Pi|ψ⟩∥2; in this case the post-measurement state is |ψi⟩ = Pi|ψ⟩/

√
pi. We refer to

the post-measurement state |ψi⟩ as the result of applying P to |ψ⟩ and post-selecting (conditioning)
on outcome i. A state |ψ⟩ is an eigenstate of P if it is an eigenstate of every Pi.

A two-outcome projective measurement is called a binary projective measurement, and is written
as P = (P, I− P), where P is associated with the outcome 1, and I− P with the outcome 0.

General (non-unitary) evolution of a quantum state can be represented via a completely-positive
trace-preserving (CPTP) map T : S(H) → S(H′). We omit the precise definition of these maps in
this work; we only use the facts that they are trace-preserving (for every ρ ∈ S(H) it holds that
Tr(T (ρ)) = Tr(ρ)) and linear.

For Hilbert spaces A,B the partial trace over B is the unique CPTP map TrB : S(A⊗B)→ H(A)
such that TrB(ρA ⊗ ρB) = Tr(ρB)ρA for every ρA ∈ S(A) and ρB ∈ S(B).

For every CPTP map T : S(H) → S(H)there exists a unitary dilation U that operates on an
expanded Hilbert space H ⊗ K, so that T (ρ) = TrK(U(ρ ⊗ |0⟩⟨0|K)U †). This is not necessarily
unique; however, if T is described as a circuit then there is a dilation UT represented by a circuit
of size O(|T |).

A general measurement is a CPTP map M : S(H) → S(H ⊗ O), where O is an ancilla reg-
ister holding a classical outcome. Specifically, given measurement operators {Mi}Ni=1 such that∑N
i=1MiM

†
i = I and a basis {|i⟩}Ni=1 for O, M(ρ) = ∑N

i=1(MiρM
†
i ⊗ |i⟩⟨i|O). We sometimes im-

plicitly discard the outcome register. A projective measurement is a general measurement where

10

the Mi are projectors. A measurement induces a probability distribution over its outcomes given
by Pr[i] = Tr(|i⟩⟨i|OM(ρ)); we denote sampling from this distribution by i←M(ρ).

The trace distance between states ρ,ρ′, denoted d(ρ,ρ′), and is defined as 1
2Tr(

√
(ρ− ρ′)2). The

trace distance is contractive under CPTP maps (for any CPTP map T , d(T (ρ), T (ρ′)) ≤ d(ρ,ρ′)).
It follows that for any measurement M, the statistical distance between the distributions M(ρ)
and M(ρ′) is bounded by d(ρ,ρ′).

We have the following gentle measurement lemma, which bounds how much a state is disturbed
by applying a measurement whose outcome is almost certain.

Lemma 2 (Gentle Measurement [Win99]). Let ρ ∈ S(H) and P = (Π, I−Π) be a binary projective
measurement on H such that Tr(Πρ) ≥ 1− δ. Let

ρ′ = ΠρΠ
Tr(Πρ)

be the state after applying P to ρ and post-selecting on obtaining outcome 1. Then

d(ρ, ρ′) ≤ 2
√
δ.

Quantum algorithms. In this work, a quantum algorithm is a quantum circuit built from some
universal quantum gate set. We will usually consider the Hilbert space for a quantum algorithm as
the product of of three registers Hin ×Hout ×Hwork. Here, input x is mapped to |x⟩ ∈ Hin where
{|x⟩} is some basis for Hin, the output of the algorithm is obtained by measuring Hout in some
basis, and Hwork is an ancilla register used as work space.

One typically considers the universal gate set as being unitary, giving unitary algorithms. We
can also consider algorithms with non-unitary gate sets, such as flipping random coins or making
measurements. In this case, the algorithms are non-unitary, and we say they are probabilistic.

Black-box access A circuit C with black-box access to a unitary U , denoted CU , is a standard
quantum circuit with special gates that act as U and U †. We also use CT to denote black-box
access to a map T , which we interpret as CUT for a unitary dilation UT of T ; all of our results
are independent of the choice of dilation. This allows, for example, the “partial application”
of a projective measurement, and the implementation of a general measurement via a projective
measurement on a larger space.

We model black-box (quantum) access to classical functions in the usual way: we make the
classical function f : X → Y unitary by having it act on registers Hin ×Hout by applying the map
|x, y⟩ 7→ |x, y ⊕ f(x)⟩. We will slightly abuse notation and write programs having black box access
to such a unitary as Cf .

Query weights and switching oracles. Consider an algorithm Af making queries to a classical
function f . During the ith query, the joint state ofA and the query has the form∑

x,y,z αx,y,z|x, y, z⟩,
where z is the state of A. Let wi(x) = ∑

y,z |αx,y,z|2. wi(x) is then the “query weight” of x in the
ith query to f . Let w(x) = ∑

iwi(x) where the sum ranges over all queries. w(x) is then the “total
query weight” of x. For a set S, we let w(S) = ∑

x∈S w(x), which we call the total query weight of
S. For a probabilistic (non-unitary) A, we define wi(x), w(x), w(S) as the expectation of the query
weight over the randomness of A.

11

Another way to think of query weight is as follows: run A to query i, and measure A’s state,
outputting x. The probability of obtaining a given x is exactly wi(x). If i is chosen uniformly in [q],
then the probability of obtaining x is w(x)/q. The following result is paraphrased from [BBBV97]:

Lemma 3 ([BBBV97] Theorems 3.1 and 3.3). Let Af be an algorithm making q queries to a
function f . Let f ′ be another function, and S the set of points x such that f(x) ̸= f ′(x). Suppose
that the total query weight of Af on S is at most ϵ. Then |Pr[Af () = 1]−Pr[Af ′() = 1]| ≤ O(√qϵ).

[BBBV97] prove only the case of unitary algorithms, but the unitary case easy implies the
probabilistic case via linearity of expectation and the concavity of √. We also note a simple
corollary:

Corollary 4. Let Af be an algorithm making q queries to a function f . Let Af be an algorithm
making q queries to a function f . Let f ′ be another function, and S the set of points x such that
f(x) ̸= f ′(x). Suppose that the total query weight of Af on S is at most ϵ. Then the total query
weight of Af ′ on S is at most O(

√
q3ϵ)

Proof. Let Bf be the algorithm which runs A, samples a random i ∈ [q], measures the ith query to
obtain x, and outputs 1 if and only if x ∈ S. Then Pr[Bf () = 1] is exactly w(S)/q = ϵ/q. Meanwhile
Pr[Bf ′() = 1] is exactly w′(S)/q where w′ is the total query weight of S in Bf ′ . By Lemma 3 we
know that |w(S)/q − w′(S)/q| ≤ O(√qϵ), meaning w′(S) ≤ w(S) + q ×O(√qϵ) = O(

√
q3ϵ)

Almost Projective Measurements. We state a property of general measurements due to [Zha20]
that captures when a measurement is “close” to being projective, in the sense that sequential ap-
plications of the measurement yield similar outcomes.

Definition 5. A real-valued measurement M = (Mp)p is (ϵ, δ)-almost projective if applying M
twice in a row to a register H (initially containing any state ρ) produces measurement outcomes
p, p′ where Pr[|p− p′| ≤ ϵ] ≥ 1− δ.

Quantum State Repair. We now recall quantum state repair from [CMSZ22].

Lemma 6 ([CMSZ22], Lemma 4.10). Given a projective measurement P on register H that has
outcomes in set S of size N , an (ϵ, δ)-almost projective measurement M on H, and T ∈ N, s ∈
S, p ∈ [0, 1], there exists a procedure QRepairM,P

T,p,s on H such that:

• (State is repaired with respect to M) Consider applying the following operations to register H
initially containing state ρ:

1. First apply M to obtain p ∈ [0, 1],
2. Then apply P to obtain outcome s ∈ S,
3. Then apply QRepairM,P

T,p,s,
4. And finally, apply M once more to obtain p′ ∈ [0, 1].

Then Pr[|p− p′| > 2ϵ] ≤ Nδ +N/T + 4
√
δ.

• (Efficiency) The expected total number of calls that QRepair makes to M and P is at most
N + 4T

√
δ.

12

In other words, since M is almost projective, applying M twice in a row will give outcomes p, p′
that are close. However, if P is applied in between these two measurements, there are no more
guarantees on the closeness of p, p′. However, by applying QRepair before the second application of
M, we can once again ensure closeness of p, p′.

Mixtures of Projective Measurements. The following is taken from [Zha20]. We consider
the following abstract setup. We have a collection P = {Pi}i∈I of binary outcome projective
measurements Pi = (Pi, Qi) over the same Hilbert space H. Here, Pi corresponds to output 0, and
Qi corresponds to output 1. We will assume we can efficiently measure the Pi for superpositions
of i, meaning we can efficiently perform the following projective measurement over I ⊗H:(∑

i

|i⟩⟨i| ⊗ Pi ,
∑
i

|i⟩⟨i| ⊗Qi

)
(1)

Here, we call P a collection of projective measurements, and call I the control. For a distribution
D over I, let PD be the POVM which samples a random i← D, applies the measurement Pi, and
outputs the resulting bit. We call PD a mixture of projective measurements. The POVM is given
by the matrices (PD, QD) where

P =
∑
i∈I

Pr[i← D]Pi and Q =
∑
i∈I

Pr[i← D]Qi

Next, for a ∈ R and interval [b, c] ⊆ R, denote the distance between a and [b, c] as |a− [b, c]| :=
minx∈[b,c] |a− x|. For a ∈ [b, c], the distance is 0 and for a /∈ [b, c], the distance is max(a− c, b− a).
Let D0, D1 be two distributions over R, with cumulative density functions f0, f1, respectively. Let
ϵ ∈ R. The Shift distance with parameter ϵ is defined as:

∆ϵ(D0, D1) := sup
x∈R

∣∣f0(x)− [f1(x− ϵ), f1(x+ ϵ)]
∣∣

Let M = (Mi)i∈I and N = (Nj)j∈J be real-valued quantum measurements over the same
quantum system H. The shift distance between M,N, denoted ∆ϵ(M,N) is defined as

∆ϵ(M,N) := sup
|ψ⟩

∆ϵ(M(|ψ⟩) , N(|ψ⟩))

Now, if PD = (PD, QD) is a mixture of projective measurements, we note that QD = I−PD, and
therefore PD, QD commute. In this case, PD has a projective implementation, denoted ProjImp(PD),
which is defined as follows. Let S be the set of eigenvalues of PD, and Ri for i the projectors onto
the associated eigenspaces. Then ProjImp(PD) is the projective measurement (Pi)i∈S . Note that
S ⊆ [0, 1]. Also note that applying PD is equivalent to the following: first apply ProjImp(PD) to
obtain outcome p, then interpret p as a probability and output 1 with probability p.
Lemma 7 ([Zha20], Theorem 6.2). For any ϵ, δ,P, D, there exists an algorithm APIP,Dϵ,δ operating on
H and making quantum queries to P, D which additionally outputs a number in some set S ⊆ [0, 1]
such that:

• There is a function R = poly(1/ϵ, log(1/δ)) such that the expected number of calls APIP,Dϵ,δ

makes to P and D, the running time of APIP,Dϵ,δ , and |S| are all bounded by R.

• APIP,Dϵ,δ is (ϵ, δ)-almost projective.

• ∆ϵ(APIP,Dϵ,δ ,ProjImp(PD)) ≤ δ.

13

4.2 Cryptographic Notions

Let λ be a security parameter. All quantities below will be implicit functions of λ. When we say
“polynomial” or “negligible”, we mean polynomial or negligible in λ.

4.2.1 Quantum Money

We now define what a quantum money scheme. As shown by [AC12], it suffices to consider “mini-
schemes”, where there is only a single banknote. A quantum money scheme is a pair of algorithms:

• Gen() samples a classical serial number σ and a quantum state $.

• Ver(σ, $) outputs a bit 0 or 1.

Correctness. We define correctness. Usually one considers negligible correctness error, but in
this work it will be convenient to consider relaxed forms of correctness where an honest banknote
may fail to verify with non-negligible but still bounded probability.

Definition 8. A quantum money scheme (Gen,Ver) is c-correct if
Pr[Ver(Gen())] ≥ c. (Gen,Ver) is correct if it is c-correct for some c such that 1− c is negligible.

Security. We now define security. Usually one considers negligible security, but in this work
it will be convenient to consider relaxed forms of security where an adversary may forge with
non-negligible but still bounded probability.

Definition 9. A quantum money scheme (Gen,Ver) is ϵ-secure if, for all quantum polynomial-time
oracle algorithms A, A wins the following game with probability at most ϵ:

• Run (σ, $)← Gen().

• Run ρ1,2 ← A(σ, $), where ρ1,2 is a joint state over registers H1,H2.

• Apply Ver(σ, ·) twice, once each to H1,H2, to get bits b1, b2.

• A wins if b1 = b2 = 1.

(Gen,Ver) is secure if it is ϵ-secure for some negligible ϵ.

4.2.2 Evasive Obfuscation

We now define evasive obfuscation. There are many possible notions of security for evasive ob-
fuscation, as explored by [BBC+14]. Our separation will apply to any reasonable notion, but for
concreteness we focus on only one definition, a composable and auxiliary-input version of input-
hiding obfuscation. We first define evasive circuits.

Let C be a family of circuits with domain {0, 1}n and range {0, 1} such that log |C| is polynomial.

Definition 10 (Evasive Distribution of Circuit Tuples). A distribution D over Cs × {0, 1}∗ is
evasive with auxiliary input if, for any QPT A, there exists a negligible function negl such that
Pr[∃i, Ci(A(aux)) = 1 : (C1, · · · , Cs, aux)← D] ≤ negl.

14

Definition 11. A composable input-hiding obfuscator for the class of circuits C is a pair of proba-
bilistic polynomial time algorithms Obf,Eval with the following properties:

• Correctness. There exists a negligible function negl such that, for any circuit C ∈ C and
any input x ∈ {0, 1}n, Pr[Eval(Ĉ, x) = C(x) : Ĉ ← Obf(C)] ≥ 1− negl, where the probability
is over the random choice of C and the randomness of Obf,

• Composable Input-hiding (with auxiliary input). For any evasive distribution over
circuit tuples D, any QPT oracle-aided adversary A, and any polynomial ℓ, there exists a
negligible negl such that for any i ∈ [s], Pr

[
Ci(A(Ĉ1, · · · , Ĉs, aux)) = 1 : (C1,··· ,Cs,aux)←D

Ĉj←Obf(Cj) for j∈[s]

]
≤

negl.

The usual notion of input-hiding evasive obfuscation corresponds to the restriction to s = 1
and aux being empty. Thus our notion is a significant generalization. This makes our separation
stronger.

5 The Model
Let n = n(λ), t = t(λ), w = w(λ) be polynomials, and let C = (Cλ)λ be any family of circuits such
that log |Cλ| is polynomial. From now on, we will drop the security parameter λ, leaving it implicit
as with our cryptographic definitions. Assume w ≥ t+ log2 |C|. Consider the following oracles:

• O : C ×{0, 1}t → {0, 1}w is a random injection. Here, O will play the role of obfuscator, with
the input r ∈ {0, 1}t being the random coins of the obfuscator. The outputs Ĉ ∈ {0, 1}w will
therefore play the role of obfuscated program

• E : {0, 1}w×{0, 1}n → C∪{⊥} for special symbol ⊥. E is defined defined as follows. On input
(Ĉ, x) ∈ {0, 1}w × {0, 1}n, first check if Ĉ is in the image of O. If not, output ⊥. Otherwise,
run (C, r) ← O−1(Ĉ) and compute b = C(x). If b = 1, output C; otherwise output ⊥. E
plays the role of evaluation algorithm for the obfuscator. Note that the value of b can be
inferred from the output of E .

Definition 12. A quantum polynomial time (QPT) algorithm in our model is a quantum oracle al-
gorithm AO,E that makes polynomially-many queries to O, E, but may have unbounded computation
outside the oracle.

O, E give evasive obfuscation for the class C. We discuss how the oracles above give obfus-
cation for evasive circuits. The oracles will give evasive obfuscation for any meaningful notion, but
for concreteness we show that they give our notion of composable input-hiding.

Theorem 13. For any t, w such that t = ω(log λ) and w ≥ t + log2 |C| + ω(log λ), the obfuscator
Obf = O,Eval = E is a composable input-hiding obfuscator for C.

Proof. Let D be an evasive distribution of circuit tuples. Let A be a potential adversary against
Obf,Eval relative to D. Let ϵ be the probability A wins the composable input-hiding experiment.
We consider the following experiments on A:

15

• Experiment 1. Sample O, E . Sample (C1, . . . , Cs, aux) ← D. Then run Ĉj ← Obf(Cj) =
O(Cj , rj) for j ∈ [t]. where rj ∈ {0, 1}t are uniform. Now run x ← AO,E(Ĉ1, · · · , Ĉs, aux).
The experiment outputs 1 if Ci(x) = 1 for any i ∈ [s]; that is, if A wins the composable
input-hiding experiment. Thus the probability Experiment 1 outputs 1 is ϵ1 = ϵ.

• Experiment 2. This is identical to Experiment 1, except we condition on the rj being
distinct. Let ϵ2 be the probability the experiment outputs 1. Note that the rj are distinct
except with probability O(s2/2t). Thus, |ϵ1 − ϵ2| ≤ O(s2/2t) = negl.

• Experiment 3. Here, we delay the sampling of O, E . Sample (C1, . . . , Cs) ← D. Then
sample uniform distinct r1, . . . , rj and uniform distinct Ĉj ← {0, 1}w for each j ∈ [s]. Only
now do we sample O, E : we sample O as a random injection conditioned on Ĉj = O(Cj , rj),
and define E accordingly. Finally we run x← AO,E(Ĉ1, · · · , Ĉs, aux). The experiment outputs
1 if Ci(x) = 1 for any i ∈ [s]. Let ϵ3 be the probability Experiment 3 outputs 1. Experiments
2 and 3 are identically distributed, so ϵ3 = ϵ2.
Note that in Experiment 3, we can equivalently sample O, E as follows. First sample a
uniform distinct rj ∈ {0, 1}t and Ĉj ∈ {0, 1}w. Then sample random injective O′ : (C ×
{0, 1}t) \ {(Cj , rj)}j → {0, 1}w \ {Ĉj}j , and then define

O(C, r) =
{
Ĉj if (C, r) = (Cj , rj)
O′(C, r) otherwise

E(Ĉ, x) =

(Cj , rj) if Ĉ = Ĉj for some j and Cj(x) = 1
(C, r) if Ĉ is in the image of O′, (C, r) = (O′)−1(Ĉ), and C(x) = 1
⊥ otherwise

• Experiment 4. This is identical to our alternate view of Experiment 3, except that O′ is
sampled as a random injection from O′ : (C × {0, 1}t) \ {(Cj , rj)}j → {0, 1}w. Let ϵ4 be the
probability Experiment 3 outputs 1. We see that the distribution of each output of O′ is
changed from uniform over {0, 1}w \ {Ĉj}j to uniform over {0, 1}w. The statistical distance
between these distributions is s/2w. Then a union bound over all |C| × 2t gives a distance of
|ϵ3 − ϵ2| ≤ s|C|2t/2w. This is negligible by our assumption that w ≥ t + log2 |C| + ω(log λ),
since s is polynomial. Thus, |ϵ4 − ϵ3| ≤ negl.
Note that in Experiment 4, we might as well sample O′ as a random injection on O′ :
C × {0, 1}t → {0, 1}w, since the values of O′ on {(Cj , rj)}j are ignored.

• Experiment 5. This is identical to Experiment 4, except that we define O, E in terms of O′
as follows:

O = O′

E(Ĉ, x) =

⊥ if Ĉ = Ĉj for some j
(C, r) if Ĉ is in the image of O′, (C, r) = (O′)−1(Ĉ), and C(x) = 1
⊥ otherwise

Let ϵ5 be the probability Experiment 5 outputs 1. Notice that the only differences between
Experiment 4 and Experiment 5 are the following:

16

– We changed E on inputs (Ĉ, x) such that both (1) Ĉ = Ĉj for some j, corresponding to
program Cj , and (2) Cj(x) = 1.

– We changed O on inputs (Cj , rj)

Observe that, in Experiment 5, the oracles are independent of the Cj . This allows us to conclude
the ϵ5 is negligible. Indeed, we can construct an algorithm A′(aux) which is given aux sampled from
(C1, . . . , Cs, aux)← D. A′(aux) runs A, simulating the view of A in Experiment 5. Then it outputs
whatever A outputs. Then A′ outputs an x such that Cj(x) = 1 for some j with probability exactly
ϵ5. But this probability must be negligible by the evasiveness of D.

It remains to prove that |ϵ4 − ϵ5| is negligible, which would then allow us to conclude ϵ is neg-
ligible, a contradiction. We prove this by showing that the total query weight by A in Experiment
5 on inputs where Experiment 4 and Experiment 5 differ is negligible; by Lemma 3 this means
|ϵ4 − ϵ5| is negligible as desired.

We must handle two different kinds of differing points.

• Queries to O on inputs (Cj , rj). Notice that in Experiment 5, the view of A is independent of
the rj . Since the rj are uniform in a super-polynomial-sized set, this means the total expected
query weight in Experiment 5 on points (Cj , rj) is negligible.

• Queries to E on inputs (Ĉ, x) such that both (1) Ĉ = Ĉj for some j, corresponding to
program Cj , and (2) Cj(x) = 1. We prove the query weight on such points is negligible in
Experiment 5 by constructing a different adversary A′′(aux) which is given aux sampled from
(C1, . . . , Cs, aux) ← D. A′′(aux) chooses a random i ∈ [Q], where Q is the total number of
queries A makes to E . Then it runs A, simulating the view of A in Experiment 5 up until A
makes the ith query. It then measures the query, obtaining (Ĉ, x); it outputs x.
The probability Cj(x) = 1 for some j is exactly 1/Q times the total query weight on such x.
By the evasiveness of D, this probability must be negligible. The query weight must therefore
also be negligible since Q is a polynomial.

This completes the proof of Theorem 13.

Remark 3. The requirement that t = ω(log λ) is necessary, as otherwise the adversary can detect
whether two programs are equal by testing if their obfuscated versions are equal. Such an equality
pattern could reveal an accepting input that would otherwise not be available just given aux.

However, if one restricts to the case of a single program (s = 1), then t can be taken to be 0. We
can also consider the class C of point functions Ix. In this case, the oracle E can be simulated just
given O: to test if Ĉ(x) = 1, simply check if O(Ix) = Ĉ. We are left with just a random injection
O, which acts as an injective one-way function. Thus, we see that our model of evasive obfuscation
also captures (injective) one-way functions.

6 The Canonical Verifier
Here, we discuss what we call a canonical verifier for a quantum money scheme. The goal is to
make the verifier almost projective, while allowing for the measurements of various queries to be
projective (the latter feature to be discussed in Section 7). Along the way, we give a new tool for
amplifying the correctness of a quantum money scheme, which may result in smaller banknotes
than the straightforward approach of parallel repetition.

17

Assume a c-correct quantum money scheme Gen,Ver. Let H be the register of the quantum
money state. For a serial number σ, let Verσ be the measurement corresponding to applying
Ver(σ, ·) to H. By dilation, we can make Verσ projective over the joint system H⊗Z, where Z is
initialized to |0⟩. Throughout we will let $ refer to the state over H produced by Gen and $′ the
state over the joint system H×Z. Let Z be the 1-dimensional projective measurement on Z which
accepts |0⟩. We will slightly abuse notation, and also consider Verσ, Z as being projections on the
joint system H×Z.

Fix parameters p, ϵ, δ, γ ∈ [0, 1]. Here, p, ϵ, γ will be inverse polynomials; the precise relationships
will be discussed in Section 7, which will be based in part on what we develop here. δ is negligible.
Let P(σ) = {Verσ, Z} be the set of projective measurements on H ⊗ Z, and Dp the distribution
over P which selects Verσ with probability p and Z with probability 1−p. We define a new verifier
for the quantum money scheme:

Algorithm 14 (Canonical Verifier). Let Ver∗,σ,p,ϵ,δ = APIP(σ),Dp

ϵ,δ which operates on H ⊗ Z, and
define Ver∗(σ, $ | c, p, ϵ, δ, γ) to be the following algorithm:

1. Apply Ver∗,σ,p,ϵ,δ to H⊗Z, obtaining outcome R

2. Accept if and only if R ≥ 1− p(1− c)− γ − ϵ

We also define a new note generator:

Algorithm 15 (Canonical Gen). Define Gen∗(| c, p, ϵ, δ, γ) to be the following algorithm:

1. Run (σ, $)← Gen(). Let H be the register containing $. As above, we will initialize a register
Z with |0⟩.

2. Apply Ver∗(σ, · | c, p, ϵ, δ, γ) to H⊗Z, letting $′ be the state remaining in H⊗Z.

3. If Ver∗ accepts, output (σ, $′). Otherwise discard (σ, $′) and go to Step 1.

In the rest of this section, we prove some general properties of Gen∗,Ver∗.

Correctness. We first consider the quantum money scheme (Gen,Ver∗). This is a slight abuse of
notation, since notes from Gen lie in H, whereas notes for Ver∗ lie in H⊗Z. When considering such
a scheme, we therefore interpret Gen as initializing Z to |0⟩, and outputting $′ = $⊗ |0⟩ ∈ H ⊗ Z
as the note.

Lemma 16. If Gen,Ver is c-correct, then Gen,Ver∗(·, · | c, p, ϵ, δ, γ) is c∗-correct, where c∗ =
γ

p(1−c)+γ − δ.

Proof. Consider sampling (σ, $)← Gen() and letting $′ = $⊗|0⟩ ∈ H⊗Z. Since Gen,Ver is c-correct,
we know that applying Verσ to $′ will accept with probability at least c (over the randomness of
both Gen and Verσ). Applying Z will accept with probability 1. Therefore, the mixture PDp(σ)
will accept with probability at least (1− p) + pc = 1− p(1− c).

Now consider applying ProjImp(PDp(σ)) to $′, resulting in outcome R. We know that E[R] is
equal to the probability PDp(σ) accepts, and so E[R] ≥ 1 − p(1 − c). Since R ≤ 1, we have that
1 − R ≥ 0 and E[1 − R] ≤ p(1 − c). By Markov’s inequality, we therefore have that Pr[1 − R >

p(1− c) + γ] ≤ p(1−c)
p(1−c)+γ . Equivalently, Pr[R ≥ 1− p(1− c)− γ] ≥ γ/(p(1− c) + γ).

18

Now we imagine computing R from APIP(σ),Dp

ϵ,δ as in Ver∗. By Lemma 7, we conclude that
Pr[R ≥ 1 − p(1 − c) − γ − ϵ] ≥ γ/(p(1 − c) + γ) − δ = c∗, and thus Ver∗ accepts with at last this
probability.

Lemma 17. Let T be the combined run time of Gen,Ver∗. If Gen,Ver is c-correct, then the expected
running time of Gen∗(| c, p, ϵ, δ, γ) is at most
T/
(

γ
p(1−c)+γ − δ

)
. Moreover, Gen∗(| c, p, ϵ, δ, γ),Ver∗(·, · | c, p, ϵ, δ, γ + ϵ) is (1− δ)-correct.

Proof. Each trial of Gen∗ takes time T , and succeeds with probability at least c∗ = γ
p(1−c)+γ − δ.

This proves the running time of Gen∗. Then (1−δ)-correctness follows from the fact that Ver∗,σ,p,ϵ,δ
is (ϵ, δ)-almost projective.

Security. We first need the following technical lemma characterizing the kind of states accepted
by Ver∗:

Lemma 18. Suppose p/(1−p) ≤ c/3 and 2ϵ+γ+δ ≤ pc/3. Consider applying Ver∗(σ, · | c, p, ϵ, δ, γ)
to a quantum state over H⊗Z, and post-select on acceptance. Let $ be the resulting state contained
in H⊗Z. Then Ver(σ, $) accepts with probability at least W ≥ c/9.

Proof. Let R be the outcome of the measurement Ver∗,σ,p,ϵ,δ applied during running Ver∗. By
definition, since Ver∗ accepted, we have R ≥ 1− p(1− c)− γ − ϵ. Now let v be be the probability
Verσ accepts $, and z the probability Z accepts $.

Now consider applying ProjImp(PDp(σ)) to a state $′ accepted by Ver∗, obtaining outcome R′.
By Lemma 7, we know that Pr[|R′−R| ≥ ϵ] ≤ δ. Therefore, we have that R′ ≥ 1−p(1−c)−γ−2ϵ,
except with probability δ. Since R′ must be non-negative, this implies that E[R′] ≥ (1− p(1− c)−
γ − 2ϵ)(1− δ) ≥ 1− p(1− c)− γ − 2ϵ− δ.

On the other hand, know that E[R′] = pv + (1 − p)z by the definition of v, z. In particular,
this means z ∈ [1− p(1−c)+γ+2ϵ+δ

1−p , 1]. Now consider the state $′′, which is the normalized state Z$′
resulting from applying Z to $′ and then post-selecting on acceptance. Let v′ be the probability
Verσ accepts $′′. Then by gentle measurement d($′, $′′) ≤ 2

√
1− z, meaning |v − v′| ≤ 2

√
1− z.

This means $′′ is accepted by Verσ with probability at least

v − 2
√

1− z = z + (E[R′]− z)/p− 2
√

1− z

≥ z + 1− z − p(1− c)− γ − 2ϵ− δ
p

− 2
√

1− z := f(z)

We now observe that f(z) is convex (its second derivative is (1 − z)−3/2/2). Moreover, its first
derivative vanishes when z = (1− 2p)/(1− p)2, meaning f(z) is minimized at this point. Thus, $′′
is accepted by Verσ with probability at least

f((1− 2p)/(1− p)2) = c− p

1− p −
2ϵ+ γ + δ

p
(2)

Now consider the following operation on $′. We discard the Z register, and then feed the
resulting state ρ contained in H into Ver. Since Ver is equivalent to applying Verσ on H with a
zero’d out Z register, we know that Ver will at least accept if (1) applying Z accepts, and then
(2) subsequently applying Verσ accepts (it may also accept if (1) does not happen). We already

19

computed the probability of (2) in Equation 2. Meanwhile, the probability of (1) is simply z, which
is lower-bounded by 1− p(1−c)+γ+2ϵ+δ

1−p . Therefore, Ver accepts ρ with probability at least

W :=
(

1− p(1− c) + γ + 2ϵ+ δ

1− p

)
×
(
c− p

1− p −
γ + 2ϵ+ δ

p

)
Now we use our assumption that p/(1− p) ≤ c/3 and 2ϵ+ γ + δ ≤ pc/3 to lower-bound W as

W ≥ (1− c/3− c/9) (c− c/3− c/3) ≥ c/9

This completes the proof of Lemma 18

Now we prove security of Ver∗.

Lemma 19. If Gen,Ver is α-secure and p/(1 − p) ≤ c/3 and 2ϵ + γ + δ ≤ pc/3, then the pair
Gen,Ver∗(·, · | c, p, ϵ, δ, γ) is α∗-secure, where α∗ = 81α/c2.

Proof. Consider any adversary A∗ for the α∗-security of Ver∗ . We construct an adversary A for
the α-security of Ver. A simply runs A∗ to get two (potentially entangled) quantum banknotes
ρ∗1,2. It runs Ver∗ on each of ρ∗1, ρ∗2. Then for each note ρ∗1, ρ∗2, it runs Ver∗, then discards the Z
register, and outputs the two H registers as ρ1,2.

The probability ρ∗1, ρ
∗
2 both pass Ver∗ is greater than α∗ by assumption. Then each of the

resulting H registers pass Ver with probability at least c/9 by Lemma 18. Overall, then, A produces
two accepting banknotes with probability greater than α∗(c/9)2 = α, breaking the α-security of
Ver.

Independence. One may be concerned that the events that the two H registers pass verification
are correlated, meaning though each passes Ver with probability c/9, both simultaneously pass
verification with probability somewhat larger than (c/9)2. Indeed, the two events are correlated.
However, while the events are correlated, it is straightforward to show that A still succeeds with
probability α. Toward that end, consider the following operations:

• Ob for b ∈ {1, 2}: the measurement Ver∗ that A applies to ρ∗b produced by A∗.

• Nb: the measurement Ver that the experiment performs on ρb produced by A

Note that O1, O2 commute as do O1, N2 and O2, N1, since the elements in each pair act on different
registers. Thus we can shuffle the order without affecting the outcome probabilities; the only
constraint is that Nb must come after Ob. So consider applying O2, O1, N1 in that order, and
only proceeding if the previous measurement accepts. We know that O2, O1 accept jointly with
probability more than α∗. But now we have a state that was just accepted by O1 and gets fed into
N1; we know via the above analysis that N1 accepts this state with probability at least W . Thus,
O2, O1, N1 all jointly accept with probability at least αW .

Next consider applying O1, N1, O2, N2 in that order. By commutativity and what we just
analyzed, O1, N1, O2 jointly accept with probability at least αW . But now we have a state that
was just accepted by O2 and gets fed into N2; we know that N2 accepts this state with probability
at least W . Thus O1, N1, O2, N2 jointly accept with probability at least αW 2. This completes the
proof of Lemma 19.

20

Lemma 20. If Gen,Ver is α-secure and p/(1− p) ≤ c/3 and 2ϵ+ γ + δ ≤ pc/3, then
Gen∗(| c, p, ϵ, δ, γ),Ver∗(·, · | c, p, ϵ, δ, γ + ϵ) is α∗∗-secure, where
α∗∗ = α∗ ×

(
γ

p(1−c)+γ − δ
)−1

= (81α/c2)×
(

γ
p(1−c)+γ − δ

)−1
.

Proof. Let A∗∗ be an adversary breaking the α∗∗-security of Gen∗,Ver∗. We will construct a new
adversary A∗ for Gen,Ver∗. A∗(σ, $) does the following:

1. Using our abuse of notation, we will interpret $ as a state over the joint system H⊗Z, where
Z is initialized to |0⟩.

2. Apply Ver∗(σ, · | c, p, ϵ, δ, γ) to H⊗Z. If it rejects, abort and output ⊥.

3. Otherwise, apply A∗∗(σ, ·) to H⊗Z, obtaining state ρ1,2. Output ρ1,2.

By Lemma 19, the success probability of A∗ is at most α∗. Conditioned on not rejecting, the state
given to A∗∗ is identically distributed to the state (σ, $)← Gen∗(| c, p, ϵ, δ, γ), meaning conditioned
on not rejecting the success probability of A∗ is more than α∗∗. On the other hand, the probability
of rejection is bounded by

(
γ

p(1−c)+γ − δ
)
. Therefore, the overall success probability of A∗ must be

more than α∗∗ ×
(

γ
p(1−c)+γ − δ

)
= α∗, a contradiction.

In particular, if Gen,Ver is negligibly secure, then Gen∗,Ver∗ is negligibly secure while also being
(1 − negl)-correct. This gives a new approach to amplifying the correctness of a quantum money
scheme. Previously, the only known approach was parallel repetition: each banknote consists of
several independent notes, and the overall note is accepted as long as at least one of the constituent
notes is valid. This simple correctness amplification technique, however, blows of the note size
be ω(log λ)/c. Our solution also blows up the note size, since the verifier’s workspace qubits
become part of the note. But for schemes with very low correctness and/or little workspace qubits,
our approach will yield smaller banknotes. Certainly the serial numbers will be shorter with our
approach.

7 Impossibility for Respecting Quantum Money
Here, we prove that there is no black box construction of a respecting quantum money scheme from
evasive obfuscation.

Quantum Money Relative to Evasive Obfuscation Oracles. It is straightforward to adapt
the definition of quantum money (Definition 9) to a relativized model where Gen,Ver and the
adversary may make queries to an oracle. Likewise, the results of Section 6 are also easily adapted
to a relativized model. From this point forward, we will consider the case where Gen,Ver and the
adversary have oracle access to our evasive obfuscation oracles from Section 5. We now define what
it means to be respecting:

Definition 21. A quantum money scheme (Gen,Ver) relative to the evasive obfuscation oracles
O, E is respecting if the following are true: (1) Gen makes only classical queries to O, and (2) Ver
makes no queries to O.

21

Since the outputs of O are sparse, a standard argument shows that we can assume (incurring
negligible error) all queries to E(Ĉ, x) were of Ĉ previously outputted by O. Since Gen “knows”
all queries made to O, it can answer all E queries for itself. Thus, we can additionally assume for
respecting schemes that Gen makes no queries to E .

Our main theorem. We now give the main theorem of this section and the paper:

Theorem 22. If w ≥ t + log2 |C| + ω(log λ), there does not exist a respecting quantum money
scheme relative to the evasive obfuscation oracles O, E.

The rest of this section is devoted to the proof of Theorem 22.

7.1 Measuring Queries

Before describing our attack, we describe how to use canonical verifiers to measure queries. Let
GenO,E ,VerO,E be a quantum money scheme relative to evasive obfuscation oracles O, E . We will
consider Ver taking as input a money state in system H, and using ancilla register Z as work space,
where Z is initialized to |0⟩. Let Q be the number of queries that Ver makes to E . We define
projections Πσ,q,f on H ⊗ Z where q ∈ [Q] and f is a function with domain {0, 1}w × {0, 1}n,
corresponding to the query inputs for a query to E :

• Let Uσ,q be the unitary which runs Ver(σ, ·) until the qth query to E . Apply Uσ,q to H⊗Z.

• The query to E interprets H⊗Z as containing ∑Ĉ,x,y,a µĈ,x,y,a|Ĉ, x, y, a⟩, where Ĉ, x are the
inputs to the query, the output is XORed into y, and a is the remaining part of the quantum
system.
Πσ,q,f does the following: construct ∑Ĉ,x,y,a µĈ,x,y,a|Ĉ, x, y, a⟩|f(Ĉ, x)⟩ by applying f in su-
perposition to the query registers, writing the response to a new register I.

• Πσ,q,f now measures I to obtain measurement outcome I. It discards the register I.

• Finally, Πσ,q,f applies the unitary U †σ,q to H⊗Z.

It is clear that Πσ,q,f is projective over H ⊗ Z. This will be important for our application of
state repair, since state repair [CMSZ22] requires projections.

7.2 The Attack

Let Gen,Ver be a respecting scheme that is c-correct. Recall that a respecting scheme is one where
Gen makes only classical queries to O, and Ver makes no queries to O. Let VerE∗,σ,p,ϵ,δ be the almost
projective measurement over the joint system H⊗Z from Section 6, and VerE∗ (·, · | c, p, ϵ, δ, γ) the
associated canonical verifier. Let P be the number of queries Gen makes to O and Q be the number
of queries Ver makes to E . We now describe our attack

Algorithm 23. Let AE(σ, $) be the following algorithm:

1. Let H be the register containing $, and initialize a new register Z to |0⟩.

2. Initialize an empty list L.

22

3. Apply VerE∗,σ,p,ϵ,δ to H⊗Z, obtaining outcome R0.

4. Let f be the function that on input (Ĉ, x) ∈ {0, 1}w × {0, 1}n computes y = E(Ĉ, x). If
y = C ̸= ⊥, then output (C, Ĉ); otherwise output ⊥.

5. Let U be a parameter to be chosen later. For i = 1, . . . , U , do the following:

(a) Choose a random qi ∈ [Q]
(b) Apply the measurement Πi = Πσ,qi,f to H⊗Z, and let yi be the outcome of the measure-

ment.

(c) Then apply QRepair
VerE

∗,σ,p,ϵ,δ ,Πi

T,Ri−1,yi
where T =

√
1/δ.

(d) If yi has the form (C, Ĉ) ̸= ⊥, add (C, Ĉ) to L (if it not already present).
(e) Finally, run VerE∗,σ,p,ϵ,δ on H⊗Z, obtaining outcome Ri.

6. Let E ′ be the following function:

E ′(Ĉ, x) =
{
C if there is a pair (C, Ĉ) ∈ L and C(x) = 1
⊥ otherwise

7. Inefficiently construct $1, $2, two copies of a state ρ over H satisfying the following, assuming
it exists:

• Pr[VerE ′(σ, ρ) = 1] ≥ V := c/9−Q
√
P/(U − 1).

• The query weight VerE ′(σ, ρ) makes on terms (Ĉ, x) such that Ĉ does not appear in L is
at most W := Q2√P/(U − 1)

8. Output $1, $2.

7.3 Analysis

We prove that A in Algorithm 23 succeeds with non-negligible probability. We first show that, if
|ψ⟩ exists, then the states outputted by A pass verification:

Lemma 24. Suppose a state ρ (as in Step 7) exists, and consider running VerE(σ, ρ). Then Ver
accepts with probability at least V −O(

√
QW).

Proof. Let S be the set of terms (Ĉ, x) such that Ĉ does not appear in L. By assumption, we have
that Pr[VerE ′(σ, ρ) = 1] ≥ V and the total query weight on terms in S is at most W . Observe that
E(Ĉ, x) = E ′(Ĉ, x) for all (Ĉ, x) /∈ S. Therefore, by Lemma 3, we have that Pr[VerE(σ, ρ) = 1] ≥
V −O(

√
QW).

We now demonstrate that |ψ⟩ exists with reasonable probability.

Lemma 25. Let P be the number of queries made by Gen. Assuming w ≥ t+log2 |C|+ω(log λ), then
with probability at least X =

(
γ

p(1−c)+γ − δ
)
−
(
U(2P + 6)

√
δ
)
−(negl), Ri ≥ 1−p(1−c)−γ−2(i+1)ϵ

for all i ∈ [0, U]

23

Proof. By the γ
p(1−c)+γ − δ correctness of Gen,Ver∗ (Lemma 17), R0 ≥ 1− p(1− c)− γ − 2ϵ except

with probability at most δ. This gives the first term in the statement of Lemma 25.
Let O be the set of query responses from the queries Gen makes to O. We first imagine replacing

the measurements Πi = Πσ,qi,f with Πi = Πσ,qi,f ′ , where

f ′(Ĉ, x) =
{
f(Ĉ, x) if Ĉ ∈ O
⊥ otherwise

A routine argument shows that VerE only has negligible query mass to E on (Ĉ, x) such that both
Ĉ /∈ O and f(Ĉ, x) ̸= ⊥. This is because Ĉ that are in the image of O are negligibly sparse in
{0, 1}w, and Ver can only have information about the Ĉ that were the result of previous queries to
O, namely the set O.

Then we observe that f and f ′ coincide except on (Ĉ, x) such that both Ĉ /∈ O and E(Ĉ, x) ̸= ⊥.
Since the weight on these points is negligible, Lemma 3 shows that the effect of switching from f to
f ′ is negligible. We therefore proceed assuming the measurements applied are Πi = Πσ,qi,f ′ . This
introduces an error that gives the third term in the statement of Lemma 25.

Suppose that Ri−1 ≥ 1 − p(1 − c) − γ − 2iϵ. Applying Lemma 6 gives Ri ≥ Ri−1 − 2ϵ ≥
1− p(1− c)− γ − 2(i+ 1)ϵ, except with probability Z = Nδ +N/T + 4

√
δ where N is the number

of outcomes of the measurement Πi = Πσ,qi,f ′ . But the number of outcomes is |O|+ 1 = P + 1, as
the outcome can either be ⊥ or one of the P circuits C such that are queried by Gen. Recall that
T =

√
1/δ. Thus Z = (P + 1)(δ +

√
δ) + 4

√
δ ≤ (2P + 6)

√
δ. Union-bounding over all i gives the

the second term in the statement of Lemma 25, proving the lemma.

Lemma 26. Consider the state ρi of H⊗Z at the end of Step 5e during the ith iteration. Assume
Ri ≥ 1− p(1− c)− γ − 2(i+ 1)ϵ, and assume p/(1− p) ≤ c/3 and 2(U + 1)ϵ+ γ + δ ≤ pc/3. Then
Pr[1← VerE(σ, ρi)] ≥ c/9.

Proof. The requirement that Ri ≥ 1− p(1− c)− γ − 2(i+ 1)ϵ is the same as saying that Ver∗(σ. ·
| c, p, ϵ, δ, γi) accepts ρi, where γi = γ + 2iϵ. Then Lemma 26 follows immediately from Lemma 18.

Lemma 27. Let S be the set of terms (Ĉ, x) such that (1) Ĉ was the result of an obfuscation query
by Gen, and (2) Ĉ does not appear in L by the end of running A. Consider applying VerE(σ, ρi)
where ρi is as in Lemma 26. Then there exists some iteration i ∈ [1, U − 1] such that the query
weight VerE(σ, ρi) places on S is at most PQ/(U − 1)

Proof. Let Li be the list L at the end of the ith iteration, and let L0 = {} be the initial L. Let Si
be the set of terms (Ĉ, x) such that Ĉ does not appear in Li. Since Li ⊆ LU , we have S = SU ⊆ Si.
Let wi(S) and wi(Si) be the query weight VerE(σ, ρi) places on S and Si respectively. Observe
that, in iteration i + 1, we apply Πσ,qi+1,f to ρi. Therefore, the probability of obtaining a Ĉ /∈ Li
in iteration i+ 1 is wi(Si)/Q; in such an event, we have that |Li+1| = |Li|+ 1.

Therefore, E[LU] = ∑U−1
i=1 wi(Si)/Q ≥ Q−1∑U−1

i=1 wi(S). But we also have that E[LU] ≤ P .
Therefore, there must exist some i ∈ [1, U − 1] such that wi(S) ≤ PQ/(U − 1).

Now fix an i guaranteed by Lemma 27. Then assuming Ri ≥ 1− p(1− c)− γ− 2(i+ 1)ϵ (which
happens with probability at least X by Lemma 25) we have that Pr[VerE(σ, ρi)] ≥ c/9. Moreover,
the query weight VerE(σ, ρi) places on S is at most PQ/(U − 1). Therefore, by Lemma 3, we have

24

that Pr[VerE ′(σ, ρi)] ≥ c/9−Q
√
P/(U − 1) = V , and by Corollary 4, the query weight VerE ′(σ, ρi)

places on S is at most Q2√P/(U − 1) = W . Thus, conditioned on Ri ≥ 1−p(1− c)−γ−2(i+ 1)ϵ,
the state ρi satisfies the conditions needed in Step 7, and so the necessary state ρ exists. Thus
AE(σ, $) will output two copies of this state, which by Lemma 24 will be accepted by VerE(σ, ·) with
probability V −O(

√
QW). These events are independent since they are two independent copies of

the same state. Putting it all together, the overall success probability of our adversary is at least
X(V −

√
QW)2.

It remains to choose values for p, γ, ϵ, U, δ. We need the following:

• p/(1− p) ≤ c/3 for Lemma 26.

• 2(U + 1)ϵ+ γ + δ ≤ pc/3 for Lemma 26.

• X is non-negligible, where X =
(

γ
p(1−c)+γ − δ

)
−
(
U(2Q+ 6)

√
δ
)
− (negl).

• V − z
√
QW is non-negligible, where V = c/9−Q

√
P/(U − 1) and W = Q2√P/(U − 1) and

z is the constant hidden in Lemma 24.

• p, γ, ϵ, U are polynomial (but δ can be super-polynomial).

The following values suffice:

• δ = 2−λ. Then X = γ
p(1−c)+γ −negl, which is inverse polynomial for any polynomials γ, p and

inverse polynomial c.

• p = c/(3 + c), giving p/(1− p) = c/3.

• U = z4312Q6c−4P + 1, giving V − z
√
QW ≥ c/27.

• γ = ϵ = pc/4(2U + 3), giving 2(U + 1)ϵ+ γ + δ = pc/4 + δ ≤ pc/3.

This completes the proof of Theorem 22.

References
[Aar04] Scott Aaronson. Limitations of quantum advice and one-way communication. In

Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004.,
pages 320–332. IEEE, 2004.

[Aar09] Scott Aaronson. Quantum copy-protection and quantum money. In Proceedings of
the 2009 24th Annual IEEE Conference on Computational Complexity, CCC ’09,
pages 229–242, Washington, DC, USA, 2009. IEEE Computer Society.

[ABG+21] Amit Agarwal, James Bartusek, Vipul Goyal, Dakshita Khurana, and Giulio Mala-
volta. Post-quantum multi-party computation. In Anne Canteaut and François-
Xavier Standaert, editors, EUROCRYPT 2021, Part I, volume 12696 of LNCS, pages
435–464. Springer, Cham, October 2021.

[AC12] Scott Aaronson and Paul Christiano. Quantum money from hidden subspaces. In
Howard J. Karloff and Toniann Pitassi, editors, 44th ACM STOC, pages 41–60. ACM
Press, May 2012.

25

[ACC+22] Per Austrin, Hao Chung, Kai-Min Chung, Shiuan Fu, Yao-Ting Lin, and Mohammad
Mahmoody. On the impossibility of key agreements from quantum random oracles.
In Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part II, volume
13508 of LNCS, pages 165–194. Springer, Cham, August 2022.

[AHY23] Prabhanjan Ananth, Zihan Hu, and Henry Yuen. On the (im)plausibility of public-
key quantum money from collision-resistant hash functions. In Jian Guo and Ron
Steinfeld, editors, ASIACRYPT 2023, Part VIII, volume 14445 of LNCS, pages 39–
72. Springer, Singapore, December 2023.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems (extended abstract). In
28th ACM STOC, pages 99–108. ACM Press, May 1996.

[AL21] Prabhanjan Ananth and Rolando L. La Placa. Secure software leasing. In Anne Can-
teaut and François-Xavier Standaert, editors, EUROCRYPT 2021, Part II, volume
12697 of LNCS, pages 501–530. Springer, Cham, October 2021.

[ALL+21] Scott Aaronson, Jiahui Liu, Qipeng Liu, Mark Zhandry, and Ruizhe Zhang. New
approaches for quantum copy-protection. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part I, volume 12825 of LNCS, pages 526–555, Virtual Event, Au-
gust 2021. Springer, Cham.

[BBBV97] Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani.
Strengths and weaknesses of quantum computing. SIAM J. Comput., 26(5):1510–
1523, Oct 1997.

[BBC+14] Boaz Barak, Nir Bitansky, Ran Canetti, Yael Tauman Kalai, Omer Paneth, and
Amit Sahai. Obfuscation for evasive functions. In Yehuda Lindell, editor, TCC 2014,
volume 8349 of LNCS, pages 26–51. Springer, Berlin, Heidelberg, February 2014.

[BDGM20] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Factoring and
pairings are not necessary for iO: Circular-secure LWE suffices. Cryptology ePrint
Archive, Report 2020/1024, 2020.

[BDS16] Shalev Ben-David and Or Sattath. Quantum tokens for digital signatures, 2016.
https://arxiv.org/abs/1609.09047.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai,
Salil P. Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs.
In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 1–18. Springer,
Berlin, Heidelberg, August 2001.

[BGMZ18] James Bartusek, Jiaxin Guan, Fermi Ma, and Mark Zhandry. Return of GGH15:
Provable security against zeroizing attacks. In Amos Beimel and Stefan Dziembowski,
editors, TCC 2018, Part II, volume 11240 of LNCS, pages 544–574. Springer, Cham,
November 2018.

[BKP19] Nir Bitansky, Dakshita Khurana, and Omer Paneth. Weak zero-knowledge beyond
the black-box barrier. In Moses Charikar and Edith Cohen, editors, 51st ACM STOC,
pages 1091–1102. ACM Press, June 2019.

26

[BPR15] Nir Bitansky, Omer Paneth, and Alon Rosen. On the cryptographic hardness of
finding a Nash equilibrium. In Venkatesan Guruswami, editor, 56th FOCS, pages
1480–1498. IEEE Computer Society Press, October 2015.

[BS20] Nir Bitansky and Omri Shmueli. Post-quantum zero knowledge in constant rounds.
In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath,
and Julia Chuzhoy, editors, 52nd ACM STOC, pages 269–279. ACM Press, June
2020.

[BZ14] Dan Boneh and Mark Zhandry. Multiparty key exchange, efficient traitor tracing, and
more from indistinguishability obfuscation. In Juan A. Garay and Rosario Gennaro,
editors, CRYPTO 2014, Part I, volume 8616 of LNCS, pages 480–499. Springer,
Berlin, Heidelberg, August 2014.

[CGH17] Yilei Chen, Craig Gentry, and Shai Halevi. Cryptanalyses of candidate branching
program obfuscators. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors,
EUROCRYPT 2017, Part III, volume 10212 of LNCS, pages 278–307. Springer,
Cham, April / May 2017.

[CHN+16] Aloni Cohen, Justin Holmgren, Ryo Nishimaki, Vinod Vaikuntanathan, and Daniel
Wichs. Watermarking cryptographic capabilities. In Daniel Wichs and Yishay Man-
sour, editors, 48th ACM STOC, pages 1115–1127. ACM Press, June 2016.

[CLLZ21] Andrea Coladangelo, Jiahui Liu, Qipeng Liu, and Mark Zhandry. Hidden cosets
and applications to unclonable cryptography. In Tal Malkin and Chris Peikert, edi-
tors, CRYPTO 2021, Part I, volume 12825 of LNCS, pages 556–584, Virtual Event,
August 2021. Springer, Cham.

[CLM23] Kai-Min Chung, Yao-Ting Lin, and Mohammad Mahmoody. Black-box separations
for non-interactive classical commitments in a quantum world. In Carmit Hazay and
Martijn Stam, editors, EUROCRYPT 2023, Part I, volume 14004 of LNCS, pages
144–172. Springer, Cham, April 2023.

[CMSZ22] Alessandro Chiesa, Fermi Ma, Nicholas Spooner, and Mark Zhandry. Post-quantum
succinct arguments: Breaking the quantum rewinding barrier. In 62nd FOCS, pages
49–58. IEEE Computer Society Press, February 2022.

[CPDDF+19] Marta Conde Pena, Raul Durán Díaz, Jean-Charles Faugère, Luis Hernández Enci-
nas, and Ludovic Perret. Non-quantum cryptanalysis of the noisy version of aaron-
son–christiano’s quantum money scheme. IET Information Security, 13(4):362–366,
2019.

[CPR17] Ran Canetti, Oxana Poburinnaya, and Mariana Raykova. Optimal-rate non-
committing encryption. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASI-
ACRYPT 2017, Part III, volume 10626 of LNCS, pages 212–241. Springer, Cham,
December 2017.

[CVW+18a] Yilei Chen, Vinod Vaikuntanathan, Brent Waters, Hoeteck Wee, and Daniel Wichs.
Traitor-tracing from LWE made simple and attribute-based. In Amos Beimel and

27

Stefan Dziembowski, editors, TCC 2018, Part II, volume 11240 of LNCS, pages
341–369. Springer, Cham, November 2018.

[CVW18b] Yilei Chen, Vinod Vaikuntanathan, and Hoeteck Wee. GGH15 beyond permuta-
tion branching programs: Proofs, attacks, and candidates. In Hovav Shacham and
Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages
577–607. Springer, Cham, August 2018.

[FGH+12] Edward Farhi, David Gosset, Avinatan Hassidim, Andrew Lutomirski, and Peter W.
Shor. Quantum money from knots. In Shafi Goldwasser, editor, ITCS 2012, pages
276–289. ACM, January 2012.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In 54th FOCS, pages 40–49. IEEE Computer Society Press, October 2013.

[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps
from lattices. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015,
Part II, volume 9015 of LNCS, pages 498–527. Springer, Berlin, Heidelberg, March
2015.

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and
its applications. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors,
45th ACM STOC, pages 467–476. ACM Press, June 2013.

[GKW17] Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation. In Chris
Umans, editor, 58th FOCS, pages 612–621. IEEE Computer Society Press, October
2017.

[GSWW22] Rachit Garg, Kristin Sheridan, Brent Waters, and David J. Wu. Fully succinct
batch arguments for NP from indistinguishability obfuscation. In Eike Kiltz and
Vinod Vaikuntanathan, editors, TCC 2022, Part I, volume 13747 of LNCS, pages
526–555. Springer, Cham, November 2022.

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption
for circuits from LWE. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part II, volume 9216 of LNCS, pages 503–523. Springer, Berlin,
Heidelberg, August 2015.

[HHSS17] Shai Halevi, Tzipora Halevi, Victor Shoup, and Noah Stephens-Davidowitz. Imple-
menting BP-obfuscation using graph-induced encoding. In Bhavani M. Thuraising-
ham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages
783–798. ACM Press, October / November 2017.

[HJL21] Samuel B. Hopkins, Aayush Jain, and Huijia Lin. Counterexamples to new circu-
lar security assumptions underlying iO. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part II, volume 12826 of LNCS, pages 673–700, Virtual Event, Au-
gust 2021. Springer, Cham.

28

[HSW14] Susan Hohenberger, Amit Sahai, and Brent Waters. Replacing a random oracle:
Full domain hash from indistinguishability obfuscation. In Phong Q. Nguyen and
Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 201–
220. Springer, Berlin, Heidelberg, May 2014.

[HY20] Akinori Hosoyamada and Takashi Yamakawa. Finding collisions in a quantum world:
Quantum black-box separation of collision-resistance and one-wayness. In Shiho
Moriai and Huaxiong Wang, editors, ASIACRYPT 2020, Part I, volume 12491 of
LNCS, pages 3–32. Springer, Cham, December 2020.

[JLLS23] Aayush Jain, Huijia Lin, Paul Lou, and Amit Sahai. Polynomial-time cryptanalysis
of the subspace flooding assumption for post-quantum io. 2023.

[Kan18] Daniel M. Kane. Quantum money from modular forms, 2018.
https://arxiv.org/abs/1809.05925.

[KLS22] Andrey Boris Khesin, Jonathan Z Lu, and Peter W Shor. Publicly verifiable quantum
money from random lattices, 2022. https://arxiv.org/abs/2207.13135v2.

[KSS21] Daniel M. Kane, Shahed Sharif, and Alice Silverberg. Quantum money from quater-
nion algebras. Cryptology ePrint Archive, Report 2021/1294, 2021.

[LAF+10] Andrew Lutomirski, Scott Aaronson, Edward Farhi, David Gosset, Jonathan A.
Kelner, Avinatan Hassidim, and Peter W. Shor. Breaking and making quantum
money: Toward a new quantum cryptographic protocol. In Andrew Chi-Chih Yao,
editor, ICS 2010, pages 20–31. Tsinghua University Press, January 2010.

[LLQZ22] Jiahui Liu, Qipeng Liu, Luowen Qian, and Mark Zhandry. Collusion resistant
copy-protection for watermarkable functionalities. In Eike Kiltz and Vinod Vaikun-
tanathan, editors, TCC 2022, Part I, volume 13747 of LNCS, pages 294–323.
Springer, Cham, November 2022.

[LMZ23] Jiahui Liu, Hart Montgomery, and Mark Zhandry. Another round of breaking and
making quantum money: How to not build it from lattices, and more. In Carmit
Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part I, volume 14004 of
LNCS, pages 611–638. Springer, Cham, April 2023.

[Lut10] Andrew Lutomirski. An online attack against wiesner’s quantum money, 2010.
https://arxiv.org/abs/1010.0256.

[LZ19] Qipeng Liu and Mark Zhandry. Revisiting post-quantum Fiat-Shamir. In Alexandra
Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part II, volume 11693
of LNCS, pages 326–355. Springer, Cham, August 2019.

[MW04] C. Marriott and J. Watrous. Quantum arthur-merlin games. In Proceedings. 19th
IEEE Annual Conference on Computational Complexity, 2004., pages 275–285, 2004.

[Rob21] Bhaskar Roberts. Security analysis of quantum lightning. In Anne Canteaut and
François-Xavier Standaert, editors, EUROCRYPT 2021, Part II, volume 12697 of
LNCS, pages 562–567. Springer, Cham, October 2021.

29

https://arxiv.org/abs/2207.13135v2
https://arxiv.org/abs/1010.0256

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In David B. Shmoys, editor, 46th ACM STOC, pages 475–484.
ACM Press, May / June 2014.

[Tsa22] Rotem Tsabary. Candidate witness encryption from lattice techniques. In Yevgeniy
Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part I, volume 13507 of
LNCS, pages 535–559. Springer, Cham, August 2022.

[Unr16] Dominique Unruh. Computationally binding quantum commitments. In Marc Fis-
chlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666
of LNCS, pages 497–527. Springer, Berlin, Heidelberg, May 2016.

[VWW22] Vinod Vaikuntanathan, Hoeteck Wee, and Daniel Wichs. Witness encryption and
null-IO from evasive LWE. In Shweta Agrawal and Dongdai Lin, editors, ASI-
ACRYPT 2022, Part I, volume 13791 of LNCS, pages 195–221. Springer, Cham,
December 2022.

[Wie83] Stephen Wiesner. Conjugate coding. SIGACT News, 15(1):78–88, January 1983.

[Win99] A. Winter. Coding theorem and strong converse for quantum channels. IEEE Trans.
Inf. Theor., 45(7):2481–2485, November 1999.

[WW21] Hoeteck Wee and Daniel Wichs. Candidate obfuscation via oblivious LWE sampling.
In Anne Canteaut and François-Xavier Standaert, editors, EUROCRYPT 2021,
Part III, volume 12698 of LNCS, pages 127–156. Springer, Cham, October 2021.

[WZ17] Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare programs
under LWE. In Chris Umans, editor, 58th FOCS, pages 600–611. IEEE Computer
Society Press, October 2017.

[Zha19] Mark Zhandry. Quantum lightning never strikes the same state twice. In Yuval Ishai
and Vincent Rijmen, editors, EUROCRYPT 2019, Part III, volume 11478 of LNCS,
pages 408–438. Springer, Cham, May 2019.

[Zha20] Mark Zhandry. Schrödinger’s pirate: How to trace a quantum decoder. In Rafael
Pass and Krzysztof Pietrzak, editors, TCC 2020, Part III, volume 12552 of LNCS,
pages 61–91. Springer, Cham, November 2020.

[Zha21] Mark Zhandry. White box traitor tracing. In Tal Malkin and Chris Peikert, editors,
CRYPTO 2021, Part IV, volume 12828 of LNCS, pages 303–333, Virtual Event,
August 2021. Springer, Cham.

[Zha24] Mark Zhandry. Quantum money from abelian group actions. In Venkatesan
Guruswami, editor, ITCS 2024, volume 287, pages 101:1–101:23. LIPIcs, Jan-
uary / February 2024.

30

	Introduction
	Proof Overview
	How to model evasive obfuscation
	Our impossibility

	Discussion, Other Related Work, and Open Questions
	Preliminaries
	Basic Quantum Preliminaries
	Cryptographic Notions
	Quantum Money
	Evasive Obfuscation

	The Model
	The Canonical Verifier
	Impossibility for Respecting Quantum Money
	Measuring Queries
	The Attack
	Analysis

