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Abstract. A Garbling Scheme is a fundamental cryptographic primi-
tive, with numerous theoretical and practical applications. Since its in-
ception by Yao (FOCS’82, ’86), optimizing the communication and com-
putation complexities of securely garbling circuits has been an area of
active research. One such optimization, and perhaps the most fundamen-
tal, is the ‘Free-XOR’ technique (Kolesnikov and Schneider, ICALP’08)
which allows XOR gates in a function garbling to not require represen-
tation, and therefore communication.
Since then, several works have designed and analysed the security of
schemes that adopt the Free-XOR optimisation. In particular: (1) Ap-
plebaum (JoC’16) proved that this can be securely instantiated assuming
symmetric-key encryption satisfying a notion called RK-KDM security;
and (2) Zahur, Rosulek and Evans (Eurocrypt’15) proposed the so-called
‘Half Gates’ scheme, and proved that it can be instantiated assuming
hash functions satisfying a notion called CCR security. Although both
schemes have been proven selectively secure, prior work leaves it open
to analyze whether they satisfy a stronger security notion – adaptive
security – in the plain model.
In this work, we formally show that the selective security of these two
schemes cannot be lifted to adaptive security under the same assump-
tions. To establish these barriers, we adopt techniques from the work of
Kamath et al (Crypto’21), who proved similar negative results for Yao’s
garbling. We use that as a starting point and introduce new techniques
tailored towards addressing Free-XOR-based schemes.
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1 Introduction

Garbling was introduced by Yao in [Yao86] as a technique towards achieving se-
cure function-evaluation. On a high level, a garbling scheme allows to efficiently
encode a circuit C and an input x into a garbled circuit C̃ and a garbled input
x̃ such that anyone can efficiently derive C(x) given C̃ and x̃. Security requires
C̃ and x̃ not to leak non-trivial information about x and C. Garbling is nowa-
days considered to be a stand-alone cryptographic primitive with theoretical and
practical applications, not only in secure function-evaluation but also in other
areas like verifiable computation (see [AIK11,App16] and the references therein).
In fact, it is explicitly mentioned in the call for multi-party threshold schemes
by NIST, listed as a 2nd category primitive [BP23].

Yao’s construction and optimisations. The basic construction for Yao’s garbling,
formalized in [LP09], presents an algorithm that garbles any Boolean circuit C
gate-by-gate using a symmetric-key encryption scheme (SKE). The algorithm
works by first sampling, for each wire w in the circuit, n-bit values L0w and L1w,
called labels, that represent the logical 0 and 1 value respectively. Then the circuit
is parsed as a set of binary gates and the truth-table of each gate functionality g
is ‘encrypted’. This is done by generating a ciphertext corresponding to each of
the four rows of this truth-table. Such a ciphertext typically is an encryption of
an output wire label Lg(a,b)C using a pair of input wire labels – one from each input
wire (LaA, L

b
B) – as the keys, where the logical value of each label follows from

the truth-table row being encoded. This set of four ciphertexts is then randomly
permuted, completing the gate garbling. A set of such garbled gates constitute
the garbled circuit (GC) C̃. The garbling algorithm produces this, along with a
decoding map from output wire labels to their logical value, as output.

In order to evaluate the garbling on a particular input x, it becomes necessary
to first refer to the set x̃ containing the labels corresponding to these input
bits. This set contains one label from each input wire. Then the GC C̃ can
be evaluated gate-by-gate, maintaining the invariant that only one label of each
wire is ever revealed. This is because, starting with one label each from the input
wires, only one of the four ciphertexts in each gate garbling can be correctly
decrypted using the unique key-pair available, revealing only one gate output
label. There exist different mechanisms for recognizing whether decryption works
properly, and for the basic Yao’s scheme one would simply try to decrypt all four
ciphertexts to find the right one. Finally, when the circuit output labels have
been derived, the decoding map can be used to derive the circuit output. The
computational complexity of this garbling construction is four encryptions (resp.,
decryptions) per gate for the party generating C̃ (resp., the party evaluating C̃);
its communication complexity is (at least) four ciphertexts per gate.

Towards more practical constructions, several optimizations for the above
construction have been proposed. We discuss those that will be relevant to
our discussion (other optimisations include [BMR90,PSSW09,KMR14,GLNP15,
RR21]). First, Naor, Pinkas and Sumner [NPS99] proposed the so-called point-
and-permute optimisation, which allows to reduce to cost of evaluating the gar-
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bled circuit from four to just a single decryption per gate. With regards to
applications that do not require circuit privacy, certain gate functionalities can
be garbled more efficiently than others. In [KS08], Kolesnikov and Schneider pro-
posed an optimisation that allows garbling XOR gates for free, i.e. the garbling
tables of XOR gates are empty. The idea behind this free-XOR optimisation is
to sample the labels (L0w, L

1
w) associated with each wire w with a fixed global

offset instead of independently uniformly at random. Evaluating an XOR gate
in such a garbling involves simply computing a bit-wise XOR of the labels:
La⊕bC = LaA ⊕ LbB . This results in two distinct labels with the same global offset
for the output wire, that are derived from the input labels. Among a long list
of garbling schemes that support free-XOR, a scheme used in most practical
applications [CWYY23,GKWY20,CRS20,GKW+20, LWN+15,CCPS19] is the
Half Gates scheme by Zahur, Rosulek and Evans [ZRE15], which additionally
reduces the complexity of garbling AND gates to just two ciphertexts by clever
use of (deterministic) hash functions instead of (randomized) encryption.

Security of Yao’s garbling and its variants. Informally, the security for a garbling
scheme usually requires that the garbled circuit and input encoding be simulat-
able from the function output only – the garbling leaks no information beyond
the output about the circuit and input. However, in several applications (e.g.,
secure function-evaluation) leakage about the circuit is tolerable, and only input
privacy suffices. That is, C̃ and x̃ are efficiently simulatable given C and the
output C(x). There are several ways to formalise this requirement, but in this
paper we are interested in one particular aspect: selective vs. adaptive security.

Selective security models a setting where the circuit and the input are garbled
at the same time and the adversary cannot see the garbled circuit before sub-
mitting its input. However, often (e.g., in Yao’s construction above) the costliest
part of a garbling protocol is garbling of the circuit. Therefore, especially in
applications where the circuit to be computed is known publicly and ahead of
time, it is often convenient to garble the circuit in an offline pre-computation
phase, before the input is even chosen. This scenario is not covered by the no-
tion of selective security, but would require stronger adaptive security, a notion
introduced by Bellare, Hoang, and Rogaway in [BHR12a]. Informally, adaptive
security requires that the function garbling C̃ be simulated independently of the
function output and the rest of the garbling can then be simulated using C(x).
This is considered significantly harder to obtain than selective security.

Yao’s scheme was proven selectively secure by Lindell and Pinkas [LP09]
under the minimal assumption that one-way functions exist. Selective security
of the free-XOR optimisation was shown by Applebaum in [App16] based on
related-key key-dependent message (RK-KDM) security of the underlying SKE,
a new security notion that was introduced in that work. Loosely speaking, RK-
KDM security requires ciphertext indistinguishability to hold when additionally
given access to a “leakage oracle” that allows access to ciphertexts generated
using keys and messages related to the challenge key. Applebaum constructed
such RK-KDM-secure SKE under the learning parity with noise assumption;
constructions based on other standard hardness assumptions followed [BDH14].
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In order to prove the Half Gates scheme by Zahur, Rosulek and Evans [ZRE15]
secure, a novel security notion for hash functions was introduced by Choi et
al. [CKKZ12], namely circular correlation robustness (CCR), and can be seen
as an analogous notion for hash function (although CCR predates RK-KDM).
While RK-KDM secure encryption can be instantiated from various standard
computational hardness assumptions [App16,BDH14], for long the only known
constructions of CCR secure hash functions are in idealised models such as the
random permutation model [GKWY20,GKW+20,CT21]. Very recently, Acharya
et al [AAB+25] showed how to securely instantiate (weakly) CCR secure hash
functions – and in particular also the Half Gates scheme – in the standard model,
but relying on indistinguishability obfuscation.

On the other hand, adaptive security of Yao’s garbling is a delicate matter.
Although Applebaum et al. [AIKW13] proved impossibility of adaptive security
of the original construction, a variant of it (where the output map is sent together
with the input garbling) was later proven adaptively secure by Jafargholi and
Wichs [JW16] using pebbling-based techniques. However, their result applies
only to circuits of bounded (logarithmic) depth, and this limitation was later
shown to be inherent by Kamath et al. in [KKPW21b]. Not much was known
regarding adaptive security of practical garbling constructions. In the standard
model (i.e., without resorting to idealised objects), Jafargholi and Oechsner give
negative evidence in [JO20] by arguing why the techniques used in [JW16] for
Yao’s scheme will likely not work in this setting – although this still leaves room
for other types of reductions. However, very recently [GYW+23,BHKO23] proved
(among other results) that the Half Gates construction is adaptively secure in
idealised models (the random oracle/permutation model). Thus we are left with
the following open question:

Are practical garbling schemes (i.e. free-XOR, Half Gates) adaptively
secure in the standard model?

1.1 Our Results

In this paper, we approach this question for free-XOR-based garbling schemes
from a negative perspective. Our first result pertains to Applebaum’s construc-
tion [App16]. Recall from earlier discussion that it was shown to be selectively
secure based on RK-KDM security of the underlying SKE. To be precise, RK-
KDM security with respect to linear relations – LIN-RK-KDM, in short – suf-
fices. We prove that this construction cannot be proved adaptively secure under
the same assumption. More formally:

Theorem 1 (informal, see Theorem 3). Any fully black-box security reduc-
tion proving adaptive security of Applebaum’s scheme based on LIN-RK-KDM-
security of the underlying SKE must incur a loss in security exponential in the
security parameter. This is true even when restricting to the circuit class NC1.
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Note that by a fully black-box security reduction4, we refer to a polynomial-
time randomised Turing reduction that has black-box access to the adversary
that breaks the construction and the primitive. It can rewind the adversary a
polynomial number of times.

We point out that the lower bound in Theorem 1 is much stronger than
what [KKPW21b] established for Yao’s construction: there, the loss in secu-
rity grew exponential but only in depth of the circuit (which is optimal given
the [JW16] result). Thus the theorem indicates that pebbling-based security re-
ductions [JW16, JSW17, JKK+17,KKP21], which were so useful when it comes
to adaptive security of Yao’s construction and its variants will not work for
Applebaum’s construction (confirming the conjecture from [JO20]).

Our second result extends Theorem 1 to the Half Gates scheme [ZRE15].
Recall that Half Gates was shown to be selectively secure based on CCR security
of the underlying hash function. We prove that this construction cannot be
proved adaptively secure under the same assumption. More formally:

Theorem 2 (informal, see Theorem 4). Any fully black-box security reduc-
tion proving adaptive security of the Half Gates scheme based on CCR-security
of the underlying hash function must incur a loss in security exponential in the
security parameter. This is true even when restricting to the circuit class NC1.

This is in contrast with the positive result from [BHKO23,GYW+23], which
proved its adaptive security in models where the CCR hash function is modelled
as an ideal primitive (see discussion below). We refer to Section 4 for details.

Interpreting our results.

– While we do not find any weakness in the adaptive security of the proposed
schemes, our results affirm that the difficulty in showing adaptive security of
these schemes based on the current hardness assumptions is inherent (and
not due to a lack of understanding). Thus, the random guessing technique
(sometimes known as complexity leveraging) is optimal when it comes to the
adaptive security of these schemes under the respective assumptions.

– To add to the point above, as in [KKPW21b], we are not establishing a
full-blown oracle separation. As pointed out in Footnote 4, we only rule
out black-box security reductions for fixed constructions. In fact, there exist
several garbling schemes that are adaptively secure assuming just one-way
functions [JW16,HJO+16,JSW17].

– We emphasise that our negative result is not in contradiction with positive
results from [BHKO23,GYW+23]. Their results pertain to idealised settings,
where all parties (including the adversary and reduction) have bounded
query access to the idealised object. On the other hand, to establish our

4 This is not to be confused with “fully black-box reduction” of one primitive to an-
other (e.g., adaptive garbling to RK-KDM security) in the [RTV04] sense, that
involves a black-box scheme and a fully black-box security reduction. We focus on
fixed black-box constructions, and rule out all black-box security reductions for that
construction.
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result our adversary needs to query the idealised object at unbounded-many
points. In fact, for such range of parameters, the result in [GYW+23] is
vacuous (their result degrades with the number of queries to the idealised
object).

Open questions.

– Although our results presently only serve as limits to provable security
of the two schemes, we are optimistic that they can be lifted to concrete
counter-examples. This is in the same vein as the work of Hofheinz, Rao
and Wichs [HRW16], who constructed an IND-CPA public-key encryption
scheme that is not secure under the stronger selective-opening attacks (using
a strong form of obfuscation). Analogously, it is an interesting open question
to construct a concrete RK-KDM secure SKE scheme (resp., CCR-secure
hash function) such that Applebaum’s scheme (resp., Half Gates scheme) is
selectively secure but not adaptively secure.

– Another interesting open question is to prove barriers for other common
optimisation techniques. The current approach is tailored to the free-XOR
optimisation, and extending it to other optimisations will likely require dif-
ferent techniques.

– Recall that LIN-RK-KDM suffices to show selective security of Applebaum’s
scheme, but not its adaptive security. An interesting open question is to prove
its adaptive security using RK-KDM-secure SKE (i.e., exploiting non-linear
leakage functions) or, to continue the theme of our work, extend Theorem 1
to rule out adaptive security even given RK-KDM-secure SKE.

1.2 Technical Overview

In this technical overview, we focus on Theorem 1, demonstrating all the key
techniques required for the proof. The proof of Theorem 2 builds on that of
Theorem 1, and thus we defer its discussion to the end of this section.

High-level approach. We follow the proof template used in [KKPW21a,KKPW21b]
for establishing fine-grained lower bounds on loss in security incurred by fully
black-box security reductions – henceforth referred simply to as “reduction”. They
consider a setting where some fixed construction Γ (·) that uses an underlying
cryptographic primitive (as black box, indicated by (·) in the exponent) is shown
secure using a reduction that, given black-box access to an adversary that breaks
ΓE for any instantiation E of the primitive, breaks E. In order to prove that the
loss in security is exponential, one needs to show that for every reduction R there
exists (i) an ideal instantiation E of the primitive, and (ii) a possibly-inefficient
adversary A that breaks the security of ΓE , in such a way that loss in security
incurred by R is large. The adversarial strategy for A typically involves breaking
ΓE by first breaking the security of E by brute force. The crucial step, which
completes the proof, is to then show that R cannot exploit A to itself break E.
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For instance, in [KKPW21b] the construction Γ (·) corresponds to Yao’s con-
struction of garbled circuits and the underlying primitive was an IND-CPA-
secure symmetric key encryption scheme (SKE). Their goal was to show that
any reduction R of the adaptive security of Yao’s garbling to the security of
the SKE would incur a loss in security that is exponential in the depth of the
circuit. Towards this, they consider an ideal instantiation E of the SKE and a
brute-force adversary as mentioned above. Their main technical idea was to use
pebbling lower bounds to establish that the reduction R cannot use A to itself
break E.

For the case of Theorem 1, E will be a LIN-RK-KDM-secure SKE and Γ (·)

will be Applebaum’s garbling construction [App16]. Our goal is to similarly show
that any reduction R of the adaptive security of this garbling scheme to the
LIN-RK-KDM-security of SKE would incur loss in security that is exponential
in the input length n of the circuit being garbled. As per the template:

– We design an ideal LIN-RK-KDM-secure SKE scheme E = (Enc,Dec) based
on a random injective (expanding) function oracle: i.e., Enc simply evaluates
the random oracle on key, message and random coins, and Dec is then defined
to be consistent with Enc (which is not necessarily efficient). It can be easily
shown that E is LIN-RK-KDM-secure.

– The inefficient adversary A that breaks ΓE does so by essentially breaking
E by brute force (details soon).

However, in order to show that A’s strategy cannot be exploited by R we
use techniques that significantly depart from the pebbling-based approach in
[KKPW21a, KKPW21b], and this constitutes our main technical contribution.
We refer the reader to Remark 1 for a discussion on why the pebbling-based
approach does not seem to be useful for Theorem 1.

In the rest of the technical overview we proceed as follows. First we recall
the relevant security notions for garbling, and describe a simplified version of
Applebaum’s construction that suffices for explaining our technique. Next we
describe our (inefficient) adversarial strategy A, in particular the circuit Cd it
uses. Finally, we explain why A cannot be exploited by R.

Security model and Applebaum’s construction. Let us first take a look at the
notion of security for garbling slightly more formally. For this technical overview,
we restrict ourselves to selective and adaptive input privacy, denoted sPRIV-IND
and PRIV-IND, respectively. The notion of PRIV-IND is modelled using the
following game between a challenger C and an adversary A.

1. Offline Phase: A challenges C on a circuit C : {0, 1}n → {0, 1}m and receives
a garbled circuit C̃ in response.

2. Online Phase: A selects two inputs x0,x1 ∈ {0, 1}n such that C(x0) =
C(x1), and gives it to the challenger. C returns x̃, the input encoding cor-
responding to the garbling, of the input xb, for a uniformly random bit b.
Furthermore, A also returns the decoding function d, which allows to eval-
uate C̃ on x̃ and receive C(xb).
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3. A outputs a guess b′ and wins if the guess is correct (i.e., b′ = b).

Note that our definition of the security game PRIV-IND slightly differs from
the original definition by Bellare, Hoang and Rogaway [BHR12a]: Namely, we
include the decoding function d in the online phase. The reason for this is that
Yao’s original scheme as well as the schemes considered in this work all succumb
to a known lower bound from [AIKW13], which states that in order to guarantee
adaptive security, the online complexity must exceed the input and the output
length. Sending d in the online phase allows to circumvent this lower bound and
prove security at least for certain restricted cases (e.g. for Yao’s scheme when
applied to circuits of bounded depth [JW16]).

In sPRIV-IND, there is no offline phase: A needs to submit C and (x0,x1) at
the beginning of the game and is then given (C̃, x̃,d). Thus the notion is weaker
than PRIV-IND.

Next we describe a vanilla version (ignoring so-called “permutation bits”, that
allow for significant performance improvements) of Applebaum’s construction
that suffices to convey our techniques. The construction, described below for
the XOR-AND basis, proceeds essentially as in Yao’s construction described
earlier except for the Free-XOR optimisation (for now, we ignore garbled circuit
evaluation).
– To garble a circuit C : {0, 1}n → {0, 1}m, first a global offset ∆ is sampled

uniformly at random from the space of labels.
1. For each wire w in C that is either a circuit input wire, or the output

wire of some AND gate, sample the 0-label k0w uniformly at random and
set the 1-label as k1w := k0w ⊕∆.

2. For every XOR gate (in topological order) with input wires (A,B) and
output wire C, set k0C := k0A⊕ k0B and k1C := k0C ⊕∆. The garbling table
of XOR gates is empty.

3. The garbling table of an AND gate g with input wires A,B and output
wire C consists of four (pairs of) ciphertexts, each encoding one row of
the truth-table of the binary AND gate. For each row, for (a, b) ∈ {0, 1}2,
the first ciphertext is an encryption of a randomly-sampled “mask” R
under kaA; and the second ciphertext is an encryption of the masked
target key R⊕ka∧bC under kbB . Thus, the garbling table for AND has the
following form:

π[00] : (Enck0A(R00), Enck0B (R00 ⊕ k0C))
π[01] : (Enck0A(R01), Enck1B (R01 ⊕ k0C))
π[10] : (Enck1A(R10), Enck0B (R10 ⊕ k0C))
π[11] : (Enck1A(R11), Enck1B (R11 ⊕ k1C))

(1)

The garbled circuit C̃ consists of the garbling tables π (with the four pairs
of ciphertexts π[ab] in random order) for each AND gate in the circuit C.

– The input encoding x̃ for circuit input x ∈ {0, 1}n is a set of labels that
contains x[i]-label of (input) wire i for each i ∈ [n].

– The output decoding function d simply maps the labels of the circuit output
wires to their actual semantic values.
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x1 x2 x3 x4 x5 x6 x7 x8
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⊕ ⊕

⊕

y

Fig. 1. The circuit C3 for n = 8 = 23.

Our adversarial strategy A. Let us first describe the circuit that the adversary
A uses in its strategy for the adaptive security game. Letting n be the required
circuit input size, let d = ⌈log2 n⌉ ∈ N parameterize this circuit Cd. We set the
topology of this circuit as a binary tree of depth d where the first layer consists
of AND gates (thus all the input wires are connected to AND), while the rest
of the gates are all XOR gates (see Figure 1).5 The rationale behind this design
will become clear soon.

For the technical overview, let us restrict to non-rewinding reductions R that
invoke the adversary only once on security parameters that are powers of two,
and cannot control the adversary’s randomness – in the main body, we extend
the ideas to arbitrary reductions using a q-wise independent hash function, for an
appropriately-chosen q. For security parameter κ, setting n = κ, the adversary
A when invoked on an input 1n, where n = 2d for d ∈ N, does the following:

1. Send Cd to the challenger and receive the garbled circuit C̃ in return. Note
that this comprises of only the garbled table representations of the first layer,
since the XOR gates are garbled “for free”.

2. Sample random x1 ∈ {0, 1}n and compute a random “colliding” input x0

(i.e. s.t. C(x0) = C(x1)), and receive in return an input encoding x̃ for one
of these inputs.

To determine its guess b′ for the input encoded, A proceeds in two steps:

– First it carries out a sequence of (inefficient) checks of “well-formedness”
of C̃ to determine whether the garbled AND gate truth-tables in C̃ have
the structure of honestly-generated garbled gates (as in Eq. (1)). To this
end, it brute-forces the encryption oracle of E to extract all keys and mes-
sages associated with the ciphertexts in C̃ (since Enc is a random expanding
function, with high probability every ciphertext is associated with a unique
key/message pair).

– Second it checks if (C̃, x̃) is consistent with x1. This requires A to exploit
the asymmetry in (honest) garbling/gate truth-table of AND gates, which
allows it to construct a logical mapping from the secret keys it extracted
earlier to their logical bit value (hence the need for the first layer of AND
gates in Cd).

5 The choice of gates for the bottom layers is arbitrary: the analysis only relies on the
first layer being all AND gates: see Footnote 7.
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If all the checks pass, A outputs 1; otherwise it outputs 0. It is easy to see that A
is a valid adversary against PRIV-IND security of ΓE : in particular, in the games
corresponding to the challenger C returning an honestly generated garbling of
the circuit and input x0 resp. x1, it outputs 0 and 1, respectively. We refer the
readers to Section 3.2 for a formal definition of A, and Lemma 1 for a proof of
why it is a valid PRIV-IND adversary. Next we argue why A is useless to R when
it comes to solving its own LIN-RK-KDM challenge.

reduction
R

{0, 1}

SKE oracle E

Enc Dec

LIN-RK-KDM oracle
OE,k ∈ {Realk, Idealk}

PRIV-IND
adversary

AI

C

C̃

x0,x1

x̃,d

b

ct

ϕ ∈ Φlin, ψ ∈ Ψlin

Fig. 2. Structure of the Reduction

Why can R not exploit A? Recall that the reduction R as in Figure 2 aims to
break the LIN-RK-KDM security of the encryption scheme E by leveraging A’s
ability to break PRIV-IND security of ΓE . The LIN-RK-KDM security notion
roughly requires distinguishing ciphertexts under E, when additionally given ac-
cess to a “leakage oracle”. More formally, the reduction R is given access to (i) an
“encryption oracle” OEnc, which on inputs of the form (k,m) outputs Enc(k,m),
and (ii) a leakage oracle OLIN

b∗ for challenge key k∗, that on input (∆ϕ, b,∆ψ)
outputs ct ← Enck∗⊕∆ϕ

(b · k∗ ⊕∆ψ) when b∗ = 0 or ct ← Enck∗⊕∆ϕ
(0n) when

b∗ = 1. Its goal is to guess whether the ciphertexts are real (b∗ = 0) or fake
(b∗ = 1).

Intuitively, for R to solve its own RK-KDM challenge using A, it has to
embed (at least one of) the RK-KDM challenge ciphertexts within the AND-
gate garbling of the garbled circuit that it supplies to A. However, since E is
an ideal SKE, all ciphertexts in C̃ must be generated either through the OEnc

oracle or by the LIN-RK-KDM oracle OLIN
b∗ – this is guaranteed as the image of

Enc is a sparse random subset of its co-domain. Thanks to the design of Cd, it
can be shown that given C̃ and the set of queries to OEnc and OLIN

b∗ made by R,
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for all but at most one input, viz. x1, and for all input garblings x̃, one of the
following must hold:

1. The output of A on transcript (Cd, C̃, (x0,x1), (x̃,d)) is 0. This happens if
either C̃ was not a well-formed garbling, or x̃ was an encoding of input x0.

2. When the output of A is 1, we have that the transcript contains a well-formed
garbling C̃ of Cd and that x̃ was an input encoding of x1. In this case, the
reduction R, given x̃ and the list of queries it made to oracles OEnc and OLIN

b∗

before sending C̃ , can efficiently extract all involved keys by extracting the
global offset ∆.

Thus for R to exploit A, it must have essentially guessed x1. Since we define A
to sample x1 ∈ {0, 1}n uniformly at random, the probability of R exploiting A
is exponentially-small.

To turn this intuition into a formal argument, we first show that given access
to R’s queries to the OEnc and OLIN

b∗ oracles, A can be “simulated” using an
efficient algorithm Â (with overwhelming probability). As noted above, since E
is an ideal SKE, R must have obtained all ciphertexts in C̃ via queries to OEnc

and OLIN
b∗ oracles. We show that these queries contain sufficient information to

carry out “well-formedness” and consistency checks made by A in an efficient
manner (see Section 3.3 for exactly how). Then we show that R (which, recall,
is efficient) can distinguish A from Â with probability at most 2−n. Formally,
we first show in Lemma 2 (Section 3) that R distinguishes 1) the world where
it is given oracle access to A and the real LIN-RK-KDM oracle; and 2) the
world where it is given oracle access to Â and the real LIN-RK-KDM oracle,
with only an exponentially-small probability. Then, in Lemma 3 we show that a
similar claim holds when the real LIN-RK-KDM oracle is replaced by the ideal
LIN-RK-KDM oracle. Together, Lemmas 2 and 3 imply that R’s advantage in
breaking LIN-RK-KDM security when given access to A is exponentially-close
to its advantage when given access to Â. However, since Â is efficient and can
be simulated using R’s queries, this implies that if R is a valid reduction then
it, by itself, can break E’s LIN-RK-KDM security, without A’s help – yielding a
contradiction. We note that the overall technique used above is reminiscent, on
a high level, of meta-reductions [BV96], especially the proof in [GW11].

Extending to Theorem 2: how to deal with shrinking functions? Before explaining
how Theorem 1 can be extended to show Theorem 2, it is instructive to see
why similar techniques should even work. On a high level, both Half Gates and
Applebaum’s scheme can be regarded to be instantiations of the same template
to garbling, but using different primitives.

Thus, to extend our results to the Half Gates scheme, we again model the
CCR hash function H underlying the scheme as an idealised function. The major
difference now is that — unlike LIN-RK-KDM-secure encryption — the hash
function H is compressing. Furthermore, the Half Gates scheme additionally
employs a row reduction technique which reduces the number of ciphertexts in
the garbling table of AND to just two – the structure of the resulting garbling
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table is thus quite different. Taken together, we need to deal with the extraction
of the secret global offset ∆ with a bit more care (e.g., now we cannot rely on
sparsity of the range, and collisions are guaranteed). However, selecting H as a
random function such that H(·, i) : {0, 1}κ → {0, 1}κ is a random permutation
for every i ∈ N will be convenient and sufficient to exploit most of the ideas we
used in Theorem 1. We refer the readers to Section 4 for more details.

Remark 1 (Difference from [KKPW21b, KKPW21a]). A crucial difference to
previous lower bounds [KKPW21b,KKPW21a] is that all schemes considered in
these works were built on many independent instances of another primitive (e.g.,
SKE or public-key encryption), thereby allowing clever embedding of challenges
within the scheme. Towards proving a lower bound, they basically proved that
any fully black-box reduction must embed many such challenges in the scheme
simultaneously, and with high probability will fail to embed them in a way that
is consistent with the adaptively chosen input. In contrast, in the practical gar-
bling schemes considered in this work, the only secret is the global offset ∆,
hence, all secrecy of the scheme must rely on ∆. Our approach here is to show
that every fully black-box reduction either fails to simulate a garbling that is
consistent with the adaptively chosen input, or allows to extract ∆, in which
case there is no secrecy left to relate the security of the scheme to.
This global, extraction-based approach allows us to prove an inherent security
loss exponential in the input size, opposed to the so-called pebbling complexity
or depth of the circuit, as in [KKPW21b]. This proves that guessing the input
(aka complexity leveraging) is essentially the best proof strategy among all fully
black-box reductions relating the security of Applebaum’s garbling scheme (resp.
the Half gates scheme) to LIN-RK-KDM security of the underlying encryption
scheme (resp. CCR security of the employed hash function). In particular, our
results confirm the conjecture of [JO20] that more sophisticated guessing tech-
niques (e.g. pebbling techniques) as used in [JW16, JKK+17] will not be useful
in proving practical garbling schemes secure.

1.3 More Related Work

Achieving adaptive privacy for garbling schemes has been the subject of a long
line of research – starting from its introduction in [BHR12a]. Recall that this
property requires simulation of a garbled circuit to be possible even when the
circuit is chosen first and the input is later chosen after the adversary receives
its garbling. [BHR12a] shows that adaptive garbling is trivially achievable in
the programmable Random Oracle Model (ROM) – providing constructions for
the same. However, for garbling schemes in the plain model, proving adaptive
privacy is highly non-trivial as existing methods for simulating the garbling for
selective privacy rely on the circuit output being available to the simulator. So
these techniques cannot extend to the adaptive setting where the garbling needs
to be simulated before the circuit input, and hence output, becomes known.

Applebaum et al. in [AIKW13] present a lower-bound on the achievable on-
line complexity for adaptive garbling schemes, showing that it has to exceed

https://orcid.org/0000-0002-9111-5641
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the sizes of the circuit input and output. Following this, a line of works investi-
gate the achievable extent of adaptive privacy for the traditional Yao’s garbling
scheme [Yao86]. Notably, [JW16] proves that Yao’s garbling is adaptively secure
when its use is restricted to circuits in NC1. Much later, this is complemented
with [KKPW21b] that presents a feasibility lower-bound for the circuits com-
plexity for which Yao’s garbling is adaptively secure. Informally, they show that
the security loss for adaptive privacy in Yao’s scheme is exponential in the circuit
depth. Recently, Brzuska et al [BBK+23] proposed a weaker notion of simulata-
bility with the goal of bypassing the [AIKW13] impossibility (while still be useful
enough for some applications).

Given these limitations in proving adaptive privacy for traditional schemes,
a different line of works focus on constructing new garbling schemes that are tai-
lored to be adaptively secure. Among these [HJO+16] presents a garbling scheme
constructed using a new primitive – somewhere equivocal encryption schemes –
which they show can be constructed from one-way functions. This serves as a fea-
sibility result for adaptive garbling in the plain model yielding a size-inefficient
garbled circuit. [JSW17] builds on this to present a garbling scheme using the
same building-blocks that is secure with respect to the indistinguishability def-
inition of adaptive privacy. In contrast [GS18] constructs an adaptively secure
garbling scheme from standard hardness assumptions like the Computational
Diffie Hellman and Learning With Errors problem.

While on the one hand new communication-inefficient constructions for adap-
tively secure garbling were constructed, [JO20] showed that many existing selec-
tively secure garbling schemes that support practical optimisations for garbling
size (making them more communication efficient than Yao’s scheme) cannot be
proven adaptively private using pebbling techniques. They complement this neg-
ative result with a construction of an efficient adaptively secure garbling scheme
based on PRFs. Their scheme garbles XOR gates with two ciphertexts and AND
gates with three ciphertexts per gate respectively.

Most recently, Barnum et al. present a framework for proving adaptive se-
curity for garbling schemes in the non-programmable Random Oracle Model
(npROM) in [BHKO23]. Their framework applies to certain garbling schemes
when their underlying cryptographic object is replaced with calls to a random
oracle. They demonstrate this proof in the simulation paradigm in the pres-
ence of PPT adversaries where, notably, the simulator does not program the
random oracle. However, their proof does leverage programmability in the hy-
brid experiments within the proof of security. In the non-programmable Random
Permutation Model (npRPM) [GYW+23] present a proof for adaptive security
of the garbling schemes in [ZRE15] and [RR21] in the simulation paradigm for
PPT adversaries. Their proof techniques are specific to these schemes and rely on
rigorous probability analysis for proving the indistinguishability of their hybrid
experiments.
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2 Preliminaries

General Notation. We say that a function f : N→ R is negligible if for all con-
stants c > 0, there exists N ∈ N such that for all n > N , f(n) < n−c. We say f
is exponentially-slow growing if f(n) = 2−Ω(n). We sometimes denote negligible
functions by neg(·). We denote by κ the computational security parameter. Let
bold-face letters represent vectors, e.g. v, where v[i] refers to the element in
the ith index of the vector v ∈ Σn over alphabet Σ, and |v| := n refers to the
number of elements in v. We sometimes associate a vector v ∈ Σn with the set
{v[i]}i∈[n] ⊆ Σ of elements in v. For an integer n ∈ N let [n] := {1, 2, . . . , n}.
We will denote the truth value of a formula by double brackets, e.g. Jx = yK = 1
if and only of x = y. For an algorithm A, we write AO to denote that A has
oracle access to some oracle O. We write x ← A to denote that A outputs x
when run on uniformly random coins, and x← X to denote sampling uniformly
at random from a set X .

Circuit Notation. We represent a Boolean circuit C : {0, 1}n → {0, 1}m as a
tuple of the form C = (n,m, q, {A,B,C, fg}g∈[q]) with fg ∈ {AND,XOR}. Here
q represents the number of gates, n and m the input and output lengths, respec-
tively. For each (binary) gate indexed g ∈ [q], A and B represent the indices of
its left and right input wires respectively, while C = n+ g represents the output
wire index. fg represents the functionality of the gate. Note that, in particular,
the representation of C exceeds the number of gates.

For our proofs we require the following security definition for hash functions.

Definition 1 (q-wise independent hash function family [CW79]). For
q ∈ N, a keyed function F : I ×X → Y is a q-wise independent hash function if
for all x1 ̸= · · · ̸= xq ∈ X and all y1, · · · , yq ∈ Y,

Pr
I←I

[F (I, x1) = y1, · · · , F (I, xq) = yq] = 1/|Y|q. (2)

[WC81] described a construction of q-wise independent hash functions based on
polynomial interpolation.

2.1 Garbling Schemes

The definition of garbling as a standalone cryptographic primitive was due to
Bellare et al. [BHR12b].

Definition 2 (Garbling Scheme [BHR12b]). A garbling scheme is a tuple
Γ = (Gb,En,Ev,De) containing four polynomial-time algorithms, where Gb is
randomised and En,Ev,De are deterministic:

– (C̃, e,d)← Gb(1κ,C): on input a security parameter (in unary) and a circuit
C, returns a garbling C̃, input encoding function e, and output decoding
function d.

https://orcid.org/0000-0002-9111-5641
https://orcid.org/0009-0009-9303-750X
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– x̃ = En(e,x): returns the encoding x̃ for function input x.
– y = Ev(C̃, x̃): returns the output labels y by evaluating C̃ on x̃.
– {⊥,y} = De(y,d): returns either the failure symbol ⊥ or a value y = f(x).

These algorithms must satisfy the following properties:

– Correctness: For every circuit C : {0, 1}n → {0, 1}m and input x ∈ {0, 1}n,

Pr[y = C(x) : (C̃, e,d)← Gb(C), x̃ = En(e,x), y = Ev(C̃, x̃), y = De(d,y)] = 1

– Non-degeneracy: For any pair C0,C1 : {0, 1}n → {0, 1}m with q gates,

{e0,d0}(C̃0,e0,d0)←Gb(C0)
≡ {e1,d1}(C̃1,e1,d1)←Gb(C1)

Garbling schemes are additionally defined to have a privacy property and for
all traditional schemes, this is the selective privacy property as in Definition 3.

Definition 3 (Selective Privacy by Indistinguishability (sPRIV-IND)).
A garbling scheme Γ = (Gb,En,Ev,De) (Definition 2) is sPRIV-IND-secure if

for every two-stage PPT adversary A = (A0,A1) the following value is negligible:∣∣∣∣ Pr
(C,x0,x1,σ)←A0(1

κ) ; C(x0)=C(x1)

(C̃,e,d)←Γ.Gb(1κ,C)

[A1(σ, (C̃, Γ.En(e,x0),d)) = 1]−

Pr
(C,x0,x1,σ)←A0(1

κ) ; C(x0)=C(x1)

(C̃,e,d)←Γ.Gb(1κ,C)

[A1(σ, (C̃, Γ.En(e,x1),d)) = 1]

∣∣∣∣
A stronger privacy definition than the above is the notion of adaptive privacy

as in Definition 4. This differs from the selective privacy definition in that the
adversary first selects a circuit in an offline phase and receives a garbled circuit.
It can then select inputs based on this in the online phase. In the definition
of adaptive PRIV-IND we depart from the standard definition by outputting
the decoding function d in the online phase, so to avoid the lower bound of
Applebaum et al. [AIKW13].

Definition 4 (Adaptive Privacy by Indistinguishability (PRIV-IND)).
Let n(·) and m(·) be polynomial functions. Let Γ = (Gb,En,Ev,De) be a garbling
scheme (Definition 2) and κ a computational security parameter. Consider the
following security game between a PPT adversary A and a challenger C for
adaptive privacy by indistinguishability:

– Offline Phase:
• A chooses a circuit C : {0, 1}n(κ) → {0, 1}m(κ) and gives this to C
• C computes (C̃, e,d)← Γ.Gb(1κ,C) and gives C̃ to A

– Online Phase:
• A chooses x0,x1 ∈ {0, 1}n(κ) s.t. C(x0) = C(x1) and gives (x0,x1) to C
• C samples a bit b← {0, 1} and computes x̃ = Γ.En(e,xb)
• C gives (x̃,d) to A
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• A outputs a bit b′.

Γ is PRIV-IND-secure if the advantage of every PPT adversary A is

AdvPRIV-IND
A (κ) :=

∣∣∣∣Pr[b′ = b | b′ ← ⟨A(1κ),C(1κ)⟩]− 1

2

∣∣∣∣ < neg(κ)

for some negligible function neg.

2.2 LIN-RK-KDM based Garbling Scheme of [App16]

We recall the definition of an RK-KDM secure encryption scheme restricted to
settings that suffice for this paper. To be specific, we restrict to fixed-length keys
and messages, and the class of linear relations on them. Then we describe the
construction of a garbling scheme using this primitive that supports free-XOR,
as given in [App16].

Definition 5 (LIN-RK-KDM Secure Encryption Scheme). Let E =
(Enc,Dec) be a symmetric key encryption scheme over message space and key
space M = K = {0, 1}κ satisfying,

– Correctness: ∀ messages m ∈M and all keys k ∈ K,

Pr[Dec(k,Enc(k,m)) = m] = 1.

– Length Regularity: ∀m0,m1 ∈M, k ∈ K, c0 ← Enc(k,m0), c1 ← Enc(k,m1)
it holds that |c0| = |c1|.

Let the associated family of key-derivation functions Φlin and key-dependent-
message functions Ψlin determining the legal relations between the key-related
keys, and the key-related messages be as follows:

Φlin :=
{
ϕ∆ : K → K | ϕ∆(k) = k ⊕∆

}
∆∈K

Ψlin :=
{
ψb,∆ : K →M | ψb,∆(k) = b · k ⊕∆

}
b∈{0,1}, ∆∈K

Let the oracles Realk and Idealk, parameterized by k ∈ K be of the form:

Enc(ϕ(k), ψ(k))← Realk(ϕ ∈ Φlin, ψ ∈ Ψlin)

Enc(ϕ(k), 0|ψ(k)|)← Idealk(ϕ ∈ Φlin, ψ ∈ Ψlin)

E is semantically secure under Related Key and Key Dependent Message Attacks
for Linear Relations (LIN-RK-KDM-secure, for short) if for k ← K, for any
PPT adversary A, its advantage in distinguishing these two oracles, i.e.

AdvLIN
A (κ) :=

1

2
·

∣∣∣∣∣Pr
[
ARealk(1κ) = 1

]
− Pr

[
AIdealk(1κ) = 1

]∣∣∣∣∣,
is negligible in κ.
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Based on a LIN-RK-KDM-secure encryption scheme for key and message rela-
tions Φlin and Ψlin, in [App16], Applebaum constructs a selectively secure (i.e.
sPRIV-IND secure) garbling scheme for circuits, that supports free-XOR. Al-
gorithms 1 and 2 detail this scheme. In this paper, we show that LIN-RK-KDM
security of the encryption scheme cannot be used in a black-box way to prove
adaptive security (i.e. PRIV-IND security) of Applebaum’s garbling scheme.

Algorithm 1 Garbling Scheme Γ E for circuits with XOR and AND gates
1: procedure Gb(1κ,C)
2: initialize C̃ = [], e = [] and d = []
3: sample ∆← K s.t. lsb(∆) = 1
4: for every i ∈ [n] do
5: sample L0

i ← K and set L1
i = L0

i ⊕∆
6: set e[i] = L0

i

7: end for
8: for each g ∈ [q] do
9: parse gth gate as (A,B,C, fg)

10: if fg == XOR then
11: set L0

C = L0
A ⊕ L0

B and L1
C = L0

C ⊕∆
12: else
13: let cA = lsb(L0

A), cB = lsb(L0
B), sample L0

C ← K and set L1
C = L0

C ⊕∆
14: compute and set C̃[g] = Gg where,

Gg[cA, cB ] = (Enc(L0
A, R1);Enc(L

0
B , R1 ⊕ L0

C)) R1 ← K

Gg[cA,¬cB ] = (Enc(L0
A, R2);Enc(L

1
B , R2 ⊕ L0

C)) R2 ← K

Gg[¬cA, cB ] = (Enc(L1
A, R3);Enc(L

0
B , R3 ⊕ L0

C)) R3 ← K

Gg[¬cA,¬cB ] = (Enc(L1
A, R4);Enc(L

1
B , R4 ⊕ L1

C)) R4 ← K

15: end if
16: end for
17: for each j ∈ [m] do
18: set d[j] = lsb(L0

j )
19: end for
20: return (C̃, (∆, e),d)
21: end procedure
22:
23: procedure En((∆, e),x)
24: initialize x̃ = []
25: for every i ∈ [n] do
26: set x̃[i] = e[i]⊕ x[i]∆
27: end for
28: return x̃
29: end procedure
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Algorithm 2 Algorithms to Evaluate the Garbling in Γ E

1: procedure Ev(C̃, x̃)
2: initialize y = []
3: for each g ∈ [q] do
4: LA, LB ← active labels associated with the input wires of gth gate
5: if fg == XOR then
6: LC = LA ⊕ LB

7: else
8: for sA = lsb(LA), sB = lsb(LB), let (c0, c1) = Gg[sA, sB ]
9: compute LC = Dec(LA, c0)⊕ Dec(LB , c1)

10: end if
11: if C is a circuit output wire then
12: y[C] = LC

13: end if
14: end for
15: return y
16: end procedure
17:
18: procedure De(y,d)
19: initialize y′ = []
20: for j ∈ [m] do
21: y′[j] = d[j]⊕ lsb(y[j])
22: end for
23: return y′

24: end procedure

2.3 CCR Hash based Garbling Scheme of [ZRE15]

We recall the definition of circular correlation robust (CCR) hash functions and
the construction of a garbling scheme based on this primitive that supports free-
XOR, as given in [ZRE15]. For a hash function Hκ : {0, 1}κ × N → {0, 1}κ,
consider the following two oracles:

– The oracle O : {0, 1}κ ×N× {0, 1} → {0, 1}κ represents a random function.
Note that this oracle can be simulated efficiently by lazy sampling: for each
new call to O with input (x, i, b) a κ-bit string is sampled uniformly at
random and assigned as the oracle output; each time O is queried with a
previously queried input, the same output is delivered.

– The CCR Oracle CH,∆ : {0, 1}κ×N×{0, 1} → {0, 1}κ represents a function
parametrized by Hκ and a κ-bit value ∆ ← {0, 1}κ−1||1 sampled uniformly
at random. For each input (x, i, b), this oracle outputs the value Hκ(x ⊕
∆, i)⊕ b∆.

Given these oracles, CCR secure hash functions are defined as given below.

Definition 6 (Circular Correlation Robust Hash Function). Let H =
{Hκ : {0, 1}κ × N → {0, 1}κ}κ∈N be a family of hash functions. Let a ‘legal’ se-
quence of oracle queries, each of the form (x, i, b), be one in which the same value
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(x, i) is never queried with different values of b. Then H is circular correlation
robust (CCR) if for any PPT adversary A there exists a negligible function neg
such that for A’s advantage it holds

AdvCCR
A (κ) :=

1

2

∣∣∣∣∣Pr∆
[
ACH,∆(1κ) = 1

]
− Pr

O

[
AO(1κ) = 1

]∣∣∣∣∣ < neg(κ).

Algorithms 3 and 4 detail the garbling scheme presented in [ZRE15], which
can be proven selectively secure based on CCR security of the underlying hash
function.

Algorithm 3 Garbling Scheme ΓH for circuits with XOR and AND gates
1: procedure Gb(1κ,C)
2: initialize C̃ = [], e = [] and d = []
3: sample ∆← {0, 1}κ−1||1
4: for every i ∈ [n] do
5: sample L0

i ← {0, 1}κ and set L1
i = L0

i ⊕∆
6: set e[i] = L0

i

7: end for
8: for each g ∈ [q] do
9: parse gth gate as (A,B,C, fg)

10: if fg == XOR then
11: set L0

C = L0
A ⊕ L0

B and L1
C = L0

C ⊕∆
12: else
13: k0g = 2g − 1, k1g = 2g, pa = lsb(L0

A), pb = lsb(L0
B)

14: G0
g = H(L0

A, k
0
g)⊕H(L0

A ⊕∆, k0g)⊕ pb∆
15: G1

g = H(L0
B , k

1
g)⊕H(L0

B ⊕∆, k1g)⊕ L0
A

16: L0
C = H(L0

A ⊕ pa∆, k0g)⊕H(L0
B ⊕ pb∆, k1g)⊕ papb∆

17: set C̃[g] = (G0
g, G

1
g)

18: end if
19: end for
20: for each j ∈ [m] do
21: set d[j] = lsb(L0

j )
22: end for
23: return (C̃, (∆, e),d)
24: end procedure
25:
26: procedure En((∆, e),x)
27: initialize x̃ = []
28: for every i ∈ [n] do
29: set x̃[i] = e[i]⊕ x[i]∆
30: end for
31: Return x̃
32: end procedure
33:
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Algorithm 4 Algorithms to Evaluate the Garbling in ΓH

1: procedure Ev(C̃, x̃)
2: initialize y = []
3: for each g ∈ [q] do
4: LA, LB ← active labels associated with the input wires of gth gate
5: if fg == XOR then
6: LC = LA ⊕ LB

7: else
8: k0g = 2g − 1, k1g = 2g, sa = lsb(LA), sb = lsb(LB)
9: LC = H(LA, k

0
g)⊕H(LB , k

1
g)⊕ saG0

g ⊕ sb(G1
g ⊕ LA)

10: end if
11: if C is a circuit output wire then
12: y[C] = LC

13: end if
14: end for
15: return y
16: end procedure
17:
18: procedure De(y,d)
19: initialize y′ = []
20: for j ∈ [m] do
21: y′[j] = d[j]⊕ lsb(y[j])
22: end for
23: return y′

24: end procedure

3 Lower Bounds on Loss in Adaptive Security of Garbling
from LIN-RK-KDM-Secure Encryption

In this section, we prove that adaptive security of the garbling scheme Γ (·)

from [App16] cannot be reduced to LIN-RK-KDM security of the underlying
SKE scheme. To be specific, we prove that any fully black-box security reduc-
tion R proving adaptive security of Γ (·) based on LIN-RK-KDM security of the
underlying SKE must incur an exponential loss in security. To formally state the
result in Theorem 3, in Definition 7 we formally define fully black-box security
reduction for the setting of Theorem 3.

Definition 7. A fully black-box security reduction for Applebaum’s gar-
bling construction Γ (·) from [App16] based on LIN-RK-KDM security of SKE
(Definition 5) is a PPT oracle machine R such that for every (possibly ineffi-
cient) implementation E of SKE and every (possibly inefficient) adversary A,
if AE breaks the PRIV-IND-security of ΓE with non-negligible advantage, then
RA,E breaks the LIN-RK-KDM-security of E with non-negligible advantage. De-
noting the advantage of AE by ϵA(κ), the runtime of R by tR(κ),6 and the ad-
6 Assuming any fixed model of computation M , we assume each oracle call costs an

oracle-aided machine in M one computational step.
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vantage of RA,E by ϵR(κ), respectively, we define the security loss for RA,E as
tR(κ) ·ϵA(κ)/ϵR(κ). The security loss of R is then defined as the maximal security
loss of RA,E over all implementations E of SKE and adversaries A.

The following theorem now proves that any fully black-box security reduction
for the garbling construction ΓE of [App16] incurs an exponential security loss.
Note that — in contrast with the lower bounds for Yao’s garbling [KKPW21b]
— this lower bound holds even for bounded-depth circuits.

Theorem 3. Let Γ (·) be the garbling scheme from [App16] (Algorithms 1 and 2).
For any fully black-box security reduction R, there exists a family of (inefficient)
deterministic adversaries AI and a family of ideal SKE schemes E such that for
an adversary AI selected uniformly at random from AI (i.e. I ← I) and an SKE
scheme E selected uniformly at random from E, AEI breaks PRIV-IND security
of ΓE with a non-negligible probability, but for large enough κ

AdvLIN
RE,AE

I
(κ) ≤ 2−Ω(κ).

This holds even when AI is restricted to querying NC1 circuits.

To prove the theorem, we describe a family E of ideal encryption schemes
E (Section 3.1) and an (inefficient) adversary family AI = {AI}I∈I that when
given oracle access to E breaks PRIV-IND security of ΓE by brute-force (Sec-
tion 3.2), such that E ← E remains LIN-RK-KDM secure in the presence of
oracle AEI ← AEI . Together with the positive results of [App16], this implies that
in the presence of oracle AEI ← AEI the garbling scheme ΓE is selectively secure,
i.e. sPRIV-IND secure, but not adaptively secure, i.e. not PRIV-IND secure.

3.1 Ideal Encryption E

We define the ideal encryption scheme E = (Enc,Dec) as follows:

– Key and message spaces for security parameter κ are K =M = {0, 1}κ.
– Enc is defined through an injective expanding function f : {0, 1}3κ → {0, 1}4κ.

On input a key k and a message m, the algorithm Enc first samples r ←
{0, 1}κ uniformly at random and then outputs f(k,m, r).

– Dec on input a key k ∈ {0, 1}κ and a ciphertext ct ∈ {0, 1}4κ brute-force
searches for m, r ∈ {0, 1}κ such that ct = f(k,m, r). If no such m, r exist, Dec
outputs ⊥. If Dec is called on a key k = ⊥, then it outputs ⊥.

Note, since the function f is injective, for each ciphertext ct there exists a unique
key k ∈ {0, 1}κ such that Dec(k, ct) ̸= ⊥. We define the following functions
KEx,MEx : {0, 1}4κ → {0, 1}κ:

KEx(ct) :=

{
k such that Dec(k, ct) ̸= ⊥ if such k exists
⊥ else

MEx(ct) := Dec(KEx(ct), ct).
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x[1] x[2] x[3] x[4] x[5] x[6] x[7] x[8]

∧ ∧ ∧ ∧g = 1 : g = 2 : g = 3 : g = 4 :

⊕ ⊕

⊕

y

Fig. 3. The circuit C for n = 23 = 8. We consider the topological order on gates that
numbers gates layer-by-layer.

We define the family of SKE schemes E as the family of SKE schemes E defined
as above through functions f from the family of injective functions with domain
{0, 1}3κ and codomain {0, 1}4κ. Now, if f is sampled uniformly at random from
the latter family, it is easy to see that E is exponentially LIN-RK-KDM secure
(i.e. any PPT adversary in the LIN-RK-KDM security game has exponentially
small advantage).

3.2 Adversarial Strategy AI

Each adversary AI in our family of adversaries AI has oracle access to the
encryption scheme E, i.e. to both oracles Enc and Dec, which we simply denote by
AEI . For ease of exposition, we first describe a randomised A which is sufficient for
non-rewinding reductions that cannot control the adversary’s randomness. The
general adversary AI , described in the end, is obtained by a simple modification
of A: instead of randomly sampling, the inputs are generated deterministically
using a tR(κ)-wise independent hash function with key I.

In the following, for security parameter κ, let n = n(κ) ≥ κ be a power of 2,
i.e. n = 2d for some d ∈ N of order log(κ). When invoked on a security parameter
κ, AE first sends a circuit C : {0, 1}n → {0, 1} that implements the function
{0, 1}n → {0, 1} with n = 2d that maps x ∈ {0, 1}n to

y :=
∣∣{g ∈ [n/2] | x[2g − 1] = x[2g] = 1

}∣∣ (mod 2)

as depicted in Fig. 3.7 AE receives a garbled circuit C̃ in return, and then it
challenges the reduction on inputs (x0,x1) sampled as

x1 ← {0, 1}n, x0 ← {x ∈ {0, 1}n | C(x) = C(x1)} \ {x1}.

In response, it receives a garbled input x̃ and decoding information d.AE outputs
1 if and only if the following checks 1–5 pass:
7 Looking ahead, we do not really exploit any properties of the bottom layers of the

circuit in our argument (and therefore the choice of XOR gates is arbitrary). But
it is crucial that the first layer comprises of AND gates: the asymmetry of the
garbling/gate table of AND gates will be exploited by the adversary to construct
the logical map from keys to bits.
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1. C̃, x̃ have the form C̃ = (Gg)g∈[n/2] with Gg[b, c] = (Gg[b, c]
0;Gg[b, c]

1) and
Gg[b, c]

d ciphertexts (i.e. in the image of Enc) for all g ∈ [n/2], b, c, d ∈ {0, 1},
and x̃ ∈ Kn.

2. C̃,d correctly evaluates on x̃, i.e. De(Ev(C̃, x̃),d) = C(x0).
3. C̃ is properly formed w.r.t. input keys, i.e. for all g ∈ [n/2]

KEx(Gg[0, 0]0) = KEx(Gg[0, 1]0), KEx(Gg[1, 0]0) = KEx(Gg[1, 1]0),

KEx(Gg[0, 0]1) = KEx(Gg[1, 0]1), KEx(Gg[0, 1]1) = KEx(Gg[1, 1]1),

KEx(Gg[0, 0]0)⊕ KEx(Gg[1, 0]0) = KEx(Gg[0, 0]1)⊕ KEx(Gg[0, 1]1) =: ∆

for some ∆ ∈ K = {0, 1}κ \ {0κ}
4. Gg garbles an AND gate for each g ∈ [n/2], i.e. exists Ig ⊂ {0, 1}2 with
|Ig| = 3 such that

MEx(Gg[b, c]0)⊕MEx(Gg[b, c]1) =: L0g

for all (b, c) ∈ Ig and some L0g ∈ M = {0, 1}κ, and for (b′, c′) ∈ {0, 1}2 \ Ig
and some L1g ∈M = {0, 1}κ

MEx(Gg[b′, c′]0)⊕MEx(Gg[b′, c′]1) =: L1g ̸= L0g.

5. x̃ garbles x1, i.e. for all g ∈ [n/2], b ∈ {0, 1} and (b′, c′) ∈ {0, 1}2 \ Ig as in 4

x1[2g − b] = Jx̃[2g − b] = KEx(Gg[b′, c′]¬b)K.

It is not difficult to see that AE indeed breaks PRIV-IND security of ΓE with
advantage 1−2−κ: for an honest garbling (C̃, x̃,d) of (C,xb∗) all the checks 1–4
will pass whenever ∆ ̸= 0κ (which is true with probability 1− 2−κ).

Note that the only non-deterministic choice involved in AE is the sampling
of the inputs (x0,x1). To obtain the full adversary AEI against general (rewind-
ing) fully black-box security reductions, we derandomise AE using a tR(κ)-wise
independent hash function F (similar to [GK96]). To be specific, AEI evaluates
F (I, ·) on the garbled circuit C̃ to generate the random coins r for the process
used to sample (x0,x1), which we denote Collx. See Fig. 4 for a summary of
the description of AEI , and Lemma 1 for a formal statement that it is a valid
adversary against ΓE .

Lemma 1. For every I ∈ I and E ∈ E, AEI is a valid adversary against ΓE.
To be precise, for every I ∈ I and large enough κ ∈ N, AEI breaks ΓE with a
probability 1− 2−κ.

3.3 Proof of Theorem 3

Fix a security reduction RE for the setting of Theorem 3 indicated in Figure 2,
and let tR(κ) denote its running time. Note that tR(κ) is an upper bound on
ρ, the number of times RE can run the adversary, including the executions by
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Adversarial Strategy AE
I

Let F be a public and efficiently computable tR(κ)-wise independent hash
function keyed by I ∈ I. Let adversary AE

I have I hard-coded and have oracle
access to E = (Enc,Dec) ∈ E . In the PRIV-IND security game,

– For input length n = κ, AE
I sends a circuit C : {0, 1}n → {0, 1} as in

Figure 3 and receives a garbling C̃.
– AE

I computes random coins r = F (I, C̃).
– AE

I sends inputs (x0,x1) where x0 ̸= x1 and both are sampled using
random coins r under the constraint that C(x0) = C(x1).

– AE
I receives (x̃,d) and outputs 1 if the following checks pass:
1. Check if C̃, d and x̃ are of the correct size and are composed of valid

elements from the ciphertext space and key space of E respectively.
2. Check for evaluation correctness: De(Ev(C̃, x̃),d) = C(x0)
3. Within the garbling C̃, extract all the encryption keys from the ci-

phertexts using KEx and check:
• ciphertexts are correctly formed w.r.t. some input keys
{(L0

i , L
1
i )}i∈[n]

• there exists∆ ∈ {0, 1}κ s.t. for each input wire i ∈ [n], L0
i⊕L1

i = ∆
4. Within the garbling C̃, extract all the messages from the ciphertexts

using MEx and check:
• ciphertexts form correct garblings of AND gates, i.e. for each gate
g ∈ [n/2], three of the associated ciphertexts encrypt the same
message, the fourth a different one

Extract the real semantic values of all the input wire labels.
5. Check if x̃ contains the input labels whose semantic values match x1

Fig. 4. Inefficient Adversarial Strategy

rewinding. To prove the theorem, we show that there exists an efficient “simu-
lated” adversary ÂEI such that (when I ← I) RE distinguishes AEI from ÂEI with
only an exponentially-small probability. The simulated adversary ÂE , described
below, exploits the ability to observe R’s oracle queries to E and LIN-RK-KDM
oracles in order to efficiently carry out the checks 1–5. It follows that for ev-
ery PPT reduction R that has oracle access to the garbling adversary AI and
attempts to break LIN-RK-KDM security of E, there exists a PPT reduction
R′ whose advantage is only by an exponentially-small additive factor smaller
than the success probability of R, and whose runtime only has a small additive
overhead (incurred by simulating the efficient algorithm Â). We note that this
technique overall is reminiscent of meta-reductions [BV96], especially the proof
in [GW11]. A formal description of ÂEI is given below.

– ÂEI initiates sets QE and QLIN, in which it stores all queries (k,m, r) ∈ K ×
M×{0, 1}κ which R makes to the E.Enc oracle Enc before outputting C̃ along
with the respective oracles responses ct, and all queries (ϕ, ψ) ∈ Φlin × Ψlin
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to the LIN-RK-KDM oracle (either Realk∗ or Idealk∗ for some challenge key
k∗) made before outputting C̃ along with the responses ct, respectively. By
QKE , QME , QCE we refer to the sets of keys k, messages m and ciphertexts ct
in QE . Similarly, for QLIN, we refer by QΦLIN, QΨLIN, QCLIN we refer to the sets
of key relations ϕ, message relations ψ and ciphertexts ct in QLIN.

– Similar to AEI , ÂEI outputs C as defined in Section 3.2 as its first message.
– On receipt of a garbled circuit C̃, ÂEI samples inputs (x0,x1) just like AEI ,

i.e. as (x0,x1) := Collx(F (I, C̃)).
– On receipt of a garbled input x̃ and a decoding function d, the algorithm

ÂEI checks whether the following are true, if any of them fails it quits and
outputs 0:

1. x̃ ∈ Kn and all ciphertexts in C̃ were derived as responses from either
the SKE oracle or the LIN-RK-KDM oracle, i.e.

Gg[b, c]
d ∈ QCE ∪QCLIN for all g ∈ [n/2], b, c, d ∈ {0, 1}.

2. C̃,d correctly evaluates on x̃, i.e. De(Ev(C̃, x̃),d) = C(x0).

3. C̃ is properly formed w.r.t. input keys, i.e. for all g ∈ [n/2]

KEx(Gg[0, 0]0) = KEx(Gg[0, 1]0), KEx(Gg[1, 0]0) = KEx(Gg[1, 1]0),

KEx(Gg[0, 0]1) = KEx(Gg[1, 0]1), KEx(Gg[0, 1]1) = KEx(Gg[1, 1]1),

KEx(Gg[0, 0]0)⊕ KEx(Gg[1, 0]0) = KEx(Gg[0, 0]1)⊕ KEx(Gg[0, 1]1) =: ∆

for some ∆ ∈ {0, 1}κ \ {0κ}.
Note that if Item 1 is true then this can be checked efficiently: Since all
ciphertexts Gg[b, c]d were derived through SKE or LIN-RK-KDM oracle
calls, each of them is an encryption either under a key k that was ex-
plicitly queried to the SKE oracle (hence is known), or under a key k
such that its linear relation ϕ to the LIN-RK-KDM challenge key k∗ was
explicitly queried to the LIN-RK-KDM oracle, i.e. k = ϕ(k∗) = k∗ ⊕∆ϕ

where ∆ϕ is known. While not all keys might be known, hence also the
global offset ∆ might not be known, treating k∗ as an unknown variable
still allows to perform the check efficiently. To check ∆ ̸= 0κ, in the case
that the ciphertext G1[b, 0]

0 for some b ∈ {0, 1} was derived through the
SKE oracle, one can use the known key and check that decryption using
that key fails for ciphertext G1[¬b, 0]0; in the case that both ciphertexts
G1[0, 0]

0 and G1[1, 0]
0 were derived through the LIN-RK-KDM oracle,

one can check that the respective linear functions differ.

4. To check whether Gg garbles an AND gate for each g ∈ [n/2], i.e. there
exists Ig ⊂ {0, 1}2 with |Ig| = 3 such that

MEx(Gg[b, c]0)⊕MEx(Gg[b, c]1) =: L0g
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for all (b, c) ∈ Ig and some L0g ∈ M, and for (b′, c′) ∈ {0, 1}2 \ Ig and
some L1g ∈M

MEx(Gg[b′, c′]0)⊕MEx(Gg[b′, c′]1) =: L1g ̸= L0g,

check that one of the following cases is true and proceed accordingly:

a) There is a key in x̃ that is not in QKE .

In this case, let i ∈ [n] be such that x̃[i] /∈ QKE and g ∈ [n/2], d ∈ {0, 1}
such that i = 2g−1+d. By check 2, it must hold Dec(x̃[i], Gg[b, c]d) ̸= ⊥
for some b, c ∈ {0, 1}. By Item 1, one of the following must hold:
• Gg[¬b,¬c]d ∈ QCE . In this case, there exist k,m, r such that ((k,m, r),
Gg[¬b,¬c]d) ∈ QE and one can extract ∆ from Item 3 as ∆ :=
k⊕ x̃[i].

• Gg[¬b,¬c]d ∈ QCLIN. In this case, let ϕi, ψi, ϕ′i, ψ′i be such that ((ϕi, ψi),
Gg[b, c]

d), ((ϕ′i, ψ
′
i), Gg[¬b,¬c]d) ∈ QLIN and ϕi(k) := k⊕∆i, ϕ′i(k) :=

k⊕∆′i. Then one can extract ∆ from Item 3 as ∆ := ∆i ⊕∆′i.
One can now check well-formedness of every gate g ∈ [n/2] efficiently
by decrypting the ciphertexts in Gg using keys x̃[2g − 1], x̃[2g − 1] ⊕
∆, x̃[2g], x̃[2g]⊕∆.

b) All keys in x̃ are in QKE and there exists a key k ∈ QKE and g ∈
[n/2], b, c, d ∈ {0, 1} such that Dec(k, Gg[b, c]d) ̸= ⊥ and k ̸= x̃[2g −
1 + d].

In this case, if Items 2 and 3 hold, then one can compute ∆ from Item 3
as ∆ := k ⊕ x̃[2g − 1 + d]. One can now check well-formedness of every
gate g ∈ [n/2] efficiently by decrypting the ciphertexts in Gg using keys
x̃[2g − 1], x̃[2g − 1]⊕∆, x̃[2g], x̃[2g]⊕∆.

c) All keys in x̃ are in QKE and for all keys k ∈ QKE and all g ∈
[n/2], b, c, d ∈ {0, 1} it holds Dec(k, Gg[b, c]d) = ⊥ or k = x̃[2g−1+d].

In this case, ÂEI simply performs the check assuming that all LIN-RK-KDM
ciphertexts decrypt to 0 ∈ {0, 1}κ. Note that if check 1 passed, then ex-
actly half of the ciphertexts in C̃ must be in QCLIN, whereas the other
half was encrypted under keys in x̃. Now, since f is injective, decryption
using the respective keys in x̃ results in the same messages as MEx for all
ciphertexts in C̃∩QCE , whereas the ciphertexts in QCLIN are just assumed
to encrypt 0. Hence, for each gate g and encryption keys x̃[2g−1], x̃[2g],
for some b, c, d ∈ {0, 1} one derives the correct value Ldg whereas for the
other three ciphertext pairs one arrives at Dec(x̃[2g − 1], Gg[b, c]

0) ⊕ 0,
0 ⊕ Dec(x̃[2g], Gg[b, c]

1) and 0. The algorithm ÂEI will only pass this
check if three of these messages are the same and the fourth differs.

https://orcid.org/0000-0002-9111-5641
https://orcid.org/0009-0009-9303-750X
https://orcid.org/0009-0006-6812-7317


On the Adaptive Security of Free-XOR Garbling 27

5. x̃ garbles x1, i.e. for all g ∈ [n/2], b ∈ {0, 1}, and (b′, c′) ∈ {0, 1}2 \ Ig
from Item 4 it holds

x1[2g − b] = JDec(x̃[2g − b], Gg[b′, c′]¬b) ̸= ⊥K.

If all the checks 1–5 pass, Â outputs 1, else 0.

Lemma 2. Fix any PPT algorithm R with run-time tR. There exists an exponentially-
slow growing function neg such that∣∣∣Pr [RE,Realk∗ ,AE

I (1κ) = 1
]
− Pr

[
RE,Realk∗ ,ÂE

I (1κ) = 1
]∣∣∣ ≤ tR · 2−n+1 + neg(κ),

where the probability is over random choice of E ← E, I ← I and random coins
of reduction R and experiment Realk∗ .

Proof: Note that C output as the first message by Â and A is fixed. Moreover,
(x0,x1) are generated by both ÂI and AI in an identical manner as (x0,x1) :=
Collx(F (I, C̃)). We will prove for any x̃,d and an appropriate δ = δ(κ)∣∣∣∣∣Pr

[
ÂEI (C, C̃, (x0,x1), (x̃,d),QE ,QLIN) ̸= AEI (C, C̃, (x0,x1), (x̃,d))

]∣∣∣∣∣ ≤ δ,
where the probability is over random choice of E ← E , I ← I and random coins
of reduction R and experiment Realk∗ . The notation here should refer to the
adversary’s output bit when observing the respective transcript; recall that both
AI and ÂI are stateless. This then implies∣∣∣∣∣Pr [RE,Realk∗ ,AE

I (1κ) = 1
]
− Pr

[
RE,Realk∗ ,Â

E
I (1κ) = 1

] ∣∣∣∣∣ ≤ ρ · δ.
It is easy to see that for C, C̃, (x0,x1), (x̃,d) and queries QE ,QLIN with all but
exponentially small probability neg(κ) the checks 1–3 made by ÂEI pass if and
only if also the checks 1–3 made by AEI pass:

– The probability that for C̃ output by R after making queries QE , QLIN, the
check 1 by AEI passes but the check 1 by ÂEI does not pass can be bounded
by an exponentially small neg(κ); this is true since E.Enc is defined through
a random expanding function f and, hence, it is exponentially unlikely to
find a ciphertext ct ∈ {0, 1}4κ that was not derived through an oracle query.
On the other hand, if the check by ÂEI passes then trivially also the check
by AEI must pass.

– Check 2 made by ÂEI is just the same as check 2 made by AEI , thus this check
cannot trigger a different outcome at all.

– Conditioned on the previous checks passing, check 3 made by ÂEI is the same
as check 3 made by AEI ; thus this check cannot trigger different output either.
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Now assume all the previous checks pass and all ciphertexts in C̃ were derived
through oracle queries. If for check 4 made by ÂEI , cases a) or b) happen, then
the check is equivalent to the check made by AEI in Item 4, thus these cases
cannot trigger different outcome. The only interesting scenario for check 4 is if
case c) happens. In this case, the outputs of ÂEI and AEI can differ if either both
checks 4 and 5 made by AEI pass or both checks 4 and 5 made by ÂEI pass. In
the following we argue that this happens with probability at most 2−n+1:

If check 4 made by AEI passes, for each g ∈ [n/2] there exists Ig ⊂ {0, 1}2
with |Ig| = 3 such that

MEx(Gg[b, c]0)⊕MEx(Gg[b, c]1) =: L0g

for all (b, c) ∈ Ig and some L0g ∈ K, and for (b′g, c
′
g) ∈ {0, 1}2 \ Ig

MEx(Gg[b′g, c
′
g]

0)⊕MEx(Gg[b′g, c
′
g]

1) =: L1g ̸= L0g.

Furthermore, case c) can only happen if there exists some b ∈ {0, 1}n such that
for all c ∈ {0, 1} and g ∈ [n/2]:

Gg[b[2g − 1], c]0 ∈ QCE , Gg[¬b[2g − 1], c]0 ∈ QCLIN

Gg[c,b[2g]]
1 ∈ QCE , Gg[c,¬b[2g]]1 ∈ QCLIN.

Note that whether check 4 made by AEI passes and the latter happens is de-
termined by the garbled circuit C̃, independently of the inputs x0,x1 and the
garbled input x̃.
Now, for c) to happen, it must hold x̃ ⊂ QKE , hence we must have x̃[2g − 1] =
KEx(Gg[b[2g − 1], c]0) and x̃[2g] = KEx(Gg[c,b[2g]]1). But on the other hand,
check 5 made by AEI can only pass if x1[2g−b] = Jx̃[2g−b] = KEx(Gg[b′g, c′g]¬b)K
for all b ∈ {0, 1}. Thus, the bad event can only happen if for all g ∈ [n/2] it
holds that

x1[2g − 1] = JKEx(Gg[b[2g − 1], c]0) = KEx(Gg[b′g, c
′
g]

0)K,

x1[2g] = JKEx(Gg[c,b[2g]]1) = KEx(Gg[b′g, c
′
g]

1)K,

which (by Item 3) implies

x1[2g − 1] = Jb[2g − 1] = b′gK and x1[2g] = Jb[2g] = c′gK. (3)

Now recall that (x0,x1) := Collx(F (I, C̃)), where I is the key of tR(κ)-wise
independent hash function hardcoded into A. Since R only has oracle access to
AEI and thus F (I, .), and it can invoke AEI at most tR(κ) times, the coins F (I, C̃)
are distributed uniformly at random to R. Furthermore, when run on uniformly
random coins, Collx samples (x0,x1) with x0 ̸= x1 uniformly at random, hence,
the probability that Eq. (3) is true is at most 2−n.

Now consider the case that check 4 made by ÂEI passes. As case c) happens, as
above, it must hold that there exists some b ∈ {0, 1}n such that for all c ∈ {0, 1}
and g ∈ [n/2]:

Gg[b[2g − 1], c]0 ∈ QCE , Gg[¬b[2g − 1], c]0 ∈ QCLIN
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Gg[c,b[2g]]
1 ∈ QCE , Gg[c,¬b[2g]]1 ∈ QCLIN.

Now, as check 4 made by ÂEI passes, we must have for each g ∈ [n/2] and
encryption keys x̃[2g − 1], x̃[2g] ∈ QKE that three of the following four messages
(note, all are ̸= ⊥) are the same and the fourth differs

Dec(x̃[2g − 1], Gg[b[2g − 1],b[2g]]0)⊕ Dec(x̃[2g], Gg[b[2g − 1],b[2g]]1),

Dec(x̃[2g − 1], Gg[b[2g − 1],¬b[2g]]0), Dec(x̃[2g], Gg[¬b[2g − 1],b[2g]]1), 0.

In particular, either Gg[b[2g − 1],b[2g]]0 and Gg[b[2g − 1],b[2g]]1 encrypt the
same message, or a different one. First, consider the case that the messages are
the same. Then, for check 5 made by ÂEI to pass we must have x1[2g−1]∧x1[2g] =
0. Now, if Gg[b[2g − 1],¬b[2g]]0 encrypts 0, we must have x1[2g − 1] = 0 and
x1[2g] = 1. On the other hand, if Gg[b[2g − 1],¬b[2g]]0 does not encrypt 0, we
get x1[2g − 1] = 1 and x1[2g] = 0.
Now consider the case that Gg[b[2g−1],b[2g]]0 and Gg[b[2g−1],b[2g]]1 encrypt
a different message. Then, if Gg[b[2g− 1],¬b[2g]]0 encrypts 0, for check 5 made
by ÂEI to pass we must have x1[2g − 1] ∧ x1[2g] = 1, hence x1[2g − 1] = 1 and
x1[2g] = 1. On the other hand, if Gg[b[2g − 1],¬b[2g]]0 does not encrypt 0, we
get x1[2g − 1] = 0 and x1[2g] = 0.
But since x1 ∈ {0, 1}n is sampled using a tR(κ)-wise independent hash function
with key I ← I hard-coded in ÂEI and unknown to R, this implies that the
probability that check 5 passes is at most 2−n.

Combining all the above, we obtain a bound δ(κ) = 2−n+1+neg(κ) for some
exponentially small neg(κ), which proves the claim. ⊓⊔

For the case where R interacts with the ideal LIN-RK-KDM oracle, unless R
embedded ciphertexts into C̃ that were not derived through oracle queries, ÂEI
behaves just the same as AEI , i.e. we have the following bound.

Lemma 3. Fix any PPT algorithm R with run-time tR. There exists an exponentially-
slow growing function neg such that∣∣∣Pr [RE,Idealk∗ ,AE

I (1κ) = 1
]
− Pr

[
RE,Idealk∗ ,ÂE

I (1κ) = 1
]∣∣∣ ≤ tR · 2−n+1 + neg(κ),

where the probability is over random choice of E ← E, I ← I and random coins
of reduction R and experiment Idealk∗ .

Proof: This proof works similarly to the proof of Lemma 2. As the checks 1–3
are independent of the messages encrypted in C̃ and in particular independent
of the LIN-RK-KDM challenge bit, the only difference is in bounding the prob-
ability of the bad event being triggered by the checks 4 and 5. Regarding check
4, recall from the proof of Lemma 2 that the cases a) and b) either imply that
both AEI and ÂEI reject, or they allow to extract ∆ and hence all keys that were
used to derive the ciphertexts in C̃. Thus, we only have to consider the case
that ÂEI rejects the check 4 and case c) happens. But also in this case the check
is just the same as the check 4 made by AEI , since the LIN-RK-KDM oracle is
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implemented as Idealk∗ , hence always returns encryptions of 0 ∈ {0, 1}κ. Finally,
also the check 5 made by ÂEI is equivalent to the check 5 made by AEI , which
proves the claim. ⊓⊔

Lemmas 2 and 3 imply the following corollary.

Corollary 1. Fix any PPT algorithm R with run-time tR. There exists an al-
gorithm R′ of about the same runtime as R but without oracle access to AEI , and
an exponentially-slow growing function neg such that

AdvLIN
RE,AE

I
(κ) ≤ AdvLIN

R′E (κ) + tR(κ) · 2−n+3 + neg(κ).

where the probability is over random choice of E ← E, I ← I and random coins
of reduction R and experiments Realk∗ and Idealk∗ .

Using the fact that our encryption scheme E is exponentially LIN-RK-KDM
secure, i.e. for every PPT algorithm R′ it holds AdvLIN

R′E (κ) is an exponentially-
slow growing negligible function in κ, implies Theorem 3 (with n = Θ(κ)).

4 Lower Bounds on Loss in Adaptive Security of Garbling
from CCR Hashing

In this section, we prove an analogous theorem to Theorem 3 for the Half Gates
scheme ΓH from [ZRE15], described in Algorithms 3 and 4. That is, we prove
that adaptive security of ΓH cannot be black-box reduced to CCR security of the
underlying hash function H. To be specific, any fully black-box security reduction
R proving adaptive security of ΓH based on CCR-security of the underlying hash
function H must incur an exponential loss in security.

Definition 8. A fully black-box security reduction for the garbling con-
struction Γ (·) of [ZRE15] based on circular correlation robustness of the hash
function (Definition 6) is a PPT oracle machine R such that for every (pos-
sibly inefficient) implementation H of the hash function and every (possibly
inefficient) adversary A, if AH breaks the PRIV-IND-security of ΓH with non-
negligible advantage, then RA,H breaks the CCR security of H with non-negligible
advantage. Denoting the advantage of AH by ϵA(κ), the runtime of R by tR(κ)
and the advantage of RA,H by ϵR(κ), we define the security loss of RA,H as
tR(κ) · ϵA(κ)/ϵR(κ). The security loss of R is then defined as the maximal secu-
rity loss of RA,H over all implementations H of hash functions and adversaries
A.

The following theorem now proves that any fully black-box security reduction
for the garbling construction ΓE of [ZRE15] incurs an exponential security loss.
Note that — similar to the lower bound for Applebaum’s scheme — this lower
bound holds even for bounded-depth circuits.

Theorem 4. Let Γ (·) be the garbling scheme from [ZRE15] (Algorithms 3
and 4). For any fully black-box security reduction R, there exists a family of
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(inefficient) deterministic adversaries AI and a family of ideal hash functions
H such that for an adversary AI ∈ AI with I selected uniformly at random
from I and any H selected uniformly at random from H, AHI breaks PRIV-IND
security of ΓH with a non-negligible probability, but for large enough κ,

AdvCCR
RH,AH

I
(κ) ≤ 2−Ω(κ).

This holds even when AI is restricted to querying NC1 circuits.

We follow a similar approach to the one we took in the setting of garbling
based on RK-KDM secure SKE: we define a family H of ideal hash functions H
and a family of (inefficient) adversaries AI that given oracle access to H breaks
PRIV-IND security of ΓH , while H ← H remains CCR secure in the presence
of oracle AI ← AI .

Proof Sketch. The proof of Theorem 4 works similarly to the proof of Theorem 3,
so we will only highlight the main differences.

For the hash family H we choose the family of functions H : {0, 1}κ × N →
{0, 1}κ such that H(·, i) is a permutation for every i ∈ N. Note that when H
is sampled uniformly at random from H, then H(·, i) is a random permutation,
hence information-theoretically CCR secure.

For the inefficient adversary AH , for ease of exposition, we describe a ran-
domised algorithm AH , which is sufficient for non-rewinding reductions that can-
not control the adversary’s randomness. The general adversary AHI is obtained
by a simple modification of AH , exactly the same as in the proof of Theorem 3:
instead of randomly sampling, the inputs are generated deterministically using
a tR(κ)-wise independent hash function with key I ← I.

AH sends the same circuit C as in Section 3, see Fig. 3, and after receiving
garbled circuit C̃, samples x1 ← {0, 1}n uniformly at random and x0 ̸= x1

uniform under the constraint C(x0) = C(x1). Breaking PRIV-IND security
again works by brute-force breaking CCR security of H, however we have to
be a bit more careful here:

Recall that in an honest garbling C̃, for each g ∈ [n/2] there are two strings
associated with gate g:

G0
g = H(L02g−1, 2g − 1)⊕H(L02g−1 ⊕∆, 2g − 1)⊕ p2g ·∆

G1
g = H(L02g, 2g)⊕H(L02g ⊕∆, 2g)⊕ L02g−1

where pi = lsb(L0i ). Furthermore, an honest input garbling x̃ of x1 contains
exactly one of the two labels L0i , L0i ⊕∆ for each i ∈ [n], namely the active label
L0i ⊕ (x1[i] ·∆) for index i. Denoting the active label by Li we have:

G0
g = H(L2g−1, 2g − 1)⊕H(L2g−1 ⊕∆, 2g − 1)⊕ ((lsb(L2g)⊕ x1[2g]) ·∆) (4)

G1
g = H(L2g, 2g)⊕H(L2g ⊕∆, 2g)⊕ (L2g−1 ⊕ x1[2g − 1] ·∆), (5)

where we used that lsb(∆) = 1.
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For any garbling (C̃, x̃) that AH receives from the (efficient) reduction R,
with probability 1 − neg(κ) for some exponentially small function neg, there
exists at most one ∆ ∈ {0, 1}κ−1∥1 solving the above equations for all g ∈ [n/2].
Hence, our inefficient adversary AH breaks PRIV-IND security of the garbling
scheme by (brute-force) searching whether a solution ∆ ∈ {0, 1}κ−1∥1 exists; if
so, it outputs c∗ = 1, otherwise c∗ = 0.

It is easy to see that AH indeed breaks PRIV-IND security of ΓH with all but
exponentially small probability: If it receives an honest garbling of (C,x1), then
clearly there exists such ∆, namely the one drawn during the garbling procedure.
On the other hand, if (C,x0) was garbled, then – since x0 ̸= x1 – there must
exist i ∈ [n] such that x0[i] ̸= x1[i]. If i = 2g − 1 for some g ∈ [n/2], then the
∆ sampled during the garbling procedure does not satisfy Equation 5 for g; if
i = 2g the sampled ∆ does not satisfy Equation 4 for g. On the other hand, it
is exponentially unlikely that a different ∆ ∈ {0, 1}κ−1∥1 satisfies all equations.

To argue why the adversary AH is not useful to break CCR security of H, we
have to slightly divert from the proof of Theorem 3 since (unlike for E.Enc) the
image of the hash function H is not sparse in the output range and the reduction
could therefore “embed” arbitrary strings into C̃ that were not derived from any
query to the hash or CCR oracle. It is relatively easy to exclude this reduction
strategy and argue that the output of AH is 0 in this case with all but negligible
probability. This holds because H(·, i) is a random permutation for every i, and
thus, it is exponentially unlikely that a solution ∆ ∈ {0, 1}κ−1∥1 to Equations
4 and 5 exists but no pair of labels L, L⊕∆ was queried to H (either explicitly
through the hash oracle or implicitly through the CCR oracle).

We thus argue uselessness of AH for breaking CCR security of H by con-
structing an efficient algorithm ÂH that simulates AH by observing the queries
R makes to its oracles as follows:

– For each g ∈ [n/2] and each L2g−1 such that a query (L2g−1, 2g − 1) was
made to the hash oracle (i.e. each potential active label for index 2g − 1),
ÂH searches for a query (L, 2g − 1) to the hash oracle whose response was

G0
g ⊕H(L2g−1, 2g − 1)⊕ b(L⊕ L2g−1) for some b ∈ {0, 1},

or a query (L2g−1, 2g − 1, b) to the CCR oracle for some b ∈ {0, 1} whose
response was

G0
g ⊕H(L2g−1, 2g − 1).

Since H(·, 2g − 1) is a random permutation, for each g ∈ [n/2] this search
will be successful for at most one of the L2g−1, one of the oracles, and one
bit b (with all but negligible probability). If for some g ∈ [n/2] no such query
exists for any L2g−1, then ÂH outputs 0. Otherwise, ÂH stores the L2g−1 and
proceeds to the next step.

– For each g ∈ [n/2] and each L2g such that a query (L2g, 2g) was made to
the hash oracle, ÂH searches for a query (L, 2g) to the hash oracle whose
response was

G1
g ⊕H(L2g, 2g)⊕ (L2g−1 ⊕ x1[2g − 1] · (L⊕ L2g)),
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or a query (L2g, 2g,x1[2g − 1]) to the CCR oracle whose response was

G1
g ⊕H(L2g, 2g)⊕ L2g−1.

Again, since H(·, 2g) is a random permutation, for each g ∈ [n/2], this search
will be successful for at most one of the L2g, one of the oracles, and one bit b
(with all but exponentially small probability). If for some g ∈ [n/2] no such
query exists, ÂH outputs 0. Otherwise, ÂH stores the L2g and proceeds to
the next step.

– If x̃[i] ̸= Li for some i ∈ [n], then ÂH outputs 0. Note that in this case, with
all but exponentially small probability there is no solution ∆ to Equations
4 and 5 for the labels in x̃, in which case also AH would output 0.

– If for some i = 2g−b ∈ [n] the former type of query exists, ÂH sets∆ := L⊕Li
and uses this to check whether C̃ was correctly garbled and x̃ is consistent
with x1(by checking whether Equations 4 and 5 hold for this value ∆ for all
g ∈ [n/2]). If this check passes, it outputs 1, otherwise 0.

– Finally, if for all i ∈ [n] only the latter type of query exists, intuitively, ÂH
must have correctly guessed x1[i] for all i ∈ [n]. This is true since in the
CCR security experiment, for each (Li, i) ∈ {0, 1}κ × N there can only be
a query (Li, i, bi) for bi = 0 or bi = 1, but not for both. Equations 4 and
5 however depend on x1, which is sampled uniformly at random after the
garbled circuit C̃ – and hence the values G0

g and G1
g — are chosen, and with

all but exponentially small probability these equations only have a solution
∆ if the CCR queries were made for one unique choice of bi ∈ {0, 1} that
depends on (and alternates with) x[i].

Hence, intuitively, the only scenario where the output of ÂH differs from that of
AH is if R correctly guessed x1, which — as x1 was sampled uniformly random
from {0, 1}n after C̃ was sent — happens with probability 2−n for each call the
reduction makes to AH . Setting n = κ leads to the theorem’s statement.
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