
(Multi-Input) FE for Randomized Functionalities, Revisited

Pratish Datta∗ Jiaxin Guan† Alexis Korb‡ Amit Sahai§

Abstract

Randomized functional encryption (rFE) generalizes functional encryption (FE) by incor-
porating randomized functionalities. Randomized multi-input functional encryption (rMIFE)
extends rFE to accommodate multi-input randomized functionalities.

In this paper, we reassess the framework of rFE/rMIFE enhancing our understanding of this
primitive and laying the groundwork for more secure and flexible constructions in this field.
Specifically, we make three key contributions:

• New definition: We identify critical gap in the existing indistinguishability-based (IND)
security definition for rFE/rMIFE. Notably, current definition fails to adequately address
security against malicious encryptors—a crucial requirement for rFE/rMIFE since their in-
troduction. We propose a novel, robust IND security definition that not only addresses
threats from malicious decryptors but also quantifies the security against malicious en-
cryptors effectively.

• Counterexample: To illustrate the importance of this definitional gap, we provide a
counterexample of an insecure rFE scheme that meets IND security under the previous
definition but explicitly fails in a natural setting (and where this failure would be pre-
cluded by our enhanced definition). Our counterexample scheme is non-trivial and metic-
ulously designed using standard cryptographic tools, namely FE for deterministic func-
tions, pseudorandom function (PRF), public key encryption (PKE), and simulation-sound
non-interactive zero-knowledge (NIZK) proof systems.

• Adaptive unbounded-message secure construction: The only viable prior construc-
tion of rMIFE by Goldwasser et al. [EUROCRYPT 2014] (which uses indistinguishability
obfuscation (iO) and other standard assumptions) has significant limitations: it permits
only a pre-defined number of messages per encryption slot and operates under selective-
security constraints, requiring adversaries to declare challenge ciphertext queries and “cor-
rupted” encryption keys in advance. We address these shortcomings by employing sub-
exponentially secure iO. Technically, we build on and adapt methods developed by Goyal
et al.[ASIACRYPT 2016] for deterministic MIFE.

Keywords: Functional encryption, randomized functionalities, multi-input, simulation-based
security, indistinguishability-based security

∗NTT Research. Email: pratish.datta@ntt-research.com. ORCID: 0000-0002-3938-7594.
†New York University. Email: jiaxin@guan.io. ORCID: 0000-0003-1823-8845.
‡UCLA. Email: alexiskorb@cs.ucla.edu. ORCID: 0000-0001-6888-5296.
§UCLA. Email: sahai@cs.ucla.edu. ORCID: 0000-0003-2216-9600.



Contents

1 Introduction 3

2 Technical Overview 9
2.1 New Security Definitions for rFE/rMIFE . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Counterexample. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 The sketch of proposed rMIFE scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Preliminaries 16
3.1 Indistinguishability Obfuscation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Functional Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Non-Interactive Zero Knowledge Proof Systems . . . . . . . . . . . . . . . . . . . . . 22

4 Improved Security Definitions for Randomized (Multi-Input) Functional En-
cryption (rMIFE) 23

5 Counterexample 30
5.1 Definition in [GJKS15] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 Construction of Counterexample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3 Proof of (Insufficient) Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.4 Issue with Counterexample Construction (Construction 1 . . . . . . . . . . . . . . . 49

6 Constructing Adaptively Secure rMIFE 49
6.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.2 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3 Security against malicious decryptors . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.4 Security against malicious encryptors . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7 Acknowledgements 72

8 References 73

2



1 Introduction

Functional Encryption. Functional Encryption (FE) [BSW11,O’N10] enhances the traditional
public-key encryption paradigm by enabling fine-grained access control over encrypted data. In
an FE scheme, a central authority holds a master secret key and issues a corresponding master
public key. This authority uses the master secret key to generate secret keys for various legitimate
functions, while any party can encrypt data using the master public key. When provided with
a secret key for a function f and a ciphertext of a message x, decryption reveals f(x) without
disclosing any additional information about x.

Since its introduction, a key focus of FE research has been to explore the functionalities that can
be supported and the underlying cryptographic assumptions. A significant body of exciting work
[BF01, BB04, BGW05, SW05, GPSW06, KSW08,Wat09, LOS+10, ABB10b, ABB10a, LW10, OT10,
OT12,LW12,Wat12,GVW12,GVW13,BGG+14,Att14,Wee14,GVW15,ABDP15,ALS15,CGW15,
LV16, AS16, DDM16, BCFG17, BBL17, GKW17, Agr17,Wee17, DOT18a, CLT18, CGKW18, TT18,
GWW19, AV19, LL20a, LL20b, GW20, ACGU20, ALMT20, AY20, KW20, Wee20, AGW20, Gay20,
Wee21,AMVY21,Wee22,KNT21,DP21,DPT22,AKM+22,GGLW22,Tom23,HLL23,CW23,Wee24,
HLL24, AKY24] has investigated these questions in the context of deterministic functionalities.
This culminated in the work of Jain, Lin, and Sahai [JLS21, JLS22], who constructed FE schemes
for general polynomial-size deterministic circuits based on well-established cryptographic assump-
tions. However, many real-world applications naturally involve randomized functionalities, posing
challenges since existing FE schemes for deterministic functionalities cannot be directly extended
to accommodate them.

FE for randomized functionalities. To address these challenges, Alwen et al. [ABF+13] and
Goyal et al. [GJKS15] initiated the study of FE for randomized functionalities (rFE). In an rFE
scheme, secret keys correspond to randomized functions f , allowing decryption of a ciphertext con-
taining message x to reveal only a single sample from the output distribution of f(x). Additionally,
for a collection of secret keys for functions f1, . . . , fq and ciphertexts for messages x1, . . . , xn, each
secret key-ciphertext pair should yield independent samples from the distribution of fi(xj) without
revealing further information.

rFE shows considerable promise in both practical and theoretical applications, including privacy-
aware auditing, differentially-private data release [GJKS15], delegation of encrypted contents [AW17],
fully homomorphic encryption [ABF+13], controlled homomorphic encryption [DIPV17], and even
FE for deterministic functionalities [GGHZ16]. Acknowledging the vast potential of rFE, numerous
studies [ABF+13,GJKS15,GGHZ16,ITZ16,AW17,KSY15,DIPV17,LZ20,BKMT21] have explored
rFE from both definitional and construction perspectives.

Security against both Malicious Decryptors and Encryptors for rFE. Unlike deterministic
FE, the notion of rFE must not only ensure that decryptors cannot gain any additional information
about the encrypted data beyond the intended output, but also it is essential for rFE to prevent
malicious encryptors from generating “bad” ciphertexts for a message x, which, when decrypted
using secret keys from certain functions f , result in distributions that significantly diverge from
those of f(x).

To illustrate this, consider the scenario of privacy-aware auditing as described in [GJKS15]. A
government agency is tasked with overseeing financial institutions to ensure compliance with federal
regulations. However, these institutions are hesitant to grant full access to their confidential data
to external auditors. Partial access poses its own risks, as institutions could selectively disclose
information, potentially compromising the integrity of the audit process.

3



rFE offers an effective solution. Financial institutions can encrypt their databases using rFE,
while the government agency provides auditors with an rFE secret key, allowing them to randomly
sample a small, unbiased subset of records from each database. It is crucial that when an auditor
receives two distinct keys for the same encrypted database, each key generates independent samples.
Similarly, if the same key is applied to two different databases, the auditor should still obtain
independent samples from each. Additionally, if malicious institutions can craft faulty ciphertexts
that lead to biased or correlated samples, they could undermine the entire audit process and
jeopardize its integrity.

For a more in-depth discussion on the importance of addressing both malicious decryptors and
encryptors in rFE, please refer to [GJKS15].

Simulation-based (SIM) Security Definition for rFE. The above two intuitive security re-
quirements for rFE have been formalized through a unified simulation-based approach, first intro-
duced in [GJKS15] and later refined in [AW17].1 Similar to functional encryption (FE) for deter-
ministic functionalities [O’N10,BSW11,AGVW13], the SIM security experiment for rFE defines an
adversary that attempts to distinguish between interactions in the real world (where ciphertexts
and secret keys are generated according to the rFE scheme) and an ideal world (where these ele-
ments are produced by a simulator with only minimal information). To address security against
malicious encryptors, [GJKS15,AW17] introduced a decryption oracle into the security game, akin
to the framework for IND-CCA2 security [RS92]. This oracle takes a ciphertext ct and a function
f as input. In the real world, the challenger extracts the secret key for f and decrypts ct using it.
In contrast, in the ideal world, the challenger uses a simulator that outputs either a value x or a
special symbol ⊥. The challenger then responds with a random value drawn from the distribution
of f(x) or with ⊥, based on the simulator’s output.

The work in [AW17] further enhanced the decryption oracle by allowing it to handle a set of
polynomially many ciphertexts at the time along with a function f . In the real world, the challenger
generates a single secret key for f and decrypts each ciphertext using this key. In the ideal world,
the simulator is given the set of ciphertexts and can query an evaluation oracle once per ciphertext.
For each query x, the oracle provides a fresh evaluation of f(x). This refinement addresses the
limitation of the original definition in [GJKS15], which, while preventing the adversary from creating
individual ciphertexts that decrypt incorrectly, allowed malicious encryptors to produce sets of
ciphertexts that yield correlated outputs when decrypted with the same key.

Indistinguishability-based (IND) security for rFE. While simulation-based (SIM) security
represents the strongest form of security for rFE [O’N10, BSW11, AGVW13], it has a significant
limitation: it can only handle a bounded number of ciphertext and secret key queries before the
ciphertext queries [O’N10,BSW11,AGVW13,DIJ+13,DI13]. To address this, [GJKS15] introduced
an indistinguishability-based (IND) security formulation for rFE, generalizing the counterpart frame-
work for deterministic FE [O’N10,BSW11]. The goal, as with SIM security, is to protect against
both malicious decryptors and encryptors.

More specifically, the IND security experiment for rFE involves an adversary attempting to
distinguish between the encryptions of two messages, given access to secret keys for randomized
functions whose output distributions, when evaluated on those messages, are statistically close.2

1Notably, not all prior works on rFE have considered security against malicious encryptors, as this is not necessary
for certain applications of rFE [ABF+13,GGHZ16, ITZ16,KSY15].

2Computationally close output distributions can also be supported, but only if all function queries occur before
the master public key is issued. Otherwise, the IND security definition becomes vacuous (for more details, see Remark
2.8 in [GJKS15]).

4



To account for malicious encryptors, the IND security framework in [GJKS15] again provides
the adversary with a decryption oracle. This oracle accepts a ciphertext ct and a function f as
input, generates a secret key for f , and decrypts ct using this key—much like in the real-world
setting of the SIM security definition.

One of the key distinctions of IND security is that it imposes no inherent bounds on the number
of ciphertext or secret key queries—whether they occur before or after the ciphertext queries.
Furthermore, while SIM security for a bounded number of ciphertext queries implies IND security
for arbitrarily many queries, this does not extend to the number of supported key queries. In fact,
the transformation from IND security to SIM security [O’N10,BSW11,GJKS15] preserves the bound
on the number of secret key queries.

Thus, for applications of rFE that require support for arbitrarily many ciphertext and secret
key queries, (possibly) both before and after ciphertext queries, the best security one can achieve is
IND security. Additionally, as has been observed in case of FE for deterministic functionalities, IND
security can often be realized under weaker cryptographic assumptions compared to those needed
for SIM security.

Limitations of existing IND security definition for rFE. The purpose of providing a decryp-
tion oracle to the adversary is to capture security against malicious encryptors. In the case of the
SIM security definition, as established in [AW17,GJKS15], the use of a decryption oracle effectively
achieves this goal.This is because, in the ideal world, the decryption oracle is honestly simulated
by producing uniform samples from the output distribution of the queried function applied to the
message encrypted within the queried ciphertext. Thus, the indistinguishability of the decryption
oracle’s output in the real world from that in the ideal world ensures that the adversary cannot
manipulate decryption results in the real-world to be non-uniform or correlated.

However, this ideal functionality does not exist in the context of IND security. As a result, there
is no guarantee that an adversary cannot submit maliciously crafted ciphertexts to the decryption
oracle and influence its output. Therefore, simply providing a decryption oracle in the IND security
experiment-otherwise designed to target malicious decryptors-fails to effectively capture security
against malicious encryptors.

This leads us to ask the following critical questions:
Open Problem 1. Can we formulate an IND-based security definition for rFE that properly
captures security against both malicious decryptors and encryptors? Moreover, is it possible to
construct an rFE scheme that achieves this enhanced IND security notion?

Multi-Input Functional Encryption. Multi-Input Functional Encryption (MIFE), introduced
by Goldwasser et al. [GGG+14], extends the concept of FE to accommodate multi-input function-
alities. In this framework, a secret key corresponding to an n-input function (where n > 1 and
can be polynomial in the security parameter) allows a user with n ciphertexts—each encrypting
a message x1, . . . , xn—to compute the output f(x1, . . . , xn) by jointly decrypting the ciphertexts
using the secret key, without revealing any additional information about the individual messages
xi.

MIFE is highly relevant due to its wide range of applications that involve extracting aggre-
gate information from multiple data sources. These applications include executing SQL queries
on encrypted databases, performing computations over encrypted data streams, non-interactive
differentially-private data release, order-revealing encryption, and multi-client delegation of com-
putation.

Given the strong potential of MIFE, there has been significant effort within the cryptographic

5



community to construct MIFE schemes and their variants, both for general multi-input function-
alities [BGJS15,AJ15,GJO16,BKS16,BGJS16, Lin17,CMR17,KS17,AJS18,KNT18] and for spe-
cific, practically important classes of functionalities [BLR+15, CLWW16, BZ16, LW16, AGRW17,
KLM+18,BJK+18,CDG+18a,CDG+18b,DOT18b,ACF+18,ABKW19,ABG19,LT19,Tom19,AGW20,
ACGU20,AGW20,ACF+20,ABM+20,CDSG+20,AFS21,AGT21,AGT22,AYY22,NPP22,ATY23,
FFMV23, SV23, NPP23a, NPP23b, ARYY23, FFMV24]. However, all existing constructions have
been limited to handling deterministic functionalities only.

MIFE for randomized functionalities. Similar to single-input FE, many of the application
scenarios for MIFE mentioned above often require the ability to handle randomized functionalities.
Examples include privacy-preserving joint audits across multiple organizations, salary surveys of
citizens within a country, randomized SQL queries, and so on. For addressing these applications,
it is possible to extend the syntax and security definitions of deterministic MIFE to randomized
MIFE (rMIFE), in the same way as in the single-input case. In fact, Goldwasser et al. [GGG+14]
introduced a SIM-based security definition for rMIFE by generalizing the SIM security definition
for single-input rFE [GJKS15]. This definition can be naturally enhanced to encompass decryption
of correlated ciphertexts along the line of [AW17]. On the other hand, while [GGG+14] did not
specifically address an IND-based security definition for rMIFE, one can similarly extend the IND
security definition from [GJKS15] to the context of rMIFE. However, as in the single-input case, such
an IND security definition would fail to adequately capture security against malicious encryptors.
Therefore, a robust IND security definition that effectively addresses security against malicious
encryptors is necessary for rMIFE as well.

Importance of IND security for rMIFE. IND security is even more significant in the context
of MIFE/rMIFE. This is because Goldwasser et al. [GGG+14] demonstrated that achieving SIM
security for MIFE is impossible for general deterministic functionalities, even in the secret key
setting, with constant arity and at most two ciphertext queries per encryption slot. They showed
that such an MIFE scheme would imply virtual black-box (VBB) obfuscation, which is known to
be impossible for general functionalities [BGI+01]. Since every deterministic functionality can be
viewed as a randomized functionality with a singleton output distribution, the impossibility result
of [GGG+14] extends directly to SIM security for rMIFE. Consequently, it is clear that the only
achievable security in any meaningful general scenario for rMIFE is IND security.

Existing rMIFE scheme and its limitations. The only known rMIFE construction is the one
briefly outlined by Goldwasser et al. [GGG+14] as an extension of their deterministic MIFE scheme,
based on differing-inputs obfuscation (diO) [BGI+01, BCP14]. However, diO is widely regarded
as implausible in general [GGHW14], rendering their proposed MIFE and rMIFE constructions
generally infeasible. Moreover, Goldwasser et al. [GGG+14] did not provide any formal security
proof or even a proof sketch for their proposed rMIFE construction.

In the same work, Goldwasser et al. [GGG+14] also suggested that their deterministic MIFE
construction based on indistinguishability obfuscation (iO) [BGI+01,GGH+13,JLS21,JLS22] could
be generalized to an rMIFE scheme as well in a manner similar to their diO-based construction,
though no concrete construction or proof sketch was provided. The original iO-based deterministic
MIFE construction was proven to achieve IND security, and thus, the rMIFE construction extended
from it is expected to achieve IND security according to the multi-input extension of the definition
in [GJKS15]. However, since this definition does not fully capture security against malicious en-
cryptors, it is unclear whether that generalized rMIFE construction would provide such guarantees.

6



Additionally, the rMIFE construction inherits other significant limitations from the original
deterministic MIFE scheme. These include security guarantees only against a bounded number
of ciphertext queries per encryption slot and selective adversaries, who must declare all challenge
ciphertext queries and the encryption keys they wish to corrupt at the beginning of the security
experiment. These challenges lead to the following natural question.
Open Problem 2. Can we construct a viable rMIFE scheme that achieves the following security
properties:

• IND security under an enhanced definition that effectively captures security against both ma-
licious decryptors and encryptors.

• Protection against fully adaptive adversaries, who are allowed to make ciphertext, secret key,
and corruption queries in any arbitrary order, at any point during the security experiment.

• Support for an unbounded polynomial number of secret key and ciphertext queries per encryp-
tion slot.

Our Results

We address the above open problems in affirmative. More precisely, our contribution is threefold.

1. New Robust IND Security Definition for rFE/rMIFE:

We introduce an enhanced IND security definition for rFE, capturing security against both
malicious decryptors and encryptors effectively. Instead of using a unified security experiment
as in [GJKS15], we separate the two security requirements into distinct experiments. The
first experiment, capturing security against malicious decryptors, resembles the existing IND
security game for deterministic FE/MIFE [BSW11,O’N10,GGG+14]. Here, the adversary must
distinguish between encryptions of two messages, given secret keys for randomized functions,
where the output distributions of the functions applied to the messages are close to each
other.

The second IND-based security experiment addresses malicious encryptors. In this exper-
iment, the adversary is given access to a KeyStore oracle, which stores the functions, the
adversary wishes to request decryption under, together with their corresponding secret keys
one for each function. The adversary also interacts with a decryption oracle that operates in
two modes. In the first mode, the oracle decrypts the submitted ciphertext using the secret
keys stored in KeyStore. In the second mode, the oracle extracts the plaintext by querying a
message extraction oracle and returns random samples from the output distributions of the
functions in KeyStore, applied to that message. The adversary’s goal is to distinguish between
these two modes. Indistinguishability ensures that the decryption result of the rFE scheme is
close to an independent random sample from the randomized function’s output distribution,
guaranteeing strong security. For more details, refer to 2.1.

This IND security definition naturally extends to the multi-input setting. In fact, we formally
define our IND security notion for rMIFE, with the single-input rFE definitions as a special
case.

By the way, we also observe a relatively minor gap in the existing SIM security definitions
for rFE/rMIFE [GGG+14, GJKS15, AW17]. Roughly speaking, existing SIM security defini-
tions [GJKS15,AW17] guarantee security only in situation where even if the adversary repeat-
edly requests the decryption of the same or correlated ciphertexts under the same function,

7



it receives independent random samples from the function’s output distribution, applied to
the underlying plaintexts each time.

However, in practical scenarios, a single secret key for a function is often used repeatedly
to decrypt ciphertexts over time. For example, in the privacy-aware auditing application
described earlier, an auditor may use the same secret key to decrypt encrypted databases from
multiple financial institutions during a single audit. In this case, one institution could observe
the audit results of others and exploit that information by manipulating its own database
encryption to influence the audit outcome. Existing SIM security definitions [GJKS15,AW17]
do not account for this type of attack, where malicious encryptors could exploit repeated use
of the same decryption key. We address this issue by proposing a more advanced SIM security
framework that ensures resistance against such attacks. For more details, see section 2.1.2.

2. Counterexample Demonstrating the Gap Between New and Existing IND Security
Definitions: We present a counterexample to highlight the significance of the gap between
our IND security definition and the existing definition [GJKS15]. Specifically, we construct an
insecure rFE scheme that satisfies IND security criteria of the previous definition but fails to do
so in our new definition. The counterexample relies solely on standard cryptographic prim-
itives, including functional encryption (FE) for deterministic functionalities,pseudorandom
function (PRF),standard public key encryption (PKE), and simulation-sound non-interactive
zero-knowledge (NIZK) proof systems [Sah99]. Our construction is non-trivial, and its security
analysis requires careful consideration. We elaborate more on this in the 2.2 section below.

3. Adaptively IND secure rMIFE scheme with unbounded message security: Our final
contribution is an adaptively IND secure rMIFE scheme for general randomized functionalities,
based on sub-exponentially secure iO. As demonstrated by Goldwasser et al. [GGG+14], iO
is already implied by MIFE for general deterministic functionalities, even in the secret key
setting, only supporting selective IND security with a single secret key query and at most two
ciphertext queries per encryption slot.

We analyze the IND security of our construction within the new robust security model intro-
duced in this work. Moreover, our scheme is the first plausible construction that supports an
unbounded polynomial number of secret key and challenge ciphertext queries per encryption
slot. The construction relies on three key components: (a) sub-exponentially secure iO, (b)
sub-exponentially secure injective one-way functions, and (c) standard public-key encryption
(PKE). Here, “sub-exponential security” means that the advantage of any efficient adver-
sary is sub-exponentially small. For the injective one-way functions, this security should
additionally hold against adversaries operating in sub-exponential time.

A few clarifications are necessary regarding these primitives. First, the required level of
security varies based on the function’s arity, but it does not depend on the number of chal-
lenge messages. As Goldwasser et al. noted, the selective security of their deterministic MIFE
scheme based on iO (though not bounded-message security, which pertains to their use of sta-
tistically sound non-interactive proofs) can be overcome via standard complexity leveraging.
This should similarly apply to their rMIFE construction generalized from it. However, in their
case, the required security level depends on the number of challenge messages, which leads
to significantly larger parameters than our scheme, especially since the number of challenge
messages is typically much larger than the function’s arity in practical applications.

Secondly, although our security proof utilizes a sub-exponentially secure injective one-way
function (primitive (b)), this function is not needed in the scheme itself. Therefore, the

8



existence of such an injective one-way function is sufficient for the security of our rMIFE
scheme, even without the knowledge of an explicit candidate. At a technical level, we build
on the methods developed by Goyal et al. [GJO16], achieving similar results for deterministic
MIFE. We give an overview of our construction in 2.3

One caveat in our adaptive rMIFE construction is that we require the output distributions of
the queried functions on the queried sets of inputs to be computationally indistinguishable
with a sub-exponentially small distinguishing advantage. Overcoming the sub-exponential
barrier remains an interesting open problem.

Challenges in Utilizing iO. iO is an exceptionally powerful cryptographic tool, yet harness-
ing it to develop new primitives—even when ideal obfuscation would make the task straightfor-
ward—remains highly challenging. A striking example is the long-standing effort to construct
adaptively secure SNARGs for NP from iO. Despite extensive research, this milestone was only
recently reached [WW24a,WW24b], underscoring the deep complexity of using iO to build cryp-
tographic primitives, even in well-established areas.

In contrast, some transformations that seem feasible under ideal obfuscation turn out to be
fundamentally unattainable with iO alone. A notable case is the ”Upgrade any PKE to FE”
problem [BKSW18], which, despite being simple to achieve using ideal obfuscation, has been proven
impossible using iO as the sole tool [BKSW18].

In fact, after more than a decade of study, many fundamental questions about iO remain open.
One major hurdle is constructing iO for Turing machines capable of handling inputs of arbitrary
length—an unsolved problem that continues to challenge researchers. Expanding our understanding
of both the potential and the limitations of iO is a crucial pursuit in cryptographic foundations. Our
results and techniques contribute to this long-standing effort, pushing the field closer to resolving
these enduring challenges.

2 Technical Overview

This section provides a high-level overview of our three key technical contributions as outlined in
Section 1.

2.1 New Security Definitions for rFE/rMIFE

We introduce a novel IND security definition of rFE/rMIFE. We also present a robust SIM security
formulation for rFE/rMIFE. In this technical overview, we focus on single-input functionality for the
ease of exposition. However, the formal definition in Section 4 extends to multi-input functionalities.
Unlike prior works [GJKS15,GGG+14], our definitions are designed for adaptive adversaries, who
are not required to submit their challenge ciphertext queries upfront.

2.1.1 New IND Security Definition for rFE.

As highlighted earlier, we address the IND security of rFE through two distinct indistinguishability-
based security experiments, which are formalized below.

IND Security Against Malicious Decryptors. This security experiment extends the IND secu-
rity framework for deterministic FE [O’N10,BSW11] to randomized functionalities, closely following
the definition in [GJKS15] (Definition 2.6), with one key distinction: we omit providing the adver-
sary with a decryption oracle, as this experiment is not concerned with malicious encryptors.

9



• Setup: The challenger runs the Setup algorithm to generate the master public/secret key
pair (mpk,msk) and provides mpk to the adversary.

• Query Phase 1: The adversary can adaptively request any polynomial number of secret
keys for randomized functions within the function space. For each query function f , the
challenger runs KeyGen with the master secret key to generate a secret key skf and hands it
to the adversary.

• Challenge: The adversary submits two challenge messages x0 and x1. The challenger selects
a random bit b ← {0, 1} and encrypts xb under mpk to generate the ciphertext ct, which is
then sent to the adversary.

• Query Phase 2: The adversary can continue to adaptively request additional secret keys as
in Query Phase 1, and the challenger responds accordingly.

• Guess: The adversary outputs its guess b′ ∈ {0, 1} and wins if b′ = b.

The adversary must satisfy an admissibility condition: for any queried function f and any pair
of challenge messages x0, x1, the output distributions f(x0) and f(x1) must be indistinguishable.
This definition can readily be generalized to handle multiple challenge ciphertexts. In fact, it can
be shown that security against single and multiple ciphertexts are essentially equivalent [GJKS15].

IND Security Against Malicious Encryptors. This security experiment models the behavior
of malicious encryptors attempting to influence functional outputs by generating faulty ciphertexts.
The experiment proceeds as follows:

• Setup: The challenger runs the Setup algorithm to generate the master public/secret key
pair (mpk,msk) and provides mpk to the adversary. A random bit b← {0, 1} is also sampled.

• Query Phase 1: The adversary can adaptively make the following queries:

– Secret Key Query : The adversary requests secret keys for any number of randomized
functions from the underlying function family. For each function f , the challenger gener-
ates the secret key skf by running the KeyGen algorithm and provides it to the adversary.

– Secret Key Store Query : The adversary requests the challenger to store secret keys for
certain randomized functions. For each function g, the challenger generates skg using
KeyGen algorithm and stores (g, skg) in a register KeyReg.

– Decryption Query : The adversary submits ciphertexts for decryption. If b = 0, the chal-
lenger decrypts the ciphertext using all stored keys in KeyReg. If b = 1, the challenger
extracts the plaintext using msk, applies all stored functions g to it, and returns inde-
pendently sampled random outputs from the resulting distributions to the adversary.
Each additionally stores these outputs along with the queried ciphertext in an output
register OutReg, and if the adversary requests decryption for the same ciphertext once
again, it simply outputs the store values.

• Guess: The adversary outputs a guess b′ ∈ {0, 1} and wins if b′ = b.

10



Old vs. New IND Definition. The IND security definition in [GJKS15] closely resembles our
first definition, which addresses malicious decryptors, but with a key difference: their model includes
a decryption oracle, similar to IND-CCA2 security. This oracle decrypts ciphertexts using honestly
generated secret keys for the functions under which decryption is sought. While [GJKS15] claims
this approach ensures security against malicious encryptors, it actually falls short. Observe that,
unlike the SIM security model, the IND setting lacks an ideal functionality. The decryption oracle
merely runs the decryption algorithm of the underlying rFE scheme, allowing adversaries to submit
malicious ciphertexts and obtain biased or correlated outputs.

Our new IND security definition, specifically designed for malicious encryptors, addresses this
issue by introducing two decryption modes for the decryption oracle: one for the real decryption
algorithm and the other for an ideal decryption functionality, similar to the SIM security model. In-
distinguishability between these modes ensures that adversaries cannot craft ciphertexts to influence
the decryption oracle’s outputs in ways that deviate from the intended functionality. Additionally,
note that this is true even when the same secret keys are used by the decryption oracle repeatedly
for decrypting the queried ciphertext over time.

2.1.2 New SIM Security Definition for rFE.

In the existing SIM security definitions [GJKS15,AW17], the decryption oracle generates a fresh
secret key for a randomized function whenever decryption is requested under that function in
the real world. In the ideal world, the oracle draws fresh uniform samples from the function’s
output distribution each time it is queried with that function. This means that existing SIM
security definitions [GJKS15,AW17] guarantee security only in situation where even if the adversary
repeatedly requests the decryption of the same or correlated ciphertexts under the same function,
it receives independent random samples from the function’s output distribution, applied to the
underlying plaintexts each time.

To address this shortcoming, we also propose an advanced SIM security definition for rFE/rMIFE
that not only addresses malicious encryptors’ behavior, as covered by previous definitions [GJKS15,
GGG+14,AW17], but also protects against the attack scenario involving repeated usage of secret
keys. Roughly, this is achieved by modifying the decryption oracle in the SIM security model as
follows. We introduce a new KeyStore oracle that stores all functions the adversary wishes to query
to the decryption oracle. In the real world, the KeyStore oracle generates and stores a single secret
key for each submitted function. When the adversary requests decryption, the decryption oracle
uses the secret keys currently stored in KeyStore to decrypt the ciphertext and return the result.

In the ideal world, the decryption oracle maintains an output register for decryption results.
When the adversary queries the decryption oracle with a ciphertext, it extracts the underlying
plaintext and draws random samples from the output distribution of the functions currently stored
in KeyStore, applied to that plaintext. The oracle then returns these samples to the adversary and
stores them, along with the ciphertext, in the output register. If the adversary later queries the
same ciphertext, the oracle returns the stored samples instead of drawing fresh ones. This effec-
tively prevents the adversary from influencing future decryption outcomes by adaptively crafting
ciphertexts based on previously observed decryption results, even when the same secret keys are
repeatedly used.

2.2 Counterexample.

To highlight the shortcomings of the IND security definition in [GJKS15], we present a coun-
terexample. Specifically, we construct an rFE scheme that satisfies the IND security requirements

11



of [GJKS15] but is, in fact, insecure. We demonstrate that this scheme fails to meet the criteria of
our proposed IND security definition. An overview of the rFE scheme is provided below.

The rFE Scheme. Our counterexample rFE scheme leverages the following cryptographic tools:
(a) an FE scheme for general deterministic functionalities, (b) a pseudorandom function (PRF),
(c) a public key encryption (PKE) scheme, (d) a symmetric key encryption (SKE) scheme, and (e)
a simulation-sound non-interactive zero-knowledge (NIZK) proof system. The scheme operates as
follows:

• Setup: The Setup algorithm runs the Setup for the FE, PKE, and NIZK systems, generating
keys: (FE.mpk,FE.msk) for FE, (PKE.pk,PKE.sk) for PKE, SKE.sk for SKE and a common
reference string crs for NIZK. The master public key is mpk = (FE.mpk,PKE.pk, crs), and the
master secret key is msk = FE.msk. The algorithm outputs mpk and retains msk.

• Enc: Given the message x, the encryption algorithm proceeds as follows:

– It samples a PRF key K and generates an FE ciphertext FE.ct encrypting (x,K, 0,⊥)
under FE.mpk where ⊥ is special string of appropriate length.

– It then creates a PKE ciphertext PKE.ct encrypting (x,K, 0,⊥) along with FE.ct under
PKE.pk.

– Next, it computes an NIZK proof π attesting that both ciphertexts encrypt the same
values (x,K, α, ŝk), and additionally PKE.ct also encrypts the FE ciphertext. Here,
α ∈ {0, 1}, ŝk is a string of size equal to the key length of the SKE.

– Finally, the encryption outputs the ciphertext CT = (FE.ct,PKE.ct, π).

• KeyGen: The algorithm takes the master secret key msk and a randomized function f and
proceeds as follows.

1. It samples a seed s and a SKE ciphertext SKE.ct encrypting a random message with the
same length as the output of f to construct a function G[f, s,SKE.ct].

2. The function G takes as input (x,K, α, ŝk) and operates in two modes depending on α:

– If α = 0, it computes randomness PRF.Eval(K, s) and uses it to compute f on x;

– If α = 1, it decrypts the SKE ciphertext using ŝk and output the corresponding
message.

3. The algorithm generates an FE secret key FE.skGf
for G[f, s,SKE.ct] using FE.msk and

outputs SKf .

• Dec: The Dec algorithm takes as input the NIZK common reference string crs, a secret key
SKf = FE.skGf

for the randomized function f and a ciphertext CT = (FE.ct,PKE.ct, π). It
verifies the NIZK proof π. If valid, it decrypts FE.ct using the secret key FE.skGf

and outputs
the result; otherwise, it aborts and outputs ⊥.

It is easy to verify that the above rFE scheme is correct.

12



Insecurity of the constructed rFE scheme We demonstrate that the rFE scheme described
above is insecure against malicious encryptors. Specifically, consider a pseudorandom function
(PRF) with a key of the form K = (K ′, 0,⊥), where K ′ is the key for another pseudorandom
function PRF′, and ⊥ is a special symbol. Given an input seed s, this PRF outputs PRF′(K ′, s). It
is easy to verify that this PRF behaves as a valid pseudorandom function. However, suppose the
evaluation algorithm of this PRF includes a trojan branch. For keys of the form K = (K ′, 1, r),
where K ′ is the key for PRF′ and r is a fixed string (matching the length of the output of PRF′),
the evaluation algorithm bypasses PRF′ entirely and directly outputs the string r.

Now, consider instantiating the above rFE scheme with this specially crafted PRF and its eval-
uation algorithm. If the encryptor generates two ciphertexts ct1 and ct2 for the same message x,
using PRF keys K1 = (K ′

1, 1, r) and K2 = (K ′
2, 1, r) with freshly sampled K ′

1 and K ′
2 but using the

same string r, the decryption using a secret key FE.skGf
for a randomized function f will yield the

same output f(x; r) in both cases. This occurs because the trojan evaluation branch outputs the
fixed string r, regardless of the seed.

In a secure rFE scheme, we expect the decryption results to be independent, uniformly sampled
outputs from the distribution of f(x). However, by carefully selecting PRF keys, a malicious encryp-
tor can introduce arbitrary correlations between the decryption outputs of different ciphertexts for
the same message. This attack can be further extended to enforce correlations among ciphertexts
encrypting different messages, breaking the intended security guarantees of the rFE scheme.

Proving that our rFE scheme achieves [GJKS15] IND security definition. We provide
an intuitive outline of why the rFE scheme constructed above satisfies the IND security definition
from [GJKS15]. Observe that, this security definition is similar to the one against malicious de-
cryptors but with an additional decryption oracle, akin to IND-CCA2 security. For simplicity in
this overview, let’s ignore the decryption oracle and focus on the case where the ciphertext consists
solely of the underlying FE ciphertext. The other two components of the ciphertext are mostly
designed to handle the decryption oracle. More precisely, those components are used to make
the decryption oracle not use any secret key for FE while answering the decryption queries of the
adversary during the hybrid proof. For further details, see Section 5.

At a high level, our goal is to reduce the IND security of the rFE scheme to the security of the
underlying FE scheme, the SKE scheme, and the pseudorandom function (PRF). We outline the
key steps in the proof through a series of hybrid arguments:

1. Initial Setup: We start with the security game where the FE ciphertext encrypts (x0,K, 0,⊥).

2. Hardcoding the Output : We now change the SKE ciphertext in the KeyGen queries from
encrypting a random message to encrypting the output of f(x0; r), where r is the PRF
output used as the randomness.

3. Modifying the Ciphertext: We update the FE ciphertext to encrypt (⊥,⊥, 1,SKE.sk). Since
α = 1, the function G[f, s,SKE.ct] will output the result of decrypting SKE.ct using SKE.sk,
which yields exactly f(x0; r). So the output of G[f, s,SKE.ct] remains unchanged, and thus
this transition is indistinguishable by the security of FE scheme.

4. Switching PRF Output : Next, we use the security of the PRF to replace r with a uniform
random string, instead of the output of the PRF. This transition is indistinguishable due to
the security of the pseudorandom function PRF, as the PRF key K is hidden and unused.

5. Switching to f(x1): In the next hybrid, we switch f(x0; r) to f(x1; r), which is a uniform
sample from the output distribution of f(x1). This change is indistinguishable due to the

13



indinstinguishability of f(x0) and f(x1), as required by the IND security game restriction for
rFE.

6. Final Reversion: Once this transition is made, we can reverse the previous steps, ultimately
encrypting (x1,K, 0,⊥), completing the proof.

2.3 The sketch of proposed rMIFE scheme.

We now outline the main technical ideas behind our adaptively secure rMIFE scheme, which supports
an unbounded number of challenge ciphertext queries per encryption slot. Inspired by [GJO16], we
build upon the adaptively secure deterministic MIFE construction of Goldwasser et al. [GGG+14],
based on diO.

In their construction, the encryption key for each index i ∈ [n] (where n is the function’s arity)
consists of a pair of public keys (pk0i , pk

1
i ) from an underlying public key encryption (PKE) scheme.

The ciphertext for index i includes encryptions of the plaintext under both pk0i and pk1i , along
with a simulation-sound NIZK proof ensuring that both ciphertexts encrypt the same message.
Additionally, the ciphertext contains a one-time signature on the two PKE ciphertexts and the
NIZK proof, using a fresh one-time verification key generated at encryption time.

The secret key for a function f is an obfuscated program that processes n ciphertext pairs, each
with associated proofs, one-time signatures, and verification keys. This program has the function
f and a key K for a puncturable pseudorandom function (PRF) [SW14, BGI14, BW13,KPTZ13]
hardwired. The program takes as input ciphertext pairs (c01, c

1
1, π1, vk1, σ1), . . . , (c

0
n, c

1
n, πn, vkn, σn)

and first verifies the one-time signatures and proofs. If all checks pass, the program decrypts each
ciphertext using the corresponding secret key. It then evaluates the puncturable PRF with key K
on the entire ciphertext tuple to generate randomness r, which is finally used to apply f to the
decrypted plaintexts.

Goldwasser et al. [GGG+14] showed that security against dishonest decryptors follows similarly
to their deterministic MIFE scheme based on diO. They further mention that, security against
malicious encryptors is ensured by the use of one-time signatures, which guarantee the unique-
ness of each ciphertext, preventing adversaries from modifying honestly generated ciphertexts to
manipulate decryption queries.

Unfortunately, as highlighted in our previous discussion, merely preventing the adversary from
modifying honestly generated ciphertexts for decryption queries is insufficient to guarantee IND
security against malicious encryptors. In fact, an adversary could generate “bad” ciphertexts
for slots where it has corrupted the encryption keys, then combine these faulty ciphertexts with
honestly generated ones from uncorrupted slots to extract non-uniform or correlated outputs from
the decryption oracle. Therefore, a more robust approach is required to construct an rMIFE scheme
that meets the stronger IND security definition. Furthermore, a key assumption behind security
proof of the above rMIFE scheme by [GGG+14] is the use of diO. Specifically, when function keys
are switched to decrypt the second ciphertext in each pair, an adversary capable of detecting this
change could exploit it to produce a false proof.

To address these issues , we introduce modifications to the scheme, allowing us to leverage a
result from [BCP14], which shows that any indistinguishability obfuscator is, in fact, a diO for
circuits that differ on polynomially many points. Fortunately, [CGJS15] recently demonstrated
that the result of [BCP14] extends to our setting. Thus, we begin with a sub-exponentially se-
cure indistinguishability obfuscator, which forms the basis of our enhanced approach to achieving
adaptive IND security in the presence of malicious encryptors.

Specifically, to ensure that the proofs of well-formedness are unique for each ciphertext pair—and

14



to limit the number of differing input points in the corresponding hybrids of our security proofs to
a polynomial amount-we design novel proof strategy using iO and puncturable PRFs. Here’s how
it works:

We include in the public parameters an obfuscated program that takes two ciphertexts and a
witness proving they are well-formed (i.e., generated using the same message and randomness). If
this check succeeds, the program outputs a puncturable PRF evaluation on those ciphertexts. The
secret key for a function f is then an obfuscated program that has hardwired the PRF keys and
verifies the proofs of well-formedness by checking the correctness of the PRF evaluations. As in the
construction by [GGG+14], the program also contains an additional puncturable PRF key K, which
is sampled during key generation. Once all PRF evaluations are verified, this puncturable PRF with
key K is applied to the entire collection of ciphertexts to generate the randomness needed for the
functional output.

In the security proof, we introduce a key enhancement by performing the verification through
an injective one-way function applied to the PRF values, rather than directly comparing the PRF
outputs. This approach ensures that extracting a differing input at this stage of the proof corre-
sponds to inverting the injective one-way function. Without this mechanism, we would need to
hardcode the correct PRF evaluation into the obfuscated secret key, making it difficult to argue
security effectively.

Security against malicious decryptors. We now sketch the sequence of hybrids in our IND
security proof against malicious decryptors. The proof starts from a hybrid where each challenge
ciphertext encrypts x0i for i ∈ [n]. Then we switch to a hybrid where each c1i is an encryption
of x1i instead. These two hybrids are indistinguishable due to security of the PKE scheme. Let
s denote the length of a ciphertext. For each index i ∈ [n] we define hybrids indexed by w, for
all w ∈ [22sn], in which function key SKf decrypts the first ciphertext in the pair using SK0

i when
(c01, c

1
1, . . . , c

0
n, c

1
n) < w and decrypts the second ciphertext in the pair using SK1

i otherwise. Parse
w = (w0

1, w
1
1, . . . , w

0
n, w

1
n).

Hybrids indexed by w and w + 1 can be proven indistinguishable as follows: We first switch to
sub-hybrids that puncture the PRF key at w0

i , w
1
i , changes a function key SKf to check correctness

of an PRF value by applying an injective one-way function as described above, and hardcoded the
output of the injective one-way function as the PRF evaluation at the punctured point. We also
puncture the hardwired puncturable PRF key K used for generating output randomness as the
point (w0

1, w
1
1, . . . , w

0
n, w

1
n). Roughly speaking, if the two hybrids differ at an input of the form

(w0
1, w

1
1, u1, . . . , w

0
n, w

1
n, un) where ui is some fixed value (a PRF evaluation of (w0

i , w
1
i )), extracting

the differing input can be used to invert the injective one-way function on random input (namely
the ui). The formal security argument is a bit subtle at this point since unlike deterministic MIFE,
we do not have exactly quality of the functional values corresponding to 0 and 1 cases. Instead,
we carefully leverage the sub-exponentially small computational distance between the functional
output distribution corresponding to the 0 and 1 cases. Please refer to our formal proof in the sequel.
Finally, we note that exponentially many hybrids are indexed by all possible ciphertext vectors
that could be input to decryption (i.e., vectors of length the arity of the functionality) and not all
possible challenge ciphertext vectors. This allows us to handle any unbounded (polynomial) number
of ciphertexts for every index. Also, by deterministically traversing over all possible ciphertexts, we
are able to support adaptive adversary since the deduction does not need to know what challenge
ciphertexts the adversary will be querying during the hardwiring at different stages of the security
proof.

– We now outline the sequence of hybrids in our IND security proof against malicious decryptors.

15



• The proof begins with a hybrid where each challenge ciphertext encrypts x0i for i ∈ [n].

• We then switch to a hybrid where each c1i encrypts x1i instead. These two hybrids are indis-
tinguishable due to the security of the underlying PKE scheme.

• Let s denote the length of a ciphertext. For each index i ∈ [n], we define hybrids indexed by
w, for all w ∈ [22sn]. In these hybrids, the function key SKf decrypts the first ciphertext in
each pair using SK0

i when (c01, c
1
1, . . . , c

0
n, c

1
n) < w, and decrypts the second ciphertext in each

pair using SK1
i otherwise. The index w is parsed as (w0

1, w
1
1, . . . , w

0
n, w

1
n).

• Hybrids indexed by w and w + 1 can be proven indistinguishable as follows:

– First, we introduce sub-hybrids that puncture the PRF key at the points w0
i , w

1
i .

– We then modify the function key SKf to check the correctness of a PRF value by applying
an injective one-way function, as described earlier, and hardcode the output of this
function at the punctured points. Additionally, we puncture the hardcoded PRF key K,
used for generating output randomness, at the point (w0

1, w
1
1, . . . , w

0
n, w

1
n).

– Roughly speaking, if the two hybrids differ on an input of the form (w0
1, w

1
1, u1, . . . , w

0
n,

w1
n, un) —where ui is the result of a PRF evaluation on (w0

i , w
1
i )—extracting the differing

input would allow us to invert the injective one-way function on random input, i.e., the
ui. The formal security argument is subtle here, as unlike in deterministic MIFE, we
do not have exact equality between functional values in the 0 and 1 cases. Instead, we
carefully exploit the sub-exponentially small computational distance between the output
distributions of the function in these two cases. For full details, please refer to our formal
proof.

Lastly, we note that the exponentially many hybrids are indexed by all possible ciphertext vectors
that could be input to decryption (i.e., vectors of length equal to the function’s arity), rather
than just the challenge ciphertext vectors. This allows us to handle any unbounded (polynomial)
number of ciphertexts per index. By deterministically traversing all possible ciphertexts, we support
adaptive adversaries without needing to know in advance which challenge ciphertexts the adversary
will query at different stages of the security proof.

Security against malicious encryptors Finally, to argue security against malicious encryptors,
we observe that the randomness used to evaluate the function output within the secret key program
is derived from the hardwired PRF key, which is applied to the entire tuple of input ciphertexts.
As a result, the encryptor has no control over the randomness used to generate the function output.
This is because due to the pseudorandom properties of the PRF, whenever a different collection
of ciphertexts is provided to the secret key program, the program generates a fresh random string
for evaluating the output. This ensures that the encryptors cannot influence the randomness,
maintaining the integrity of the function evaluation.

3 Preliminaries

Throughout, we will use λ to denote the security parameter.

Notation

• We say that a function f(λ) is negligible in λ if f(λ) = λ−ω(1), and we denote it by f(λ) =
negl(λ).

16



• We say that a function g(λ) is polynomial in λ if g(λ) = p(λ) for some fixed polynomial p,
and we denote it by g(λ) = poly(λ).

• For n ∈ N, we use [n] to denote {1, . . . , n}.

• If R is a random variable, then r ← R denotes sampling r from R. If T is a set, then i← T
denotes sampling i uniformly at random from T .

Definition 3.1 (Statistical Distance). Let D1 and D2 be two distributions with support in X. The
statistical distance between D1 and D2 is

∆(D1, D2) =
1

2

∑
x∈X

∣∣∣Pr[D1 = x]− Pr[D2 = x]
∣∣∣

Notation Let A and B be two random variables with support in X. We use ∆(A,B) to denote
the statistical distance ∆(PA, PB) between the underlying distributions of the random variables.

Definition 3.2 (Pseudorandom Function (PRF)). A pseudorandom function family (PRF) with
key space K = {Kλ,n,m}λ,n,m∈N is a tuple of PPT algorithms PRF = (PRF.Setup,PRF.Eval) where

• PRF.Setup(1λ, 1n, 1m) is a randomized algorithm that takes as input the security parameter
λ, an input length n, and an output length m, and outputs a key K ∈ Kλ,n,m.

• PRF.Eval(K,x) is a deterministic algorithm that takes as input a key K ∈ Kλ,n,m and an
input x ∈ {0, 1}n, and outputs a value y ∈ {0, 1}m.

Security requires that there exists a negligible function µ such that for all λ ∈ N and all PPT
adversaries A, ∣∣∣Pr[ExptPRFA (1λ, 0) = 1]− Pr[ExptPRFA (1λ, 1) = 1]

∣∣∣ ≤ µ(λ)

where for each b ∈ {0, 1} and λ ∈ N, we define

ExptPRFA (1λ, b)

1. Parameters: A takes as input 1λ and outputs an input size 1n and an output size 1m.

2. Setup:

(a) If b = 0, sample K ← PRF.Setup(1λ, 1n, 1m).

(b) If b = 1, sample R ← Rn,m where Rn,m is the set of all functions from {0, 1}n to
{0, 1}m.

3. PRF Queries: The following can be repeated any polynomial number of times:

(a) A outputs a value x ∈ {0, 1}n.
(b) If b = 0, send y = PRF.Eval(K,x) to A.
(c) If b = 1, send y = R(x) to A.

4. Experiment Outcome: A outputs a bit b′ which is the output of the experiment.

17



Definition 3.3 (Puncturable Pseudorandom Function (PPRF)). A puncturable pseudorandom
function family with key space K = {Kλ,n,m}λ,n,m∈N is a tuple of PPT algorithms PPRF = (PPRF.Setup,
PPRF.Eval,PPRF.Punc,PPRF.EvalPunc) where

• PPRF.Setup(1λ, 1n, 1m) is a randomized algorithm that takes as input the security parameter
λ, an input length n, and an output length m, and outputs a key K ∈ Kλ,n,m.

• PPRF.Eval(K,x) is a deterministic algorithm that takes as input a key K ∈ Kλ,n,m and an
input x ∈ {0, 1}n, and outputs a value y ∈ {0, 1}m.

• PPRF.Punc(K,x∗) is a randomized algorithm that takes as input a key K ∈ Kλ,n,m and an
input x∗ ∈ {0, 1}n, and outputs a punctured key K[x∗].

• PPRF.EvalPunc(K[x∗], x) is a deterministic algorithm that takes as input a punctured key
K[x∗] and an input x ∈ {0, 1}n, and outputs either a value y ∈ {0, 1}m or ⊥.

We require correctness under puncturing, and selective pseudorandomness at punctured points.

Remark 3.4. For convenience, we will sometimes combine PPRF.Eval and PPRF.EvalPunc into
one algorithm. This can be done by having the combined algorithm run PPRF.Eval if it receives
a regular key K and run PPRF.EvalPunc if it receives a punctured key K[x∗] since the two types
of keys are easily distinguishable in the construction from [SW14]. When using the combined
algorithm, we will overload notation and refer to it simply by PPRF.Eval.

Definition 3.5 (Correctness under Puncturing). For all λ, n,m ∈ N and all x∗ ∈ {0, 1}n, if
K ← PPRF.Setup(1λ, 1n, 1m) and K[x∗]← PPRF.Punc(K,x∗), then

PPRF.EvalPunc(K[x∗], x) =

{
PPRF.Eval(K,x) if x ̸= x∗

⊥ else

Definition 3.6 (Selective Pseudorandomness at Punctured Points). There exists a negligible func-
tion µ such that for all λ ∈ N and all PPT adversaries A,∣∣∣Pr[ExptPPRFA (1λ, 0) = 1]− Pr[ExptPPRFA (1λ, 1) = 1]

∣∣∣ ≤ µ(λ)

where for each b ∈ {0, 1} and λ ∈ N, we define

ExptPPRFA (1λ, b)

1. Parameters: A takes as input 1λ, and outputs an input size 1n, an output size 1m, and
a message x∗ ∈ {0, 1}n.

2. Compute Values:

(a) K ← PPRF.Setup(1λ, 1n, 1m).

(b) K[x∗]← PPRF.Punc(K,x∗).

(c) If b = 0, send (y,K[x∗]) to A where y = PPRF.Eval(K,x∗).

(d) If b = 1, send (r,K[x∗]) to A where r ← {0, 1}m.

3. Experiment Outcome: A outputs a bit b′ which is the output of the experiment.

18



Definition 3.7 (Symmetric Key Encryption (SKE)). A symmetric key encryption scheme with key
space K = {Kλ,n}λ,n∈N and ciphertext size m(·) is a tuple of PPT algorithms SKE = (SKE.Setup,
SKE.Enc,SKE.Dec) where

• SKE.Setup(1λ, 1n) is a randomized algorithm that takes as input the security parameter λ and
an input length n and outputs a secret key k ∈ Kλ,n

• SKE.Enc(k, x) is a randomized algorithm that takes as input a secret key k ∈ Kλ,n and a
message x ∈ {0, 1}n and outputs an encryption ct ∈ {0, 1}m(λ,n) of x.

• SKE.Dec(k, ct) is a deterministic algorithm that takes as input a secret key k ∈ Kλ,n and a
ciphertext ct ∈ {0, 1}m(λ,n) and outputs a value y ∈ {0, 1}n.

Correctness requires that for all λ, n ∈ N and every x ∈ {0, 1}n,

Pr
[
SKE.Dec(k, SKE.Enc(k, x)) = x : k ← SKE.Setup(1λ, 1n)

]
= 1

Security requires that there exists a negligible function µ such that for all λ ∈ N and all PPT
adversaries A, ∣∣∣Pr[ExptSKEA (1λ, 0) = 1]− Pr[ExptSKEA (1λ, 1) = 1]

∣∣∣ ≤ µ(λ)

where for each b ∈ {0, 1} and λ ∈ N, we define

ExptSKEA (1λ, b)

1. Parameters: A takes as input 1λ and outputs an input size 1n.

2. Setup: k ← SKE.Setup(1λ, 1n)

3. Challenge Message Queries: The following can be repeated any polynomial number
of times:

(a) A outputs a challenge message pair (x0, x1) where x0, x1 ∈ {0, 1}n.
(b) ctb ← SKE.Enc(k, xb)

(c) Sent ctb to A.

4. Experiment Outcome: A outputs a bit b′ which is the output of the experiment.

Definition 3.8 (Public Key Encryption (PKE)). A public-key encryption (PKE) scheme is a tuple
of PPT algorithms PKE = (PKE.Setup,PKE.Enc,PKE.Dec) with the following syntax:

• (pk, sk)← Setup(1λ): Takes as input the security parameter and samples a public/private key
pair.

• ct ← Enc(pk,m): Takes as input the public key and a message, and outputs a ciphertext
encrypting the corresponding message.

• m ← Dec(sk, ct): Takes as input the private key and a ciphertext, and outputs a decrypted
message.

19



Correctness requires that for all λ ∈ N and every m,

Pr
[
PKE.Dec(sk,PKE.Enc(pk,m)) = m : (pk, sk)← PKE.Setup(1λ)

]
= 1.

A PKE scheme PKE is IND-CPA secure if for all PPT adversaries A = (A1,A2), we have

Pr

b′ = b :

(pk, sk)← Setup(1λ);
(m0,m1, st)← A1(pk);

b← {0, 1}, ct∗ ← Enc(pk,mb);
b′ ← A2(st, ct

∗)

 ≤ 1

2
+ negl(λ).

3.1 Indistinguishability Obfuscation

The recent work of [JLS22] shows how to construct iO for P/Poly from well-established computa-
tional assumptions.

Definition 3.9 (Indistinguishability Obfuscation (iO) for Circuits [JLS21]). A uniform PPT al-
gorithm iO is an indistinguishability obfuscator for polynomial-sized circuits if the following holds:

• Completeness: For every λ ∈ N, every circuit C with input length n, and every input
x ∈ {0, 1}n,

Pr[C ′(x) = C(x) : C ′ ← iO(1λ, C)] = 1

• Indistinguishability: For every two ensembles {C0,λ}, {C1,λ} of polynomial-sized circuits
that have the same size, input length, and output length, and are functionally equivalent, that
is, ∀λ ∈ N, C0,λ(x) = C1,λ(x) for every input x, then for all polynomial-time, non-uniform
adversaries A, there exists a negligible function µ, such that for all λ,∣∣∣Pr[A(1λ, iO(1λ, C0,λ))] = 1− Pr[A(1λ, iO(1λ, C1,λ))] = 1

∣∣∣ ≤ µ(λ)

3.2 Functional Encryption

Here we give some fundamental definitions for functional encryption (FE) schemes. First, we define
a class of functions parameterized by function size, input length, and output length.

Definition 3.10 (Function Class). The function class F [n, ℓF , ℓX , ℓR, ℓY ] is the set of all functions
f that have a description f̂ ∈ {0, 1}ℓF , take inputs in {0, 1}ℓX , and output values in {0, 1}ℓY .

Definition 3.11 (Public-Key Functional Encryption). A public-key functional encryption scheme
for P/Poly is a tuple of PPT algorithms FE = (Setup,Enc,KeyGen,Dec) defined as follows:3

• Setup(1λ, 1ℓF , 1ℓX , 1ℓY ): takes the security parameter λ, a function size ℓF , an input size ℓX ,
and an output size ℓY , and outputs the master public key mpk and the master secret key msk.

• Enc(mpk, x): takes as input the master public key mpk and a message x ∈ {0, 1}ℓX , and
outputs an encryption ct of x.

• KeyGen(msk, f): takes as input the master secret key msk and a function f ∈ F [n, ℓF , ℓX , ℓR, ℓY ],
and outputs a function key skf .

3We also allow Enc,KeyGen, and Dec to additionally receive parameters 1λ, 1ℓF , 1ℓX , 1ℓY as input, but omit them
from our notation for convenience.

20



• Dec(skf , ct): takes a function key skf and a ciphertext ct, and outputs a value y ∈ {0, 1}ℓY .

FE satisfies correctness if for all polynomials p, there exists a negligible function µ such that for
all λ ∈ N, all ℓF , ℓX , ℓY ≤ p(λ), all x ∈ {0, 1}ℓX , and all f ∈ F [n, ℓF , ℓX , ℓR, ℓY ],

Pr

Dec(skf , ctx) = f(x) :
(mpk,msk)← Setup(1λ, 1ℓF , 1ℓX , 1ℓY )

ctx ← Enc(mpk, x)
skf ← KeyGen(msk, f)

 ≥ 1− µ(λ).

We now define adaptive security.

Definition 3.12 (Adaptive Security for Public-Key FE). A public-key functional encryption scheme
FE for P/Poly is adaptively secure if there exists a negligible function µ such that for all λ ∈ N and
every PPT adversary A,∣∣∣Pr[ExptFE-AdaptiveA (1λ, 0) = 1]− Pr[ExptFE-AdaptiveA (1λ, 1) = 1]

∣∣∣ ≤ µ(λ)

where for each b ∈ {0, 1} and λ ∈ N, we define

ExptFE-AdaptiveA (1λ, b)

1. Parameters: A takes as input 1λ, and outputs a function size 1ℓF , an input size 1ℓX ,
and an output size 1ℓY .

2. Setup: Compute (mpk,msk)← FE.Setup(1λ, 1ℓF , 1ℓX , 1ℓY ).

3. Public Key: Send mpk to A.

4. Function Queries Phase 1: The following is repeated any polynomial number of times:

(a) A outputs a function query f ∈ F [n, ℓF , ℓX , ℓR, ℓY ]
(b) skf ← FE.KeyGen(msk, f)

(c) Send skf to A

5. Challenge Message Query:

(a) A outputs a challenge message pair (x0, x1) where x0, x1 ∈ {0, 1}ℓX .
(b) ct← FE.Enc(mpk, xb)

(c) Send ct to A.

6. Function Queries Phase 2: This is identical to Function Queries Phase 1.

7. Experiment Outcome: A outputs a bit b′ which is the output of the experiment.

Additionally, when running the experiment, we immediately halt and output 0 if the adversary
ever aborts or if it at any point f(x0) ̸= f(x1) for some message query (x0, x1) and function
query f submitted by the adversary.

Definition 3.13 (Other Public-Key FE Security Definitions). There are many variations of the
security definition. We list a few below:

• Semi-Adaptive Security: The adversary is required to make the message query before the
function queries. This is identical to adaptive security, except that we remove Function
Queries Phase 1 from the security game.

21



• Function-Selective Semi-Adaptive Security: The adversary is required to make all func-
tion queries before the message query. This is identical to adaptive security, except that we
remove Function Queries Phase 2 from the security game.

• Selective Security: The adversary is required to make the message query at the beginning
of the experiment before receiving the master public key. This is similar to adaptive security,
except that in the security game, we move the Challenge Message Query step so that it now
lies between the Setup step and the Public Key step. Note that the two function query phases
are now adjacent and can thus be merged into one step.

• Function-Selective Security: The adversary is required to make the function queries at the
beginning of the experiment before receiving the master public key. This is similar to adaptive
security, except that in the security game, we move the two function query steps so that they
now lie between the Setup step and the Public Key step. Note that the two function query
phases are now adjacent and can thus be merged into one step.

3.3 Non-Interactive Zero Knowledge Proof Systems

Definition 3.14 (Non-Interactive Zero Knowledge Proof). Let L ∈ NP and RL be the corresponding
NP relation. Let λ ∈ N be the security parameter. A Non-Interactive Zero Knowledge (NIZK) Proof
is a tuple of algorithms Π = (Setup,Prove,Verify) with the following syntax:

• crs← Setup(1λ): Takes as input the security parameter 1λ and outputs the common reference
string crs.

• π ← Prove(crs, x, w): Takes as input the common reference string crs, a statement x, and a
witness w, and outputs a proof π.

• 1/0← Verify(crs, x, π): Takes as input the common reference string crs, a statement x and a
proof π, outputs a single bit 1/0 signaling whether the proof π is valid for the statement x.

We require the following properties of a NIZK scheme:

• Perfect Completeness: For all security parameters λ ∈ N, and all (x,w) ∈ RL, we have

Pr

[
Verify(crs, x, π) = 1 :

crs← Setup(1λ);
π ← Prove(crs, x, w)

]
= 1.

• Computational Adaptive Soundness: For all PPT adversaries A, we have

Pr[ExptSoundΠ,A(1
λ) = 1] ≤ negl(λ),

where the experiment ExptSound is defined as below:

ExptSoundΠ,A(λ):

1. crs← Setup(1λ);

2. (x, π)← A(1λ, crs);
3. The experiment outputs 1 if and only if x ̸∈ L ∧ Verify(crs, x, π) = 1.

22



• Computational Zero-Knowledge: There exists a pair of PPT simulators Sim = (Sim1,Sim2)
where Sim1(1

λ) outputs (c̃rs, τ) and Sim2(c̃rs, τ, x) outputs a simulated proof π̃ such that for
all non-uniform PPT adversaries A:∣∣∣∣∣Pr [AO1(crs,·,·)(crs) = 1 : crs← Setup(1λ)

]
− Pr

[
AO2(crs,τ,·,·)(c̃rs) = 1 : (c̃rs, τ)← Sim1(1

λ)
] ∣∣∣∣∣ ≤ negl(λ),

where O1,O2 on input (x,w) returns ⊥ if (x,w) ̸∈ RL. Otherwise, O1 returns Prove(crs, x, w)
and O2 returns Sim2(c̃rs, τ, x).

We can also require a NIZK to have Simulation Soundness, saying that the protocol still has
soundness after the adversary sees simulated proofs.

Definition 3.15 (Unbounded Simulation Soundness). Let Sim = (Sim1,Sim2) be the simulators
for a NIZK protocol Π = (Setup,Prove,Verify) as defined in Computational Zero-Knowledge. We
say Π has (unbounded) simulation soundness if for all PPT adversaries A, we have

Pr

[
(x, π) ̸∈ Q ∧ x ̸∈ L ∧ Verify(c̃rs, x, π) = 1 :

(c̃rs, τ)← Sim1(1
λ);

(x, π)← ASim2(c̃rs,τ,·)(c̃rs)

]
≤ negl(λ),

where Q denotes the set of all Sim2 queries by A and their corresponding responses (xi, π̃i).

4 Improved Security Definitions for Randomized (Multi-Input)
Functional Encryption (rMIFE)

The syntax of rMIFE follows naturally from that of MIFE and FE for randomized functionalities.

Definition 4.1 (Randomized Function Class). The randomized function class F [n, ℓF , ℓX , ℓR, ℓY ]
is the set of all functions f : ({0, 1}ℓX )n×{0, 1}ℓR → {0, 1}ℓY that have a description f̂ ∈ {0, 1}ℓF .
We interpret each function f as a randomized function with arity n that takes as input values
x1, . . . , xn where each xi ∈ {0, 1}ℓX and randomness r ∈ {0, 1}ℓR out outputs a value y ∈ {0, 1}ℓY .

Definition 4.2 (rMIFE). A randomized multi-input functional encryption (rMIFE) scheme for
P/Poly is a tuple of PPT algorithms rMIFE = (Setup,KeyGen,Enc,Dec) defined as follows:

• Setup(1λ, 1n, 1ℓF , 1ℓX , 1ℓR , 1ℓY ): takes as input the security parameter λ, a function arity n, a
function size ℓF , an input size ℓX , a randomness size ℓR, and an output size ℓY , out outputs
n encryption keys EK1, . . . ,EKn and the master secret key MSK.

• KeyGen(MSK, f): takes as input the master secret key MSK and a function f ∈ F [n, ℓF , ℓX , ℓR, ℓY ]
and outputs a function key skf .

• Enc(EKj , xj): takes as input an encryption key EKj and an input xj ∈ {0, 1}ℓX and outputs
an encryption ctj of xj.

• Dec(skf , ct1, . . . , ctn): takes as input a function key skf and ciphertexts ct1, . . . , ctn and out-
puts a value y ∈ {0, 1}ℓY .

23



rMIFE satisfies correctness if for all polynomials p, there exists a negligible function µ such that
for all λ ∈ N, all n, ℓF , ℓX , ℓR, ℓY , q ≤ p(λ), all {fk}k∈[q] where each fk ∈ F [n, ℓF , ℓX , ℓR, ℓY ], all
{xi,1, . . . , xi,n}i∈[q] where each xi,j ∈ {0, 1}ℓX , and all PPT adversaries A,∣∣∣Pr[RealA(1λ) = 1]− Pr[IdealA(1

λ) = 1
∣∣∣ ≤ µ(1λ)

where we define

• RealA(1
λ)

1. (EK1, . . . ,EKn,MSK)← Setup(1λ).

2. For k ∈ [q], skk ← KeyGen(MSK, fk).

3. For i ∈ [q], j ∈ [n], cti,j ← Enc(EKj , xi,j).

4. For k, i1, . . . , in ∈ [q], yk,i1,...,in = Dec(skk, cti1,1, . . . , ctin,n).

5. Output AO(·)(1λ) where O(k, i1. . . . , in) = yk,i1,...,in.

• IdealA(1
λ)

1. For k, i1, . . . , in ∈ [q],

(a) rk,i1,...,in ← {0, 1}ℓR
(b) yk,i1,...,in = fk(xi1,1, . . . , xin,n; rk,i1,...,in)

2. Output AO(·)(1λ) where O(k, i1. . . . , in) = yk,i1,...,in.

Definition 4.3 (Simulation-based Security for rMIFE). A randomized multi-input functional en-
cryption scheme rMIFE = (Setup,KeyGen,Enc,Dec) for P/Poly is (q1, qc, q2) simulation-secure against
both malicious encryptors and decryptors if there exists a PPT simulator S = (S1, S2, . . . , S5) such
that for all sufficiently large λ, and all PPT adversaries A = (A1,A2) where A1 makes at most q1
key-generation queries and A2 makes at most q2 key-generation queries, we have∣∣∣Pr[ExptrMIFE,Real

A (1λ) = 1]− Pr[ExptrMIFE,Ideal
A,S (1λ) = 1

∣∣∣ ≤ negl(λ)

where we define,

• ExptrMIFE,Real
A (1λ)

1. (EK1, . . . ,EKn,MSK)← Setup(1λ, 1n, 1ℓF , 1ℓX , 1ℓR , 1ℓY ).

We define
−→
EK = (EK1, . . . ,EKn)

2. ({(xi,j)}i∈[n],j∈[qc], st)← A
OGetEK(

−→
EK,·),KeyGen(MSK,·),OKeyStore(MSK,·),ODec(MSK,·)

1 (1λ).

3. ct∗i,j ← Enc(EKi, xi,j) for all i ∈ [n], j ∈ [qc].

4. α← AOGetEK(
−→
EK,·),KeyGen(MSK,·),OKeyStore(MSK,·),ODec(MSK,·)

2 ({ct∗i,j}i∈[n],j∈[qc], st).
5. Output ({(xi,j)}i∈[n],j∈[qc], {fk}k∈[q1+q2], {g}, {y}, α).

• ExptrMIFE,Ideal
A,S (1λ)

1. st′ ← S1(1
λ, 1n, 1ℓF , 1ℓX , 1ℓR , 1ℓY ).

2. ({(xi,j)}i∈[n],j∈[qc], st)← A
O′GetEK(st′,·),O′KeyGen1(st

′,·),O′KeyStore(st′,·),ODec′(st′,·)
1 (1λ).

24



– Let {fk}k∈[q1] be A1’s oracle queries to O′KeyGen1(st
′, ·).

– Pick rj1,...,jn,k ← {0, 1}ℓR and let yj1,...,jn,k = fk(x1,j1 , . . . , xn,jn ; rj1,...,jn,k) for all
j1, . . . , jn ∈ [qc], k ∈ [q1].

3. ({ct∗i,j}i∈[n],j∈[qc], st′)← S3(st
′, {yj1,...,jn,k}j1,...,jn∈[qc],k∈[q1]).

4. α← AO′GetEK(st′,·),O′KeyGen2(st
′,·),O′KeyStore(st′,·),O′Dec(st′,·)

2 ({ct∗i,j}i∈[n],j∈qc , st).

• Output ({(xi,j)}i∈[n],j∈[qc], {fk}k∈[q1+q2], {g}, {y′}, α).

and where we define

In Real Experiment:

• OGetEK(
−→
EK, i): Output EKi.

• OKeyStore(MSK, g):

1. skg ← KeyGen(MSK, g).

2. Store (g, skg) in register KeyReg.

3. Output ⊥.

• ODec({ct∗i,j}i∈[n],j∈[qc], {cti}i∈[n]):

1. For each (gl, skgl) stored in register KeyReg: yl = Dec(skgl , {cti}i∈[n]).
2. Output {yl}.

In Ideal Experiment:

• O′GetEK(st′, i): Output EK′
i

• O′KeyGen1(st
′, fk)

1. sk′fk ← S2(st
′, fk)

2. Output {sk′fk}

• O′KeyGen2(st
′, fk)

1. sk′fk ← S4(st
′, fk,KeyIdeal({xi,j}i∈[n],j∈qc))

2. Output sk′fk
3. KeyIdeal({xi,j}i∈[n],j∈qc)

(a) rj1,...,jn,k ← {0, 1}ℓR , jn ∈ [qc]

(b) yj1,...,jn,k = fk(x1,j1 , . . . , xn,jn ; rj1,...,jn,k) for all j1, . . . , jn ∈ [qc]

(c) Output {yj1,...,jn,k} for all j1, . . . , jn ∈ [qc].

• O′KeyStore(st′, g):

1. Store (g,⊥) in register KeyReg.

2. Output ⊥.

25



• O′Dec(st′, {ct∗i,j}i∈[n],j∈q[c], {cti}i∈[n]):

1. For each (gl,⊥) stored in register KeyReg:

(a) If (l, {cti}i∈[n], y) is stored in register OutReg for some y, output y.

(b) For i ∈ [n], xi = S5(st
′, cti).

(c) rl ← {0, 1}ℓR.
(d) yl ← gl({xi}i∈[n]; rl).
(e) Store (l, {cti}i∈[n], yl) in OutReg.

2. Output {yl}.

Definition 4.4 ((A, ϵ)-I-randomized-compatible). Let n, ℓF , ℓX , ℓR, ℓY , q1, q2 ∈ N.

• Let I ⊆ [n].

• Let {(x(0)i,j , x
(1)
i,j )}i∈[n],j∈[q1] be a set of inputs where each x

(b)
i,j ∈ {0, 1}ℓX .

• Let {fk}k∈[q2] be a set of functions where each fk ∈ F [n, ℓF , ℓX , ℓR, ℓY ].

We say that {x(0)i,j , x
(1)
i,j }i∈[n],j∈[q1] is ϵ-I-randomized-compatible with {fk}k∈[q2] if

• For all U ⊆ I, all {x′u}u∈U where each x′u ∈ {0, 1}ℓX , all {jt}t∈[n]\U where each jt ∈ [q1], and
all k ∈ [q2],∣∣∣∣Pr[A(fk, U, {x′u}u∈U , {x(0)t,jt

}t∈[n]\U , fk(⟨{x′u}u∈U , {x
(0)
t,jt
}t∈[n]\U ⟩)) = 1]

− Pr[A(fk, U, {x′u}u∈U , {x
(0)
t,jt
}t∈[n]\U , fk(⟨{x′u}u∈U , {x

(1)
t,jt
}t∈[n]\U ⟩)) = 1]

∣∣∣∣ ≤ ϵ

where ⟨{x′u}u∈U , {x
(b)
t,jt
}t∈[n]\U ⟩ is a permutation (x1, . . . , xn) such that

xi =

{
x′i if i ∈ U

x
(b)
i,ji

if i ∈ [n]\U

Definition 4.5 (Indistinguishability Based Security Against Malicious decryptors for rMIFE). A
randomized multi-input functional encryption scheme rMIFE = (Setup,KeyGen,Enc,Dec) for P/Poly
is IND secure against malicious receivers for ϵ = ϵ(λ)-distinguishable distributions if for all suffi-
ciently large λ, and all PPT adversaries A,

Pr[ExptrMIFE-Decryptors
A (1λ) = 1] ≤ 1

2
+ negl(λ)

where we define

ExptrMIFE-Decryptors
A (1λ) :

1. Parameters: A takes as input 1λ, and outputs an arity 1n, a function size 1ℓF , an input
size 1ℓX , a randomness size 1ℓR, and an output size 1ℓY .

2. Setup: (EK1, . . . ,EKn,MSK)← Setup(1λ, 1n, 1ℓF , 1ℓX , 1ℓR , 1ℓY ).

We define
−→
EK = (EK1, . . . ,EKn).

26



3. Challenge Bit: b← {0, 1}.

4. Adversary’s Output: b′ ← AOGetEK(
−→
EK,·),OEncLR(

−→
EK,b,·),KeyGen(MSK,·).

5. Experiment Output: Output 1 if b = b′ and if {(x(0)i,j , x
(1)
i,j )}i∈[n],j∈[q1] are (A, ϵ) − I-

randomized-compatible with {fk}k∈[q2] where

• I are the set of queries made to OGetEK by A.

• {(x(0)i,j , x
(1)
i,j )}i∈[n],j∈[q1] are the set of queries made to OEncLR by A.

• {fk}k∈q2 are the set of queries made to KeyGen by A.

and where we define

OGetEK(
−→
EK, j): Output EKj.

OEncLR(
−→
EK, b, {(x(0)i , x

(1)
i )}i∈[n])

1. For i ∈ [n],

(a) ct
(b)
i ← MIFE.Enc(EKi, x

(b)
i ).

2. Output CTb = {ct
(b)
i }i∈[n].

Definition 4.6 (Indistinguishability Based Security Against Malicious Encryptors for rMIFE). A
randomized multi-input functional encryption scheme rMIFE = (Setup,KeyGen,Enc,Dec) for P/Poly
is IND secure against malicious encryptors if there exists a PPT extractor Extr such that for all
λ ∈ N, and all PPT adversaries A,

Pr[ExptrMIFE-Encryptors
A (1λ) = 1] ≤ 1

2
+ negl(λ)

where we define

ExptrMIFE-Encryptors
A (1λ) :

1. Parameters: A takes as input 1λ, and outputs an arity 1n, a function size 1ℓF , an input
size 1ℓX , a randomness size 1ℓR, and an output size 1ℓY .

2. Setup: (EK1, . . . ,EKn,MSK)← Setup(1λ, 1n, 1ℓF , 1ℓX , 1ℓR , 1ℓY ).

We define
−→
EK = (EK1, . . . ,EKn).

3. Challenge Bit: b← {0, 1}.

4. Adversary’s Output:

b′ ← AOGetEK(
−→
EK,·),OEnc(

−→
EK,·),KeyGen(MSK,·),OKeyStore(MSK,·),ODec(MSK,b,·).

5. Experiment Output: Output 1 if b = b′.

and where we define

27



OGetEK(
−→
EK, j): Output EKj.

OEnc(
−→
EK, {xi}i∈[n])

1. For i ∈ [n],

(a) cti ← Enc(EKi, xi).

2. Output CT = {cti}.

OKeyStore(MSK, g):

1. skg ← KeyGen(MSK, g).

2. Store (g, skg) in register KeyReg.

3. Output ⊥.

ODec(MSK, b, {cti}i∈[n]):

1. For each (gj , skgj ) stored in register KeyReg:

(a) If (j, {cti}i∈[n], y) is stored in register OutReg for some y, output y.

(b) Else if b = 0,

i. yj = Dec(skgj , {cti}i∈[n]).
ii. Store (j, {cti}i∈[n], yj) in OutReg.

(c) Else if b = 1,

i. For i ∈ [n], xi ← Extr(MSK, cti).

ii. rj ← {0, 1}ℓR.
iii. yj ← gj({xi}i∈[n]; rj).
iv. Store (j, {cti}i∈[n], yj) in OutReg.

2. Output {yj}.

Remark 4.7 (On Imposing Equivalence Relations over Ciphertexts.). The work of [AW17] define
randomized (single-input) functional encryption with respect to “admissible ciphertext equivalence
relations.”

In more detail, in their scheme (and some prior schemes such as [GJKS15]), it may be the case
that Dec(skf , ct) = Dec(skf , ct

′) even though ct ̸= ct′. This could occur for example if the ciphertext
ct = (c, π) where π only serves to prove the validity of c, but does not otherwise contribute to the
decryption output. Thus, if we were to generate a different proof π′ attesting to the validity of c,
then we could have two different valid ciphertexts ct = (c, π) and ct′ = (c, π′) that decrypt to the
same value on every function key.

However, this means that their scheme would be insecure if we define security against malicious
encryptors in the manner which we have done. This is because the decryption oracle ODec′ in

28



the ideal world will output independently generated values whenever it decrypts two different
ciphertexts ct and ct′. However, in the real world, the decryption of these two ciphertexts may be
the same value, leading to a trivial distinguisher between the real and ideal worlds.

To handle this, [AW17] propose the notion of an admissable ciphertext equivalence relation
which is an efficiently checkable relation where two ciphertexts are considered equivalent if they
decrypt to the same value.45 Then, in their security game, they require that the adversary does
not query the decryption oracle on two different ciphertexts from the same equivalence class. This
restriction allows them to prove the security of their scheme under some reasonable notion of
security.

Although our definition of security is different from that of [AW17], we believe that both [AW17]
and [GJKS15] will be secure under our definitions if we additionally add the restriction that an
adversary cannot query the decryption oracle on two different ciphertexts from the same admissable
equivalence class.

We further remark that the rMIFE scheme we construct in this paper does not require this
restriction or any notion of ciphertext equivalence relations and can be proven secure as per our
main definitions given above.

Remark 4.8 (On SIM Security of [GGG+14,GJKS15,AW17] under our new definition.). As men-
tioned above, the existing rFE/rMIFE constructions from [GGG+14,GJKS15,AW17], which were
proven secure under the previous SIM-security definition, also achieve SIM-security under our new
definition (of course with the equivalence relations restriction mentioned in 4.7). Observe that the
key distinction between our new definition and the prior one lies in the handling of secret keys within
the decryption oracle. In previous definitions, the decryption oracle generates a fresh secret key for
the function each time a decryption is performed involving that function. In contrast, under our new
definition, the secret key for the function is generated once and reused for subsequent decryptions in-
volving that function. Importantly, the security proofs in the prior works [GGG+14,GJKS15,AW17]
do not rely on the generation of fresh secret keys for each decryption by the decryption oracle. As
a result, their security proofs should naturally extend to our new definition without modification.

Remark 4.9 (On submitting multiple ciphertexts to the decryption oracle.). Recall that [AW17]
extends the original SIM security definition from [GJKS15] by allowing the adversary to submit
multiple ciphertexts to the decryption oracle simultaneously, rather than one at a time. As noted
in [AW17], this modification captures security against adversarially generated correlated cipher-
texts, which could potentially influence the decryption outputs.

In contrast, our definition, similar to [GJKS15], allows the adversary to submit a single cipher-
text (or a single tuple of ciphertexts in the multi-input case) to the decryption oracle at a time.
However, this does not make our model more restrictive compared to [AW17]. In their model, the
decryption oracle generates a fresh secret key for each randomized function every time a decryption
query is made, and this key is used to decrypt the set of ciphertexts submitted along with the
function. In our definition, the same secret keys are used consistently for decrypting all ciphertexts
submitted over time.

Therefore, our model naturally addresses attacks involving adversarially generated correlated
ciphertexts, even though we submit one ciphertext at a time to the decryption oracle.

4In more detail, consider an equivalence relation ∼ on the ciphertext space. We say that ∼ is admissible if
it is efficiently checkable and if for every two ciphertexts ct(0) and ct(1), then ct(0) ∼ ct(1) if and only if for any
honestly generated function key skf , one of the following holds: (1) Dec(skf , ct

(0)) = ⊥ or Dec(skf , ct
(1)) = ⊥, or (2)

Dec(skf , ct
(0)) = Dec(skf , ct

(1)).
5This notion can also be extended to the multi-input setting by defining an equivalence relation on sets {cti}i∈[n]

of ciphertext queries where n is the arity of the function.

29



Lemma 4.10 (SIM-security implies IND-security for rFE/rMIFE.). Let rMIFE = (Setup,KeyGen,Enc,
Dec) be SIM-secure as per Definition 4.3. Then, rMIFE is IND-secure against both malicious en-
cryptors and malicious decryptors as per Definitions 4.5 and 4.6, respectively.

The proof that SIM-security of rMIFE as per definition 4.3 implies IND-security against malicious
decryptors (definition 4.5) is essentially the same as the one in [GJKS15]. Please refer to the proof
of Lemma 2.9, Appendix C in [GJKS15] for details.

To show that SIM-security implies IND-security against malicious encryptors (Definition 4.6),

we proceed as follows. Observe that ExptrMIFE-Encryptors
A (1λ) with challenge bit b = 0 is equiva-

lent to ExptrMIFE,Real
A (1λ) where the adversary issues a zero-challenge ciphertext query. Similarly,

ExptrMIFE-Encryptors
A (1λ) with challenge bit b = 1 is identical to ExptrMIFE,Ideal

A,S (1λ) under the same
zero-challenge query.

Since ExptrMIFE,Real
A (1λ) and ExptrMIFE,Ideal

A,S (1λ) are computationally indistinguishable under the

SIM-security guarantee, it follows that ExptrMIFE-Encryptors
A (1λ) with b = 0 and b = 1 are also computa-

tionally indistinguishable. Hence, SIM-security implies IND-security against malicious encryptors.

5 Counterexample

In this section, we provide a counterexample showcasing the issue with the indistinguishability-
based definition of Functional Encryption for Randomized Functionalities as presented in the work
by Goyal, Jain, Koppula, and Sahai [GJKS15]. This definition has been used in a line of follow-up
works, and therefore we think it is crucial that the insufficiency of the definition be pointed out.

5.1 Definition in [GJKS15]

First, we recall the indistinguishability-based definition in [GJKS15]. [GJKS15] provides two IND
definitions, corresponding to whether the adversary needs to submit the function queries before or
after receiving the master public key mpk. Here we focus on the more adaptive INDpost security,
where the adversary sends function queries after receiving the master public key.

Definition 5.1 (IND-based Definition of rFE as in [GJKS15]). A functional encryptions scheme for
randomized functionalities rFE = (Setup,Enc,KeyGen,Dec) is IND-secure if for all PPT adversary
A = (A1,A2)

6, we have

Pr[ExptrFEA (1λ) = 1] ≤ 1

2
+ negl(λ),

where ExptrFEA is defined as below.

ExptrFEA (1λ) :

1. (x0, x1, st)← A1(1
λ).

2. Sample b← {0, 1} and (mpk,msk)← Setup(1λ), and compute CT∗ ← Enc(mpk, xb).

3. b′ ← AKeyGen(msk,·),O(msk,·,·)
2 (mpk,CT∗, st), where KeyGen is the key generation oracle, and

O is defined as below.

6The original definition in [GJKS15] considers non-uniform attackers to allow for a more general definition, but
the non-uniformity is never utilized anywhere in the proofs. So here we present the definition and counterexample
against uniform attackers, but bear in mind that it can be easily adapted to allow for non-uniform attackers if one
desires so.

30



4. Let {f} be the set of function queries by A2 to the key generation oracle. We require that
the distributions (mpk, st, {f(x0)}) and (mpk, st, {f(x1)}) are statistically indistinguish-
ablea. If not, the experiment aborts and outputs 0.

5. If b′ = b, the adversary wins and the game outputs 1. Otherwise, the adversary loses and
the game outputs 0.

aStatistical indistinguishability is necessary here to prevent circularity. If we only require computational
indistinguishability, A2 can submit a query f = Enc(mpk, ·). Then, the indistinguishably requirement on these
two distribution will be the same as the desired security requirement for the challenge ciphertext, making this
a vacuous definition.

OCT∗(msk,CT, g) :

1. If CT = CT∗, return ⊥.

2. Compute SKg ← KeyGen(msk, g).

3. Return Dec(SKg,CT).

5.2 Construction of Counterexample

Now, we present our construction of a rFE scheme that satisfies Definition 5.1, but is insecure. We
use a number of tools, the definitions of which can be found in Section 3 of the supplementary
material.

Construction 1 (Counterexample rFE). Let PKE = (Setup,Enc,Dec) be a CPA-secure PKE
scheme, SKE = (Setup,Enc,Dec) be a CPA-secure symmetric key encryption, NIZK = (Setup,Prove,
Verify) be a NIZK with simulation soundness, FE = (Setup,Enc,KeyGen,Dec) be a plain Func-
tional Encryption scheme with selective security, and PRF be a secure PRF with output length
ℓPRF = poly(λ). We construct our randomized FE scheme rFE = (Setup,Enc,KeyGen,Dec) as
follows:

• Setup(1λ) :

1. (PKE.pk,PKE.sk)← PKE.Setup(1λ).

2. SKE.sk← SKE.Setup(1λ).

3. (FE.mpk,FE.msk)← FE.Setup(1λ).

4. crs← NIZK.Setup(1λ).

5. Output (mpk,msk) = ((FE.mpk,PKE.pk, crs), (FE.mpk,PKE.pk, crs,FE.msk,PKE.sk, SKE.sk)).

• Enc(mpk, x):

1. Parse mpk = (FE.mpk,PKE.pk, crs).

2. K ← PRF.Setup(1λ).

3. FE.ct← FE.Enc(FE.mpk, (x,K, 0,⊥)).
4. PKE.ct← PKE.Enc(PKE.pk, (x,K, 0,⊥,FE.ct)).
5. π ← NIZK.Prove(crs, z, w) where z is the following statement on FE.ct and PKE.ct:

“ PKE.ct correctly encrypts (x,K, α, ŝk,FE.ct), where (x,K, α, ŝk) is encrypted in FE.ct”

The witness w for the statement is the tuple (x,K, α = 0, ŝk = ⊥).

31



6. Output CT = (FE.ct,PKE.ct, π).

• KeyGen(msk, f):

1. Parse msk = (FE.mpk,PKE.pk, crs,FE.msk,PKE.sk,SKE.sk).

2. s← {0, 1}λ.
3. SKE.ct← SKE.Enc(SKE.sk, y), where y ← {0, 1}|f(·)| is randomly sampled.

4. FE.skGf
← FE.KeyGen(FE.msk, G[f, s,SKE.ct]).

5. Output SKf = (crs,FE.skGf
).

G[f, s,SKE.ct](x,K, α, ŝk):

1. If α = 0:

(a) r ← PRF.Eval(K, s).

(b) Output f(x; r).

2. If α = 1:

(a) Output SKE.Dec(ŝk, SKE.ct).

• Dec(SKf ,CT):

1. Parse SKf = (crs,FE.skGf
) and CT = (FE.ct,PKE.ct, π).

2. If NIZK.Verify(crs, (FE.ct,PKE.ct), π) = 0, abort and output ⊥.
3. Output y = FE.Dec(FE.skGf

,FE.ct).

Correctness follows from the correctness of the underlying FE scheme.

5.3 Proof of (Insufficient) Security

In this section, we prove (insufficient) security of Construction 1 according to Definition 5.1.

Theorem 5.2. If PKE is a CPA-secure PKE, SKE is a CPA-secure SKE, NIZK is a NIZK with
simulation soundness, FE is a selectively-secure FE scheme, and PRF is a secure PRF, then Con-
struction 1 is IND-secure per Definition 5.1.

We prove this through a hybrid proof. We first lay out the sequence of hybrids, followed by
proofs of each hybrid argument.

Sequence of Hybrids

HybridA
0 : The same as ExptrFEA where the challenge bit b is fixed to be 0. More specifically:

1. (x0, x1, st)← A1(1
λ).

2. Sample (mpk,msk)← Setup(1λ) as follows:

(a) (PKE.pk,PKE.sk)← PKE.Setup(1λ).

(b) SKE.sk← SKE.Setup(1λ).

(c) (FE.mpk,FE.msk)← FE.Setup(1λ).

32



(d) crs← NIZK.Setup(1λ).

(e) (mpk,msk) := ((FE.mpk,PKE.pk, crs), (FE.mpk,PKE.pk, crs,FE.msk,PKE.sk, SKE.sk)).

3. Compute CT∗ ← Enc(mpk, x0) as follows:

(a) K ← PRF.Setup(1λ).

(b) FE.ct∗ ← FE.Enc(FE.mpk, (x0,K, 0,⊥)).
(c) PKE.ct∗ ← PKE.Enc(PKE.pk, (x0,K, 0,⊥,FE.ct∗)).
(d) π∗ ← NIZK.Prove(crs, z, w) where z is the following statement on FE.ct∗ and PKE.ct∗:

“ PKE.ct∗ correctly encrypts (x,K, α, ŝk,FE.ct∗), where (x,K, α, ŝk) is encrypted in
FE.ct∗”

The witness w is the tuple (x0,K, 0,⊥).
(e) Set CT∗ = (FE.ct∗,PKE.ct∗, π∗).

4. b′ ← AKeyGen(msk,·),O(msk,·,·)
2 (mpk,CT∗, st), where KeyGen and O are oracles defined as below:

• KeyGen(msk, f):

(a) s← {0, 1}λ.
(b) SKE.ct← SKE.Enc(SKE.sk, y), where y ← {0, 1}|f(·)| is randomly sampled.

(c) FE.skGf
← FE.KeyGen(FE.msk, G[f, s,SKE.ct]).

(d) Output SKf = (crs,FE.skGf
).

• O(msk,CT, g):

(a) If CT = CT∗, return ⊥.
(b) s← {0, 1}λ.
(c) SKE.ct← SKE.Enc(SKE.sk, y), where y ← {0, 1}|g(·)| is randomly sampled.

(d) FE.skGg ← FE.KeyGen(FE.msk, G[g, s,SKE.ct]).

(e) Parse CT = (FE.ct,PKE.ct, π).

(f) If NIZK.Verify(crs, (FE.ct,PKE.ct), π) = 0, return ⊥.
(g) Return FE.Dec(SKGg ,FE.ct).

5. Let {f} be the set of function queries by A2 to the KeyGen oracle. We require that the
distributions (mpk, st, {f(x0)}) and (mpk, st, {f(x1)}) are statistically indistinguishable. If
not, the experiment aborts and outputs 0.

6. If b′ = b, the adversary wins and the game outputs 1. Otherwise, the adversary loses and the
game outputs 0.

HybridA
1 : Instead of sampling crs using NIZK.Setup, now sample a simulated c̃rs using NIZK.Sim1(1

λ).
And later replace NIZK.Prove with NIZK.Sim2. This step follows from the computational zero-
knowledge of the underlying NIZK.

1. (x0, x1, st)← A1(1
λ).

2. Sample (mpk,msk)← Setup(1λ) as follows:

(a) (PKE.pk,PKE.sk)← PKE.Setup(1λ).

33



(b) SKE.sk← SKE.Setup(1λ).

(c) (FE.mpk,FE.msk)← FE.Setup(1λ).

(d) (c̃rs, τ)← NIZK.Sim1(1
λ).

(e) (mpk,msk) := ((FE.mpk,PKE.pk, c̃rs), (FE.mpk,PKE.pk, c̃rs,FE.msk,PKE.sk, SKE.sk)).

3. Compute CT∗ ← Enc(mpk, x0) as follows:

(a) K ← PRF.Setup(1λ).

(b) FE.ct∗ ← FE.Enc(FE.mpk, (x0,K, 0,⊥)).
(c) PKE.ct∗ ← PKE.Enc(PKE.pk, (x0,K, 0,⊥,FE.ct∗)).
(d) π∗ ← NIZK.Sim2(c̃rs, τ, z) where z is the following statement on FE.ct∗ and PKE.ct∗:

“ PKE.ct∗ correctly encrypts (x,K, α, ŝk,FE.ct∗), where (x,K, α, ŝk) is encrypted in
FE.ct∗”

The witness w is the tuple (x0,K, 0,⊥).
(e) Set CT∗ = (FE.ct∗,PKE.ct∗, π∗).

4. b′ ← AKeyGen(msk,·),O(msk,·,·)
2 (mpk,CT∗, st), where KeyGen and O are oracles defined as below:

• KeyGen(msk, f):

(a) s← {0, 1}λ.
(b) SKE.ct← SKE.Enc(SKE.sk, y), where y ← {0, 1}|f(·)| is randomly sampled.

(c) FE.skGf
← FE.KeyGen(FE.msk, G[f, s,SKE.ct]).

(d) Output SKf = (c̃rs,FE.skGf
).

• O(msk,CT, g):

(a) If CT = CT∗, return ⊥.
(b) s← {0, 1}λ.
(c) SKE.ct← SKE.Enc(SKE.sk, y), where y ← {0, 1}|g(·)| is randomly sampled.

(d) FE.skGg ← FE.KeyGen(FE.msk, G[g, s,SKE.ct]).

(e) Parse CT = (FE.ct,PKE.ct, π).

(f) If NIZK.Verify(c̃rs, (FE.ct,PKE.ct), π) = 0, return ⊥.
(g) Return FE.Dec(SKGg ,FE.ct).

5. Let {f} be the set of function queries by A2 to the KeyGen oracle. We require that the
distributions (mpk, st, {f(x0)}) and (mpk, st, {f(x1)}) are statistically indistinguishable. If
not, the experiment aborts and outputs 0.

6. If b′ = b, the adversary wins and the game outputs 1. Otherwise, the adversary loses and the
game outputs 0.

HybridA
2 : When generating the challenge ciphertext, change PKE.ct∗ into an encryption of ⊥.

This step follows from CPA security of the underlying PKE scheme.

1. (x0, x1, st)← A1(1
λ).

2. Sample (mpk,msk)← Setup(1λ) as follows:

34



(a) (PKE.pk,PKE.sk)← PKE.Setup(1λ).

(b) SKE.sk← SKE.Setup(1λ).

(c) (FE.mpk,FE.msk)← FE.Setup(1λ).

(d) (c̃rs, τ)← NIZK.Sim1(1
λ).

(e) (mpk,msk) := ((FE.mpk,PKE.pk, c̃rs), (FE.mpk,PKE.pk, c̃rs,FE.msk,PKE.sk, SKE.sk)).

3. Compute CT∗ ← Enc(mpk, x0) as follows:

(a) K ← PRF.Setup(1λ).

(b) FE.ct∗ ← FE.Enc(FE.mpk, (x0,K, 0,⊥)).
(c) PKE.ct∗ ← PKE.Enc(PKE.pk,⊥).
(d) π∗ ← NIZK.Sim2(c̃rs, τ, z) where z is the following statement on FE.ct∗ and PKE.ct∗:

“ PKE.ct∗ correctly encrypts (x,K, α, ŝk,FE.ct∗), where (x,K, α, ŝk) is encrypted in
FE.ct∗”

(e) Set CT∗ = (FE.ct∗,PKE.ct∗, π∗).

4. b′ ← AKeyGen(msk,·),O(msk,·,·)
2 (mpk,CT∗, st), where KeyGen and O are oracles defined as below:

• KeyGen(msk, f):

(a) s← {0, 1}λ.
(b) SKE.ct← SKE.Enc(SKE.sk, y), where y ← {0, 1}|f(·)| is randomly sampled.

(c) FE.skGf
← FE.KeyGen(FE.msk, G[f, s,SKE.ct]).

(d) Output SKf = (c̃rs,FE.skGf
).

• O(msk,CT, g):

(a) If CT = CT∗, return ⊥.
(b) s← {0, 1}λ.
(c) SKE.ct← SKE.Enc(SKE.sk, y), where y ← {0, 1}|g(·)| is randomly sampled.

(d) FE.skGg ← FE.KeyGen(FE.msk, G[g, s,SKE.ct]).

(e) Parse CT = (FE.ct,PKE.ct, π).

(f) If NIZK.Verify(c̃rs, (FE.ct,PKE.ct), π) = 0, return ⊥.
(g) Return FE.Dec(SKGg ,FE.ct).

5. Let {f} be the set of function queries by A2 to the KeyGen oracle. We require that the
distributions (mpk, st, {f(x0)}) and (mpk, st, {f(x1)}) are statistically indistinguishable. If
not, the experiment aborts and outputs 0.

6. If b′ = b, the adversary wins and the game outputs 1. Otherwise, the adversary loses and the
game outputs 0.

HybridA
3 : In O, now instead of returning FE decryption of FE.ct (which results in evaluating

G[g, s,SKE.ct, pad] on the tuple encrypted under FE), use the PKE decryption of PKE.ct to help
compute G[g, s,SKE.ct, pad] directly. This step follows from the simulation soundness of the un-
derlying NIZK.

1. (x0, x1, st)← A1(1
λ).

35



2. Sample (mpk,msk)← Setup(1λ) as follows:

(a) (PKE.pk,PKE.sk)← PKE.Setup(1λ).

(b) SKE.sk← SKE.Setup(1λ).

(c) (FE.mpk,FE.msk)← FE.Setup(1λ).

(d) (c̃rs, τ)← NIZK.Sim1(1
λ).

(e) (mpk,msk) := ((FE.mpk,PKE.pk, c̃rs), (FE.mpk,PKE.pk, c̃rs,FE.msk,PKE.sk, SKE.sk)).

3. Compute CT∗ ← Enc(mpk, x0) as follows:

(a) K ← PRF.Setup(1λ).

(b) FE.ct∗ ← FE.Enc(FE.mpk, (x0,K, 0,⊥)).
(c) PKE.ct∗ ← PKE.Enc(PKE.pk,⊥).
(d) π∗ ← NIZK.Sim2(c̃rs, τ, z) where z is the following statement on FE.ct∗ and PKE.ct∗:

“ PKE.ct∗ correctly encrypts (x,K, α, ŝk,FE.ct∗), where (x,K, α, ŝk) is encrypted in
FE.ct∗”

(e) Set CT∗ = (FE.ct∗,PKE.ct∗, π∗).

4. b′ ← AKeyGen(msk,·),O(msk,·,·)
2 (mpk,CT∗, st), where KeyGen and O are oracles defined as below:

• KeyGen(msk, f):

(a) s← {0, 1}λ.
(b) SKE.ct← SKE.Enc(SKE.sk, y), where y ← {0, 1}|f(·)| is randomly sampled.

(c) FE.skGf
← FE.KeyGen(FE.msk, G[f, s,SKE.ct]).

(d) Output SKf = (c̃rs,FE.skGf
).

• O(msk,CT, g):

(a) If CT = CT∗, return ⊥.
(b) s← {0, 1}λ.
(c) SKE.ct← SKE.Enc(SKE.sk, y), where y ← {0, 1}|g(·)| is randomly sampled.

(d) FE.skGg ← FE.KeyGen(FE.msk, G[g, s,SKE.ct]).

(e) Parse CT = (FE.ct,PKE.ct, π).

(f) If NIZK.Verify(c̃rs, (FE.ct,PKE.ct), π) = 0, return ⊥.
(g) Compute (x,K, α, ŝk,FE.ct′)← PKE.Dec(PKE.sk,PKE.ct), and returnG[g, s,SKE.ct]

(x,K, α, ŝk).

5. Let {f} be the set of function queries by A2 to the KeyGen oracle. We require that the
distributions (mpk, st, {f(x0)}) and (mpk, st, {f(x1)}) are statistically indistinguishable. If
not, the experiment aborts and outputs 0.

6. If b′ = b, the adversary wins and the game outputs 1. Otherwise, the adversary loses and the
game outputs 0.

HybridA
4 : When answering KeyGen queries, we now compute r ← PRF.Eval(K, s), and set SKE.ct

to encrypt ŷ ← f(x0; r) instead of a randomly sampled y. This step follows from SKE security.

36



1. (x0, x1, st)← A1(1
λ).

2. Sample (mpk,msk)← Setup(1λ) as follows:

(a) (PKE.pk,PKE.sk)← PKE.Setup(1λ).

(b) SKE.sk← SKE.Setup(1λ).

(c) (FE.mpk,FE.msk)← FE.Setup(1λ).

(d) (c̃rs, τ)← NIZK.Sim1(1
λ).

(e) (mpk,msk) := ((FE.mpk,PKE.pk, c̃rs), (FE.mpk,PKE.pk, c̃rs,FE.msk,PKE.sk, SKE.sk)).

3. Compute CT∗ ← Enc(mpk, x0) as follows:

(a) K ← PRF.Setup(1λ).

(b) FE.ct∗ ← FE.Enc(FE.mpk, (x0,K, 0,⊥)).
(c) PKE.ct∗ ← PKE.Enc(PKE.pk,⊥).
(d) π∗ ← NIZK.Sim2(c̃rs, τ, z) where z is the following statement on FE.ct∗ and PKE.ct∗:

“ PKE.ct∗ correctly encrypts (x,K, α, ŝk,FE.ct∗), where (x,K, α, ŝk) is encrypted in
FE.ct∗”

(e) Set CT∗ = (FE.ct∗,PKE.ct∗, π∗).

4. b′ ← AKeyGen(msk,·),O(msk,·,·)
2 (mpk,CT∗, st), where KeyGen and O are oracles defined as below:

• KeyGen(msk, f):

(a) s← {0, 1}λ.
(b) r ← PRF.Eval(K, s).

(c) ŷ ← f(x0; r).

(d) SKE.ct← SKE.Enc(SKE.sk, ŷ).

(e) FE.skGf
← FE.KeyGen(FE.msk, G[f, s,SKE.ct]).

(f) Output SKf = (c̃rs,FE.skGf
).

• O(msk,CT, g):

(a) If CT = CT∗, return ⊥.
(b) s← {0, 1}λ.
(c) SKE.ct← SKE.Enc(SKE.sk, y), where y ← {0, 1}|g(·)| is randomly sampled.

(d) Parse CT = (FE.ct,PKE.ct, π).

(e) If NIZK.Verify(c̃rs, (FE.ct,PKE.ct), π) = 0, return ⊥.
(f) Compute (x,K, α, ŝk,FE.ct′)← PKE.Dec(PKE.sk,PKE.ct), and returnG[g, s, SKE.ct]

(x,K, α, ŝk).

5. Let {f} be the set of function queries by A2 to the KeyGen oracle. We require that the
distributions (mpk, st, {f(x0)}) and (mpk, st, {f(x1)}) are statistically indistinguishable. If
not, the experiment aborts and outputs 0.

6. If b′ = b, the adversary wins and the game outputs 1. Otherwise, the adversary loses and the
game outputs 0.

37



HybridA
5 : Now we invoke FE selective security to encrypt (⊥,⊥, 1,SKE.sk) instead in FE.ct∗.

1. (x0, x1, st)← A1(1
λ).

2. Sample (mpk,msk)← Setup(1λ) as follows:

(a) (PKE.pk,PKE.sk)← PKE.Setup(1λ).

(b) SKE.sk← SKE.Setup(1λ).

(c) (FE.mpk,FE.msk)← FE.Setup(1λ).

(d) (c̃rs, τ)← NIZK.Sim1(1
λ).

(e) (mpk,msk) := ((FE.mpk,PKE.pk, c̃rs), (FE.mpk,PKE.pk, c̃rs,FE.msk,PKE.sk, SKE.sk)).

3. Compute CT∗ ← Enc(mpk, x0) as follows:

(a) K ← PRF.Setup(1λ).

(b) FE.ct∗ ← FE.Enc(FE.mpk, (⊥,⊥, 1,SKE.sk)).
(c) PKE.ct∗ ← PKE.Enc(PKE.pk,⊥).
(d) π∗ ← NIZK.Sim2(c̃rs, τ, z) where z is the following statement on FE.ct∗ and PKE.ct∗:

“ PKE.ct∗ correctly encrypts (x,K, α, ŝk,FE.ct∗), where (x,K, α, ŝk) is encrypted in
FE.ct∗”

(e) Set CT∗ = (FE.ct∗,PKE.ct∗, π∗).

4. b′ ← AKeyGen(msk,·),O(msk,·,·)
2 (mpk,CT∗, st), where KeyGen and O are oracles defined as below:

• KeyGen(msk, f):

(a) s← {0, 1}λ.
(b) r ← PRF.Eval(K, s).

(c) ŷ ← f(x0; r).

(d) SKE.ct← SKE.Enc(SKE.sk, ŷ).

(e) FE.skGf
← FE.KeyGen(FE.msk, G[f, s,SKE.ct]).

(f) Output SKf = (c̃rs,FE.skGf
).

• O(msk,CT, g):

(a) If CT = CT∗, return ⊥.
(b) s← {0, 1}λ.
(c) SKE.ct← SKE.Enc(SKE.sk, y), where y ← {0, 1}|g(·)| is randomly sampled.

(d) Parse CT = (FE.ct,PKE.ct, π).

(e) If NIZK.Verify(c̃rs, (FE.ct,PKE.ct), π) = 0, return ⊥.
(f) Compute (x,K, α, ŝk,FE.ct′)← PKE.Dec(PKE.sk,PKE.ct), and returnG[g, s, SKE.ct]

(x,K, α, ŝk).

5. Let {f} be the set of function queries by A2 to the KeyGen oracle. We require that the
distributions (mpk, st, {f(x0)}) and (mpk, st, {f(x1)}) are statistically indistinguishable. If
not, the experiment aborts and outputs 0.

6. If b′ = b, the adversary wins and the game outputs 1. Otherwise, the adversary loses and the
game outputs 0.

38



HybridA
6 : When responding to KeyGen queries, now sample a uniformly random r̂ instead of

computing r ← PRF.Eval(K, s). This follows from PRF security, since the PRF key K is now
completely hidden and unused.

1. (x0, x1, st)← A1(1
λ).

2. Sample (mpk,msk)← Setup(1λ) as follows:

(a) (PKE.pk,PKE.sk)← PKE.Setup(1λ).

(b) SKE.sk← SKE.Setup(1λ).

(c) (FE.mpk,FE.msk)← FE.Setup(1λ).

(d) (c̃rs, τ)← NIZK.Sim1(1
λ).

(e) (mpk,msk) := ((FE.mpk,PKE.pk, c̃rs), (FE.mpk,PKE.pk, c̃rs,FE.msk,PKE.sk, SKE.sk)).

3. Compute CT∗ ← Enc(mpk, x0) as follows:

(a) K ← PRF.Setup(1λ).

(b) FE.ct∗ ← FE.Enc(FE.mpk, (⊥,⊥, 1,SKE.sk)).
(c) PKE.ct∗ ← PKE.Enc(PKE.pk,⊥).
(d) π∗ ← NIZK.Sim2(c̃rs, τ, z) where z is the following statement on FE.ct∗ and PKE.ct∗:

“ PKE.ct∗ correctly encrypts (x,K, α, ŝk,FE.ct∗), where (x,K, α, ŝk) is encrypted in
FE.ct∗”

(e) Set CT∗ = (FE.ct∗,PKE.ct∗, π∗).

4. b′ ← AKeyGen(msk,·),O(msk,·,·)
2 (mpk,CT∗, st), where KeyGen and O are oracles defined as below:

• KeyGen(msk, f):

(a) s← {0, 1}λ.
(b) r̂ ← {0, 1}ℓPRF .
(c) ŷ ← f(x0; r̂).

(d) SKE.ct← SKE.Enc(SKE.sk, ŷ).

(e) FE.skGf
← FE.KeyGen(FE.msk, G[f, s,SKE.ct]).

(f) Output SKf = (c̃rs,FE.skGf
).

• O(msk,CT, g):

(a) If CT = CT∗, return ⊥.
(b) s← {0, 1}λ.
(c) SKE.ct← SKE.Enc(SKE.sk, y), where y ← {0, 1}|g(·)| is randomly sampled.

(d) Parse CT = (FE.ct,PKE.ct, π).

(e) If NIZK.Verify(c̃rs, (FE.ct,PKE.ct), π) = 0, return ⊥.
(f) Compute (x,K, α, ŝk,FE.ct′)← PKE.Dec(PKE.sk,PKE.ct), and returnG[g, s, SKE.ct]

(x,K, α, ŝk).

5. Let {f} be the set of function queries by A2 to the KeyGen oracle. We require that the
distributions (mpk, st, {f(x0)}) and (mpk, st, {f(x1)}) are statistically indistinguishable. If
not, the experiment aborts and outputs 0.

39



6. If b′ = b, the adversary wins and the game outputs 1. Otherwise, the adversary loses and the
game outputs 0.

HybridA
7 : Now we change the challenge bit b from 0 to 1. This step follows from the fact that for all

functions f queried by the adversary to the KeyGen oracle, (mpk, st, {f(x0)}) and (mpk, st, {f(x1)})
are statistically indistinguishable.

1. (x0, x1, st)← A1(1
λ).

2. Sample (mpk,msk)← Setup(1λ) as follows:

(a) (PKE.pk,PKE.sk)← PKE.Setup(1λ).

(b) SKE.sk← SKE.Setup(1λ).

(c) (FE.mpk,FE.msk)← FE.Setup(1λ).

(d) (c̃rs, τ)← NIZK.Sim1(1
λ).

(e) (mpk,msk) := ((FE.mpk,PKE.pk, c̃rs), (FE.mpk,PKE.pk, c̃rs,FE.msk,PKE.sk, SKE.sk)).

3. Compute CT∗ ← Enc(mpk, x1) as follows:

(a) K ← PRF.Setup(1λ).

(b) FE.ct∗ ← FE.Enc(FE.mpk, (⊥,⊥, 1,SKE.sk)).
(c) PKE.ct∗ ← PKE.Enc(PKE.pk,⊥).
(d) π∗ ← NIZK.Sim2(c̃rs, τ, z) where z is the following statement on FE.ct∗ and PKE.ct∗:

“ PKE.ct∗ correctly encrypts (x,K, α, ŝk,FE.ct∗), where (x,K, α, ŝk) is encrypted in
FE.ct∗”

(e) Set CT∗ = (FE.ct∗,PKE.ct∗, π∗).

4. b′ ← AKeyGen(msk,·),O(msk,·,·)
2 (mpk,CT∗, st), where KeyGen and O are oracles defined as below:

• KeyGen(msk, f):

(a) s← {0, 1}λ.
(b) r̂ ← {0, 1}ℓPRF .
(c) ŷ ← f(x1; r̂).

(d) SKE.ct← SKE.Enc(SKE.sk, ŷ).

(e) FE.skGf
← FE.KeyGen(FE.msk, G[f, s,SKE.ct]).

(f) Output SKf = (c̃rs,FE.skGf
).

• O(msk,CT, g):

(a) If CT = CT∗, return ⊥.
(b) s← {0, 1}λ.
(c) SKE.ct← SKE.Enc(SKE.sk, y), where y ← {0, 1}|g(·)| is randomly sampled.

(d) Parse CT = (FE.ct,PKE.ct, π).

(e) If NIZK.Verify(c̃rs, (FE.ct,PKE.ct), π) = 0, return ⊥.
(f) Compute (x,K, α, ŝk,FE.ct′)← PKE.Dec(PKE.sk,PKE.ct), and returnG[g, s, SKE.ct]

(x,K, α, ŝk).

40



5. Let {f} be the set of function queries by A2 to the KeyGen oracle. We require that the
distributions (mpk, st, {f(x0)}) and (mpk, st, {f(x1)}) are statistically indistinguishable. If
not, the experiment aborts and outputs 0.

6. If b′ = b, the adversary wins and the game outputs 1. Otherwise, the adversary loses and the
game outputs 0.

HybridA
8 , HybridA

9 , HybridA
10, HybridA

11, HybridA
12, and HybridA

13 will revert the changes
introduced in HybridA

6 , HybridA
5 , HybridA

4 , HybridA
3 , HybridA

2 and HybridA
1 respectively,

with HybridA
13 being the same as ExptrFEA where the challenge bit is fixed to be 1.

Proof of Hybrid Arguments

Lemma 5.3. If NIZK has computational zero-knowledge, then no PPT adversary A can distinguish
between HybridA

0 and HybridA
1 with non-negligible probability.

Proof. We prove this by reduction to the zero-knowledgeness of NIZK. Specifically, we show how
an adversary A that distinguishes between HybridA

0 and HybridA
1 can be used to construct an

adversary B that breaks zero-knowledgeness of NIZK.

BONIZK(·,·)(crs) :

• B runs A1(1
λ) to obtain (x0, x1, st).

• Sample (mpk,msk) as follows:

– (PKE.pk,PKE.sk)← PKE.Setup(1λ).

– SKE.sk← SKE.Setup(1λ).

– (FE.mpk,FE.msk)← FE.Setup(1λ).

– (mpk,msk) := ((FE.mpk,PKE.pk, crs), (FE.mpk,PKE.pk, crs,FE.msk,PKE.sk,SKE.sk)).

• Compute CT∗ as follows:

– K ← PRF.Setup(1λ).

– FE.ct∗ ← FE.Enc(FE.mpk, (x0,K, 0,⊥)).
– PKE.ct∗ ← PKE.Enc(PKE.pk, (x0,K, 0,⊥,FE.ct∗)).
– Let z be the following statement on FE.ct∗ and PKE.ct∗:

“ PKE.ct∗ correctly encrypts (x,K, α, ŝk,FE.ct∗), where (x,K, α, ŝk) is encrypted in
FE.ct∗”

and the witness w be the tuple (x0,K, 0,⊥). Query the oracle ONIZK with (z, w)
and receive π∗.

– Set CT∗ = (FE.ct∗,PKE.ct∗, π∗).

• Run AKeyGen(msk,·),O(msk,·,·)
2 (mpk,CT∗, st) while simulating the following two oracles:

– KeyGen(msk, f):

∗ s← {0, 1}λ.
∗ SKE.ct← SKE.Enc(SKE.sk, y), where y ← {0, 1}|f(·)| is randomly sampled.

41



∗ FE.skGf
← FE.KeyGen(FE.msk, G[f, s,SKE.ct]).

∗ Output SKf = (crs,FE.skGf
).

– O(msk,CT, g):

∗ If CT = CT∗, return ⊥.
∗ s← {0, 1}λ.
∗ SKE.ct← SKE.Enc(SKE.sk, y), where y ← {0, 1}|g(·)| is randomly sampled.

∗ FE.skGg ← FE.KeyGen(FE.msk, G[g, s,SKE.ct]).

∗ Parse CT = (FE.ct,PKE.ct, π).

∗ If NIZK.Verify(crs, (FE.ct,PKE.ct), π) = 0, return ⊥.
∗ Return FE.Dec(FE.skGg ,FE.ct).

• If A output it’s in HybridA
0 , output 0. Otherwise, output 1.

Note that if A successfully distinguishes HybridA
0 and HybridA

1 , then B also successfully distin-
guishes whether it’s interacting with the real NIZK or the simulators NIZK.Sim1 and NIZK.Sim2.

Lemma 5.4. If PKE has IND-CPA security, then no PPT adversary A can distinguish between
HybridA

1 and HybridA
2 with non-negligible probability.

Proof. We show this by a reduction to IND-CPA security of PKE. Specifically, we show that
there exists PPT A that can distinguish between HybridA

1 and HybridA
2 , then we can construct

B = (B1,B2) using A as a subroutine that breaks IND-CPA security of PKE as follows:

B1(PKE.pk) :

• B1 runs A1(1
λ) to obtain (x0, x1, st).

• Sample mpk and partial msk as follows:

– (FE.mpk,FE.msk)← FE.Setup(1λ).

– SKE.sk← SKE.Setup(1λ).

– (c̃rs, τ)← NIZK.Sim1(1
λ).

– Set mpk = (FE.mpk,PKE.pk, c̃rs) and msk = (FE.mpk,PKE.pk, c̃rs,FE.msk,SKE.sk).
Notice that msk is missing PKE.sk compared to a normal msk.

• K ← PRF.Setup(1λ).

• FE.ct∗ ← FE.Enc(FE.mpk, (x0,K, 0,⊥)).

• Output ((x0,K, 0,⊥,FE.ct∗),⊥, st′ = (st,mpk,msk,K,FE.ct∗, τ)).

B2(PKE.ct∗, st′) :

• Finish computing CT∗ as follows:

– π̃∗ ← NIZK.Sim2(c̃rs, τ, z) where z is the following statement on FE.ct∗ and PKE.ct∗:

“ PKE.ct∗ correctly encrypts (x,K, α, ŝk,FE.ct∗), where (x,K, α, ŝk) is encrypted in
FE.ct∗”

– Set CT∗ = (FE.ct∗,PKE.ct∗, π∗).

42



• Run AKeyGen(msk,·),O(msk,·,·)
2 (mpk,CT∗, st) while simulating the following two oracles:

– KeyGen(msk, f):

∗ s← {0, 1}λ.
∗ SKE.ct← SKE.Enc(SKE.sk, y), where y ← {0, 1}|f(·)| is randomly sampled.

∗ FE.skGf
← FE.KeyGen(FE.msk, G[f, s,SKE.ct]).

∗ Output SKf = (c̃rs,FE.skGf
).

– O(msk,CT, g):

∗ If CT = CT∗, return ⊥.
∗ s← {0, 1}λ.
∗ SKE.ct← SKE.Enc(SKE.sk, y), where y ← {0, 1}|g(·)| is randomly sampled.

∗ FE.skGg ← FE.KeyGen(FE.msk, G[g, s,SKE.ct]).

∗ Parse CT = (FE.ct,PKE.ct, π).

∗ If NIZK.Verify(c̃rs, (FE.ct,PKE.ct), π) = 0, return ⊥.
∗ Return FE.Dec(FE.skGg ,FE.ct).

• If A output it’s in HybridA
1 , output 0. Otherwise, output 1.

Notice that if A outputs that it is in HybridA
1 , that means PKE.ct∗ encrypts (x,K, 0,⊥,FE.ct∗),

and hence B outputting 0 is correct. Otherwise, if A outputs it is in HybridA
2 where PKE.ct∗

encrypts ⊥, B outputting 1 is also correct.

Lemma 5.5. If NIZK has simulation soundness, then no PPT adversary A can distinguish between
HybridA

2 and HybridA
3 with non-negligible probability.

Proof. We prove this by reduction to the simulation soundness of NIZK. Let A be an adversary
that distinguishes between HybridA

2 and HybridA
3 , we construct an adversary B for the NIZK

simulation soundness game as follows.

BNIZK.Sim2(c̃rs,τ,·)(c̃rs):

• Runs A1(1
λ) to obtain (x0, x1, st).

• Sample (mpk,msk)← Setup(1λ) as follows:

1. (PKE.pk,PKE.sk)← PKE.Setup(1λ).

2. SKE.sk← SKE.Setup(1λ).

3. (FE.mpk,FE.msk)← FE.Setup(1λ).

4. (mpk,msk) := ((FE.mpk,PKE.pk, c̃rs), (FE.mpk,PKE.pk, c̃rs,FE.msk,PKE.sk, SKE.sk)).

• Compute CT∗ ← Enc(mpk, x0) as follows:

1. K ← PRF.Setup(1λ).

2. FE.ct∗ ← FE.Enc(FE.mpk, (x0,K, 0,⊥)).
3. PKE.ct∗ ← PKE.Enc(PKE.pk,⊥).

43



4. Query the oracle NIZK.Sim2(c̃rs, τ, ·) on the following statement z on FE.ct∗ and
PKE.ct∗ to obtain π̃∗:

“ PKE.ct∗ correctly encrypts (x,K, α, ŝk,FE.ct∗), where (x,K, α, ŝk) is encrypted in
FE.ct∗”

5. Set CT∗ = (FE.ct∗,PKE.ct∗, π∗).

• Sample a uniform bit b← {0, 1}.

• Run b′ ← AKeyGen(msk,·),O(msk,·,·)
2 (mpk,CT∗, st) while simulating the following two oracles:

– KeyGen(msk, f):

1. s← {0, 1}λ.
2. SKE.ct← SKE.Enc(SKE.sk, y), where y ← {0, 1}|f(·)| is randomly sampled.

3. FE.skGf
← FE.KeyGen(FE.msk, G[f, s,SKE.ct]).

4. Output SKf = (c̃rs,FE.skGf
).

– O(msk,CT, g):

1. If CT = CT∗, return ⊥.
2. s← {0, 1}λ.
3. SKE.ct← SKE.Enc(SKE.sk, y), where y ← {0, 1}|g(·)| is randomly sampled.

4. FE.skGg ← FE.KeyGen(FE.msk, G[g, s, SKE.ct]).

5. Parse CT = (FE.ct,PKE.ct, π).

6. If NIZK.Verify(c̃rs, (FE.ct,PKE.ct), π) = 0, return ⊥.
7. Compute (x,K, α, ŝk) ← FE.Dec(FE.skI ,FE.ct) by sampling an FE functional

key for the identity function I as FE.skI ← FE.KeyGen(FE.msk, I) .
8. Compute (x′,K ′, α′, ŝk

′
,FE.ct′)← PKE.Dec(PKE.sk,PKE.ct).

9. If (x,K, α, ŝk) ̸= (x′,K ′, α′, ŝk
′
), B outputs ((FE.ct,PKE.ct), π) to the NIZK

simulation soundness game (and continues finishing simulating the oracles for
A2).

10. If b = 0, return FE.Dec(SKGg ,FE.ct). If b = 1, compute and returnG[g, s,SKE.ct]

(x′,K ′, α′, ŝk
′
).

Kindly note that b = 0 corresponds to the case where A is in HybridA
2 and b = 1 corresponds

to HybridA
3 .

Now, notice that if B ever outputs ((FE.ct,PKE.ct), π) when answering a O query (CT, g), it
will win the NIZK simulation soundness game. Recall that winning the simulation soundness game
requires: (1) ((FE.ct,PKE.ct), π) is not returned by a prior query to NIZK.Sim2; (2) (FE.ct,PKE.ct)
is not in the language; (3) Verify(c̃rs, (FE.ct,PKE.ct), π) outputs 1. (1) is true because CT ̸= CT∗,
otherwise O will return ⊥ earlier on in Step 1; (2) is true since B will only output if FE.ct and
PKE.ct encrypt different (x,K, α, ŝk) tuples and hence not in the language; and (3) is true because
otherwise O will return ⊥ in Step 6. So indeed if B ever outputs ((FE.ct,PKE.ct), π), B will win
the simulation soundness game.

So if B does not win, that means it never outputs anything. This implies that for all the
O queries made by A2, the response is either ⊥, or FE.ct and PKE.ct encrypt the exact same
(x,K, α, ŝk) tuple. Observe that if FE.ct and PKE.ct encrypt the same (x,K, α, ŝk) tuple, then for
b = 0, O would respond with FE.Dec(SKGg ,FE.ct) = G[g, s,SKE.ct](x,K, α, ŝk), which is exactly

44



the same as what the oracle response would be for b = 1. This means, if B does not win, then for
all O queries, the responses will be exactly the same regardless of the challenge bit b, and therefore
A cannot possibly guess b correctly with non-negligible advantage. By contrapositive, if A can
successfully distinguish HybridA

2 and HybridA
3 by guessing the bit b correctly, B would also win

the simulation soundness game for NIZK.
Lastly, kindly observe that step 4d is no longer needed once we switch to HybridA

3 .

Lemma 5.6. If SKE is a IND-CPA secure SKE scheme, then no PPT adversary A can distinguish
between HybridA

3 and HybridA
4 with non-negligible probability.

Proof. Notice that the only difference between HybridA
3 and HybridA

4 is that in HybridA
3 SKE.ct

encrypts a random y, while in HybridA
4 , SKE.ct encrypts ŷ that are function evaluation on x0 and

PRF outputs. This easily reduces to the left-or-right CPA security of the underlying SKE.
For completeness, we show a reduction by building an adversary B that breaks the CPA security

of SKE by using A as a subroutine.

B(1λ) :

• (x0, x1, st)← A1(1
λ).

• Sample mpk and partial msk as follows:

1. (PKE.pk,PKE.sk)← PKE.Setup(1λ).

2. (FE.mpk,FE.msk)← FE.Setup(1λ).

3. (c̃rs, τ)← NIZK.Sim1(1
λ).

4. (mpk,msk) := ((FE.mpk,PKE.pk, c̃rs), (FE.mpk,PKE.pk, c̃rs,FE.msk,PKE.sk)), where
msk is the normal msk but missing the SKE.sk part.

• Compute CT∗ ← Enc(mpk, x0) as follows:

1. K ← PRF.Setup(1λ).

2. FE.ct∗ ← FE.Enc(FE.mpk, (x0,K, 0,⊥)).
3. PKE.ct∗ ← PKE.Enc(PKE.pk,⊥).
4. π∗ ← NIZK.Sim2(c̃rs, τ, z) where z is the following statement on FE.ct∗ and PKE.ct∗:

“ PKE.ct∗ correctly encrypts (x,K, α, ŝk,FE.ct∗), where (x,K, α, ŝk) is encrypted in
FE.ct∗”

5. Set CT∗ = (FE.ct∗,PKE.ct∗, π∗).

• Run AKeyGen(msk,·),O(msk,·,·)
2 (mpk,CT∗, st), while simulating the following two oracles:

– KeyGen(msk, f):

1. s← {0, 1}λ.
2. r ← PRF.Eval(K, s).

3. Sample/compute y0 ← {0, 1}|f(·)| and y1 ← f(x0; r).

4. Submit challenge messages (y0, y1) and receive a challenge ciphertext SKE.ct.

5. FE.skGf
← FE.KeyGen(FE.msk, G[f, s,SKE.ct]).

6. Output SKf = (c̃rs,FE.skGf
).

45



– O(msk,CT, g):

1. If CT = CT∗, return ⊥.
2. s← {0, 1}λ.
3. Sample y0, y1 ← {0, 1}|g(·)|.
4. Submit challenge messages (y0, y1) and receive a challenge ciphertext SKE.ct.

5. Parse CT = (FE.ct,PKE.ct, π).

6. If NIZK.Verify(c̃rs, (FE.ct,PKE.ct), π) = 0, return ⊥.
7. Compute (x,K, α, ŝk,FE.ct′) ← PKE.Dec(PKE.sk,PKE.ct), and return G[g, s,

SKE.ct](x,K, α, ŝk).

• If A outputs it is in HybridA
3 , output 0. Otherwise, output 1.

It is easy to see that if A wins, B also wins.

Lemma 5.7. If FE is a selectively secure FE scheme, then no PPT adversary A can distinguish
between HybridA

4 and HybridA
5 with non-negligible probability.

Proof. We show a reduction to selective FE security. Let A be an adversary that can distinguish
between HybridA

4 and HybridA
5 , we construct an adversary B that can break selective security of

the underlying FE scheme.

B(1λ) :

• (x0, x1, st)← A1(1
λ).

• Sample partial mpk and partial msk as follows:

1. (PKE.pk,PKE.sk)← PKE.Setup(1λ).

2. SKE.sk← SKE.Setup(1λ).

3. (c̃rs, τ)← NIZK.Sim1(1
λ).

4. Set (mpk,msk) = ((PKE.pk, c̃rs), (FE.mpk,PKE.pk, c̃rs,PKE.sk, SKE.sk)), where mpk
and msk are the normal mpk and msk but missing the FE.mpk and FE.msk part.

• Compute CT∗ ← Enc(mpk, x0) as follows:

1. K ← PRF.Setup(1λ).

2. Submit challenge messages m0 = (x0,K, 0,⊥) and m1 = (⊥,⊥, 1, SKE.sk), and
receive a challenge ciphertext FE.ct∗ together with FE.mpk.

3. PKE.ct∗ ← PKE.Enc(PKE.pk,⊥).
4. π∗ ← NIZK.Sim2(c̃rs, τ, z) where z is the following statement on FE.ct∗ and PKE.ct∗:

“ PKE.ct∗ correctly encrypts (x,K, α, ŝk,FE.ct∗), where (x,K, α, ŝk) is encrypted in
FE.ct∗”

5. Set CT∗ = (FE.ct∗,PKE.ct∗, π∗).

• Run AKeyGen(msk,·),O(msk,·,·)
2 (mpk,CT∗, st), , while simulating the following two oracles:

– KeyGen(msk, f):

46



1. s← {0, 1}λ.
2. r ← PRF.Eval(K, s).

3. ŷ ← f(x0; r).

4. SKE.ct← SKE.Enc(SKE.sk, ŷ).

5. Submit a function query for G[f, s,SKE.ct] and receive FE.skGf
.

6. Output SKf = (c̃rs,FE.skGf
).

– O(msk,CT, g):

1. If CT = CT∗, return ⊥.
2. s← {0, 1}λ.
3. SKE.ct← SKE.Enc(SKE.sk, y), where y ← {0, 1}|g(·)| is randomly sampled.

4. Parse CT = (FE.ct,PKE.ct, π).

5. If NIZK.Verify(c̃rs, (FE.ct,PKE.ct), π) = 0, return ⊥.
6. Compute (x,K, α, ŝk,FE.ct′) ← PKE.Dec(PKE.sk,PKE.ct), and return G[g, s,

SKE.ct](x,K, α, ŝk).

• If A outputs it is in HybridA
4 , output 0. Otherwise, output 1.

First, notice that the only function queries B needs to submit are for G[f, s,SKE.ct], where we
have

G[f, s,SKE.ct](x0,K, 0,⊥) = f(x0; r) = G[f, s,SKE.ct](⊥,⊥, 1,SKE.sk),

so all the function queries are valid.
Then, it is easy to verify that if A wins, B also wins.

Lemma 5.8. If PRF is a secure PRF, then no PPT adversary A can distinguish between HybridA
5

and HybridA
6 with non-negligible probability.

Proof. We construct the following adversary B for the ExptPRFB game by using A as a subroutine.

B(1λ):

• (x0, x1, st)← A1(1
λ).

• Sample (mpk,msk)← Setup(1λ) as follows:

1. (PKE.pk,PKE.sk)← PKE.Setup(1λ).

2. SKE.sk← SKE.Setup(1λ).

3. (FE.mpk,FE.msk)← FE.Setup(1λ).

4. (c̃rs, τ)← NIZK.Sim1(1
λ).

5. (mpk,msk) := ((FE.mpk,PKE.pk, c̃rs), (FE.mpk,PKE.pk, c̃rs,FE.msk,PKE.sk, SKE.sk)).

• Compute CT∗ ← Enc(mpk, x0) as follows:

1. FE.ct∗ ← FE.Enc(FE.mpk, (⊥,⊥, 1,SKE.sk)).
2. PKE.ct∗ ← PKE.Enc(PKE.pk,⊥).

47



3. π∗ ← NIZK.Sim2(c̃rs, τ, z) where z is the following statement on FE.ct∗ and PKE.ct∗:

“ PKE.ct∗ correctly encrypts (x,K, α, ŝk,FE.ct∗), where (x,K, α, ŝk) is encrypted in
FE.ct∗”

4. Set CT∗ = (FE.ct∗,PKE.ct∗, π∗).

• Run AKeyGen(msk,·),O(msk,·,·)
2 (mpk,CT∗, st), while simulating the following two oracles:

– KeyGen(msk, f):

1. s← {0, 1}λ.
2. Submit s and receive r.

3. ŷ ← f(x0; r).

4. SKE.ct← SKE.Enc(SKE.sk, ŷ).

5. FE.skGf
← FE.KeyGen(FE.msk, G[f, s,SKE.ct]).

6. Output SKf = (c̃rs,FE.skGf
).

– O(msk,CT, g):

1. If CT = CT∗, return ⊥.
2. s← {0, 1}λ.
3. SKE.ct← SKE.Enc(SKE.sk, y), where y ← {0, 1}|g(·)| is randomly sampled.

4. Parse CT = (FE.ct,PKE.ct, π).

5. If NIZK.Verify(c̃rs, (FE.ct,PKE.ct), π) = 0, return ⊥.
6. Compute (x,K, α, ŝk,FE.ct′) ← PKE.Dec(PKE.sk,PKE.ct), and return G[g, s,

SKE.ct](x,K, α, ŝk).

• If A outputs it is in HybridA
5 , output 0. Otherwise, output 1.

Note that the r B receives will either be PRF.Eval(K, s) or a uniformly random value, depending
on the challenge bit. And these cases correspond exactly to HybridA

5 and HybridA
6 . It’s easy to

see that if A wins, B also wins.

Lemma 5.9. No adversary A can distinguish between HybridA
6 and HybridA

7 with non-negligible
probability.

Proof. Note that the only difference between HybridA
6 and HybridA

7 is that we switch from
f(x0; r̂) to f(x1; r̂), where r̂ is a uniformly random value. Recall that the experiment requires that
for all f queried by A2 to the KeyGen oracle, the distributions of f(x0) and f(x1) are statisti-
cally indistinguishable. Therefore, no adversary can distinguish between them with non-negligible
probability as desired.

The proofs of the hybrid arguments for HybridA
7 to HybridA

13 follow analogously from the
lemmas above, yielding us the final theorem result.

Theorem 5.2. If PKE is a CPA-secure PKE, SKE is a CPA-secure SKE, NIZK is a NIZK with
simulation soundness, FE is a selectively-secure FE scheme, and PRF is a secure PRF, then Con-
struction 1 is IND-secure per Definition 5.1.

Proof. The lemmas above show a sequence of a polynomial number of hybrid experiments where no
PPT adversary can distinguish one from the next with non-negligible probability. The first hybrid
HybridA

0 corresponds to the ExptrFEA game where b = 0, and the last one HybridA
13 corresponds

to the case where b = 1. The security of the indistinguishability game follows.

48



5.4 Issue with Counterexample Construction (Construction 1

Now we highlight why construction 1 is problematic against a malicious encryptor. The high
level intuition is that a malicious encryptor can cause the randomized function evaluation to use a
randomness of its own choice.

Specifically, let PRF′ = (Setup,Eval) be a secure PRF, and consider the following PRF con-
struction PRF = (Setup,Eval):

• Setup(1λ): Compute K ′ ← PRF′.Setup(1λ), and output K = (K ′, 0,⊥).

• Eval(K, s): First, parse K = (K ′, b, r). If b = 0, output PRF′.Eval(K ′, s). Otherwise, output
r.

Essentially, it is a PRF with a “trapdoor” mode. Normally, when b = 0, it behaves like the
underlying PRF′. But when b = 1, it completely ignores the seed s, and simply outputs some
hardcoded randomness r. Notice that by security of PRF′, the construction PRF is also secure.

Now imagine using this PRF construction as the PRF in Construction 1. Here is what a malicious
encryptor A can do:

Malicious Encryptor A(mpk, x):

1. Parse mpk = (FE.mpk,PKE.pk, crs).

2. K ′ ← PRF′.Setup(1λ).

3. Pick any preferred randomness r, and set K = (K ′, 1, r).

4. FE.ct← FE.Enc(FE.mpk, (x,K, 0,⊥)).

5. PKE.ct← PKE.Enc(PKE.pk, (x,K, 0,⊥,FE.ct)).

6. π ← NIZK.Prove(crs, z, w) where z is the statement that PKE.ct correctly encrypts
(x,K, α, ŝk,FE.ct), where (x,K, α, ŝk) is encrypted in FE.ct.

7. Output CT = (FE.ct,PKE.ct, π).

Notice that decrypting this malicious CT yields G[f, s,SKE.ct](x,K, 0,⊥). But in this case
PRF.Eval simply outputs the hardcoded r which is arbitrarily chosen by the malicious encryptor.
In other words, the malicious encryptor can set the randomness used to evaluate the function f to
any favorful value it wants.

6 Constructing Adaptively Secure rMIFE

In this section we present our construction of rMIFE. It is inspired by [GJO16], and we build upon
the adaptively secure deterministic MIFE construction of Goldwasser et al. [GGG+14].

For our construction, we utilize a subexponentially-secure indistinguishability obfuscation (iO),
a plain PKE, a puncturable PRF and injective One Way Functions (OWFs), with parameters
specified in the following subsection. The definitions of these tools can be found in Section 3 of the
supplementary material.

49



6.1 Parameters

• PKE

– Security parameter λ.

– Ciphertexts of length s on inputs xi.

• iO = iO with (1, 2−3ns−λiO) weak extractability. This means for any two equivalent circuits,
the security gap of the obfuscation is bounded by 2−3ns−λiO (any algorithm that distinguishes
obfuscations of two circuits with more than this gap can be used to extract a differing point).

– Security parameter λiO = λ.

• PRF1 = Puncturable PRF with security 2−λ
cPRF1
PRF1 . This is the PRF using Ki as keys.

– Security parameter λPRF1 > (2ns+ λiO)
(1/cPRF1).

• PRF2 = Puncturable PRF with security 2−λ
cPRF2
PRF2 . This is the PRF using Kf as keys.

– Security parameter λPRF2 > (2ns+ λiO)
(1/cPRF2).

• InjOWF = Injective OWF with security 2−λ
cOWF
OWF .

– Security parameter λOWF > (3ns+ λiO)
1/cOWF .

– Output length > max{(5ns+ 2λiO)
1/cOWF , (3ns+ λiO)

1/cPRF1 , (3ns+ λiO)
1/cPRF2}.

6.2 Construction

Now we present our main construction of rMIFE.

Construction 2. Let λ be the security parameter and n be the number of inputs. Let iO
be an indistinguishability obfuscation scheme, PKE = (Setup,Enc,Dec) be a plain model PKE,
PRF1,PRF2 = (Setup,Eval,Punc) be puncturable PRFs, InjOWF be an injective OWF. We con-
struct our rMIFE = (Setup,Enc,KeyGen,Dec) as follows:

• Setup(1λ, n):

1. For i ∈ [n],

(a) Ki ← PRF1.Setup(1λ).

(b) For b ∈ {0, 1}, (pkbi , skbi)← PKE.Setup(1λ).

(c) Ẽi = iO(1λ, Ei[pk
0
i , pk

1
i ,Ki]).

(d) EKi = (pk0i , pk
1
i , Ẽi).

2. MSK = {sk0i , sk1i ,Ki}i∈[n].
3. Output (MSK, {EKi}i∈[n]).

Ei[pk
0
i , pk

1
i ,Ki](c

0
i , c

1
i , xi, r

0
i , r

1
i ):

1. For b ∈ {0, 1}, if cbi ̸= PKE.Enc(pkbi , xi; r
b
i ), output ⊥.

2. Output zi = PRF1.Eval(Ki, (c
0
i , c

1
i )).

50



• Enc(EKi, xi):

1. Parse EKi = (pk0i , pk
1
i , Ẽi).

2. r0i , r
1
i ← {0, 1}λ.

3. For b ∈ {0, 1}, cbi = PKE.Enc(pkbi , xi; r
b
i ).

4. zi = Ẽi(c
0
i , c

1
i , xi, r

0
i , r

1
i ).

5. Output CTi = (c0i , c
1
i , zi).

• KeyGen(MSK, f):

1. Parse MSK = ({sk0i , sk1i ,Ki}i∈[n]).

2. Sample Kf ← PRF2.Setup(1λ).

3. G̃f ← iO(1λ, G[f, {sk0i ,Ki}i∈[n],Kf , InjOWF]).

4. Output SKf = G̃f .

G[f, {sk0i ,Ki}i∈[n],Kf , InjOWF]((c0i , c
1
i , zi)i∈[n]):

1. For i ∈ [n],

(a) If InjOWF(zi) ̸= InjOWF(PRF1.Eval(Ki, c
0
i , c

1
i )), output ⊥.

(b) xi = PKE.Dec(sk0i , c
0
i ).

2. rf = PRF2.Eval(Kf , (c
0
i , c

1
i )i∈[n]).

3. Output y = f(x1, x2, . . . , xn; rf ).

• Dec(SKf , {CTi}i∈[n]).

1. Parse SKf = G̃f , and for i ∈ [n], parse CTi = (c0i , c
1
i , zi).

2. Output y = G̃f ({c0i , c1i , zi}i∈[n]).

Correctness follows from correctness of the underlying schemes. We next argue our construction
is secure against both malicious decryptors and malicious encryptors.

6.3 Security against malicious decryptors

We first prove security against malicious decryptors.

Theorem 6.1. If PKE is CPA-secure, iO is a subexponentially-secure indistinguishable obfuscation
scheme, PRFs and InjOWF are secure with the parameters outlines in the Parameters section,
then Construction 2 is IND secure against malicious decryptors for ϵ = 2−2ns−λiO -distinguishable
distributions.

We prove this through a sequence of hybrids.

51



Sequence of Hybrids

HybridA
0 (1

λ): Real world experiment with b = 0.

1. Setup:

(a) For i ∈ [n],

i. Ki ← PRF1.Setup(1λ).

ii. For α ∈ {0, 1}, (pkαi , skαi )← PKE.Setup(1λ).

iii. Ẽi = iO(1λ, Ei[pk
0
i , pk

1
i ,Ki]).

iv. EKi = (pk0i , pk
1
i , Ẽi).

2. A may make any number of the following queries in any order.

• Function Query:

(a) A outputs a function fℓ.

(b) Kfℓ ← PRF2.Setup(1λ).

(c) G̃fℓ ← iO(1λ, G[fℓ, {sk0i ,Ki}i∈[n],Kfℓ , InjOWF]).

(d) Send SKfℓ = G̃fℓ to A.
• Encryption Key Query:

(a) A outputs an index i ∈ [n].

(b) Send EKi to A.
• Challenge Message Query:

(a) A outputs (X0
j , X

1
j ) = ((x0j,1, . . . , x

0
j,n), (x

1
j,1, . . . , x

1
j,n)).

(b) For i ∈ [n],

i. r0j,i, r
1
j,i ← {0, 1}λ.

ii. c0j,i = PKE.Enc(pk0i , x
0
j,i; r

0
j,i).

iii. c1j,i = PKE.Enc(pk1i , x
0
j,i; r

1
j,i).

iv. zj,i = PRF1.Eval(Ki, (c
0
j,i, c

1
j,i)).

v. CTj,i = (c0j,i, c
1
j,i, zj,i).

(c) Send {CTj,i}i∈[n] to A.

3. Output: A outputs a bit b′. Output b′ if the queries are compatible, and 0 otherwise.

HybridA
1 (1

λ): We encrypt x1j,i into c1j,i, that is we compute c1j,i = PKE.Enc(pk1i , x
1
j,i; r

1
j,i). This

follows by PKE security.

1. Setup:

(a) For i ∈ [n],

i. Ki ← PRF1.Setup(1λ).

ii. For α ∈ {0, 1}, (pkαi , skαi )← PKE.Setup(1λ).

iii. Ẽi = iO(1λ, Ei[pk
0
i , pk

1
i ,Ki]).

iv. EKi = (pk0i , pk
1
i , Ẽi).

2. A may make any number of the following queries in any order.

52



• Function Query:

(a) A outputs a function fℓ.

(b) Kfℓ ← PRF2.Setup(1λ).

(c) G̃fℓ ← iO(1λ, G[fℓ, {sk0i ,Ki}i∈[n],Kfℓ , InjOWF]).

(d) Send SKfℓ = G̃fℓ to A.
• Encryption Key Query:

(a) A outputs an index i ∈ [n].

(b) Send EKi to A.
• Challenge Message Query:

(a) A outputs (X0
j , X

1
j ) = ((x0j,1, . . . , x

0
j,n), (x

1
j,1, . . . , x

1
j,n)).

(b) For i ∈ [n],

i. r0j,i, r
1
j,i ← {0, 1}λ.

ii. c0j,i = PKE.Enc(pk0i , x
0
j,i; r

0
j,i).

iii. c1j,i = PKE.Enc(pk1i , x
1
j,i; r

1
j,i).

iv. zj,i = PRF1.Eval(Ki, (c
0
j,i, c

1
j,i)).

v. CTj,i = (c0j,i, c
1
j,i, zj,i).

(c) Send {CTj,i}i∈[n] to A.

3. Output: A outputs a bit b′. Output b′ if the queries are compatible, and 0 otherwise.

HybridA
2,w,0(1

λ)w∈[0,22sn]: Here s denotes the length of the PKE ciphertexts. In this sequence of
hybrids, we consider only one secret key query from the adversary for some function f . Multiple key
queries can be handled via a standard hybrid argument. While generating the secret key queried
by the adversary we construct the program Gf , by switching to computing xi using sk1i and c1i for
all inputs with (c0i , c

1
i )i∈[n] < w. For w = 0, this is indistinguishable from the previous hybrid by

iO since the program G in the two hybrids is exactly identical in functionality.

1. Setup:

(a) For i ∈ [n],

i. Ki ← PRF1.Setup(1λ).

ii. For α ∈ {0, 1}, (pkαi , skαi )← PKE.Setup(1λ).

iii. Ẽi = iO(1λ, Ei[pk
0
i , pk

1
i ,Ki]).

iv. EKi = (pk0i , pk
1
i , Ẽi).

2. A may make any number of the following queries in any order.

• Function Query:

(a) A outputs a function f .

(b) Kf ← PRF2.Setup(1λ).

(c) G̃f ← iO(1λ, G′[f, {sk0i , sk1i ,Ki}i∈[n], w,Kf , InjOWF]).

(d) Send SKf = G̃f to A.
• Encryption Key Query:

(a) A outputs an index i ∈ [n].

53



(b) Send EKi to A.
• Challenge Message Query:

(a) A outputs (X0
j , X

1
j ) = ((x0j,1, . . . , x

0
j,n), (x

1
j,1, . . . , x

1
j,n)).

(b) For i ∈ [n],

i. r0j,i, r
1
j,i ← {0, 1}λ.

ii. c0j,i = PKE.Enc(pk0i , x
0
j,i; r

0
j,i).

iii. c1j,i = PKE.Enc(pk1i , x
1
j,i; r

1
j,i).

iv. zj,i = PRF1.Eval(Ki, (c
0
j,i, c

1
j,i)).

v. CTj,i = (c0j,i, c
1
j,i, zj,i).

(c) Send {CTj,i}i∈[n] to A.

3. Output: A outputs a bit b′. Output b′ if the queries are compatible, and 0 otherwise.

G′[f, {sk0i , sk1i ,Ki}i∈[n], w,Kf , InjOWF]((c0i , c
1
i , zi)i∈[n]):

1. For i ∈ [n],

(a) If InjOWF(zi) ̸= InjOWF(PRF1.Eval(Ki, c
0
i , c

1
i )), output ⊥.

(b) If (c0i , c
1
i )i∈[n] ≥ w, xi = PKE.Dec(sk0i , c

0
i ).

(c) If (c0i , c
1
i )i∈[n] < w, xi = PKE.Dec(sk1i , c

1
i ).

2. rf = PRF2.Eval(Kf , (c
0
i , c

1
i )i∈[n]).

3. Output y = f(x1, x2, . . . , xn; rf ).

HybridA
2,w,1(1

λ)w∈[0,22sn]: Puncture the PRF1 keys Ki at values associated with w.

1. Setup:

(a) For i ∈ [n],

i. Ki ← PRF1.Setup(1λ).

ii. For α ∈ {0, 1}, (pkαi , skαi )← PKE.Setup(1λ).

(b) Compute Values for w:

i. Parse w = (d0i , d
1
i )i∈[n].

ii. For i ∈ [n], α ∈ {0, 1}, xαi = PKE.Dec(skαi , d
α
i ).

iii. Define Aw = {i ∈ [n] : x0i = x1i }.
iv. For i ∈ Aw, ui = PRF1.Eval(Ki, (d

0
i , d

1
i )).

v. For i ∈ [n],Ki[d
0
i , d

1
i ] = PRF1.Punc(Ki, (d

0
i , d

1
i )).

(c) Compute:

i. For i ∈ Aw, Ẽi = iO(1λ, E′
i[pk

0
i , pk

1
i ,Ki[d

0
i , d

1
i ], d

0
i , d

1
i , ui]).

ii. For i ∈ [n] \Aw, Ẽi = iO(1λ, E′′
i [pk

0
i , pk

1
i ,Ki[d

0
i , d

1
i ], d

0
i , d

1
i ]).

(d) For i ∈ [n], set EKi = (pk0i , pk
1
i , Ẽi).

2. A may make any number of the following queries in any order.

54



• Function Query:

(a) A outputs a function f .

(b) Kf ← PRF2.Setup(1λ).

(c) G̃f ← iO(1λ, G′′[f, {sk0i , sk1i ,Ki[d
0
i , d

1
i ], d

0
i , d

1
i }i∈[n], {InjOWF(ui)}i∈Aw , w,Kf , InjOWF]).

(d) Send SKf = G̃f to A.
• Encryption Key Query:

(a) A outputs an index i ∈ [n].

(b) Send EKi to A.
• Challenge Message Query:

(a) A outputs (X0
j , X

1
j ) = ((x0j,1, . . . , x

0
j,n), (x

1
j,1, . . . , x

1
j,n)).

(b) For i ∈ [n],

i. r0j,i, r
1
j,i ← {0, 1}λ.

ii. c0j,i = PKE.Enc(pk0i , x
0
j,i; r

0
j,i).

iii. c1j,i = PKE.Enc(pk1i , x
1
j,i; r

1
j,i).

iv. zj,i = PRF1.Eval(Ki, (c
0
j,i, c

1
j,i)).

v. CTj,i = (c0j,i, c
1
j,i, zj,i).

(c) Send {CTj,i}i∈[n] to A.

3. Output: A outputs a bit b′. Output b′ if the queries are compatible, and 0 otherwise.

E′
i[pk

0
i , pk

1
i ,Ki[d

0
i , d

1
i ], d

0
i , d

1
i , ui](c

0
i , c

1
i , xi, r

0
i , r

1
i ):

1. For b ∈ {0, 1}, if cbi ̸= PKE.Enc(pkbi , xi; r
b
i ), output ⊥.

2. If (c0i , c
1
i ) = (d0i , d

1
i ), output ui.

3. Else, output zi = PRF1.Eval(Ki[d
0
i , d

1
i ], (c

0
i , c

1
i )).

E′′
i [pk

0
i , pk

1
i ,Ki[d

0
i , d

1
i ], d

0
i , d

1
i ](c

0
i , c

1
i , xi, r

0
i , r

1
i ):

1. For b ∈ {0, 1}, if cbi ̸= PKE.Enc(pkbi , xi; r
b
i ), output ⊥.

2. Output zi = PRF1.Eval(Ki[d
0
i , d

1
i ], (c

0
i , c

1
i )).

G′′[f, {sk0i , sk1i ,Ki[d
0
i , d

1
i ], d

0
i , d

1
i }i∈[n], {InjOWF(ui)}i∈Aw , w,Kf , InjOWF]

((c0i , c
1
i , zi)i∈[n]):

1. For i ∈ [n],

(a) If (c0i , c
1
i ) = (d0i , d

1
i ), if InjOWF(zi) ̸= InjOWF(ui), output ⊥.

(b) Else, if InjOWF(zi) ̸= InjOWF(PRF1.Eval(Ki[d
0
i , d

1
i ], c

0
i , c

1
i )), output ⊥.

(c) If (c0i , c
1
i )i∈[n] ≥ w, xi = PKE.Dec(sk0i , c

0
i ).

(d) If (c0i , c
1
i )i∈[n] < w, xi = PKE.Dec(sk1i , c

1
i ).

2. rf = PRF2.Eval(Kf , (c
0
i , c

1
i )i∈[n]).

55



3. Output y = f(x1, x2, . . . , xn; rf ).

HybridA
2,w,2(1

λ): Choose ui uniformly at random. This follows by PRF1 security.

1. Setup:

(a) For i ∈ [n],

i. Ki ← PRF1.Setup(1λ).

ii. For α ∈ {0, 1}, (pkαi , skαi )← PKE.Setup(1λ).

(b) Compute Values for w:

i. Parse w = (d0i , d
1
i )i∈[n].

ii. For i ∈ [n], α ∈ {0, 1}, xαi = PKE.Dec(skαi , d
α
i ).

iii. Define Aw = {i ∈ [n] : x0i = x1i }.
iv. For i ∈ Aw, ui ← {0, 1}λ.
v. For i ∈ [n],Ki[d

0
i , d

1
i ] = PRF1.Punc(Ki, (d

0
i , d

1
i )).

(c) Compute:

i. For i ∈ Aw, Ẽi = iO(1λ, E′
i[pk

0
i , pk

1
i ,Ki[d

0
i , d

1
i ], d

0
i , d

1
i , ui]).

ii. For i ∈ [n] \Aw, Ẽi = iO(1λ, E′′
i [pk

0
i , pk

1
i ,Ki[d

0
i , d

1
i ], d

0
i , d

1
i ]).

(d) For i ∈ [n], set EKi = (pk0i , pk
1
i , Ẽi).

2. A may make any number of the following queries in any order.

• Function Query:

(a) A outputs a function f .

(b) Kf ← PRF2.Setup(1λ).

(c) G̃f ← iO(1λ, G′′[f, {sk0i , sk1i ,Ki[d
0
i , d

1
i ], d

0
i , d

1
i }i∈[n], {InjOWF(ui)}i∈Aw , w,Kf , InjOWF]).

(d) Send SKf = G̃f to A.
• Encryption Key Query:

(a) A outputs an index i ∈ [n].

(b) Send EKi to A.
• Challenge Message Query:

(a) A outputs (X0
j , X

1
j ) = ((x0j,1, . . . , x

0
j,n), (x

1
j,1, . . . , x

1
j,n)).

(b) For i ∈ [n],

i. r0j,i, r
1
j,i ← {0, 1}λ.

ii. c0j,i = PKE.Enc(pk0i , x
0
j,i; r

0
j,i).

iii. c1j,i = PKE.Enc(pk1i , x
1
j,i; r

1
j,i).

iv. zj,i = PRF1.Eval(Ki, (c
0
j,i, c

1
j,i)).

v. CTj,i = (c0j,i, c
1
j,i, zj,i).

(c) Send {CTj,i}i∈[n] to A.

3. Output: A outputs a bit b′. Output b′ if the queries are compatible, and 0 otherwise.

HybridA
2,w,3(1

λ): Puncture each Kf at w. This step also follows from iO.

56



1. Setup:

(a) For i ∈ [n],

i. Ki ← PRF1.Setup(1λ).

ii. For α ∈ {0, 1}, (pkαi , skαi )← PKE.Setup(1λ).

(b) Compute Values for w:

i. Parse w = (d0i , d
1
i )i∈[n].

ii. For i ∈ [n], α ∈ {0, 1}, xαi = PKE.Dec(skαi , d
α
i ).

iii. Define Aw = {i ∈ [n] : x0i = x1i }.
iv. For i ∈ Aw, ui ← {0, 1}λ.
v. For i ∈ [n],Ki[d

0
i , d

1
i ] = PRF1.Punc(Ki, (d

0
i , d

1
i )).

(c) Compute:

i. For i ∈ Aw, Ẽi = iO(1λ, E′
i[pk

0
i , pk

1
i ,Ki[d

0
i , d

1
i ], d

0
i , d

1
i , ui]).

ii. For i ∈ [n] \Aw, Ẽi = iO(1λ, E′′
i [pk

0
i , pk

1
i ,Ki[d

0
i , d

1
i ], d

0
i , d

1
i ]).

(d) For i ∈ [n], set EKi = (pk0i , pk
1
i , Ẽi).

2. A may make any number of the following queries in any order.

• Function Query:

(a) A outputs a function f .

(b) Kf ← PRF2.Setup(1λ).

(c) Kf [w] = PRF2.Punc(Kf , w).

(d) r∗ ← PRF2.Eval(Kf , w).

(e) For i ∈ [n], x0i ← PKE.Dec(sk0i , d
0
i ).

(f) y∗ = f(x01, x
0
2, . . . , x

0
n; r

∗).

(g) G̃f ← iO(1λ, G′′′[f, {sk0i , sk1i ,Ki[d
0
i , d

1
i ], d

0
i , d

1
i }i∈[n], {InjOWF(ui)}i∈Aw , w,Kf [w], y

∗,
InjOWF]).

(h) Send SKf = G̃f to A.
• Encryption Key Query:

(a) A outputs an index i ∈ [n].

(b) Send EKi to A.
• Challenge Message Query:

(a) A outputs (X0
j , X

1
j ) = ((x0j,1, . . . , x

0
j,n), (x

1
j,1, . . . , x

1
j,n)).

(b) For i ∈ [n],

i. r0j,i, r
1
j,i ← {0, 1}λ.

ii. c0j,i = PKE.Enc(pk0i , x
0
j,i; r

0
j,i).

iii. c1j,i = PKE.Enc(pk1i , x
1
j,i; r

1
j,i).

iv. zj,i = PRF1.Eval(Ki, (c
0
j,i, c

1
j,i)).

v. CTj,i = (c0j,i, c
1
j,i, zj,i).

(c) Send {CTj,i}i∈[n] to A.

3. Output: A outputs a bit b′. Output b′ if the queries are compatible, and 0 otherwise.

57



G′′′[f, {sk0i , sk1i ,Ki[d
0
i , d

1
i ], d

0
i , d

1
i }i∈[n], {InjOWF(ui)}i∈Aw , w,Kf [w], y

∗, InjOWF]
((c0i , c

1
i , zi)i∈[n]):

1. For i ∈ [n],

(a) If (c0i , c
1
i ) = (d0i , d

1
i ), if InjOWF(zi) ̸= InjOWF(ui), output ⊥.

(b) Else, if InjOWF(zi) ̸= InjOWF(PRF1.Eval(Ki[d
0
i , d

1
i ], c

0
i , c

1
i )), output ⊥.

(c) If (c0i , c
1
i )i∈[n] > w, xi = PKE.Dec(sk0i , c

0
i ).

(d) If (c0i , c
1
i )i∈[n] = w, output y∗.

(e) If (c0i , c
1
i )i∈[n] < w, xi = PKE.Dec(sk1i , c

1
i ).

2. rf = PRF2.Eval(Kf [w], (c
0
i , c

1
i )i∈[n]).

3. Output y = f(x1, x2, . . . , xn; rf ).

HybridA
2,w,4(1

λ): Now replace r∗ with a uniform value. This follows from puncturable PRF2
security.

1. Setup:

(a) For i ∈ [n],

i. Ki ← PRF1.Setup(1λ).

ii. For α ∈ {0, 1}, (pkαi , skαi )← PKE.Setup(1λ).

(b) Compute Values for w:

i. Parse w = (d0i , d
1
i )i∈[n].

ii. For i ∈ [n], α ∈ {0, 1}, xαi = PKE.Dec(skαi , d
α
i ).

iii. Define Aw = {i ∈ [n] : x0i = x1i }.
iv. For i ∈ Aw, ui ← {0, 1}λ.
v. For i ∈ [n],Ki[d

0
i , d

1
i ] = PRF1.Punc(Ki, (d

0
i , d

1
i )).

(c) Compute:

i. For i ∈ Aw, Ẽi = iO(1λ, E′
i[pk

0
i , pk

1
i ,Ki[d

0
i , d

1
i ], d

0
i , d

1
i , ui]).

ii. For i ∈ [n] \Aw, Ẽi = iO(1λ, E′′
i [pk

0
i , pk

1
i ,Ki[d

0
i , d

1
i ], d

0
i , d

1
i ]).

(d) For i ∈ [n], set EKi = (pk0i , pk
1
i , Ẽi).

2. A may make any number of the following queries in any order.

• Function Query:

(a) A outputs a function f .

(b) Kf ← PRF2.Setup(1λ).

(c) Kf [w] = PRF2.Punc(Kf , w).

(d) r∗ ← {0, 1}λ.
(e) For i ∈ [n], x0i ← PKE.Dec(sk0i , d

0
i ).

(f) y∗ = f(x01, x
0
2, . . . , x

0
n; r

∗).

(g) G̃f ← iO(1λ, G′′′[f, {sk0i , sk1i ,Ki[d
0
i , d

1
i ], d

0
i , d

1
i }i∈[n], {InjOWF(ui)}i∈Aw , w,Kf [w], y

∗,
InjOWF]).

58



(h) Send SKf = G̃f to A.
• Encryption Key Query:

(a) A outputs an index i ∈ [n].

(b) Send EKi to A.
• Challenge Message Query:

(a) A outputs (X0
j , X

1
j ) = ((x0j,1, . . . , x

0
j,n), (x

1
j,1, . . . , x

1
j,n)).

(b) For i ∈ [n],

i. r0j,i, r
1
j,i ← {0, 1}λ.

ii. c0j,i = PKE.Enc(pk0i , x
0
j,i; r

0
j,i).

iii. c1j,i = PKE.Enc(pk1i , x
1
j,i; r

1
j,i).

iv. zj,i = PRF1.Eval(Ki, (c
0
j,i, c

1
j,i)).

v. CTj,i = (c0j,i, c
1
j,i, zj,i).

(c) Send {CTj,i}i∈[n] to A.

3. Output: A outputs a bit b′. Output b′ if the queries are compatible, and 0 otherwise.

HybridA
2,w,5(1

λ): In Function Queries, we now compute x1i ← PKE.Dec(sk1i , d
1
i ) instead of x0i ←

PKE.Dec(sk0i , d
0
i ), and update y∗ to be evaluation on the x1i ’s accordingly. This step follows from

iO, InjOWF and I-randomized-compatibility.

1. Setup:

(a) For i ∈ [n],

i. Ki ← PRF1.Setup(1λ).

ii. For α ∈ {0, 1}, (pkαi , skαi )← PKE.Setup(1λ).

(b) Compute Values for w:

i. Parse w = (d0i , d
1
i )i∈[n].

ii. For i ∈ [n], α ∈ {0, 1}, xαi = PKE.Dec(skαi , d
α
i ).

iii. Define Aw = {i ∈ [n] : x0i = x1i }.
iv. For i ∈ Aw, ui ← {0, 1}λ.
v. For i ∈ [n],Ki[d

0
i , d

1
i ] = PRF1.Punc(Ki, (d

0
i , d

1
i )).

(c) Compute:

i. For i ∈ Aw, Ẽi = iO(1λ, E′
i[pk

0
i , pk

1
i ,Ki[d

0
i , d

1
i ], d

0
i , d

1
i , ui]).

ii. For i ∈ [n] \Aw, Ẽi = iO(1λ, E′′
i [pk

0
i , pk

1
i ,Ki[d

0
i , d

1
i ], d

0
i , d

1
i ]).

(d) For i ∈ [n], set EKi = (pk0i , pk
1
i , Ẽi).

2. A may make any number of the following queries in any order.

• Function Query:

(a) A outputs a function f .

(b) Kf ← PRF2.Setup(1λ).

(c) Kf [w] = PRF2.Punc(Kf , w).

(d) r∗ ← {0, 1}λ.
(e) For i ∈ [n], x1i ← PKE.Dec(sk1i , d

1
i ).

59



(f) y∗ = f(x11, x
1
2, . . . , x

1
n; r

∗).

(g) G̃f ← iO(1λ, G′′′[f, {sk0i , sk1i ,Ki[d
0
i , d

1
i ], d

0
i , d

1
i }i∈[n], {InjOWF(ui)}i∈Aw , w,Kf [w], y

∗,
InjOWF]).

(h) Send SKf = G̃f to A.
• Encryption Key Query:

(a) A outputs an index i ∈ [n].

(b) Send EKi to A.
• Challenge Message Query:

(a) A outputs (X0
j , X

1
j ) = ((x0j,1, . . . , x

0
j,n), (x

1
j,1, . . . , x

1
j,n)).

(b) For i ∈ [n],

i. r0j,i, r
1
j,i ← {0, 1}λ.

ii. c0j,i = PKE.Enc(pk0i , x
0
j,i; r

0
j,i).

iii. c1j,i = PKE.Enc(pk1i , x
1
j,i; r

1
j,i).

iv. zj,i = PRF1.Eval(Ki, (c
0
j,i, c

1
j,i)).

v. CTj,i = (c0j,i, c
1
j,i, zj,i).

(c) Send {CTj,i}i∈[n] to A.

3. Output: A outputs a bit b′. Output b′ if the queries are compatible, and 0 otherwise.

HybridA
2,w,6(1

λ): Now we undo the changes introduced in HybridA
2,w,4 by changing r∗ back to

PRF2 evaluation.

1. Setup:

(a) For i ∈ [n],

i. Ki ← PRF1.Setup(1λ).

ii. For α ∈ {0, 1}, (pkαi , skαi )← PKE.Setup(1λ).

(b) Compute Values for w:

i. Parse w = (d0i , d
1
i )i∈[n].

ii. For i ∈ [n], α ∈ {0, 1}, xαi = PKE.Dec(skαi , d
α
i ).

iii. Define Aw = {i ∈ [n] : x0i = x1i }.
iv. For i ∈ Aw, ui ← {0, 1}λ.
v. For i ∈ [n],Ki[d

0
i , d

1
i ] = PRF1.Punc(Ki, (d

0
i , d

1
i )).

(c) Compute:

i. For i ∈ Aw, Ẽi = iO(1λ, E′
i[pk

0
i , pk

1
i ,Ki[d

0
i , d

1
i ], d

0
i , d

1
i , ui]).

ii. For i ∈ [n] \Aw, Ẽi = iO(1λ, E′′
i [pk

0
i , pk

1
i ,Ki[d

0
i , d

1
i ], d

0
i , d

1
i ]).

(d) For i ∈ [n], set EKi = (pk0i , pk
1
i , Ẽi).

2. A may make any number of the following queries in any order.

• Function Query:

(a) A outputs a function f .

(b) Kf ← PRF2.Setup(1λ).

(c) Kf [w] = PRF2.Punc(Kf , w).

60



(d) r∗ ← PRF2.Eval(Kf , w).

(e) For i ∈ [n], x1i ← PKE.Dec(sk1i , d
1
i ).

(f) y∗ = f(x11, x
1
2, . . . , x

1
n; r

∗).

(g) G̃f ← iO(1λ, G′′′[f, {sk0i , sk1i ,Ki[d
0
i , d

1
i ], d

0
i , d

1
i }i∈[n], {InjOWF(ui)}i∈Aw , w,Kf [w], y

∗,
InjOWF]).

(h) Send SKf = G̃f to A.
• Encryption Key Query:

(a) A outputs an index i ∈ [n].

(b) Send EKi to A.
• Challenge Message Query:

(a) A outputs (X0
j , X

1
j ) = ((x0j,1, . . . , x

0
j,n), (x

1
j,1, . . . , x

1
j,n)).

(b) For i ∈ [n],

i. r0j,i, r
1
j,i ← {0, 1}λ.

ii. c0j,i = PKE.Enc(pk0i , x
0
j,i; r

0
j,i).

iii. c1j,i = PKE.Enc(pk1i , x
1
j,i; r

1
j,i).

iv. zj,i = PRF1.Eval(Ki, (c
0
j,i, c

1
j,i)).

v. CTj,i = (c0j,i, c
1
j,i, zj,i).

(c) Send {CTj,i}i∈[n] to A.

3. Output: A outputs a bit b′. Output b′ if the queries are compatible, and 0 otherwise.

HybridA
2,w,7(1

λ): Now we undo the changes introduced in HybridA
2,w,3 by removing the puncturing

on Kf . Notice that results in program G′′, but now with index w + 1, since we are now running
PKE.Dec(sk1i , c

1
i ) for w. This step follows from iO.

1. Setup:

(a) For i ∈ [n],

i. Ki ← PRF1.Setup(1λ).

ii. For α ∈ {0, 1}, (pkαi , skαi )← PKE.Setup(1λ).

(b) Compute Values for w:

i. Parse w = (d0i , d
1
i )i∈[n].

ii. For i ∈ [n], α ∈ {0, 1}, xαi = PKE.Dec(skαi , d
α
i ).

iii. Define Aw = {i ∈ [n] : x0i = x1i }.
iv. For i ∈ Aw, ui ← {0, 1}λ.
v. For i ∈ [n],Ki[d

0
i , d

1
i ] = PRF1.Punc(Ki, (d

0
i , d

1
i )).

(c) Compute:

i. For i ∈ Aw, Ẽi = iO(1λ, E′
i[pk

0
i , pk

1
i ,Ki[d

0
i , d

1
i ], d

0
i , d

1
i , ui]).

ii. For i ∈ [n] \Aw, Ẽi = iO(1λ, E′′
i [pk

0
i , pk

1
i ,Ki[d

0
i , d

1
i ], d

0
i , d

1
i ]).

(d) For i ∈ [n], set EKi = (pk0i , pk
1
i , Ẽi).

2. A may make any number of the following queries in any order.

• Function Query:

61



(a) A outputs a function f .

(b) Kf ← PRF2.Setup(1λ).

(c) Kf [w] = PRF2.Punc(Kf , w).

(d) r∗ ← PRF2.Eval(Kf , w).

(e) For i ∈ [n], x1i ← PKE.Dec(sk1i , d
1
i ).

(f) y∗ = f(x11, x
1
2, . . . , x

1
n; r

∗).

(g) G̃f ← iO(1λ, G′′[f, {sk0i , sk1i ,Ki[d
0
i , d

1
i ], d

0
i , d

1
i }i∈[n], {InjOWF(ui)}i∈Aw , w + 1,Kf [w], y

∗,
InjOWF]).

(h) Send SKf = G̃f to A.
• Encryption Key Query:

(a) A outputs an index i ∈ [n].

(b) Send EKi to A.
• Challenge Message Query:

(a) A outputs (X0
j , X

1
j ) = ((x0j,1, . . . , x

0
j,n), (x

1
j,1, . . . , x

1
j,n)).

(b) For i ∈ [n],

i. r0j,i, r
1
j,i ← {0, 1}λ.

ii. c0j,i = PKE.Enc(pk0i , x
0
j,i; r

0
j,i).

iii. c1j,i = PKE.Enc(pk1i , x
1
j,i; r

1
j,i).

iv. zj,i = PRF1.Eval(Ki, (c
0
j,i, c

1
j,i)).

v. CTj,i = (c0j,i, c
1
j,i, zj,i).

(c) Send {CTj,i}i∈[n] to A.

3. Output: A outputs a bit b′. Output b′ if the queries are compatible, and 0 otherwise.

HybridA
2,w,8(1

λ): Now we undo the changes introduced in HybridA
2,w,2 by changing ui’s back to

PRF1 outputs. This follows from PRF1 security.

1. Setup:

(a) For i ∈ [n],

i. Ki ← PRF1.Setup(1λ).

ii. For α ∈ {0, 1}, (pkαi , skαi )← PKE.Setup(1λ).

(b) Compute Values for w:

i. Parse w = (d0i , d
1
i )i∈[n].

ii. For i ∈ [n], α ∈ {0, 1}, xαi = PKE.Dec(skαi , d
α
i ).

iii. Define Aw = {i ∈ [n] : x0i = x1i }.
iv. For i ∈ Aw, ui ← PRF1.Eval(Ki, (d

0
i , d

1
i ).

v. For i ∈ [n],Ki[d
0
i , d

1
i ] = PRF1.Punc(Ki, (d

0
i , d

1
i )).

(c) Compute:

i. For i ∈ Aw, Ẽi = iO(1λ, E′
i[pk

0
i , pk

1
i ,Ki[d

0
i , d

1
i ], d

0
i , d

1
i , ui]).

ii. For i ∈ [n] \Aw, Ẽi = iO(1λ, E′′
i [pk

0
i , pk

1
i ,Ki[d

0
i , d

1
i ], d

0
i , d

1
i ]).

(d) For i ∈ [n], set EKi = (pk0i , pk
1
i , Ẽi).

62



2. A may make any number of the following queries in any order.

• Function Query:

(a) A outputs a function f .

(b) Kf ← PRF2.Setup(1λ).

(c) G̃f ← iO(1λ, G′′[f, {sk0i , sk1i ,Ki[d
0
i , d

1
i ], d

0
i , d

1
i }i∈[n], {InjOWF(ui)}i∈Aw , w+1,Kf , InjOWF]).

(d) Send SKf = G̃f to A.
• Encryption Key Query:

(a) A outputs an index i ∈ [n].

(b) Send EKi to A.
• Challenge Message Query:

(a) A outputs (X0
j , X

1
j ) = ((x0j,1, . . . , x

0
j,n), (x

1
j,1, . . . , x

1
j,n)).

(b) For i ∈ [n],

i. r0j,i, r
1
j,i ← {0, 1}λ.

ii. c0j,i = PKE.Enc(pk0i , x
0
j,i; r

0
j,i).

iii. c1j,i = PKE.Enc(pk1i , x
1
j,i; r

1
j,i).

iv. zj,i = PRF1.Eval(Ki, (c
0
j,i, c

1
j,i)).

v. CTj,i = (c0j,i, c
1
j,i, zj,i).

(c) Send {CTj,i}i∈[n] to A.

3. Output: A outputs a bit b′. Output b′ if the queries are compatible, and 0 otherwise.

HybridA
2,w,9(1

λ): Now we undo the changes introduced in HybridA
2,w,1 by removing the puncturing

on Ki’s (and correspondingly change G′′ back to G′, and E′′ and E′ back to E). Notice that this
hybrid is now exactly the same as HybridA

2,w+1,0.

1. Setup:

(a) For i ∈ [n],

i. Ki ← PRF1.Setup(1λ).

ii. For α ∈ {0, 1}, (pkαi , skαi )← PKE.Setup(1λ).

iii. Ẽi = iO(1λ, Ei[pk
0
i , pk

1
i ,Ki]).

iv. EKi = (pk0i , pk
1
i , Ẽi).

(b) Compute Values for w:

i. Parse w = (d0i , d
1
i )i∈[n].

ii. For i ∈ [n], α ∈ {0, 1}, xαi = PKE.Dec(skαi , d
α
i ).

iii. Define Aw = {i ∈ [n] : x0i = x1i }.
iv. For i ∈ Aw, ui ← PRF1.Eval(Ki, (d

0
i , d

1
i ).

v. For i ∈ [n],Ki[d
0
i , d

1
i ] = PRF1.Punc(Ki, (d

0
i , d

1
i )).

(c) Compute:

i. For i ∈ Aw, Ẽi = iO(1λ, E′
i[pk

0
i , pk

1
i ,Ki[d

0
i , d

1
i ], d

0
i , d

1
i , ui]).

ii. For i ∈ [n] \Aw, Ẽi = iO(1λ, E′′
i [pk

0
i , pk

1
i ,Ki[d

0
i , d

1
i ], d

0
i , d

1
i ]).

2. A may make any number of the following queries in any order.

63



• Function Query:

(a) A outputs a function f .

(b) Kf ← PRF2.Setup(1λ).

(c) G̃f ← iO(1λ, G′[f, {sk0i , sk1i ,Ki[d
0
i , d

1
i ], d

0
i , d

1
i }i∈[n],{InjOWF(ui)}i∈Aw ,w+1,Kf , InjOWF]).

(d) Send SKf = G̃f to A.
• Encryption Key Query:

(a) A outputs an index i ∈ [n].

(b) Send EKi to A.
• Challenge Message Query:

(a) A outputs (X0
j , X

1
j ) = ((x0j,1, . . . , x

0
j,n), (x

1
j,1, . . . , x

1
j,n)).

(b) For i ∈ [n],

i. r0j,i, r
1
j,i ← {0, 1}λ.

ii. c0j,i = PKE.Enc(pk0i , x
0
j,i; r

0
j,i).

iii. c1j,i = PKE.Enc(pk1i , x
1
j,i; r

1
j,i).

iv. zj,i = PRF1.Eval(Ki, (c
0
j,i, c

1
j,i)).

v. CTj,i = (c0j,i, c
1
j,i, zj,i).

(c) Send {CTj,i}i∈[n] to A.

3. Output: A outputs a bit b′. Output b′ if the queries are compatible, and 0 otherwise.

HybridA
3 (1

λ): Now we remove sk0i and w from G′. This step follows by iO.

1. Setup:

(a) For i ∈ [n],

i. Ki ← PRF1.Setup(1λ).

ii. For α ∈ {0, 1}, (pkαi , skαi )← PKE.Setup(1λ).

iii. Ẽi = iO(1λ, Ei[pk
0
i , pk

1
i ,Ki]).

iv. EKi = (pk0i , pk
1
i , Ẽi).

2. A may make any number of the following queries in any order.

• Function Query:

(a) A outputs a function f .

(b) Kf ← PRF2.Setup(1λ).

(c) G̃f ← iO(1λ, G†[f, {sk0i , sk1i ,Ki}i∈[n],w + 1,Kf , InjOWF]).

(d) Send SKf = G̃f to A.
• Encryption Key Query:

(a) A outputs an index i ∈ [n].

(b) Send EKi to A.
• Challenge Message Query:

(a) A outputs (X0
j , X

1
j ) = ((x0j,1, . . . , x

0
j,n), (x

1
j,1, . . . , x

1
j,n)).

(b) For i ∈ [n],

64



i. r0j,i, r
1
j,i ← {0, 1}λ.

ii. c0j,i = PKE.Enc(pk0i , x
0
j,i; r

0
j,i).

iii. c1j,i = PKE.Enc(pk1i , x
1
j,i; r

1
j,i).

iv. zj,i = PRF1.Eval(Ki, (c
0
j,i, c

1
j,i)).

v. CTj,i = (c0j,i, c
1
j,i, zj,i).

(c) Send {CTj,i}i∈[n] to A.

3. Output: A outputs a bit b′. Output b′ if the queries are compatible, and 0 otherwise.

(Difference from G highlighted)
G†[f, {sk1i ,Ki}i∈[n],Kf , InjOWF]((c0i , c

1
i , zi)i∈[n]):

1. For i ∈ [n],

(a) If InjOWF(zi) ̸= InjOWF(PRF1.Eval(Ki, c
0
i , c

1
i )), output ⊥.

(b) xi = PKE.Dec(sk1i , c
1
i ).

2. rf = PRF2.Eval(Kf , (c
0
i , c

1
i )i∈[n]).

3. Output y = f(x1, x2, . . . , xn; rf ).

HybridA
4 (1

λ): Now we change c0j,i to an encryption of x1j,i. This follows by PKE security.

1. Setup:

(a) For i ∈ [n],

i. Ki ← PRF1.Setup(1λ).

ii. For α ∈ {0, 1}, (pkαi , skαi )← PKE.Setup(1λ).

iii. Ẽi = iO(1λ, Ei[pk
0
i , pk

1
i ,Ki]).

iv. EKi = (pk0i , pk
1
i , Ẽi).

2. A may make any number of the following queries in any order.

• Function Query:

(a) A outputs a function f .

(b) Kf ← PRF2.Setup(1λ).

(c) G̃f ← iO(1λ, G†[f, {sk1i ,Ki}i∈[n],Kf , InjOWF]).

(d) Send SKf = G̃f to A.
• Encryption Key Query:

(a) A outputs an index i ∈ [n].

(b) Send EKi to A.
• Challenge Message Query:

(a) A outputs (X0
j , X

1
j ) = ((x0j,1, . . . , x

0
j,n), (x

1
j,1, . . . , x

1
j,n)).

(b) For i ∈ [n],

i. r0j,i, r
1
j,i ← {0, 1}λ.

ii. c0j,i = PKE.Enc(pk0i , x
1
j,i; r

0
j,i).

65



iii. c1j,i = PKE.Enc(pk1i , x
1
j,i; r

1
j,i).

iv. zj,i = PRF1.Eval(Ki, (c
0
j,i, c

1
j,i)).

v. CTj,i = (c0j,i, c
1
j,i, zj,i).

(c) Send {CTj,i}i∈[n] to A.

3. Output: A outputs a bit b′. Output b′ if the queries are compatible, and 0 otherwise.

Notice that now we have successfully switched c0j,i and c1j,i from encrypting x0j,i to encrypting

x1j,i. This is almost the real experiment with b = 1, apart from the fact that we are using G† instead
of G in answering the function queries. The remaining hybrids will follow a similar process as we’ve
been doing to change G† back to G.

Proof of Hybrid Arguments

Lemma 6.2. If PKE is IND-CPA secure, then no PPT adversary can distinguish between HybridA
0

and HybridA
1 with non-negligible probability.

Proof. Note that the only difference between the two hybrids is that c1j,i encrypts x
0
j,i in HybridA

0

and x1j,i in HybridA
1 . By the CPA security of PKE, without the private key, no PPT adversary

should be able to tell which message is encrypted (and hence distinguish between the two hybrids).

Lemma 6.3. If iO is an indistinguishability obfuscation, then no PPT adversary can distinguish
between HybridA

1 and HybridA
2,0,0 with non-negligible probability.

Proof. Here we change from iO of the program G to iO of the program G′. In order to invoke the
security of iO, we need to show that G and G′ and functionally equivalent. Note that for w = 0,
we always have (c0i , c

1
i ) ≥ w. And hence G′ always behaves exactly the same as G by decrypting

c0i .

Lemma 6.4. If iO has (1, 2−3ns−λiO) weak extractability, then for any distinguisher D, we have∣∣Pr[D(HybridA
2,w,0)−D(HybridA

2,w,1)]
∣∣ < O((n+ p(λiO)) · 2−3ns−λiO) for some polynomial p.

Proof. Again here we wish to invoke iO security. Notice that here we are changing the program Ei

to E′ and E′′
i , and G′ to G′′. We will argue about their functional equivalence.

• E′
i: Notice if (c0i , c

1
i ) = (d0i , d

1
i ), E

′
i outputs ui = PRF1.Eval(Ki, (d

0
i , d

1
i )), which is exactly

the output of Ei. If (c0i , c
1
i ) ̸= (d0i , d

1
i ), then E′

i can successfully use the PRF key punc-
tured at (d0i , d

1
i ) to evaluate on the point (c0i , c

1
i ), yielding PRF1.Eval(Ki[d

0
i , d

1
i ], (c

0
i , c

1
i )) =

PRF1.Eval(Ki, (c
0
i , c

1
i )), which is the same as the output of Ei.

• E′′
i : Notice that E′′

i are only handed out for i ̸∈ Aw, meaning x0i ̸= x1i . Under this case both
Ei and E′′

i would output ⊥ and hence are equivalent.

• G′′: Notice that the only differences are the cases where G′ and G′′ will output ⊥. G′ outputs
⊥ if InjOWF(zi) ̸= InjOWF(PRF1.Eval(Ki, c

0
i , c

1
i )). This correspond to the two cases in G′′. If

(c0i , c
1
i ) ̸= (d0i , d

1
i ), G

′′ uses the punctured key to perform the exact same check, and hence
have the exact functionality. If (c0i , c

1
i ) = (d0i , d

1
i ), then G′′ will be checking InjOWF(zi) =

InjOWF(ui) = InjOWF(PRF1.Eval(Ki, (d
0
i , d

1
i ))), giving us again the exact same check as in

G′. Therefore G and G′′ have the exact same functionality.

66



Therefore, all these switches reduce to iO security. Since we make n switches for E and p(λiO)
switches for G, the distinguisher’s advantage is upper bounded by (n+ p(λiO)) · 2−3ns−λiO .

Lemma 6.5. If PRF1 has security 2−λ
cPRF1
PRF1 with λPRF1 ≥ (2ns + λiO)

1/cPRF1, then for any distin-
guisher D,

∣∣Pr[D(HybridA
2,w,1)−D(HybridA

2,w,2)]
∣∣ < O(n · 2−2ns−λiO).

Proof. This step follows directly from the security of the puncturable PRF. Since we are only
giving out the key punctured at (d0i , d

1
i ), by puncturable PRF security we can replace the PRF

output on that point with a uniformly random value. Here we make O(n) of such switches, and
the sub-exponential security of PRF1 guarantees that each switch can be spotted with advantage
at most 2−λ

cPRF1
PRF1 = 2−2ns−λiO , therefore, the distinguisher’s advantage is upper bounded by O(n ·

2−2ns−λiO).

Lemma 6.6. If iO has (1, 2−3ns−λiO) weak extractability, then for any distinguisher D, we have∣∣Pr[D(HybridA
2,w,2)−D(HybridA

2,w,3)]
∣∣ < O(p(λiO) · 2−3ns−λiO) for some polynomial p.

Proof. Again, here we show functional equivalence to invoke iO security. Note that the only change
is the behavior of the program G′′ for cases where (c0i , c

1
i ) = w.

Originally, in HybridA
2,w,2, G

′′ will compute xi = PKE.Dec(sk0i , c
0
i ) for all i ∈ [n] and output

y = f(x1, x2, . . . , xn; r) with r = PRF2.Eval(Kf , (c
0
i , c

1
i )).

But now inHybridA
2,w,3, G

′′′ will compute r∗ = PRF2.Eval(Kf , w) = r, x0i = PKE.Dec(sk0i , d
0
i ) =

PKE.Dec(sk0i , c
0
i ) for all i and eventually y∗ = f(x01, x

0
2, . . . , x

0
n; r

∗). By inspection, indeed we have
y = y∗.

Notice here the number of switches we make is equal to the number of function queries,
which is bounded by some polynomial p. Therefore, the distinguisher’s advantage is bounded
by O(poly(λiO) · 2−3ns−λiO).

Lemma 6.7. If PRF2 has security 2−λ
cPRF2
PRF2 with λPRF2 ≥ (2ns + λiO)

1/cPRF2, then for any distin-
guisher D,

∣∣Pr[D(HybridA
2,w,3)−D(HybridA

2,w,4)]
∣∣ < O(p(λiO) · 2−2ns−λiO) for some polynomial

p.

Proof. Here we are switching PRF2 output on point w with random with the key also punctured
on w. We are making p(λiO) switches, so the distinguisher’s advantage is upper bounded by
O(p(λiO) · 2−2ns−λiO).

Lemma 6.8. If iO has (1, 2−3ns−λiO) weak extractability, PRFs and InjOWF satisfy the require-
ments outlined in the Parameters section (section 6.1), then for any distinguisher D, we have∣∣Pr[D(HybridA

2,w,4)−D(HybridA
2,w,5)]

∣∣ < O(p(λiO) · 2−2ns−λiO) for some polynomial p.

Proof. Assume towards contradiction that there exists a distinguisher D that can distinguish be-
tween HybridA

2,w,4 and HybridA
2,w,5 with probability at least 2−2ns−λiO). Note that the only

difference between HybridA
2,w,4 and HybridA

2,w,5 is how y∗ is computed, which is then used in the

generation of the circuit G̃f . Since G̃f is an iO circuit, we break into the following cases:

1. Case 1: The circuit G′′′ in HybridA
2,w,5 is functionally equivalent to the G′′′ circuit in

HybridA
2,w,4.

2. Case 2: The two circuits above are not functionally equivalent. Notice that this means the
two y∗ values are different inHybridA

2,w,4 andHybridA
2,w,5. This means f(x01, x

0
2, . . . , x

0
n; r

∗) ̸=
f(x11, x

1
2, . . . , x

1
n; r

∗).

67



For Case 1, this reduces directly to the (1, 2−3ns−λiO) weak extractability of the underlying iO
scheme. If any distinguisher can distinguish between the two hybrids in this case, it can also win
the iO weak extractability game, but such winning probability is bounded by 2−3ns−λiO . So in case
1, the probability of successfully distinguishing these two hybrids is at most 2−3ns−λiO .

Case 2 happens when we have f(x01, x
0
2, . . . , x

0
n; r

∗) ̸= f(x11, x
1
2, . . . , x

1
n; r

∗). But notice that by
the randomized compatibility requirement, we require their output distributions to be computa-
tionally indistinguishable with a sub-exponentially small distinguishing advantage. In this case,
the argument proceeds as follow:

1. The only way for the two circuits to yield potentially different outputs is when step 1(d) in
G′′′ is executed. So we will need to have (c0i , c

1
i )i∈[n] = w = (d0i , d

1
i )i∈[n].

2. In order to proceed to step 1(d), we must fail the check in step 1(a), because otherwise, the
circuit will output ⊥. This means InjOWF(zi) = InjOWF(ui) for all i ∈ [n]. By security of the
injective OWF, it translates to that for each i, with all but 2−3ns−λiO probability, zi = ui,
because otherwise we would have successfully inverted the injective OWF. So union bounding
over all i’s, we have that with all but n · 2−3ns−λiO , zi = ui for all i.

3. Then, we can invoke the randomized compatibility requirement. In order for a distinguisher to
distinguish between these two hybrids, it must now distinguish between f(x01, x

0
2, . . . , x

0
n; r

∗)
and f(x11, x

1
2, . . . , x

1
n; r

∗). But, by randomized compatibility, for a PPT adversary A, the
probability that it can distinguish between the random outputs of f(x01, x

0
2, . . . , x

0
n) and

f(x11, x
1
2, . . . , x

1
n) is at most 2−2ns−λiO . This means the distinguisher’s success probability

is upper bounded by the adversary’s success probability of 2−2ns−λiO .

Therefore, the distinguisher’s success probability is Case 2 is upper bounded by the probability
of inverting the injective OWF and the probability of breaking the randomzied compatibility, and
is hence at most 2−2ns−λiO as desired.

We have shown that in both cases, the distinguisher succeeds with probability at most 2−2ns−λiO ,
which concludes the proof.

The rest of the hybrid arguments follow analogously from the lemmas above.
Notice that to go from HybridA

1 to HybridA
3 , we have to go through an exponential Θ(22ns)

number of sub-hybrids. But with the lemmas above, we still have∣∣Pr[D(HybridA
1 )−D(HybridA

3 )]
∣∣ = ∣∣Pr[D(HybridA

2,0,0)−D(HybridA
2,n+1,0)]

∣∣
< 22ns

(
2
(
(n+ p(λ)) · 2−3ns−λ + n · 2−2ns−λ

+ p(λ) · 2−3ns−λ + p(λ) · 2−2ns−λ
)
+ p(λ) · 2−2ns−λ

)
< q(λ) · 22ns · 2−2ns−λ = negl(λ),

where q is some polynomial and λ = λiO.
Therefore, we have shown a sequence of polynomial number of hybrids (not counting sub-

hybrids; above we have shown the exponential number of sub-hybrids with sub-exponential dis-
tinguisher advantages between each pair yieding a nelgigible advantage between the two larger
hybrids), where no PPT distinguisher can distinguish adjacent ones with non-negligible probabil-
ity. Hence we have shown that Construction 2 is secure against malicious decryptors.

68



6.4 Security against malicious encryptors

Lastly, we prove its security against malicious encryptors.

Theorem 6.9. If iO is correct, and PRF2 is a secure puncturable PRF, then Construction 2 is
secure against malicious encryptors.

Proof. We prove this through a simple sequence of hybrids.

Sequence of Hybrids

HybridA
0 (1

λ): Real world experiment with b = 0.

1. Setup:

(a) For i ∈ [n],

i. Ki ← PRF1.Setup(1λ).

ii. For α ∈ {0, 1}, (pkαi , skαi )← PKE.Setup(1λ).

iii. Ẽi = iO(1λ, Ei[pk
0
i , pk

1
i ,Ki]).

iv. EKi = (pk0i , pk
1
i , Ẽi).

2. A may make any number of the following queries in any order.

• Functional Key Query:

(a) A outputs a function fℓ.

(b) Sample Kfℓ ← PRF2.Setup(1λ).

(c) Compute G̃fℓ ← iO(1λ, G[fℓ, {sk0i ,Ki}i∈[n],Kfℓ , InjOWF]).

(d) Send SKfℓ = G̃fℓ to A.
• Encryption Key Query:

(a) A outputs an index i ∈ [n].

(b) Send EKi to A.
• Function Store Query:

(a) A submits a function gk.

(b) If (gk, skgk) already exists in KeyStore, which was initialized as KeyStore = ∅ at the
beginning of experiment, output 0.

(c) Sample Kgk ← PRF2.Setup(1λ).

(d) Compute G̃gk ← iO(1λ, G[gk, {sk0i ,Ki}i∈[n],Kgk , InjOWF]).

(e) Store the pair (gk, skgk = G̃gk) in KeyStore and output 1.

• Encryption Query:

(a) A outputs Xt = (xt,1, . . . , xt,n).

(b) For i ∈ [n],

i. r0t,i, r
1
t,i ← {0, 1}λ.

ii. c0t,i = PKE.Enc(pk0i , xt,i; r
0
t,i).

iii. c1t,i = PKE.Enc(pk1i , xt,i; r
1
t,i).

iv. zt,i = Ẽi(c
0
t,i, c

1
t,i, xt,i, r

0
t,i, r

1
t,i).

69



v. CTt,i = (c0t,i, c
1
t,i, zt,i).

(c) Send {CTt,i}i∈[n] to A.
• Challenge Decryption Query:

(a) A submits CTj = (CTj,1, . . . ,CTj,n).

(b) If (CTj , {ygk,j}) already exists in DecStore, which is initialized as DecStore = ∅ at
the beginning of the experiment, output {ygk,j}.

(c) For all (gk, skgk = G̃gk) ∈ KeyStore, compute ygk,j = G̃gk(CTj,1, . . . ,CTj,n).

(d) Store(CTj , {ygk,j}) ∈ DecStore and output {ygk,j}.

3. Output: A outputs a bit b′. Output b′ if the queries are compatible, and 0 otherwise.

HybridA
1 (1

λ): Now when processing function store queries, instead of computing and storing
(gk, skgk), store (gk,Kgk) and later when decryption oracle uses KeyStore, calculate skgk using the
stored Kgk values. This step follows from the correctness guarantee of the iO program.

1. Setup:

(a) For i ∈ [n],

i. Ki ← PRF1.Setup(1λ).

ii. For α ∈ {0, 1}, (pkαi , skαi )← PKE.Setup(1λ).

iii. Ẽi = iO(1λ, Ei[pk
0
i , pk

1
i ,Ki]).

iv. EKi = (pk0i , pk
1
i , Ẽi).

2. A may make any number of the following queries in any order.

• Functional Key Query:

(a) A outputs a function fℓ.

(b) Sample Kfℓ ← PRF2.Setup(1λ).

(c) Compute G̃fℓ ← iO(1λ, G[fℓ, {sk0i ,Ki}i∈[n],Kfℓ , InjOWF]).

(d) Send SKfℓ = G̃fℓ to A.
• Encryption Key Query:

(a) A outputs an index i ∈ [n].

(b) Send EKi to A.
• Function Store Query:

(a) A submits a function gk.

(b) If (gk,Kgk) already exists in KeyStore, which was initialized as KeyStore = ∅ at the
beginning of experiment, output 0.

(c) Sample Kgk ← PRF2.Setup(1λ).

(d) Compute G̃gk ← iO(1λ, G[gk, {sk0i ,Ki}i∈[n],Kgk , InjOWF]).

(e) Store the pair (gk,Kgk) in KeyStore and output 1.

• Encryption Query:

(a) A outputs Xt = (xt,1, . . . , xt,n).

(b) For i ∈ [n],

i. r0t,i, r
1
t,i ← {0, 1}λ.

70



ii. c0t,i = PKE.Enc(pk0i , xt,i; r
0
t,i).

iii. c1t,i = PKE.Enc(pk1i , xt,i; r
1
t,i).

iv. zt,i = Ẽi(c
0
t,i, c

1
t,i, xt,i, r

0
t,i, r

1
t,i).

v. CTt,i = (c0t,i, c
1
t,i, zt,i).

(c) Send {CTt,i}i∈[n] to A.
• Challenge Decryption Query:

(a) A submits CTj = (CTj,1, . . . ,CTj,n).

(b) If (CTj , {ygk,j}) already exists in DecStore, which is initialized as DecStore = ∅ at
the beginning of the experiment, output {ygk,j}.

(c) For all (gk,Kgk) ∈ KeyStore:

i. Compute G̃gk ← iO(1λ, G[gk, {sk0i ,Ki}i∈[n],Kgk , InjOWF]).

ii. Compute ygk,j = G̃gk(CTj,1, . . . ,CTj,n).

(d) Store(CTj , {ygk,j}) ∈ DecStore and output {ygk,j}.

3. Output: A outputs a bit b′. Output b′ if the queries are compatible, and 0 otherwise.

HybridA
2 (1

λ): Now we change the PRF2 keys to be lazily and uniformly sampled in the Decryption
oracle. This step is a syntactical change.

1. Setup:

(a) For i ∈ [n],

i. Ki ← PRF1.Setup(1λ).

ii. For α ∈ {0, 1}, (pkαi , skαi )← PKE.Setup(1λ).

iii. Ẽi = iO(1λ, Ei[pk
0
i , pk

1
i ,Ki]).

iv. EKi = (pk0i , pk
1
i , Ẽi).

2. A may make any number of the following queries in any order.

• Functional Key Query:

(a) A outputs a function fℓ.

(b) Sample Kfℓ ← PRF2.Setup(1λ).

(c) Compute G̃fℓ ← iO(1λ, G[fℓ, {sk0i ,Ki}i∈[n],Kfℓ , InjOWF]).

(d) Send SKfℓ = G̃fℓ to A.
• Encryption Key Query:

(a) A outputs an index i ∈ [n].

(b) Send EKi to A.
• Function Store Query:

(a) A submits a function gk.

(b) If (gk,Kgk) already exists in KeyStore, which was initialized as KeyStore = ∅ at the
beginning of experiment, output 0.

(c) Sample Kgk ← PRF2.Setup(1λ).

(d) Store the pair (gk,⊥) in KeyStore and output 1.

• Encryption Query:

71



(a) A outputs Xt = (xt,1, . . . , xt,n).

(b) For i ∈ [n],

i. r0t,i, r
1
t,i ← {0, 1}λ.

ii. c0t,i = PKE.Enc(pk0i , xt,i; r
0
t,i).

iii. c1t,i = PKE.Enc(pk1i , xt,i; r
1
t,i).

iv. zt,i = Ẽi(c
0
t,i, c

1
t,i, xt,i, r

0
t,i, r

1
t,i).

v. CTt,i = (c0t,i, c
1
t,i, zt,i).

(c) Send {CTt,i}i∈[n] to A.
• Challenge Decryption Query:

(a) A submits CTj = (CTj,1, . . . ,CTj,n).

(b) If (CTj , {ygk,j}) already exists in DecStore, which is initialized as DecStore = ∅ at
the beginning of the experiment, output {ygk,j}.

(c) For all (gk,Kgk) ∈ KeyStore:

i. If Kgk = ⊥, sample Kgk ← {0, 1}λ and update (gk,Kgk) in KeyStore.

ii. Compute G̃gk ← iO(1λ, G[gk, {sk0i ,Ki}i∈[n],Kgk , InjOWF]).

iii. Compute ygk,j = G̃gk(CTj,1, . . . ,CTj,n).

(d) Store(CTj , {ygk,j}) ∈ DecStore and output {ygk,j}.

3. Output: A outputs a bit b′. Output b′ if the queries are compatible, and 0 otherwise.

Notice now when we answer decryption queries, we effectively sample a uniformly random
PRF2 key Kgk , and evaluate it on the ciphertext to obtain the randomness. Notice that a malicious
encryptor cannot affect our uniform choice of PRF2 key in any way, therefore by PRF2 security,
the PRF2 output will always be close to uniformly random. Consequently, the functions will be
evaluated using a uniform randomness that the malicious encryptor cannot tamper with.

7 Acknowledgements

This research was supported in part from a Simons Investigator Award, DARPA SIEVE award,
NTT Research, NSF grant2333935, BSF grant 2022370, a Xerox Faculty Research Award, a Google
Faculty Research Award, an Okawa Foundation Research Grant, and the Symantec Chair of Com-
puter Science. This material is based upon work supported by the Defense Advanced Research
Projects Agency through Award HR00112020024.

72



8 References

[ABB10a] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the stan-
dard model. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS,
pages 553–572. Springer, Berlin, Heidelberg, May / June 2010.

[ABB10b] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Lattice basis delegation in fixed di-
mension and shorter-ciphertext hierarchical IBE. In Tal Rabin, editor, CRYPTO 2010,
volume 6223 of LNCS, pages 98–115. Springer, Berlin, Heidelberg, August 2010.

[ABDP15] Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval. Simple
functional encryption schemes for inner products. In Jonathan Katz, editor, PKC 2015,
volume 9020 of LNCS, pages 733–751. Springer, Berlin, Heidelberg, March / April
2015.

[ABF+13] Joël Alwen, Manuel Barbosa, Pooya Farshim, Rosario Gennaro, S. Dov Gordon, Ste-
fano Tessaro, and David A. Wilson. On the relationship between functional encryption,
obfuscation, and fully homomorphic encryption. In Martijn Stam, editor, 14th IMA
International Conference on Cryptography and Coding, volume 8308 of LNCS, pages
65–84. Springer, Berlin, Heidelberg, December 2013.

[ABG19] Michel Abdalla, Fabrice Benhamouda, and Romain Gay. From single-input to multi-
client inner-product functional encryption. In Steven D. Galbraith and Shiho Moriai,
editors, ASIACRYPT 2019, Part III, volume 11923 of LNCS, pages 552–582. Springer,
Cham, December 2019.

[ABKW19] Michel Abdalla, Fabrice Benhamouda, Markulf Kohlweiss, and Hendrik Waldner. De-
centralizing inner-product functional encryption. In Dongdai Lin and Kazue Sako,
editors, PKC 2019, Part II, volume 11443 of LNCS, pages 128–157. Springer, Cham,
April 2019.

[ABM+20] Michel Abdalla, Florian Bourse, Hugo Marival, David Pointcheval, Azam Soleimanian,
and Hendrik Waldner. Multi-client inner-product functional encryption in the random-
oracle model. In Clemente Galdi and Vladimir Kolesnikov, editors, SCN 20, volume
12238 of LNCS, pages 525–545. Springer, Cham, September 2020.

[ACF+18] Michel Abdalla, Dario Catalano, Dario Fiore, Romain Gay, and Bogdan Ursu. Multi-
input functional encryption for inner products: Function-hiding realizations and con-
structions without pairings. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part I, volume 10991 of LNCS, pages 597–627. Springer, Cham, Au-
gust 2018.

[ACF+20] Shweta Agrawal, Michael Clear, Ophir Frieder, Sanjam Garg, Adam O’Neill, and
Justin Thaler. Ad hoc multi-input functional encryption. In Thomas Vidick, editor,
ITCS 2020, volume 151, pages 40:1–40:41. LIPIcs, January 2020.

[ACGU20] Michel Abdalla, Dario Catalano, Romain Gay, and Bogdan Ursu. Inner-product func-
tional encryption with fine-grained access control. In Shiho Moriai and Huaxiong
Wang, editors, ASIACRYPT 2020, Part III, volume 12493 of LNCS, pages 467–497.
Springer, Cham, December 2020.

73



[AFS21] Miguel Ambrona, Dario Fiore, and Claudio Soriente. Controlled functional encryption
revisited: Multi-authority extensions and efficient schemes for quadratic functions.
PoPETs, 2021(1):21–42, January 2021.

[Agr17] Shweta Agrawal. Stronger security for reusable garbled circuits, general definitions
and attacks. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I,
volume 10401 of LNCS, pages 3–35. Springer, Cham, August 2017.

[AGRW17] Michel Abdalla, Romain Gay, Mariana Raykova, and Hoeteck Wee. Multi-input inner-
product functional encryption from pairings. In Jean-Sébastien Coron and Jesper Buus
Nielsen, editors, EUROCRYPT 2017, Part I, volume 10210 of LNCS, pages 601–626.
Springer, Cham, April / May 2017.

[AGT21] Shweta Agrawal, Rishab Goyal, and Junichi Tomida. Multi-input quadratic functional
encryption from pairings. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021,
Part IV, volume 12828 of LNCS, pages 208–238, Virtual Event, August 2021. Springer,
Cham.

[AGT22] Shweta Agrawal, Rishab Goyal, and Junichi Tomida. Multi-input quadratic functional
encryption: Stronger security, broader functionality. In Eike Kiltz and Vinod Vaikun-
tanathan, editors, TCC 2022, Part I, volume 13747 of LNCS, pages 711–740. Springer,
Cham, November 2022.

[AGVW13] Shweta Agrawal, Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Func-
tional encryption: New perspectives and lower bounds. In Ran Canetti and Juan A.
Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 500–518.
Springer, Berlin, Heidelberg, August 2013.

[AGW20] Michel Abdalla, Junqing Gong, and Hoeteck Wee. Functional encryption for attribute-
weighted sums from k-Lin. In Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO 2020, Part I, volume 12170 of LNCS, pages 685–716. Springer, Cham, Au-
gust 2020.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from com-
pact functional encryption. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part I, volume 9215 of LNCS, pages 308–326. Springer, Berlin, Hei-
delberg, August 2015.

[AJS18] Prabhanjan Ananth, Aayush Jain, and Amit Sahai. Indistinguishability obfuscation
without multilinear maps: iO from LWE, bilinear maps, and weak pseudorandomness.
Cryptology ePrint Archive, Report 2018/615, 2018.

[AKM+22] Shweta Agrawal, Fuyuki Kitagawa, Anuja Modi, Ryo Nishimaki, Shota Yamada, and
Takashi Yamakawa. Bounded functional encryption for Turing machines: Adaptive
security from general assumptions. In Eike Kiltz and Vinod Vaikuntanathan, editors,
TCC 2022, Part I, volume 13747 of LNCS, pages 618–647. Springer, Cham, November
2022.

[AKY24] Shweta Agrawal, Simran Kumari, and Shota Yamada. Attribute based encryption
for turing machines from lattices. In Leonid Reyzin and Douglas Stebila, editors,
CRYPTO 2024, Part III, volume 14922 of LNCS, pages 352–386. Springer, Cham,
August 2024.

74



[ALMT20] Shweta Agrawal, Benôıt Libert, Monosij Maitra, and Radu Titiu. Adaptive simula-
tion security for inner product functional encryption. In Aggelos Kiayias, Markulf
Kohlweiss, Petros Wallden, and Vassilis Zikas, editors, PKC 2020, Part I, volume
12110 of LNCS, pages 34–64. Springer, Cham, May 2020.

[ALS15] Shweta Agrawal, Benôıt Libert, and Damien Stehlé. Fully secure functional encryption
for inner products, from standard assumptions. Cryptology ePrint Archive, Report
2015/608, 2015.

[AMVY21] Shweta Agrawal, Monosij Maitra, Narasimha Sai Vempati, and Shota Yamada. Func-
tional encryption for Turing machines with dynamic bounded collusion from LWE.
In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part IV, volume 12828 of
LNCS, pages 239–269, Virtual Event, August 2021. Springer, Cham.

[ARYY23] Shweta Agrawal, Mélissa Rossi, Anshu Yadav, and Shota Yamada. Constant input
attribute based (and predicate) encryption from evasive and tensor LWE. In Helena
Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part IV, volume 14084
of LNCS, pages 532–564. Springer, Cham, August 2023.

[AS16] Prabhanjan Vijendra Ananth and Amit Sahai. Functional encryption for Turing ma-
chines. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A, Part I, volume 9562
of LNCS, pages 125–153. Springer, Berlin, Heidelberg, January 2016.

[Att14] Nuttapong Attrapadung. Dual system encryption via doubly selective security: Frame-
work, fully secure functional encryption for regular languages, and more. In Phong Q.
Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS,
pages 557–577. Springer, Berlin, Heidelberg, May 2014.

[ATY23] Shweta Agrawal, Junichi Tomida, and Anshu Yadav. Attribute-based multi-input FE
(and more) for attribute-weighted sums. In Helena Handschuh and Anna Lysyanskaya,
editors, CRYPTO 2023, Part IV, volume 14084 of LNCS, pages 464–497. Springer,
Cham, August 2023.

[AV19] Prabhanjan Ananth and Vinod Vaikuntanathan. Optimal bounded-collusion secure
functional encryption. In Dennis Hofheinz and Alon Rosen, editors, TCC 2019, Part I,
volume 11891 of LNCS, pages 174–198. Springer, Cham, December 2019.

[AW17] Shashank Agrawal and David J. Wu. Functional encryption: Deterministic to random-
ized functions from simple assumptions. In Jean-Sébastien Coron and Jesper Buus
Nielsen, editors, EUROCRYPT 2017, Part II, volume 10211 of LNCS, pages 30–61.
Springer, Cham, April / May 2017.

[AY20] Shweta Agrawal and Shota Yamada. Optimal broadcast encryption from pairings and
LWE. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part I, volume
12105 of LNCS, pages 13–43. Springer, Cham, May 2020.

[AYY22] Shweta Agrawal, Anshu Yadav, and Shota Yamada. Multi-input attribute based en-
cryption and predicate encryption. In Yevgeniy Dodis and Thomas Shrimpton, editors,
CRYPTO 2022, Part I, volume 13507 of LNCS, pages 590–621. Springer, Cham, Au-
gust 2022.

75



[BB04] Dan Boneh and Xavier Boyen. Secure identity based encryption without random
oracles. In Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages
443–459. Springer, Berlin, Heidelberg, August 2004.

[BBL17] Fabrice Benhamouda, Florian Bourse, and Helger Lipmaa. CCA-secure inner-product
functional encryption from projective hash functions. In Serge Fehr, editor, PKC 2017,
Part II, volume 10175 of LNCS, pages 36–66. Springer, Berlin, Heidelberg, March 2017.

[BCFG17] Carmen Elisabetta Zaira Baltico, Dario Catalano, Dario Fiore, and Romain Gay. Prac-
tical functional encryption for quadratic functions with applications to predicate en-
cryption. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I,
volume 10401 of LNCS, pages 67–98. Springer, Cham, August 2017.

[BCP14] Elette Boyle, Kai-Min Chung, and Rafael Pass. On extractability obfuscation. In
Yehuda Lindell, editor, TCC 2014, volume 8349 of LNCS, pages 52–73. Springer,
Berlin, Heidelberg, February 2014.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing.
In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 213–229. Springer,
Berlin, Heidelberg, August 2001.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko,
Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-
homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In
Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441
of LNCS, pages 533–556. Springer, Berlin, Heidelberg, May 2014.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kilian,
editor, CRYPTO 2001, volume 2139 of LNCS, pages 1–18. Springer, Berlin, Heidelberg,
August 2001.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudoran-
dom functions. In Hugo Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages
501–519. Springer, Berlin, Heidelberg, March 2014.

[BGJS15] Saikrishna Badrinarayanan, Divya Gupta, Abhishek Jain, and Amit Sahai. Multi-input
functional encryption for unbounded arity functions. In Tetsu Iwata and Jung Hee
Cheon, editors, ASIACRYPT 2015, Part I, volume 9452 of LNCS, pages 27–51.
Springer, Berlin, Heidelberg, November / December 2015.

[BGJS16] Saikrishna Badrinarayanan, Vipul Goyal, Aayush Jain, and Amit Sahai. Verifi-
able functional encryption. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASI-
ACRYPT 2016, Part II, volume 10032 of LNCS, pages 557–587. Springer, Berlin,
Heidelberg, December 2016.

[BGW05] Dan Boneh, Craig Gentry, and Brent Waters. Collusion resistant broadcast encryption
with short ciphertexts and private keys. In Victor Shoup, editor, CRYPTO 2005,
volume 3621 of LNCS, pages 258–275. Springer, Berlin, Heidelberg, August 2005.

76



[BJK+18] Zvika Brakerski, Aayush Jain, Ilan Komargodski, Alain Passelègue, and Daniel Wichs.
Non-trivial witness encryption and null-iO from standard assumptions. In Dario Cata-
lano and Roberto De Prisco, editors, SCN 18, volume 11035 of LNCS, pages 425–441.
Springer, Cham, September 2018.

[BKMT21] Pramod Bhatotia, Markulf Kohlweiss, Lorenzo Martinico, and Yiannis Tselekounis.
Steel: Composable hardware-based stateful and randomised functional encryption.
In Juan Garay, editor, PKC 2021, Part II, volume 12711 of LNCS, pages 709–736.
Springer, Cham, May 2021.

[BKS16] Zvika Brakerski, Ilan Komargodski, and Gil Segev. Multi-input functional encryption
in the private-key setting: Stronger security from weaker assumptions. In Marc Fis-
chlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of
LNCS, pages 852–880. Springer, Berlin, Heidelberg, May 2016.

[BKSW18] Saikrishna Badrinarayanan, Dakshita Khurana, Amit Sahai, and Brent Waters. Up-
grading to functional encryption. In Amos Beimel and Stefan Dziembowski, editors,
TCC 2018, Part I, volume 11239 of LNCS, pages 629–658. Springer, Cham, November
2018.

[BLR+15] Dan Boneh, Kevin Lewi, Mariana Raykova, Amit Sahai, Mark Zhandry, and Joe Zim-
merman. Semantically secure order-revealing encryption: Multi-input functional en-
cryption without obfuscation. In Elisabeth Oswald and Marc Fischlin, editors, EU-
ROCRYPT 2015, Part II, volume 9057 of LNCS, pages 563–594. Springer, Berlin,
Heidelberg, April 2015.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and
challenges. In Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 253–273.
Springer, Berlin, Heidelberg, March 2011.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applica-
tions. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part II, volume
8270 of LNCS, pages 280–300. Springer, Berlin, Heidelberg, December 2013.

[BZ16] Mark Bun and Mark Zhandry. Order-revealing encryption and the hardness of private
learning. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A, Part I, volume
9562 of LNCS, pages 176–206. Springer, Berlin, Heidelberg, January 2016.

[CDG+18a] Jérémy Chotard, Edouard Dufour Sans, Romain Gay, Duong Hieu Phan, and David
Pointcheval. Decentralized multi-client functional encryption for inner product. In
Thomas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018, Part II, volume
11273 of LNCS, pages 703–732. Springer, Cham, December 2018.

[CDG+18b] Jérémy Chotard, Edouard Dufour Sans, Romain Gay, Duong Hieu Phan, and David
Pointcheval. Multi-client functional encryption with repetition for inner product. Cryp-
tology ePrint Archive, Report 2018/1021, 2018.

[CDSG+20] Jérémy Chotard, Edouard Dufour-Sans, Romain Gay, Duong Hieu Phan, and David
Pointcheval. Dynamic decentralized functional encryption. In Daniele Micciancio and
Thomas Ristenpart, editors, CRYPTO 2020, Part I, volume 12170 of LNCS, pages
747–775. Springer, Cham, August 2020.

77



[CGJS15] Nishanth Chandran, Vipul Goyal, Aayush Jain, and Amit Sahai. Functional encryp-
tion: Decentralised and delegatable. Cryptology ePrint Archive, Report 2015/1017,
2015.

[CGKW18] Jie Chen, Junqing Gong, Lucas Kowalczyk, and Hoeteck Wee. Unbounded ABE via
bilinear entropy expansion, revisited. In Jesper Buus Nielsen and Vincent Rijmen,
editors, EUROCRYPT 2018, Part I, volume 10820 of LNCS, pages 503–534. Springer,
Cham, April / May 2018.

[CGW15] Jie Chen, Romain Gay, and Hoeteck Wee. Improved dual system ABE in prime-
order groups via predicate encodings. In Elisabeth Oswald and Marc Fischlin, editors,
EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 595–624. Springer, Berlin,
Heidelberg, April 2015.

[CLT18] Guilhem Castagnos, Fabien Laguillaumie, and Ida Tucker. Practical fully secure unre-
stricted inner product functional encryption modulo p. In Thomas Peyrin and Steven
Galbraith, editors, ASIACRYPT 2018, Part II, volume 11273 of LNCS, pages 733–764.
Springer, Cham, December 2018.

[CLWW16] Nathan Chenette, Kevin Lewi, Stephen A. Weis, and David J. Wu. Practical order-
revealing encryption with limited leakage. In Thomas Peyrin, editor, FSE 2016, volume
9783 of LNCS, pages 474–493. Springer, Berlin, Heidelberg, March 2016.

[CMR17] Brent Carmer, Alex J. Malozemoff, and Mariana Raykova. 5Gen-C: Multi-input func-
tional encryption and program obfuscation for arithmetic circuits. In Bhavani M.
Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017,
pages 747–764. ACM Press, October / November 2017.

[CW23] Valerio Cini and Hoeteck Wee. ABE for circuits with poly (λ)-sized keys from LWE.
In 64th FOCS, pages 435–446. IEEE Computer Society Press, November 2023.

[DDM16] Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay. Functional encryption for in-
ner product with full function privacy. In Chen-Mou Cheng, Kai-Min Chung, Giuseppe
Persiano, and Bo-Yin Yang, editors, PKC 2016, Part I, volume 9614 of LNCS, pages
164–195. Springer, Berlin, Heidelberg, March 2016.

[DI13] Angelo De Caro and Vincenzo Iovino. On the power of rewinding simulators in func-
tional encryption. Cryptology ePrint Archive, Report 2013/752, 2013.

[DIJ+13] Angelo De Caro, Vincenzo Iovino, Abhishek Jain, Adam O’Neill, Omer Paneth, and
Giuseppe Persiano. On the achievability of simulation-based security for functional
encryption. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II,
volume 8043 of LNCS, pages 519–535. Springer, Berlin, Heidelberg, August 2013.

[DIPV17] Yvo Desmedt, Vincenzo Iovino, Giuseppe Persiano, and Ivan Visconti. Controlled
homomorphic encryption: Definition and construction. In Michael Brenner, Kurt
Rohloff, Joseph Bonneau, Andrew Miller, Peter Y. A. Ryan, Vanessa Teague, Andrea
Bracciali, Massimiliano Sala, Federico Pintore, and Markus Jakobsson, editors, FC
2017 Workshops, volume 10323 of LNCS, pages 107–129. Springer, Cham, April 2017.

[DOT18a] Pratish Datta, Tatsuaki Okamoto, and Katsuyuki Takashima. Adaptively simulation-
secure attribute-hiding predicate encryption. In Thomas Peyrin and Steven Galbraith,

78



editors, ASIACRYPT 2018, Part II, volume 11273 of LNCS, pages 640–672. Springer,
Cham, December 2018.

[DOT18b] Pratish Datta, Tatsuaki Okamoto, and Junichi Tomida. Full-hiding (unbounded)
multi-input inner product functional encryption from the k-Linear assumption. In
Michel Abdalla and Ricardo Dahab, editors, PKC 2018, Part II, volume 10770 of
LNCS, pages 245–277. Springer, Cham, March 2018.

[DP21] Pratish Datta and Tapas Pal. (Compact) adaptively secure FE for attribute-weighted
sums from k-lin. In Mehdi Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021,
Part IV, volume 13093 of LNCS, pages 434–467. Springer, Cham, December 2021.

[DPT22] Pratish Datta, Tapas Pal, and Katsuyuki Takashima. Compact FE for unbounded
attribute-weighted sums for logspace from SXDH. In Shweta Agrawal and Dongdai Lin,
editors, ASIACRYPT 2022, Part I, volume 13791 of LNCS, pages 126–159. Springer,
Cham, December 2022.

[FFMV23] Danilo Francati, Daniele Friolo, Giulio Malavolta, and Daniele Venturi. Multi-key
and multi-input predicate encryption from learning with errors. In Carmit Hazay and
Martijn Stam, editors, EUROCRYPT 2023, Part III, volume 14006 of LNCS, pages
573–604. Springer, Cham, April 2023.

[FFMV24] Danilo Francati, Daniele Friolo, Giulio Malavolta, and Daniele Venturi. Multi-key and
multi-input predicate encryption (for conjunctions) from learning with errors. Journal
of Cryptology, 37(3):24, July 2024.

[Gay20] Romain Gay. A new paradigm for public-key functional encryption for degree-2 poly-
nomials. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas,
editors, PKC 2020, Part I, volume 12110 of LNCS, pages 95–120. Springer, Cham,
May 2020.

[GGG+14] Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz, Feng-
Hao Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input functional en-
cryption. In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014,
volume 8441 of LNCS, pages 578–602. Springer, Berlin, Heidelberg, May 2014.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In 54th FOCS, pages 40–49. IEEE Computer Society Press, October 2013.

[GGHW14] Sanjam Garg, Craig Gentry, Shai Halevi, and Daniel Wichs. On the implausibility of
differing-inputs obfuscation and extractable witness encryption with auxiliary input.
In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I, volume 8616
of LNCS, pages 518–535. Springer, Berlin, Heidelberg, August 2014.

[GGHZ16] Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Functional encryp-
tion without obfuscation. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A,
Part II, volume 9563 of LNCS, pages 480–511. Springer, Berlin, Heidelberg, January
2016.

[GGLW22] Rachit Garg, Rishab Goyal, George Lu, and Brent Waters. Dynamic collusion bounded
functional encryption from identity-based encryption. In Orr Dunkelman and Stefan

79



Dziembowski, editors, EUROCRYPT 2022, Part II, volume 13276 of LNCS, pages
736–763. Springer, Cham, May / June 2022.

[GJKS15] Vipul Goyal, Abhishek Jain, Venkata Koppula, and Amit Sahai. Functional encryption
for randomized functionalities. In Yevgeniy Dodis and Jesper Buus Nielsen, editors,
TCC 2015, Part II, volume 9015 of LNCS, pages 325–351. Springer, Berlin, Heidelberg,
March 2015.

[GJO16] Vipul Goyal, Aayush Jain, and Adam O’Neill. Multi-input functional encryption with
unbounded-message security. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASI-
ACRYPT 2016, Part II, volume 10032 of LNCS, pages 531–556. Springer, Berlin,
Heidelberg, December 2016.

[GKW17] Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation. In Chris
Umans, editor, 58th FOCS, pages 612–621. IEEE Computer Society Press, October
2017.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based en-
cryption for fine-grained access control of encrypted data. In Ari Juels, Rebecca N.
Wright, and Sabrina De Capitani di Vimercati, editors, ACM CCS 2006, pages 89–
98. ACM Press, October / November 2006. Available as Cryptology ePrint Archive
Report 2006/309.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption
with bounded collusions via multi-party computation. In Reihaneh Safavi-Naini and
Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 162–179. Springer,
Berlin, Heidelberg, August 2012.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryp-
tion for circuits. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors,
45th ACM STOC, pages 545–554. ACM Press, June 2013.

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption
for circuits from LWE. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part II, volume 9216 of LNCS, pages 503–523. Springer, Berlin, Hei-
delberg, August 2015.

[GW20] Junqing Gong and Hoeteck Wee. Adaptively secure ABE for DFA from k-Lin and
more. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part III,
volume 12107 of LNCS, pages 278–308. Springer, Cham, May 2020.

[GWW19] Junqing Gong, Brent Waters, and Hoeteck Wee. ABE for DFA from k-Lin. In Alexan-
dra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part II, volume 11693
of LNCS, pages 732–764. Springer, Cham, August 2019.

[HLL23] Yao-Ching Hsieh, Huijia Lin, and Ji Luo. Attribute-based encryption for circuits of
unbounded depth from lattices. In 64th FOCS, pages 415–434. IEEE Computer Society
Press, November 2023.

[HLL24] Yao-Ching Hsieh, Huijia Lin, and Ji Luo. A general framework for lattice-based ABE
using evasive inner-product functional encryption. In Marc Joye and Gregor Leander,
editors, EUROCRYPT 2024, Part II, volume 14652 of LNCS, pages 433–464. Springer,
Cham, May 2024.

80



[ITZ16] Vincenzo Iovino, Qiang Tang, and Karol Zebrowski. On the power of public-key
function-private functional encryption. In Sara Foresti and Giuseppe Persiano, editors,
CANS 16, volume 10052 of LNCS, pages 585–593. Springer, Cham, November 2016.

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-
founded assumptions. In Samir Khuller and Virginia Vassilevska Williams, editors,
53rd ACM STOC, pages 60–73. ACM Press, June 2021.

[JLS22] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from LPN
over Fp, DLIN, and PRGs in NC0. In Orr Dunkelman and Stefan Dziembowski,
editors, EUROCRYPT 2022, Part I, volume 13275 of LNCS, pages 670–699. Springer,
Cham, May / June 2022.

[KLM+18] Sam Kim, Kevin Lewi, Avradip Mandal, Hart Montgomery, Arnab Roy, and David J.
Wu. Function-hiding inner product encryption is practical. In Dario Catalano and
Roberto De Prisco, editors, SCN 18, volume 11035 of LNCS, pages 544–562. Springer,
Cham, September 2018.

[KNT18] Fuyuki Kitagawa, Ryo Nishimaki, and Keisuke Tanaka. Obfustopia built on secret-
key functional encryption. In Jesper Buus Nielsen and Vincent Rijmen, editors, EU-
ROCRYPT 2018, Part II, volume 10821 of LNCS, pages 603–648. Springer, Cham,
April / May 2018.

[KNT21] Fuyuki Kitagawa, Ryo Nishimaki, and Keisuke Tanaka. Simple and generic construc-
tions of succinct functional encryption. Journal of Cryptology, 34(3):25, July 2021.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias.
Delegatable pseudorandom functions and applications. In Ahmad-Reza Sadeghi, Vir-
gil D. Gligor, and Moti Yung, editors, ACM CCS 2013, pages 669–684. ACM Press,
November 2013.

[KS17] Ilan Komargodski and Gil Segev. From minicrypt to obfustopia via private-key func-
tional encryption. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, EU-
ROCRYPT 2017, Part I, volume 10210 of LNCS, pages 122–151. Springer, Cham,
April / May 2017.

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting dis-
junctions, polynomial equations, and inner products. In Nigel P. Smart, editor, EU-
ROCRYPT 2008, volume 4965 of LNCS, pages 146–162. Springer, Berlin, Heidelberg,
April 2008.

[KSY15] Ilan Komargodski, Gil Segev, and Eylon Yogev. Functional encryption for randomized
functionalities in the private-key setting from minimal assumptions. In Yevgeniy Dodis
and Jesper Buus Nielsen, editors, TCC 2015, Part II, volume 9015 of LNCS, pages
352–377. Springer, Berlin, Heidelberg, March 2015.

[KW20] Lucas Kowalczyk and Hoeteck Wee. Compact adaptively secure ABE for NC1 from
k-Lin. Journal of Cryptology, 33(3):954–1002, July 2020.

[Lin17] Huijia Lin. Indistinguishability obfuscation from SXDH on 5-linear maps and locality-
5 PRGs. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I,
volume 10401 of LNCS, pages 599–629. Springer, Cham, August 2017.

81



[LL20a] Huijia Lin and Ji Luo. Compact adaptively secure ABE from k-Lin: Beyond NC1 and
towards NL. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part III,
volume 12107 of LNCS, pages 247–277. Springer, Cham, May 2020.

[LL20b] Huijia Lin and Ji Luo. Succinct and adaptively secure ABE for ABP from k-Lin. In
Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020, Part III, volume 12493
of LNCS, pages 437–466. Springer, Cham, December 2020.

[LOS+10] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent
Waters. Fully secure functional encryption: Attribute-based encryption and (hierarchi-
cal) inner product encryption. In Henri Gilbert, editor, EUROCRYPT 2010, volume
6110 of LNCS, pages 62–91. Springer, Berlin, Heidelberg, May / June 2010.

[LT19] Benôıt Libert and Radu Titiu. Multi-client functional encryption for linear functions
in the standard model from LWE. In Steven D. Galbraith and Shiho Moriai, editors,
ASIACRYPT 2019, Part III, volume 11923 of LNCS, pages 520–551. Springer, Cham,
December 2019.

[LV16] Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation from DDH-like
assumptions on constant-degree graded encodings. In Irit Dinur, editor, 57th FOCS,
pages 11–20. IEEE Computer Society Press, October 2016.

[LW10] Allison B. Lewko and Brent Waters. New techniques for dual system encryption and
fully secure HIBE with short ciphertexts. In Daniele Micciancio, editor, TCC 2010,
volume 5978 of LNCS, pages 455–479. Springer, Berlin, Heidelberg, February 2010.

[LW12] Allison B. Lewko and Brent Waters. New proof methods for attribute-based encryp-
tion: Achieving full security through selective techniques. In Reihaneh Safavi-Naini
and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 180–198.
Springer, Berlin, Heidelberg, August 2012.

[LW16] Kevin Lewi and David J. Wu. Order-revealing encryption: New constructions, appli-
cations, and lower bounds. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher
Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016, pages 1167–
1178. ACM Press, October 2016.

[LZ20] Muhua Liu and Ping Zhang. An adaptively secure functional encryption for random-
ized functions. The Computer Journal, 63(1):1247–1258, 2020.

[NPP22] Ky Nguyen, Duong Hieu Phan, and David Pointcheval. Multi-client functional encryp-
tion with fine-grained access control. In Shweta Agrawal and Dongdai Lin, editors,
ASIACRYPT 2022, Part I, volume 13791 of LNCS, pages 95–125. Springer, Cham,
December 2022.

[NPP23a] Dinh Duy Nguyen, Duong Hieu Phan, and David Pointcheval. Verifiable decentralized
multi-client functional encryption for inner product. In Jian Guo and Ron Steinfeld,
editors, ASIACRYPT 2023, Part V, volume 14442 of LNCS, pages 33–65. Springer,
Singapore, December 2023.

[NPP23b] Ky Nguyen, Duong Hieu Phan, and David Pointcheval. Optimal security notion for de-
centralized multi-client functional encryption. In Mehdi Tibouchi and Xiaofeng Wang,
editors, ACNS 23International Conference on Applied Cryptography and Network Se-
curity, Part II, volume 13906 of LNCS, pages 336–365. Springer, Cham, June 2023.

82



[O’N10] Adam O’Neill. Definitional issues in functional encryption. Cryptology ePrint Archive,
Report 2010/556, 2010.

[OT10] Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryption
with general relations from the decisional linear assumption. In Tal Rabin, editor,
CRYPTO 2010, volume 6223 of LNCS, pages 191–208. Springer, Berlin, Heidelberg,
August 2010.

[OT12] Tatsuaki Okamoto and Katsuyuki Takashima. Adaptively attribute-hiding (hierarchi-
cal) inner product encryption. In David Pointcheval and Thomas Johansson, editors,
EUROCRYPT 2012, volume 7237 of LNCS, pages 591–608. Springer, Berlin, Heidel-
berg, April 2012.

[RS92] Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge proof of knowl-
edge and chosen ciphertext attack. In Joan Feigenbaum, editor, CRYPTO’91, volume
576 of LNCS, pages 433–444. Springer, Berlin, Heidelberg, August 1992.

[Sah99] Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In 40th FOCS, pages 543–553. IEEE Computer Society Press,
October 1999.

[SV23] Elaine Shi and Nikhil Vanjani. Multi-client inner product encryption: Function-
hiding instantiations without random oracles. In Alexandra Boldyreva and Vladimir
Kolesnikov, editors, PKC 2023, Part I, volume 13940 of LNCS, pages 622–651.
Springer, Cham, May 2023.

[SW05] Amit Sahai and Brent R. Waters. Fuzzy identity-based encryption. In Ronald Cramer,
editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 457–473. Springer, Berlin,
Heidelberg, May 2005.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In David B. Shmoys, editor, 46th ACM STOC, pages 475–484.
ACM Press, May / June 2014.

[Tom19] Junichi Tomida. Tightly secure inner product functional encryption: Multi-input and
function-hiding constructions. In Steven D. Galbraith and Shiho Moriai, editors, ASI-
ACRYPT 2019, Part III, volume 11923 of LNCS, pages 459–488. Springer, Cham,
December 2019.

[Tom23] Junichi Tomida. Unbounded quadratic functional encryption and more from pairings.
In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part III, volume
14006 of LNCS, pages 543–572. Springer, Cham, April 2023.

[TT18] Junichi Tomida and Katsuyuki Takashima. Unbounded inner product functional en-
cryption from bilinear maps. In Thomas Peyrin and Steven Galbraith, editors, ASI-
ACRYPT 2018, Part II, volume 11273 of LNCS, pages 609–639. Springer, Cham,
December 2018.

[Wat09] Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under
simple assumptions. In Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS,
pages 619–636. Springer, Berlin, Heidelberg, August 2009.

83



[Wat12] Brent Waters. Functional encryption for regular languages. In Reihaneh Safavi-Naini
and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 218–235.
Springer, Berlin, Heidelberg, August 2012.

[Wee14] Hoeteck Wee. Dual system encryption via predicate encodings. In Yehuda Lindell,
editor, TCC 2014, volume 8349 of LNCS, pages 616–637. Springer, Berlin, Heidelberg,
February 2014.

[Wee17] Hoeteck Wee. Attribute-hiding predicate encryption in bilinear groups, revisited. In
Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part I, volume 10677 of LNCS,
pages 206–233. Springer, Cham, November 2017.

[Wee20] Hoeteck Wee. Functional encryption for quadratic functions from k-lin, revisited. In
Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part I, volume 12550 of LNCS,
pages 210–228. Springer, Cham, November 2020.

[Wee21] Hoeteck Wee. Broadcast encryption with size N1/3 and more from k-lin. In Tal Malkin
and Chris Peikert, editors, CRYPTO 2021, Part IV, volume 12828 of LNCS, pages
155–178, Virtual Event, August 2021. Springer, Cham.

[Wee22] Hoeteck Wee. Optimal broadcast encryption and CP-ABE from evasive lattice as-
sumptions. In Orr Dunkelman and Stefan Dziembowski, editors, EUROCRYPT 2022,
Part II, volume 13276 of LNCS, pages 217–241. Springer, Cham, May / June 2022.

[Wee24] Hoeteck Wee. Circuit ABE with poly(depth, λ)-sized ciphertexts and keys from lattices.
In Leonid Reyzin and Douglas Stebila, editors, CRYPTO 2024, Part III, volume 14922
of LNCS, pages 178–209. Springer, Cham, August 2024.

[WW24a] Brent Waters and David J. Wu. Adaptively-sound succinct arguments for NP from
indistinguishability obfuscation. In Bojan Mohar, Igor Shinkar, and Ryan O’Donnell,
editors, 56th ACM STOC, pages 387–398. ACM Press, June 2024.

[WW24b] Brent Waters and David J. Wu. A pure indistinguishability obfuscation approach to
adaptively-sound SNARGs for NP. Cryptology ePrint Archive, Report 2024/933, 2024.

84


	Introduction
	Technical Overview
	New Security Definitions for rFE/rMIFE
	Counterexample.
	The sketch of proposed rMIFE scheme.

	Preliminaries
	Indistinguishability Obfuscation
	Functional Encryption
	Non-Interactive Zero Knowledge Proof Systems

	Improved Security Definitions for Randomized (Multi-Input) Functional Encryption (rMIFE)
	Counterexample
	Definition inGJKS15
	Construction of Counterexample
	Proof of (Insufficient) Security
	Issue with Counterexample Construction (Construction  1

	Constructing Adaptively Secure rMIFE
	Parameters
	Construction
	Security against malicious decryptors
	Security against malicious encryptors

	Acknowledgements
	References

