
Private Multi-Party Neural Network Training
over Z2k via Galois Rings

Hengcheng Zhou(B)

Shanghai Jiao Tong University, Shanghai, China
zhc12345@sjtu.edu.cn

Abstract. Secret-sharing-based multi-party computation provides ef-
fective solutions for privacy-preserving machine learning. In this paper,
we present novel protocols for privacy-preserving neural network training
using Shamir secret sharing scheme over Galois rings. The specific Galois
ring we use is GR(2k, d), which contains Z2k as a subring. The algebraic
structure of GR(2k, d) enables us to benefit from Shamir scheme while
performing modulo operations only on 2k instead of a prime number,
making our protocols more compatible with modern computer architec-
tures. We achieve the parallel processing of training data by embedding
different training samples into the different coefficients of the polynomial
representing a single Galois ring element, and we show that this embed-
ding can be performed with no additional communication overhead com-
pared to processing only one sample at a time. To evaluate our methods,
we conduct private training of neural networks on the MNIST dataset
between different numbers of participants. The experimental results in-
dicate the advantages of our protocols compared to existing Fp-based
implementations in this domain.

Keywords: Secure multi-party computation · Shamir secret sharing scheme ·
Galois ring · Neural network training

1 Introduction

Privacy-Preserving Machine Learning (PPML) is a growing field that focuses
on protecting sensitive data during the training and inference of machine learn-
ing models. Achieving privacy-preserving neural network training is a highly
valuable yet challenging problem in PPML. One promising solution is to use
secret-sharing-based multi-party computation (MPC) [18], which enables mu-
tually untrusting parties to collaboratively compute a function while keeping
each party’s input confidential. A series of studies [13,12,15,16,10] achieved pri-
vate training of neural networks for specific numbers of participants, typically
two to four parties. Baccarini et al. [2] proposed a training protocol for the n-
party setting. However, due to the underlying replicated secret sharing scheme
[9], their approach suffers from poor scalability as the communication required
grows exponentially with the number of participants. Based on Shamir secret

H. Zhou

sharing scheme [14], the work in [19] achieved the private training of neural
networks between general n parties with O(n) communication complexity. They
enhanced the training efficiency by adopting the SVM loss function, which is
more MPC-friendly compared with the cross-entropy loss because it doesn’t re-
quire division. However, their protocol’s performance was significantly impacted
due to the modulo p operation introduced by the Fp-based Shamir scheme. The
work in [20] employed the packed Shamir secret sharing scheme [8] to reduce the
communication overhead of the protocols in [19], but their solution remained
limited by the inefficiency of the modulo operation.

In this paper, we utilize Shamir scheme over Galois rings GR(pk, d) [1] to per-
form the training of neural networks among general n parties in the information-
theoretic setting. When setting p = 2, we only need the modulo operation of 2k

rather than a prime number, leading to a more efficient implementation. A Galois
ring element can be represented as a polynomial with coefficients in Z2k . When
using multiple coefficients to store data, parallel processing can be achieved.
However, this will introduce cross terms after multiplication. We demonstrate
that by choosing specific coefficients for embedding, we can avoid the impact of
these cross terms. Additionally, we show that this embedding introduces no ad-
ditional communication overhead compared to storing only one single secret in
a ring element. It should be emphasized that our method for handling multiple
secrets simultaneously differs from the method based on the packed Shamir se-
cret sharing scheme, as our approach preserves the adversary threshold, whereas
the packed scheme does not.

Our main contributions are summarized below:

– We propose privacy-preserving protocols for neural network training among
general n parties based on Shamir secret sharing scheme over Galois rings,
which can resist t semi-honest adversaries in the honest majority setting.

– We achieve the embedding of multiple data into a single Galois ring element,
realizing the parallel computation of multiple secrets. We show that this
embedding brings no additional communication overhead.

– We conduct experiments with different numbers of participants, where we
train neural networks on the MNIST dataset. The results indicate the ad-
vantages of our protocols compared to field-based implementations.

2 Preliminaries

2.1 Shamir Scheme over Commutative Rings

This section describes how to establish Shamir secret sharing scheme over a
commutative ring R. We first introduce the following definition from [1].

Definition 1. Let α1, . . . , αn ∈ R. We say that these points form an exceptional
sequence if for each pair of integers 1 ⩽ i, j ⩽ n with i ̸= j it holds that αi−αj ∈
R∗, where R∗ is the subset of R consisting of all elements that are invertible
under multiplication. We define the Lenstra constant of R to be the maximum
length of an exceptional sequence in R.

Neural Network Training over GR(2k, d)

Let β1, . . . , βn be n distinct nonzero elements in an exceptional sequence of
R. To share a secret u ∈ R among n participants P1, . . . , Pn, the dealer first
generates a polynomial f(x) of degree t over R[x] such that f(0) = u and all
other coefficients are uniformly random, and then send the share ui = f(βi) to
party Pi, 1 ⩽ i ⩽ n. The vector (u1, . . . , un) is called a t-sharing of u, which is
denoted by ⟨u⟩t. When it is clear from the context, we just write ⟨u⟩. We call
β1, . . . , βn the evaluation points. The reconstruction of a t-sharing ⟨u⟩t requires
at least t + 1 shares and can be computed through the Lagrange interpolation
method as: u =

∑n
i=1

∏n
j=1,j ̸=i

βj

βj−βi
ui. The divisions involved are well-defined,

since β1, . . . , βn form an exceptional sequence such that the inverse of βj − βi

exists. We use ΠReveal to denote the protocol for secret reconstruction. Since
we consider semi-honest adversaries, we can let a designated party perform the
calculation of secret reconstruction. It is worth noting that the number of parties
n that this scheme can support is limited by the Lenstra constant of R, since
the evaluation points are associated with each participant.

2.2 Galois Ring

A Galois ring is a ring of the form
(
Z/pkZ

)
[x]/(h(x)), where p is a prime, k is

a positive integer, and h(x) ∈
(
Z/pkZ

)
[x] is a non-constant, monic polynomial

such that its reduction modulo p is an irreducible polynomial in Fp[x]. We denote
by GR(pk, d) the Galois ring over Zpk of degree d. The Lenstra constant of
GR(pk, d) is pd. Let R = GR(pk, d), we have R/(p) ∼= Fpd and there exists
a non-zero element ξ ∈ R∗ of multiplicative order pd − 1. Given the set T ={
0, 1, ξ, . . . , ξp

d−2
}
, then any g ∈ R can be uniquely written as g = g0 + g1p +

g2p
2 + · · ·+ gk−1p

k−1, where g0, . . . , gk−1 ∈ T . Moreover, g is a unit if and only
if g0 ̸= 0. We can see that T forms an exceptional sequence. So we can get a
Shamir scheme over R between n parties when n < pd by choosing evaluation
points from T \ {0}. See [17] for more details about Galois rings. In this paper,
we call the sharing generated by Shamir scheme over R a Galois sharing.

3 Protocol Constructions

3.1 Notation

Let n participants P1, . . . , Pn (n ⩾ 3) participating in the calculation, of which at
most t participants can be passively corrupted. In the rest of this paper, we use R
to denote the Galois ring GR(2k, d) =

(
Z/2kZ

)
[x]/(h(x)). Consider an element

a ∈ R, then a can be expressed as a polynomial: a = a0 + a1x + a2x
2 + · · · +

ad−1x
d−1+(h(x)), where a0, . . . , ad−1 ∈ Z2k . Addition and multiplication over R

are the addition and multiplication of the corresponding polynomials. We write
a as [a0, a1, . . . , ad−1] and abbreviate it as [a0, a1, . . . , aj] if ai = 0 for j < i < d.
Particularly, we can write [a0] just as a0. We use Ja0, a1, . . . , ad−1K to denote the
Galois sharing ⟨a⟩ = ⟨[a0, a1, . . . , ad−1]⟩, and we denote the share corresponding

to Pi as a
i = [ai0, a

i
1, . . . , a

i
d−1]. For a set S, u $← S denotes sampling a uniformly

random element u from S.

H. Zhou

3.2 Data Embedding

Data Representation. Before embedding real-life data into Galois rings we need
to use fixed-point representation [4] to represent them as integers. A real number
x̃ ∈ R is transformed to a fixed-point approximation x̄ by setting x̄ =

⌊
x̃ · 2f

⌋
∈

Z, where f is the precision and ⌊·⌋ denotes the floor function. Then, we encode x̄
into Z2k by computing x = x̄(mod 2k). In this paper, we limit x̄ in [−2ℓ−1, 2ℓ−1−
1] and require k ⩾ ℓ+ κ+ 1, where κ is the statistical security parameter.

Embedding Secrets in R. For R = GR(2k, d), the polynomial representing an
element has d coefficients. We can embed multiple secrets into different coeffi-
cients to achieve parallel computation. Specifically, to embed s secrets, we put
the i-th secret into the coefficient corresponding to x2i−1−1, 1 ⩽ i ⩽ s and set
other coefficients to 0. When we embed a1, . . . , as and b1, . . . , bs into two ring
elements, after multiplication, the term aibi will be part of the coefficient as-
sociated with x2(2i−1−1). From Lemma 1 below, we can see that this coefficient
only contains aibi. To prevent overflow, we need to ensure d ⩾ 2s − 1. In Sec-
tion 3.3, we will show how to rearrange the coefficients to put aibi back to the
coefficient of x2i−1−1. In the rest of the paper, we use s to denote the number
of secrets embedded in a ring element. For x ∈ Z, we use I(x) to represent the
value 2x−1 − 1. And we denote by I the set {I(i)|1 ⩽ i ⩽ s}.

Lemma 1. For m,n, r ∈ N satisfying m ̸= n, we have 2m−1+2n−1 ̸= 2(2r−1).

Proof. Suppose that 2m−1+2n−1 = 2(2r−1). It is easy to see that r cannot be
less than or greater than m, n at the same time. Without loss of generality, we
assume n ⩽ r ⩽ m. Then 2m−1+2n−1 = 2(2r−1)⇔ 2m+2n−2 = 2r+1−2⇔
2m + 2n = 2r+1 ⇔ 2m−n + 1 = 2r+1−n. Since 2m−n + 1 is odd and 2r+1−n is
even, this equation cannot hold. We can get that 2m−1+2n−1 ̸= 2(2r−1). ⊓⊔

3.3 Basic Operations

Randomness. Throughout this work, we will need the following functionalities
to generate the random sharings necessary for our protocols. We assume that
the parameters k, d, and s are set properly.

– FRan. This functionality generates a sharing Jr0, r1, . . . , rd−1K over R, where

ri
$← Z2k if i ∈ I, otherwise ri = 0.

– FDouRan. This functionality generates a pair of sharings {Jg0, g1, . . . , gd−1K2t,
Jh0, h1, . . . , hd−1Kt} over R, where gi

$← Z2k for 0 ⩽ i ⩽ d− 1, hi = g2I(j) if
i = I(j) for 1 ⩽ j ⩽ s, otherwise hi = 0.

– FRanPair. This functionality generates Jg0, g1, . . . , gd−1K over GR(2k+1, d)

along with Jh0, h1, . . . , hd−1K over GR(2k, d), where gi
$← Z2k+1 for 0 ⩽

i ⩽ d− 1, hi = gi mod 2k if i ∈ I, otherwise hi = 0.
– FRanBit. This functionality generates a sharing Jr0, r1, . . . , rd−1K over R,

where ri
$← {0, 1} if i ∈ I, otherwise ri = 0.

Neural Network Training over GR(2k, d)

The functionalities FRan and FDouRan can be implemented using the ran-
domness extraction technique based on a hyper-invertible matrix (HIM) [3] over
R. Since the structure of the sharings we need to generate can only be preserved
under Z2k -linear instead of R-linear transformations, we need to interpret each
ring element in the HIM as a matrix over Z2k , as described in [1]. When consid-
ering semi-honest adversaries, it suffices to use a super-invertible matrix (SIM)
[6] rather than an HIM. This matrix can be constructed from a Vandermonde
matrix with points selected from an exceptional sequence of R, which is feasible
since we require n < 2d. For the functionality FRanPair, we can implement it in
a similar way to RANp in [5]. We first let each participant generate a pair of re-
quired sharings, and then add together the sharings generated by all participants
to get the final result.

To realize FRanBit, we propose ΠRanBit based on ΠRandBit in [7]. The main
difference between ΠRanBit and ΠRandBit is that our protocol ΠRanBit considers
the computation over Galois sharings while ΠRandBit handles additive sharings.
For ease of demonstration, we give the details of ΠRanBit when s = 1 in Algo-
rithm 1. The analysis of the security and correctness ofΠRanBit are similar to that
of ΠRandBit. To see correctness, we have (c−1a)2 = c−2a2 = e−1e = 1 mod 2k+1,
therefore c−1a = ±1 mod 2k (Lemma IV.1 in [7]) and (c−1a + 1)/2 mod 2k

is a random bit. The randomness comes from the fact that a is a random
square root of e. All calculations before Step 8 are performed on sharings over
GR(2k+1, d). In Step 8 to Step 11, we use a pair of random sharings to con-
vert the result into a sharing over GR(2k, d). Since r0, r1, . . . , rd−1 are uniformly
random in Z2k+1 , the revealed value in Step 9 leaks no information. In Step 2,
we compute JaK = 2JuK + 1. For the party Pi, his share corresponding to JaK is
[ai0, a

i
1, . . . , a

i
d−1] = [2ui

0 +1, 2ui
1, . . . , 2u

i
d−1]. Therefore, the share corresponding

to JhK is hi = [2c−1ui
0 + c−1 + 1, 2c−1ui

1, . . . , 2c
−1ui

d−1]. Since c−1 is odd, the
division JhK/2 in Step 7 is well-defined and we let Pi locally compute his share
corresponding to JhK/2 as [hi

0/2, h
i
1/2, . . . , h

i
d−1/2]. Algorithm 1 can be easily

extended to handle general s values.

Algorithm 1 ΠRanBit

Output: A random shared bit JrK over GR(2k, d), where r
$← {0, 1};

1: The parties invoke FRan to get a shared random element JuK over GR(2k+1, d);
2: JaK = 2JuK + [1].
3: The parties locally compute Ja2K2t = JaKJaK.
4: [e] = ΠReveal(Ja2K2t);
5: Let c be the smallest square root of e modulo 2k+1, and c−1 be its inverse.
6: JhK = [c−1]JaK + [1];
7: JbK = JhK/2;
8: The parties invoke FRanPair to get Jr0, r1, . . . , rd−1K over GR(2k+1, d) and JvK over

GR(2k, d) satisfying v = r0 mod 2k;
9: [b+ r0, r1, . . . , rd−1] = ΠReveal(JbK + Jr0, r1, . . . , rd−1K); //b+ r0 ∈ Z2k+1

10: The parties set [g] ∈ GR(2k, d), where g = (b+ r0) mod 2k;
11: JrK = [g]− JvK;

H. Zhou

Z2k -Linear Operation. Given two sharings ⟨a⟩, ⟨b⟩ where a = [a0, a1, . . . , ad−1],
b = [b0, b1, . . . , bd−1], and two public values g, h ∈ Z2k , we can compute locally
the sharing ⟨ga + hb⟩ by having Pi compute its own share [gai0 + hbi0, ga

i
1 +

hbi1, . . . , ga
i
d−1 + hbid−1] locally.

Multiplication. When we embed multiple secrets, the multiplication we need is
coefficient-wise multiplication. We propose ΠMult for this kind of multiplication
based on the multiplication protocol in [6]. For ease of demonstration, we give
the case of s = 2 in Algorithm 2. It can be directly extended to deal with the
case of embedding a general number of secrets.

Algorithm 2 Multiplication ΠMult

Input: Ja0, a1Kt, Jb0, b1Kt;
Output: Jg0, g1Kt where g0 = a0b0, g1 = a1b1;
1: The parties invoke FDouRan to get {Jr0, . . . , rd−1K2t, Jr0, r2Kt};
2: Jh0, . . . , hd−1K2t = Ja0, a1KtJb0, b1Kt; //h0 = a0b0, h1 = a1b0 + a0b1, h2 = a1b1
3: Jc0, . . . , cd−1K2t = Jh0, . . . , hd−1K2t − Jr0, . . . , rd−1K2t;
4: The parties invoke ΠReveal to get [c0, . . . , cd−1];
5: Jg0, g1Kt = [c0, c2] + Jr0, r2Kt;

The correctness and security of ΠMult are easy to check. Note that even if one
of the inputs is public, such as the multiplication between [a0, a1] and Jb0, b1K,
we still need to invoke ΠMult. However, when Jb0, b1K is a random sharing, in the
offline phase we can generate Jb0K, Jb1K along with Jb0, b1K and locally compute
the result Ja0b0, a1b1K = a0Jb0K + [0, a1]Jb1K.

Truncation. Truncation serves as a crucial component for achieving private train-
ing of neural networks. Algorithm 3 shows the details of our protocol ΠTrun for
this functionality when s = 1. ΠTrun is proposed based on the field-based solu-
tion Trunc in [4]. Given JaK and m where a ∈ Z2k and 1 ⩽ m ⩽ ℓ − 1, ΠTrun

returns JdK satisfying d = ⌊a/2m⌋.

Algorithm 3 Truncation ΠTrun

Input: JaK, m;
Output: JdK;
1: The parties invoke FRanBit to get Jrℓ+κ−1K, . . . , Jr0K;
2: The parties set JrK =

∑ℓ+κ−1
i=0 2iJriK, and Jr′K =

∑ℓ+κ−m−1
i=0 2iJri+mK;

3: The parties compute [c] = ΠReveal([2
ℓ−1] + JaK + JrK) and set [c′] = [c mod 2m];

4: JuK = FBitLT([c
′], {Jrm−1K, . . . , Jr0K};

5: JdK = ([c]− [c′]− [2ℓ−1])2−m − Jr′K− JuK;

The analysis of the security and correctness of ΠTrun is similar to that of
Trunc. The functionality FBitLT invoked in Step 4 compares a public value to

Neural Network Training over GR(2k, d)

Galois sharings. Given a public value [a] ∈ R and l sharings {JblK, . . . , Jb1K}
where bi ∈ {0, 1}, FBitLT returns J1K if a <

∑l
i=1 2

i−1bi and J0K otherwise.
By using FRanBit to generate the required random sharings and following the
computational steps of BitLTC1 in [4], we can get the protocol for realizing
FBitLT. One thing to note is that the way BitLTC1 computes unbounded fan-in
multiplication depends on field-specific properties. When implementing FBitLT,
we can calculate this kind of multiplication by invoking ΠMult sequentially.

Now we introduce how to extend FBitLT to handle general s values. In Step 5
of BitLTC1 [4], the multiplication is performed between public values and secret
sharings that cannot be generated offline. When implementing FBitLT, we can
first calculate the multiplication locally, and then utilize the reconstruction op-
eration in the subprotocol for computing the least significant bit (corresponding
to Mod2 [4]) to rearrange the coefficients, in a manner similar to ΠMult. On this
basis, we can extend FBitLT and ΠTrun to handle the case of any s without extra
communication.

4 Private Neural Network Training

In this paper, we focus on the training of fully connected neural networks using
the mini-batch gradient descent algorithm. The purpose of training is to update
the target parameters wl and bl for the l-th layer. To realize the training, in
addition to the protocols proposed above, we also need to implement ReLU and
its derivative, as well as the derivative of the loss function with respect to the
output of the last layer. Protocols realizing these functionalities can be trivially
obtained by using ΠReveal, ΠMult, and ΠTrun as the underlying sub-protocols
and following the steps of the relevant protocols in [19].

Parallel Training. Similar to the parallel computing method used in packed
training [20], we can utilize Galois sharing to compute the gradients correspond-
ing to each sample within a mini-batch in parallel. Once the gradients for each
sample are calculated, we need to aggregate and average these individual gradi-
ents embedded into different coefficients, and use them as the estimated global
gradients to update the target parameters. We propose ΠAggre for this process
based on ΠTrun. For ease of demonstration, we give the details of ΠAggre when
s = 2 in Algorithm 4. With ΠAggre, we can implement the parallel training of
neural networks in combination with existing protocols. As with packed training,
our parallel training does not affect the training results. Note that we need to
use different forms of sharing for wl and bl. Taking s = 2 as an example, we use
JwlK and Jbl, blK, respectively. This is because wl is used in multiplication.

Complexity Analysis. By embedding multiple secrets into a single sharing, we
can achieve more efficient communication. When s = 1, a total of 2(n − 1)kd
bits of messages are required to reconstruct a secret. When s > 1, the amortized
communication becomes 2(n − 1)kd/s bits. Since d ⩾ 2s − 1, increasing s will
cause d to increase significantly. From a practical standpoint, setting s to 2 is a

H. Zhou

Algorithm 4 ΠAggre

Input: Ja0, a1K, m;
Output: JdK where d = ⌊(a0 + a1)/2

m⌋;
1: The parties invoke FRanBit to get Jrℓ+κ−1K, . . . , Jr0K, and invoke FRan to get JgK;
2: The parties set JrK =

∑ℓ+κ−1
i=0 2iJriK, and Jr′K =

∑ℓ+κ−m−1
i=0 2iJri+mK;

3: The parties compute Jv0, v1K = JrK− JgK + [0, 1]JgK; //r = v0 + v1
4: [c0, c1] = ΠReveal(2

ℓ−1 + Ja0, a1K + Jv0, v1K);
5: [c′] = [(c0 + c1) mod 2m];
6: JuK = FBitLT([c

′], {Jrm−1K, . . . , Jr0K};
7: JdK = ([c0 + c1]− [c′]− 2ℓ−1)2−m − Jr′K− JuK;

suitable choice, as it requires only d ⩾ 3. It should be noted that parallel training
does not reduce the communication overhead of the entire training process to
1/s of the original, as the communication required for training is not directly
proportional to the size of each training batch.

5 Experimental Results

The experiments were carried out on a single server equipped with 2 24-core
2.20GHz Intel Xeon Gold 5220R CPUs and 128GB of RAM under the LAN
setting. We accelerated the computation of local matrix multiplication using an
NVIDIA RTX 3090 GPU. We set the number of adversaries t to 1 and gener-
ated all the random sharings offline. To evaluate our protocols, we experimentally
compared them with the protocols in [19], which utilize Shamir scheme over Fp

to achieve neural network training among general n parties. We set the prime
p to be 2110 − 21. Due to the security issue introduced in [11], we chose the
protocols in [19] with probabilistic truncation replaced with deterministic trun-
cation as the baseline protocols. We train the same two 3-layer DNNs as in [19],
Network A and Network B, on the MNIST dataset. We followed the same hyper-
parameter settings as [19], and set f to 16 and 13 for Network A and Network
B, respectively.

Since our parallel training method does not affect the training results, we
focus on the training efficiency. We first conducted experiments using Shamir
scheme over GR(2128, 4). The results are shown in Fig. 1. We can see that uti-
lizing Galois sharing with s = 1 can lead to an average of 77.1% improvement in
training time as compared to the field-based solution. Further improvement can
be achieved by setting s = 2, which shows an additional improvement of 21.1%
on average. Fig. 1 also shows the result of experiments over GR(2128, 3) when
3 ⩽ n ⩽ 7. In the case of s = 2, the training efficiency for d = 3 is, on average,
25.2% higher than that of d = 4. Taken together, we can get that setting d to
3 results in an average improvement of 87.8% as compared to the implemen-
tation on Fp. This substantial gain in efficiency underscores the advantages of
our protocols. It is worth noting that our protocols need more communication
than Fp-based solutions. The advantage of our protocols lies in computational
efficiency, which is achieved by eliminating the need for modulo p operation.

Neural Network Training over GR(2k, d)

(a) Time (Network A) (b) Time (Network B)

(c) Comm. (Network A) (d) Comm. (Network B)

Fig. 1. The time and communication required for an epoch of training

6 Conclusion

We propose protocols for private neural network training that leverage Shamir
scheme over GR(2k, d). By embedding multiple secrets into a single ring element,
we can utilize the available coefficients more effectively and reduce the overall
communication. Based on Galois rings, our protocols eliminate the modulo p op-
eration typically required in Shamir secret sharing scheme, thereby significantly
improving the efficiency of the training process.

Acknowledgments. The work was supported in part by the National Key Re-
search and Development (R&D) Program of China under Grant 2022YFA1004900
and in part by the National Natural Science Foundation of China under Grants
12361141818, 12426302, 12031011 and 12271084.

References

1. Abspoel, M., Cramer, R., Damg̊ard, I., Escudero, D., Yuan, C.: Efficient
information-theoretic secure multiparty computation over Z/pkZ via Galois rings.
In: Proceedings of the Theory of Cryptography Conference. pp. 471–501 (2019)

2. Baccarini, A.N., Blanton, M., Yuan, C.: Multi-party replicated secret sharing over
a ring with applications to privacy-preserving machine learning. Proceedings on
Privacy Enhancing Technologies 2023, 608–626 (2023)

H. Zhou

3. Beerliová-Trub́ıniová, Z., Hirt, M.: Perfectly-secure MPC with linear communica-
tion complexity. In: Proceedings of the Theory of Cryptography Conference. pp.
213–230 (2008)

4. Catrina, O., Hoogh, S.: Improved primitives for secure multi-party integer compu-
tation. In: International Conference on Security and Cryptography for Networks.
pp. 182–199 (2010)

5. Damg̊ard, I., Fitzi, M., Kiltz, E., Nielsen, J., Toft, T.: Unconditionally secure
constant-rounds multi-party computation for equality, comparison, bits and expo-
nentiation. In: Proceedings of the 3th Theory of Cryptography Conference (TCC).
pp. 285–304 (2006)

6. Damg̊ard, I., Nielsen., J.B.: Scalable and unconditionally secure multiparty com-
putation. In: Annual International Cryptology Conference. pp. 572–590 (2007)

7. Damg̊ard, I., Escudero, D., Frederiksen, T., Keller, M., Scholl, P., Volgushev, N.:
New primitives for actively-secure MPC over rings with applications to private
machine learning. In: IEEE Symposium on Security and Privacy. pp. 1102–1120
(2019)

8. Franklin, M., Yung, M.: Communication complexity of secure computation (ex-
tended abstract). In: Proceedings of the Twenty-Fourth Annual ACM Symposium
on Theory of Computing. pp. 699–710 (1992)

9. Ito, M., Saito, A., Nishizeki, T.: Secret sharing scheme realizing general access
structure. Electronics and Communications in Japan Part III-Fundamental Elec-
tronic Science 72, 56–64 (1989)

10. Koti, N., Patra, A., Rachuri, R., Suresh, A.: Tetrad: actively secure 4PC for se-
cure training and inference. In: Symposium on Network and Distributed System
Security (NDSS) (2022)

11. Li, Y., Duan, Y., Huang, Z., Hong, C., Zhang, C., Song, Y.: Efficient 3PC for binary
circuits with application to maliciously-secure DNN inference. In: Proceedings of
the 32nd USENIX Conference on Security Symposium (2023)

12. Mohassel, P., Rindal, P.: ABY3: a mixed protocol framework for machine learning.
In: Proceedings of the 2018 ACM SIGSAC conference on computer and communi-
cations security. pp. 35–52 (2018)

13. Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving ma-
chine learning. In: IEEE Symposium on Security and Privacy. pp. 19–38 (2017)

14. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613
(1979)

15. Wagh, S., Gupta, D., Chandran, N.: SecureNN: 3-party secure computation for
neural network training. Proceedings on Privacy Enhancing Technologies 2019(3),
26–49 (2019)

16. Wagh, S., Tople, S., Benhamouda, F., Kushilevitz, E., Mittal, P., Rabin, T.: FAL-
CON: honest-majority maliciously secure framework for private deep learning. Pro-
ceedings on Privacy Enhancing Technologies 2021(1), 188–208 (2021)

17. Wan, Z.: Lectures on Finite Fields and Galois Rings. World Scientific Publishing
Company (2003)

18. Yao, A.: Protocols for secure computations. In: Proceedings of the 23rd Annual
Symposium on Foundations of Computer Science. pp. 160–164 (1982)

19. Zhou, H.: Information-theoretically secure neural network training with flexible
deployment. In: Proceedings of the 32nd International Conference on Artificial
Neural Networks. pp. 324–336 (2023)

20. Zhou, H.: Private neural network training with packed secret sharing. In: Proceed-
ings of the 30th International Computing and Combinatorics Conference (2024)

	Private Multi-Party Neural Network Training over Z2k via Galois Rings

