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Abstract. Ratcheted key exchange (RKE) is at the heart of modern
secure messaging, enabling protocol participants to continuously update
their secret material to protect against full state exposure through for-
ward security (protecting past secrets and messages) and post-compromise
security (recovering from compromise). However, many practical attacks
only provide the adversary with partial access to a party’s secret state,
an attack vector studied under the umbrella of leakage resilience. Exist-
ing models of RKE provide suboptimal guarantees under partial leakage
due to inherent limitations in security under full state exposure.
In this work, we initiate the study of leakage-resilient ratcheted key ex-
change that provides typical guarantees under full state exposure and
additional guarantees under partial state exposure between ratchets of
the protocol. We consider unidirectional ratcheted key exchange (URKE)
where one party acts as the sender and the other as receiver. Building
on the notions introduced by Balli, Rösler and Vaudenay (ASIACRYPT
2020), we formalise a key indistinguishability game under randomness
manipulation and bounded leakage (KIND), which in particular enables
the adversary to continually leak a bounded amount of the sender’s state
between honest send calls. We construct a corresponding protocol from
a key-updatable key encapsulation mechanism (kuKEM) and a leakage-
resilient one-time MAC. By instantiating this MAC in the random oracle
model (ROM), results from Balli, Rösler and Vaudenay imply that in the
ROM, kuKEM and KIND-secure URKE are equivalent, i.e., can be built
from each other. To address the strong limitations that key indistin-
guishability imposes on the adversary, we formalise a one-wayness game
that also permits leakage on the receiver. We then propose a correspond-
ing construction from leakage-resilient kuKEM, which we introduce, and
a leakage-resilient one-time MAC. We further show that leakage-resilient
kuKEM and one-way-secure URKE are equivalent in the ROM, high-
lighting the cost that strong one-way security entails. Our work opens
exciting directions for developing leakage-resilient messaging protocols.
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1 Introduction

In the last decade, the security of messaging solutions has drastically increased.
Thanks to the work of researchers and practitioners alike, much of our commu-
nications are today protected by strong security guarantees such as forward
security, which ensures confidentiality of messages sent before a state expo-
sure [BG21], and post-compromise security, which enables automatic healing af-
ter a compromise [CCG16]. In practice, Signal’s widely deployed Double Ratchet
protocol [PM16; EM19] provides these guarantees, which have been formally cap-
tured in the literature by primitives like ratcheted key exchange [Bel+17], where
shared keys between parties are continually generated over time.

Existing models for messaging schemes using ratcheting assume that the ad-
versary gains access to the participants’ full state, covering scenarios like physical
device access [CCG16] or malware infection, such as Pegasus [Sco+22]. In prac-
tice, there are also attacks, that only provide the adversary with partial informa-
tion about the secret state of a given party or set of parties, for example many
side-channel attacks [GMO01; ADW09b; Fan+10; Spr+18]. Nonetheless, there
are stronger limitations to the security one can achieve under full state exposure,
than under partial state exposure. This causes limitations in the ability of exist-
ing models to capture partial leakage. First, the requirement for the protocol to
be correct limits security: for example, exposing a party while their counterpart
has sent them ciphertexts that are in transit must allow the adversary to decrypt
them. Second, since protecting against the largest set of possible attacks, i.e.,
achieving some notion of optimal security, is inherently expensive [JS18; PR18;
BRV20a; Alw+20b], many protocols, such as the Double Ratchet, provide only
sub-optimal security guarantees for the sake of performance.

The field of leakage-resilient cryptography [DP08] has dealt with the problem
of ensuring security in the presence of partial leakage. This therefore raises a
natural research question:

Can we design a messaging scheme that provides security guarantees under full
state exposure and even stronger guarantees under partial state exposure?

In this paper, we make progress towards answering the above question in
the affirmative. We augment the security notions for two-party ratcheted key
exchange [Bel+17] with security guarantees under partial state exposure. Ratch-
eted key exchange, in which a sequence of keys are established over time, captures
the core of modern secure messaging. In this work, we focus on unidirectional
ratcheting (URKE), where the communication flow between two participants
goes in a single direction: Alice can only send and Bob can only receive. This
approach was first taken in the seminal work of Bellare et al. [Bel+17], and
allows for a systematic and modular exploration of the complexity of ratchet-
ing [PR18; BRV20a]. It has also been taken to explore new security guarantees
for ratcheting, notably anonymity under state exposure [Dow+22].

The classic leakage model captures bounded leakage [Dzi06], where the ad-
versary can adaptively leak arbitrary functions of a secret, provided that the
output is limited to an a priori bounded number of bits. We thus take advantage
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of the fact that keys are continually updated in RKE by enabling the adversary
to leak a bounded number of bits between each “round” of protocol execution,
i.e., between two consistent send and receive calls. This approach enables us to
provide security guarantees under the continual leakage of secret material, with-
out having to rely on fixed (public) keying material, which is less general and
seems to lead to more expensive constructions, as seen in settings like forward
security under continual leakage [Bel+17; Cha+23].

1.1 Summary of contributions

In this paper, we initiate the study of ratcheted key exchange that provides
strong security guarantees under partial state exposure and make the following
contributions towards understanding its complexity along the way:

– In Section 3, we define the notion of one-way security under randomness
manipulation and bounded leakage on the receiver (KUOWR) for a key-
updatable key encapsulation mechanism (kuKEM) [PR18; BRV20a].

– In Section 4, we introduce the notion of leakage-resilient key indistingushabil-
ity (LR-KIND) for unidirectional ratcheted key exchange (URKE) schemes,
in particular by defining an appropriate set of trivial attacks. We propose
a construction that we prove secure under this notion based on a leakage-
resilient one-time MAC and a KUOWR-secure kuKEM. By instantiating this
MAC in the random oracle model, results from Balli, Rösler and Vaude-
nay [BRV20a] imply that LR-KIND URKE and KUOWR-secure kuKEM (and
therefore regular KIND URKE) are equally powerful.

– To overcome the inherent limitations of LR-KIND security, Section 5 intro-
duces a security notion capturing one-wayness for URKE under leakage
(LR-OW security), together with a new set of trivial attacks. We provide
a construction secure under this notion that uses leakage-resilient kuKEM.

– Towards building leakage-resilient kuKEM, in Section 6.1, we reduce the
problem of constructing leakage-resilient kuKEM to building one-way, CPA-
secure leakage-resilient hierarchical identity-based encryption.

– In Section 6.2, we show that, given a random oracle and leakage-resilient
one-time MAC, leakage-resilient kuKEM can be built from one-way leakage-
resilient URKE (and vice-versa from our results from Sections 4 and 5). That
is, we show that LR-OW-secure URKE and LR-KUOWR-secure kuKEM are
equally powerful in the random oracle model.

1.2 Technical overview

URKE security. To define security for leakage-resilient unidirectional ratcheted
key exchange (URKE), we build on the notion of key indistinguishability under
randomness manipulation introduced by Balli, Rösler and Vaudenay [BRV20a].
Our security notions therefore allow adversarial manipulation of randomness,
which makes them more general in this aspect [ACD19; BRV20a] compared to
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those that do not [BOS17; PR18]. Given that we model partial leakage, incor-
porating randomness leakage also appears more realistic.

For the sake of readability and modularity, we use a different formalism than
Balli, Rösler and Vaudenay [BRV20a], that enables us to reduce the number of
book-keeping variables and checks in oracles by pushing most of the logic to a
trivial function which checks at the end of a game run if any of the constraints
enforced within Balli, Rösler and Vaudenay’s oracles were violated, and aborts
the execution if any were.

In more detail, we opted for a very general notion of leakage, which (ignoring
restrictions due to trivial attacks) enables the adversary to leak a certain number
of bits of its choice on the secret states after each Send or successful Receive
operation. There is therefore a bound on leakage per such operation, but no
global bound on leakage during the whole game. This is a variant of continual
leakage as described in [KR19; Dod+10b]. This is reasonable, since most side-
channels only occur if there are computations involving the secret states. In cases
where continual leakage is impossible, we also consider a second and simpler
notion, called bounded leakage, where the bound is never reset and the amount
of leakage in the whole game is therefore bounded by it.

In both cases, only secret keys and states are leaked, placing our leakage
notion withing the category of leakage on memory as defined in [KR19]. This
contrasts with leakage on computation, where intermediary values from poten-
tially randomized computations are also exposed. However, the possibility of
randomness manipulation allows the adversary to gain information about com-
putation results as well.

In order to be as general as possible, we allow the adversary to adaptively
obtain one bit after the other up to the per-computation leakage bound. To ob-
tain one bit of information, it chooses an efficiently computable leakage function
f which on any input returns a value in {0, 1}. It then receives the output of
f on the chosen secret state or key. We assume that leaking cannot modify the
secret states or keys. With this approach to leakage we follow [Dzi06].

Key indistinguishability. Our first notion security notion for URKE, a key indis-
tinguishability notion (LR-KIND), requires the adversary to distinguish between
uniformly random keys and keys output by the protocol execution, generalising
the original game from Balli, Rösler and Vaudenay

However, with our definition of leakage, leaking even just one bit on the
receiving party B allows an adversary to learn a bit of the challenge key, by
simulating the reception of a challenge key ciphertext within the leakage function.
The challenge key message can be obtained by the adversary before it is received
as we assume that the adversary has full network control. This is possible even if
the Receive algorithm or the state updates of B are randomized, since it exploits
the correctness of the scheme. Therefore, a key indistinguishability notion for
URKE cannot permit any leakage on the receiving party B beyond leakage that
is allowed when state exposure is also allowed. Leakage on A, on the other hand,
is allowed except when 1) A’s state is leaked beyond the leakage bound; 2) the
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leakage is then used to impersonate towards B; and then 3) the resulting key
derived by B is challenged.

In Section 4, after defining our LR-KIND notion, we present a URKE scheme
secure under this notion from a leakage-resilient one-time strongly-unforgeable
(LR-OT-SUF) MAC scheme and a kuKEM scheme that provides one-wayness un-
der randomness manipulation (KUOWR) [BRV20a; RSS23]. In particular, since
the LR-KIND security notion does not allow leakage on the receiver B anyway,
there is no need for the kuKEM to be leakage-resilient. This is prudent for per-
formance as kuKEM is a more powerful and expensive primitive. Given that
Balli, Rösler and Vaudenay showed that secure kuKEM can be used to build
KIND-secure URKE and vice-versa given a one-time MAC and random ora-
cle [BRV20a], our construction implies the same for secure kuKEM and LR-KIND
URKE in the random oracle model (given a random oracle instantiation of the
MAC). Note that this does not imply that every KIND-secure URKE is also
LR-KIND: we argue that Balli, Rösler and Vaudenay’s construction is not in
general LR-KIND-secure in Appendix A.

One-wayness. However, as explained above, in order to define our achievable
LR-KIND notion, we needed to restrict the adversary in many ways. In particular,
leakage on the receiver and on the challenge key are not allowed. Therefore, this
notion might not capture the abilities of side-channel attacks or threats in general
that leak on the receiver side.

To overcome this, we formalise a one-wayness (OW) security notion for
URKE that allows us to relax the restrictions from our LR-KIND game. One-
wayness captures the guarantee that an efficient adversary can obtain a complete
challenge key only with negligible probability. It is not an indistinguishability
notion, and therefore in some aspect weaker. However, it enables us to allow for
bounded (but not continual) leakage on the receiver. This means that between
the beginning of the game and the reception of the challenge key, only a fixed
number of bits can be leaked on the state of B. This restriction is again due to
the “leak-into-the-future” attack which was already a problem for the LR-KIND
definition. We therefore define the LR-OW security notion and provide a con-
struction achieving it in the random oracle model, which requires a bounded
leakage-resilient (LR-KUOWR)-secure kuKEM and a leakage-resilient MAC. In
particular, leakage-resilient kuKEM generalises kuKEM to additionally allow
bounded secret key leakage.

On the complexity of leakage-resilient kuKEM. Given our new one-wayness
notion relies on a new primitive, namely leakage-resilient kuKEM, we then
consider how costly constructing it is. It is known how to construct (regular,
KUOWR-secure) kuKEM either from bounded-collusion identity-based encryp-
tion (IBE) (supporting bounded usage), or from IND-CCA-secure [RSS23] or
OW-CCA-secure hierarchical IBE (HIBE) [BRV20a]. In Section 6.1, we construct
a LR-KUOWR-secure kuKEM assuming a LR-OW-CCA-secure HIBE. In particu-
lar, we show that an LR-OW-CCA-secure HIBE scheme can be constructed from
LR-OW-CPA-secure HIBE and true-simulation extractable NIZKs [Dod+10c]. In
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the LR-OW-CPA game, the adversary has to decrypt a randommessage encrypted
under a chosen identity vector even when they can leak some bounded amount
of information on secret keys, and can expose secret keys that cannot be used
to trivially decrypt the challenge. In LR-OW-CCA, the adversary is additionally
given access to a decryption oracle. We then discuss and leave open the problem
of constructing LR-KUOWR-secure kuKEM directly.

Recall that Balli, Rösler and Vaudenay [BRV20a] showed that KUOWR-
secure kuKEM, relative to a random oracle and MAC, is as powerful as a KIND-
secure URKE. We port these results to the leakage-resilient setting, namely
between LR-OW-secure URKE and LR-KUOWR-secure kuKEM given a random
oracle and a leakage-resilient (LR-OT-SUF-secure) one-time MAC. To this end,
in Section 6.2 we construct LR-KUOWR-secure kuKEM from a random ora-
cle, a leakage-resilient MAC and LR-OW-secure URKE. By comparison to Balli,
Rösler and Vaudenay, we use an additional random oracle to hash the MAC
key output by the URKE. Given our construction of LR-OW-secure URKE
from LR-KUOWR-secure kuKEM, this implies that LR-OW-secure URKE and
LR-KUOWR-secure kuKEM are equally powerful in the random oracle model.

Looking forward. Our work opens the pathway for providing strong guarantees
under partial leakage in messaging in theory and practice. Future directions of re-
search include extending our work to capture bidirectional ratcheting where both
parties can send and receive, messaging proper, group ratcheting or messaging,
and exploring alternate notions of leakage and performance/security trade-offs.

1.3 Additional related work

Providing security guarantees for messaging in the presence of state exposure
(i.e., forward and post-compromise security) has been explored in theory and
practice alike in both the two-party and the more complex group settings. Many
works provide different trade-offs between performance and security: in the two-
party literature, for example, some protocols require relatively heavy primitives
like kuKEM (e.g., [JS18; PR18; BRV20a] and ours), and conversely some pro-
tocols only require symmetric cryptography [YV20; Yan+23]. Other problems
related to messaging like active attack detection [Bar+23], handling multiple
devices securely [Dim+21] and the modelling of practical schemes [ACD19;
Alw+20a; BCG23; ADJ24] have been considered (to name but a few).

In the literature on leakage resilience, several different types and measures
of leakage have been proposed, including entropy-bounded leakage (rather than
space-bound), continual leakage and after-the-fact leakage [HL11] (modelling
leakage after challenging), and many cryptographic primitives have been aug-
mented to provide leakage resilience. We refer the reader to [KR19] for a
(non-exhaustive) summary of the literature. As our model allows arbitrary but
bounded leakage on the entire secret state, it is stronger than works that assume
that “only computation leaks” (OCL) [MR04], i.e., only the part of the secret
state used in a given computation leaks, which may nonetheless be of interest
for performance reasons.
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Previous work has considered leakage resilience in the context of authen-
ticated key exchange (AKE) protocols, by contrast to ratcheted key exchange
which assumes at initialisation that some initial key exchange has already taken
place. Works on AKE have explored protecting long-term secrets against leakage
and full ephemeral state exposure [ADW09a; CPR17], as well as against leak-
age on both long-term and ephemeral secrets [Yan+19]. The work of [Bel+17;
Cha+23] consider forward-secure primitives like signatures and public-key en-
cryption under continual leakage, and so they also provide guarantees under both
full and partial state exposure but only for one party, the secret key holder.
We note that leakage-resilient authenticated encryption with associated data
(AEAD) in particular has been considered, from which leakage-resilient messag-
ing could be constructed using leakage-resilient ratcheted key exchange.

In recent years, we have seen an increase in software-visible side channels,
such as Spectre [Koc+19], Meltdown [Lip+18] and Hertzbleed [Wan+22], just
to name a few. These and similar attacks [Gen+16] represent a serious threat to
actual system, both personal computers and mobile phones, as microprocessors
from AMD, Intel and ARM are found to be vulnerable. Some of these attacks
allow for repeated leakage on information on secret data, but not necessarily all
of it at once. They therefore justify the need for cryptographic primitives which
can withstant the repeated exposure of a small subset of their secrets.

2 Preliminaries

Let λ be the security parameter (sometimes written in unary as 1λ). We use a
general key space K for all primitives for simplicity. An efficient algorithm is one
that is probabilistic polynomial-time. We consider two parties, A and B; if P
is one party (A resp. B), P is their partner (B resp. A). For strings, we denote
concatenation with ||, so that we have ϵ || X = X for empty string ϵ and any
string X, the prefix-of relation with ≺, the equal-or-prefix-of relation with ⪯
and the not-prefix-of notation with ̸≺ (see Appendix A for a formal definition of
the relations). Inclusion of one string in another is denoted by ∈: a ∈ b means
that the string b contains all characters of a in the same order. An algorithm can
abort: for indistinguishability games, we denote this by abortIND and otherwise
by abort. These abortions are defined so that they cannot be exploited by an
adversary for increasing its winning probability.

All oracles that enable the adversary to apply a leakage function to some
party’s secret take as input a leakage function f , whose codomain must be the
binary set. For clarity, our games do not check this constraint explicitly. To
enforce an explicit check, one could add a special oracle to all security games,
which checks whether leakage functions respect the constraint. Reductions in
proofs would then outsource this check to the special oracle in order to stay
efficient themselves. It is important that the oracle does not return a value which
is not a bit in secret-dependent cases, as this would allow to learn more than one
bit of information per call to the leak oracle. Even though the oracle executes f ,
the function is chosen by the adversary, and we therefore count its runtime and
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the random oracle calls it makes towards the runtime and random oracle calls
of the adversary. The leakage functions can query only random oracles and not
any other oracles in our games.

We provide more detailed preliminaries including precise notations and abor-
tion definitions in Appendix A.

3 Cryptographic primitives

This section introduces the cryptographic primitives on which this work relies.
We start with message authentication code (MAC) schemes and key-updatable
KEM (kuKEM) schemes [BRV20a]; for both schemes we formalize security in
the bounded-leakage model, which assumes a bounded amount of leakage. We
then turn our attention to unidirectional ratcheted key exchange (URKE).

In this paper we use leakage-resilient MAC, and classic and leakage-resilient
kuKEM schemes to construct URKE schemes which achieve different notions
of security. To ease the composition of these schemes, we work with a general
key space for each security parameter λ, by assuming a deterministic function
keyspace which inputs a security parameter λ and outputs a key space K.

3.1 Message authentication code

In this section we introduce message authentication code (MAC) schemes.

Definition 1 (MAC). A message authentication code (MAC) comprises the
following efficient algorithms:

– Gen(1λ)→ k takes a unary string 1λ and outputs a key k.
– Tag(k,m)→ t takes a key k and a message m and returns a tag t.
– Ver(k,m, t) → acc takes a key k, a message m and a tag t and returns an

acceptance bit acc ∈ {true, false}.

We assume that the generation of a MAC key Gen(1λ) consists in the uniformly
random choice of k←$ K, where K ← keyspace(λ) is our general key space.

Informally, a MAC scheme is correct if the verification of a message m and a
tag generated on the same message m always succeed. We formally define this
property in Definition 2.

Definition 2 (MAC correctness). A MAC scheme MAC = (Gen,Tag,Ver)
is correct if for all security parameters λ ∈ N the following holds:

Pr[k← Gen(1λ);Ver(k,m,Tag(k,m))→ true] = 1,

where the probability is taken over all the random coins used by the algorithms
of the scheme.

This has the advantage that the adversary cannot outsource costly computations
to the leak oracles in order to improve its own runtime.
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We formalize security for MAC with the notion of one-time strong unforge-
ability, formalized through the LR-OT-SUF game in Fig. 1. In the game, the
adversary can generate—through the TAG oracle—and verify—through the VER
oracle—a tag for an arbitrary message. We formalize the leakage-resilient prop-
erty of this security notion with the LEAK-KEY oracle, which enables the ad-
versary to leak a function f of the key k, provided that the function returns a
single bit. The adversary wins by forging a valid message and tag pair if the
message/tag pair was not generated by a query to TAG.

Game LR-OT-SUFℓ
A(1λ)

1 : k← Gen(1λ)

2 : Q← ⊥; q ← 0

3 : (pt∗, t∗)← ATAG,VER,LEAK-KEY(1λ)

4 : if (pt∗, t∗) = Q then return 0

5 : if ¬Ver(k, pt∗, t∗) then return 0

6 : return 1

Oracle VER(pt, t)

1 : return Ver(k, pt, t)

Oracle TAG(pt)

1 : if Q ̸= ⊥ then abort

2 : t← Tag(k, pt)

3 : Q← (pt, t)

4 : return t

Oracle LEAK-KEY(f)

1 : if q > ℓ then abort

2 : q ← q + 1

3 : return f(k)

Fig. 1: LR-OT-SUF game. Classic OT-SUF security for MAC schemes is defined
using the same game except that the adversary cannot query the LEAK-KEY
oracle (equivalent to ℓ = 0).

Definition 3 (LR-OT-SUF). We say that a MAC scheme MAC =
(Gen,Tag,Ver) is (q, ℓ, t, ϵ)-LR-OT-SUF secure for security parameter λ if, for
all adversaries A which make at most q oracle queries and run in time at most
t, we have:

Pr[LR-OT-SUFℓ
A(1

λ)⇒ 1] ≤ ϵ,

where the probability is taken over all the random coins that the challenger and
the adversary use and the game LR-OT-SUF is defined in Fig. 1.

Assuming keyspace K and a random oracle H with inputs in K×{0, 1}∗ and
outputs in K we can define a MAC scheme as follows: Gen outputs a uniformly
random output km in K. Tag : K × {0, 1}∗ → K is identical to querying H on
its inputs. Ver : K × {0, 1}∗ × K → {0, 1} queries H on its first 2 inputs and
tests whether the output is equal to its third input. Since the random oracle
queries to H are counted in the total number of queries q, this MAC scheme is
(q, ℓ, t, q · 2ℓ/|K|)-LR-OT-SUF secure. This is because given the knowledge of the
chosen message and the ℓ leaked bits of the key in |K|, guessing the complete
input of H correctly has probability 2ℓ/|K|, and the adversary makes at most
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q − 1 attemps of getting a tag via such guessing (since it makes at most q − 1
queries to H). The probability of directly guessing the tag is 1/|K|.

In the standard model, an example of an LR-OT-SUF-secure MAC scheme
can be found in the work of Hazay, López-Alt, Wee and Wichs [Haz+16, Section
5.3].

3.2 Key-updatable key encapsulation mechanism (kuKEM)

Key-updatable key encapsulation mechanisms (kuKEM) were first introduced
by Poettering and Rösler [PR18] and later adapted by Balli, Rösler and Vaude-
nay [BRV20a].

Similar to a standard KEM scheme, a kuKEM scheme establishes secure
symmetric keys between a public key and secret key holder. The encapsulation
algorithm takes a public key and outputs an updated public key, an encapsu-
lated key and a ciphertext. The decapsulation mechanism inputs a secret key
and a ciphertext and outputs an updated secret key and either a decapsulated
key or an error symbol. A kuKEM scheme possesses an additional feature: a pair
of algorithms (UpPk and UpSk) that generate new public/secret keys, to which
we refer to as “updated” keys, based on existing ones and associated data. Im-
portantly, a key pair retains its functionality given that the key pair is updated
consistently, i.e., the update functions are called with the same associated data,
and encapsulation and decapsulation are called consistently.

Definition 4 (kuKEM [BRV20a]). A key-updatable key encapsulation
mechanism (kuKEM) comprises the following efficient algorithms:

– Setup(1λ)→ pp takes a unary string 1λ and outputs public parameters pp.
– Gen(pp)→ (pk, sk) takes public parameters pp and outputs initial public and

secret key pair (pk, sk).
– Encaps(pk)→ (pk′, k, ct) takes a public key pk and outputs a new public key

pk′, encapsulated key k and ciphertext ct.
– Decaps(sk, ct)→ (sk′, k) takes a secret key sk and a ciphertext ct and outputs

a new secret key sk′ and either a decapsulated key k or a bottom value ⊥ that
denotes failure.

– UpPk(pk, ad)→ pk′ takes a public key pk and associated data ad and outputs
a new public key pk′.

– UpSk(sk, ad)→ sk′ takes a secret key sk and associated data ad and outputs
a new secret key sk′.

Exchanged keys k and associated data ad are elements of the general key space
K ← keyspace(λ).

We refer the reader to the work of Balli, Rösler and Vaudenay for a definition
of correctness [BRV20a, Definition 1]. Informally, we require that if pk and sk are
updated consistently (through Encaps and UpPk for pk and Decaps and UpSk for
sk), then Encaps and Decaps output the same key k when queried with consistent
input.

10



Game KUOWRA(1λ) LR-KUOWRℓ
A(1n)

1 : win← 0

2 : pp← Setup(1λ)

3 : (pk, sk)← Gen(pp)

4 : CK[·]← ⊥; XP , trA, trB ← ⊥
5 : c← 0

6 : SK[·]← ⊥; SK[trB]← sk

7 : AO(pp, pk)

8 : return win

EXP(tr)

1 : if SK[tr] = ⊥ then return

2 : XP ← XP ∪ {tr∗ : tr ≺ tr∗}
3 : return SK[tr]

SOLVE(tr, k)

1 : if tr ∈ XP then return ⊥
2 : if CK[tr] = ⊥ then return ⊥
3 : if k = CK[tr] then win← 1

4 : return win

LEAKSK(tr, f)

1 : if c ≥ ℓ then return ⊥
2 : c← c+ 1

3 : return f(SK[tr])

ENC(r)

1 : fresh← false

2 : if r = ⊥ then fresh← true

3 : if fresh then r←$R
4 : (pk, k, ct)← Encaps(pk; r)

5 : trA ← trA || (ct : ct)
6 : if fresh then CK[trA]← k

7 : return (pk, ct)

DEC(ct)

1 : (sk, k)← Decaps(sk, ct)

2 : if k = ⊥ then return ⊥
3 : trB ← trB || (ct : ct)
4 : SK[trB]← sk

5 : if CK[trB] ̸= ⊥ then return ⊥
6 : return k

UPPK(ad)

1 : pk← UpPk(pk, ad)

2 : trA ← trA || (ad : ad)

3 : return pk

UPSK(ad)

1 : sk← UpSk(sk, ad)

2 : trB ← trB || (ad : ad)

3 : return

Fig. 2: Single-user KUOWR kuKEM security notion adapted from [BRV20a].
The array CK stores challenge keys, XP holds exposed secret keys, and
trA, trB track transcripts (see [BRV20a] further details on these vari-
ables). The oracle set is O = (ENC,DEC,UPPK,UPSK,EXP,SOLVE), and
for LR-KUOWR the same together with LEAKSK.

We formalize security for kuKEM with the notion of one-way security under
randomness manipulation in a single-instance setting, or KUOWR. We also for-
malize leakage-resilient KUOWR security which we denote by LR-KUOWR. The
only difference between the KUOWR and LR-KUOWR games is that while play-
ing the latter the adversary has access to an additional leaking oracle LEAKSK.
We define single-instance rather than multi-instance security as done by Balli,
Rösler and Vaudenay [BRV20a] since all the security notions that we define in
this work are in the single-instance setting. A standard guessing technique can
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be used to reduce security with a factor of q security loss given that the key
generation oracle is called q times in the multi-instance game.

Definition 5 (KUOWR/LR-KUOWR). We say that a kuKEM Π is (q, t, ϵ)-
KUOWR (resp. (q, ℓ, t, ϵ)-LR-KUOWR) secure for security parameter λ if, for all
adversaries A which make at most q oracle queries and run in time at most t,
we have:

Pr[KUOWRA(1
λ)⇒ 1] ≤ ϵ (resp. Pr[LR-KUOWRℓ

A(1
λ)⇒ 1] ≤ ϵ),

where the probability is taken over all the random coins that the challenger
and the adversary use and the game KUOWR (resp. LR-KUOWR) is de-
fined in Fig. 2 for O = (ENC,DEC,UPPK,UPSK,EXP,SOLVE) (resp. O =
(ENC,DEC,UPPK,UPSK,EXP,SOLVE, LEAKSK)).

Constructing leakage-resilient kuKEM. In Section 6.1, we construct LR-KUOWR-
secure kuKEM from hierarchical identity-based encryption and and non-
interactive zero-knowledge proofs (NIZKs) and discuss additional constructions.

3.3 Unidirectional ratcheted key exchange

We now introduce unidirectional ratcheted key exchange (URKE). In this
primitive, first introduced by Bellare, Camper Singh, Jaeger, Nyayapati, and
Stepanovs [Bel+17], the roles of the two parties are disjoint: A is the sender and
B the receiver.

Definition 6 (Unidirectional ratcheted key exchange (URKE)). A uni-
directional ratcheted key exchange (URKE) comprises the following efficient
algorithms:

– Setup(1λ)→ pp takes the security parameter λ ∈ N, expressed in unary, and
outputs public parameters pp.

– Init(pp)→ (stA, stB, z) takes public parameters pp and outputs a state stP for
P ∈ {A,B} and public information z.

– Send(stA, ad)→ (st′P , ct, k) takes a state stA, associated data ad and a plain-
text pt and outputs a new state st′A, ciphertext ct and key k.

– Receive(stB, ad, ct) → (acc, st′B, k) takes a state stB, associated data ad and
ciphertext ct and outputs an acceptance bit acc ∈ {true, false}, state st′B and
key k.

When acc = false, the Receive algorithm returns st′B ← stB and k← ⊥.

Intuitively, a URKE scheme is correct if the Send and Receive algorithms
return the same key k on consistent inputs.

More precisely, correctness for URKE schemes builds on two oracles that we
introduce in Fig. 3. The SEND oracle enables the adversary to send a message on
behalf of party A, either by specifying the randomness that the Send algorithm
uses or by leaving the oracle to sample randomness uniformly. The RECEIVE
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Oracle SEND(ad, r)

1 : i← i+ 1

2 : rin ← r

3 : if r = ⊥ then r←$R
4 : (stA, ct, k)← Send(stA, ad; r)

5 : trA ← trA || (ad, ct)
6 : state[A, trA]← stA

7 : key[A, trA]← k

8 : log[i]← (“send”, trA, ad, ct, rin, k)

9 : return ct

Oracle RECEIVE(ad, ct)

1 : i← i+ 1

2 : (acc, st, k)← Receive(stB, ad, ct)

3 : if ¬acc then

4 : log[i]← (“failedrec”, trB, ad, ct)

5 : return ⊥
6 : stB ← st

7 : trB ← trB || (ad, ct)
8 : state[B, trB]← stB

9 : key[B, trB]← k

10 : log[i]← (“rec”, trB, ad, ct, k)

11 : return

Fig. 3: URKE oracles which use variables state, tr∗, key, log, st∗ and i that are
all initialized in games where the oracles are used.

oracle enables the adversary to receive a message for party B. Both oracles use
the transcript or trace of a party P ∈ {A,B} to index maps that store states
and keys of P, as well as the map log to record oracles calls.

We formally capture this in the CORRECT game of Fig. 4. In the game,
the adversary has access to the oracles SEND and RECEIVE; the predicate
different-key enforces that the scheme’s algorithms produce identical keys on
consistent transcripts, whereas incorrect-reject ensures that the Receive algorithm
correctly accepts every (ad, ct) pair that the Send algorithm returns.

Definition 7 (URKE correctness). Consider the CORRECT game of Fig. 4.
A URKE scheme is correct if for all (possibly unbounded) adversaries A and all
λ ∈ N it holds that

Pr[CORRECTA(1λ)⇒ 1] = 0.

4 Leakage-resilient key indistinguishability for URKE

In this section we introduce leakage-resilient key indistinguishability for URKE,
which we denote LR-KIND. We first introduce the security notion and then
present a URKE construction that achieves LR-KIND security assuming a classic
kuKEM scheme and a leakage-resilient MAC scheme.

4.1 Security definition

We introduce our notion of leakage-resilient key indistinguishability for URKE
schemes. The formal definition relies on a set of oracles, introduced in Fig. 5.
The oracles SEND and RECEIVE are the same as in Fig. 3: we report them here
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Game CORRECTA(1λ)

1 : (pp)← Setup(1λ); (stA, stB, z)← Init(pp)

2 : st∗, tr∗ ← ⊥; state[·], key[·], log[·]← ⊥
3 : i← 0

4 : A(pp, z)SEND,RECEIVE

5 : if different-key(log) ∨ incorrect-reject(log) then

6 : return 1

7 : return 0

different-key(log)

1 : return ∃ tr, i, j, kA, kB, ad, ct :

2 : log[i] = (“send”, tr, ad, ct, ·, kA) ∧ log[j] = (“rec”, tr, ad, ct, kB) ∧ (kA ̸= kB)

incorrect-reject(log)

1 : return ∃ tr, i, j, ad, ct :

2 : log[i] = (“send”, tr, ad, ct, ·, ·) ∧ log[j] = (“failedrec”, tr, ad, ct)

Fig. 4: Correctness game for a URKE scheme.

for the reader’s convenience. The oracles EXP-STATE and EXP-KEY expose the
state and key of party P, respectively. The two leakage oracles, LEAK-STATE
and LEAK-KEY, take as inputs a leakage function f , a party P and a trace tr;
both abort if the function’s codomain is not the binary set {0, 1}. The oracle
LEAK-STATE enables the adversary to apply the leakage function to the state
of a party, whereas LEAK-KEY evaluates the function on the key of party P.
Even tough the leakage function’s output is a single bit, the adversary can leak
on functions with multiple bits of output (subject to the leakage bound) by
querying the leakage oracles multiple times.

In Fig. 6 we introduce the game LR-KIND, which formalizes the notion of
leakage-resilient key indistinguishability that we define in Definition 8. In this
game the adversary has access to a set of oracles O and must distinguish between
a key that Send or Receive returns and a key randomly generated by the chal-
lenger. Without any restriction, the set of oracles gives the adversary the chance
of trivially winning, i.e., trivially distinguish a challenge key from a random key.
These attacks exploit direct exposures of secrets—e.g., exposing and challeng-
ing the same secret key—and the correctness guarantees of the scheme—e.g.,
exposing the key that A generates and challenging the same key that B outputs.
Similarly to previous works on ratcheted key exchange [Bel+17; PR18; BRV20a],
we rule out these, and only these, attacks. We refer to this minimal restriction on
the adversarial behaviour as optimal, because we restrict the adversary to what is
necessary for a meaningful security definition and nothing more. Concretely, we
exclude the trivial attacks with the trivial-KIND predicate in line 8 in LR-KIND
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Oracle SEND(ad, r)

1 : i← i+ 1

2 : rin ← r

3 : if rin = ⊥ then rin ←$R
4 : (stA, ct, k)← Send(stA, ad; rin)

5 : trA ← trA || (ad, ct)
6 : state[A, trA]← stA

7 : key[A, trA]← k

8 : log[i]← (“send”, trA, ad, ct, r)

9 : return ct

Oracle EXP-STATE(P, tr)

1 : i← i+ 1

2 : log[i]← (“stexp”,P, tr)
3 : return state[P, tr]

Oracle LEAK-STATE(f,P, tr)

1 : i← i+ 1

2 : log[i]← (“stleak”, f,P, tr)
3 : return f(state[P, tr])

Oracle RECEIVE(ad, ct)

1 : (acc, st, k)← Receive(stB, ad, ct)

2 : if ¬acc then return ⊥
3 : i← i+ 1

4 : stB ← st

5 : trB ← trB || (ad, ct)
6 : state[B, trB]← stB

7 : key[B, trB]← k

8 : log[i]← (“rec”, trB, ad, ct)

9 : return

Oracle EXP-KEY(P, tr)

1 : i← i+ 1

2 : log[i]← (“kexp”,P, tr)
3 : return key[P, tr]

Oracle LEAK-KEY(f,P, tr)

1 : i← i+ 1

2 : log[i]← (“kleak”, f,P, tr)
3 : return f(key[P, tr])

Fig. 5: URKE oracles which use variables st∗, tr∗, state, key, log, and i that are
all initialized in games where the oracles are used.

game, which returns an uniformly random bit if the predicates evaluates to true
(see Appendix A.2 for a definition of abortIND). We define trivial-KIND by using
different sub-predicates, each of which indicates a trivial attack to exclude. The
function inputs log and checks if any of the predicates evaluates to true. If it is
the case the trivial-KIND function outputs true, thereby indicating that a trivial
attack against the scheme happened, otherwise it outputs false. This allows to
catch game runs where the adversary wins with a trivial attack. In what follows
we explain how to define the sub-predicates that compose trivial-KIND.

Balli, Rösler and Vaudenay [BRV20a] define key indistinguishability for
URKE without leakage resilience, i.e., in their game the adversary does not have
access to LEAK-STATE and LEAK-KEY oracles. We recall the trivial attacks that
arise without the leakage oracles (using a new, predicates-based formalization)
and we then analyze the new class of trivial attacks that our additional leak
oracles enable.

(P1): The adversary challenges a key and exposes it:

∃ i, j,P, tr : log[j] = (“kexp”, ·,P, tr) ∧ log[i] = (“chall”, ·, tr, ·).
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Game LR-KINDℓ
A(1λ)

1 : b←$ {0, 1}

2 : pp← Setup(1λ); (stA, stB, z)← Init(pp)

3 : state[·, ·], key[·, ·], log[·], trA, trB ← ⊥
4 : state[A, ϵ], state[B, ϵ]← (stA, stB)

5 : i← 0

6 : chall[·, ·]← false

7 : b′ ← AO(pp, z)

8 : if trivial-KIND(log, ℓ) then abortIND

9 : return 1b=b′

Oracle CHALL-KIND(P, tr)

1 : i← i+ 1

2 : if chall[P, tr] :
3 : return ⊥
4 : k← key[P, tr]
5 : if key[P, tr] ̸= ⊥ ∧ b = 1 :

6 : k←$ K
7 : chall[P, tr]← true

8 : log[i]← (“chall”,P, tr,⊥)
9 : return k

Fig. 6: URKE LR-KIND game for the oracle set O = {SEND,RECEIVE,
EXP-STATE,EXP-KEY, LEAK-STATE, LEAK-KEY,CHALL-KIND}.

(P2): The adversary exposes the state of B and uses the exposed state to repro-
duce B’s computations by using the Receive algorithm, thereby obtaining
all the keys after the exposure:

∃ i, j, tr, tr∗ : log[i] = (“stexp”,B, tr)∧ log[j] = (“chall”, ·, tr∗, ·)∧ (tr ≺ tr∗).

(P3): The adversary exposes the state of A and impersonates A by using the Send
algorithm—blocking any possibility for A to heal with fresh randomness—
and feeding the RECEIVE oracle with the resulting outputs, thereby bring-
ing B out-of-sync and forcing B to retrieve a key that the adversary al-
ready knows:

∃ i, j, k, tr, tr∗ : log[i] = (“stexp”,A, tr) ∧
log[j] = (“rec”,B, tr∗, ·, ·) ∧ (tr ≺ tr∗) ∧
log[k] = (“chall”,B, tr∗, ·) ∧
[∄ l, tr′ : (log[l] = (“send”,A, tr′, ·, ·,⊥) ∧ (tr ≺ tr′ ⪯ tr∗))].

(P4): The adversary exposes the state of A and uses the exposed state to repro-
duce A’s computation while using the Send algorithm only with manip-
ulated randomness (which blocks any possibility for A to heal), thereby
obtaining all the keys after the exposure.

∃ i, j, tr, tr∗ : log[i] = (“stexp”,A, tr) ∧
log[j] = (“chall”,A, tr∗, ·) ∧ (tr ≺ tr∗) ∧
[∄ l, tr′ : (log[l] = (“send”,A, tr′, ·, ·,⊥) ∧ (tr ≺ tr′ ⪯ tr∗))].

When adding the two leakage oracles LEAK-STATE and LEAK-KEY to the
game, a few more trivial attacks arise. Recall that the leakage function returns
a single bit, as explained in Appendix A.2, and the leakage is bounded by ℓ.
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In the LR-KIND game, any call to the LEAK-KEY oracle before receiving a
challenge key could leak information about that key, so the corresponding leakage
bound is set to zero. Leakage on B is unbounded only if no challenge key will be
received after the leakage. Since unbounded possibility of leakage is equivalent
to exposing the state (which is allowed if no challenge key is sent or received
later), it is meaningless to continue to enforce leakage bounds at that moment.

Informally, these predicates enforce that the adversary cannot leak any in-
formation on the key that it challenges. Leaking more than the leakage bound
on any key and on a state of the sending party A is not permitted. More pre-
cisely, every time the adversary calls the SEND oracle with fresh randomness,
the adversary can leak up to ℓ before the next call to the SEND oracle with
fresh randomness. Furthermore, between a challenge key send with manipulated
randomness and the last unmanipulated send before it, the state of the sender
should not be leaked, since this would allow to leak on the challenge key which
is a deterministic function of all states of the sender since its last send with fresh
randomness. Also, leakage on the receiver before the last challenge key was re-
ceived is forbidden, since an adversary knowing all messages which the receiver
will receive until the challenge can compute a bit of the challenge key by simulat-
ing the reception of these not yet received messages and the challenge ciphertext.
The knowledge of future messages is possible as the protocol is asynchronous.

(P5): The adversary challenges a key that it previously leaked:

∃ i, j, tr : log[i] = (“kleak”, ·, tr) ∧ log[j] = (“chall”, ·, tr, ·).

Intuition: Leaking a challenge key trivially allows to distinguish it from
a random key (with probability 1− 1

2n if n bits are leaked).

(P6): The adversary leaks more than ℓ bits of A’s state, either at once or while
manipulating the randomness that the SEND oracle uses in order to im-
personate A, and then challenges on the key B derives:

∃ i, j,tr, tr′ : (tr ⪯ tr′) ∧
log[i] = (“rec”,B, tr′, ·, ·) ∧ log[j] = (“chall”,B, tr′, ·) ∧
[∄ k, trk : (tr ≺ trk ⪯ tr′) ∧ (log[k] = (“send”,A, trk, ·, ·,⊥))] ∧
|{l, trl : (log[l] = (“stleak”, ·,A, trl)) ∧ (tr ⪯ trl ⪯ tr′)}| > ℓ)

Intuition: If there is no SEND between more than ℓ LEAK-STATE
calls, the adversary can learn more than ℓ bits on a state of A. The
same is true if there are SEND calls, but randomness used by them is
manipulated. Then, it is a trivial attack if the adversary then imperson-
ates A using leakage from this and challenges on the key output by B.
Note challenging on keys derived by A is covered in the previous predicate.

(P7): The adversary leaks A’s state and manipulates the randomness of SEND,
thereby forbidding A from healing and making SEND deterministic, i.e.,
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forcing A to produce a key that the adversary has learned a bit of:

∃ i, j, i′, tr, tr′ : log[i] = (“stleak”,A, tr) ∧
log[j] = (“send”,A, tr′, ·, ·, r ̸= ⊥) ∧ (tr ≺ tr′) ∧
log[i′] = (“chall”, ·, tr′, ·) ∧
[∄ k, tr∗ : (tr ≺ tr∗ ≺ tr′) ∧ log[k] = (“send”,A, tr∗, ·, ·,⊥)].

Intuition: The adversary can learn a bit of the challenge key, which is
a deterministic function of A’s state as long as the SEND oracle uses
manipulated randomness, and can be computed by the leakage functions.

(P8): The adversary leaks B’s state at any time before querying the
CHALL-KIND oracle on any party (since A and B produce the same keys
by correctness):

∃ i, j, tr, tr∗ : log[i] = (“stleak”,B, tr)∧log[j] = (“chall”, ·, tr∗, ·)∧(tr ≺ tr∗).

Intuition: Since any exchanged key is a deterministic function of B’s state
and the messages that A sends to B, leaking B’s state allows the decryp-
tion of a bit of all not yet received ciphertexts. If there was a challenge
ciphertext among them, this would leak to a trivial win. This predicate
is the equivalent of predicate P2 for leakage.

Optimality. These predicates (P1 to P8) are optimal within our formalism in
which the adversary can freely choose any efficient function as a leakage function,
in the sense any set of predicates which allows for more interactions cannot be
realized by a correct construction any more. The first four predicates (P1 to P4)
do not involve leakage and are the same that Balli, Rösler and Vaudenay identify
as optimal for URKE under randomness manipulation [BRV20a], but for the
sake of modularity we use a different formalism to define them. The remaining
predicates (P5 to P8) deal with the new leakage oracles. The optimality of P5,
P7 and P8 arises from the attacks described in the intuition paragraphs above,
which directly give the adversary a trivial win, regardless of how and when
the predicates are violated. Predicate P6 bounds the leakage of sender states,
which forbids the adversary to gain enough information on A’s state for an
impersonation attack.

Definition 8. A URKE scheme is (q, ℓ, t, ϵ)-LR-KIND secure for a security pa-
rameter λ ∈ N, if we have, for leakage bound ℓ and for all adversaries A running
in time at most t and making at most q oracle queries (including random oracle
queries made by leakage functions) in the LR-KIND game in Fig. 6:

2 ·
∣∣∣∣12 − Pr[LR-KINDℓ

A(1
λ)⇒ 1]

∣∣∣∣ ≤ ϵ,

where the probability is taken over the random coins used in the game LR-KIND
by challenger and adversary and all game runs, including aborted ones.
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4.2 Construction

In Fig. 7 we present an LR-KIND-secure URKE that we construct from a bounded
leakage-resilient MAC scheme and a classic kuKEM scheme. The construction
from MAC and kuKEM is essentially the same as in [BRV20a] except that
the MAC scheme in our construction is required to tolerate leakage of up to
ℓ bits, where leakage only occurs on the Tag operation. This allows us to achieve
LR-KIND security for the construction, as detailed below.

Function Setup(1λ)

1 : ppΠk
← Πk.Setup(1

λ)

2 : pp← (λ, ppΠk
)

3 : return pp

Function Send(stA, ad)

1 : (pk, ks, km, tr)← stA

2 : (pk, ke, ct
′)← Πk.Encaps(pk)

3 : t← Πlrm.Tag(km, (ad, ct′))

4 : ct← (ct′, t)

5 : tr← tr || (ad, ct)
6 : (ko, ks, km, u)← H(ke, ks, tr)

7 : pk← Πk.UpPk(pk, u)

8 : stA ← (pk, ks, km, tr)

9 : return stA, ct, ko

Function Init(pp)

1 : (λ, ppΠk
)← pp; K ← keyspace(λ)

2 : (pk, sk)← Πk.Gen(ppΠk
)

3 : ks, km ←$ K; tr← ⊥
4 : stA ← (pk, ks, km, tr)

5 : stB ← (sk, ks, km, tr)

6 : return stA, stB

Function Receive(stB, ad, ct)

1 : (sk, ks, km, tr)← stB

2 : (ct′, t)← ct

3 : if ¬Πlrm.Ver(km, (ad, ct′), t) then

4 : return (false,⊥,⊥)
5 : (sk, ke)← Πk.Decaps(sk, ct

′)

6 : if ke = ⊥ then return (false,⊥,⊥)
7 : tr← tr || (ad, ct′)
8 : (ko, ks, km, u)← H(ke, ks, tr)

9 : sk← Πk.UpSk(sk, u)

10 : stB ← (sk, ks, km, tr)

11 : return true, stB, ko

Fig. 7: URKE construction from kuKEM Πk (Definition 4), MAC Πlrm (Defini-
tion 1) and function H : K2 × T → K4 where T is the set of all possible traces
and K the set of keys, which is used by Πk and Πlrm as explained in Section 3.
The same scheme, but with an LR-KUOWR-secure kuKEM scheme Πlrk (Defini-
tion 5) instead of the KUOWR-secure Πk (Definition 5) achieves LR-OW security
as discussed in Section 5.

Correctness of our URKE follows from the correctness of the underlying
kuKEM and MAC schemes. Namely, for a given consistent pair of queries to
Send and Receive, by MAC correctness, the MAC verification call succeeds, and
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by kuKEM correctness, decapsulation outputs the key that was encapsulated.
The trace tr is consistently updated in Send and Receive, H is queried with the
same input in both algorithms, and UpPk and UpSk are called with the same
input. Thus, the same key ko is output by Send and Receive.

Theorem 1. The construction that we define in Fig. 7 is an LR-KIND-secure
URKE scheme, assuming that the function H is modeled as a random oracle.

More precisely, for leakage bound ℓ and security parameter λ (which gives
K ← keyspace(λ)) and time t, t̃ and t′ such that t′ ≈ t ≈ t̃, and three natural
numbers qs, qh and q with q ≥ qs+qh, assume that there is some ϵKUOWR such that
the kuKEM scheme that the construction uses is (2q, t′, ϵKUOWR)-KUOWR-secure
and some ϵLR-OT-SUF such that the MAC scheme is (q, ℓ, t̃, ϵLR-OT-SUF)-LR-OT-SUF
secure. Then for any adversary A respecting leakage bound ℓ, running in time at
most t and making at most q oracle queries in total, out of which qh are random
oracle queries and at most qs are calls to either SEND or RECEIVE, the success
probability in the LR-KIND game for the construction from Fig. 7 with parameter

λ is at most ϵ
(qs,qh)
LR-KIND where

ϵ
(qs,qh)
LR-KIND =

(4(qh + qs))
2

|K|
+ ϵKUOWR +

qh
|K|

+ qsϵLR-OT-SUF.

Therefore, the construction is (q, ℓ, t, ϵ
(qs,qh)
LR-KIND)-LR-KIND-secure.

Proof. We sketch the proof here and defer the details to Appendix C. The proof
strategy is similar to the one used by Balli, Rösler and Vaudenay to prove security
of their URKE scheme [BRV20b, Appendix B].

After excluding any collision in the random oracle, we show that an adversary
can learn a challenge key only by querying the random oracle with inputs that
lead the random oracle to output the challenge key itself. Based on this obser-
vation, we distinguish three cases depending on whether the challenge key the
adversary obtains from the random oracle was obtained by (1) a call to SEND
with fresh randomness (r = ⊥), (2) a call to SEND with manipulated randomness
(r ̸= ⊥), or (3) only by querying RECEIVE but not SEND. The first case reduces
to the KUOWR security of the kuKEM scheme, the second to guessing a random
key and the third reduces to the LR-OT-SUF security of the MAC scheme. The
reduction in the second case is due to P7 and P4. These forbit to leak on (or ex-
pose) the state key ks between initialization or the last non-manipulated SEND
call and the challenge key SEND, and therefore force the adversary to guess the
state key ks in order to have the full input to the random oracle. ⊓⊔

Remark 1. In the construction of Fig. 7, the states stA and stB grow with each
update since both Send and Receive append the current (ad, ct) pair to the trace,
which is in turn stored in the respective states (lines 5 and 8 in Send and lines 7
and 10 in Receive). We can avoid this by not storing tr in the states and use
tr = (ad, ct) as input to H, that is, H(ke, ks, (ad, ct)) on line 6 of Send and line 8
of Receive, since H accumulates the entire transcript into ks. One can invoke
the collision-resistance of H as a random oracle to prove the security of this
optimization.

20



Remark 2. A deep practical analysis of the expected overhead of achieving leak-
age resilience is left for future work, but we can already give an estimate for
the above LR-KIND-secure construction, which uses an LR-OT-SUF-secure MAC
scheme. We argued in Section 3.1 that LR-OT-SUF-secure MAC can be built
in the random oracle model. In the standard model, a concrete instantiation
was proposed by Hazay et al. [Haz+16, Section 5.3]. Their construction requires
a (weak) hash proof system (e.g., as efficient as the Cramer-Shoup cryptosys-
tem [CS98]), a (cheap) information-theoretically-secure one-time MAC and a
leakage-resilient MAC secure under a notion where no verification queries are
allowed [Haz+16, Definition 5.2] where tags are of size O(λ) pseudorandom
function outputs, where each function has a superpolynomial output of length
O(λω(1)), for security parameter λ.

Remark 3. In Appendix B we describe why the URKE scheme of [BRV20a] is
not in general secure under our security notions. Our attack exploits the fact
that if the underlying MAC is not leakage-resilient, then leaking enough bits of
the MAC secret allows the adversary to impersonate towards B and trivially win
a challenge on the key derived by B.

5 Leakage-resilient one-wayness for URKE

The predicate trivial-KIND in the LR-KIND game that we introduce in Section 4.1
is very strong, i.e., it strongly limits the oracle calls that the adversary can
perform in the game. This means that LR-KIND security can only be achieved
for very weak adversaries. In particular, a model allowing no leakage on the
receiver seems not very practical, as side channels on the receiver can exist.

In this section we introduce a stronger security notion that enables the ad-
versary to leak more information, especially on the receiver. We refer to this
notion as one-wayness for unidirectional ratcheted key exchange under leakage
(LR-OW). We first define LR-OW and we then present a construction for an
LR-OW-secure URKE from an LR-KUOWR-secure kuKEM (Definition 5) and
an LR-OT-SUF-secure MAC scheme (Definition 3). While LR-OT-SUF MAC-
schemes are known as described in the above section, LR-KUOWR-secure kuKEM
was never required before and we therefore construct it in Section 6.1.

5.1 Security definition

The LR-OW game for one-wayness under leakage is given in Fig. 8. It relies on
the same set of oracles as LR-KIND (Fig. 5), but it uses CHALL-OW instead of
CHALL-KIND.

In the LR-OW game with leakage bounds ℓA for leakage on A, ℓB for leakage
on B and ℓk for leakage on exchanged keys, the function trivial-OW(log, ℓA, ℓB, ℓk)
plays the same role as trivial-KIND but for the LR-OW game. We define trivial-OW
by using different sub-predicates; the function returns true if at least one of the
predicates evaluates to true. The trivial-OW function is a disjunctive clause of
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Game LR-OWℓA,ℓB,ℓk
A (1λ)

1 : b←$ {0, 1}
2 : win← false

3 : pp← Setup(1λ)

4 : (stA, stB, z)← Init(pp)

5 : state[·, ·], key[·, ·], log[·], trA, trB ← ⊥
6 : state[A, ϵ], state[B, ϵ]← (stA, stB)

7 : i← 0

8 : AO(pp, z)

9 : if trivial-OW(log, ℓA, ℓB, ℓk) then

10 : abort

11 : return win

Oracle CHALL-OW(P, tr, k)

1 : i← i+ 1

2 : if key[P, tr] ̸= ⊥ ∧ key[P, tr] = k :

3 : win← true

4 : log[i]← (“chall”,P, tr, k)
5 : return win

Fig. 8: URKE LR-OW game for the oracle set O = {SEND,RECEIVE,
EXP-STATE,EXP-KEY, LEAK-STATE, LEAK-KEY,CHALL-OW}.

the predicates (P1), (P2), (P3), (P4) that we define in Section 4.1 together with
the predicate that we define next (P9 to P11).

(P9): The adversary leaks more than ℓA bits on a state of A or a sequence of
states of A between which randomness is continuously manipulated:

∃ i, j,tr, tr′ : (tr ⪯ tr′) ∧
log[i] = (“rec”,B, tr′, ·, ·) ∧ log[j] = (“chall”,B, tr′, ·) ∧
[∄ k, trk : (tr ≺ trk ⪯ tr′) ∧ (log[k] = (“send”,A, trk, ·, ·,⊥))] ∧
|{l, trl : (log[l] = (“stleak”, ·,A, trl)) ∧ (tr ⪯ trl ⪯ tr′)}| > ℓA)

Intuition: See the intuition for (P6).

(P10): The adversary leaks more than ℓk bits of a challenge key:

∃ tr,P, j : log[j] = (“chall”,P, tr, ·)∧|{i : log[i] = (“kleak”, ·,P, tr, )}| ≥ ℓk.

Intuition: This predicate enforces the bound ℓk on the leakage on a
challenge key. It depends on the scheme that instantiates the primitive,
as ℓk varies with the parameters of the scheme.

(P11): The adversary leaks more than ℓB bits on B’s state and then queries the
CHALL-OW oracle:

∃ tr, j : |{tri, i : log[i] = (“stleak”, ·,B, tri, ) ∧ (tri ⪯ tr)}| ≥ ℓB ∧
log[j] = (“chall”,B, tr, ·)
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Intuition: The adversary leaks more than the prescribed ℓB bits on B’s
state, which might enable the adversary to break the security of the
scheme and the adversary queries the challenge oracle. This predicate
depends on the scheme that instantiates the primitive.

The predicates that involve leakage are less restrictive for one-wayness than
for key indistinguishability. In particular, bounded leakage on the receiver, some
leakage prior to send calls with manipulated randomness and bounded leakage
on challenge keys are allowed only for one-wayness. Through them, the adver-
sary can learn up to ℓA + ℓB + ℓk bits of the challenge key. All three predicates
only enforce these bound and the bound on leakage on A’s state which is re-
quired to exclude impersonation attacks (as in P6). The value of the bounds
and the impact their violations have depend on the concrete instantiation of the
primitive.

Definition 9. A URKE scheme is (q, ℓA, ℓB, ℓk, t, ϵ)-LR-OW secure for a fixed
security parameter λ, if we have, for leakage bounds ℓA, ℓB, ℓk and for all adver-
saries A running in time at most t (including runtime of leakage functions) and
making at most q oracle queries (including random oracle queries, even those in
leakage functions) in the LR-OW game in Fig. 8:

Pr[LR-OWℓA,ℓB,ℓk
A (1λ)⇒ 1] ≤ ϵ,

where the probability is taken over the random coins used in the game LR-OW
by challenger and adversary, and all game runs (even aborted ones).

Remark 4. The LR-OW and LR-KIND URKE security notions are by themselves
incomparable. More precisely, LR-OW asks the adversary to gain more knowl-
edge about output keys, while LR-KIND requires it to operate with less leakage
(so it has less information about output keys). Neither one of the notions directly
implies the other:

1. If an URKE is such that even bounded leakage on the receiver allows the
adversary to simulate enough of Receive to derive a key, then it is not LR-OW-
secure, but it may still be LR-KIND secure.

2. Consider a LR-OW URKE U . Then transform it into another URKE U ′ by
appending one 0 bit to all exchanged keys k (and use {0, 1}×K as keyspace
for exchanged keys). Then U ′ is still LR-OW-secure but clearly not LR-KIND.

Remark 5. We believe that in the ROM, any LR-OW-secure URKE U can likely
be transformed into an LR-KIND-secure URKE U ′ by defining the keys exchanged
via U ′ to be the output of the random oracle on those obtained by U . This builds
on the intuition that LR-OW allows for more leakage and is therefore in some
sense “stronger” than LR-KIND security, even if the two notions are formally
incomparable as detailed above; we leave formalizing this to future work.
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5.2 Construction

An LR-OW-secure URKE can be constructed from a kuKEM and a MAC in
exactly the same way than an LR-KIND-secure URKE, as depicted in Fig. 7
(page 19). The only difference is that the kuKEM (Πk in the scheme of Fig. 7)
now is replaced by an LR-KUOWR-secure one Πlrk (Definition 5) which tolerates
ℓB bits of leakage on the receiver before a challenge key reception. Furthermore,
the MAC scheme needs to be LR-OT-SUF secure for the bound ℓA + ℓB in the
LR-OW-secure construction, and not only for bound ℓA.

Since an LR-KUOWR-secure kuKEM is also KUOWR-secure, this construction
is a special case of our LR-KIND-secure construction and therefore LR-KIND- and
LR-OW-secure.

Theorem 2. The construction of Fig. 7 defines an LR-OW-secure URKE
scheme, where we model the function H as a random oracle.

More precisely, for leakage bounds ℓA, ℓB, ℓk and security parameter λ (which
induces K = keyspace(λ)) and times t, t′ and t̃ such that t′ ≈ t ≈ t̃, and three
natural numbers qs, qh and q such that q ≥ qh + qs, assume that there is some
ϵLR-KUOWR such that the kuKEM scheme that the construction uses is (2q +
1, ℓB, t

′, ϵLR-KUOWR)-LR-KUOWR-secure and some ϵLR-OT-SUF such that the MAC
scheme is (q, ℓA + ℓB, t̃, ϵLR-OT-SUF)-LR-OT-SUF secure. Then any adversary A
running in time at most t (including its leakage functions) and making at most
q oracles queries, out of which at most qh are random oracle queries (including
those made by leakage functions) and at most qs are calls to either SEND or

RECEIVE, has a success probability upper bounded by ϵ
(qs,qh)
LR-OW in the LR-OW game

against the construction of Fig. 7, where

ϵ
(qs,qh)
LR-OW =

2ℓA+ℓB+ℓk

|K|
+

(4(qh + qs))
2

|K|
+ ϵLR-KUOWR + qh

2ℓA+ℓB

|K|
+ qsϵLR-OT-SUF.

As a consequence, the construction is (q, ℓA, ℓB, ℓk, t, ϵ
(q,q)
LR-OW)-LR-OW secure.

Proof. We provide a proof sketch here and defer the full proof to Appendix D We
adapt the proof for the LR-KIND-secure construction (Theorem 1) to the LR-OW
setting. The main difference is that the adversary can also win the LR-OW game
without querying the random oracle, by guessing the challenge key among all
keys which match the leakage on the challenge key. Furthermore, in the treat-
ment of the case where the adversary wins after having obtained a challenge
key as output of the random oracle, a few small changes occur in the reductions
for the three subcases that we identify for the LR-KIND-security proof (Theo-
rem 1). The first case—a call to SEND with fresh randomness—is now reduced
to LR-KUOWR-security of the kuKEM, and for the other two cases, the leakage
bounds and some oracle simulations slightly change. In particular, for case 2, P9
now replaces P7. Due to P9 and P11, the adversary can know at most ℓA + ℓB
bits of ks, but it still has to guess the rest of it. ⊓⊔

24



6 On the complexity of leakage-resilient kuKEM

In this section, we first show that LR-KUOWR-secure kuKEM can be con-
structed from leakage-resilient OW-CPA-secure hierarchical identity-based en-
cryption and non-interactive zero-knowledge proofs. We then show that
LR-KUOWR-secure kuKEM can be constructed from LR-OW-secure URKE and
an LR-OT-SUF-secure MAC. This latter result implies, given our LR-OW-secure
URKE construction (Sections 4 and 5), that relative to a random oracle and a
LR-OT-SUF-secure MAC, LR-OW-secure URKE and LR-KUOWR-secure kuKEM
are in a meaningful sense equivalent. We then contextualise these results by dis-
cussing relations between different kuKEM and URKE variants.

6.1 Building LR-KUOWR kuKEM from LR-OW-CPA HIBE

Hierarchical identity-based encryption. We first recall appropriate definitions for
hierarchical identity-based encryption, or HIBE.

Definition 10 (HIBE). A hierarchical identity-based encryption (HIBE)
comprises the following efficient algorithms:

– Setup(1λ)→ (pp,mk) takes a unary string 1λ and outputs public parameters
pp and a master key mk. We assume pp is implicitly input to the algorithms
below.

– Gen(i⃗d ,mk)→ sk takes an ID vector i⃗d and a master key mk and outputs a

secret key sk associated with i⃗d.
– Del(i⃗d , ski⃗d , id)→ ski⃗d||id takes a vector of IDs i⃗d associated with secret key

ski⃗d and an ID id and outputs a secret key ski⃗d||id associated with vector

i⃗d || id
– Enc(m, i⃗d) → ct takes a message m and a vector of IDs i⃗d and outputs a

ciphertext ct.
– Dec(ct, sk) → m takes a ciphertext ct and secret key sk and outputs a mes-

sage, where m = ⊥ denotes failure.

When convenient, we sometimes abuse notation and consider IDs as ID vectors.

Correctness. Intuitively, a HIBE is correct if for a given call (pp,mk) ←
Setup(1λ), if a message m is encrypted with respect to i⃗d , i.e., ct← Enc(m, i⃗d),
then any secret key sk associated with a vector of IDs that is a prefix or equal
to i⃗d (derived from an appropriate calls to Gen and Del) should be such that
Dec(ct, sk) = m. We provide a formal definition in Appendix E.1.

Security. We consider one-wayness notions under leakage where the goal of the
adversary is to decrypt a randomly-chosen message encrypted under an identity
for which they do not trivially know a secret key. Here, we consider notions with
and without the aid of a decryption oracle (LR-OW-CCA and LR-OW-CPA, re-
spectively). Following [LRW11], our security notions consider two leakage bounds
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Game HIBE-Xℓmk,ℓsk
A (1λ)

1 : (pp,mk)← Setup(1λ)

2 : m∗ ←M
3 : b∗ ← {0, 1}
4 : qmk, qsk ← 0

5 : sks[·]← ⊥
6 : chall← false; cid ← ⊥

7 : out ← AO(pp, ct∗)

8 : if m∗ = out then return 1

9 : else return 0

CREATE(i⃗d)

1 : if sks[i⃗d ] ̸= ⊥ then abort

2 : sks[i⃗d ]← Gen(i⃗d ,mk)

3 : return sks[i⃗d ]

EXP-KEY(i⃗d)

1 : XP ← XP ∪ {id : id ⪯ i⃗d}
2 : if cid ∈ XP then abort

3 : return sks[i⃗d ]

DEC(ct, i⃗d)

1 : if ct = ct∗ then abort

2 : return Dec(ct,mk)

CHALL-OW(i⃗d)

1 : if chall = true then abort

2 : if i⃗d ∈ XP then abort

3 : chall← true

4 : cid ← i⃗d

5 : ct∗ ← Enc(m∗, i⃗d)

6 : return ct∗

LEAK(i⃗d , f)

1 : if i⃗d = ⊥
2 : if qmk > ℓmk then abort

3 : qmk ← qmk + 1

4 : return f(mk)

5 : else

6 : if qsk > ℓsk then abort

7 : qsk ← qsk + 1

8 : return f(sks[i⃗d ])

Fig. 9: HIBE-X HIBE security notion for HIBE-X ∈ {LR-OW-CPA, LR-OW-CCA}.
Let Ocore = (CREATE,EXP-KEY). Then the oracle collection is O = Ocore ∪
{LEAK,CHALL-OW} for LR-OW-CPA and O = Ocore∪{LEAK,CHALL-OW,DEC}
for LR-OW-CCA.

with respect to each master key (ℓmk) and for all associated secret keys that
descend from a given master key (ℓsk), which, looking ahead, suffices to build
LR-KUOWR kuKEM. The notions are formally captured in Figure 9.

Definition 11 (LR-OW-CPA). We say that an HIBE Π is (q, ℓmk, ℓsk, t, ϵ)-
LR-OW-CPA secure for security parameter λ if, for leakage bounds ℓmk and ℓsk
and all adversaries A which make at most q oracle queries and run in time at
most t, we have:

Pr[LR-OW-CPAℓmk,ℓsk
A (1λ)⇒ 1] ≤ ϵ,

where the probability is taken over all the random coins that the challenger
and the adversary use and the game LR-OW-CPA is defined in Fig. 9 for
O = (CREATE, LEAK,EXP-KEY,CHALL-OW).
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Definition 12 (LR-OW-CCA). We say that an HIBE Π is (q, ℓmk, ℓsk, t, ϵ)-
LR-OW-CCA secure for security parameter λ if, for leakage bounds ℓmk and ℓsk
and all adversaries A which make at most q oracle queries and run in time at
most t, we have:

Pr[LR-OW-CCAℓmk,ℓsk
A (1λ)⇒ 1] ≤ ϵ,

where the probability is taken over all the random coins that the challenger
and the adversary use and the game LR-OW-CCA is defined in Fig. 9 for
O = (CREATE, LEAK,EXP-KEY,CHALL-OW,DEC).

LR-OW-CCA-secure HIBE from LR-OW-CPA-secure HIBE and NIZKs. In
Fig. 10 we construct LR-OW-CCA-secure HIBE from an LR-OW-CPA-secure
HIBE scheme Πh and Πn, a NIZK that satisfies completeness, composable zero-
knowledge and true simulation f -extractability, as defined in Appendix E.2. The
construction is essentially the same as that of the work of Dodis et al. [Dod+10c],
that constructs LR-IND-CCA-secure public-key encryption from LR-IND-CPA-
secure public-key encryption and NIZKs, but adapted to the syntax of HIBE.
The construction indeed works even when considering one-way, rather than
indistinguishability-based security notions. Intuitively, the NIZK ensures that
the adversary must ‘know’ the message when making a decryption query in or-
der for the call to succeed, and so the decryption oracle does not provide any
‘useful’ information and thus CPA security suffices. Correctness follows from the
correctness of Πh and the completeness of Πn.

Function Setup(1λ)

1 : (pp,mk)← Πh.Setup(1
λ)

2 : (crs, tk)← Πn.Setup(1
λ)

3 : pp′ ← (pp, crs)

4 : return (pp,mk)

Function Gen(i⃗d ,mk)

1 : return Πh.Gen(i⃗d ,mk.mk)

Function Del(i⃗d , ski⃗d , id)

1 : return Πh.Del(i⃗d , ski⃗d , id)

Function Enc(pp,m, i⃗d ; r)

1 : ct′ ← Πh.Enc(m, i⃗d ; r)

2 : π ← Πn.Prove(pp.crs, ((m, r), (i⃗d , ct))

3 : return (ct′, π, i⃗d)

Function Dec(pp, ct, sk)

1 : ct← (ct′, π, i⃗d)

2 : if Πn.Ver(pp.crs, (i⃗d , ct), π) = false :

3 : return ⊥
4 : return Πh.Dec(ct, sk)

Fig. 10: Construction Π∗ of LR-OW-CCA-secure HIBE from LR-OW-CPA-secure
HIBE Πh and complete, CZK-secure and f -TSE-secure NIZK Πn for relation
R = {(x, y) = ((m, r), (i⃗d , ct)) : c ← Enc(pp,m, i⃗d ; r)}. Functions other than
Gen implicitly take pp as input and provide pp.pp as input to the corresponding
function from Πh.
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Theorem 3. Let Πh be a (q, ℓmk, ℓsk, t, ϵcpa)-LR-OW-CPA-secure HIBE, and Πn

a NIZK for relation R = {(x, y) = ((m, r), (i⃗d , ct)) : c ← Enc(pp,m, i⃗d ; r)} that
is complete, (t, ϵz)-CZK-secure, and (1, t, ϵf )-f -TSE-secure for f(m, r) = m.
Then Π∗ (Fig. 10) is (q, ℓmk, ℓsk, t

′, ϵcpa + ϵc + ϵf )-LR-OW-CCA-secure where
t ≈ t′.

Proof. The proof can be found in Appendix E.3.

From HIBE to kuKEM. We provide a construction of LR-KUOWR-secure
kuKEM from LR-OW-CCA-secure HIBE in Appendix E.4, which is the canon-
ical construction of kuKEM from HIBE (in particular using Enc to imple-
ment Encaps, Del to implement UpSk, and Dec and Del to implement Decaps)
following [PR18; BRV20a]. Although we do not provide a construction of
LR-KUOWR-secure kuKEM, we believe that one is in reach via a construction of
LR-OW-CPA-secure HIBE, since 1) leakage-resilient HIBE has been constructed
before (see [LRW11]), and 2) unpredictability notions have been considered with
leakage resilience before (signatures, one-way functions, etc.).

6.2 Building LR-KUOWR kuKEM from LR-OW URKE

In Sections 4 and 5, we showed that LR-OW-secure URKE can be constructed
from LR-KUOWR-secure kuKEM and LR-OT-SUF-secure MAC with polynomial
security loss, except for additive terms of the form 2ℓ/|K| for leakage bound
ℓ, which due to the one-way nature of LR-OW game are unavoidable (since
the adversary can always leak ℓ bits of the challenge key). We argue here
that LR-KUOWR-secure kuKEM can be built from LR-OW-secure URKE and
LR-OT-SUF-secure MAC in the random oracle model (with polynomial loss).

Construction. Balli, Rösler and Vaudenay [BRV20a] showed that KUOWR-secure
kuKEM can be built from OT-SUF-secure MAC and a KIND-secure URKE. We
modify their construction in two ways to build LR-KUOWR-secure kuKEM and
we present our resulting construction in Fig. 11. First, we now require leakage-
resilient building blocks. Second, in [BRV20a], Send would directly output keys
(k, km), but in our case since we do not rely on the key indistinguishability of the
URKE but only one-wayness, the MAC key km may be very far from uniform.
Thus, we feed the output key of Send through a random oracle H to derive k
and km.

In more detail, a public key consists of URKE sender state stA, and the cor-
responding secret key of both the sender and receivers’ states. At a high level,
Encaps uses Send and Decaps uses Receive, and UpPk and UpSk use derandom-
ized Send/Receive calls. In Encaps, the first Send call outputs a key k′; this is
then hashed to derive (k, km), where k is the output key and km is a MAC key.
Another Send call is then performed to bind the entire ciphertext to the URKE
instance. Decaps follows analogously. Collision key ck is sampled at the begin-
ning of each Encaps call to facilitate the security proof, namely so that Receive
cannot be feasibly called before the corresponding Send call if randomness is not
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Function Setup(1λ)

1 : ppΠu
← Πu.Setup(1

λ)

2 : pp← (λ, ppΠk
)

3 : return pp

Function Gen(pp = (λ, ppΠu
))

1 : (stA, stB)← Init(ppΠu
)

2 : pk← stA

3 : sk← (stA, stB)

4 : return (pk, sk)

Function Encaps(pk)

1 : ck←$ K
2 : (pk, k′, ct′)← Send(pk, (1, ck))

3 : (k, km)← H(k′)

4 : t← Tag(km, (ck, pk, ct′))

5 : ct← (ck, pk, ct′, t)

6 : (pk, ·, ·)← Send(pk, (2, ct); 0)

7 : return (pk, k, ct)

Function Decaps(sk, ct)

1 : (stA, stB)← sk

2 : (ck, pk, ct′, t)← ct

3 : (stB, k
′)← Receive(stB, (1, ck), ct

′)

4 : (k, km)← H(k′)

5 : if ¬Πm.Ver(km, (ck, pk, ct′), t)

6 : return (sk,⊥)
7 : (stA, ·, ct′′)← Send(stA, (2, ct); 0)

8 : (stB, ·)← Receive(stB, (2, ct), ct
′′)

9 : sk← (stA, stB)

10 : return (sk, k)

Function UpPk(pk, ad)

1 : (pk, ·, ·)← Send(pk, (0, ad); 0)

2 : return pk

Function UpSk(sk, ad)

1 : (stA, stB)← sk

2 : (stA, ·, ct)← Send(stA, (0, ad); 0)

3 : (stB, ·)← Receive(stB, (0, ad), ct)

4 : sk← (stA, stB)

5 : return sk

Fig. 11: LR-KUOWR-secure kuKEM Πk (Definition 5) construction from LR-OW-
secure URKE Πu (Definition 9), LR-OT-SUF-secure MAC Πm (Definition 3) and
random oracle H : K ×K → K.

manipulated. Domain separation is employed to differentiate between different
types Send/Receive calls in the associated data.

Theorem 4. Let Πm be a (ℓ + 1, ℓ, t′, ϵm)-LR-OT-SUF secure MAC and Πu a
(3q, 0, ℓB, 0, t

′, ϵu)-LR-OW secure URKE. Then, Πk (Fig. 11) is (q, ℓB, t, q
2/|K|+

q(ϵm + ϵu + 1
|K| ))-LR-KUOWR secure, where t ≈ t′ ≈ t̃.

Proof. The proof can be found in Appendix F.

Remark 6. Since a LR-OT-SUF MAC can be obtained from a random oracle as
shown in Section 3.1, the above implies that LR-KUOWR kuKEM and LR-OW
URKE are equivalent in the random oracle model.
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7 Conclusion

This paper explores the security of unidirectional ratcheted key exchange in
the bounded-leakage model under randomness manipulation. We formalize the
notion of leakage-resilient key indistinguishability for URKE and provide a con-
struction secure under this notion. Given the restrictions on the adversary that
our notion of key indistinguishability imposes, we explore the weaker, but still
useful, notion of leakage-resilient one-wayness for URKE. We then show that
leakage-resilient one-way URKE and kuKEM are highly related, and consider
how leakage-resilient kuKEM may be built. We conclude with some directions
for future work.

– Extend the results to sesquidirectional and bidirectional ratcheting [PR18].
We hypothesise that a suitable notion of leakage resilience for key indis-
tinguishability in these settings would enable the adversary to leak secret
material on B (the receiver in URKE terminology). Unlike in URKE, B can
heal from compromise (i.e., state exposure or leakage) in these primitives.

– Consider different notions of leakage and determine suitable perfor-
mance/security trade-offs along with an appropriate leakage bound for prac-
tical use.

– Extend the results to the setting of group messaging: a natural direction
would be to define and construct leakage-resilient continuous group key
agreement (CGKA) [Alw+20a].
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A Deferred preliminaries

A.1 Notation

We use maps, or associative arrays, which associate keys with values: m[·] ← x
defines a new map with values initially set to x, and m[k] returns the element
indexed by key k. Let [n] = {1, . . . , n}, i.e., the set of integers between 1 and n.
For two values b and b′, 1b=b′ is 1 if b = b′ and 0 otherwise. For every leakage
function f we assume that f(⊥)→ ⊥. Furthermore, some security games might
abort. There are two kinds of abortion, denoted by abortIND and abort, both
of which are defined in Appendix A.2.

We define relations prefix-or-equal ⪯ and strictly-prefix ≺ over two strings.
For instance, for stirngs a, b = a||x, c = a||y, where x ̸= y, we have that, a ⪯ b,
a ⪯ c, b ̸⪯ a, c ̸⪯ a, which means that a is a prefix of both b and c, but neither
b, c is a prefix of the other.

We denote with R the set of randomness used by all our functions. R does
not contain ⊥. We refer to randomness honestly sampled by an oracle with “fresh
randomness”, whereas we call “manipulated randomness” the randomness that
the adversary controls and provides to the oracles. Assigning to a variable a a
value output by a randomized algorithm A() is denoted by a←$ A(). Sampling
uniformly at random an element s from a set S is indicated with s←$ S. Some
randomized functions can take a randomness parameter r which is used instead
of freshly sampled randomness if it is not ⊥. They are written f(a, . . . , b; r)
where f is the function, a, . . . , b its normal parameters, and r the randomness
parameter. If r is set to ⊥, these functions produce a randomized output, while
they are fully deterministic if r is set to any value in R. Most keys (except
asymmetric ones) are assumed to be elements of the general key space K. The
set K depends on the security parameter λ and is part of the public parameters
of our schemes. We assume that K ⊆ R, i.e., K is a subset of R.

A.2 Security games

In our security games, we use aborts and logs, which we detail below.
We can divide the security games that appear in this work in two sets: guess-

ing and indistinguishability games. In a guessing game the adversary outputs a
whole secret, e.g., a symmetric key, and we say that the scheme for which game
is defined is secure if the success probability in guessing the secret is low for any
efficient adversary. In indistinguishability games the adversary’s goal is to guess
a uniformly random bit based on its knowledge and the double of the distance
to 1/2 of the success probability of all time-bounded adversaries measures the
security of the construction.

Abortion. Following the difference in the definition of the adversary’s advantage,
we use two notions of abortion. For guessing games, abort indicates that the game
returns 0, that is the adversary loses the game. For indistinguishability games
abortIND indicates that the game returns a uniformly random bit. The goal
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of these definitions is to ensure that the adversary cannot increase its winning
probability by intentionally aborting the game. This is in particular necessary if
it can check whether it is winning, which is for example the case for some state-
guessing attacks on LR-KIND and LR-OW. Therefore, all our probabilities over
game runs also include the aborted game runs and use the appropriate abortion
methods to ensure the adversary cannot gain anything by aborting.

Logs. Our games use several oracles, and some of these oracles log the inputs on
which they are called and other information. We always assume that the values
written in these logs are suitably encoded and cannot be confused with the other
syntax used in these logs (for example delimiting characters or oracle names).

B On the use of an LR-OT-SUF-secure MAC scheme

The LR-KIND-secure URKE scheme that we present in Fig. 7 is essentially
the same as in [BRV20a], but it uses an LR-OT-SUF-secure MAC instead of
a classic OT-SUF-secure MAC. In this section we show that the construction
from [BRV20a, Fig. 7] can be insecure under the partial leakage that we con-
sider in our work.

Assume that the construction in Fig. 7 uses a classic OT-SUF-secure MAC
scheme Πm. Assume this MAC scheme has the property that leaking ℓ bits of the
secret key allows for a full secret key recovery. This is a slightly stronger assump-
tion than the MAC not being LR-OT-SUF, but does not contradict OT-SUF-
security, and therefore allows to show that a OT-SUF-secure MAC as in the
construction from [BRV20a, Fig. 7] is insufficient. Furthermore, we assume that
within the same ℓ bits of leakage (or using prior exposure and leakage informa-
tion) it is possible to get the kuKEM public key. This would not contradict the
security of the construction, as we and [BRV20a] only use the security of the
kuKEM which does not depend on the secrecy of its public key. The adversary
proceeds as follows:

1. Leak Alice’s state by querying LEAK-STATE(f,A,⊥) for the appropriate
leakage function f and derive the entire MAC key (denoted as km in Fig. 7),
which is possible by the assumption we made on the scheme.

2. Simulate the Send function until the call to the function H (Fig. 7, Send,
lines 1 to 5 inclusive). The adversary can simulate because the kukem public
key is assumed to be known and the previous step of the attack leaks the
MAC key km, which is the only secret involved in lines 1 to 5.

3. Define a leakage function f ′
ke
→ H(ke, ks,⊥) by using the simulated ke

derived in the second step. Query LEAK-STATE(f ′
ke
,A,⊥) to get the first

bit b∗ of ko. This step is needed as ks is secret and the adversary cannot
simulate it.

4. Call RECEIVE(ad, ct) on the simulated ct and matching ad derived in the
second step of the attack.

5. Call CHALL-KIND(B, (ad, ct)) on the simulated ct and matching ad to obtain
the challenge key k.
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6. Output 0 if b∗ equals the first bits of k and 1 otherwise. This enables the
adversary to win the LR-KIND game of Fig. 6 with advantage 1/2.

This attack does not violate the sub-predicates that compose trivial-KIND.
In particular, the adversary can mount the first step of the attack as it can
leak up to leakage bound on Alice’s state, whereas a full exposure of Alice’s
state is forbidden by predicate (P3): the adversary queries RECEIVE(ad, ct) and
CHALL-KIND(B, (ad, ct)) on the same transcript tr∗ = (ad, ct), where the variable
tr∗ is used in predicate (P3).

C Proof of Theorem 1

Proof. The proof follows broadly the strategy that Balli, Rösler and Vaudenay
use to prove the security of their URKE construction [BRV20b, Appendix B],
since their construction is the same as ours except that we do account for leakage.

A challenge key, by definition of our trivial attacks, is a key on which no
bit was leaked and which was not revealed, so LEAK-KEY and EXP-KEY were
never called on it. It cannot be leaked or exposed through the states of A or B
via EXP-STATE or LEAK-STATE since in the construction of Fig. 6 it is never
part of these states. The adversary A cannot gain any information directly on
it. It has to guess whether the value returned by the CHALL-KIND oracle is
the exchanged key or a random one, without any knowledge, which results in
a success probability of exactly 1

2 , or call the random oracle H through which
it is generated with the right inputs. Since the first case gives no advantage
over random guessing, we focus on the second one and therefore assume in the
following that the adversary makes a query to the random oracle H which results
in the output of a valid challenge key.

G0.0: Let’s do a first game hop from the base game G0 depicted in Fig. 6
to a new game called G0.0 to eliminate collisions in the random oracle. Game
G0.0 is identical to G0, except that the random oracle no longer randomly
samples 4 keys from the set K when it is called on unseen input. Instead, it
samples uniformly random keys in the set of all elements of K which were not
already sampled by the oracle. Since the probability of a collision in any kind

of keys output by the random oracle is upper bounded by (4(qh+qs))
2

|K| where qh
is the number of random oracle calls and qs the number of SEND and RECEIVE
calls the LR-KIND adversary makes (including those in leakage functions) during
the game, the success probability of any adversary in distinguishing the games

G0 and G0.0 is upper bounded by (4(qh+qs))
2

|K| also.

In G0.0, if the oracle makes a call to H which outputs a valid challenge
key, it makes a call with exactly the inputs with which this challenge key was
obtained during sending or receiving, since SEND and RECEIVE are the only
oracles which access the exchanged key and they obtain it via a random oracle
call. If this random oracle call was made during sending, the cases of sending
without or with manipulated randomness are distinguished. If both occurred,
only the call without randomness manipulation in the SEND call is considered.
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Since it is possible that the random oracle was never queried on these inputs by
SEND, but only by RECEIVE, a third case needs to be added. RECEIVE does not
use randomness, therefore further distinctions are not needed. As no other oracle
uses random oracle calls nor accesses the challenge key, the list of cases below is
exhaustive, so that we can treat them separately and then sum the probabilities
of the adversary to reach these cases to obtain an upper bound on ϵLR-KIND.

1. A call to SEND without randomness manipulation made the random oracle
call.

2. A call to SEND with randomness manipulation made the random oracle call
and no call to it without randomness manipulation did so.

3. The random oracle query was made during a call to RECEIVE and in no call
to the SEND oracle.

In the remainder of the proof, we will show that Case 1. reduces to the
KUOWR security of kuKEM, Case 2. to guessing a hidden key, and Case 3. to
the LR-OT-SUF security of the MAC scheme. We first explain two steps in the
reduction which are necessary for all three cases.

In the game G0.0 (as in the base game G0 from Fig. 6), the reduction runs
the URKE construction to provide the oracles towards the adversary, and does
not respond at all to its challenger. In the following step, we split the random
oracle interface into two consistent random oracles H and G as in [BRV20b].
The adversary and the two leakage oracles LEAK-KEY and LEAK-STATE still
interact with an oracle H to which they input ke, ks, tr triplets. All other oracles
(but not the adversary) use the random oracle G which only takes as input a
trace tr. Both oracles are maintained consistently: For each trace tr where keys
ke and ks exist, G outputs the same value on tr as H outputs on the triplet of
tr and its ke and ks values. Since G is used instead of H by the oracles, it is
only called when keys ke and ks exist, which guarantees that this change does
not modify the outputs of the random oracles. If H is called on a new triplet
ke, ks, tr for which ke and ks do not match the oracle’s keys for tr or the oracle
does not yet know keys for that trace, H outputs a new random value and stores
the triplet in order to give consistent answers for it. If G is called for the first
time on a trace, then it is called on by an oracle which has defined ks and ke. If
H was already queried for this trace with the same ks and ke, G gives consistent
output, otherwise it samples a new one and stores it with the trace for future
calls. The appendix of [BRV20b] has a schematic representation of this oracle
splitting step.

G0.1: Similarly to [BRV20b], by keeping lists of keys of traces for which
the EXP-KEY, EXP-STATE, LEAK-STATE or LEAK-KEY oracle or SEND with
manipulated randomness or RECEIVE after leak or exposure on the receiver was
called and which are therefore not completely unknown to the adversary, all
other keys which were only used in calls to H which were replaced by calls
to G can just never be sampled, since the adversary never learns anything on
them. Furthermore, keys which the adversary learns through an oracle call can
be sampled by the challenger only at the moment where it learns them, and
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then stored for potential H calls containing them. Therefore, the challenger only
needs to know and fix ke and ks keys if one of these oracles is called for their
trace. The game with these modified random oracles is denoted G0.1. Since
G0.1 is a rewriting of G0.0 the adversary has the same success probability as
in G0.0.

The remainder of the proof will treat the three cases in order, one after the
other. In each of them, we will start from G0.1.

Case 1. Assume that the adversary makes at some moment of the game a call
to the random oracle H with input ke, ks, tr such that SEND also made such
a call with the same inputs when treating a call where randomness was not
manipulated.

G1.1: The game creates URKE sender and receiver states as described in
the construction, and uses it to simulate all URKE oracles to the adversary. The
random oracle is split as described above. In G1.1 the adversary has the same
success probability as in G0.1 assuming Case 1.

G1.2: We define a reduction for KUOWR a adversary that simulates as fol-
lows. It replaces the public kuKEM key in the sender state by the public kuKEM
key of its KUOWR challenger, and removes the private kuKEM key from the re-
ceiver state. The oracles are simulated as follows:

– Calls to LEAK-STATE and EXP-STATE on the sender are unchanged.
– RECEIVE is simulated by using the DEC oracle of the KUOWR challenger

to get the encapsulated key, and using the update key and the UPSK oracle
of the KUOWR challenger to update the kuKEM secret key so that it stays
synchronized with the public key which encapsulated the received key.

– EXP-STATE on the receiver requires to use the expose oracle of the KUOWR
challenger.

– LEAK-STATE on the receiver is simulated by exposing the secret key and
then leaking the required bit of it. This makes sense since leaking on the
receiver is only authorized after the generation of all challenge keys.

– SEND is simulated by using the public kuKEM key for encapsulating a ran-
dom key, and then updating the public key accordingly via the UPPK oracle.
Therefore, all encapsulated keys are known at their generation, the array
key[·, ·] can be maintained and the CHALL-KIND, LEAK-KEY and EXP-KEY
oracles are unchanged.

Since the key pair is subject to exactly the same operations at the same mo-
ments in the game execution (only that these operations now mostly take place
in oracles provided by the challenger), this game change does not impact the ad-
versary, which therefore still has the same success probability as in game G1.1
assuming Case 1.

G1.3: We define a similar reduction as above except that SEND is simulated
differently: Now the ENC oracle of the KUOWR game is used for encapsula-
tion. Furthermore, SEND calls with manipulated randomness can be simulated
via ENC calls with manipulated randomness. This means that the encapsulated
keys are not known to the reduction. However, the key[·, ·] array can still be
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maintained, since its contents are keys ko output by G which does not require
the exchanged key as input. Thus the simulation of CHALL-KIND, LEAK-KEY
and EXP-KEY is straightforward. The only two cases in which the adversary can
access an encapsulated key ke is by leaking on the sender state while simulating
encapsulation with manipulated randomness, or if it makes a SEND query with
manipulated randomness. The first case is trivial since the adversary provides
the function to be evaluated which computes itsel the encapsulated key, and
in the second case, the DEC query in the KUOWR game can be used to give
the adversary the necessary knowledge, since a key generated with manipulated
randomness is not a KUOWR challenge key. Therefore the adversary still has the
same success probability as in game G1.2 assuming Case 1.

When the adversary now makes a random oracle query to H for a trace
tr which corresponds to a challenge key which was encapsulated using fresh
randomness, this is a key which is also a challengeable kuKEM key, since there
was no decapsulation query on it, and the receiver B was not leaked nor exposed
before its generation. Therefore, the reduction can take the ke value in the call
to H, and submit it to its KUOWR challenger in order to win the KUOWR game.
As the LR-KIND adversary runs in time t, the reduction is ran by a KUOWR
adversary running in time t′ ≈ t since it does no expensive operation except the
leakage function simulation and running the adversary. It makes at most 2q + 1
queries to KUOWR oracles (exactly one SOLVE and zero LEAKSK calls, 2 calls
per SEND and two per call to RECEIVE, at most one to EXP per leakage query).
It solves KUOWR as often as the LR-KIND adversary solves LR-KIND via Case 1.
Therefore, the probability of the LR-KIND adversary to call H so that it outputs
a valid challenge key (this is, to reach Case 1.) is bounded by ϵKUOWR, so its
change to win the LR-KIND game by Case 1. is upper bounded by ϵKUOWR.

Case 2. Assume that the adversary makes at some moment of the game a call to
the random oracle H with input ke, ks, tr such that the SEND oracle also made
such a call with the same inputs when treating a call where randomness was
manipulated, and this call yields a challenge key. Let the sender state associated
to tr where this random oracle call is made be T . Since the call yields a challenge
key, there is a state S of the sender corresponding to trace tr′ such that:

– From S until T randomness is always manipulated:

∄ i, tr∗ : (tr′ ≺ tr∗ ⪯ tr) ∧ (log[i] = (“send”,A, tr∗, ·, ·,⊥)).

– No state between S and T (both included) is exposed via EXP-STATE on
the sender: ∄ i, tr∗ : (tr′ ≺ tr∗ ⪯ tr) ∧ (log[i] = (“stexp”,A, tr∗)).

– S was generated with fresh randomness: ∃ i : log[i] = (“send”,A, tr′, ·, ·,⊥).
– No LEAK-STATE on the sender state occurs between S and T :

|{i : (∃ tr∗ : log[i] = (“stleak”,A, ·, tr∗))}| = 0.

Since there is no leakage involved between S and T , the argumentation that kTs
is unknown to the adversary is the same as in [BRV20b].
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G2.1: The challenger wants the adversary to guess a random value K. The
game completely simulates an instance of URKE to the adversary. The ran-
dom oracle is split as above. This game is identical to G0.1 in Case 2., so the
adversary has the same success probability as in Case 2.

G2.2: The challenger guesses for which state S the adversary will make the
H call, and substitutes K for kSs . This is possible since it only uses G and not
H on S since no leakage nor exposure on this state is possible (since a send with
manipulated randomness on it produces a valid challenge key), and that it was
obtained through a random oracle query to G. If the guess is correct, G2.2 is
just a rewriting of G2.1, so the adversary has the same success probability in
both. The probability that the guess is correct is 1

q , where q is the number of H
queries the adversary makes.

To see that S was generated through a G query, note that the last state before
S which was generated using fresh randomness had his generation therefore
simulated by G (as the key k was not sampled since not required). Since itself
and all following ks were never exposed nor leaked, they were never generated,
but their creation was postponed to the first oracle query requiring it (leak or
expose query) which never occurred. Therefore, the challenger does not need to
know kSs to correctly simulate the URKE construction to the adversary. The H
query of the adversary then gives the random value it guessed to the challenger,
which therefore wins as often as it guessed S correctly among a polynomial
number of possible states (as many as send calls) and the adversary wins. This
gives a success probability of q

|K| , independently of the adversary’s runtime.

Case 3. Assume that the adversary will make at some moment of the game a
call to the random oracle H with input ke, ks, tr such that the receive oracle also
made such a call with the same inputs and this call yields a challenge key, but no
send call ever used them. In this case, a message was accepted which was never
sent. We reduce this to the strong unforgeability of MAC under bounded leakage
of bound ℓ (which is equal to the leakage bound of the URKE construction).

G3.1: The game runs the URKE construction and all oracles for the adver-
sary. The random oracle is split as above. This game is identical to G0.1 in
Case 3., so the adversary has the same success probability in Case 3.

G3.2: We define an LR-OT-SUF adversary that simulates as follows. The
adversary guesses which of the ≤ q receivers state S containing the MAC key
kSm which will be used for receiving a message never sent, if any. Do not sample
kSm, but use the Tag and Ver oracles of the LR-OT-SUF challenger instead. If
only RECEIVE is called on it, there is no need to sample it, since G is used. The
state of the receiver B containing it cannot be exposed nor leaked since it is B’s
state before receiving a challenge key. However, if there is a state of the sender
containing it, this state could have been leaked. If there is leakage on this state,
sample all other components of the sender’s state and call the LEAK-KEY oracle
of the LR-OT-SUF challenger. The no-impersonation rule forbids the exposure
of this state, and the definition of P6 prevents more than ℓ bits of leakage in the
case of impersonation. As a consequence, in the case where the state on which the
winning H call occurs is guessed correctly, the adversary’s success probability
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in this game is the same as in game G3.1. The guess is correct with probability
1
qs
, where qs is the number of SEND and RECEIVE calls the adversary makes.

Therefore, the probability that the guess was correct and the adversary succeeds
is upper bounded by 1

qs
· ϵLR-KIND.

When the message not created by the SEND oracle is received by RECEIVE,
it is not identical to a previous TAG query (since only SEND is simulated by TAG
queries) and therefore permits to win the LR-OT-SUF game. This means that
qs Pr[LR-OT-SUF

ℓ
reduction(1

λ) → 1] ≥ Pr[(LR-KINDℓ
A(1

λ) → 1) ∧ (Case 3.)]. The
reduction respects the leakage bound ℓA, makes only q queries to the LR-OT-SUF
oracles (one per leak and one per SEND or RECEIVE using the MAC key from
the challenger), and runs in time t̃ ≈ t where t is the runtime of the adversary,
since the only potentially costly operations it runs are the execution of the adver-
sary and some leakage function evaluations. Its success probability is therefore
bounded by ϵLR-OT-SUF. As a consequence, the probability that the adversary
wins LR-KIND through Case 3. is bounded by qs · ϵLR-OT-SUF. ⊓⊔

D Proof of Theorem 2

Proof. In this proof, the number of random oracle queries by the LR-OW adver-
sary is denoted by qh and the number of SEND/RECEIVE queries by qs.

The main difference between LR-OW and LR-KIND is that an LR-OW adver-
sary can win by correctly guessing the challenge key. There are therefore two
ways in which the adversary can win the game: either it makes a random oracle
query outputting it (Case -1.), or it does not make such a query and guesses the
key with the available knowledge (Case 0.).

In Case 0., its success probability is 2ℓA+ℓB+ℓk

|K| , since by construction of the

URKE scheme the key is sampled uniformly at random in K and the leakage
bounds are enforced by the trivial-OW function. This case simply does not exist
in the LR-KIND game, since the adversary there could not check such a guess if
it made one, and therefore guessing a challenge key correctly does not affect its
chance of succeeding.

The remainder of the proof will bound the success probability in Case -1.
which is similar to the LR-KIND proof.

If it does not simply guess the challenge key as in Case 0., the adversary only
has the possibility to obtain the challenge key either by making a query to the
random oracle with the same inputs as the SEND or RECEIVE oracles use to
obtain it, or by exploiting a collision in the random oracle.

We can use the same argument as in the LR-KIND proof to move to a game
G0.0 without collisions, so the success probability of an adversary distinguishing

between the original game (in Case -1.) andG0.0 is bounded by (4(qh+qs))
2

|K| . This

game hop therefore adds a term (4(qh+qs))
2

|K| to our final bound on the success

probability of the adversary.
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Furthermore, by the same reasoning as the LR-KIND proof uses for game
G0.0 (that means, assuming no collisions and no random guessing of the key),
there are three cases in which the adversary makes a call to H which outputs a
challenge key, which was therefore also output in a H call in a SEND or RECEIVE
call:

1. A call to SEND without randomness manipulation made the random oracle
call.

2. A call to SEND with randomness manipulation made the random oracle call
and no call to it without did so.

3. The random oracle query was made during a call to RECEIVE and in no call
to the SEND oracle.

In addition, we can, as in the LR-KIND proof, split the random oracle in
G0.0 into two oracles H and G with consistent outputs such that G is used by
SEND and RECEIVE and only requires a trace as input, and H is used by the
leak oracles and the adversary and requires a triplet of the two correct keys ke
and ks for a given trace tr in addition to that trace. This does not impact the
adversary’s success probability. Finally, it is possible to use lazy sampling for all
keys ks and ke, which are therefore only generated if any computation different
from a random oracle call is done on them. This again does not impact the
success probability. The resulting came is denoted G0.1 and serves as a base for
the three separate reductions we will construct to capture the three cases listed
above.

Case 1. G1.1: The challenger creates URKE sender and receiver states as de-
scribed in the construction, and uses it to simulate all URKE oracles to the
adversary. The random oracle is split as described above. In G1.1 the adversary
has the same success probability as in G0.1 assuming Case 1..

G1.2: We define an adversary that simulates as follows. The adversary re-
places the public kuKEM key in the sender state by the public kuKEM key of its
LR-KUOWR challenger, and removes the private kuKEM key from the receiver’s
state. The oracles are simulated as in game G1.2 of the LR-KIND proof, except
for the simulation of LEAK-STATE on B, which is done by using the LEAKSK
oracle in the LR-KUOWR game. To do so, the other keys contained in B’s state
must be generated and incorporated into the leakage function given by the ad-
versary, to obtain the corresponding leakage function for the LEAKSK oracle.
This game change does not change the adversary’s success probability, which is
the same as in game G1.1 assuming Case 1.

G1.3: In this hop, SEND and LEAK-STATE on B are simulated differently.
SEND is simulated as in game G1.3 of the LR-KIND proof. For LEAK-STATE on
party B, up to ℓB bits of leakage are simulated by using the LEAKSK oracle in the
LR-KUOWR game. In order to do so, the other keys contained in B’s state must
be generated and incorporated into the leakage function given by the adversary,
in order to obtain the corresponding leakage function for the LEAKSK oracle.
If the adversary requires more than ℓB bits of leakage on a trace, the kuKEM
secret key is exposed and used to compute the additional leakage. As in the
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LR-KIND proof, the key[·, ·] array can be maintained. Differently to LR-KIND
the adversary can now make LEAK-STATE queries on the state of A before a
challenge key is sent. Since challenge keys in Case 1. are always generated with
fresh randomness, this is not relevant here. Thus the adversary still has the same
success probability as in game G1.2 assuming Case 1.

As in the LR-KIND proof, observing a query to H resulting in a valid chal-
lenge key generated by sending without randomness manipulation allows the
adversary to win the LR-KUOWR game. Therefore, it always wins the KUOWR
game if the adversary wins the LR-OW game via Case 1. The reduction is a
LR-KUOWR adversary with respect to the kuKEM which runs in time t′ ≈ t if
the adversary runs in time t, since it performs no costly operations besides run-
ning the adversary and executing some of the leakage functions, which are both
counted in t. It makes at most two LR-KUOWR oracle queries per LEAK-STATE,
SEND or RECEIVE call of the LR-OW adversary. Therefore, if the LR-OW ad-
versary calls q LR-OW oracles in total, the adversary makes at most 2q + 1
LR-KUOWR oracle queries (including one to SOLVE) and runs in time t′ while
respecting leakage bound ℓA. As a consequence, its success probability is bounded
by ϵLR-KUOWR. This bounds the success probability of the adversary in Case 1.
to at most ϵLR-KUOWR.

Case 2. In Case 2., we assume that the adversary will make at some moment of
the game a call to the random oracle H with input ke, ks, tr such that the SEND
oracle also made such a call with the same inputs when treating a call where
randomness was manipulated (and never with fresh randomness), and this call
yields a challenge key. Let the sender state associated to tr where this random
oracle call is made be T . Since the call yields a challenge key, there is a state S
of the sender corresponding to trace tr′ such that:

– From S until T , randomness is always manipulated:
∄ i, tr∗ : (tr′ ≺ tr∗ ⪯ tr) ∧ (log[i] = (“send”,A, tr∗, ·, ·,⊥)

– No state between S and T (both included) is exposed via EXP-STATE on
the sender:
∄ i, tr∗ : (tr′ ≺ tr∗ ⪯ tr) ∧ (log[i] = (“stexp”,A, tr∗)

– S was generated with fresh randomness:
∃ i : log[i] = (“send”,A, tr′, ·, ·,⊥)

– LEAK-STATE on the sender state occurs at most ℓA times between S and T :
|{i : (∃ tr∗ : log[i] = (“stleak”,A, ·, tr∗))}| ≤ ℓA

Since in the LR-OW game there is leakage between S and T , we cannot argue
that kTs is unknown to the adversary as in the LR-KIND proof or [BRV20b,
Appendix B]. Therefore, we cannot reduce to guessing a completely unknown
state key, but only to guessing a state key on which ℓA + ℓB bits of leakage are
allowed.

G2.1: The challenger wants the adversary to guess a random value K. For
this, it samples K from K. Then, it allows the adversary to access at least ℓA+ℓB
times a LEAK-K oracle which checks and increments a counter counting the calls
to it (and returns ⊥ if the check failed) and returns one bit equal to f(K)
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otherwise, where f is a function provided by the adversary to the oracle which
always outputs a bit. The game completely simulates an instance of URKE to
the adversary. The random oracle is split as above.

From the adversary’s perspective, this game is identical to G0.1 in Case 2.,
so the adversary has the same success probability.

G2.2: The game guesses for which state S the adversary will make the H
call, and substitutes K for kSs . This is possible since both of these are uniformly
randomly sampled from K, either by a random oracle or by the challenger. The
only oracles using state keys is H, and it is only called on ks by the adversary
(which does not need to be simulated) or a LEAK-STATE call. LEAK-STATE can
be called at most ℓA+ ℓB times on a state ks prior to a challenge key: By ℓA calls
to LEAK-STATE on A and ℓB on B. The LEAK-STATE oracle can be simulated
in these cases by calling the LEAK-K oracle of the challenger with a leakage
function where all other state components of the leaked party are inserted where
they are used, and the random oracle (including all its state) is incorporated in
the leakage function in case it is used by it.

If the challenger guesses correctly, G2.2 is just a rewriting of G2.1, so the
adversary has the same view and same success probability in both cases. Fur-
thermore, in all cases where the adversary succeeds in the LR-OW game via
Case 2. and the challenger guessed correctly, game G2.2 allows an adversary to

win the key-guessing with leakage game with probability of at most 2ℓA+ℓB

|K| . Since

the challenger guesses correctly with probability 1
qh

where qh is the number of

H queries the adversary makes (including those within leakage functions), this

bounds the success probability of the adversary in Case 2. to qh · 2
ℓA+ℓB

|K| .

Case 3. As for LR-KIND, we reduce the case where some message is received and
accepted and decapsulated into a challenge key which has never been sent, to
the LR-OT-SUF security of the MAC scheme for bound.

G3.1: This is the same as in the LR-KIND proof and also does not impact
the adversary at all.

G3.2: This is is also very similar to the LR-KIND case. The main difference is
that LEAK-KEY and LEAK-STATE on B need to be simulated in the case where
the reduction guessed correctly.

LEAK-KEY leaks information on the key output by the random oracle and not
on the exchanged key, and it can therefore be simulated by uniformly randomly
sampling a challenge key and leaking on it.

LEAK-STATE on B is simulated by querying the LEAK-KEY oracle of the
LR-OT-SUF game with the leakage function received for leakage on B in which
all keys except the MAC key are replaced by their actual values (which the
reduction always knows).

Therefore, this game change is only a rewriting in the case where the reduc-
tion guessed correctly, which happens with probability 1

qs
.

As a consequence, in the case where the state on which the winning H call
occurs is guessed correctly, the adversary’s success probability in this game is
the same as in game G3.1. The guess is correct with probability 1

qs
.
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In game G3.2, if the reduction guessed correctly for which MAC key among
the at most qs existing ones the adversary will make the H query which allows
it to obtain a challenge key, the reduction wins the LR-OT-SUF game by passing
the message on which RECEIVE produced this challenge key to the LR-OT-SUF
challenger. The reduction runs in time t̃ ≈ t since it does not do any costly
operations except simulating and leakage function executions, which both are
counted in t. Furthermore, it makes one LR-OT-SUF oracle query per RECEIVE
and LEAK-STATE on B call, so in total at most q LR-OT-SUF oracle queries. It
therefore is an LR-OT-SUF adversary running in time t̃ making at most q oracle
queries and respecting leakage bound ℓA + ℓB, and as a consequence its success
probability is at most ϵLR-OT-SUF. Thus, the adversary has a success probability
of at most qsϵLR-OT-SUF in Case 3. ⊓⊔

E Deferred material for LR-KUOWR-secure kuKEM and
proofs for Section 6.1

E.1 HIBE correctness definition

We provide a formal correctness definition for hierarchical identity-based encryp-
tion (HIBE), captured in Fig. 12.

Game CORRECTA(1λ)

1 : (pp,mk)← Setup(1λ)

2 : i, j ← 0

3 : E[·], sks[·]← ⊥
4 : win← 0

5 : AO(st)

6 : return win

GEN(i⃗d)

1 : i← i+ 1

2 : sks[i]← (Gen(i⃗d ,mk), i⃗d)

3 : return sks[i]

ENC(m, i⃗d)

1 : j ← j + 1

2 : E[j]← (Enc(m, i⃗d),m, i⃗d)

3 : return E[j]

DEL(id , i′)

1 : require i′ ∈ [1, i]

2 : (sk, i⃗d)← sks[i]

3 : sk′ ← Del(i⃗d , sk, id)

4 : sks[i]← (sk′, i⃗d || id)
5 : return ct

DEC(i′, j′)

1 : (ct,m, i⃗d j)← E[j′]

2 : (sk, i⃗d i)← sks[i′]

3 : require i⃗d i ⪯ i⃗d j

4 : if Dec(ct, sk) ̸= m

5 : win← 1

6 : return

Fig. 12: HIBE correctness game.
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Definition 13 (HIBE correctness). Consider the CORRECT game of Fig. 12.
An HIBE scheme is correct if for all (possibly unbounded) adversaries A and all
λ ∈ N it holds that

Pr[CORRECTA(1
λ)⇒ 1] = 0.

E.2 True-simulation extractable NIZKs

We follow the work of Dodis, Haralambiev, Lopez-Alt and Wichs [Dod+10c] in
defining the notions below.

Definition 14. Let R be an NP relation on pairs (x, y) corresponding to the
language LR = {y : ∃x : (x, y) ∈ R}. A non-interactive zero-knowledge (NIZK)
argument for a relation R comprises the following efficient algorithms:

– Setup(1λ) → (crs, tk) takes a unary string 1λ and outputs a common refer-
ence string crs and a trapdoor key tk.

– Prove(crs, x, y)→ π takes a common reference string crs and a pair (x, y) ∈ R
and outputs a proof π.

– Ver(crs, y, π) → acc takes a common reference string crs, a value y and a
proof π and outputs an acceptance bit acc ∈ {true, false}.

Sometimes we omit crs as input from Prove and Ver when it is clear from context.

Definition 15 (Completeness). We say that NIZK argument Π for NP re-
lation R is complete if for any (x, y) ∈ R, if (crs, tk) ← Setup(1λ), π ←
Prove(x, y), then Ver(y, π) = 1.

Definition 16 (Composable Zero-Knowledge). A NIZK is (t, ϵ)-CZK-
secure for security parameter λ and NP relation R on pairs (x, y) corresponding
to the language LR = {y : ∃x : (x, y) ∈ R} if there exist an efficient simulator
Sim such that for all adversaries A which run in time at most t we have

2 ·
∣∣Pr[CZKA(1

λ)⇒ 1]− 1/2
∣∣ ≤ ϵ,

where the probability is taken over all the random coins that the challenger and
the adversary use, and the game CZK is defined in Fig. 13.

Definition 17 (True-Simulation f-Extractability [Dod+10c]). A NIZK
is (t, q, ϵ)-f -TSE-secure for security parameter λ, NP relation R on pairs (x, y)
corresponding to the language LR = {y : ∃x : (x, y) ∈ R} and function f if there
exist algorithms (crs, tk, ek)← Setup∗(1λ) and z ← Ext(y, ϕ, ek) such that for all
adversaries A which run in time at most t and make at most q queries to SIM
we have

Pr[f -TSEA(1
λ)⇒ 1] ≤ ϵ,

where the probability is taken over all the random coins that the challenger and
the adversary use, and the game f -TSE is defined in Fig. 14.
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Game CZKA(1λ)

1 : b←$ {0, 1}

2 : (crs, tk)← Setup(1λ)

3 : (x, y, st)← A(crs, tk)
4 : π0 ← Prove(x, y); π1 ← Sim(y, tk)

5 : b′ ← A(πb, st)

6 : return 1b=b′

Fig. 13: CZK game that we use in Definition 16.

Game f -TSEA(1λ)

1 : (crs, tk, ek)← Setup∗(1λ)

2 : (y∗, ϕ∗)← ASIM(1λ)

3 : z∗ ← Ext(y∗, ϕ∗, ek)

4 : if y∗ previously input to SIM by A then return 0

5 : if Ver(y∗, ϕ∗) = 0 then return 0

6 : if ∀x′ : f(x′) = z∗, R(x′, y)′ = 0 then return 1

Fig. 14: f -TSE game that we use in Definition 17, where SIM is a simulation oracle
that outputs simulated proofs. For simplicity that we omit labels, considered by
[Dod+10c], from our notion.

E.3 Proof for Theorem 3

Proof. Our proof strategy is very similar to that of Dodis, Haralambiev,
Lopez-Alt and Wichs to prove security of their LR-IND-CCA-secure public-key
encryption scheme in [Dod+10a, Appendix A.3]. We proceed by a hybrid
argument and construct games G0 to G2; Let Pr[Si] be the probability that
Gi outputs 1 for i ∈ [0, 2].

G0: This is the LR-OW-CCA game instantiated with Π∗. We have:

Pr[S0] = Pr[LR-OW-CCAℓ
A(1

λ)⇒ 1]

G1: This is the same as G0, except the call “ct∗ ← Enc(m∗, i⃗d)”
in the CHALL-OW oracle is modified to replace the call “π ←
Πn.Prove(pp.crs, ((m, r), (i⃗d , ct))” by the output of algorithm Sim((i⃗d , ct), tk),
where Sim is defined in the CZK game. Since Πn is CZK-secure it follows that

|Pr[S0]− Pr[S1]| ≤ ϵz

G2: This is the same as G1, except for the following changes:
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– The call “(pp,mk) ← Πh.Setup(1
λ)” is replaced by a call “(pp,mk, ek) ←

Πh.Setup
∗(1λ)” where Setup∗ is defined in the f -TSE game.

– On decryption query DEC(ct, i⃗d) where ct = (ct′, π, i⃗d
′
), the challenger calls

m← Ext((i⃗d , ct′), π, ek) and returns m.

By the true simulation f -extractability of Πn, it follows that

|Pr[S1]− Pr[S2]| ≤ ϵf

Finally, note that G2 can be perfectly simulated by an LR-OW-CPA adversary
since in particular the decryption oracle can be simulated locally, and all other
queries can be simulated using a combination of local computation and oracle
queries. Thus we have

Pr[S2] = ϵcpa

The result follows by collecting the probabilities. ⊓⊔

E.4 LR-KUOWR-secure kuKEM from LR-OW-CCA-secure HIBE

We provide in Fig. 15 a construction of kuKEM from HIBE provided by Balli,
Rösler and Vaudenay [BRV20a] adapted to our notation. In particular, although
[BRV20a] construct kuKEM from a HIB-KEM, or a hierarchical identity-based
key encapsulation mechanism, the construction is essentially the same. Balli,
Rösler and Vaudenay argue that their kuKEM is KUOWR-secure with a suitable
OW-CCA security notion for HIB-KEM but do not provide a formal definition.
We argue below security in our case given that both security notions consider
leakage.

Theorem 5. Let Πh be a (q, ℓmk, ℓsk, t, ϵcca)-LR-OW-CCA-secure HIBE. Then
Πk (Fig. 10) is (q, t′, q2 · ϵcca)-LR-KUOWR-secure for t ≈ t′.

Proof. We construct a number of LR-OW-CCA adversaries that simulates for
LR-KUOWR adversary A. Let Ai,j = A′ be an adversary that simulates for
A given A’s i-th query to SOLVE is winning, and it is with first argument tr
that is the result of j queries to a combination of ENC and UPPK. Then, A′

simulates ENC(r) and DEC by local simulation except for the ENC and DEC
calls corresponding to tr. Leakage is simulated directly via the leakage oracle.
Let tr′ be the value of trA after A has made j − 1-th query to ENC/UPPK (note
j = 0 is possible). At this point, A′ calls CHALL-OW(tr′) and receives challenge
ciphertext ct∗ as output. Then, if A’s j-th call is to UPPK, A′ aborts, otherwise
A′ simulates ENC(r) via ct∗ (aborting also if r ̸= ⊥. A′ simulates EXP(tr) using
EXP-KEY. A′ simulates the first i − 1 calls to SOLVE by returning ⊥. When
A′ makes its i-th query with input (tr′, k), A returns k to its challenger. The
simulation is perfect and the result follows by taking the union bound over all
q2 possible adversaries. ⊓⊔
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Function Setup(1λ)

1 : pp← 1λ

2 : return pp

Function Gen(pp)

1 : (pp′, sk′)← Πh.Setup(pp)

2 : i⃗d ← ϵ

3 : pk← (pp′, i⃗d)

4 : sk← (pp′, sk′, i⃗d)

5 : return (pk, sk)

Function Encaps(pk)

1 : (pp′, i⃗d)← pk

2 : k←$M
3 : ct← Πh.Enc(pp

′, k, id)

4 : id ← id || ct

5 : pk← (pp′, i⃗d)

6 : return (pk, k, ct)

Function Decaps(sk, ct)

1 : (pp′, sk′, i⃗d)← sk

2 : k← Πh.Dec(pp
′, sk′, ct)

3 : sk′ ← Πh.Del(i⃗d , sk
′, ct)

4 : i⃗d ← i⃗d || ct

5 : sk← (pp′, sk′, i⃗d)

6 : return (sk, k)

Function UpPk(pk, ad)

1 : (pp′, i⃗d)← pk

2 : i⃗d ← i⃗d || ad

3 : pk← (pp′, i⃗d)

4 : return pk

Function UpSk(sk, ad)

1 : (pp′, sk′, i⃗d)← sk

2 : sk′ ← Πh.Del(pp
′, i⃗d , sk′, ct)

3 : i⃗d ← i⃗d || ad

4 : sk← (pp′, sk′, i⃗d)

5 : return sk

Fig. 15: ConstructionΠk of LR-KUOWR-secure kuKEM from LR-OW-CCA-secure
HIBE Πh.

F Proof of Theorem 4

Our proof strategy is similar to that of Balli, Rösler and Vaudenay [BRV20a,
Section 6], adapted to our notation, notions and construction.

Proof. We proceed by a hybrid argument and construct games G0 to G3. Let
Pr[Si] be the probability that Gi outputs 1 for i ∈ [0, 3].

G0: This is the LR-KUOWR game instantiated with Πk. We have:

Pr[S0] = Pr[LR-KUOWRℓ
A(1

λ)⇒ 1]

G1: This is the same as G0, except that for all outputs (k, km) and (k̃, k̃m of
H, we have k ̸= k̃. This follows from a standard birthday bound argument, and
thus we have

|Pr[S0]− Pr[S1]| ≤
q2

|K|
G2: This is the same as G1, except that:
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– The adversary is given integer g ∈ [0, q − 1] as input such that SOLVE(tr, ·)
first outputs 1 (or g = 0 if no such query exists) where tr = trA after g
queries to ENC.

– The experiment aborts if, before the g-th query to ENC is made as above,
DEC(ct) was queried after g−1 in-sync queries to DEC were made with input
ct = (ck, . . . ) and (the same) ck was sampled inside of Encaps in the g-th
ENC call (made after).

Note first that are at most q − 1 such ENC queries. Note also that the second
event occurs with probability 1/|K| (since ENC cannot be called with adversarial
randomness). It follows from a standard argument that

Pr[S1] ≤ q ·
(
Pr[S2] +

1

|K|

)
G3: This is the same as G2, except that the game aborts if the adversary ever
makes query H(k′), where k′ is the output of the challenger’s call to H inside
of Encaps inside of the adversary’s g-th call to ENC; let E be this event. One
can construct an LR-OW adversary A′ that simulates for G2 adversary A wins
given E. A′ simulates:

– The challenger’s input (pp, pk) to A using pp from its LR-OW challenger,
calling EXP-STATE(A, ϵ) and otherwise simulating locally. Note that this
and subsequent EXP-STATE(A, ·) queries do not invalidate the simulation.

– ENC(ad; r) via first a call to SEND((1, ck), r) for simulated ck, followed by
a call to EXP-STATE(A, tr) for the resulting tr, followed by SEND((2, ct), 0)
for the resulting ct.

– DEC via calls to RECEIVE (as well as via EXP-STATE(A, ·) and then local
simulation for the Send query if not already done above).

– UPPK(ad) via SEND(A, (0, ad), 0) and then EXP-STATE(A, ·).
– UPSK via local simulation (first EXP-STATE(A, ·) if not previously called)

and RECEIVE((0, ad), ct).
– EXP(tr) via EXP-STATE(A, tr′) (if necessary) and EXP-STATE(B, tr′) for the

corresponding tr′.
– SOLVE(tr, k) by outputting ⊥ if tr does not correspond to the g-th ENC call,

and otherwise by checking if there exists k′ such that H(k′) = (k, km), and
calling CHALL-OW(A, tr, k′) for such a k′ (which is unique if it exists by
definition of G1).

– LEAKSK(f,P, tr) as follows. Recall f = f(stA, stB) is a function of both stA
and stB. A′ therefore first calls EXP-STATE(A, tr′) for the corresponding tr′

(if not yet done already) to obtain stA. A′ then calls LEAK-STATE(fstA ,B, tr
′)

where fstA is f evaluated on input stA. Note that this exposure of A’s state
is allowed since the g-th ciphertext (if it exists) is such that ENC must have
been called with honest randomness, and full exposure of all other keys is
permitted since they are not challenges.

Recall that only keys derived in ENC queries can be guessed by the adversary,
unlike in URKE where keys output by an out-of-sync receiver can be challenged.
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– H(k′) by lazily sampling. In addition, if A has not yet made their g-th query
to ENC, A stores k′. Once soon as A has made their g-th query to ENC,
letting tr∗ be the resulting value of trA, let trk be the corresponding kuKEM
trace after the first Send query in the corresponding Encaps call. Then for
all stored k′, A′ calls SOLVE(trk, k

′), and likewise for each subsequent H(k′)
query. If H(k′) ever outputs 1, A′ stops simulating and finishes executing.

The simulation of G2 is perfect given ¬E, and given E, some query to SOLVE
that A′ makes will result in output 1. Note A′ makes at most 3 queries to its
oracles for every query A makes. By standard bad event analysis it then follows
that

|Pr[S2]− Pr[S3]| ≤ ϵu

Now by definition of G3, (k, km)← H(k′) is not queried by the adversary where
H(k′) is called by the challenger in the g-th ENC call. Therefore modulo leak-
age km is uniform to A. G3 can then be perfectly simulated by an LR-OT-SUF
adversary, the argument following that of [BRV20a] except that G3 leakage is
additionally simulated via LR-OT-SUF oracle LEAK-KEY (where in the argu-
ment, the LR-OT-SUF MAC key is embedded in the simulation of the g-th ENC
call), except for g = 0 the simulator can simply abort. We thus arrive at

Pr[S3] = ϵm

The result follows by collecting the probabilities. ⊓⊔
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