
Leap: A Fast, Lattice-based OPRF With
Application to Private Set Intersection?

Lena Heimberger1[0009−0001−9404−7699], Daniel Kales2[0000−0001−9541−9792],
Riccardo Lolato3??[0009−0000−2356−339X], Omid Mir4, Sebastian

Ramacher4[0000−0003−1957−3725], and Christian
Rechberger1,2[0000−0003−1280−6020]

1 Graz University of Technology
2 Taceo

3 University of Trento
4 AIT Austrian Institute of Technology
Contact: lena.heimberger@tugraz.at

Abstract. Oblivious pseudorandom functions (OPRFs) are an impor-
tant primitive in privacy-preserving cryptographic protocols. The grow-
ing interest in OPRFs, both in theory and practice, has led to the de-
velopment of numerous constructions and variations. However, most of
these constructions rely on classical assumptions. Potential future quan-
tum attacks may limit the practicality of those OPRFs for real-world
applications.
To close this gap, we introduce Leap, a novel OPRF based on heuris-
tic lattice assumptions. Fundamentally, Leap builds upon the Spring
[BBL+15] pseudorandom function (PRF), which relies on the learning
with rounding assumption, and integrates techniques from multi-party
computation, specifically Oblivious Transfer (OT) and Oblivious Linear
Evaluation (OLE). With this combination of oblivious protocols, we con-
struct an OPRF that evaluates in less than a millisecond on a modern
computer.
Efficiency-wise, our prototype implementation achieves computation times
of just 11 microseconds for the client and 750 microseconds for the server,
excluding some base OT preprocessing overhead. Moreover, Leap re-
quires an online communication cost of 23 kB per evaluation, where the
client only has to send around 380 bytes online. To demonstrate the prac-
tical applicability of Leap, we present an efficient private set intersection
(PSI) protocol built on top of Leap. This application highlights Leap’s
potential for integration into various privacy-preserving applications: We
can compute an unbalanced set intersection with set sizes of 224 and 215

in under a minute of online time and just over two minutes overall.

? This is the full version of a paper which appears in Eurocrypt 2025 – 44th Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques. Please cite the conference version.

?? Work done while at AIT Austrian Institute of Technology

1 Introduction

Oblivious Pseudorandom Functions (OPRFs) serve as a fundamental crypto-
graphic building block in privacy-preserving computation. An OPRF involves
two parties: a server, which holds a secret key, and a client, who provides the in-
put. These two parties collaboratively compute a pseudorandom function (PRF)
y = Fk(x), where the server supplies the key k and the client supplies the private
input x. Importantly, the server learns neither the input x nor the output y, and
the client does not learn the key k.

OPRFs emerged as an essential tool for constructing a number of privacy-
preserving applications, including secure keyword search [FIPR05], secure data
de-duplication [KBR13, CDGS19], password-protected secret sharing [JKK14],
secure pattern matching [FHV13], and private set intersection (PSI) [KKRT16].
PSI has already been implemented and utilized by major tech companies such as
Google5 and Facebook.6 Furthermore, OPRFs are used in password-authenticated
key exchange, known as OPAQUE [JKX18]. The OPAQUE protocol, which inte-
grates with TLS 1.3, is currently undergoing standardization.7 OPRFs also play
a pivotal role in ensuring privacy in private browsing with DDoS protection, a
technology currently being standardized by the IETF8 through mechanisms such
as the anonymous token known as Privacy Pass [DGS+18].
Post-Quantum OPRFs and Comparison. Real-world deployments of OPRFs
commonly use either the 2-Hash Diffie-Hellman (2HashDH) OPRF [JKK14] or
the 3-Hash Diffie-Hellman OPRF [TCR+22]. Both protocols have optimal round
complexity and are efficiently computable – taking approximately 400 µs and
500 µs to compute. However, both constructions rely on the hardness of the De-
cisional Diffie-Hellman assumption or variations, such as the One-More-Diffie-
Hellman assumption, which may be vulnerable to quantum adversaries. These
circumstances prompted the proposal of several post-quantum candidates, which
we discuss below.

On the isogeny side, two OPRFs were proposed by Boneh, Kogan and Woo
[BKW20]: an SIDH-based construction, which was broken [BKM+21] and later
fixed [Bas24b] and updated to fit within a framework of higher-dimensional
isogenies [Bas24a]. The update removes the need for a trusted setup and provides
implementations in SageMath, with client requests taking approximately 17.7
seconds and server responses 130.7 seconds.

The second OPRF [BKW20] follows the Naor-Reingold approach using CSIDH.
Follow-up work [HHM+24a] shows that the construction needs a relational lat-
tice, which is currently available for up to 1024 bits [DFK+23]. CSIDH may need
primes up to 5280 bits. The OPRF OPUS [HHM+24a] supports arbitrary bit
sizes as it does not require the relation lattice, but has a round complexity of
O(κ). Finally, Delpech and Pedersen [DP24] introduced another CSIDH-based
5 https://github.com/google/private-join-and-compute/issues/33
6 https://engineering.fb.com/2020/07/10/open-source/private-matching/
7 https://www.ietf.org/archive/id/draft-krawczyk-cfrg-opaque-02.txt
8 https://datatracker.ietf.org/wg/privacypass/about/

2

https://github.com/google/private-join-and-compute/issues/33
https://engineering.fb.com/2020/07/10/open-source/private-matching/
https://www.ietf.org/archive/id/draft-krawczyk-cfrg-opaque-02.txt
https://datatracker.ietf.org/wg/privacypass/about/

OPRF with a communication complexity ranging from 3072 to 31680 bits, con-
ditional on the CSIDH modulus p. Their scheme again requires a trusted setup
knowledge of the class group structure. Their scheme is the only CSIDH-based
construction that is secure against malicious adversaries, and they also offer an
idea to remove the trusted setup. All CSIDH-based constructions are not proven
secure in the Universal Composability (UC) framework.

Albrecht et al. [ADDS21] introduced the first lattice-based OPRF with mali-
cious security. The OPRF requires over 128 GB of communication, which limits
its practicality. Another obstacle to using the OPRF in protocols is the use of a
non-standard security definition. A more efficient variant of the OPRF [AG24]
significantly improves the communication to under half a megabyte of communi-
cation in the random oracle model. Follow-up work [ADDG24] evaluates the Dark
Matter PRF [BIP+18] using fully homomorphic encryption, yielding a scheme
with approximately 70 MB of communication, of which 3 MB are communicated
during the online phase, also offering security for semi-honest servers. The 3 MB
include a reusable FHE key that can amortize the communication over several
rounds. Dinur et al. proposed secret-sharing the Dark Matter PRF [DGH+21],
which yields a secure OPRF in the semi-honest model that requires a trusted
setup and preprocessing. The OPRF has been improved [APRR24] to less than
a thousand bits of communication, or alternatively 4 kB of communication for
an estimated evaluation of less than four microseconds. Seres et al. [SHB23] ob-
served the programmability of the Legendre PRF and its potential verifiability
using zero-knowledge proofs. However, it lacks composable security guarantees
and comes with overheads that only make the OPRFs somewhat efficient. Faller
et al. [FOO23] proposed an OPRF based on the secure evaluation of AES us-
ing garbled circuits, achieving a security level similar to 2HashDH in the UC
framework for semi-honest servers. However, it incurs substantial communica-
tion costs. Kolesnikov et al. [KKRT16] demonstrated a construction of OPRFs
from a PRF with an input domain of {1, . . . , n} with

(
n
1

)
-OT of random messages.

While this construction is efficient for a small input domain, our construction
requires fewer OT calls due to the large input domain of 2128.

In summary, despite several interesting constructions, no concrete, imple-
mentations with low overhead emerged so far. We aim to construct an OPRF
where the server bears most of the computational load and minimizes the overall
communication complexity to save bandwidth, in particular for the client, based
on well-known assumptions.

In Table 1, we provide a succinct comparison of the highlighted schemes
discussed above, prioritizing those most relevant to our scheme setting, i.e.,
lattice-based constructions. Also, we include [Bas24a] and [DP24] as the most
recent efficient isogeny-based OPRFs. While our scheme is not round optimal
and requires more interaction, this is not a significant issue in many applica-
tions, particularly in PSI scenarios where a lot of communication takes place.

Private Set Intersection (PSI). Private Set Intersection protocols enable
two parties holding some sets to compute the intersection. In contrast, neither

3

Table 1: Comparison of our OPRF Leap with other post-quantum OPRFs. Impl
denotes the availability of a full implementation. is security against a semi-
honest adversary (Client(C) or Server(S)), against a malicious adversary.

Schemes Assumption Rounds Comm. Cost (C-S) Impl
[ADDS21] R(LWE)+SIS 2 2MB - ≈♣

[ADDG24] mod(2,3)+lattices 2 10 kB♠ - Times♣

[APRR24] mod(2,3) 2 957 bits - Times

[APRR24] mod(2,3) 2 4 kB - Times

[AG24] R(LWE)+SIS 2 221.5+315.9 kB - Times

[Bas24a] Higher-dimensional Isogenies 2 28.9 kB - Check

[DP24] Isogenies Fp 2 16.38 kB - Times

Leap RLWR (heuristic) 6 23 kB� - Check

♠ Plus 2.5 MB reusable FHE bootstrapping key.
� Communication cost for preprocessing is approximately 793 kB, possible amor-

tization when batching multiple OPRF evaluations.
♣ Only a partial implementation is available.

of the parties learns the other party’s sets beyond the elements contained in the
intersection. Depending on the concrete settings, PSI protocols can be optimized
for cases where the sets of both parties are of the same size or where the size
of one party is significantly larger. The latter – denoted as unbalanced PSI – is
especially interesting for applications such as private contact discovery [DRRT18,
KRS+19, HSW23] where servers hold a large database of clients of messaging
applications and the clients are interested whether anyone of their contacts is
also using the service.

The intuition of OPRF-based PSI, as proposed in [FIPR05, HL08, PSSW09,
KLS+17], is that the server holds a PRF key and evaluates all elements of its set
with the PRF and stores the resulting outputs. When a client wants to compute
the intersection, it requests all PRF evaluations from the server and computes
the OPRF for all elements in the client set set with the server. With these
evaluations, the client can check which elements are also in the server set. In
this scenario, the server does not learn anything beyond the cardinality of the
client set.

This application also highlights the need for OPRFs with efficient client-side
computation. For the PSI protocol outlined above, the size of the client set deter-
mines the number of OPRF evaluations. As a result, a high client computation
or communication complexity is prohibitive for OPRF-based PSI. It motivates
the design and analysis of OPRF constructions that keep the communication
overhead and computation complexity as low as possible.

4

1.1 Contributions

In this work, we introduce the LatticE oprf from An efficient Prf (Leap), an
OPRF that evaluates the Learning-With-Rounding (LWR)-based Spring PRF
obliviously. Our results demonstrate that Leap achieves OPRF computation in
less than a millisecond with less than 400 bytes of client communication and en-
ables us to perform fast (unbalanced) private set intersection. Our contributions
are:

1. We present a protocol for the oblivious evaluation of the lattice-based
PRF Spring, which results in a very efficient OPRF from generic oblivious
transfer (OT) and oblivious linear evaluation (OLE), it handles the devia-
tions of Spring from the Naor-Reingold PRF construction paradigm by in-
troducing subprotocols for oblivious rounding and bias reduction, resulting
in a 6-round protocol. Furthermore, due to the black-box use of these build-
ing blocks, our security proof in the Universal Composability (UC) model
can be reduced to the security of the underlying building blocks, where only
the final application of a BCH code for bias reduction in the Spring-BCH
variant with an uneven modulus requires special attention in the security
proof. Our approach of oblivious evaluation may also be useful for other
privacy-preserving protocols with operations in the NTT domain.

2. We provide a reference implementation of the protocol in C++. In our
implementation, we select generic OT and OLE protocols and highlight com-
putation and communication trade-offs during the data-independent prepro-
cessing phase. The performance benchmarks underline that our protocol is
computationally efficient and has low communication overhead.

3. Finally, we integrate our protocol into Private Set Intersection to high-
light one of the key application areas of our OPRF. As shown by Kales
et al. [KRS+19], PSI protocols built from OPRFs fare particularly well in
the case of unbalanced sets where the server set is significantly larger. We
instantiate and implement the protocol of Kales et al. using Leap in the con-
text of unbalanced PSI, resulting in a highly efficient implementation. Our
benchmarks confirm that Leap is well suited for this application scenario.
For example, intersecting two sets with 215 and 224 elements, respectively,
takes just over two minutes on commodity hardware.

1.2 Technical Overview

We first provide a short technical overview of our approach to the oblivious
evaluation of Spring in BCH mode. First, recall that PRFs following the Naor-
Reingold construction paradigm are expressed as k0

∏κ
i=1 k

ci
i for key elements

k0, . . .kκ and input bits c1, . . . , cκ. These allow the client and the server to
perform oblivious evaluation by using a

(
2
1

)
-OT protocol per bit to obtain ei-

ther a random value ri if the bit is not set and otherwise the blinded value
riki [FIPR05]. After performing this operation for each bit position, the server
also provides k0 masked with the product of all inverse randomizers to the client,

5

i.e., k0

∏κ
i=1 r

−1
i , which allows the client to compute the PRF output by com-

bining all values received during the initial OT phase with the final message.
While Spring follows the Naor-Reingold paradigm by taking k from a poly-

nomial ring, the resulting product also needs to be rounded to avoid leaking
information about the key to the client. Before applying our rounding subproto-
col, we use OLE to transform the multiplicative sharing to an additive sharing,
which results in significant performance advantages. Before combining the OT
results with the final unblinding message, we call a subprotocol that performs
oblivious rounding for each polynomial coefficient. The final step of Spring is
the bias reduction required for odd moduli applies a BCH code, which also devi-
ates from pure Naor-Reingold PRFs. As BCH codes are linear, we integrate the
bias reduction into the oblivious rounding protocol.

To further optimize performance, we represent the polynomials in the NTT
domain to reduce the computational complexity of multiplications from quadratic
to quasilinear, switching the representation back to its normal form before obliv-
ious rounding.

2 Preliminaries

Notation. We use n to denote the dimension of the lattice and κ to denote the
security parameter, which also serves as the input length for the clients OPRF
input. For a distribution D, we denote the sampling of x according to distribution
D by x←$ D. For a finite set X, x←$ X indicates sampling uniformly at random
from X. We assume all algorithms are polynomial-time (PPT) unless otherwise
specified. We will write BCH(s) = sMt, where M is the generator matrix of the
extended BCH code, to denote the call to the syndrome decoding multiplication.
By ·, we denote polynomial element-wise point-value multiplication. ∗ denotes
polynomial multiplication. A round is a single message from the client to the
server or from the server to the client. An OPRF is round-optimal if the server
and the client send a message each, totaling two rounds. � denotes a bitwise
left shift.

We start by recalling the Learning with Rounding assumption in Section 2.1
and continue with the definition of OPRFs in Section 2.2. Then, we give an
overview of the strategies for oblivious evaluation in Section 2.5.

2.1 Lattice Assumptions

The security of our scheme relies on well-known computational lattice problems,
namely Learning with Errors (LWE) [Ajt96, Reg05] and Learning with Rounding
(LWR) [BPR12]. The LWR problem can be seen as a derandomized version of
LWE, where the noise term in the inner product of vector multiplication is
replaced by a deterministic rounding from a large set q to a smaller subset p.
LWR assumes it is hard to distinguish these rounded inner products, using a
secret s←$ Zn

q , from uniformly sampled elements u ∈ Zp. More formally:

6

Definition 1 (LWR). Let fs : Zn
q → Zp where fs(x) = b〈x, s〉ep = b(p/q) ·

〈x, s〉e. For any s any polynomially many xi ←$ Zn
q , the two sets

{(xi, fs(xi))} and {(xi, ui) : ui ←$ Zp}

are hard to distinguish.

For Spring we are specifically interested in LWR defined over a ring: the ring ver-
sion of the LWR problem involves the distinguishability of polynomials sampled
from a family of cyclotomic rings of the form Rp = Zp[X]/(Xn + 1). Similarly
to LWR, the polynomials are multiplied by a secret polynomial s ←$ Rq and
rounded from a larger ring Rq to a smaller ring Rp. More formally:

Definition 2 (Ring-LWR). Let gs : Rq → Rp where gs(x) = bx · sep =∑n−1
i=0 b(p/q) · xisieXi. For any s any polynomially many xi ←$ Rq, the two

sets
{(xi, gs(xi))} and {(xi,ui) : ui ←$ Rp}

are hard to distinguish.

We note that, for suitable choices of parameters, LWR is as hard as LWE and the
same holds true for the ring versions of the assumptions [BPR12]. Specifically,
this holds also true for small modulus q as shown by Bogdanov et al. [BGM+16].

2.2 Oblivious Pseudorandom Function (OPRF)

As mentioned in the introduction, an OPRF [FIPR05] is an interactive protocol
between a client and a server. In this protocol, the client holds a private input x,
and the server holds a key k for a PRF F . Together, they engage in a protocol to
obliviously evaluate Fk on x, such that the client learns (and optionally verifies)
the evaluation Fk(x), while the server learns nothing.

Before defining the notion of OPRFs, we recall the definition of a pseudoran-
dom function (PRF) [GGM86] as follows:

Definition 3 (PRF). Let F : X × D → R be a family of functions, and let
Γ be the set of all functions D → R. For a PPT distinguisher D we define the
advantage function AdvPRFD,F (κ) as∣∣∣∣ Pr

x←$X

[
DF(x,·)(1κ) = 1

]
− Pr

f←$Γ

[
Df(·)(1κ) = 1

]∣∣∣∣ .
F is a pseudorandom function (family) if it is efficiently computable and for all
PPT distinguishers D there exists a negligible function ε(·) such that

AdvPRFD,F (κ) ≤ ε(κ).

Here, we consider only binary input and output spaces and thus set S = D =
{0, 1}κ and R = {0, 1}`.

7

Definition 4 (Oblivious PRF (OPRF) [FIPR05]). A two-party protocol is
an OPRF if there exists some PRF family Fk, such that it privately realizes the
following functionality:

• Client has input x; Server has key k.
• Client outputs Fk(x); Server outputs nothing.

Security. Intuitively, an OPRF is secure if the client learns only the PRF out-
put but not the server’s key, and the server learns nothing. More formally, we
define OPRF security in the UC framework [Can01], following the paradigm of
the real and ideal world. We use the strong model with adaptive corruption (see
Figure 1) presented in [JKX18]). In Figure 1, S ′ represents the server involved in
the online evaluation process, distinct from the original server S that initiated
the session. The variable tx acts as a transaction counter, tracking the number
of evaluation requests made within a specific session identified by sid. This ad-
ditional variable helps manage state and control access, especially when dealing
with compromised servers. The prefix variable prfx captures unique identifiers for
evaluation requests, ensuring that each request is distinct and protecting against
replay attacks. The model operates under the concept of adaptive compromise,
allowing an adversary to dynamically choose which entities to corrupt based on
the information gleaned during the protocol’s execution, thereby enhancing the
realism of the threat model (see [JKX18] for more details). ddone can consider
multiple options in defining the concrete security model and additional features
(see [CHL22] for a detailed overview and comparison).In this work, we are in-
terested in OPRF security with adaptive compromise and therefore recall the
definition of this functionality from [JKX18] in Figure 1.

2.3 Naor-Reingold PRF

The Naor-Reingold PRF (NR-PRF) [NR04] constructs PRFs from Abelian group
actions. It requires κ+1 group elements to compute a PRF for κ input bits. The
initial group action starts with the first group element, and for each set bit ci, a
group action is performed using the ith key element. Specifically, the NR-PRF
is defined as:

FNR

(
(k0, · · · , kκ), (c1, · · · , cκ)

)
= k0 · kc11 · k

c2
2 · · · kcκκ

PRFs following the Naor-Reingold paradigm can be turned into a OPRF as
follows (first presented by Freedman et al. [FIPR05]): the two parties engage in
a
(
2
1

)
-OT protocol, with the sender returning kcii · ri. The receiver aggregates

the results to obtain the blinded group element K ←
∏κ

i=1 ri · k
ci
i . After the OT

step, the unblinding element U ← k0 · r−11 · · · r−1κ is sent. The result of the FNR

function is obtained by applying the group action to the blinded element and
the unblinding element. While the key elements k may be reused, the blinding
elements must be sampled anew each time to protect the client’s input.

8

Public Parameters:

PRF output-length `, polynomial in security parameter κ.
Note that for every i, x, value Fsid,i(x) is initially undefined, and if undefined value
Fsid,i(x) is referenced then FOPRF assigns Fsid,i(x)← {0, 1}`.

Initialization:

On message (INIT, sid) from party S, if this is the first INIT message for sid, set
tx = 0 and send (INIT, sid,S) to A. From now on use tag “S” to denote the unique
entity which sent the INIT message for the session identifier sid. (Ignore all subsequent
INIT messages for sid.)

Server Compromise:

On (COMPROMISE, sid,S) from A, declare server S as COMPROMISED. (If S is
corrupted then it is declared COMPROMISED from the beginning.)
Note: Message (COMPROMISE, sid, S) requires permission from the environment.

Offline Evaluation:

On (OFFLINEEVAL, sid, i, x) from P ∈ {S,A}, send (OFFLINEEVAL, sid, Fsid,i(x))
to P if any of the following hold:
(i) S is corrupted, (ii) P = S and i = S, (iii) P = A and i 6= S, (iv) P = A and S is
compromised.

Online Evaluation:

- On (EVAL, sid, ssid,S ′, x) from P ∈ {C,A}, send (EVAL, sid, ssid,P,S ′, x) toA. On
prfx from A, ignore this message if prfx was used before. Else record 〈ssid,P, x, prfx〉
and send (Prefix, sid, ssid, prfx) to P.

- On (SNDRCOMPLETE, sid, ssid′) from S, send (SNDRCOMPLETE, sid, ssid′,S)
to A. On prfx′ from A, send (Prefix, sid, ssid′, prfx′) to S. If there is a record
〈ssid,P, x, prfx〉 for P 6= A and prfx = prfx′, change it to 〈ssid,P, x,OK〉, else set a
counter tx++.

- On (RCVCOMPLETE, sid, ssid,P, i) from A, ignore this message if there is no
record 〈ssid,P, x, prfx〉 or if (i = S, tx = 0, and prfx 6= OK). Else send
(EVAL, sid, ssid, Fsid,i(x)) to P, and if (i = S and prfx 6= OK) then set tx−−.

Fig. 1: FOPRF with adaptive compromise [JKX18].

2.4 Spring PRF

Spring [BBL+15] is an efficient PRF based on the Ring-LWR (RLWR) hardness
assumption that follows the Naor-Reingold PRF construction paradigm with
additional tweaks. The construction is based on ring R := Z[X]/(Xn+1) whereas
the group action is the polynomial multiplication in the ring R. Using κ+1 ring
elements K = (k0,k1, . . . ,kκ), for the evaluation of the PRF the polynomial ki

is multiplied to a subset-product if and only if the ith input bit ci is set. After
computing the subset product, the result has to be rounded by applying the
rounding function S. S rounds each coefficient of the polynomial and outputs 1

9

if the coefficient is ≥ q
4 and ≤ 3q

4 , and 0 otherwise, resulting in binary outputs
of the PRF.

FK(c1, · · · , cκ) = S

(
k0 ·

κ∏
i=1

kci
i

)
Two modes have been proposed: one using an uneven modulus and another using
an even modulus. We focus on the mode with the uneven modulus q = 257, also
known as BCH mode, which produces 64 output bits. To support longer input
and output sizes, including with an even modulus q = 514, Spring-CRT and
Spring-CTR are available.
Spring BCH Code. Using q = 257 introduces a rounding bias of 1

257 . To
mitigate this, the rounded coefficients are multiplied by the generator matrix
associated with the extended BCH code [128, 64, 22] to obtain their syndrome9.
This reduces the bias to a negligible

√
2k

2

(
1
q

)d
= 2−145, producing a 64-bit

output.
The PRF takes κ = 128 bits of input. The [128, 64, 22] code extends the

[127, 64, 22] BCH code with a parity bit to align with a power of two, as BCH
codes over Zp have a length of 2t − 1. The BCH code is computed over Zp for
implementation efficiency, with matrix rows being cyclic shifts of a single row.
Spring-CRT: Bias Reduction using the Chinese Remainder Theorem (CRT)
for even moduli. As an alternative to the uneven modulus is the CRT mode
with an even modulus q = 514 = 2 · 257. Spring-CRT decomposes the subset
product computation over R∗2q into the Chinese Remainder components R∗2 and
R∗q . The latter is computed exactly as in BCH mode from Section 2.4, and the
former ring uses sparse generators for cyclic components. The main advantage of
this mode is the larger output size and the absence of a rounding bias. The main
drawback is the added algebraic structure from the CRT decomposition. Specif-
ically, attacks may cancel out the R∗2 component to recover the R∗q component.
The reference implementation of the PRF is 4.5 times slower than AES. The most
efficient attack against Spring-CRT is a subexponential attack [BDFK17], but
the attack is currently computationally infeasible.
Spring-CTR: Counter Mode for amortized computation. For longer in-
puts, Spring can be used with a counter mode. The input blocks are ordered
in a Gray code style, so the bits only differ in one position. As a result, only
the first block has to be computed fully, as each successive subset product are
computed from the previous one with just one more multiplication by either the
seed element or its inverse.

2.5 Tools for Oblivious Evaluation
To convert a PRF to an OPRF, we use well-studied primitives from secure
multiparty computation (MPC) to keep the client input and server key secret.
9 The extended BCH code is the [127, 64, 21] code with a parity bit. It has the largest

known minimum distance for its rate

10

Specifically, our construction relies on Oblivious Transfer (OT) and Oblivious
Linear Equations (OLE) protocols.

Oblivious Transfer OTs enable a receiver holding a choice bit c to obtain the
string mc from a sender holding two strings (m0,m1). These protocols ensure the
sender gains no information about c, while the receiver does not learn the other
string m1−c. This setting with two strings is called

(
2
1

)
-OT and can be gener-

alized to k strings, denoted as
(
k
1

)
-OT [NP99]. The ideal functionality captures

the security properties of OT is given in [ABB+13], outlined in our notation
in Figure 2.

The functionality F(
N
1

)
-OT interacts with an adversary A and a set of parties

P1, . . . ,Pn via the following queries:

• On message (SEND, sid, ssid,Pi,Pj , (m1, . . . ,mN)) from Pi, with mi ∈
{0, 1}`: record the tuple (sid, ssid,Pi,Pj , (m1, . . . ,mN)) and reveal (SEND,
sid, ssid,Pi,Pj) to A. Ignore further SEND messages with the same ssid from
Pi.

• On (RECEIVE, sid, ssid,Pi,Pj , s) from Pj , with s ∈ [N]: record the tuple
(sid, ssid,Pi,Pj , s) and reveal (RECEIVE, sid, ssid,Pi,Pj) to A. Ignore fur-
ther RECEIVE messages with the same ssid from Pj .

• On (SENT, sid, ssid,Pi,Pj) from A: ignore the message if
(sid, ssid,Pi,Pj , (m1, . . . ,mN)) is not recorded; otherwise send (SENT,
sid, ssid,Pi,Pj) to Pi and ignore further SENT messages with the same ssid
from A.

• On (RECEIVED, sid, ssid,Pi,Pj) from A: ignore the message if
(sid, ssid,Pi,Pj , s) is not recorded; otherwise send (RECEIVED,
sid, ssid,Pi,Pj ,ms) to Pj and ignore further RECEIVED messages with
the same ssid from A.

Fig. 2: Ideal functionality for
(
N
1

)
-OT [ABB+13].

Base OT and OT Extension For efficient protocols, the expensive OT oper-
ations are processed before seeing the data in a base phase [Bea96]. The client
calls the base OT with a random choices bit c$. In the online phase, the client
sends a correction bit b depending on the actual input bit c such that b = c⊕ c$
to the server, which computes the correct result depending on the functionality
of the protocol.

Using κ values from the Base OT, poly(κ) more base OTs can be generated
using cheap symmetric operations. These extensions yield numerous correlated
OT pairs, wherein instead of producing two independent messages (m0,m1),
the correlated OT (COT) generates (m0,m0 ⊕ ∆) for some ∆. For example,
the semi-honest IKNP protocol [IKNP03] performs m correlated k-bit OT using

11

k m-bit OTs, with m � k, transforming them into m k-bit OTs. The server
acts as the receiving party in the correlated OT, obtaining ∆i ∈ {0, 1}κ and a
choice bit ci. The client, holding a vector of choice bits C = [c1, · · · , cκ], chooses
ti ∈ {0, 1}m,∀1 ≤ i ≤ κ and inputs with (ti, ti ⊕ ci).

Silent OT [BCG+19] enhances OT extensions by significantly reducing pre-
processing communication complexity. It combines OT extensions with code-
based methods, resulting in a 0 to 3-bit communication complexity to generate
a 128-bit OT string. However, these codes introduce substantial overhead and
perform optimally when multiple OPRFs are conducted simultaneously, as dis-
cussed in Section 5.6.

One-out-of-N Oblivious Transfer
(
N
1

)
-OT allows receiver to choose one out

of N strings without learning anything about the other (N − 1)-OT inputs.
[NP99] show how to extend

(
2
1

)
-OT to

(
N
1

)
-OT by using log2 N OT call so the

client can obtain mb form the set {m0,m1, . . . ,mN−1} ∈ {0, 1}n, where the
client choice b ∈ {0, . . . , N − 1} is used as the log2(N)-bit index of the message:

• The server generates L = logN key pairs (k00, k
1
0), (k

0
1, k

1
1), . . . , (k

0
L−1, k

0
L−1).

• Each message mi is encrypted with the key produced by computing the XOR
of the index bits ci = mi ⊕

⊕L
j=1 k

ij
j . ij is the jth bit of i. For example, when

L = 4 and i = 7, the server encrypts m7 ⊕ k10 ⊕ k11 ⊕ k12 ⊕ k03. Each ci is sent
to the receiver.

• To decrypt cb, the client performs
(
2
1

)
-OT for each key kj , where is j the

bitwise decomposition of b.

The KKRT protocol [KKRT16] improves the communication cost of the
(
N
1

)
-OT

to logN by using Hadamard codes.

Oblivious Linear Evaluation Oblivious Linear Evaluation (OLE) is a proto-
col that converts a product of two Zp elements into a difference: Given a, b ∈ Zp,
the protocol returns y, e ∈ Zp such that y − e ≡ ab. Such protocols can be used
to transform multiplicatively shared elements into additively shared ones. The
corresponding functionality can be found in [GNN17] and defined in Figure 3.

3 Leap: Oblivious Evaluation of Spring

With all the ingredients in place, we are now in position to present the details of
our OPRF protocol to obliviously evaluate Spring. Overall it is split into three
steps: 1) the client and the server engage in

(
2
1

)
-OT to evaluate a blinded subset-

sum 2) they utilize a OLE to transform the subset sums into subset-products for
more efficient computation 3) Rounding is carried out in a blinded way to ensure
that only the client gains access to the protocol’s output. Finally, the BCH code
is applied for bias reduction as in Spring-BCH.

The full protocol dubbed Leap is depicted in Figure 4. As it can be observed
from the protocol description, the server and client perform multiple OT and

12

Functionality FOLE

– On message (INPUTS,sid, ssid,a, e) from S with a, e ∈ Ft: if there is no stored
tuple, store (a, e) and send (INPUT,sid, ssid) to A. Else, ignore that message.

– On (INPUTR,sid, ssid,b) from R, where b ∈ Ft: if there is no stored tuple, store
b and send (INPUT,sid, ssid) to A. Else, ignore that message.

– On (DELIVER,sid, ssid,S) from A: if both (a, e) and b are stored, send
(DELIVERED,sid, ssid) to S. Else, ignore that message.

– On (DELIVER,sid, ssid,R) from A: if both (a, e) and b are stored, set yi =
ai · bi + ei for i ∈ [t] and send (OUTPUT,sid, ssid,y) to R. Else, ignore that
message.

Fig. 3: Ideal functionality for OLE [GNN17]

OLE evaluations. As they do not have any inter-dependencies per step, they can
be performed in parallel. Hence, the protocol can be completed in three rounds.
We note that in our protocol, we assume that all polynomials are sampled in
subset-sum NTT form as described in Section 5.1.

3.1 Blind Subset Computation

We start with the subprotocol to perform a blinded subset sum computation.
The main idea here is to employ a

(
2
1

)
-OT protocol (see Section 2.3) to for each

input bit a freshly blinded version of the corresponding secret key element if the
input bit is set and a random element otherwise. By that, we obtain a blinded
sum

∑κ
i=1 ri + ciki. The protocol is defined as follows:

• Input Client: OPRF input x, bit-decomposed as x = (c1, . . . , cκ).
• Input Server: Long-term keys (k0, . . . ,kκ).
• Protocol: The blinded subset-sum is computed using

(
2
1

)
-OT whereas for each

i ∈ [κ] the server samples a uniformly random blinding polynomial ri and uses
it to additively blind ki. Depending on the input bit, the client obtains ri or
ri + ki. The client sums all obtained elements to obtain

∑κ
i=1 ri + ciki. The

server, on the other hand, sums all blinding factors to obtain k0 −
∑κ

i ri.
• Result: The client holds the blinded subset-sum

∑κ
i=1 ri+ ciki depending on

the choice bits ci. The server holds k0 −
∑κ

i=1 ri.

After completing the subprotocol, both the client and server lifts the values
from subset-sum to subset-product representation. Thus, the client obtains the
polynomial b =

∏κ
i=1 rik

ci
i and the server gets the polynomial a = k0

∏κ
i=1 r

−1
i .

Note that the values represent a multiplicative sharing of k0

∏
i=1 k

ci
i which

highlights the difference in how Leap performs the unblinding from other Naor-
Reingold OPRF protocols.

13

Client Server

(
2
1

)
-OT

ri, ri + ki

ci

ri + kici

∑κ
i=1 ri + ciki k0 − (

∑κ
i=1 ri)

RECYCLE

b←
∏κ

i=1 riki
ci a← k0(

∏κ
i=1 ri)

−1

OLE
bi

yi = aibi + ei

ai, ei ←$ Zq

y←
∑n−1

i=0 (ai · bi + ei)X
i e←

∑n−1
i=0 eiX

i

iNTT

d←$ {0, 1}n

(
q
1

)
-OT

yi−1

byi−1 − ei−1ep ⊕ di

b(q − ei−1)ep ⊕ di

∀q ∈ Zq

BCH(d)

Fig. 4: The full protocol of Leap. Polynomials in the NTT domain are
underlined. RECYCLE denote the transformation from subset-sum to subset-product
and iNTT for the application of the inverse NTT transformation to the client
and server polynomials y and e. The

(
2
1

)
-OT step is carried out for each i ∈ [κ],

the OLE and
(
q
1

)
-OT for each i ∈ {0, . . . , n− 1}.

3.2 Oblivious Linear Evaluation

In the next subprotocol, the product of two polynomials is computed to obtain
an additive sharing of k0

∏
i=1 k

ci
i . Note that the polynomials remain in NTT

form, and the multiplication of polynomials corresponds to the multiplication of
respective coefficients. Therefore, we can employ OLE for each pair of coefficients

14

to obtain and additive sharing of this result, which allows us to have a protocol
with linear instead of superlinear communication complexity.

• Input Client: b =
∏κ

i=1 rik
ci
i with coefficients b0, . . . , bn−1 ∈ Zq.

• Input Server: a = k0

∏κ
i=1 r

−1
i with coefficients a0, . . . , an−1 ∈ Zq and a

blinding polynomial e with coefficients e0, . . . , en−1 ∈ Zq sampled uniformly
at random.

• Protocol: For each pair of coefficients (ai, bi), i = 0, . . . , n− 1, the client and
server run OLE to obtain yi = aibi + ei. The client collects the coefficients
yi into the polynomial y and the server does the same for coefficients ei to
obtain the blinding polynomial e.

• Result: The client obtains a blinded, additively shared subset-product y =
ab+ e. The server holds the blinding polynomial e.

3.3 Oblivious Rounding

To get the final result, the client polynomial needs to first be unblinded by
subtracting e from y and then rounded. The intermediate, unblinded result
should not be shared between the parties. First, the shares of the server and
client are transformed from the point-wise evaluation form to the coefficient
space using the inverse NTT (iNTT) transformation. The iNTT is applied only
now since the OLE changes the shares from multiplicative to additive, enabling
the NTT can be applied linearly.

Both the subtraction and rounding are performed in one step using
(
q
1

)
-

OT (see Section 2.5). For each coefficient, the server computes all possible round-
ing results bz − eiep for z ∈ Zq and submits the result into the

(
q
1

)
-OT.

• Input Client: Shared subset-product y = ab+ e.
• Input Server: Blinding polynomial e and a random d← {0, 1}n.
• Protocol: For each z ∈ Zq and each coefficient ei−1 of e, i ∈ [n], the server

computes all possible results of the rounding step as bz − ei−1ep ⊕ di. Both
server and client then perform

(
q
1

)
-OT for each coefficient, i.e., for each i ∈ [n],

the client obtains the yi−1-th entry of the server input for the OT which is
exactly byi−1 − ei−1ep ⊕ di.

• Result: The client holds y′ = (byi−1 − ei−1ep ⊕ di)i∈[n].

Note that the size of q is a major factor in the performance of the protocol.
Keeping a small q diminishes the computational complexity on the server’s side,
where it has to iterate over all elements of Zq. Furthermore, the use of the
NTT representation is crucial in the performance of this step as it reduces the
complexity of polynomial multiplication from quadratic to quasilinear.

3.4 Applying the BCH Code for Bias Reduction

The SPRING-BCH instantiation uses a BCH code for bias reduction, resulting
in a shortened syndrome (see Section 2.4). To apply a BCH code in the two-
party computation setting, we leverage the distributive property of the BCH

15

code. For two binary vectors f ,g ∈ Z128
2 , the BCH code is commutative such

that BCH(f ⊕ g) = BCH(f) ⊕ BCH(g). Look at this observation, BCH(y) is
computed as BCH(y′)⊕BCH(d). The final step hence requires the server to send
BCH(d) to the client. We present this step as follows:

• Input Client: Blinded rounding y′.
• Input Server: Blinding factor d.
• Protocol: The server computes BCH(d) and sends it to the server. The client

then computes the output of the PRF as BCH(y′)⊕ BCH(d).
• Result: The client holds Fk(x).

3.5 OPRF Security

The security of two-party protocols such as OPRFs are commonly proven secure
in the UC model. While game-based security definitions exist, they have only
been defined for weak notions (cf [CHL22]). Hence, we also consider the security
of Leap in the UC model. We present our scheme in a strong model, considering
an adversary with the ability to adaptively corrupt parties.

To prove Leap secure, we need to extend the PRF with hash functions (mod-
elled as random oracle) similar to the 2Hash paradigm [JKK14]. We thus consider
the modified PRF

F ′K(x) = H2 (x,FK (H1(x))) = H2

(
x, S

(
k0 ·

κ∏
i=1

kci
i

))

where H1 : {0, 1}∗ → {0, 1}κ with H1(x) = c1, . . . , cκ and H2 : {0, 1}∗×{0, 1}k →
{0, 1}` and modeled as a random oracle where ` is a polynomial in the security
parameter. We note that H1 does not need to be a random oracle, but map
arbitrary message spaces to the input space. Moreover, hash functions are applied
on the client side, hence the protocol for oblivious evaluation is unchanged and
we do not restate the full protocol.

Theorem 1. The protocol in Figure 4 for F ′K realizes the functionality FOPRF if
H2 modeled as random oracle, the OLE protocol realizes the functionality FOLE,
and the two OT protocols realize the functionality F(N

1

)
-OT.

We sketch the main ideas of the proof here and provide the full proof of the
theorem in Section 4. First, unlike in 2HashDH [JKK14], applying a hash H1

on the client input before the protocol starts is not necessary for the proof.
This is because the protocol security does not rely on the hardness of the DLP
of the group to which the client input belongs. Since it is impossible for the
simulator to hide “DLP trapdoors” in H1 as in 2HashDH, H1 does not provide
any advantage.

Despite the protocol relying on the security of the subprotocols UC-realizing
FOLE and F(N

1

)
-OT, the proof is not completely straightforward: the final syn-

drome BCH(d) is sent in clear, allowing the environment to modify it and obtain

16

the evaluation of H2, with some degree of freedom on the inputs, without con-
tacting the oracle. To ensure that H2 query responses and protocol outputs are
coherent, the simulator uses a family of fake sender identities {S∆}∆ where ∆
represents the difference between the syndrome crafted by the adversary and the
one sent by the server during a protocol execution.

For every H2 query to the oracle on input (x, f), the simulator is able to
retrieve the ∆ such that f = FK(H1(x)) +∆ and return a coherent output.

One of the great advantages provided by the subprotocols is that generating
“prefixes” becomes trivial. FOPRF requires both participants to output a prefix,
a partial transcription of the protocol, and if the two prefixes are identical than
the adversary has no way to modify the protocol execution to obtain F ′K(x′) on
x′ of its choice. Thanks to the subprotocols, this kind of attack is never possible.
For this reason, the protocol session ID ssid is used as a prefix.

4 Security Proof of Leap

We now show that Leap for Spring’s BCH mode UC-realizes the FOPRF de-
scribed in Figure 1, in the hybrid world thanks to the functionalities F(N

1

)
-OT

and FOLE, respectively described in Figure 2 and Figure 3. The following con-
ventions will be used to improve the readability of the proof: F will be used to
represent FOPRF; + and − will be used instead of ⊕ to explicit if we are adding
or removing elements even though we are working in Z2; since H1 is not modeled
as a random oracle, but it is only used to map the client input to a string of fixed
length, in the proof, we will not consider this computation and simply work with
the client input belonging directly to {0, 1}κ. So, the OPRF output in the proof
will be F ′K(x) = H2 (x,FK (x)) . Note also that despite FOLE handles inputs
that are vectors, the protocol calls the functionality multiple times to evaluate
the OLE on elements.

Theorem 2. The protocol in Figure 5 for F ′K realizes the functionality FOPRF
if the OLE protocol realizes the functionality FOLE, and the two OT protocols
realize the functionality F(N

1

)
-OT in the ROM. More precisely, for every adversary

A, there exists a simulator SIM that produces a view in the ideal world that no
environment Z can distinguish with advantage better than h

2k
where h is the

number of H2 query performed by Z on an uncompromised server.

Proof. We can always assume that A acts as a dummy adversary who follows
Z’s instructions and shares its view with Z. For every possible environment Z,
we will use the simulator SIM described in Figure 6.

First, let us consider the messages that SIM can craft and are trivially identi-
cal to the protocol execution in the hybrid world. These messages are completely
independent of any piece of information that is involved in the protocol except
the identity of the participants and the session IDs sid and ssid. The messages
are:

17

Components: Hash function H2 : {0, 1}∗ × {0, 1}k → {0, 1}`, where ` polyno-
mial in the security parameter. H2 is specific to the OPRF instance initialized for a
unique session ID sid, and they should be implemented by folding sid into their inputs.

Initialization: On (INIT, sid) from Z, S picks k0, . . . ,kκ ←$ Zn
q−1 and stores

(sid, (k0, . . . ,kκ)).

Server compromise: On (COMPROMISE, sid,S) from A, S reveals (k0, . . . ,kκ).

Offline evaluation: On (OFFLINEEVAL, sid,S, x) from Z, S recovers
(sid, (k0, . . . ,kκ)) and returns (OFFLINEEVAL,sid,H2(x, S(k0

∏κ
i=1 k

xi
i))).

Client online evaluation:

– On (EVAL, sid, ssid,S ′, x) from Z, C stores (sid, ssid, x); sends (STARTPRO-
TOCOL, sid, ssid) to S ′, (PREFIX,sid, ssid, ssid) to Z and for i ∈ [κ] sends
(RECEIVE,sid, (ssid, i),S ′, C, xi) to F(

2
1

)
-OT.

– On (RECEIVED, sid, (ssid, i),S, C, ti) from F(
2
1

)
-OT for i ∈ [κ], C evaluates b =

lookup(
∑κ

i=1 ti) and for j ∈ {0, . . . , n−1}, C sends (INPUTR, sid, (ssid, j), S, C, bj)
to FOLE.

– On (OUTPUT,sid, (ssid, i),S, C, wi) from FOLE for i ∈ {0, . . . , n − 1}, C stores
y = iNTT(

∑n−1
i=0 wiX

i). For j ∈ [n], C sends (RECEIVE,sid, (ssid, j),S, C, yj−1) to
F(

q
1

)
-OT.

– On (BCH, ssid, s) from S and (RECEIVED,sid, (ssid, i),S, C, ui) from F(
q
1

)
-OT for

i ∈ {0, . . . , n− 1}; C sends (EVAL, sid, ssid,H2(x,BCH(u)− s))

Server online evaluation: On (STARTPROTOCOL, sid, ssid) from C and (SNDRCOM-
PLETE, sid, ssid′) from Z, S recovers (sid, (k0, . . . ,kκ)) and performs the following
actions:

– S sends (PREFIX, sid, ssid′, ssid) to Z
– for i ∈ [κ] S sends (SEND,sid, (ssid, i),S, C, (ri, ri + ki)) to F(

2
1

)
-OT and stores

a = lookup(k0 −
∑κ

i=1 ri)
– for i ∈ {0, . . . , n − 1}, S samples ēi ←$ Zq and sends

(INPUTS,sid, (ssid, i),S, C, (ai, ēi)) to FOLE. S stores e = iNTT(
∑n−1

i=0 ēiX
i)

– S samples d ←$ {0, 1}n and for i ∈ [n], S sends (SEND,sid, (ssid, i),S, C, (bz −
ei−1e2 + di. z ∈ Zq)) to F(

q
1

)
-OT

– S sends (BCH, ssid, BCH(d)) to C.

Fig. 5: Leap protocol in UC F(N
1

)
-OT,FOLE−hybrid world

– STARTPROTOCOL from C (if A changes this message, the protocol cannot
reach the end, otherwise the prefixes always match, and the evaluation of
the final output is always permitted)

– PREFIX from S and C (through communications with F)

18

For every session ID sid, which is uniquely bound to a key k0, . . . ,kκ, SIM keeps a
list Lsid = 〈(∆,S∆)〉 where ∆ ∈ {0, 1}k and S∆ is a fake sender identity.

Initialization: On (INIT, S, sid) from F , SIM picks k0, . . . ,kκ ←$ Zn
q−1 and stores

(S, sid, (k0, . . . ,kκ)).

Server compromise: On (COMPROMISE, sid,S) from A meant for S, SIM forwards
it to F and reveals (k0, . . . ,kκ).

H2 queries response: On (H2 QUERY, x, f, sid) from Z meant for the oracle, SIM
recovers k0, . . . ,kκ associated to sid and evaluates ∆ = f −FK(x):

– if ∆ = 0 and S is not compromised SIM sends (HALT) to Z
– if ∆ = 0 and S is compromised, SIM sends (OFFLINEEVAL, sid, S, x) to F and

shares its response Fsid,S(x) to Z
– if ∆ 6= 0, SIM looks for ∆ in Lsid. If it is not present, SIM picks a fresh identity
S∆ and add (∆,S∆) to Lsid. In both cases sends (OFFLINEEVAL, sid,S∆, x) to F
and shares its response Fsid,S∆(x) to Z.

Client online evaluation:

– On (EVAL, sid, ssid, C,S ′) from F , SIM sends (ssid) to F as C’s prefix. Then SIM
shows A (STARTPROTOCOL, ssid) as a message from C to S ′ and (RECEIVE,
sid, (ssid, i),S ′, C) for i ∈ [κ] as messages from F(

2
1

)
-OT

– On (RECEIVED, sid, (ssid, i),S, C) from A meant for F(
2
1

)
-OT for i ∈ [κ] and only if

A didn’t change ssid in the STARTPROTOCOL message, SIM shows A (INPUT,
sid, (ssid, j)) for j ∈ {0, . . . , n− 1} as messages from FOLE

– On (DELIVER, sid, (ssid, i),S, C) from A meant for FOLE for i ∈ {0, . . . , n − 1},
SIM shows A (RECEIVE, sid, (ssid, j),S, C) for j ∈ [n] as messages from F(

q
1

)
-OT

– On (RECEIVED, sid, (ssid, i),S, C) from A meant for F(
q
1

)
-OT for i ∈ [n] and on

(BCH, ssid, s′) from A as a message from S to C, SIM retrieves the stored syndrome
s and A modified and evaluates ∆ = s′ − s:
• if ∆ = 0 SIM sends (RCVCOMPLETE, sid, ssid, C,S) to F
• if ∆ 6= 0, SIM looks for ∆ in Lsid. If it is not present,SIM picks a fresh

identity S∆ and add (∆,S∆) to Lsid. In both cases sends (RCVCOMPLETE,
sid, ssid, C,S∆) to F

Server online evaluation: On (STARTPROTOCOL, sid, ssid′) from A as a message
from C to S and (SNDRCOMPLETE, sid, ssid,S) from F , SIM performs the following
actions:

– SIM sends (ssid′) to F as S’s prefix
– for i ∈ [κ] SIM sends (SEND,sid, (ssid′, i),S, C) to A as a message from F(

2
1

)
-OT.

– for i ∈ [n], SIM sends (INPUT,sid, (ssid′, i−1),S, C) to A as a message from FOLE.
– for i ∈ [n], SIM sends (SEND,sid, (ssid′, i),S, C) to A as a message from F(

q
1

)
-OT

– SIM samples s←$ {0, 1}k, stores (s, ssid′) and shows A (BCH, ssid′, s) as message
from S to C.

Fig. 6: SIM behavior in the ideal world.
19

– SEND, RECEIVE from F(N
1

)
-OT

– INPUT from FOLE
– BCH from S to C since d has uniform distribution and BCH(·) is a linear

application.

Now, we analyze the messages that are not identical in the two worlds but
indistinguishable to Z.

Like in [BKLW22], every H2 instance is uniquely bound to the session ID
sid, so all queries have input (x, f, sid). The dependency of H2 from sid is kept
silent as in [BKLW22].

Let us analyze the view of Z in the real world:

– On H2 QUERY on input (x, f, sid) it receives H2(x, f).
– On COMPROMISE S from A, Z recovers the secret keys k0, . . . ,kκ.
– On EVAL message to C on input x, with sender S who has keys k0, . . . ,kκ,
Z can ask A to modify the syndrome s to s′ = s+∆ for some ∆. The output
from C is H2 (x,FK(x) +∆) . Note that if the keys are compromised, then
Z has full control over the second input of H2.

What happens in the ideal world is:

– On H2 QUERY on input (x, f, sid), SIM recovers k0, . . . ,kκ that it has
associated to sid, evaluates ∆ = f −FK(x) and if ∆ 6= 0, returns Fsid,S∆(x)

to Z. This is always possible when sending an OFFLINEEVAL message to
F since S 6= S∆. If ∆ = 0 and the keys are compromised, then, thanks to
OFFLINEEVAL, SIM can obtain Fsid,S(x) and share it with Z. If ∆ = 0
and the keys are not compromised, then SIM cannot produce the correct
output and must HALT the simulation.

– On COMPROMISE S from A, SIM discloses to Z the keys k0, . . . ,kκ as-
sociated to S.

– On EVAL message to C on input x, with sender S, Z can ask A to modify
the syndrome s to s′ = s+∆ for some ∆. SIM can clearly retrieve ∆. If the
syndrome is modified Z receives Fsid,S∆(x), otherwise Fsid,S(x).

So far, SIM is able to produce an output in most cases. Multiple EVAL
outputs with the same interaction from Z are consistent, and the same works
for H2 queries. We have to verify that the output created with a H2 QUERY is
coherent with what is obtained during the protocol.

So suppose that S has uncompromised keys k0, . . . ,kκ. Let us assume that
Z performs multiples H2 queries on the same server S on the inputs {(xi, fi)}i
and start the protocol on inputs {xj}j and modifies the syndromes with {∆j}j .
Out of all these Inputs, SIM lacks only the knowledge of {xj}j . Let us define
∆i = fi − FK(xi) and suppose for a moment that all of them are nonzero. We
can also suppose that all ∆j are different from 0, otherwise a correct Fsid,S(xj)
is returned.

From the set of H2 queries performed on the inputs {xi}i, Z receives the
messages {Fsid,S∆i

(xi)}i, whereas from the protocols executed on inputs {xi}i,
Z obtains the messages {Fsid,S∆j

(xj)}j . Without knowing k0, . . . ,kκ, the second

20

input of H2 in a protocol execution is unknown to Z, so it cannot do anything
with these results.

If Z decides to COMPROMISE S, then it has access to the keys k0, . . . ,kκ:

– for every xj , Z can evaluate fj = FK(xj) +∆j and ask for a H2 query on
input (xj , fj). At this point SIM will evaluate ∆ = fj − FK(xj) = ∆j . So
the result returned is exactly Fsid,S∆j

(xj).
– for every (xi, fi), Z can evaluate ∆∗i = fi − FK(xi) = ∆i. In order to

obtain H2(xi, fi) through the protocol, Z needs to modify the syndrome in
s′ = s + ∆i. SIM, following its procedure, will make C return Fsid,S∆i

(xi)
to Z.

All messages are coherent, and there is no way for Z to distinguish reality
from simulation. If Z tries to evaluate H2 on new inputs after the server com-
promise, the situation does not change since SIM is now in a stronger position.

Let us now consider the probability that the simulator shares the HALT
message. This event happens if and only if Z perform a query to the H2 oracle
on input (xi, fi, sid) where sid is related to the uncompromised keys k0, . . . ,kκ

and fi = FK(xi) (which is to say, ∆i = 0). Since both participants are honest,
through protocol executions Z can only recover xi, H2(xi,FK(xi)) and the syn-
dromes s which have uniform distribution (since d have). For this reason, it is
impossible for Z to obtain information about FK(xi). The only thing that Z
can do is guess the correct output, which happens with a probability of 1/2k per
query. The total advantage Z has to distinguish the views is exactly h

2k
.

5 Instantiation and Implementation

We now turn to the concrete instantiation of Leap and present our reference
implementation in C++. The reference implementation is research code and not
side-channel resistant. In the implementation, we demonstrate that Leap stands
as a competitive construction regarding computational resources. By leveraging
the AVX-2 instruction set and the libOTe framework10 for oblivious evaluation,
the online phase of our implementation requires less than a millisecond to com-
pute. Furthermore, the actual computation time of the client amounts to less
than 100 µs, exclusive of communication overhead.

We start by discussing performance considerations for the implementation
of Spring in Section 5.1, revisit the security analysis of the RLWR parameter
selection in Section 5.2, and then move on to the optimizations for each phase
depicted in Figure 4. Finally, we provide benchmarks for our reference imple-
mentation in Section 5.6, where we also discuss the communication complexity.

5.1 Performance of Spring

The reference implementation of Spring [BBL+15] was originally eight to ten
times slower than AES when implemented with SSE instructions, mainly due
10 https://github.com/osu-crypto/libOTe

21

https://github.com/osu-crypto/libOTe

to clever polynomial transformations, which rely on three key observations.
First, Spring employs the Number-Theoretic Transformation (NTT) for the
multiplication of the polynomials, which reduces the complexity from O(n2) to
O(n log n). The NTT enables the multiplication of polynomials in element-wise
point-value form. The main properties we need are:

• NTT(a) · NTT(b) = NTT(a ∗ b)
• iNTT(a · b) = iNTT(a) ∗ iNTT(b)

• NTT(a) + NTT(b) = NTT(a+ b)
• iNTT(a) + iNTT(b) = iNTT(a+ b)

In the case of the OPRF, the polynomials used as the server key need to
be transformed only once and can be stored in NTT form. This is a standard
technique in lattice-based schemes. To be even more efficient, the keys can be
sampled directly in NTT form. The procedure remains the same as when sam-
pling normal polynomials, with the additional constraint that the polynomials
must have no zero coefficients so the polynomial is invertible.

This condition enables us to convert the subset-product to a subset-sum using
the observation that for some generator g for Z∗q , gagb = ga+b. Two conversion
steps would be necessary to replace the multiplication with addition: The first
conversion is to the subset-sum form to map an element x to its subset-sum
representation ga and a second step to map the result ga+b back to the subset-
product representation. Both steps can be computed with a simple table lookup.

Note that by Fermat’s theorem, gq−1 ≡ g0 ≡ 1 mod q for a prime q, so
we can sample from a uniform distribution mod q − 1. For the parameters of
Spring, 3 is used as the generator g. Since the polynomial may not contain
zeros, the table lookup to compute the inverse discrete logarithm substitutes
the modular exponentiation of 1 to q − 1, thus preventing the polynomial from
having zero coefficients. The polynomial coefficients now range from [0, 255] and
fit perfectly in a single byte. In addition, using q = 257 allows for free modu-
lar operations with wrapping arithmetic. Therefore, the polynomials (and later
blinding elements) are sampled in Subset-Sum NTT form for the implementa-
tion, saving a table lookup and an NTT computation. The optimized Spring
PRF proceeds as follows:

FK(c1, · · · , cκ) = S

(
iNTT

(
lookup

(
k0 +

κ∑
i=1

kci
i

)))

5.2 Security Analysis of Spring

Compared to other protocols and cryptographic schemes built from lattice as-
sumptions, Spring has a much smaller modulus q. The predecessing BPR proto-
col [BPR12] requires an exponentially large modulus relative to the PRF input
length, which is prohibitive for the performance of concrete instantiations. The
authors point out that this may be a proof artifact. Thus, the parameters of
Spring are based on heuristic analysis of the hardness of the underlying prob-
lem.

22

Related work extending Spring [BDFK17] to a PRG gives a more detailed
security analysis, concluding that the parameters selected for Spring ensure that
it is a secure PRF. More concretely, the authors describe a potential birthday
attack targeting a small portion of the PRF’s internal state, primarily affecting
its counter mode. The paper also covers Gröbner basis attacks, where the algo-
rithm remains secure even when utilizing the BKW attack with a small p. The
most efficient attack against the BCH mode involves detecting the small bias in
the output bits.

We now discuss the parametrization (including modulus q and dimension n)
of related cryptosystems to explain their choice, particularly in comparison to
Spring. In particular, we look at ML-KEM amid the ongoing NIST competition
for post-quantum primitives standardization [Moo22]. Moreover, we check with
the lattice estimator [APS15, ACD+18] to ensure there are no known lattice
attacks against the parameters.
Modulus q. Setting q to 257 or 514 is significantly lower than, for example,
ML-KEM’s11 q = 3329 [RL23]. However, ML-KEM requires a larger modulus to
decrease the failure probability for the CCA security requirement. A similarly
small modulus is chosen by the Falcon-based KEM BAT [ETWY22], which sets
q = {128, 257, 769} for their NTRU-based KEM. The modulus q = 257 is used
for their target level of 128 bits, which is equal to the target level of Spring.
Dimension n. In ML-KEM, the dimension is chosen to be n = 128 to encapsu-
late 256-bit keys. BAT sets n = {256, 512, 1024}, with n = 512 being the target
dimension for a security level of 128 bits. To show n = 128 is sufficient, we
estimate the security for n = {128, 256, 512}.
Robustness against lattice attacks. As the Lattice Estimator [APS15, ACD+18]
currently does not provide estimations for (R)LWR, we rely on the fact that for
specific choices of parameters (R)LWR is as hard as (R)LWE [BGM+16]. Specifi-
cally, when setting the secret distribution Xs to be uniform over Zq and the noise
distribution Xe is uniform over the integers in the range [− q

2p , . . . ,
q
2p), provided

q is a multiple of p = 2. In case of uneven q = 257, we round the term down
to b qpc. With this choice of distributions, the results from the Lattice Estimator
provide lower bounds for the corresponding RLWR instance. The Lattice Es-
timator12 [APS15, ACD+18] output presented in Table 2 shows that common
lattice attacks are not feasible for both BCH and CRT instantiations of Spring.

5.3 Efficient Blind Subset Computation

The subset-sum computation step from Section 3.1 can be computed efficiently
using the OT extensions from Section 2.5. First, the server computes the uni-
11 ML-KEM (derived from Kyber [SAB+20]) is secure under the Module Learning With

Error (MLWE) assumption. Note that Ring-LWE is a special case of MWLE. The
same is true for the Learning with Rounding assumptions.

12 Using commit ID a7738f4cf9d985bf7d7e063320d8e0763daf6ac8

23

Table 2: Estimations of attack complexity against different instanti-
ations of the Spring PRF using the Lattice Estimator, called with
LWE.Parameters(n=n, q=q, Xe=NoiseDistribution.UniformMod((q//2)),
Xs=NoiseDistribution.UniformMod(2)). The USVP output was inifinity for
all parameter inputs.

dual hybrid arora-gb
q n rop mem rop mem

128 2867 2866 2503.3 2503.3

257 256 21764.1 21763.1 2696.2 2696.2

512 23557.1 23556.1 2914.7 2914.7

128 2994.8 2993.8 2∞ 2∞

514 256 22020.6 22019.6 21016.3 21016.3

512 24071 24070 2∞ 2∞

formly random polynomials r0,i, r1,i from the base OT strings r0,i, r1,i using an
extendable output function (XOF), squeezing 32 bytes per polynomial. The un-
blinding polynomial a is set to zero. The client expands all their OT results rc$,i
to rc$,i and sets a polynomial a to zero. After the computation, a will contain
the subset-sum.

To compute the subset-sum, the client and the server engage in the following
protocol for all i ∈ (1, . . . , κ): First, the client computes a correction vector where
each correction bit bi is computed as bi = ci ⊕ c$,i. The server takes each bi and
adds r−1b,i to a. Then, the server replies with the polynomial ri = r1−bi⊕(rb,i+ki).
On the client side, if ci = 0, rc$,i is added to a. If ci = 1, the client adds rci ⊕ ri
to a instead.
Performance. The blinding polynomials are derived from the OT extension
strings. Since the extraction step is performed in the base phase, the online
subset-sum computation only requires to compute the correction elements and
some additions, which can be performed using vector instructions and can be
efficiently pipelined.
Implementation Considerations. The subset-sum computation requires a
table lookup to transition to subset-product form. There are two possible ways
of obtaining an implementation without side channels: Either by bit-slicing the
lookup table or by foregoing the subset-sum representation and conducting the
Naor-Reingold aggregation multiplicatively in subset-product form.

5.4 OLE Computation

In our implementation, we use Gilboa’s product-sharing protocol [Gil99], which
is a specific OLE. This protocol computes the product of two m-bit numbers
using m OT calls. It works as follows:

- The client sets y = 0, and the server sets e = 0.

24

- The client’s input to the OT is the bitwise decomposition of b such that
b =

∑m
i=1 2

i−1bi.
- The client and the server engage in m OT calls. The server samples ei ∈ Zp

and computes ci = a(1 � i) + ei mod p. The server inputs to the OT are
(ei, ci). The server updates e = e+ ei.

- From the
(
2
1

)
-OT, the client obtains yi = ei + a(1� (bii)), where bi is the ith

bit of b, and updates y = y + yi.

The subset-sum polynomials are lifted to subset-product polynomials. Again,
we use the OT extension to obtain masking elements. Computing Gilboa’s OLE
with OT extensions is very similar to computing the blinded subset-sum. The
client again computes the correction. If the ith correction bit is set, the server
responds with r1[i]⊕ (((1� k)a) + r0[i]), and with r0[i]⊕ (((1� k)a) + r1[i])
otherwise. The OLE evaluation is carried out for each polynomial coefficient
a ∈ a, in the case of Spring, where n = 128, 128 times.

Performance. The OLE protocol can be implemented efficiently using only
basic arithmetic. Our reference implementation consumes more randomness than
necessary since libOTe only supports extracting 128-bit secrets while we only
need nine bits for the masking term ei, discarding the remaining 119 bits. To
reduce the networking load in the preprocessing phase, the OT would need to be
tailored to the smaller output. A small speedup comes from preprocessing the
extraction of the random bits, which is performed in the preprocessing phase
using rejection sampling and an extensible output function.

5.5 Rounding and BCH code

The linearly shared polynomials are now put through the inverse NTT transfor-
mation. The NTT itself is already heavily optimized in the original paper. We
use a simplified version of the NTT in our implementation and point out that
an efficient NTT will likely give another performance boost to the protocol.

For the
(
N
1

)
-OT, we originally wanted to use the KKRT OT protocol [KKRT16].

A quick test showed that the libOTe implementation of the KKRT protocol takes
between 6 and 7 milliseconds for 128 OT calls, which is over 80% of the total ex-
ecution time for the OPRF. The overhead is caused by choosing one of only 128
entries, as KKRT is usually used for private set intersection algorithms, where
the set size is much larger. Using OT extensions and the Naor-Pinkas approach
for Polynomial Evaluation [NP99], as described in Section 2.5, we are able to
bring down the runtime significantly. A nice feature of this approach is that we
were able to use the base OT for all protocol steps, which significantly reduces
the overhead in the base phase and also makes the implementation simpler.

Performance. The server packs the results in 128 bit blocks. The client hold-
ing the OLE output yi can access the result in the 128y + ith bit. The data
structure is drawn in Figure 7. Similar to the OLE, we waste 127 bits of ran-

25

domness as we only need a single bit from the 128-bit OT extension output.

0 1 2 ... 254 255 256

y128 = 0

128 bits

Fig. 7: Representation of rounding results in memory. The client picks the index
of the encrypted rounding result depending on their OLE result. For example,
if y128 is zero, the client takes the 127th bit of the array.

5.6 Communication Evaluation and Benchmarks

Based on our reference implementation13 in C++ using libOTe for the oblivious
primitives, we evaluate both the computational and communication overhead.
The OPRF input is 128 bits for all benchmarks. All benchmarks were performed
on a computer running Ubuntu Linux version 22.04.1 with the 6.2.0-37-generic
kernel release. The processor is an AMD Ryzen 9 7900X 12-Core Processor, with
the processor frequency fixed at 4.7 MHz. The computer has 128 GiB of RAM.

The evaluation of the OPRF can be divided into two distinct phases: an
input-independent preprocessing phase and a fast, input-dependent online phase.
Preprocessing Phase. The online phase requires some preprocessing in the
form of base OT. We consider two potential OT candidates: The SimplestOT
protocol [CO15] over elliptic curves, which may be vulnerable to Shor’s algo-
rithm [Sho94], and the KEM-based endemic OT using ML-KEM (KyberOT),
which is secure against quantum adversaries [MR19], but not in the UC model.
We stress that any OT may be used for the OT evaluation, which makes our
construction very flexible. Both protocols are used to generate base OT that is
then extended using either the IKNP protocol [IKNP03] or SilentOT [BCG+19].

In Table 3, we present the numbers obtained from the different combina-
tions. A clear trade-off between communication overhead and computation time
is visible. Although the KyberOT protocol introduces a large constant to the
communication, the shorter communication time may be beneficial if only a few
OPRF evaluations are needed. The communication/computation trade-off may
be optimized further using SoftSpokenOT [Roy22], depending on the application
using our OPRF.
Online Phase. In Table 4, we show the overall communication cost and the
communication cost per protocol phase, as well as the computational costs. The
theoretical client communication cost is very low with 304 bytes, which are
correction elements for the base OT. In the implementation, libOTe tacks on 8
bytes per phase for synchronization, bringing the total communication to 328
bytes for the client.
13 https://github.com/meyira/leap

26

https://github.com/meyira/leap

Endemic OT

Sender Receiver
b0, b1 ← {0, 1}κ Rc̄ ← G
c′ = {0, 1} a← {0, 1}

R0, R1 Rc := Ac 	H(Rc̄)

Ac′ := Rc′ ⊕H(R1−c′) Ac := K.A(a)

Bc′ := K.B(Ac′ , bc′)
B0, B1,Enck0(m0),Enck1(m1)

kc′ := K.C(Ac′ , bc′) kc := K.C(a,Bc)

Fig. 8: KEM-agnostic description of endemic OT protocol from key agreement
in a group G used for KyberOT. K.A(x) is an algorithm generating a public key
from a private key, usually from some starting element. K.B(X,x) is used to
derive another group element, starting from a specific element. K.C(X,x) uses
x to unmask X. Note that the sender computes two private keys A0, A1 and
encapsulates them in two messages B0, B1. The encrypted messages are grey to
denote they are optional in a random OT setting.

Table 3: Communication and computation overhead of OT protocols of the pre-
processing step for 1 = 20 and 213 batched OPRF evaluations. K.OT is the
quantum-secure KyberOT of [MR19], S.OT is the SimplestOT from [CO15]
based on classical assumptions. The measurements are the median taken over
100 runs.
Protocol Communication Computation

Client Server Client Server

20

S.OT+IKNP 39 kB 4 kB 63 ms 63 ms
K.OT+IKNP 465 kB 328 kB 10 ms 10 ms
S.OT+Silent 22 kB 22 kB 68 ms 68 ms
K.OT+Silent 448 kB 392 kB 10 ms 10 ms

213

S.OT+IKNP 319 MB 4.26 kB 420 ms 463 ms
K.OT+IKNP 319 MB 328 kB 311 ms 423 ms
S.OT+Silent 64 kB 235 kB 2065 ms 3371 ms
K.OT+Silent 487 kB 559 kB 2130 ms 3496 ms

The server needs to send 128 subset polynomials to the client in the subset-
sum phase, each of which is 128 bytes long. In the OLE step, the server computes
the encryption of nine bits for each of the 257 possible outputs, 128 times. The
implementation does not implement bit packing here and sends each nine-bit
number in 16 bits, which adds around 1 kB of communication overhead. In the

27

rounding step, each of the 257 possible client results are added as a single bit
for each of the 128 polynomial coefficients. Finally, the random BCH code adds
another 8 bytes. Due to synchronization, the libOTe communication overhead is
then at 22840 bytes or 22.8 kilobytes.

Table 4: Communication and Computation of our protocol per phase and overall.
The Overall, Network row includes the overhead for network synchronization and
the padding for the OLE step.

Phase Client Server
Comm. Comp. Idle Comm. Comp. Idle

Subset-Sum 16 bytes 5 µs 21 µs 16 384 bytes 863 µs 46 µs
OLE 144 bytes 4 µs 3 µs 1 296 bytes 72 µs 88 µs
Rounding 144 bytes 2 µs 726 µs 4 118 bytes 814 µs 67 µs
BCH 0 bytes 1 µs 0 µs 8 bytes / 26 µs

Overall 304 bytes 11 µs 750 µs 21 806 bytes 1.7 ms 227 µs(Network) (328 bytes) (22 840 bytes)

From a computational perspective, the rounding phase seems to offer the
most optimization potential, as computing all n · q possible results takes a sig-
nificant amount of time. The BCH step of the client includes a call to an XOF
to post-process the OPRF output.

These numbers can be improved further. Due to implementation constraints
imposed by libOTe, which considers blocks of 128 bits for OLE and

(
q
1

)
-OT,

whereas nine bits would be sufficient for Leap. Hence, our proof-of-concept
implementation is unable to use approximately 3808 bytes of randomness in the
online phase per OPRF computation, as 128 − 9 = 119 bits are discarded per
OT output used for either the OLE or the

(
q
1

)
-OT.

6 Application: Private Set Intersection

In private set intersection (PSI), two parties each hold a set of data. They aim
to compute the intersection of their sets without revealing the items that are not
shared. Use cases include malware detection, checking compromised credentials,
private database querying, contact discovery [MAL23], and many more.

In the balanced PSI case, where both set sizes are equal, the best protocol is
Vole-PSI [RS21], which uses a programmable OPRF to absorb multiple inputs
at once. The authors can achieve a set intersection computation in less than a
second locally for set sizes of 216.

OPRFs are particularly useful for the unbalanced case, where one set is sig-
nificantly larger than the other. Here, the server samples a key and uses it to
compute a PRF over each item in the larger set. The PRF outputs are then in-
serted in an efficient data structure, e.g., a Cuckoo filter [FAKM14]. The Cuckoo

28

Table 5: Communication and computation in PSI using ML-KEM+IKNP for
the Base phase to illustrate the flexibility and trade-off of our protocol. The
computation times are the median over 10 runs.
|S| |C| Setup C Setup S Base C Base S Online C Online S

220
21

4.5 s 4.35 s 0.1 s 0.1 s 0.003 s 0.01 s
0 s 4.2 MiB 0.48 MiB 0.3 MiB 0.4 kiB 44 kiB

210
4.2 s 4.33 s 0.5 s 1 s 1.7 s 1.2 s
0 s 4.2 MiB 38.4MiB 0.3 MiB 0.3 MiB 22.3 MiB

224 215
68 s 68 s 16.4 s 27s 51.4 s 38.4 s
0 s 67 MiB 1.18 GiB 0.3 MiB 9.5 MiB 712.8 MiB

filter is then sent to the client. In order to check whether a client element is con-
tained in the set, the client and the server engage in an OPRF protocol with the
client input and the server key. The resulting PRF value can be used by the client
to query the Cuckoo filter. Currently, the fastest protocol employing this method
is DisCo [HSW23], which is built upon the work of Kales et al. [KRS+19]. Both
PSI protocols send the Cuckoo filter in a Setup phase. Then, data-independent
base OT and OT extension computations are performed during the base phase.
During the following online phase, the client and server engage in the online
phase of the OPRF computation. The client checks if the results are in the
Cuckoo filter obtained in the setup phase.

The OPUS paper [HHM+24b] also demonstrates private set intersection us-
ing their isogeny-based OPRFs. However, our approach (using Leap) performs
significantly better across all metrics except online server communication, where
OPUS is a bit better. However, OPUS requires a linear number of rounds con-
cerning the input size and involves expensive isogeny computations.

To demonstrate the effectiveness of our OPRF, we instantiate the imple-
mentation of [KRS+19] with our OPRF14 In comparison, DisCo uses database
partitioning and client query scheduling techniques to enhance the protocols
performance. We stress that, to the best of our knowledge, the techniques from
DisCo can be directly applied to our protocol. However, as our current focus is
on demonstrating the efficiency of our OPRF compared to others, we have not
implemented these techniques.

In Table 5, we show that Leap is a competitive construction for private set
intersection. The client’s setup time is negligable in practice, as it only has to
receive the Cuckoo filter. For simplicity, the client waits synchronously for the
server in our proof of concept implementation. However, in practice, the client
would not receive the entire Cuckoo filter and instead use a hybrid approach
similar to DisCo [HSW23].

14 The implementation is available on request and will be made public with the release
of this paper.

29

Table 6: Communication and computation in PSI using SimplestOT+SilentOT
for the Base phase to illustrate the flexibility and trade-off of our protocol. The
computation times are the median over 10 runs.

|S| |C| Setup C Setup S Base C Base S Online C Online S

220
21

4.2 s 4.2 s 0.005 s 0.009s 0.03 s 0.01 s
0 s 4.2 MiB 0.02 MiB 0.06 MiB 0.4 kiB 44 kiB

210
4.3 s 4.2 s 0.8 s 1.3 s 1.7 s 1.2 s

0 s 4.2 MiB 0.33 MiB 0.16 MiB 0.3 MiB 22.3 MiB

224 215
68.9 s 68.9 s 26.4 s 43.9 s 56 s 38.6 s

0 s 67 MiB 9.5 MiB 0.16 MiB 9.5 MiB 712 MiB

7 Conclusion and Future Work

In this work, we introduced – Leap –, a protocol for the efficient oblivious
evaluation of Spring in BCH mode. In Leap, we show how to leverage the
design ideas of Spring to construct an efficient OPRF that we believe to be
secure against quantum adversaries. Concretely, the OPRF uses the Learning
with Rounding hardness assumption and a BCH code for bias reduction in the
PRF output. Beyond applying our OPRF in the context of unbalanced PSI, we
envision our OPRF also to be useful for various other applications. Specifically,
applications that require multiple OPRF evaluations can benefit from batching
the preprocessing phase and a very efficient online phase.

Beyond the applications of our protocol, our construction also gives rise to a
new approach in constructing OPRFs from PRFs that follow the Naor-Reingold
paradigm in principle but where the OT-based transform [FIPR05] is not appli-
cable due to some deviation.

While our reference implementation is already efficient, it can be signifi-
cantly improved by using both more of the strategies used in the original paper
and by optimizing the underlying primitives. In addition, mismatch in output
sizes supported by the libOTe and required by Leap leaves potential room for
optimizations with targeted OT and OLE constructions and implementations.
Finally, further investigation into Spring-CTR and the counter mode, as well
as investigating alternatives to using the BCH code for bias reduction, to allow
more output bits would make the protocol more flexible as well.
Acknowledgments. We thank Lukas Helminger for fruitful discussions during
the design phase of Leap, Martin Albrecht for discussions concerning the secu-
rity of SPRING. Sebastian Felix and Mateusz Zalega helped with some debug-
ging of the reference implementation. We also thank the anonymous reviewers
at Eurocrypt 2025 and NDSS 2024 for helpful comments on the paper.

This work is partially funded by the Digital Europe Program under grant
agreement number 101091642 (“QCI-CAT”), the European Union’s Horizon Eu-
rope research and innovation program under the project “Quantum Security

30

Parameters Setup Online
|S| |C| |S| |C| |S| |C|

EC
N

R
20 20

10 ms 0 s 0.23 s 0.05 s
133 bytes 0 bytes 12.04 kiB 16 bytes

25 25
0.02 s 0 s 0.21 s 0.06 s

262 bytes 0 bytes 137.05 kiB 512 bytes

210 210
0.3 s 0 s 0.64 s 0.57 s

4.36 kiB 0 bytes 4.04 MiB 16 kiB

N
R

-O
T

20 20
0.26 s 0.51 s 0.06 s 0.10 s

134 bytes 1 byte 128 kiB 0.75MiB

25 25
1.63 s 1.88 s 3.11 s 3.15 s

263 bytes 1 byte 4MiB 8.5 MiB

210 210
45.04 s 45.28 s 99.66 s 99.71 s

4.31 MiB 1 byte 128 MiB 256.6 MiB

O
PU

S

20 20
0.26 s 0.26 s 15.47 s 15.91 s

133 bytes 0 bytes 17.07 kiB 9.04 kiB

25 25
8.71 s 8.71 s 328.46 s 329.14 s

262 bytes 0 bytes 546.25 kiB 290.26 kiB

210 210
303.38 s 303.38 s 16367.12 s 16367.60 s
4.31 kiB 0 bytes 34.14 MiB 18.08 MiB

LE
A

P

20 20
1 ms 1 ms 0.2s 6 ms

117 bytes 0 bytes 73.4 kiB 20 KiB

25 25
1 ms 1 ms 0.08 s 0.07 s

246 bytes 0 bytes 802 kiB 47.5 kiB

210 210
4 ms 5 ms 2.4 s 2.46 s

4.30 kiB 0 bytes 22.39 MiB 646.5 kiB
Table 7: Performance of Naor-Reingold OPRFs for PSI. Concretely, the per-
formance of OPUS, isogeny-based NR-OT using their reference implementa-
tion with an additive homomorphic encryption OT [BDK+20] and Leap using
IKNP+KyberOT are compared to the ECNR protocol that is not secure against
quantum computers.

Networks Partnership” (QSNP, grant agreement number 101114043), the Euro-
pean Union’s Horizon Europe project SUNRISE (project no. 101073821), by RE-
MINDER, a project funded by the Austrian Science Fund (FWF) under project
number I 6650-N, and by PREPARED, a project funded by the Austrian security
research programme KIRAS of the Federal Ministry of Finance (BMF).

References

ABB+13. Michel Abdalla, Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, and
David Pointcheval. SPHF-friendly non-interactive commitments. In Kazue
Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part I, volume 8269
of LNCS, pages 214–234. Springer, Berlin, Heidelberg, December 2013.

31

ACD+18. Martin R. Albrecht, Benjamin R. Curtis, Amit Deo, Alex Davidson,
Rachel Player, Eamonn W. Postlethwaite, Fernando Virdia, and Thomas
Wunderer. Estimate all the LWE, NTRU schemes! In Dario Catalano
and Roberto De Prisco, editors, SCN 18, volume 11035 of LNCS, pages
351–367. Springer, Cham, September 2018.

ADDG24. Martin R. Albrecht, Alex Davidson, Amit Deo, and Daniel Gardham.
Crypto dark matter on the torus - oblivious PRFs from shallow PRFs and
TFHE. In Marc Joye and Gregor Leander, editors, EUROCRYPT 2024,
Part VI, volume 14656 of LNCS, pages 447–476. Springer, Cham, May
2024.

ADDS21. Martin R. Albrecht, Alex Davidson, Amit Deo, and Nigel P. Smart. Round-
optimal verifiable oblivious pseudorandom functions from ideal lattices.
In Juan Garay, editor, PKC 2021, Part II, volume 12711 of LNCS, pages
261–289. Springer, Cham, May 2021.

AG24. Martin R. Albrecht and Kamil Doruk Gür. Verifiable oblivious pseudoran-
dom functions from lattices: Practical-ish and thresholdisable. In Kai-Min
Chung and Yu Sasaki, editors, ASIACRYPT 2024, Part IV, volume 15487
of LNCS, pages 205–237. Springer, Singapore, December 2024.

Ajt96. Miklós Ajtai. Generating hard instances of lattice problems (extended
abstract). In 28th ACM STOC, pages 99–108. ACM Press, May 1996.

APRR24. Navid Alamati, Guru-Vamsi Policharla, Srinivasan Raghuraman, and Pe-
ter Rindal. Improved alternating-moduli PRFs and post-quantum signa-
tures. In Leonid Reyzin and Douglas Stebila, editors, CRYPTO 2024,
Part VIII, volume 14927 of LNCS, pages 274–308. Springer, Cham, Au-
gust 2024.

APS15. Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hard-
ness of learning with errors. J. Math. Cryptol., 9(3):169–203, 2015.

Bas24a. Andrea Basso. Poke: A framework for efficient pkes, split kems, and
oprfs from higher-dimensional isogenies. Cryptology ePrint Archive, Paper
2024/624, 2024. https://eprint.iacr.org/2024/624.

Bas24b. Andrea Basso. A post-quantum round-optimal oblivious PRF from isoge-
nies. In Claude Carlet, Kalikinkar Mandal, and Vincent Rijmen, editors,
SAC 2023, volume 14201 of LNCS, pages 147–168. Springer, Cham, Au-
gust 2024.

BBL+15. Abhishek Banerjee, Hai Brenner, Gaëtan Leurent, Chris Peikert, and Alon
Rosen. SPRING: Fast pseudorandom functions from rounded ring prod-
ucts. In Carlos Cid and Christian Rechberger, editors, FSE 2014, volume
8540 of LNCS, pages 38–57. Springer, Berlin, Heidelberg, March 2015.

BCG+19. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and
Peter Scholl. Efficient pseudorandom correlation generators: Silent OT
extension and more. In Alexandra Boldyreva and Daniele Micciancio,
editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 489–518.
Springer, Cham, August 2019.

BDFK17. Charles Bouillaguet, Claire Delaplace, Pierre-Alain Fouque, and Paul
Kirchner. Fast lattice-based encryption: Stretching spring. In Tanja Lange
and Tsuyoshi Takagi, editors, Post-Quantum Cryptography - 8th Interna-
tional Workshop, PQCrypto 2017, pages 125–142. Springer, Cham, 2017.

BDK+20. Niklas Büscher, Daniel Demmler, Nikolaos P. Karvelas, Stefan Katzen-
beisser, Juliane Krämer, Deevashwer Rathee, Thomas Schneider, and
Patrick Struck. Secure two-party computation in a quantum world. In

32

https://eprint.iacr.org/2024/624

Mauro Conti, Jianying Zhou, Emiliano Casalicchio, and Angelo Spognardi,
editors, ACNS 20International Conference on Applied Cryptography and
Network Security, Part I, volume 12146 of LNCS, pages 461–480. Springer,
Cham, October 2020.

Bea96. Donald Beaver. Correlated pseudorandomness and the complexity of pri-
vate computations. In 28th ACM STOC, pages 479–488. ACM Press, May
1996.

BGM+16. Andrej Bogdanov, Siyao Guo, Daniel Masny, Silas Richelson, and Alon
Rosen. On the hardness of learning with rounding over small modulus.
In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A, Part I, volume
9562 of LNCS, pages 209–224. Springer, Berlin, Heidelberg, January 2016.

BIP+18. Dan Boneh, Yuval Ishai, Alain Passelègue, Amit Sahai, and David J. Wu.
Exploring crypto dark matter: New simple PRF candidates and their ap-
plications. In Amos Beimel and Stefan Dziembowski, editors, TCC 2018,
Part II, volume 11240 of LNCS, pages 699–729. Springer, Cham, November
2018.

BKLW22. Daniel Bourdrez, Dr. Hugo Krawczyk, Kevin Lewi, and Christopher A.
Wood. The OPAQUE Asymmetric PAKE Protocol. Internet-Draft draft-
irtf-cfrg-opaque-09, Internet Engineering Task Force, July 2022. Work in
Progress.

BKM+21. Andrea Basso, Péter Kutas, Simon-Philipp Merz, Christophe Petit, and
Antonio Sanso. Cryptanalysis of an oblivious PRF from supersingu-
lar isogenies. In Mehdi Tibouchi and Huaxiong Wang, editors, ASI-
ACRYPT 2021, Part I, volume 13090 of LNCS, pages 160–184. Springer,
Cham, December 2021.

BKW20. Dan Boneh, Dmitry Kogan, and Katharine Woo. Oblivious pseudoran-
dom functions from isogenies. In Shiho Moriai and Huaxiong Wang, edi-
tors, ASIACRYPT 2020, Part II, volume 12492 of LNCS, pages 520–550.
Springer, Cham, December 2020.

BPR12. Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom func-
tions and lattices. In David Pointcheval and Thomas Johansson, edi-
tors, EUROCRYPT 2012, volume 7237 of LNCS, pages 719–737. Springer,
Berlin, Heidelberg, April 2012.

Can01. Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society
Press, October 2001.

CDGS19. Jan Camenisch, Angelo De Caro, Esha Ghosh, and Alessandro Sorniotti.
Oblivious PRF on committed vector inputs and application to dedupli-
cation of encrypted data. In Ian Goldberg and Tyler Moore, editors, FC
2019, volume 11598 of LNCS, pages 337–356. Springer, Cham, February
2019.

CHL22. Sílvia Casacuberta, Julia Hesse, and Anja Lehmann. SoK: Oblivious pseu-
dorandom functions. In 2022 IEEE European Symposium on Security and
Privacy, pages 625–646. IEEE Computer Society Press, June 2022.

CO15. Tung Chou and Claudio Orlandi. The simplest protocol for oblivious
transfer. In Kristin E. Lauter and Francisco Rodríguez-Henríquez, editors,
LATINCRYPT 2015, volume 9230 of LNCS, pages 40–58. Springer, Cham,
August 2015.

DFK+23. Luca De Feo, Tako Boris Fouotsa, Péter Kutas, Antonin Leroux, Simon-
Philipp Merz, Lorenz Panny, and Benjamin Wesolowski. SCALLOP: Scal-

33

ing the CSI-FiSh. In Alexandra Boldyreva and Vladimir Kolesnikov, edi-
tors, PKC 2023, Part I, volume 13940 of LNCS, pages 345–375. Springer,
Cham, May 2023.

DGH+21. Itai Dinur, Steven Goldfeder, Tzipora Halevi, Yuval Ishai, Mahimna
Kelkar, Vivek Sharma, and Greg Zaverucha. MPC-friendly symmetric
cryptography from alternating moduli: Candidates, protocols, and ap-
plications. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021,
Part IV, volume 12828 of LNCS, pages 517–547, Virtual Event, August
2021. Springer, Cham.

DGS+18. Alex Davidson, Ian Goldberg, Nick Sullivan, George Tankersley, and Fil-
ippo Valsorda. Privacy pass: Bypassing internet challenges anonymously.
PoPETs, 2018(3):164–180, July 2018.

DP24. Cyprien Delpech de Saint Guilhem and Robi Pedersen. New proof systems
and an OPRF from CSIDH. In Qiang Tang and Vanessa Teague, edi-
tors, PKC 2024, Part II, volume 14603 of LNCS, pages 217–251. Springer,
Cham, April 2024.

DRRT18. Daniel Demmler, Peter Rindal, Mike Rosulek, and Ni Trieu. PIR-PSI: Scal-
ing private contact discovery. PoPETs, 2018(4):159–178, October 2018.

ETWY22. Thomas Espitau, Mehdi Tibouchi, Alexandre Wallet, and Yang Yu.
Shorter hash-and-sign lattice-based signatures. In Yevgeniy Dodis and
Thomas Shrimpton, editors, CRYPTO 2022, Part II, volume 13508 of
LNCS, pages 245–275. Springer, Cham, August 2022.

FAKM14. Bin Fan, David G. Andersen, Michael Kaminsky, and Michael Mitzen-
macher. Cuckoo filter: Practically better than bloom. In CoNEXT, pages
75–88. ACM, 2014.

FHV13. Sebastian Faust, Carmit Hazay, and Daniele Venturi. Outsourced pattern
matching. In Fedor V. Fomin, Rusins Freivalds, Marta Z. Kwiatkowska,
and David Peleg, editors, ICALP 2013, Part II, volume 7966 of LNCS,
pages 545–556. Springer, Berlin, Heidelberg, July 2013.

FIPR05. Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold.
Keyword search and oblivious pseudorandom functions. In Joe Kilian,
editor, TCC 2005, volume 3378 of LNCS, pages 303–324. Springer, Berlin,
Heidelberg, February 2005.

FOO23. Sebastian H. Faller, Astrid Ottenhues, and Johannes Ottenhues. Compos-
able oblivious pseudo-random functions via garbled circuits. In LATIN-
CRYPT 2023, 2023.

GGM86. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions. Journal of the ACM, 33(4):792–807, October 1986.

Gil99. Niv Gilboa. Two party RSA key generation. In CRYPTO ’99, volume
1666 of LNCS, pages 116–129. Springer, 1999.

GNN17. Satrajit Ghosh, Jesper Buus Nielsen, and Tobias Nilges. Maliciously secure
oblivious linear function evaluation with constant overhead. In Tsuyoshi
Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part I, volume
10624 of LNCS, pages 629–659. Springer, Cham, December 2017.

HHM+24a. Lena Heimberger, Tobias Hennerbichler, Fredrik Meisingseth, Sebastian
Ramacher, and Christian Rechberger. OPRFs from isogenies: Designs and
analysis. In Jianying Zhou, Tony Q. S. Quek, Debin Gao, and Alvaro A.
Cárdenas, editors, ASIACCS 24. ACM Press, July 2024.

HHM+24b. Lena Heimberger, Tobias Hennerbichler, Fredrik Meisingseth, Sebastian
Ramacher, and Christian Rechberger. Oprfs from isogenies: Designs and
analysis. In AsiaCCS. ACM, 2024.

34

HL08. Carmit Hazay and Yehuda Lindell. Efficient protocols for set intersection
and pattern matching with security against malicious and covert adver-
saries. In Ran Canetti, editor, TCC 2008, volume 4948 of LNCS, pages
155–175. Springer, Berlin, Heidelberg, March 2008.

HSW23. Laura Hetz, Thomas Schneider, and Christian Weinert. Scaling mobile
private contact discovery to billions of users. In Gene Tsudik, Mauro
Conti, Kaitai Liang, and Georgios Smaragdakis, editors, ESORICS 2023,
Part I, volume 14344 of LNCS, pages 455–476. Springer, Cham, September
2023.

IKNP03. Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending obliv-
ious transfers efficiently. In Dan Boneh, editor, CRYPTO 2003, volume
2729 of LNCS, pages 145–161. Springer, Berlin, Heidelberg, August 2003.

JKK14. Stanislaw Jarecki, Aggelos Kiayias, and Hugo Krawczyk. Round-optimal
password-protected secret sharing and T-PAKE in the password-only
model. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014,
Part II, volume 8874 of LNCS, pages 233–253. Springer, Berlin, Heidel-
berg, December 2014.

JKX18. Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. OPAQUE: An asym-
metric PAKE protocol secure against pre-computation attacks. In Jes-
per Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018,
Part III, volume 10822 of LNCS, pages 456–486. Springer, Cham,
April / May 2018.

KBR13. Sriram Keelveedhi, Mihir Bellare, and Thomas Ristenpart. DupLESS:
Server-aided encryption for deduplicated storage. In Samuel T. King, edi-
tor, USENIX Security 2013, pages 179–194. USENIX Association, August
2013.

KKRT16. Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Ef-
ficient batched oblivious PRF with applications to private set intersec-
tion. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, An-
drew C. Myers, and Shai Halevi, editors, ACM CCS 2016, pages 818–829.
ACM Press, October 2016.

KLS+17. Ágnes Kiss, Jian Liu, Thomas Schneider, N. Asokan, and Benny Pinkas.
Private set intersection for unequal set sizes with mobile applications.
PoPETs, 2017(4):177–197, October 2017.

KRS+19. Daniel Kales, Christian Rechberger, Thomas Schneider, Matthias Senker,
and Christian Weinert. Mobile private contact discovery at scale. In Na-
dia Heninger and Patrick Traynor, editors, USENIX Security 2019, pages
1447–1464. USENIX Association, August 2019.

MAL23. Daniel Morales, Isaac Agudo, and Javier Lopez. Private set intersection: A
systematic literature review. Computer Science Review, 49:100567, 2023.

Moo22. Dustin Moody. Parameter selection for the selected algorithms. NIST
PQ forum, nov 2022. https://groups.google.com/a/list.nist.gov/g/
pqc-forum/c/4MBurXr58Rs.

MR19. Daniel Masny and Peter Rindal. Endemic oblivious transfer. In Lorenzo
Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors,
ACM CCS 2019, pages 309–326. ACM Press, November 2019.

NP99. Moni Naor and Benny Pinkas. Oblivious transfer and polynomial evalua-
tion. In 31st ACM STOC, pages 245–254. ACM Press, May 1999.

NR04. Moni Naor and Omer Reingold. Number-theoretic constructions of effi-
cient pseudo-random functions. Journal of the ACM, 51(2):231–262, March
2004.

35

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/4MBurXr58Rs
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/4MBurXr58Rs

PSSW09. Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C.
Williams. Secure two-party computation is practical. In Mitsuru Matsui,
editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 250–267. Springer,
Berlin, Heidelberg, December 2009.

Reg05. Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In Harold N. Gabow and Ronald Fagin, editors, 37th ACM
STOC, pages 84–93. ACM Press, May 2005.

RL23. Gina M Raimondo and Laurie E Locascio. Module-lattice-based key-
encapsulation mechanism standard. National Institute of Standards and
Technology, Gaithersburg, 2023.

Roy22. Lawrence Roy. SoftSpokenOT: Quieter OT extension from small-field
silent VOLE in the minicrypt model. In Yevgeniy Dodis and Thomas
Shrimpton, editors, CRYPTO 2022, Part I, volume 13507 of LNCS, pages
657–687. Springer, Cham, August 2022.

RS21. Peter Rindal and Phillipp Schoppmann. VOLE-PSI: Fast OPRF and
circuit-PSI from vector-OLE. In Anne Canteaut and François-Xavier Stan-
daert, editors, EUROCRYPT 2021, Part II, volume 12697 of LNCS, pages
901–930. Springer, Cham, October 2021.

SAB+20. Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz,
Tancrède Lepoint, Vadim Lyubashevsky, John M. Schanck, Gregor
Seiler, and Damien Stehlé. CRYSTALS-KYBER. Technical report,
National Institute of Standards and Technology, 2020. available
at https://csrc.nist.gov/projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/round-3-submissions.

SHB23. István András Seres, Máté Horváth, and Péter Burcsi. The legendre
pseudorandom function as a multivariate quadratic cryptosystem: secu-
rity and applications. Applicable Algebra in Engineering, Communication
and Computing, pages 1–31, 2023.

Sho94. Peter W. Shor. Algorithms for quantum computation: Discrete loga-
rithms and factoring. In 35th Annual Symposium on Foundations of Com-
puter Science, Santa Fe, New Mexico, USA, 20-22 November 1994, pages
124–134. IEEE Computer Society, 1994.

TCR+22. Nirvan Tyagi, Sofía Celi, Thomas Ristenpart, Nick Sullivan, Stefano Tes-
saro, and Christopher A. Wood. A fast and simple partially oblivious
PRF, with applications. In Orr Dunkelman and Stefan Dziembowski, edi-
tors, EUROCRYPT 2022, Part II, volume 13276 of LNCS, pages 674–705.
Springer, Cham, May / June 2022.

36

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions

	Leap: A Fast, Lattice-based OPRF With Application to Private Set Intersection

