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Abstract

We propose the notion of succinct oblivious tensor evaluation (OTE), where two parties
compute an additive secret sharing of a tensor product of two vectors x ⊗ y, exchanging two
simultaneous messages. Crucially, the size of both messages and of the CRS is independent of the
dimension of x. We present a construction of OTE with optimal complexity from the standard
learning with errors (LWE) problem. Then we show how this new technical tool enables a host
of cryptographic primitives, all with security reducible to LWE, such as:

• Adaptively secure laconic function evaluation for depth-D functions f : {0, 1}m → {0, 1}ℓ
with communication m+ ℓ+D · poly(λ).

• A trapdoor hash function for all functions.

• An (optimally) succinct homomorphic secret sharing for all functions.

• A rate-1/2 laconic oblivious transfer for batch messages, which is best possible.

In particular, we obtain the first laconic function evaluation scheme that is adaptively secure
from the standard LWE assumption, improving upon Quach, Wee, and Wichs (FOCS 2018). As
a key technical ingredient, we introduce a new notion of adaptive lattice encodings, which may
be of independent interest.
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1 Introduction

Consider the scenario where Alice holds a long vector x, Bob holds a smaller secret vector y and,
after a single round of simultaneous messages, they should be able to locally compute an additive
secret share of the tensor product x ⊗ y while preserving the privacy of y. That is, after one
simultaneous round of messages, Alice computes α and Bob computes β such that:

α+ β = x⊗ y.

We refer to this problem as non-interactive oblivious tensor evaluation (NI-OTE). In this work, we
are interested in the communication complexity of secure NI-OTE, i.e., the minimum size of the
messages needed in order to compute a correct additive secret sharing, while preserving the privacy
of y. While one may intuitively expect that Alice and Bob’s messages should be long enough to
fully specify both the vectors, this is in fact not so. Counterintuitively, we show that it is possible
to complete the above protocol with communication complexity logarithmic in the dimensions of
the input x.

The objective of this work is to construct explicit protocols for NI-OTE with minimal commu-
nication, and to explore the cryptographic consequences of this primitive.

1.1 Our Results

Our main technical contribution is a protocol for NI-OTE with minimal communication complexity,
where the security is proven against the standard learning with errors (LWE) assumption [Reg05].
We prove this result in two steps: First, we construct an elementary (half-succinct) NI-OTE protocol
where only the message of one party is short, whereas the message of the other party can depend
arbitrarily on |x|. Then we show a generic bootstrapping procedure that makes the scheme fully
succinct, i.e., the messages of both parties are short. Overall, our main result is captured by the
following informal theorem statement (treating the security parameter as constant).
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Theorem 1.1 (Informal). If the LWE problem is hard, then there exists an NI-OTE protocol for
x ∈ Zm

q and y ∈ Zℓ
q with communication complexity ℓ · poly(λ) + poly(λ, logm) and CRS of size

poly(λ, logm).

Besides being a primitive of independent interest, we show that the existence of our succinct
NI-OTE protocol has surprising applications in cryptography.

Application I: Trapdoor Hash Functions. For starters, we show how succinct NI-OTE, com-
bined with recent results in laconic function evaluation [QWW18, HLL23, DHM+24], enables a
construction of a trapdoor hash (TDH) function [DGI+19] for all functions (or even RAM pro-
grams, from Ring-LWE), where the size of the hash is constant, and the size of the encoding key
depends only on the description of the program f , which is optimal. This improves upon prior works
[DGI+19, RS21] that constructed TDHs with similar communication complexity for the class of
linear functions. This is summarized by the following (informal) theorem statement.

Theorem 1.2 (Informal). If the LWE problem is hard, then there exists a TDH for functions with
depth D, where the size of the encoding is bounded by (|f | + D) · poly(λ). Additionally assuming
the hardness of circular LWE, we obtain a bound on the size of the encodings of |f | · poly(λ).

Application II: Succint Homomorphic Secret Sharing and More. As a direct consequence
of the above result, we obtain a new protocol of succinct homomorphic secret sharing [ARS24] for all
functions with logarithmic communication complexity in the first party’s input x, which is optimal.
Prior work [ARS24] only supported NC1 circuits and had communication complexity proportional
to |x|ε, for some ε ∈ O(1). In addition, we obtain a new batched laconic oblivious transfer protocol
[CDG+17], with constant-size receiver’s message and with rate 1/2, which is best possible.

We refer the reader to Section 1.3 for a more detailed and precise discussion on these primitives,
along with additional applications of succinct NI-OTE such as spooky encryption, and pseudoran-
dom correlation generators.

Application III: Laconic Function Evaluation. Finally, we show how to leverage succinct
NI-OTE to construct a laconic function evaluation (LFE) [QWW18] protocol that is simultaneously:

• Adaptively secure: The attacker can choose the input adaptively, possibly depending on the
public parameters.

• Rate-1 : The size of the encoding equals the size of the input, plus the size of the output, plus
an additive factor.

Prior to our work, even constructing LFE with either of the two properties was considered an
open problem. The question of adaptively-secure LFE from LWE was raised in [QWW18], where
they proposed a construction provable against the adaptive LWE assumption, whereas our con-
struction is adaptively secure against the standard LWE assumption. Furthermore, we present
a counterexample against the adaptive LWE assumption (Appendix 7) which translates into an
adaptive attack against their scheme, underscoring the need for constructions proven adaptively
secure against standard assumptions.

The question of rate-1 LFE was considered in [Wee24], where they proposed a construction
from ℓ-succinct LWE, a recently-introduced variant of the LWE assumption. We improve upon this
work by relying only on the standard LWE problem. Overall, our results can be summarized as
follows:
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Half-Succinct NI-OTE
(Section 3.2)

Succinct NI-OTE
(Section 3.3)

Succinct NI-MOLE
(Section 3.4)

Adaptive Lattice Encodings
(Section 4.1)

Compressed Encodings
(Section 4.2)

Laconic Function Evaluation
[QWW18, HLL23, DHM+24]

Reverse TDH
(Section 6)

Regular TDH

Succinct HSS

Rate-1/2 Laconic OT

Weak Reverse TDH
(Section 5.1)

Rate-1 Adaptively Secure LFE
(Section 5.2)

Figure 1: A schematic representation of our results, and a summary of the implications to different
cryptographic primitives.

Theorem 1.3 (Informal). If the LWE problem is hard, there exists an adaptively secure LFE for
depth-D functions f : {0, 1}m → {0, 1}ℓ with communication m+ ℓ+D · poly(λ).

As a key technical ingredient, we present a new variant of homomorphic lattice encodings
[BGG+14] that naturally supports adaptive security. This is the first construction of homomorphic
lattice encodings that departs from the framework of [BGG+14], and we expect it to find other
applications in the future.

A diagram summarizing our results is given in Figure 1.

1.2 Technical Outline

From now on, we call Alice the hasher and Bob the encoder. We start by presenting a half-succinct
OTE, i.e., an OTE protocol where only the hasher’s message is succinct in its input size. This
is inspired by the work of [ARS24] and we extend their ideas in the context of tensor products.
Suppose that we work over Zq, the hasher’s input is a vector over Zm

2 , while the encoder’s input
lies in Zℓ

q.
The construction relies on a setup that outputs a random matrix A ∈ Zn×m

q where m > n. To
hash x, we simply compute an SIS-based hash d ← A · x. To encode y, on the other hand, we
compute

C← A⊺ · S+E+ Im ⊗ y⊺

where S
$← Zn×(m·ℓ)

q and E
$← χ(1λ). Above, we use Im to denote the m×m identity matrix and

χ to denote a low-norm distribution. Notice that, under LWE, C leaks no information about y.
Suppose that Alice and Bob exchanged C and d. Alice can compute a “noisy” share of x ⊗ y by
computing

v := x⊺ ·C = x⊺ ·A⊺ · S+ x⊺ ·E+ x⊺ · (Im ⊗ y⊺)

= x⊺ ·A⊺ · S+ x⊺ ·E+ (x⊺ ⊗ y⊺).

Bob can derive instead his own “noisy” share by computing

w := −d⊺ · S = −x⊺ ·A⊺ · S.
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It is easy to see that v+w = x⊺ ⊗ y⊺ + x⊺ ·E. Moreover, since x ∈ Zm
2 , the magnitude of x⊺ ·E is

small. From this we can derive a fully correct, half succinct OTE over Zp where p is a sufficiently
small divisor of q: Instead of hashing x, hash its bit decomposition, instead of encoding y, encode
q/p · y ⊗ g⊺

q where gq is the gadget (row) vector (1, 2, . . . , 2log q). To reconstruct an exact secret-
sharing of x⊺ ⊗ y⊺ mod p, it is sufficient to apply a linear operation on the shares and round the
result over Zp following the ideas of [DHRW16].

An Attempt at Bootstrapping. Now, let us try to achieve full succinctness. In the construction
we described above, the encoder’s message has sizem·ℓ, while the hash size is independent of bothm
and ℓ. Inspired by [ARS24], we rely on the non-interactive nature of the primitive and the linearity
of the functionality. Specifically, we observe that the encoding can be reused across multiple hashes:
Imagine that Alice’s input is now much bigger, let’s say of dimension M ≫ m, ℓ. We can split x
into N blocks x0, . . . ,xN−1 of dimension m and hash each of them. Alice would therefore send N
digests d0, . . . ,dN−1. At this point, if Bob sends a single encoding for y ∈ Zℓ

q, the parties are able
to derive a secret-sharing of xi⊗y for every i ∈ [N ]. By rearranging these, we can easily retrieve a
secret sharing of x⊗ y. Notice that now the size of the encoding is sublinear in the size of x. The
communication from Alice’s side has however increased proportionally to M/m. In other words,
small encodings come at the price of bigger digests.

We however continue in this direction: We keep m small (a constant t · n) and instead we find
a way to compress the N digests. We rely on a property of our noisy half-succinct construction:
Bob’s share consists of product between the digests and the randomness S used in his encoding. We
also observe that if Alice and Bob could obtain a secret-sharing of di ⊗ vec(S)1 for every i ∈ [N ],
they would also be able to derive a secret-sharing of Bob’s noisy shares: it would just suffice to
apply a local linear operation on the shares. From this we could easily derive a noisy secret-sharing
of x⊗ y (which can be later rounded as we sketched above).

Then, why not to use our half-succinct OTE to derive a secret-sharing of d′ ⊗ vec(S)
where d′ denotes the concatenation of d0, . . . ,dN−1?

With this approach, we may derive a secret-sharing of the output without asking Alice to send
messages as big as d′. Moreover, if we keep recursing, we may end up with a protocol in which
Alice sends a single Merkle hash of x, whereas Bob sends an encoding for each recursive step (at the
i-th step, Bob encodes the randomness Si−1 used in the previous level). This technique could even
reduce the communication to polylog(M)! Alas, we cannot: S is too big. At each recursion step,
the size of S increases by a factor of n ·m and consequently so does the size of Bob’s encodings. We
need to find a way to decrease the size of S while preserving the linearity of Bob’s share derivation
procedure.

Decreasing the size of S. Instead of sampling a random S, we generate a pseudorandom one
using LWE. Specifically, include m · ℓ random n× n matrices B0, . . . ,Bℓ·m−1 as part of the setup.

Then, at encoding time, we sample a random vector s
$← Zn

q and we set the i-th row of S to be

1vec(S) denotes the vectorisation of S.

5



Bi · s+ ei where ei
$← χ(1λ). In matrix notation, we obtain that

S =
(
B0 . . . Bℓ·m−1

)︸ ︷︷ ︸
B

·


s

s
. . .

s


︸ ︷︷ ︸

m·ℓ times

+
(
e0 . . . eℓ·m−1

)︸ ︷︷ ︸
E′

= B · (Im·ℓ ⊗ s) +E′.

The encoding of y becomes

C = A⊺ ·B · (Im·ℓ ⊗ s) +A⊺ ·E′ +E+ Im ⊗ y⊺.

We also introduce another modification: Instead of sampling the entries of A and B uniformly
at random over Zq, we sample them uniformly over Z2. This trick ensures that the magnitude
of A⊺ · E′ remains small, while, at the same time, it does not compromise security: LWE with
respect to random binary matrices is known to be as hard as standard LWE [BLMR13]. With
these modifications to our half-succinct OTE, Alice’s share becomes

v := x⊺ ·C = x⊺ ·A⊺ ·B · (Im·ℓ ⊗ s) + x⊺ ·A⊺ ·E′ + x⊺ ·E+ x⊺ · (Im ⊗ y⊺)

= x⊺ ·A⊺ ·B · (Im·ℓ ⊗ s) + x⊺ ·A⊺ ·E′ + x⊺ ·E+ (x⊺ ⊗ y⊺).

Bob’s share becomes instead

w := −d⊺ ·B · (Im·ℓ ⊗ s) = −x⊺ ·A⊺ ·B · (Im·ℓ ⊗ s).

This allows us to apply recursion without blowing up the size of s: Since w is a bilinear function
of d and s, if the parties hold a “noisy” secret-sharing of d′ ⊗ s, they can easily convert it into
a “noisy” secret-sharing of Bob’s share by computing a local linear operation depending on B.
Moreover, since B is a binary matrix, this linear computation will not significantly increase the
“noisiness” of the secret-sharing. At each recursion step, the size of d′ decreases by a factor of
t(λ) := m/n; the size of s, on the other hand, remains always the same. The final result is an
LWE-based succinct OTE where the digest and the CRS dimensions are poly(λ) and the encoding
dimension is O(logM) · ℓ · poly(λ).

Succinct MOLEs and VOLEs. No, this paragraph is not about tiny mammals: It’s about
two cryptographic primitives called matrix oblivious linear evaluation and (non-interactive, half-
chosen) vector oblivious linear evaluation. In a MOLE, Alice holds a matrix M ∈ Zm×ℓ

q where

m≫ ℓ, whereas Bob holds a secret vector x ∈ Zℓ
q. Their goal is to derive a secret-sharing of M · x

in one round and without revealing any information about x. A VOLE corresponds to a MOLE in
the special case ℓ = 1.

We would like to minimize the communication complexity of these protocols, especially in
relation to m. It is easy to see that the succinct OTE protocol we just presented gives immediately
a succinct MOLE where communication scales logarithmically inm: First, we use the succinct OTE
protocol to compute a secret-sharing of vec(M)⊗ x, then, we apply local linear operations on the
shares to obtain a secret-sharing of M·x. Along the way, this solves a question left open in [ARS24]:
We have just built the first non-interactive (half-chosen) VOLE with logarithmic communication
in m from LWE.
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Reverse Trapdoor Hashing. We observe that many laconic function evaluation schemes have
a particular structure [QWW18, HLL23, DHM+24, Wee24]. First of all, their digests consist of
matrices Af with a constant number of columns and a number of rows proportional to the output
size of f . Moreover, the encoding can be split into two parts: A function-independent pre-encoding
E and an input-independent post-encoding c consisting of an LWE-like sample where the matrix
is (essentially) the digest Af and the secret s is a random vector generated by the pre-encoding
procedure. Finally, the output is computed by rounding the sum c+ Eval(E, f).

We observe that, if we ignore the noise, LWE samples are essentially matrix-vector multiplica-
tions. Therefore, by relying on the succinct MOLE we just built, the parties can derive a noisy
secret-sharing of the post-encoding c in a single round of simultaneous interaction and with loga-
rithmic communication in the output size of f . Moreover, the encoder can send the pre-encoding
E along with its MOLE message. In this way, the parties can derive a secret-sharing of the output
without the need for further interaction.

This yields the first rate-1 reverse trapdoor hashing scheme. Usually, in rate-1 trapdoor hashing,
we obtain a secret-sharing of f(x) by sending a digest of x and generating an encoding key for f . In
reverse trapdoor hashing, we do the opposite: We send a digest for f and an encoding key for x. In
our construction, the former corresponds to the MOLE hash of Af , whereas the latter corresponds
to the pre-encoding E and the MOLE encoding of s.2

Adaptive Lattice Encodings. Much of the recent advancement in lattice-based homomorphic
cryptography can be traced back to a single technique introduced in 2014 by Boneh et al. [BGG+14]:

BGG+ encodings. Suppose that we are provided with a CRS consisting of a matrix A ∈ Zk×(ℓ·k·log q)
q .

A BGG+ encoding of a bit string x ∈ {0, 1}ℓ consists of the vector

c = s⊺ · (A− x⊺ ⊗G) + e⊺

where G := Ik ⊗ gq, s
$← Zk

q and e
$← χ(1λ). These encodings have amazing homomorphic

properties: For any function f : {0, 1}ℓ → {0, 1}, there exist efficiently computable, low-norm
matrices Hf and Hf,x (independent of the random s and the noise e of the encoding) such that

c ·Hf,x ≈ s⊺ · (Af − f(x) ·G)

where Af := A · Hf . Alas, BGG+ encodings are secure only in the selective setting: If x is
independent of A, the encoding c looks like a random vector, if, however, x is adaptively chosen
after seeing A, there exists an attack that allows us to recover s. To see why, observe that there
exists a binary matrix H′ such that, for any matrix M ∈ Zk×k

q , if x = Bits(M), we have that

c ·H′ ≈ s⊺ · (A ·H′ −M).

Suppose for convenience that q is a power of 2. To recover the i-th most significant bit of s, it is
sufficient to set M := A ·H′ − 2i · Ik and compute the most significant bit of c ·H′. This proves
that the Adaptive LWE assumption of [QWW18] does not hold in the optimistic parameter setting
in which ℓ can be arbitrarily bigger than k. Notice in the provable parameter setting (where the
encodings are secure under the subexponential hardness of LWE), our attack fails as the bound on
ℓ is too small to encode M := A ·H′ − 2i · Ik.

2We mention that we can recover the usual notion of trapdoor hashing via universal circuits. On the other hand,
the reverse implication does not seem to trivially hold, since the universal circuit would introduce an efficiency penalty
in the size of the encoding.
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To circumvent the attack without relying on complexity leveraging (and therefore obtain better
asymptotic parameters), we introduce a new version of lattice encodings: The encoding of x is now

c = s⊺ ·A+ r⊺ · (x⊺ ⊗G) + e⊺

where s
$← Zk

q , r
$← Zk

q and e
$← χ(1λ). We call s the encryption key of the encoding, whereas

we refer to r as the authentication key. We say that c is a (s, r)-encoding. Observe that BGG+

encodings correspond to the special case in which r = −s. It is easy to see also that these encodings
are adaptively secure under standard LWE, no matter the value of x and r.

The drawback, however, becomes clear when we look at the homomorphic properties of the
modified scheme. It is easy to see that the construction is linearly homomorphic, however, we
no longer know how to perform multiplications. Or at least, we do not know when the factors
are encoded using the same keys. If instead the authentication key of the first encoding matches
the encryption key of the second one, there is a solution: Suppose that we want to multiply the
encodings cx = s⊺ ·A+ r⊺ · (x ·G) + e⊺x and cy = r⊺ ·B+ t⊺ · (y ·G) + e⊺y. We observe that

cz := −cx ·G−1(B) + x · cy ≈ −s⊺ ·AG−1(B) + t⊺ · (xy ·G).

In other words, we have obtained an encoding of x ·y using s as encryption key and t as authentica-
tion key. Moreover, the matrix relative to the encoding is −A ·G−1(B). Notice that this is publicly
computable, no need to know the keys or the plaintexts! To summarise, we are able to compute
linear operations between (s, r)-encodings obtaining other (s, r)-encodings. Moreover, we are able
to perform multiplications between (s, r)-encodings and (r, t)-encodings, obtaining (s, t)-encodings
as results.

Compressing Adaptive Lattice Encodings. We present a procedure to compress our adaptive
lattice encodings, where a compressed encoding of x ∈ {0, 1}ℓ will have size poly(log ℓ, λ). By
leveraging the knowledge of x, it can then be re-expanded into a standard adaptive encoding. Once
again, our techniques rely on our succinct OTE protocol and the (bi)linear structure of Bob’s share
derivation. Specifically, the compressed encoding is composed of two parts h and E. The former
consists of an adaptive lattice encoding of d := OTE.Hash(x). Let r be the authentication key of h;
then E consists of an OTE encoding of a fresh authentication key t where r is used as randomness
for E (this is secure as h looks random even when r is leaked). We observe that

h ≈ s⊺ ·A+ r⊺ · (d⊺ ⊗G)

= s⊺ ·A+ r⊺ · (d⊺ ⊗ Ik ⊗ gq)

= s⊺ ·A+ (d⊺ ⊗ r⊺ ⊗ gq).

In other words, h can be viewed as some sort of encoding of d⊺ ⊗ r⊺ where r is the randomness
of E. Now, Bob’s share of x⊗ t would be w := P · (d⊗ r), where P is a public low-norm matrix
derived from B. Thus, by multiplying h on the right by P, we derive

h′ := h ·P ≈ s⊺ ·AP+w⊺ ⊗ gq.

Using x and E, we can also derive the other share v. We conclude by observing that

h′ + v⊺ ⊗ gq ≈ s⊺ ·AP+ (x⊺ ⊗ t⊺ ⊗ gq)

= s⊺ ·AP+ t⊺ · (x⊺ ⊗G)

We have just obtained a (s, t)-encoding of x.
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Rate-1 Adaptive LFE. We build our rate-1 adaptive LFE scheme using our compressed adap-
tive encodings in two steps: First, we construct a weak variant of (adaptive) reverse TDH for the
functions that map pairs (x,a) to f(x) ⊗ a where f ∈ NC1. The scheme satisfies all the security
properties of standard reverse TDH, however, in order for correctness to hold, the hasher needs
to know x (but not a) for the derivation of her share. On the positive side, the scheme achieves
polylogarithmic communication in the size of x (but not a). As a second step, we use our weak
reverse TDH to build an adaptive LFE scheme for all depth-D functions f : {0, 1}m → {0, 1}ℓ. The
size of the hash will be poly(λ) whereas the size of the encoding will be ℓ+m+D · poly(λ).

Step I: a Weak Reverse TDH. We start by describing the weak reverse TDH. Suppose that
we want to evaluate functions of depth at most log d: Each of them can be converted into an RMS
program of depth d [BGI16]. We recall that an RMS program consists of an arithmetic circuit over
Z where multiplications are allowed only if one of the factors is an input.

We start by describing the generation of encoding keys: We sample a chain of d keys s0, . . . , sd−1,
we set sd := a and we generate compressed encodings (hi, Ei)i∈[d] so that, when we expand (hi, Ei),
we obtain a (si, si+1)-encoding of (x, 1). Notice that we can homomorphically evaluate f on these
encodings: The operation proceeds by levels, starting from level 1 (the inputs) to level d (the
output). A level-i encoding consists of any (s0, si)-encoding. We observe that (h0, E0) gives us a
level-1 encoding of the inputs.

In the previous paragraphs, we showed that the levels are closed under linear operations. More-
over, we can also perform multiplications by inputs: If the first factor belongs to level i, we can
multiply it by the (si, si+1)-encoding of the other factor (the input), which can be derived from
(hi, Ei). Finally, we can perform hops across levels (always from level i to level i+1) by performing
multiplications by 13. To summarise, given x and (hi, Ei)i∈[d], Alice is able to derive an encoding

cf ≈ s⊺0 ·Af + a⊺ · (f(x)⊺ ⊗G)

= s⊺0 ·Af + (f(x)⊺ ⊗ a⊺ ⊗ gq).

To derive a secret-sharing of f(x)⊗a, it is therefore sufficient that the parties run a succinct MOLE
to compute a secret-sharing of A⊺

f · s0 similarly to what we did for the other reverse TDH we built.
At that point, it is just a matter of applying local linear computations and rounding.

Step II: Building Rate-1 Adaptive LFE. It is finally time to talk about the rate-1 adaptive
LFE scheme. Our approach is the following: We pick a constant d and we decompose our function
f as fL−1 ◦ · · · ◦ f0 where each fi is described by an RMS program of depth d. Our goal is to use
our reverse TDH to evaluate all fi until we obtain the output. The issue is that Bob does not know
what input to encode for fi.

Instead of evaluating fi, we evaluate a function that allows us to retrieve the encoding key for
xi := (fi ◦ · · · ◦ f0)(x). Specifically, for every i ∈ [L], define4

f̂i : (x,a) 7−→ OTE.Hash(fi(x))⊗ a.

Suppose that Alice sent a hash for f̂i for every i ∈ [L]. Suppose also that we somehow managed

to find a way to provide Alice with an encoding key for (xi,ai+1) where ai+1
$← Zk

q . Under

these premises, the parties can derive an additive secret-sharing yA
i+1 + yB

i+1 = di+1 ⊗ ai+1 where

3Remember that the expansion of (hi, Ei) provides also an (si, si+1)-encodings of 1.
4In our construction, OTE.Hash has depth 0 because it is linear.
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di+1 = OTE.Hash(xi+1). We can convert this into a compressed adaptive encoding of xi+1 by
making Bob send

ci+1 = s⊺i+1 ·A+ e⊺i+1 + (yB
i+1)

⊺ ⊗ gq

where si+1
$← Zk

q and ei+1
$← χ(1λ). By adding (yA

i+1)
⊺⊗gq to ci+1, Alice can derived a (si+1,ai+1)-

encoding of di+1. Indeed,

ci+1 + (yA
i+1)

⊺ ⊗ gq ≈ s⊺i+1 ·A+ (yB
i+1 + yA

i+1)
⊺ ⊗ gq

= s⊺i+1 ·A+ (d⊺
i+1 ⊗ a⊺i+1 ⊗ gq)

= s⊺i+1 ·A+ a⊺i+1 · (d
⊺
i+1 ⊗G).

Bob can of course send also the other information needed to complete the encoding key for
(xi+1,ai+2) as this is independent of f and xi+1. Notice that the size of all this material that
Bob sends is independent of the input size and the output size of f . By continuing in this way, the
parties end up with an additive secret-sharing of f(x)⊗ aL where aL

$← Zk
q .

There is still one matter we need to take care of: In order to perform the operations we just
described, Alice needs to know x. So, how can we achieve privacy of the input? The trick is the
same as in [BTVW17]: We provide Alice with a GSW [GSW13] encryption of x using aL as a secret
key (we also send the corresponding encoding key, which is polylogarithmic in size). Then, instead
of evaluating f , we evaluate f ′ := GSW.Eval(f, ·). At the end, the parties obtain a secret-sharing of
Bits(ct)⊗ aL where ct is a GSW encryption of f(x). Given that aL is the secret-key and the GSW
decryption consists of linear operations between aL and ct (followed by rounding), the parties can
obtain a secret-sharing of f(x) by applying only local operations. This immediately gives rate-1
communication in the output. What about rate-1 communication in the input? Well, instead of
sending a GSW encryption of x, send z := x⊕ PRG(K) for K

$← {0, 1}λ and a GSW encryption of
K. Then, during the evaluation of f ′, we remove the one-time-pad inside FHE.

1.3 Other Applications

We outline a few additional additional applications of our results. In particular, we discuss some
of the new implications from our construction of reverse TDH.

Regular Trapdoor Hash. As an immediate implication of our reverse TDH, we obtain a (reg-
ular) TDH [DGI+19] with close to optimal parameters, that is: The size of the encoding key is
|f | · poly(λ, logm) where |f | denotes the size of the description of the encoded function and m
denotes the size of its input. For instance, notice that if f is a point function with domain of size
L, |f | = logL. We achieve this with a simple application of universal circuits: Instead of hashing a
function, we hash the universal circuit Ux with the input x hardwired, that on input a function f ,
returns f(x). Note that the size of the digest is anyway constant (ignoring factors in the security
parameter) so the complexity of the TDH only grows with the bit description of f .

To our knowledge, this (along with a concurrent work [BJSS25]) is the first trapdoor hashing
schemes that support all functions. This is also the first LWE-based TDH constructions achieving
nearly optimal communication for a non-trivial class of functions. To our knowledge, the only
other construction where the size of the encoding key is sublinear in the dimension of the input is a
recently built pairing-based TDH for point functions [BBD]. Such construction, however, pays the
succinctness of the encoding key with a non-succinct CRS of size O(m).
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Homomorphic Secret Sharing, Spooky Encryption and Public-Key PCGs. In addition,
note that the reconstruction of our reverse TDH is additive over Z2, thus, a reverse trapdoor hash
also implies the existence of a (public-key) 2-party homomorphic secret sharing [BGI16] scheme as
follows: Suppose that Alice and Bob respectively hold inputs x and y and they want to evaluate
the function f . Suppose also that x is much longer than y. Alice proceeds by hashing the function
fx that maps any y to f(x,y). She sends the digest to Bob and keeps the randomness as her part
of the share of x. Bob, on the other hand, sends an encoding key ek for y to Alice. He keeps the
corresponding trapdoor td as his share of y. By the correctness of reverse TDH, the parties can
locally derive a secret sharing of the output. Notice also that the scheme is succinct in x: The total
communication of the protocol is |y| · poly(λ, log|x|)!

Previously, succinct homomorphic secret sharing had been built by Abram, Roy and Scholl
[ARS24] under several assumptions, including LWE, DCR and DDH over class groups. Their
constructions, however, supported only a limited class of functions: Alice and Bob could only
compute secret-sharings of x⊺ · C(y) for any circuit C ∈ NC1. Their constructions have also a
second drawback: The total complexity of the protocol is |y| · |x|ε ·poly(λ) for a constant ε ∈ (0, 1).
Our solution instead scales polylogarithmically in |x|. On the negative side, unlike [ARS24], our
solution does not allow the parties to evaluate a function that is adaptively chosen after the secret-
sharing phase. We can however plug our MOLE in the constructions of [ARS24] to obtain an
HSS scheme that allows the evaluation of any adaptively chosen function x⊺ · C(y) with improved
communication |y| · poly(λ, log|x|).

Observe that our succinct HSS scheme can be also viewed as a form of 2-party spooky encryption
for additively shared correlation [DHRW16] where one of the parties can just send a small hash of
its input instead of a full-size ciphertext. Once again, differently from [DHRW16], our construction
does not allow us to choose the correlation after we committed to the inputs.

Finally, our HSS scheme can have interesting applications in the context of (public-key) pseu-
dorandom correlation generators (PCGs) [BCG+19, OSY21, ASY22], especially when the tackled
additively-shared correlation takes a long input from Alice: Let C(x) be the correlation function

with long input. Alice can sample s0
$← {0, 1}λ and hash the function that maps y to (C(x; ri))i∈[n]

where (r0, . . . , rn−1)← PRG(s0⊕y). Bob instead picks a random y
$← {0, 1}λ and sends its encoding

to Alice.

Rate-1/2 Laconic Oblivious Transfer. Since our construction of reverse TDH also extends to
RAM programs, we obtain a new construction of laconic oblivious transfer [CDG+17] with rate 1/2
in the batch settings (which is best possible), where one transfers a set of messages with respect
to different indices. The receiver hashes the function fD that has hardwired a database D and, on
input a PRF key k, does the following for all indices i and all bits b:

• If b = Di: Return 0.

• Else return PRF(k, i).

Then the sender, on input a set of indices I and pairs of bits {mi,0,mi,1}i∈I , samples a key k and

sends ek
$← Gen(hk, k) along with:

ci,b := {Dec(hk, td, d)i,b ⊕mi,b}i,b

where we slightly abuse the notation and assume that Dec(hk, td, d)i,b returns the (i, b)-bit of the
share (which can be computed by a RAM program in time independent of the size of the database).
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Note that if b = Di, then Dec(hk, td, d)i,b = Enc(hk, ek, fD, ρ)i,b and therefore the receiver can re-
covermi,b. Otherwise the pseudorandomness of PRF guarantees that the message is computationally
hidden.

Attribute-Based Non-Interactive Key-Exchange. Finally, reverse TDH implies the exis-
tence of a non-interactive key exchange (NIKE) with the following additional property: One of
the two parties can include the hash of a function f as part of their public key, whereas the other
party holds an input x. The NIKE succeeds if f(x) = 1 and otherwise the key of either party is
computationally indistinguishable from random. This can be constructed from reverse TDH in a
natural manner: The former party hashes the function Ff,k0 that takes as input some x and a key
k1 and returns 0 if f(x) = 1 and PRF(k0,x) ⊕ PRF(k1,x) otherwise. If f is satisfied, then both
parties hold the same share, that can be used as a shared key, otherwise the pseudorandomness of
PRF protects the share of either party.

1.4 Concurrent Work

A concurrent work by Boyle et al. [BJSS25] also construct a family of TDHs for all functions
f : {0, 1}m → {0, 1}ℓ, using a similar idea. An important difference is that they rely on the |x|2/3-
succinct VOLE protocol from [ARS24], whereas we (implicitly) construct a polylog(|x|)-succinct
one, derived from our OTE. This translates in different parameters for the encoding key of the
TDH: The encoding key of [BJSS25] has size (|f | + ℓ2/3 + D) · poly(λ), whereas in our TDH the
encoding key has size |f | · poly(λ, logm), which is close to optimal.

Besides TDHs, the results in [BJSS25] are largely orthogonal to ours. We also mention here
that plugging in our OTE protocol in [BJSS25] leads to similar parameter improvements for their
other applications. For instance, following the outline of [BJSS25], OTE yields a rate-1 fully
homomorphic encryption (FHE) with optimal parameters. We fully credit [BJSS25] for discovering
the connection, and we sketch here the transformation only for the sake of completeness. Take any
FHE scheme with almost-linear decryption [BDGM19], i.e., where decryption is a linear function
is the secret key s, followed by a rounding, such as [GSW13]. Then add to the public key an
MOLE encoding Enc(s). We can compress m ciphertexts (c1, . . . , cm) as follows: Stack them into a
matrix C, then compute the MOLE-hash Hash(C), and run the Hash-Eval algorithm, to obtain a
additive share of Round(C ·s) ∈ {0, 1}m. Return the hash Hash(C), along with the bits of the share.
Decryption works by simply running the Encoder-Eval algorithm of the MOLE, and reconstructing
the output. Crucially, the compressed ciphertext consists of a hash (whose size is a fixed polynomial
in the security parameter) plus m bits, i.e., it is poly(λ)+m, which is optimal. This improves upon
[BDGM19] since the size of the public key does not depend on m (no amortization is needed).

2 Preliminaries

Notation. We denote the security parameter by λ. We say that a function negl(λ) is negligible
if it vanishes faster than any polynomial, i.e., 0 ≤ negl(λ) ≤ λ−ω(1). We say that an event happens
with overwhelming probability, if it occurs with probability negligibly close to 1. For any n ∈ N,
we use [n] to denote the set {0, 1, . . . , n− 1}.

All vectors are denoted using lowercase bold font, whereas matrices are denoted using uppercase
bold font; by default, all vectors are columns. Given a matrix M, we denote its transpose by M⊺,
whereas vec(M) denotes its vectorisation, i.e., stacking the columns of M one underneath the other.
For any n ∈ N, we denote the n× n identity matrix by In and the n-dimensional row vector where

12



all entries are equal to 1 by 1n. We define the Kronecker product between two n × m matrices
A⊗B to be

A⊗B :=

a1,1B . . . a1,mB
...

. . .
...

an,1B . . . an,mB

 .

For a vector x, we denote its infinity norm, i.e., the magnitude of its largest coordinate, by ∥x∥∞
and we extend this notation to matrices by taking the maximum over their columns. For any
integer q > 0, let gq be the gadget row-vector (1, 2, . . . , 2

log q) and we omit the subscript when clear
from the context. Let G−1 be the algorithm that takes as input a matrix M ∈ Zn×m

q and outputs

a matrix M′ ∈ Z(n·log q)×m
2 , where each column is derived by stacking the bit-decompositions of the

entries in the corresponding column of M. Notice that (In ⊗ gq) ·G−1(M) = M. We use Bits(M)
to denote vec(G−1(M)). Given an integer x ∈ Zq and an integer p that divides q, we use ⌈x⌋p to
denote rounding to Zp, in other words, if x = y ·q/p+z where z ∈ [−q/2p, q/2p), we have ⌈x⌋p = y.

We state the following useful lemma about matrices.

Lemma 2.1 (Matrix Linearisation). There exists a deterministic polynomial-time computable func-
tion:

Lin : Z(t·ℓ)×m
q → Zt×(m·ℓ)

q

such that, for any matrix B ∈ Z(t·ℓ)×m
q and any pair of vectors x ∈ Zm

q and s ∈ Zℓ
q, it holds that:

Lin(B)(x⊗ s) = (It ⊗ s⊺)Bx and ∥Lin(B)∥∞ = ∥B∥∞.

Proof. Note that the h-th entry of (It ⊗ s⊺)Bx is:∑
i∈[ℓ]

∑
j∈[m]

Bℓ·h+i,j · (si · xj).

In other words, there exists a matrix Lin(B), obtained by rearranging the entries of B such that
Lin(B)(x⊗ s) = (It ⊗ s⊺)Bx. Since rearranging the entries does not change the infinity norm, the
claim follows.

We also recall the definition of RMS program. Essentially this consists of an algebraic circuit
over Z where we can multiply two wires only if at least one of them is an input.

Definition 2.2 (Restricted Multiplication Straightline). A restricted multiplication straightline
program (RMS) consists of a polynomial-sized family of algebraic circuits over Z where the only
allowed gates are the following:

• Additions: this gate takes as input two wires x and y and outputs their sum x+ y.

• Scalar multiplication: each of these gates is parametrised by a constant α ∈ Z. It takes as
input a single wire x and outputs α · x.

• Multiplication: this gate takes as input two wires x and y where y is an input to the RMS
program. The output is their product x · y.

We say that the program has depth d if the multiplicative depth of the program is d.
Let T be a positive integer. We say that an RMS program is T -bounded if, during any evaluation

over binary inputs, the absolute value of the wires never exceeds T .
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We recall the following result which states that any circuit in NC1 can be converted into a
polynomial size RMS program (paying exponentially in the depth).

Theorem 2.3 ([Bar86, BGI16]). Let f : {0, 1}n → {0, 1} be described by a boolean circuit of size
s and depth d made entirely of NAND gates. Then, f can be computed using a 1-bounded RMS
program of depth at most 2d and size O(s · 2d).

2.1 Lattices and Learning with Errors

Throughout the paper, we often rely on a low-norm distribution χ(1λ) over Z. We say that χ(1λ)
is B(λ)-bounded if:

Pr
[
|e| ≤ B(λ)

∣∣∣e $← χ(1λ)
]
= 1.

Sometimes, we abuse notation and we write v
$← χ(1λ), even if v is a vector: with this, we mean

that each entry of v is sampled from χ(1λ) independently of all the others.
We recall the learning with error assumption, introduced for the first time by Regev [Reg05].

Definition 2.4 (Learning with Errors). Let k := k(λ), m := m(λ) and q := q(λ) be positive
integers. Let χ(1λ) be a low-norm distribution over Z. We say that the (χ, k,m, q)-LWE problem
is hard if, for every PPT adversary A there exists a negligible function negl(λ) such that, for every
λ ∈ N, we have∣∣∣∣∣∣∣∣Pr

A(1λ,M,u) = 1

∣∣∣∣∣∣∣∣
M

$← Zm×k
q , s

$← Zk
q

e
$← χm(1λ)

u←M · s+ e

− Pr

[
A(1λ,M,u) = 1

∣∣∣∣∣M
$← Zm×k

q

u
$← Zm

q

]∣∣∣∣∣∣∣∣ ≤ negl(λ).

Suppose that χ(1λ) is B(λ)-bounded. We call the quantity α := q/B the modulus-noise ratio.

We also define the non-uniform LWE assumption identically as above, except that the matrix
M is no longer uniformly random over Zm×k

q but over Zm×k
2 . It is shown in [BLMR13] that non-

uniform LWE is at least as hard as LWE, with a slightly increased parameter size.

Theorem 2.5 ([BLMR13]). Assume the hardness of (χ, k,m, q)-LWE. Then, (χ, k · log q,m, q)-
NLWE is hard.

2.2 Laconic Function Evaluation

Definition 2.6 (Laconic Function Evaluation [QWW18]). Let m := m(λ) and ℓ := ℓ(λ) be
positive integers. Let F = (Fλ)λ∈N be a function class containing functions f : {0, 1}m →
{0, 1}ℓ. A laconic function evaluation scheme (LFE) for F consists of a tuple of PPT algorithms
(Setup,Hash,Enc,Dec) with the following syntax:

Setup(1λ): The setup algorithm is probabilistic, it takes as input the security parameter 1λ and
outputs a public key pk.

Hash(pk, f): The hashing algorithm is probabilistic, it takes as input a public key and the description
of a function f ∈ Fλ. The output is a digest h and hasher’s private information ψ.

Enc(pk, h, x): The encoding algorithm is probabilistic, it takes as input a public key pk, a digest h
and an input x ∈ {0, 1}m. The output is an encoding E.
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Dec(pk, E, f, ψ): The decoding procedure is deterministic, it takes as input a public key pk, an
encoding E, a function f ∈ Fλ and hasher’s private information ψ. The output is a value
y ∈ {0, 1}λ.

Definition 2.7 (Correctness of LFE [QWW18]). Let m := m(λ) and ℓ := ℓ(λ) be positive integers.
Let F = (Fλ)λ∈N be a function class containing functions f : {0, 1}m → {0, 1}ℓ. A LFE scheme for
F (Setup,Hash,Enc,Dec) is correct if there exists a negligible function negl(λ) such that, for every
sufficiently large λ, every f ∈ Fλ and every x ∈ {0, 1}m, it holds that:

Pr [Dec(pk, E, f, ψ) ̸= f(x)] ≤ negl(λ),

where the probability is taken over the random choice of pk
$← Setup(1λ), (h, ψ)

$← Hash(pk, f) and

E
$← Enc(pk, x).

Definition 2.8 (Adaptive Encoder Privacy [QWW18]). Consider the following experiment
AEncExpA,Sim(1

λ) parametrized by an adversary A = (A0,A1) and a simulator Sim:

• Sample a public key pk
$← Setup(1λ).

• Activate the adversary (x, f, aux)
$← A0(1

λ, pk).

• Compute (h, ψ)
$← Hash(pk, f ; r) where r denotes freshly sampled randomness.

• Sample a random bit b
$← {0, 1}.

• If b = 0 compute (E0, ϕ0)
$← Enc(pk, h, x), else compute E1

$← Sim(1λ, pk, f, r, f(x)).

• Compute b′ ← A1(Eb, r, aux).

• Return 1 if and only if b = b′.

We say that an LFE scheme (Setup,Hash,Enc,Dec) is adaptively encoder-private if there exists a
PPT simulator Sim, such that for every PPT adversary A, there exists a negligible function negl(λ)
such that, for every λ ∈ N, we have that:∣∣∣∣12 − Pr

[
AEncExpA,Sim(1

λ) = 1
]∣∣∣∣ ≤ negl(λ).

2.3 Fully Homomorphic Encryption à la GSW

We recall the fully homomorphic encryption scheme of [GSW13], which will be used in our rate-1
LFE construction.

• Keys: the secret key and the public key are generated as follows

sk :=

(
r
−1

)
pk :=

(
M

r⊺ ·M+ e⊺

)
where r

$← Zk−1
q , M

$← Z(k−1)×(k·log q+λ)
q and e

$← χ(1λ). Notice that sk⊺·pk = −e⊺. Moreover,

under LWE, the public key is indistinguishable from a random matrix in Zk×(k·log q+λ)
q .
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• Encryption: to encrypt a vector x ∈ Zm
2 , sample R

$← Z(k·log q+λ)×(m·k·log q)
2 and output

ct← pk ·R+ x⊺ ⊗G

where G := Ik ⊗ gq. We call ∥R∥∞ the noise magnitude of the ciphertext. Notice that in
any freshly generated ciphertext, this is equal to 1. Observe that if we substitute pk with a

random matrix in Zk×(k·log q+λ)
q , then the ciphertext ct is statistically indistinguishable from

random by the Leftover Hash Lemma [ILL89].

• Decryption: suppose we have a ciphertext ct = pk ·R+y⊺⊗G where the noise magnitude is
∥R∥∞ = α and y ∈ {0, 1}ℓ. Let u be the last vector of the standard basis of Zk

q . To recover
y, we compute

y′ :=sk⊺ · ct ·
(
Iℓ ⊗G−1

(
−q
2
· u
))

=sk⊺ · pk ·R ·
(
Iℓ ⊗G−1

(
−q
2
· u
))

+ sk⊺ · (y⊺ ⊗G) ·
(
Iℓ ⊗G−1

(
−q
2
· u
))

=− e⊺ ·R ·
(
Iℓ ⊗G−1

(
−q
2
· u
))
− q

2
· sk⊺ · (y⊺ ⊗ u)

=− e⊺ ·R ·
(
Iℓ ⊗G−1

(
−q
2
· u
))
− q

2
· y⊺ ⊗ (sk⊺ · u)

=
q

2
· y⊺ − e⊺ ·R ·

(
Iℓ ⊗G−1

(
−q
2
· u
))

.

Notice that ∥e⊺ ·R ·
(
Iℓ ⊗G−1

(
− q

2 · u
))
∥∞ ≤ k ·α ·B. So, if q is sufficiently big (in particular,

bigger than 4k · α · B, we are able to recover y by computing the most significant bit of the
entries of y′.

• Homomorphic evaluation: there exists a deterministic polynomial-time algorithm GSW.Eval
that, on input a function f : {0, 1}m → {0, 1}ℓ and an encryption of a string x ∈ {0, 1}m,
produces an encryption of f(x). The operation, however, increases the magnitude of the noise
proportionally to the number of operations required by f . In particular, there exists a limit
after which the magnitude of the noise is so high that decryption fails.

There exist multiple ways in which GSW.Eval can be instantiated and not all of them are
equivalent in the way they manage to keep the noise magnitude low. In this paper, we use
the approach of Brakerski and Vainkuntanathan [BV14] which makes the noise magnitude
grow linearly in the depth of the evaluated circuit.

3 Non-Interactive Oblivious Tensor Evaluation

In the following we define and construct a succinct Non-Interactive Oblivious Tensor Evaluation
(NI-OTE) protocol.

3.1 Definitions

We begin by defining the syntax of NI-OTE.

Definition 3.1 (Non-interactive oblivious tensor evaluation). Let m := m(λ), ℓ := ℓ(λ), and
q := q(λ) be a positive integer. A NI-OTE for Zm

q ⊗ Zℓ
q consists of a tuple of PPT algorithms

(Setup,Hash,Enc,HashEval,EncEval) with the following syntax:
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Setup(1λ): The setup algorithm is probabilistic, takes as input the security parameter 1λ and outputs
a public key pk.

Hash(pk,x): The hashing algorithm is probabilistic and takes as input a public key pk and the
description of a vector x ∈ Zm

q . The output is a digest d and hasher’s private information ψ.

Enc(pk,y): The encoding algorithm is probabilistic and takes as input a public key pk, and a vector
y ∈ Zℓ

q. The output is an encoding E and encoder’s private information ϕ.

HashEval(pk, E, ψ): The hasher’s evaluation algorithm is deterministic and takes as input a public
key pk, an encoding E and hasher’s private information ψ. The output is a vector v ∈ Zm·ℓ

q .

EncEval(pk, d, ϕ): The encoder’s evaluation algorithm is deterministic and takes as input a public
key pk, a digest d and encoder’s private information ϕ. The output is a vector w ∈ Zm·ℓ

q .

Sometimes it will be convenient for us to fix the private information ϕ and provide it as an input
to the encoding algorithm. In a slight abuse of notation, we denote this by Enc(pk,y, [ϕ]), in which
case, the algorithm just outputs E. If the NI-OTE scheme satisfies this syntactical requirement,
which in particular means that ϕ does not depend on y, we say that the scheme is programmable.

Additionally, we say that an NI-OTE has a bilinear encoder evaluation if:

• The digest d is a vector in Zn
q .

• The encoder secret information ϕ is a vector in Zk
q .

• The encoder evaluation algorithm consists of

EncEval(pk, d, ϕ) := P · (d⊗ ϕ⊗ g⊺
q )

where the matrix P ∈ Z(m·ℓ)×(n·k·log q)
q can be publicly derived from pk.

We say that an NI-OTE is succinct if the size of the hash and the size of the encodings are sublinear
in the size of the hasher’s input. Depending on the context, we will make the dependence explicit.
If only the hash is sublinear, then we say that the scheme is half-succinct.

Correctness. Next, we define (approximate) correctness for an NI-OTE, parametrized by an
error function α. If α = 0, then we say that the NI-OTE is perfectly correct, or simply correct.

Definition 3.2 (α-Correctness). An NI-OTE scheme (Setup,Hash,Enc,HashEval,EncEval) is α-
correct if there exists a negligible function negl(λ) such that, for every sufficiently large λ ∈ N, for
every x ∈ Zm

q and y ∈ Zℓ
q, we have that:

Pr [∥HashEval(pk, E, ψ) + EncEval(pk, d, ϕ)− x⊗ y∥∞ > α · ∥x∥∞ ] ≤ negl(λ)

where the probability is taken over the random choice of pk
$← Setup(1λ), (d, ψ)

$← Hash(pk,x), and

(E, ϕ)
$← Enc(pk,y).

The definition of approximate correctness will be sufficient for our applications. Nevertheless, for
future reference, we mention here that there is a general (standard) method to drive the correctness
error down to α = 0, which may be more convenient to work with. Specifically, let p to be a divisor of
q with p/q ∈ λ−ω(λ). Instead of encoding y, one encodes q/p ·y. Then, we return HashEval(pk, E, ψ)
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and EncEval(pk, d, ϕ) rounded to the nearest multiple of q/p. By the α-correctness guarantee of the
protocol, it holds that:

HashEval(pk, E, ψ) + EncEval(pk, d, ϕ) = q/p · y ⊗ x± α · ∥x∥∞.

Rounding to the nearest multiple of q/p returns:⌈
q/p · y ⊗ x± α · ∥x∥∞

⌋
p
= ⌈q/p · y ⊗ x⌋p = y ⊗ x (modp)

with high probability.

Encoder Privacy. We define encoder privacy, which guarantees that the encoding is simulatable,
without knowing the underlying vector. This is formalized as follows.

Definition 3.3 (Encoder Privacy). Consider the following experiment EncExpA,Sim(1
λ)

parametrized by an adversary A = (A0,A1) and a simulator Sim:

• Sample a public key pk
$← Setup(1λ).

• Activate the adversary (y, aux)
$← A0(1

λ, pk).

• Sample a random bit b
$← {0, 1}.

• If b = 0 compute (E0, ϕ0)
$← Enc(pk,y), else compute E1

$← Sim(1λ, pk).

• Compute b′ ← A1(Eb, aux).

• Return 1 if and only if b = b′.

We say that a non-interactive OTE scheme (Setup,Hash,Enc,HashEval,EncEval) is encoder-private
if there exists a PPT simulator Sim, such that for every PPT adversary A, there exists a negligible
function negl(λ) such that, for every λ ∈ N, we have that:∣∣∣∣12 − Pr

[
EncExpA,Sim(1

λ) = 1
]∣∣∣∣ ≤ negl(λ).

3.2 Half-Succinct NI-OTE from LWE

We present our first NI-OTE protocol that only satisfies a weak form of succinctness, namely that
only the size of the digest is sublinear in the size of the hasher’s input. Let n := k · log q, where
k = Θ(λ), and suppose that for convenience that q is a power of 2. Our protocol is described in
Construction 3.4.

Construction 3.4. Half-Succinct NI-OTE

Setup(1λ): Sample A
$← Zn×m

2 and B
$← Zn×(m·ℓ·n)

2 , then return pk := (A,B).

Hash(pk,x): Compute d := A · x and return d := d and ψ := x.

Enc(pk,y): Sample s
$← Zk

q , Ê
$← χ(λ), and E′ $← χ(λ). Compute

C := A⊺ ·B · (Im·ℓ ⊗ s⊗ g⊺
q ) +A⊺ ·E′ + Ê+ Im ⊗ y⊺.

Return E := C and ϕ := s.
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HashEval(pk, E, ψ): Return v := C⊺ · x.

EncEval(pk, d, ϕ): Return w := −(Im·ℓ ⊗ s⊺ ⊗ gq) ·B⊺ · d.

The scheme is trivially programmable, since ϕ consists of a uniformly sampled vector s that in
particular is independent from y. Then, we observe that the scheme has indeed a bilinear encoding
evaluation algorithm. By Lemma 2.1, it holds that:

−(Im·ℓ ⊗ s⊺ ⊗ gq) ·B⊺ · d = Lin(−B⊺)(d⊗ s⊗ g⊺
q ) (1)

with ∥Lin(−B⊺)∥∞ = ∥−B⊺∥∞ ≤ 1. We can also bound the norm of the digest by

∥d∥∞ = ∥A · x∥∞ ≤ m · ∥A∥∞ · ∥x∥∞ ≤ m · ∥x∥∞ (2)

with a triangle inequality. Finally, it is easy to see that the scheme is half succinct, since the hash
d is n-dimensional vector over Zq, whose size is in particular independent of the length of x and y.
On the other hand, the encoding consists of an m× (m · ℓ) matrix over Zq.

Next, we argue that the scheme satisfies approximate correctness. Indeed, let us rewrite

C = A⊺ · Z+ Ẽ+ Im ⊗ y⊺,

where Z := B · (Im·ℓ ⊗ s⊗ g⊺
q ) and Ẽ := A⊺ ·E′ + Ê. Substituting, we obtain

v +w = C⊺ · x− Z⊺ · d

= (Z⊺ ·A) · x+ Ẽ⊺ · x+ (Im ⊗ y) · x− Z⊺ · d

= Z⊺ · d+ Ẽ⊺ · x+ x⊗ y − Z⊺ · d

= x⊗ y + Ẽ⊺ · x.

Since A is a matrix in Z2 with n rows, the entries of Ẽ = A⊺ ·E′+ Ê is obtained by adding at most
n+ 1 entries of the vectors E′ and Ê, which are B(λ)-bounded. In other words,∥∥∥A⊺ ·E′ + Ê

∥∥∥
∞
≤ (n+ 1) ·B(λ).

Therefore we can bound the correctness error by∥∥∥Ẽ⊺ · x
∥∥∥
∞
≤ m · (n+ 1) ·B(λ) · ∥x∥∞. (3)

with a triangle inequality. Finally, we show that the scheme satisfies encoder privacy.

Theorem 3.5 (Encoder Privacy). Assuming the hardness of LWE, Construction 3.4 satisfies en-
coder privacy.

Proof. Consider the following sequence of hybrids.

• Hybrid H0: This is the original distribution.

• Hybrid H1: We define
C := A⊺ ·U+ Ê+ (Im ⊗ y⊺)

where U
$← Zn×(m·ℓ)

q .
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We claim that this hybrid is indistinguishable from the previous once, by the LWE assumption.
To see why, observe that the encoding provided to the adversary in the previous hybrid equals:

C = A⊺ ·U+ Ê+ (Im ⊗ y⊺),

where U := B · (Im·ℓ ⊗ s ⊗ g⊺
q ) + E′ for Ê

$← χ(λ) and E′ $← χ(λ). This last term consists
of an LWE sample with secret s and public matrix obtained by splitting B · (Im·ℓ·k ⊗ g⊺

q ) in
m · ℓ blocks in Zn×k

2 and stacking them one underneath the other.

In more details, consider a reduction that receives a matrix M ∈ Z(n·m·ℓ)×k
q and a vector

u ∈ Zn·m·ℓ
q that is either an LWE sample with respect to M or a uniformly random vector.

The reduction splits the rows of M into ℓ ·m blocks in Zn×k
q , denoted by

M =

 M0
...

Mm·ℓ−1

 .

For every j ∈ [m · ℓ], set Bj :=
(
G−1(M⊺

j )
)⊺
. Notice that Bj is a random matrix over Zn×n

2 ,
since Mj is uniformly sampled and q is a power of 2. Finally, construct B as

B = (B0, . . . ,Bm·ℓ−1)

and generate the columns in U by splitting u into m · ℓ vectors in Zn
q . Then set C to

A⊺ ·U+ Ê+ (Im ⊗ y⊺).

• Hybrid H2: We sample C
$← Z(m)×(m·ℓ)

q .

Indistinguishability from the previous hybrid follows by another reduction to the LWE prob-
lem. Indeed, notice that A⊺ ·U+Ê is a batch of m ·ℓ LWE samples with A⊺ as public matrix.
The LWE secrets consist of the columns of U.

The proof is concluded by defining the simulator Sim to output a uniformly random C
$← Z(m)×(m·ℓ)

q

as the encoding.

3.3 Bootstrapping to Fully-Succinct NI-OTE

We now show a bootstrapping procedure to turn the NI-OTE constructed in Section 3.2 into a fully
succinct NI-OTE for Zm

q ⊗ Zℓ
q. We assume that m := tr · n, for some t, r ∈ Z, and we assume the

existence of a half-succinct α-correct hOTE = (Setup,Hash,Enc,HashEval,EncEval) for Zt·n
q ⊗ Zn

q

with bilinear encoder evaluation, where d ∈ Zn
q and ϕ ∈ Zk

q , with n := k · log q. We describe our
scheme in Construction 3.6.

Construction 3.6. Fully Succinct NI-OTE

Setup(1λ): Return pk
$← hOTE.Setup(1λ).

Hash(pk,x): Set x0 := x. Then for every i ∈ [r] proceed as follows:

• Parse xi as the vertical concatenation of (xi,1, . . . ,xi,tr−i−1) where xi,j ∈ Zt·n
q .

• For every j ∈ [tr−i−1], compute

(di,j , ψi,j)
$← hOTE.Hash(pk,xi,j).
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• Define xi+1 to be the vertical concatenation of the di,j .

Return d := xr and ψ := {ψi,j}i∈[r],j∈[tr−i−1].

Enc(pk,y): Set y0 := y, then for i ∈ [r], compute

(Ei, ϕi+1)
$← Enc(pk,yi) and yi+1 := ϕi+1 ⊗ g⊺

q

Output E := {Ei}i∈[r] and ϕ := ϕr.

HashEval(pk, E, ψ): Let P be the public matrix derived from pk. For all i ∈ [r] and j ∈ [tr−i−1],
compute

Pi := (Itr−i ⊗P) and vi,j := hOTE.HashEval(pk, Ei, ψi,j).

Let vi be the vertical concatenation of {vi,j}j∈[tr−i−1]. Return v :=
∑

i∈[r]

(∏i
k=1Pk

)
·vi.

EncEval(pk, d, ϕ): Let Pi be defined as above. Return

w :=

(
r−1∏
i=1

Pi

)
· hOTE.EncEval(pk, d, ϕr).

The scheme is clearly programmable, if the underlying hOTE is. Furthermore, note that the
scheme maintains a bilinear encoder evaluation, since, by Equation (1) we have that:

EncEval(pk, d, ϕ) =

(
r−1∏
i=1

Pi

)
·P · (d⊗ ϕ⊗ g⊺

q ). (4)

To bound the norm of the public matrix, recall that P ∈ Zn2×(t·n2)
q and ∥P∥∞ ≤ 1. So, for every

i ∈ [r], each row of Pi = (Itr−i ⊗ P) has at most n2 non-zero entries. Thus, multiplying by Pi

increases the infinity norm at most by a factor n2. Thus we have that:∥∥∥∥∥
r−1∏
i=1

Pi ·P

∥∥∥∥∥
∞

≤ n2r. (5)

On the other hand, we can bound the norm of the digest by recalling that xi,j ∈ Zt·n
q and by

Equation (2) the norm of the digest is increased by a factor t · n each time it is hashed. Thus:

∥d∥∞ = ∥xr∥∞ ≤ (tn)r · ∥x∥∞. (6)

Furthermore, the dimension of the digest is n, and therefore independent of the dimensions of the
input vector, and its bit-length is at most n · (r · log tn + log∥x∥∞). The size of the encoding is
r = O(logm) times the size of an encoding of hOTE (whose size is independent of m). Thus, the
scheme is fully succinct.

Approximate Correctness. Towards proving approximate correctness, we begin by observing
that, by the α-correctness of hOTE, for every i ∈ [r] and j ∈ [tr−i−1], we have:

hOTE.EncEval(pk,di,j , ϕi+1) + hOTE.HashEval(pk, Ei, ψi,j) = xi,j ⊗ yi + ei,j , (7)

where ∥ei,j∥∞ ≤ α · ∥xi,j∥∞ ≤ α · ∥xi∥∞ = tn(n + 1)B(λ) · ∥xi∥∞, by Equation (3). To establish
correctness, it suffices to prove the following.
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Lemma 3.7 (Approximate Correctness). For every i ∈ [r]:

r−1∑
j=i

(
j∏

k=1

Pk

)
· vj +w =

(
i∏

k=1

Pk

)
· (xi ⊗ yi) + ẽi

where ∥ẽi∥∞ ≤ α ·
(∑r−1

k=i (t · n3)k
)
· ∥x∥∞.

Before proceeding with the proof, we can indeed see that, setting i = 0, we obtain:

v +w = (x⊗ y) + e

where ∥e∥∞ ≤ α · (t · n3)r · ∥x∥∞. Thus, the scheme satisfies α(t · n3)r-correctness.

Proof. We proceed by induction on the index i, starting from i := r−1. For the base case, we have
We proceed by induction starting from i = r− 1 and going all the way down to i = 0. It is easy to
see that vr−1 = hOTE.HashEval(pk, Er−1, ψr−1,0), whereas d = dr−1,0. Therefore, by Equation (7),
we obtain:(

r−1∏
k=1

Pk

)
· vr−1 +w =

(
r−1∏
k=1

Pk

)
·
(
hOTE.HashEval(pk, Er−1, ψr−1,0) + hOTE.EncEval(pk, d, ϕr)

)
=

(
r−1∏
k=1

Pk

)
· (xr−1,0 ⊗ yr−1) +

(
r−1∏
k=1

Pk

)
· er−1,0

=

(
r−1∏
k=1

Pk

)
· (xr−1 ⊗ yr−1) + ẽr−1

where ẽr−1 :=
(∏r−1

k=1Pk

)
· er−1,0. Notice that

∥ẽr−1∥∞ ≤ (n2)r−1 · ∥er−1,0∥∞ ≤ (n2)r−1 · α · ∥xr−1∥∞ ≤ α · (t · n3)r−1 · ∥x∥∞

by Equation (5) and Equation (6). Then, by induction hypothesis:

r−1∑
j=i−1

(
j∏

k=1

Pk

)
· vj +w =

(
i−1∏
k=1

Pk

)
· vi−1 +

(
i∏

k=1

Pk

)
· (xi ⊗ yi) + ẽi

=

(
i−1∏
k=1

Pk

)
·
(
vi−1 +Pi · (xi ⊗ yi)

)
+ ẽi.

Moreover:

Pi · (xi ⊗ yi) =


P · (di−1,0 ⊗ ϕi ⊗ g⊺

q )
P · (di−1,1 ⊗ ϕi ⊗ g⊺

q )
...

P · (di−1,tr−i ⊗ ϕi ⊗ g⊺
q )

 =


hOTE.EncEval(pk,di−1,0, ϕi)
hOTE.EncEval(pk,di−1,1, ϕi)

...
hOTE.EncEval(pk,di−1,tr−i , ϕi)

 .

We also observe that:

vi−1 =


vi−1,0

vi−1,1
...

vi−1,tr−i

 =


hOTE.EncHash(pk, Ei−1, ψi−1,0)
hOTE.EncHash(pk, Ei−1, ψi−1,1)

...
hOTE.EncHash(pk, Ei−1, ψi−1,tr−i)

 .
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Furthermore, by Equation (7), we have:

vi−1+Pi·(xi⊗yi) =


(xi−1,0 ⊗ yi−1) + ei−1,0

(xi−1,1 ⊗ yi−1) + ei−1,1
...

(xi−1,tr−i ⊗ yi−1) + ei−1,tr−i

 = (xi−1⊗yi−1)+ei−1, where ei−1 :=


ei−1,0

ei−1,1
...

ei−1,tr−i

 .

Notice that ∥ei−1∥∞ ≤ α · ∥xi−1∥∞ ≤ α · (tn)i−1 · ∥x∥∞ by Equation (5) and Equation (6). We
conclude that

r−1∑
j=i−1

(
j∏

k=1

Pk

)
· vj +w =

(
i−1∏
k=1

Pk

)
· (xi−1 ⊗ yi−1) + ẽi−1

where ẽi−1 := ẽi +
(∏i−1

k=1Pk

)
· ei−1. Observe that

∥ẽi−1∥∞ ≤ ∥ẽi∥∞ + α · (t · n3)i−1 · ∥x∥∞ ≤ α ·

(
r−1∑

k=i−1

(t · n3)k
)
· ∥x∥∞

as desired.

Encoder Privacy. The following theorem establishes encoder privacy.

Theorem 3.8. Assuming that hOTE is encoder private, Construction 3.6 is encoder private.

Proof. The proof follows by a standard hybrid argument, where we gradually substitute the encod-
ings {Ej}j∈[r] with the outputs of the simulator Sim(1λ, pk), provided by the definition of encoder
privacy of hOTE.

How to Build a Fully Succinct OTE for Zm
q ⊗Zℓ

q. Construction 3.6 presents a non-interactive
OTE for Zm

q ⊗Zn
q where the hash size is a vector in Zn

q and the encoding consists of r matrices of size

(tn)× (tn2). A trivial way to build a fully succinct OTE for Zm
q ⊗Zℓ

q is to instantiate Construction
3.6 with n := ℓ. If ℓ = O(λ · log q), this is secure, however, the encoder size would scale as r · ℓ3
while the hash size would be linear in ℓ. We can do better: just split y into blocks y0, . . . ,yN of
size n. Then, compute an OTE encoding of each of them using Construction 3.6 and send them
to the hasher. Given the hasher’s digest (notice, a single digest is sufficient for all y0, . . . ,yN ), we
can then derive shares for x ⊗ y0, . . . ,x ⊗ yN . By reordering these, we obtain a secret-sharing of
x⊗ y. In this way, the digest dimension is n, while the encoding dimension is ℓ · r · t2 · n2.

3.4 From Succinct NI-OTE to Succinct NI-MOLE

We will also consider an modification of NI-OTE where instead of computing a tensor product, we
compute a matrix-vector product. More specifically, we let the hasher take as input a matrix M
and the encoder a vector y and we require that

HashEval(pk, E, ψ) + EncEval(pk, d, ϕ) ≈My.

Furthermore, we require the protocol to be succinct, in the sense that the communication complexity
should be independent of the number of rows of the matrix M. We refer to this protocol as Non-
Interactive Matrix Oblivious Linear Evaluation (NI-MOLE).
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It is easy to see that one can generically construct an (ℓ ·α)-correct NI-MOLE from an α-correct
NI-OTE: Simply hash x := G−1(vec(M)) and encode y ⊗ gq. Then the hasher and the encoder
return

Lin(Im·ℓ·log q) · HashEval(pk, E, ψ) and Lin(Im·ℓ·log q) · EncEval(pk, d, ϕ)
respectively. By the correctness of the NI-OTE we have:

v +w = Lin(Im·ℓ·log q) · (x⊗ y ⊗ g⊺
q ) + Lin(Im·ℓ·log q) · e

= (Im ⊗ y⊺ ⊗ gq) · x+ Lin(Im·ℓ·log q) · e
= (Im ⊗ y⊺) · vec(M⊺) + Lin(Im·ℓ·log q) · e
= M · y + Lin(Im·ℓ·log q) · e
≈M · y

ignoring low-order error terms, since ∥Lin(Im·ℓ·log q)∥∞ = 1 by Lemma 2.1. Notice that

∥Lin(Im·ℓ·log q) · e∥∞ ≤ ℓ · α · ∥x∥∞ = ℓ · α.

Thus, henceforth we will assume the existence of succinct NI-OTE and succinct NI-MOLE inter-
changeably, with the understanding the succinct NI-OTE implies the existence of both.

4 Adaptive Lattice Encodings

In the following we present our new construction of adaptive lattice encodings. Let k := k(λ) and
q := q(λ) be positive integers, and let G be the k-dimensional gadget matrix G := Ik ⊗ gq. For

element x ∈ Zq, vectors s, r ∈ Zk
q , matrix A ∈ Zk×(k·log q)

q and noise term e ∈ Zk·log q, we define the
corresponding adaptive lattice encoding as:

LEncA(x; s, r, e) := s⊺A+ x · r⊺G+ e⊺.

Note that, for an appropriately sampled A, s, and e. It is straightforward to see that the encod-
ing is computationally close to uniform under the LWE assumption. Next, we demonstrate the
homomorphic properties of such encodings.

4.1 Homomorphic Operations

We show that our lattice encodings support addition, scalar multiplication, and even multiplication,
provided that the encodings are encrypted with correlated secrets. We present a formal description
of the algorithms below.

Construction 4.1. Homomorphic Operations on Lattice Encodings

Addition: For every x0, x1 ∈ Zq, vectors s, r ∈ Zk
q , matrices A0,A1 ∈ Zk×(k·log q)

q and noise

terms e0, e1 ∈ Zk·log q
q , we have:

LEncA0(x0; s, r, e0) + LEncA1(x1; s, r, e1) = LEncA0+A1(x0 + x1; s, r, e0 + e1).

Scalar Multiplication: For every x, δ ∈ Zq, vectors s, r ∈ Zk
q , matrix A ∈ Zk×(k·log q)

q and

noise terms e ∈ Zk·log q
q , we have:

LEncA(x; s, r, e) ·G−1(δ ·G) = LEncA·G−1(δ·G)(x · δ; s, r,G−1(δ ·G)⊺ · e).
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Multiplication: For every x0, x1 ∈ Zq, vectors s0, s1, s2 ∈ Zk
q , matrices A0,A1 ∈ Zk×(k·log q)

q

and noise terms e0, e1 ∈ Zk·log q
q , we have:

− LEncA0(x0; s0, s1, e0) ·G−1(A1) + x0 · LEncA1(x1; s1, s2, e1)

= LEnc−A0·G−1(A1)(x0 · x1; (s0, s2,−G
−1(A1)

⊺ · e0 + x0 · e1)).

We elaborate on the correctness of the claimed homomorphic operations. For addition, we
observe that:

LEncA0(x0; s, r, e0) + LEncA1(x1; s, r, e1) = s⊺A0 + x0 · r⊺G+ e⊺0 + s⊺A1 + x1 · r⊺G+ e⊺1
= s⊺ · (A0 +A1) + (x0 + x1) · r⊺G+ (e⊺0 + e⊺1)

= LEncA0+A1(x0 + x1; s, r, e0 + e1).

For scalar multiplication, we have:

LEncA(x; s, r, e) ·G−1(δ ·G) = s⊺AG−1(δ ·G) + x · r⊺GG−1(δ ·G) + e⊺G−1(δ ·G)

= s⊺AG−1(δ ·G) + (x · δ) · r⊺G+ e⊺G−1(δ ·G)

= LEncA·G−1(δ·G)(x · δ; s, r,G−1(δ ·G)⊺ · e).

Finally, for homomorphic multiplication, we have:

− LEncA0(x0; s0, s1, e0) ·G−1(A1) + x0 · LEncA1(x1; s1, s2, e1)

= −(s⊺0A0 + x0 · s⊺1G+ e⊺0) ·G
−1(A1) + x0 · (s⊺1A1 + x1 · s⊺2G+ e⊺1)

= s⊺0 · (−A0G
−1(A1))− x0 · s⊺1A1 + x0 · s⊺1A1 + (x0 · x1) · s⊺2G− e⊺0G

−1(A1) + x0 · e⊺1
= LEnc−A0·G−1(A1)(x0 · x1; (s0, s2,−G

−1(A1)
⊺ · e0 + x0 · e1)).

Evaluating RMS Programs. From the homomorphic operations described above, one can de-
rive a general routine to evaluate any T -bounded (i.e., the maximum norm of an intermediate
variable of the computation is bounded by T ) RMS program of depth d. Recall that in an RMS
program, one can sum any two variables, whereas multiplication can be done only so long as one
of the two variables is an input. Before discussing the evaluation algorithm, let us generalize the
notation described above to vectors, with:

LEncA(x; s, r, e) := s⊺A+ r⊺(x⊺ ⊗G) + e⊺

by increasing the dimensions of the components appropriately. We refer to s as the encryption
key and r as the authentication key. Homomorphic operations can be extended to vectors in a
straightforward manner. We are now ready to state the algorithm to evaluate RMS programs.

Lemma 4.2 (Evaluation of RMS Programs). Let A ∈ Zk×(m·k·log q)
q be a matrix, x ∈ Zm−1

q be an
input, and let f be a T -bounded depth-d(λ) RMS program. Define x̂ as the vertical concatenation
of x and 1. For all i ∈ [d], let:

ci := LEncA(x̂; si, si+1, ei)

with si ∈ Zk
q and such that maxi ∥ei∥∞ ≤ β. Then there exist two polynomial-time algorithms

EvalRMSK and EvalRMSC such that:

Af ← EvalRMSK(A, f) and c̃← EvalRMSC(A, f,x, {ci}i∈[d])

with c̃ ∈ LEncAf
(f(x), s0, sd, ẽ) such that ∥ẽ∥∞ ≤ β ·O(T · (k · log q)d).
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Proof. We refer to any encoding using si as encryption key and sj as authentication key a level-(i, j)
encoding. Observe that splitting a level-(i, i+ 1) encoding ci into blocks of dimension k · log q, we
obtain level-(i, i+ 1) encodings:

LEncAj (xj ; si, si+1, ei,j)

where xj is the j-th entry of x̂, Aj is the j-th block of A, and ei,j is the j-th block of k · log q
entries in ẽi).

Using the addition and multiplication by a constant, we can apply linear operations over en-
codings lying on the same level (i, j). In this way, we obtain a level-(i, j) encoding of the result.
On the other hand, the operation increases the norm of the noise in the encodings: If the linear
operation is described by a vector ℓ, the noise magnitude increases by a factor

∑
v log ℓv. We

can also homomorphically compute multiplications between any encoding on level (i, j) and any
encoding on level (j, j + 1). In this way, we obtain a level-(i, j + 1) encoding of the product. This
time the noise magnitude increases by a factor O(k · log q) and by an additive term T · β for each
multiplication. Finally, we observe that we can convert a level-(i, j) encoding into a level (i, j + 1)
encoding by simply multiplying by a level-(j, j + 1) encoding of 1. Notice that the latter is know
given that the last entry of x̂ is a 1. Overall, the growth of the noise norm is bounded by a factor
β ·O(T · (k · log q)d).

We also highlight that for all these operations we described, we are able to derive the matrix
underlying the output encodings from the matrices underlying the input encodings. Thus both
algorithms are well-defined.

4.2 Compressing Lattice Encodings

We describe a procedure to compress and decompress lattice encodings. Formally, this consists of
a triple of algorithms (Setup,Compress,Expand) that allows one to sample a compressed version of
a lattice encoding, that can be later on expanded into the format described above.

Let n := n(λ), k := k(λ), m := m(λ), and q := q(λ) be positive integers. We are going to assume
the existence of an α-correct succinct NI-OTE protocol OTE = (Setup,Hash,Enc,HashEval,EncEval)

with bilinear encoder evaluation for Zm
q ⊗ Zk·log q

q where digests are vectors in Zn
q and the encoder

private information consists of a vector in Zk
q . Let G := Ik ⊗ gq. Our scheme is formally described

in Construction 4.3. Observe that if we instantiate OTE with Construction 3.6, the size of the
compressed encoding scales logarithmically in the size of its input.

Construction 4.3. Compression of Lattice Encodings

Setup(1λ): Return ck := pk
$← OTE.Setup(1λ).

Compress(ck,A,x, s0, s1, r): Compute (d, ψ) := OTE.Hash(pk,x), then sample e
$← χ(λ).

Compute
h := s⊺0A+ r⊺(d⊺ ⊗G) + e⊺

and set E
$← OTE.Enc(pk, s1 ⊗ g⊺

q , r). Return (h, E).

Expand(ck,A,h, E,x): Recompute the hash (d, ψ) := OTE.Hash(pk,x) and set v :=
OTE.HashEval(pk, E, ψ). Let P be the matrix of the OTE protocol that can be pub-
licly derived from pk. Return

c := hP⊺ + v⊺.
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We show that the expansion algorithm indeed leads to well-formed lattice encoding. By the
correctness of the NI-OTE protocol, we have that:

w := OTE.EncEval(pk,d, s) = P · (d⊗ s⊗ g⊺
q ).

Then let us rewrite:

c = h ·P⊺ + v⊺

= s⊺0 ·A+ r⊺ · (d⊺ ⊗G) ·P⊺ + e⊺ ·P⊺ + v⊺

= s⊺0 ·A ·P
⊺ + r⊺ · (d⊺ ⊗ Ik ⊗ gq) ·P⊺ + e⊺ ·P⊺ + v⊺

= s⊺0 ·A ·P
⊺ + (d⊺ ⊗ r⊺ ⊗ gq) ·P⊺ + e⊺ ·P⊺ + v⊺

= s⊺0 ·A ·P
⊺ +w⊺ + e⊺ ·P⊺ + v⊺

= s⊺0 ·A ·P
⊺ + x⊺ ⊗ (s⊺1 ⊗ gq) + e⊺ ·P⊺ + e′⊺

= s⊺0 ·A ·P
⊺ + s⊺1 · (x

⊺ ⊗ Ik ⊗ gq) + e⊺ ·P⊺ + e′⊺

= s⊺0 ·A ·P
⊺ + s⊺1 · (x

⊺ ⊗G) + e⊺ ·P⊺ + e′⊺

= LEncAP⊺(x; s0, s1, e
⊺ ·P⊺ + e′⊺)

by the α-correctness of the NI-OTE. We can bound the norm of the noise term by:

∥e⊺ ·P⊺ + e′⊺∥∞ ≤ k · n · log q · ∥e∥∞ · ∥P∥∞ + ∥e′∥∞ ≤ k · n2r+1 · log q ·B(λ) + α · ∥x∥∞.

by Equation (5) and by the α-correctness of the NI-OTE. We prove that the compressed encodings
satisfy a notion of simulation that we define below.

Theorem 4.4 (Simulatability). Consider the following experiment CompExpA,CSim(1
λ)

parametrized by an adversary A = (A0,A1) and a simulator CSim:

• Sample ck
$← Setup(1λ), A

$← Zk×(n·k·log q)
q , and s0, r

$← Zk
q .

• Activate the adversary (x, s1, aux)← A0(1
λ, ck,A).

• Sample b
$← {0, 1}. If b = 0 compute:

(h0, E0)
$← Compress(ck,A,x, s0, s1, r)

whereas if b = 1 compute:
(h1, E1)

$← CSim(1λ, ck,A).

• Obtain b′ ← A1(hb, Eb, aux) and return 1 if and only if b = b′.

Then assuming the hardness of LWE and that OTE is encoder private, there exists a PPT simulator
CSim, such that for every PPT adversary A, there exists a negligible function negl(λ) such that, for
every λ ∈ N, we have that: ∣∣∣∣12 − Pr

[
CompExpA,CSim(1

λ) = 1
]∣∣∣∣ ≤ negl(λ)

where the probability is taken over the random coins of the experiment.

Proof. Consider the following sequence of hybrid experiments.
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• Hybrid H0: This is the original experiment.

• Hybrid H1: We provide the adversary A1 with a pair (h, E) where h
$← Zn·k·log q

q and E
$←

OTE.Enc(pk, s1 ⊗ g⊺
q , r) for r

$← Zk
q .

Indistinguishability from the previous hybrid follows by a direct reduction to LWE. Indeed,
in Hybrid H0, we have that h⊺ = A⊺ · s0 + e+ (d⊗G⊺) · r, where in particular A⊺ · s0 + e is
an LWE sample.

• Hybrid H2: We also simulate E
$← OTE.Sim(1λ, pk).

Indistinguishability follows from a straightforward reduction to the encoder privacy of OTE.

We conclude by observing that in Hybrid H2 the pair (h, E) given to A1 is independent of the
values x and s1 chosen by A0. This concludes the proof.

5 Rate-1 Adaptive LFE for all Bounded-Depth Functions

5.1 Almost Optimal, Weak Reverse Trapdoor Hashing for RMS

As a stepping stone, we present a variant of a trapdoor hashing (TDH) scheme [DGI+19] with
reversed syntax, achieving almost optimal encoding key size but supporting a restricted family of
functions. The syntax is reversed from the original definition from [DGI+19] where a TDH hashes
inputs and encodes functions, whereas we do the opposite.

Let m := m(λ), ℓ := ℓ(λ), p := p(λ), d := d(λ), T := T (λ), k := k(λ) and t := t(λ) be
positive integers. Construction 5.1 allows the evaluation of functions that map any pair (x,a),
where x ∈ {0, 1}m and a ∈ Zt·k

p , into f(x) ⊗ a where f : {0, 1}m → {0, 1}ℓ is described by a
depth-d, T -bounded RMS program.

Our construction only achieves a weak mix of (adaptive) privacy and correctness: Although
the encoding key leaks no information about x and a, in order to successfully run the encoding
procedure, we are required to know x (but not a). Although this properties may seem artificial,
they will later be useful in combination with techniques of [BTVW17], to build adaptive LFE with
rate-1 encodings (Section 5.2).

Concerning efficiency, the digest size in our construction is logarithmic inm, t ℓ and d. Moreover,
the size of the encoding key is d2 · t · poly(λ, logm, log ℓ). Notice that we can achieve logarithmic
dependency in m only because the encoding procedure needs x in order to run successfully.

The Construction. We now invite the reader to take a look at Construction 5.1. The scheme re-
lies on the compressed, adaptive lattice encodings of Section 4. We instantiate them over Zq, where
q = ∆·p where ∆ := ∆(λ) is a positive integer. We use (Setup,Compress,Expand) to denote the algo-
rithms of Construction 4.3 and we use n := n(λ) to denote the digest size of the α-correct OTE with
which it is instantiated. LetP be the matrix used for the hasher evaluation in the OTE protocol. We
also rely on an α̂-correct succinct NI-MOLE protocol MOLE = (Setup,Hash,Enc,HashEval,EncEval)

for matrices of size Z(t·ℓ·k·log q)×k
q .

Construction 5.1. Almost Optimal, Weak Reverse TDH for RMS

Setup(1λ): Run the setup for the MOLE and the compressed lattice encodings

ck
$← Setup(1λ), mpk

$← MOLE.Setup(1λ).
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Then, sample A
$← Zk×(n·k·log q)

q , B
$← Zk×(t·k·log q)

q and return hk := (ck,mpk,A,B).

Hash(hk, f): Compute:

Af ← EvalRMSK(AP⊺, f), F← −Af · (Iℓ ⊗G−1(B)).

Then output (d, ψ)
$← MOLE.Hash(mpk,F⊺).

Gen
(
hk,x,a; {ri}i∈[d]

)
: Let x̂ be the vertical concatenation of x and 1. For every i ∈ [d+ 1],

sample si
$← Zk

q and set:

(hi, Ei)
$← Compress(ck,A, x̂, si, si+1, ri).

Next, sample e
$← χ(1λ) and set b← s⊺dB+ a⊺(It ⊗G) + e⊺, where G = Ik ⊗ gq.

Proceed by generating (C, ϕ)
$← MOLE.Enc(mpk, s0) and sampling seed

$← {0, 1}λ.
Output ek := (C,b, {hi, Ei}i∈[d], seed) and td := (ϕ, seed)

Enc(hk, ek, ψ,x, f): For every i ∈ [d], compute ci ← Expand(ck,A,hi, Ei, x̂) and set

c← EvalRMSC(AP⊺, f,x, {ci}i∈[d])

Next, derive z← −c · (Iℓ ⊗G−1(B)) + f(x)⊺ ⊗ b. Finally, compute

v← MOLE.HashEval(mpk, C, ψ), u′ ← (z− v⊺) · (It·ℓ·k ⊗G−1(∆)),

y′ ← ⌈u′ + PRG(seed)⌋p

Output y′.

Dec(hk,d, td): Compute

w← MOLE.EncEval(mpk,d, ϕ), u← w⊺ (It·ℓ·k ⊗G−1 (∆)
)
,

y← ⌈−u− PRG(seed)⌋p

Then, output y.

Correctness. In order for the construction to be fully correct, we need to choose a sufficiently
large modulus q. Specifically, it must hold that

p · ∥P∥∞ · T ·B · (k · log q)
d + α · T · (k · log q)d + α̂

q
= 2−ω(log λ).

Notice that in the OTE of Section 3.3, it holds that ∥P∥∞ = n2r where r = O(logm)5. We begin
by observing that, by the correctness of Construction 4.3, for every i ∈ [d]:

ci = s⊺iAP⊺ + s⊺i+1(x̂
⊺ ⊗G) + e⊺i

where ∥ei∥∞ ≤ k · n · ∥P∥∞ · log q ·B(λ) + α. Therefore, by Lemma 4.2, we have that:

c = EvalRMSC(AP⊺, f,x, {ci}i∈[d]) = s⊺0 ·Af + s⊺d · (f(x)
⊺ ⊗G) + ẽ⊺,

5By a careful choice of parameters, r can also be made a constant:e.g., by setting t = λ in Construction 3.6.

29



where ∥ẽ∥∞ ≤ n · ∥P∥∞ ·B · T · (k · log q)d+1 + α · T · (k · log q)d. We obtain that:

z = −c · (Iℓ ⊗G−1(B)) + f(x)⊺ ⊗ b

= −s⊺0 ·Af · (Iℓ ⊗G−1(B))− s⊺d · (f(x)
⊺ ⊗G) · (Iℓ ⊗G−1(B))− ẽ⊺ · (Iℓ ⊗G−1(B)) + f(x)⊺ ⊗ b

= s⊺0 · F− s⊺d · (f(x)
⊺ ⊗B)− ẽ⊺ · (Iℓ ⊗G−1(B)) + f(x)⊺ ⊗

(
s⊺d ·B+ a⊺ · (It ⊗G) + e⊺

)
= s⊺0 · F− f(x)

⊺ ⊗ (s⊺d ·B)− ẽ⊺ · (Iℓ ⊗G−1(B)) + f(x)⊺ ⊗
(
s⊺d ·B+ a⊺ · (It ⊗G) + e⊺

)
= s⊺0 · F+ f(x)⊺ ⊗ (a⊺ · (It ⊗G))− ẽ⊺ · (Iℓ ⊗G−1(B)) + f(x)⊺ ⊗ e⊺

= s⊺0 · F+ a⊺ · (f(x)⊺ ⊗ It ⊗G)− ẽ⊺ · (Iℓ ⊗G−1(B)) + f(x)⊺ ⊗ e⊺

= s⊺0 · F+ (f(x)⊺ ⊗ a⊺ ⊗ gq)− ẽ⊺ · (Iℓ ⊗G−1(B)) + f(x)⊺ ⊗ e⊺

Finally, by the α̂-correctness of the MOLE, we observe that

z− v⊺ −w⊺ = s⊺0 · F+ (f(x)⊺ ⊗ a⊺ ⊗ gq)− ẽ⊺ · (Iℓ ⊗G−1(B)) + f(x)⊺ ⊗ e⊺ − v⊺ −w⊺

= s⊺0 · F+ (f(x)⊺ ⊗ a⊺ ⊗ gq)− ẽ⊺ · (Iℓ ⊗G−1(B)) + f(x)⊺ ⊗ e⊺ − s⊺0 · F− ê⊺

= (f(x)⊺ ⊗ a⊺ ⊗ gq)− ẽ⊺ · (Iℓ ⊗G−1(B)) + f(x)⊺ ⊗ e⊺ − ê⊺

where ∥ê∥∞ ≤ α̂. Let ε := −ẽ⊺ · (Iℓ ⊗G−1(B)) + f(x)⊺ ⊗ e⊺ − ê⊺. It holds that:

∥ε∥∞ ≤ n · ∥P∥∞ ·B · T · (k · log q)d+2 + α · T · (k · log q)d +B + α̂.

We observe that:

(z− v⊺ −w⊺) · (It·ℓ·k ⊗G−1(∆)) = ∆ · (f(x)⊺ ⊗ a⊺) + ε · (It·ℓ·k ⊗G−1(∆)).

Notice also that ∥ε · (It·ℓ·k ⊗G−1(∆))∥∞ ≤ log q · ∥ε∥∞.
Finally, we observe that y′ + y ̸= f(x)⊺ ⊗ a⊺ mod p only if one of the entries of u− PRG(seed)

is less than log q · ∥ε∥∞ away from an odd multiple of ∆/2. Since seed is independent of u and by
the security of the PRG, the probability of this event is at most p · log q · ∥ε∥∞/q + negl(λ). By
hypothesis, this quantity is negligible.

Adaptive Privacy. We now show that our construction satisfies adaptive privacy: un-
der the LWE assumption with superpolynomial modulus-noise ratio, we can simulate
(C,b, {hi, Ei}i∈[d], seed) without knowing any information about x and a even if these are cho-
sen by the adversary after seeing the output of the setup.

Theorem 5.2 (Adaptive Privacy). Consider the following experiment AdaptivePrivacyA,Sim(1
λ)

parametrized by an adversary A = (A0,A1) and a simulator Sim:

• Sample hk
$← Setup(1λ).

• Activate the adversary (x,a, aux)← A0(1
λ, hk).

• Sample b
$← {0, 1}. If b = 0, sample ri

$← Zk
q for every i ∈ [d]. Then, compute

(ek0, td0)
$← Gen(hk,x,a; {ri}i∈[d])

If b = 1 compute:
ek1

$← Sim(1λ, hk).
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• Obtain b′ ← A1(ekb, aux) and return 1 if and only if b = b′.

Then assuming the hardness of LWE with superpolynomial modulus-noise ratio and that MOLE and
OTE are encoder private, there exists a PPT simulator Sim, such that for every PPT adversary A,
there exists a negligible function negl(λ) such that, for every λ ∈ N, we have that:∣∣∣∣12 − Pr

[
AdaptivePrivacyA,Sim(1

λ) = 1
]∣∣∣∣ ≤ negl(λ)

where the probability is taken over the random coins of the experiment.

Proof. We prove the theorem through a series of indistinguishable hybrids.

• Hybrid H0: This is the original experiment: We provide the adversary A1 with
(C,b, {hi, Ei}i∈[d], seed) where ((C,b, {hi, Ei}i∈[d], seed), td)

$← Gen(pk,x,a).

• Hybrid H1: In this hybrid, we generate C using MOLE.Sim(1λ,mpk). The rest remains as in
the previous hybrid.

Indistinguishability from Hybrid H0 follows from the encoder privacy of MOLE.

• Hybrid Hi
2: In this hybrid, for every j < i, we generate (hj , Ej)

$← CSim(1λ, ck,A), where
CSim is the simulator of Theorem 4.4. The rest remains as in the previous hybrid.

We observe that Hybrid H1 is identical to Hybrid H0
2. Moreover, for every i ∈ [d], Hybrid

Hi
2 is computationally indistinguishable from Hybrid Hi+1

2 due to Theorem 4.4 (notice that
in Hybrid Hi

2, the pair (hi−1, Ei−1) is independent of si).

• Hybrid H3: In this hybrid, we sample b
$← Zt·k·log q

q . The rest remains as in the previous
hybrid.

Hybrid Hd
2 is computationally indistinguishable from H3 under LWE. Notice that in Hybrid

Hd
2, the terms C, {hi, Ei}i∈[d] no longer contain information about sd. This allows us to reduce

indistinguishability to LWE. Indeed, all information about a⊺ · (It ⊗G) in b is masked by

s⊺d ·B+ e⊺

This can be viewed as an LWE sample with respect to the matrix B⊺ and secret sd.

Notice that in Hybrid H3 all material provided to A1 is independent of x and a.

5.2 Rate-1 Adaptive LFE for all Bounded-Depth Functions

We now present our adaptive LFE scheme for bounded-depth functions. We described it in Con-
struction 5.3. Let ℓ := ℓ(λ), m := m(λ), and D := D(λ) be positive integers. The construction
allows the evaluation of any function f : {0, 1}m → {0, 1}ℓ described by a polynomial-sized cir-
cuit of depth at most D(λ). The digest size is poly(λ, logm, log ℓ, logD), whereas the size of the
encodings is m+ ℓ+D · poly(λ, logm, log ℓ, logD).

The construction builds upon the reverse trapdoor hashing scheme RTDH := (Setup,Hash,
Gen,Enc,Dec) of Construction 5.1. We assume the latter outputs a secret-sharing over Zp where p =
2ω(log λ). Moreover, we assume that RTDH is instantiated using the OTE protocols in Construction
3.6 and 3.4. The basic idea is the following: we pick a constant d = O(1) and we rewrite f as the
composition of L = D/ log d functions of depth at most log d. Each of these can be regarded as a
depth-d RMS program, which can therefore be evaluate using RTDH.
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Construction 5.3. Rate-1 Adaptive LFE for Bounded-Depth Circuits

Setup(1λ): Output pk := hk
$← RTDH.Setup(1λ)

Hash(pk, f): For any vector z, let fz be the function that maps a key K to f(z ⊕ PRG(K)).
Let f ′ be the function that maps a pair (ct, z) to GSW.Eval(ct, fz) where the evaluation
is performed as in [BV14]. Rewrite f ′ as

f ′ = f ′L−1 ◦ f ′L−2 ◦ · · · ◦ f ′0

where each f ′i is described by a T -bounded depth-d RMS program, all with the same
input and output size. For every i ∈ [L − 1], let f̂i be the function that maps x to
OTE.Hash(tpk, fi(x)) and set f̂L−1 ← f ′L−1. Notice that OTE.Hash is linear so its depth is

0a. Here tpk denotes the OTE public key that is used in Construction 4.3. Let f̂ the func-
tion that maps any vector x to (f̂0(x), . . . , f̂L−1(x)). Output (d, ψ)← RTDH.Hash(hk, f̂).

Enc(pk, h,x): Sample M
$← Z(k−1)×(k·log q+λ)

q , r
$← Zk−1

q and e
$← χ(1λ) and generate a GSW

key

skGSW :=

(
r
−1

)
pkGSW :=

(
M

r⊺ ·M+ e⊺

)
Sample K

$← {0, 1}λ and encrypt the input

z← x⊕ PRG(K), ct
$← GSW.Enc(pkGSW,K).

For every i ∈ [L], j ∈ [d] sample randomness ri,j
$← Zk

q and define:

ai :=

 G−1(ri,0)
...

G−1(ri,d−1)

 aL ← G−1(skGSW)

Then, set x0 := (Bits(ct), z) and compute

(ek0, td0)
$← RTDH.Gen(hk,x0,a1; {r0,j}j∈[d])

∀i > 0 : (ek′i, tdi)
$← RTDH.Gen(hk,0,ai+1; {ri,j}j∈[d])

For every i ∈ [L], let ek′i = (Ci,bi, {h′
i,j , Ei,j}j∈[d], seedi). Compute

yi ← −RTDH.Dec(hk,d, tdi) mod p

and set eki := (Ci,bi, {Ei,j}j∈[d], seedi). Let n be the digest size of OTE. For every

i ∈ [L − 1], take the block of yi corresponding to the evaluation of f̂i and split it into
d · n subblocks ŷi,0, . . . , ŷi,n·d−1 of dimension k · log q and set

yi,j ←
(
ŷi,j ∥ ŷi,d+j ∥ . . . ∥ ŷi,d·(n−1)+j

)
wi,j ← h′

i+1,j − (yi,j ⊗ gq) · (In·k ⊗ g⊺
q ⊗ Ilog q) mod q
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Let u be the last element of the standard basis of Zk
q and let yL−1 be the block of yL−1

corresponding to the output of f̂L−1. Compute

wL−1 ← −yL−1 · (Iℓ·k2·log q ⊗ g⊺
q ⊗ Ik ⊗ g⊺

q ) · Lin(Iℓ·k2·log q)⊺ · G−1(−∆ · (Iℓ ⊗ u)) mod q.

Sample seed
$← {0, 1}λ and set w← ⌈wL−1 + PRG(seed)⌋2.

Output E = (ct, z, seed, ek0, {eki}i∈[L], {wi,j}i∈[L−1],j∈[d],w)

Dec(pk, E, f, ψ): Initially, set x0 ← (Bits(ct), z). Then, for i = 0, . . . , L− 2:

• compute y′
i ← RTDH.Enc(hk, eki, ψ,xi, f̂)

• take the block of y′
i corresponding to the evaluation of f̂i and split it into d · n

subblocks ŷ′
i,0, . . . , ŷ

′
i,n·d−1 of dimension k · log q and set

y′
i,j ←

(
ŷ′
i,j ∥ ŷ′

i,d+j ∥ . . . ∥ ŷ′
i,d·(n−1)+j

)
hi+1,j ← wi,j + (y′

i,j ⊗ gq) · (In·k ⊗ g⊺
q ⊗ Ilog q) mod q

• set eki+1 ← (eki+1, {hi+1,j}j∈[d])
• compute the input to the next RMS program xi+1 ← f ′i(xi)

Finally, let u be the last element of the standard basis of Zk
q . Derive

y′
L−1 ← RTDH.Enc(hk, ekL−1, ψ,xL−1, f̂)

w′
L−1 ← y′

L−1 · (Iℓ·k2·log q ⊗ g⊺
q ⊗ Ik ⊗ g⊺

q ) · Lin(Iℓ·k2·log q)⊺ · G−1(−∆ · (Iℓ ⊗ u)) mod q.

where y′
L−1 denotes the block of y′

L−1 corresponding to the evaluation of f̂L−1.

Output ⌈(w′
L−1 − PRG(seed)⌋2 ⊕w

aSee Construction 3.4 and Construction 3.6.

Correctness. Towards proving correctness, we prove the following lemma, which states that the
term hi,j computed by the server during the decoding procedure is an adaptive lattice encoding of
OTE.Hash(tpk,xi). In other words, eki is an encoding key for xi = (f ′i−1 ◦ · · · ◦ f ′0)(Bits(ct), z).

Lemma 5.4. For every i ∈ [L] and j ∈ [d], we have that

hi,j = s⊺i,j ·A+ r⊺i,j · (d
′
i
⊺ ⊗G) + e⊺i

where (d′
i, ψ

′
i) ← OTE.Hash(tpk,xi), si,j is the encryption key used in the encoding h′

i,j (h0,j, if
i = 0) and ∥ei∥∞ ≤ B(λ).

Proof. We proceed by induction over i. The claim is trivially true for i = 0. Now, we show that if
it holds for i, it holds also for i+ 1.

We observe that

hi+1,j = wi,j + (y′
i,j ⊗ gq) · (In·k ⊗ g⊺

q ⊗ Ilog q) mod q

= h′
i+1,j + (y′

i,j ⊗ gq) · (In·k ⊗ g⊺
q ⊗ Ilog q)− (yi,j ⊗ gq) · (In·k ⊗ g⊺

q ⊗ Ilog q) mod q

= h′
i+1,j + ((y′

i,j − yi,j)⊗ gq) · (In·k ⊗ g⊺
q ⊗ Ilog q) mod q.
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Now, by Theorem 5.2 and the inductive hypothesis, we recall that y′
i − yi = f̂(xi)

⊺ ⊗ a⊺i+1 mod p.
We also recall that this subtractive secret-sharing was initially over Zq, i.e. the parties held vectors

u′
i and ui such that u′

i − ui = q/p · f̂(xi)
⊺ ⊗ a⊺i+1 + εi where ∥εi∥∞ is low. This secret-sharing

was rerandomised using PRG(seedi) and then rounded. We argue that yi is pseudorandom. In
particular, since p = 2ω(log λ), with overwhelming probability, all entries of yi are in the interval
[−p/2, p/2 − 1). Since f̂(xi)

⊺ ⊗ a⊺i+1 has all entries in {0, 1}, we conclude that (with overwhelm-

ing probability) y′
i and yi is a subtractive secret-sharing of f̂(xi)

⊺ ⊗ a⊺i+1 even over the integers.

Continuing, we observe that the i-th n-entry block of f̂(xi) coincides with d′
i+1 where d′

i+1 is the
output of OTE.Hash(tpk, f ′i(xi)) = OTE.Hash(tpk,xi+1). Moreover, we observe that, by the way we
constructed ai+1, y

′
i,j and yi,j , we have that

y′
i,j − yi,j = d′

i+1
⊺ ⊗G−1(ri+1,j)

⊺

Putting everything together, we obtain

hi+1,j = h′
i+1,j + (d′

i+1
⊺ ⊗G−1(ri+1,j)

⊺ ⊗ gq) · (In·k ⊗ g⊺
q ⊗ Ilog q)

= h′
i+1,j + (d′

i+1
⊺ ⊗G−1(ri+1,j)

⊺ ⊗ gq) · (In ⊗G⊺ ⊗ Ilog q)

= h′
i+1,j + d′

i+1
⊺ ⊗ r⊺i+1,j ⊗ gq

= h′
i+1,j + r⊺i+1,j · (d

′
i+1

⊺ ⊗G). (8)

Since h′
i+1,j = s⊺i+1,j ·A+ e⊺i+1 where ∥ei+1∥∞ ≤ B(λ), we obtain that

hi+1,j = s⊺i+1,j ·A+ r⊺i+1,j · (d
′
i+1

⊺ ⊗G) + e⊺i+1

This ends the proof of the lemma.

Continuing with our analysis, by Lemma 5.4, we have that y′
L−1 and yL−1 form a subtractive

secret sharing of f̂(xL−1)
⊺ ⊗ a⊺L over Zp. Furthermore, similarly to how we argued in the proof

of Lemma 5.4, it is possible to prove that the probability that any entry of yL−1 lies outside
of [−p/2, p/2 − 1) is negligible. Given that all entries of f̂(xL−1)

⊺ ⊗ a⊺L belong to {0, 1}, we
conclude that, with overwhelming probability, y′

L−1 and yL−1 form a subtractive secret sharing of

f̂(xL−1)
⊺ ⊗ a⊺L even over Z. By the way we constructed f̂ ,yL−1 and y′

L−1, we infer that y′
L−1 −

yL−1) = f̂L−1(xL−1)
⊺ ⊗ a⊺L

We also notice that aL = G−1(skGSW), whereas

f̂L−1(xL−1) = f ′L−1(xL−1) = (f ′L−1 ◦ · · · ◦ f ′0)(x0) = Bits(f ′(ct, z)) = Bits(vec(GSW.Eval(ct, fz))).

Let ĉt := GSW.Eval(ct, fz). We obtain that

w′
L−1 +wL−1 = ((y′

L−1 − yL−1) · (Iℓ·k2·log q ⊗ g⊺
q ⊗ Ik ⊗ g⊺

q ) · Lin(Iℓ·k2·log q)⊺ ·G−1(−∆ · (Iℓ ⊗ u))

= (f̂L−1(xL−1)
⊺ ⊗ a⊺L) · (Iℓ·k2·log q ⊗ g⊺

q ⊗ Ik ⊗ g⊺
q ) · Lin(Iℓ·k2·log q)⊺ ·G−1(−∆ · (Iℓ ⊗ u))

= (vec(ĉt)⊺ ⊗ sk⊺GSW) · Lin(Iℓ·k2·log q)⊺ ·G−1(−∆ · (Iℓ ⊗ u))

= vec(ĉt)⊺ · (Iℓ·k·log q ⊗ skGSW) ·G−1(−∆ · (Iℓ ⊗ u))

= sk⊺GSW · ĉt ·G
−1(−∆ · (Iℓ ⊗ u)).

34



By the correctness of GSW evaluation, we have that sk⊺GSW · ĉt = sk⊺GSW · (fz(K)⊺ ⊗G) + ê⊺

where ∥ê∥∞ ≤ B ·D · poly(λ). Notice that fz(K) = f(z⊕ PRG(K)) = f(x). We conclude that

w′
L−1 +wL−1 = (sk⊺GSW · (f(x)

⊺ ⊗G) + ê⊺) ·G−1(−∆ · (Iℓ ⊗ u))

= −∆ · sk⊺GSW · (f(x)
⊺ ⊗ u) + ê⊺ ·G−1(−∆ · (Iℓ ⊗ u))

= −∆ · f(x)⊺ ⊗ (sk⊺GSW · u) + ê⊺ ·G−1(−∆ · (Iℓ ⊗ u))

= ∆ · f(x)⊺ + ê⊺ ·G−1(−∆ · (Iℓ ⊗ u)). (9)

Notice that ∥ê⊺ ·G−1(−∆ · (Iℓ⊗u))∥∞ ≤ ∥ê∥∞. So, unless any of the entries of wL−1+PRG(seed)
is less than ∥ê∥∞ away from q/4 or −q/4, we have that

f(x) = ⌈(w′
L−1 − PRG(seed)⌋2 ⊕ ⌈wL−1 + PRG(seed)⌋2.

Since seed is sampled independently of wL−1, the probability of the bad event is at most poly(λ) ·
∥ê∥∞/q) + negl(λ). Given our choice of q for RTDH, this is a negligible amount.

Security. Next, we prove that our construction is encoder private.

Theorem 5.5. Assume the hardness of LWE with superpolynomial modulus-noise ratio. Then,
Construction 5.3 is an adaptively encoder private LFE.

Proof. We prove our claim by relying on a series of indistinguishable hybrids.

• HybridH0: This hybrid corresponds to the original game: we provide the adversary with a tu-
ple (ct, z, seed, {h0,j}j∈[d], {eki}i∈[L], {wi,j}i∈[L−1],j∈[d],w) generated using LFE.Enc(pk, h,x).

• Hybrid H1: In this hybrid, we change the distribution of w: using pk, f ,
(ct, z, seed, {h0,j}j∈[d], {eki}i∈[L], {wi,j}i∈[L−1],j∈[d]) and following the same operations as in
the decoding procedure, we compute w′

L−1. Then, we set w← f(x)⊕⌈w′
L−1−PRG(seed)⌋2.

This hybrid is statistically indistinguishable from Hybrid H0 due to the correctness of the
primitive.

• Hybrid H2: In this hybrid, we change the distribution of wi,j for every i ∈ [L−1] and j ∈ [d]:
using pk, f , (ct, z, {h0,β}β∈[d], {ekγ}γ∈[i], {wγ,β}γ∈[i],β∈[d]) and following the same operations
as in the decoding procedure, we compute y′

i,j . Then, we set

wi,j ← h′
i+1,j + r⊺i+1,j · (d

′
i+1

⊺ ⊗G)− (y′
i,j ⊗ gq) · (In·k ⊗ g⊺

q ⊗ Ilog q), (10)

where (d′
i+1, ψ

′
i+1)← OTE.Hash(tpk,xi+1) and xi+1 ← (f ′i ◦ · · · ◦ f ′0)(Bits(ct), z).

This hybrid is statistically indistinguishable from HybridH1. Indeed,wi,j satisfies the relation
in (10) even in H1. This is highlighted in Lemma 5.4, specifically in (8).

• Hybrid H3: In this hybrid, for every i ∈ [L] \ {0}, we compute

(eki, tdi)
$← RTDH.Gen(hk,xi+1,ai+1; {ri,j}j∈[d])

where xi+1 ← (f ′i ◦ · · · ◦ f ′0)(Bits(ct), z). Let eki = (Ci,bi, {hi,j , Ei,j}j∈[d], seedi). For every
i ∈ [L− 1] and j ∈ [d], we set

wi,j ← hi+1,j − (y′
i,j ⊗ gq) · (In·k ⊗ g⊺

q ⊗ Ilog q),
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We also argue that H2 is perfectly indistinguishable from Hybrid H3. Indeed,
the only difference between the output of RTDH.Gen(hk,xi+1,ai+1; {ri,j}j∈[d]) and
RTDH.Gen(hk,0,ai+1; {ri,j}j∈[d]) is that, in the first case, the encoding hi,j is “shifted” by
r⊺i+1,j · (d′

i+1
⊺ ⊗ G) where (d′

i+1, ψ
′
i+1) ← OTE.Hash(tpk,xi+1) (see Construction 4.3). In

the second case, no shift is essentially applied. This is because, by the linearity of our OTE
hashing (see Construction 3.4 and Construction 3.6), OTE.Hash(tpk,0) outputs 0.

• Hybrid Hι
4: In this hybrid, for every i < ι, we generate

eki := (Ci,bi, {hi,j , Ei,j}j∈[d], seedi)
$← RTDH.Sim(1λ, hk)

We observe that Hybrid H3 is identical to H0
4. Moreover, by Theorem 5.2, for every ι ∈

[L − 1], we have that Hι
4 is computationally indistinguishable from Hι+1

4 . Notice that here
we are implicitly relying on the fact that, in Hybrid Hι

4, the tuple {eki}i<ι no longer contains
information about {rι,j}j∈[d].

• Hybrid H5: In this hybrid, we sample pkGSW
$← Zk×(k·log q+λ)

q .

We argue that Ht
4 is computationally indistinguishable from H5. Indeed, under LWE, the

term r⊺ ·M+e⊺ is indistinguishable from random. Here, we are implicitly relying on the fact
that, in Ht

4, the tuple {eki}i∈[L] no longer contains information about r.

• Hybrid H6: In this hybrid, we generate ct
$← Zk×(λ·k·log q)

q .

Hybrid H6 is statistically indistinguishable from H5. Indeed, now pkGSW is a uniformly
random matrix, so we can apply the leftover hash lemma to argue that ct is indistinguishable
from random.

• Hybrid H7: In this hybrid, we sample z
$← Zm

2 .

Since ct no longer contains information about the PRG seed K, we can argue that H6 is
computationally indistinguishable from H7 thanks to the security of the PRG.

Notice that in H7 all the material provided to the adversary can be computed by a simulator
with no information about x except f(x). This ends the proof of security.

6 Reverse Trapdoor Hashing for all Functions

We construct reverse TDHs for all functions. Note that, for an expressive enough class of functions,
in terms of functionality reverse TDHs are identical to the standard notion of TDH [DGI+19], since
one can always encode the universal circuit as the input, and vice-versa. However, since the encoding
key grows with the size of the input, embedding a universal circuit introduces a dependency in the
size of the function. Thus, we pay a price in succinctness, when going from TDH to reverse TDH.
On the other hand, the opposite direction (reverse TDH =⇒ TDH) has no such problem, since the
size of the hash is anyway constant. Thus, reverse TDH appears to be a more powerful abstraction.

6.1 Definition

Definition 6.1 (Reverse Trapdoor Hashing). A reverse trapdoor hashing scheme for the function
class F = (Fλ)λ∈N with input size m(λ) and output of size ℓ(λ) consists of a tuple of PPT algorithms
(Setup,Hash,Gen,Enc,Dec) with the following syntax:
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Setup(1λ): The setup algorithm is randomised and takes as input the security parameter 1λ. The
output is a hash key hk.

Hash(hk, f): The hashing algorithm is randomised takes as input a hash key hk and a function
f ∈ Fλ. The output is a digest d and hasher’s private information ρ.

Gen(hk,x): The generation algorithm is randomised and takes as input an hash key hk, an element
x ∈ Zm

2 . The output is an encoding key ek and a trapdoor td.

Enc(hk, ek, f, ρ): The encoding algorithm is deterministic and takes as input a hash key hk, an
encoding key ek and a function f ∈ Fλ and hasher’s private information ρ. The output is an
encoding e ∈ Zℓ

2.

Dec(hk, td, d): The decoding procedure is deterministic and takes as input a hash key hk, a trapdoor
td and a digest d. The output is an encoding e′ ∈ Zℓ

2.

Definition 6.2 (Correctness). We say that a reverse TDH scheme is correct if there exists a
negligible function negl(λ) such that, for every λ ∈ N, function f ∈ Fλ and x ∈ Zm

2 , it holds that:

Pr [Enc(hk, ek, f, ρ)⊕ Dec(hk, td, d) ̸= f(x)] ≤ negl(λ)

where the probability is taken over the random choice of hk
$← Setup(1λ), (d, ρ)

$← Hash(hk, f), and

(ek, td)
$← Gen(hk,x).

Definition 6.3 (Function privacy of reverse trapdoor hashing). Consider the following experiment
FuncExpA(1

λ) parametrized by an adversary A = (A0,A1):

• Sample a hash key hk
$← Setup(1λ).

• Activate the adversary (f0, f1, aux)
$← A0(1

λ).

• Sample a random bit b
$← {0, 1}.

• Compute (d, ρ)
$← Hash(hk, fb).

• Compute b′ ← A1(hk, d, aux).

• Return 1 if and only if b = b′.

We say that a reverse trapdoor hashing scheme (Setup,Hash,Gen,Enc,Dec) is function private if
for every PPT adversary A, there exists a negligible function negl(λ) such that, for every λ ∈ N,
we have that: ∣∣∣∣12 − Pr

[
FuncExpA(1

λ) = 1
]∣∣∣∣ ≤ negl(λ).

If the above property holds for every adversary (even computationally unbounded ones) we say that
the scheme is statistically function private.

Definition 6.4 (Input privacy of reverse trapdoor hashing). Consider the following experiment
InpExpA,Sim(1

λ) parametrized by an adversary A = (A0,A1) and a simulator Sim:

• Sample a hash key hk
$← Setup(1λ).

• Activate the adversary (x, aux)
$← A0(1

λ).

37



• Sample a random bit b
$← {0, 1}.

• If b = 0 compute (ek0, td0)
$← Gen(hk,x), else compute ek1

$← Sim(1λ, hk).

• Compute b′ ← A1(hk, ekb, aux).

• Return 1 if and only if b = b′.

We say that a reverse trapdoor hashing scheme (Setup,Hash,Gen,Enc,Dec) is function-private if
there exists a PPT simulator Sim, such that for every PPT adversary A, there exists a negligible
function negl(λ) such that, for every λ ∈ N, we have that:∣∣∣∣12 − Pr

[
InpExpA,Sim(1

λ) = 1
]∣∣∣∣ ≤ negl(λ).

6.2 Laconic Function Evaluation with Pre-Encoding

We now define a new variant of LFE. We ask that the encoding procedure is split into two parts:
First, the encoder sends a function-independent pre-encoding of the input, then, once the hash of
the function is revealed, it sends an input-independent post-encoding. We also require that the
function digest and the post-encoding have a particular structure: the former consists of a matrix,
the latter consists of a LWE-like sample. Finally, we ask that the output of the decoding procedure
is produced by rounding the sum between the post-encoding and a (possibly non-linear) function
of the pre-encoding. The reader may have already noticed that these properties are satisfied by
many LFE schemes studied in the literature [QWW18, HLL23, DHM+24, Wee24].

Definition 6.5 (Laconic Function Evaluation with Pre-Encoding). Let F := (Fλ)λ∈N be a family
of functions, an LFE scheme consists of a tuple of PPT algorithms (Setup,Hash,Enc,Dec) with the
following syntax:

Setup(1λ): The probabilistic setup algorithm takes as input the security parameter and outputs a
public key pk.

Hash(pk, f): The hashing algorithm takes as input a public key pk and the description of a function

f ∈ Fλ with f : {0, 1}m → {0, 1}. The output is a digest Af ∈ Zk×(k·log q)
q and hasher’s

private information ψ.

Enc(pk,Af ,x): The encoding algorithm takes as input a public key pk a hash Af , and an input
string x ∈ {0, 1}m. The algorithm is divided into two subroutines.

PreEnc(pk,x): The pre-encoding algorithm is independent of the hash: it takes as input a
public key pk, an input x (and sometimes a vector r ∈ Zk−1

q ). It returns a pre-encoding

of the input E, along with a private information s ∈ Zk
q .

PostEnc(pk,Af , s): The post-encoding algorithm does not depend on the input and returns a
post-encoding defined as:

c := s⊺ ·Af · t+ e ∈ Zp

where e
$← χ(1λ) and t is sampled over Zk·log q

2 (not necessarily at random).

The algorithm outputs an encoding (E, c, t).
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Dec(pk, (E, c, t), ψ): The decoding algorithm takes as input a public key pk, an encoding (E, c, t)
and hasher’s private information ϕ. The output is a bit

⌈Eval(E,ψ) · t+ c⌋2

where Eval is a polynomial-time deterministic algorithm that returns a vector in Zk·log q
q .

We define a particular version of correctness that applies in most scheme as in Definition 6.5

Definition 6.6 (Special correctness). Let B̃ := B̃(λ) be a function of the security parameter.
An LFE scheme with pre-encoding satisfies B̃(λ)-special correctness if, for every λ ∈ N, function
f ∈ Fλ and input x ∈ Zm

2 , we have

Eval(E,ψ) = s⊺ ·Af + r⊺ · f(x) ·G+ ẽ⊺

where G = Ik ⊗ gq, ẽ is such that ∥ẽ∥∞ ≤ B̃(λ) and the last entry of r is −1.

We recall the notion of hasher privacy.

Definition 6.7 (Hasher privacy). Consider the following experiment HashExpA(1
λ) parametrized

by an adversary A = (A0,A1):

• Sample a public key pk
$← Setup(1λ).

• Activate the adversary (f0, f1, aux)
$← A0(1

λ).

• Sample a random bit b
$← {0, 1}.

• Compute (d, ρ)
$← Hash(pk, fb).

• Compute b′ ← A1(pk, d, aux).

• Return 1 if and only if b = b′.

We say that an LFE scheme with pre-encoding (Setup,Hash,PreEnc,PostEnc,Dec) is hasher-private
if for every PPT adversary A, there exists a negligible function negl(λ) such that, for every λ ∈ N,
we have that: ∣∣∣∣12 − Pr

[
HashExpA(1

λ) = 1
]∣∣∣∣ ≤ negl(λ).

If the above property holds for every adversary (even computationally unbounded ones) we say that
the scheme is statistically hasher private.

Finally we define a slightly weaker version of the standard encoder privacy, which however
suffices for our purposes. Namely, we only require security against a distinguisher that sees the
pre-encoding information (and we do not pose any requirement on the post-encoding).

Definition 6.8 (Pre-Encoding privacy). Consider the following experiment PreEncExpA,Sim(1
λ)

parametrized by an adversary A = (A0,A1) and a simulator Sim:

• Sample a public key pk
$← Setup(1λ).

• Activate the adversary (x, aux)
$← A0(1

λ).

• Sample a random bit b
$← {0, 1}.
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• If b = 0, compute (E0, ϕ0)
$← Enc(pk,x). Otherwise, compute E1

$← Sim(1λ, pk).

• Compute b′ ← A1(pk, Eb, aux).

• Return 1 if and only if b = b′.

We say that an LFE scheme with pre-encoding (Setup,Hash,PreEnc,PostEnc,Dec) is pre-encoder
private if for every PPT adversary A, there exists a negligible function negl(λ) such that, for every
λ ∈ N, we have that: ∣∣∣∣12 − Pr

[
PreEncExpA(1

λ) = 1
]∣∣∣∣ ≤ negl(λ).

Most known LFE schemes satisfy (or can be adapted to satisfy) the above syntactical require-
ments. We summarize the state of the art in the following:

• Assuming the hardness of LWE, there exists an LFE scheme with pre-encoding for all
bounded-depth circuits [QWW18, Appendix E].

• Assuming the hardness of small-secret circular LWE, there exists an LFE scheme with pre-
encoding for all (no bound on the depth) circuits [HLL23].

• Assuming the hardness of Ring-LWE (small-secret circular Ring-LWE, resp.) there exists
an LFE scheme with pre-encoding for all bounded-depth (unbounded-depth, resp.) RAM
programs [DHM+24].

For our purposes, the details of these constructions will be irrelevant, provided that they satisfy
the above syntax. Henceforth, we just assume that such an LFE exists, with the understanding
that the exact efficiency guarantees of our construction will depend on the building block used to
instantiate it.

6.3 Construction

In the following we define our construction for a reverse TDH for functions

f : {0, 1}m → {0, 1}ℓ.

We will use the following ingredients instantiating them over the ring Zq:

• The α-correct, succinct MOLE protocol (Protocol 3.4). (Setup,Hash,Enc,HashEval,EncEval)

• An LFE scheme with pre-encoding. (Setup,Hash,PreEnc,PostEnc,Dec). Suppose that the
scheme satisfies B̃-special correctness.

• A pseudorandom generator PRG : {0, 1}λ → Zℓ
q that can be evaluated uniformly (e.g., instan-

tiated via a pseudorandom function).

For convenience, we assume that q is even. Moreover, we assume that α, B̃ ≤ q · negl(λ). The
protocol description is presented below.

Construction 6.9. Reverse Trapdoor Hash

Setup(1λ): Sample keys

pk
$← LFE.Setup(1λ), mpk

$← MOLE.Setup(1λ).

Then, sample seed
$← {0, 1}λ and output hk := (pk,mpk, seed).
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Gen(hk,x): Compute

(E, s)
$← LFE.PreEnc(pk,x), (E′, ϕ)

$← MOLE.Enc(mpk, s)

Output ek := (E,E′) and td := ϕ.

Hash(hk, f): Let u be the last element of the standard basis over Zk
q . Let (f0, . . . , fℓ−1) be the

functions that compute the i-th bit of the output of f . For every i ∈ [ℓ] compute

(Afi , ψi)
$← LFE.Hash(pk, fi).

Finally, compute

A←
(
Af0 ·G−1

(
−q
2
· u
) ∥∥∥ . . . ∥∥∥Afℓ−1

·G−1
(
−q
2
· u
))

(d, ψ)
$← MOLE.Hash(mpk,A⊺)

and output d and ρ := (ψ,ψ0, . . . , ψℓ−1).

Enc(hk, ek, f, ρ): Let u be the last element of the standard basis over Zk
q . Compute

v← MOLE.HashEval(mpk, E′, ψ).

Parse v as the vertical concatenation of (v0, . . . , vℓ−1) and let (r0, . . . , rℓ−1)← PRG(seed).
For every i ∈ [ℓ], compute

ei ←
⌈
ri + LFE.Eval(E,ψi) ·G−1(−q/2 · u)− vi

⌋
2

Finally, output e := (e0, . . . , eℓ−1).

Dec(hk, d, td): Compute
w← MOLE.EncEval(mpk, d, ϕ).

Parse w as the vertical concatenation of (w0, . . . , wℓ−1) and derive (r0, . . . , rℓ−1) ←
PRG(seed). Then, for all i ∈ [ℓ], compute

e′i ← ⌈−ri − wi⌋2

Finally, output e′ := (e′0, . . . , e
′
ℓ−1).

Correctness. For correctness, observe that for all i ∈ [ℓ] we have that:

ri + LFE.Eval(E,ψi) ·G−1(−q/2 · u)− vi︸ ︷︷ ︸
s0

+−ri − v′i︸ ︷︷ ︸
s1

= LFE.Eval(E,ψi) ·G−1(−q/2 · u)− (vi + v′i)

= (s⊺ ·Afi + r⊺ · fi(x) ·G+ ẽ⊺) ·G−1(−q/2 · u)− s⊺ ·Afi ·G
−1(−q/2 · u)− ei

= −q/2 · fi(x) · r⊺ · u+ ẽ⊺ ·G−1(−q/2 · u)− ei
= q/2 · fi(x) + êi

where êi := ẽ⊺ ·G−1(−q/2 · u) − ei and the second equality follows from the α-correctness of the
MOLE and the special correctness of the LFE. Notice that |ẽ⊺ ·G−1(−q/2 ·u)− ei| ≤ α(λ)+ B̃(λ).
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Thus we have that s0 and s1 is a noisy secret sharing of fi(x). Furthermore, it holds that

fi(x) = ⌈s0 + s1⌋2 = ⌈s0⌋2 ⊕ ⌈s1⌋2

except if s0 ∈ [q/4− |êi|, q/4+ |êi|]∪ [3q/4− |êi|, 3q/4+ |êi|]. Note that the size of the interval is at
most 4 · |êi|, which is a negligible fraction of q. Thus, by the pseudorandomness of PRG, this event
happens with negligible probability, concluding our proof of correctness.

Security. We prove security in the following.

Theorem 6.10. Suppose that MOLE is encoder private. If LFE is pre-encoding secure, Construction
6.9 is input private. Finally, if LFE is (statistically) function private, the reverse tradpoor hashing
scheme is (statistically) function private.

Proof. It is easy to see that the construction is (statistically) function private if LFE is (statistically)
function private.

As for input privacy, we proceed by a series of indistinguishable hybrids.

• Hybrid H0: This hybrid corresponds to the original game: We provide the adversary A1 with
an encoding key (E,E′) generated using Gen(hk,x).

• Hybrid H1: In this hybrid, we generate E′ using MOLE.Sim(1λ,mpk). The rest remains as in
the previous hybrid.

Hybrid H0 and Hybrid H1 are computationally indistinguishable thanks to the encoder pri-
vacy of the MOLE.

• Hybrid H2: In this hybrid, we generate E using LFE.Sim(1λ, pk). The rest remains as in the
previous hybrid.

Hybrid H1 and H2 are indistinguishable under the input privacy of LFE.

Notice that in Hybrid H2, the pair (E,E
′) provided to the adversary contains no information about

x. From this, we can easily derive a simulator. This ends the proof.

7 A Counterexample for Adaptive LWE

We present a counterexample to a conjecture from [QWW18]. The conjecture (adaptive LWE)
says that the probability of that any polynomial-time attacker wins the following experiment is
negligibly close to 1/2.

• The challenger samples random matrices {Ai
$← Zn×m

q }i∈[k] and sends them to the attacker.

• The attacker chooses an x ∈ {0, 1}k−1 and sends it to the challenger. Let x̂ := (x, 0).

• The challenger samples an s
$← Zn

q and a bit b
$← {0, 1}.

• If b = 0 it computes:
{bi := s⊺(Ai − x̂i ·G) + e⊺i }i∈[k]

where ei
$← χ(λ)m.

• If b = 1 it samples {bi
$← Zm

q }i∈[k].
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• The attacker wins if, given {bi}i∈[k], it correctly guesses b.

We show that, if k is allowed to grow independently of the LWE parameters (n, q, χ), the assumption
is false. This roughly corresponds to the optimistic parameter settings proposed in [QWW18]. We
sketch the attack in the following. We assume for convenience that q is a power of 2, but the attack
can be adapted to other moduli.

Let A := (A0 ∥ . . . ∥Ak−1). By the homomorphic properties of the lattice encodings, we know
that there exists a matrix H with ∥H∥∞ = 1 such that, for any matrix M ∈ Zn×n

q , if x := Bits(M),
we have that:

(s⊺(A− x⊗G) + e⊺) ·H = s⊺(A ·H−M) + e⊺ ·H ≈ s⊺(A ·H−M)

since ∥e⊺H∥∞ ≈ 0. To recover the i-th most significant bit of (each component of) s, it is sufficient
to set Mi := A·H−2i ·In and xi := Bits(Mi). Then compute the (component-wise) most significant
bit of:

(s⊺(A− xi ⊗G) + e⊺) ·H ≈ s⊺(A ·H−Mi) = 2i · s⊺.

We can then recover the entire secret key s, by setting the input x to be the concatenation of
(x1, . . . ,xlog q). This shows that the conjecture is false if k is allowed to be arbitrarily bigger than n.
Notice in the provable parameter setting (where the encodings are secure under the subexponential
hardness of LWE), our attack fails as the bound on k is too small to encode Mi := A ·H− 2i · In.
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[DGI+19] Nico Döttling, Sanjam Garg, Yuval Ishai, Giulio Malavolta, Tamer Mour, and Rafail
Ostrovsky. Trapdoor hash functions and their applications. In Alexandra Boldyreva
and Daniele Micciancio, editors, Advances in Cryptology – CRYPTO 2019, Part III,
volume 11694 of Lecture Notes in Computer Science, pages 3–32, Santa Barbara, CA,
USA, August 18–22, 2019. Springer, Cham, Switzerland.

[DHM+24] Fangqi Dong, Zihan Hao, Ethan Mook, Hoeteck Wee, and Daniel Wichs. Laconic func-
tion evaluation and ABE for RAMs from (ring-)LWE. In Leonid Reyzin and Douglas
Stebila, editors, Advances in Cryptology – CRYPTO 2024, Part III, volume 14922 of
Lecture Notes in Computer Science, pages 107–142, Santa Barbara, CA, USA, Au-
gust 18–22, 2024. Springer, Cham, Switzerland.

[DHRW16] Yevgeniy Dodis, Shai Halevi, Ron D. Rothblum, and Daniel Wichs. Spooky encryption
and its applications. In Matthew Robshaw and Jonathan Katz, editors, Advances in
Cryptology – CRYPTO 2016, Part III, volume 9816 of Lecture Notes in Computer
Science, pages 93–122, Santa Barbara, CA, USA, August 14–18, 2016. Springer Berlin
Heidelberg, Germany.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learn-
ing with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Ran
Canetti and Juan A. Garay, editors, Advances in Cryptology – CRYPTO 2013, Part I,
volume 8042 of Lecture Notes in Computer Science, pages 75–92, Santa Barbara, CA,
USA, August 18–22, 2013. Springer Berlin Heidelberg, Germany.

[HLL23] Yao-Ching Hsieh, Huijia Lin, and Ji Luo. Attribute-based encryption for circuits of un-
bounded depth from lattices. In 64th Annual Symposium on Foundations of Computer
Science, pages 415–434, Santa Cruz, CA, USA, November 6–9, 2023. IEEE Computer
Society Press.

[ILL89] Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random generation
from one-way functions (extended abstracts). In 21st Annual ACM Symposium on
Theory of Computing, pages 12–24, Seattle, WA, USA, May 15–17, 1989. ACM Press.

[OSY21] Claudio Orlandi, Peter Scholl, and Sophia Yakoubov. The rise of paillier: Homomorphic
secret sharing and public-key silent OT. In Anne Canteaut and François-Xavier Stan-
daert, editors, Advances in Cryptology – EUROCRYPT 2021, Part I, volume 12696 of
Lecture Notes in Computer Science, pages 678–708, Zagreb, Croatia, October 17–21,
2021. Springer, Cham, Switzerland.

[QWW18] Willy Quach, Hoeteck Wee, and Daniel Wichs. Laconic function evaluation and applica-
tions. In Mikkel Thorup, editor, 59th Annual Symposium on Foundations of Computer
Science, pages 859–870, Paris, France, October 7–9, 2018. IEEE Computer Society
Press.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In Harold N. Gabow and Ronald Fagin, editors, 37th Annual ACM Symposium on
Theory of Computing, pages 84–93, Baltimore, MA, USA, May 22–24, 2005. ACM
Press.

[RS21] Lawrence Roy and Jaspal Singh. Large message homomorphic secret sharing from DCR
and applications. In Tal Malkin and Chris Peikert, editors, Advances in Cryptology –

45



CRYPTO 2021, Part III, volume 12827 of Lecture Notes in Computer Science, pages
687–717, Virtual Event, August 16–20, 2021. Springer, Cham, Switzerland.

[Wee24] Hoeteck Wee. Circuit ABE with poly(depth, λ)-sized ciphertexts and keys from lat-
tices. In Leonid Reyzin and Douglas Stebila, editors, Advances in Cryptology –
CRYPTO 2024, Part III, volume 14922 of Lecture Notes in Computer Science, pages
178–209, Santa Barbara, CA, USA, August 18–22, 2024. Springer, Cham, Switzerland.

46


	Introduction
	Our Results
	Technical Outline
	Other Applications
	Concurrent Work

	Preliminaries
	Lattices and Learning with Errors
	Laconic Function Evaluation
	Fully Homomorphic Encryption à la GSW

	Non-Interactive Oblivious Tensor Evaluation
	Definitions
	Half-Succinct NI-OTE from LWE
	Bootstrapping to Fully-Succinct NI-OTE
	From Succinct NI-OTE to Succinct NI-MOLE

	Adaptive Lattice Encodings
	Homomorphic Operations
	Compressing Lattice Encodings

	Rate-1 Adaptive LFE for all Bounded-Depth Functions
	Almost Optimal, Weak Reverse Trapdoor Hashing for RMS
	Rate-1 Adaptive LFE for all Bounded-Depth Functions

	Reverse Trapdoor Hashing for all Functions
	Definition
	Laconic Function Evaluation with Pre-Encoding
	Construction

	A Counterexample for Adaptive LWE

