
Key-Homomorphic Computations for RAM:
Fully Succinct Randomised Encodings and More

Damiano Abram
Bocconi University

Giulio Malavolta
Bocconi University

Lawrence Roy
Aarhus University

Abstract

We propose a new method to construct a public-key encryption scheme, where one
can homomorphically transform a ciphertext encrypted under a key x into a ciphertext
under (P, P (x)), for any polynomial-time RAM program P : x 7→ y with runtime T
and memory L. Combined with other lattice techniques, this allows us to construct:

• Succinct-randomised encodings from RAM programs with encoder complexity
(|x|+ |y|) · poly(log T, logL) and rate-1 encodings.

• Laconic function evaluation for RAM programs, with encoder runtime bounded
by (|x|+ |y|) · poly(log T, logL) and rate-1 encodings.

• Key-policy attribute-based encryption for RAM programs, with ciphertexts of
size O(T ). The same scheme can be converted to the register setting, obtaining
linear CRS size in the number of parties.

All of our schemes rely on the hardness of the decomposed learning with errors (LWE)
problem, along with other standard computational assumptions on lattices. The de-
composed LWE problem can be interpreted as postulating the circular-security of a
natural lattice-based public-key encryption scheme. To gain confidence in the assump-
tion, we show that it is implied by the hardness of the succinct LWE problem of Wee
(CRYPTO’24).

Contents

1 Introduction 2

1.1 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 The Decomposed LWE Problem . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Technical Overview 6

2.1 A Primer on Succinct Oblivious Tensor Evaluation . . . . . . . . . . . . . . 7

2.2 Compressing Lattice Encodings . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1



3 Preliminaries 15

3.1 Lattices and Hard Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Key-Homomorphic Encodings à la BGG+ and HLL . . . . . . . . . . . . . . 19

3.3 Information Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Garbled Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 The Decomposed LWE Problem 22

4.1 Variants of Decomposed LWE . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Rate-1 Lattice Encodings for RAM Programs 27

5.1 Reading Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 Writing Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3 Homomorphic Evaluation of RAM . . . . . . . . . . . . . . . . . . . . . . . . 36

6 Rate-1 AB-LFE for RAM Programs 38

6.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.2 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.3 Fully-Secure LFE for RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7 Succinct Randomised Encodings 43

7.1 Witness Encryption for P . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.2 Construction of Witness Encryption for P . . . . . . . . . . . . . . . . . . . 44

7.3 Construction of SRE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

8 Optimal Bounded-Time ABE for RAM 48

8.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

8.2 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

9 Rate-1 Register ABE from Rate-1 ABE 52

9.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

9.2 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

1 Introduction

The quest for general-purpose cryptographic objects requires one to select a universal model
of computation, in order to encompass all computable functions. By far the most popular
choice in the cryptographic literature, is to model the computation as a Boolean/arithmetic
circuit. Despite the theoretical appeal, this choice has limitations: Circuits cannot run

2



their own code, they always have to read the entire input, and they always incur in the
worst-case runtime. As a canonical example, binary search cannot be implemented by a
circuit in time better than a linear scan. This concern prompted [GKP+13a] to ask whether
one can go beyond the circuit model: Is it possible to compute Turing machines, or even
RAM programs, on encrypted/authenticated data? In the last decade, important progress
was made on this front, with the development of new techniques for fully-homomorphic en-
cryption [HHWW19, LMW23], laconic-function-evaluation [DHMW24, DHM+24], attribute-
based encryption [CW25], functional encryption [ACFQ22], randomised encodings [BGL+15,
CHJV15], and program obfuscation [BCG+18, KLW15], to mention a few.

Although the feasibility of this paradigm has been largely established, many important
cryptographic primitives, such as attribute-based encryption (ABE) for RAM, rely on tech-
niques from program obfuscation in order to achieve the desired efficiency. Besides the loss
in concrete efficiency, the use of very general-purpose cryptographic tools comes at a cost:
Known constructions of program obfuscation [JLS21, JLS22] require the hardness of a com-
bination of cryptographic problems, whereas the security of constructions based exclusively
on lattices [WW21, GP21, BDGM22] is still not well-understood. To make things worse, the
schemes in [JLS21, JLS22] are trivially broken by a quantum algorithm.

To illustrate the contrast, consider the case of ABE for circuits : The celebrated work of
Boneh et al. [BGG+14] proposed an elegant lattice-based scheme based on key-homomorphic
public-key encryption. Given a ciphertext encrypted under x, there is a publicly-computable
algorithm to transform it into a ciphertext encrypted under (C,C(x)), for any circuit C.
Omitting details, one can then issue a functional key for C, by calculating the secret key
corresponding to (C, 0),1 so that decryption is only possible if C(x) = 0. Besides the afore-
mentioned application, this technique for computing on encrypted/authenticated data has
been extremely influential, leading to a number of significant results and a better conceptual
understanding of the cryptographic capabilities of lattices.

Given the elegance of the scheme from [BGG+14] and the lack of lattice-based schemes
from well-understood computational assumptions, we view the problem of computing RAM
programs over encrypted/authenticated data as an important gap in our understanding.
The objective of this work is to place homomorphic RAM computation on similar footing as
circuit-based schemes.

1.1 Our Results

Our main technical contribution is a technique for constructing key-homomorphic public-key
encryption for RAM programs. We design a public procedure that allows anyone to turn a
ciphertext encrypted under x, into a ciphertext encrypted under (P, P (x)). Importantly, the
efficiency of the evaluation procedure only depends on the runtime of the RAM computation
of P . Our ciphertexts are essentially identical to those of [BGG+14], and we view our work
as its natural RAM analogue. We prove the security of our scheme against a new lattice
assumption, that we refer to as decomposed LWE. This assumption can be interpreted as

1In line with the literature on lattice-based cryptography, we adopt the convention that an accepting
circuit/program on input x returns 0.

3



postulating the circular security of a natural LWE-based public-key encryption scheme, and
we show that it is at least as hard as the succinct LWE assumption [Wee24]. We discuss our
assumption in more details in Section 1.2.

Our work directly improves upon the recent work of Dong et al. [DHM+24], that achieved
similar results in an amortised sense, i.e., in a model where a pre-processing of the program
(proportional to its circuit size) is allowed. Our new technique allows us to make progress
on several open problems in the literature, which we summarise below.

Succinct Randomised Encodings. Succinct randomised encodings (SRE) [BGL+15,
CHJV15, BCG+18] allow one to encode a program P and an input x into a different program
P̃x, such that anyone can recover y := P (x), and nothing more. The crucial property of an
SRE scheme is that the encoder’s computation should be sublinear, ideally poly-logarithmic,
in the time needed to compute P . We show how to use our homomorphic evaluation tech-
nique to construct SRE for RAM programs with runtime T and memory L with essentially
optimal parameters.

Theorem 1.1 (Informal). Assuming the hardness of the Ring-LWE and the Decomposed-
LWE problem, there exists an SRE scheme for RAM programs with encoder complexity (|x|+
|y|) · poly(log T, logL).

We also consider a weakening of the above notion, where the program P is public, and the
encoding also takes as input a message µ. Security requires that µ is computationally hidden
if P (x) ̸= 0. One can think of this primitive as an analogue of witness encryption [GGSW13],
but for computations in P. In this context, we obtain the same efficiency, without the need
to invoke the hardness of the Ring-LWE problem.

Our construction matches the efficiency of obfuscation-based SRE schemes [BCG+18,
KLW15, AL18, GS18], and improves upon recent lattice-based SRE schemes based on a
similar template, with encoding complexity

√
T · O(L) [AMZ24], and T ε · O(L) [BG25], for

any constant ε > 0.

Laconic Function Evaluation. A laconic function evaluation (LFE) [QWW18] allows a
server to compress a function f : X → Y into a small digest h, which can be then used by an
encryptor to encode an input x. The server can then recover y := f(x) from the encoding,
without learning anything else about the input. Once again, the crucial property here is
that the runtime of the encoder should be sublinear (ideally independent) of f . We present
a new LFE scheme for RAM programs P with runtime T and memory L with the following
efficiency.

Theorem 1.2 (Informal). Assuming the hardness of the Ring-LWE and the Decomposed-
LWE problem, there exists a selectively secure LFE scheme for RAM programs with encoder
complexity T · (|x|+ |y|) · poly(logL) and ciphertexts of size T · poly(logL) + |x|+ |y|.

Additionally assuming a circular variant of Decomposed-LWE (where we additionally
provide the distinguisher with a fully-homomorphic encryption of its own secret key), we
can rely on the bootstrapping technique from [HLL23], and reduce the encoder complexity

4



to (|x|+ |y|) ·poly(log T, logM). On the other hand, for the weaker notion of attribute-based
LFE, we can get away without relying on the Ring-LWE assumption. All of our schemes
satisfy the standard notion of selective security (in the choice of the input).

This improves upon the recent work of [DHM+24] that achieved similar parameters, but
required a program-dependent pre-processing proportional to its circuit size, whereas no
preprocessing is needed in our scheme. Furthermore, our scheme is rate-1 in the input,
and our CRS does not set an a-priori bound on the input size (i.e., our scheme works for
unbounded inputs).

Attribute-Based Encryption. Attribute-based encryption (ABE) [SW05, GPSW06] con-
sists of a system, where a key authority publishes a master public key and is in charge of
issuing functional keys associated with a function f . Anyone can use the master public-key
to encrypt a message µ under an attribute x, and the holder of the functional key for f can
recover µ only if f(x) = 0. Our techniques imply almost immediately a construction of ABE
for RAM programs with the following parameters.

Theorem 1.3 (Informal). Assuming the hardness of the Decomposed-LWE problem, there
exists a selectively-secure ABE scheme for RAM program with where the sizes of the common
reference string, the secret keys, and the ciphertexts are bounded by O(T ).

Using a standard transformation [AY20], this implies the existence of a broadcast en-
cryption scheme from the same assumption, with essentially optimal parameters. When
restricted to circuits, this matches a recent result of Wee [Wee25], except that we rely on a
potentially weaker assumption. By additionally assuming of a variant of the (public-coin)
evasive LWE heuristic introduced in [HLL23], we can improve the above bound to O(1) –
ignoring polynomial factors in the security parameter. We summarise the comparison with
prior works on ABE in Table 1.

Finally, we also consider the problem of register ABE [HLWW23], where there is no
trusted authority, and users sample their own public/secret key. We show a method to
convert from our ABE scheme into a registered one, at the cost of growing the common
reference string linearly in the number of users. As the ABE from which it derives, the
construction has ciphertext size O(T ) (this can be made O(1) by relying on the public-coin
evasive LWE heuristic), however, it only achieves very selective security: the attribute and
the secret keys of the corrupted parties (along with the relative RAM programs) must all be
independent of the CRS. Previous works managed to build register ABE for general policies
(in particular, bounded-depth Boolean circuits) either using witness encryption [HLWW23]
or under succinct LWE in the random oracle model [CHW25] (at the cost of a quadratic
dependency of the CRS in the number of users).

1.2 The Decomposed LWE Problem

Let us now state our new assumption explicitly. The decomposed LWE assumption states
that the following distributions are computationally indistinguishable:{

Ai,Bj, s
⊺ · (Ai ·Bj + δi,j ·G) + e⊺i,j

}
i,j∈[t] ≈c

{
Ai,Bj,u

⊺
i,j

}
i,j∈[t]

5



where G is the gadget matrix, ei,j and Bj are sampled from a low-norm Gaussian, and
the rest of the variables are sampled uniformly. First, we observe that the assumption
has indeed a circularity characterisation: If we were to omit the terms δi,j · G from the
equation, then the assumption would be equivalent to the standard LWE problem, by a
simple smudging argument. In this sense, the decomposed LWE assumption can also be
interpreted as postulating that an encryption scheme (that encodes copies of the message
in the “diagonal terms”) remains secure, even when encrypting its own secret key. This is
similar in spirit to the assumption needed to prove security of fully-homomorphic encryption
schemes [Gen09], although here the base scheme is somewhat different.

As further evidence that this circular variant of LWE is hard, we can show that this
assumption is implied by the t-succinct LWE problem [Wee24]. Recall that t-succinct LWE
postulates that:

T,M,A, s⊺ ·M+ e⊺ ≈c T,M,A,u⊺

is computationally close to uniform, even in the presence of a trapdoor T sampled from a
low-norm distribution conditioned on satisfying:[

It ⊗M A
]
·T = It ⊗G.

Now, parse:

A =

 A0
...

At−1

 and T =


T0,0 T0,1 · · · T0,t−1
...

...
. . .

...
Tt−1,0 Tt−1,1 · · · Tt−1,t−1

−B0 −B1 · · · −Bt−1

 .

To see the implication, it suffices to observe that, on input an LWE sample s⊺M + e⊺, we
can derive all of the Decomposed LWE elements by computing:

(s⊺M+ e⊺) ·Ti,j + ẽ⊺i,j = s⊺G · δi,j − s⊺AiBj + e ·Ti,j + ẽ⊺i,j

≈s s
⊺G · δi,j − s⊺AiBj + ẽ⊺i,j

which is statistically close to the proper distribution. In other words, decomposed LWE
is nothing but t-succinct LWE, except that we provide the distinguisher with the sample
directly multiplied by each block of the trapdoor. This is something that the distinguisher
can also compute on its own, given the full trapdoor T, and therefore decomposed LWE is
implied by t-succinct LWE.

On the other hand, the reverse implication seems unlikely, since it appears hard to recover
T given a decomposed LWE sample. In fact, unlike succinct LWE, decomposed LWE has an
unstructured CRS. One can therefore conjecture that decomposed LWE is a strictly harder
problem than t-succinct LWE, although at present we can only prove one direction. For
more discussion on decomposed LWE, we refer to Section 4.

2 Technical Overview

We give an overview of our techniques, assuming familiarity with standard linear algebra
and lattice notation. In this discussion, we keep things deliberately informal, and we refer

6



Model CRS Key Ciphertext Assumption
[GVW13] Circuits |x| · poly(D) |C| · poly(D) |x| · poly(D) LWE
[BGG+14] Circuits |x| · poly(D) poly(D) |x| · poly(D) LWE
[BV16] Circuits poly(D) |x|+ poly(D) |x| · poly(D) LWE
[CW23] Circuits |x| · poly(D) O(1) |x| · poly(D) LWE
[Wee24] Circuits |x|2 · poly(D) poly(D) poly(D) SLWE

[Wee24] Circuits |x| 23 · poly(D) poly(D) |x| 23 · poly(D) SLWE
[Wee25] Circuits poly(D) poly(D) poly(D) SLWE
[HLL23] Circuits O(|x|) O(1) O(|x|) ELWE∗

[AKY24b] Circuits O(1) O(1) O(1) ELWE†

[AKY24a] TM O(1) O(|M |2) O(T )2 ELWE† + TLWE∗

[AKY24b] TM O(1) O(|M |) O(T ) ELWE†

[CW25] TM O(1) O(1) O(T ) ELWE∗

[DHM+24] RAM |x| · poly(T ) O(T ) |x| · poly(T ) LWE
This work RAM O(T ) O(T ) O(T ) DLWE
This work RAM O(1) O(1) O(1) ELWE∗

Table 1: Comparison among various KP-ABE schemes in terms of CRS size, key size and
ciphertext size. We use D to denote the circuit depth, x to denote the attribute and C for
the circuit describing the policy. For RAM programs and Turing machines, we denote the
running time by T . We use M to denote the description of the Turing machine associated
with the policy. We use SLWE to denote succinct LWE [Wee24], TLWE to denote tensor
LWE [Wee22], ELWE to denote public-coin evasive LWE [Wee22], ELWE† to denote private-
coin evasive LWE [VWW22, BÜW24] DLWE to denote decomposed LWE (this work). All
terms hide poly(λ) multiplicative factors.

the reader to the technical sections for precise statements.

2.1 A Primer on Succinct Oblivious Tensor Evaluation

Our starting point is a recent construction of succinct oblivious tensor evaluation protocol
(OTE) [AMR25], which we recall in the following. A succinct OTE is a one-message primitive
between Alice and Bob. Alice holds a long input vector x ∈ ZL

q , whereas Bob holds a shorter
secret vector y ∈ Zk

q ; their goal is to derive an additive secret-sharing of the tensor product
x⊗ y while preserving the privacy of y (but not necessarily that of x), using a single round
of simultaneous interaction. In [AMR25] it is shown how to construct succinct OTE with
communication complexity k · poly(λ, logL), CRS size is poly(λ, logL) and, importantly,
where the parties are essentially required to perform only linear operations. Given that we
are going to use some structural properties of their scheme, we present a somewhat detailed
description below. Throughout this discussion, we shall think of the string x to be low-norm,
e.g., it consists of bits.

7



Succinct OTE: Alice’s Digest. Let n := k · log q. The CRS consists of two matrices:

A =
[
A0, . . . At−1

]
∈ Zk×(t·m)

q B =
[
B0, . . . Bt−1

]
∈ Zm×(t·n)

where A is sampled uniformly, whereas B is sampled from a low-norm Gaussian distribution.
Given this CRS, then we can define a natural hash function HB mapping vectors v ∈ Zt

q

intro shorter vectors as:

HB(v) = vec(v0 ·B0 + · · ·+ vt−1 ·Bt−1) = vec(B · (v ⊗ In))

where vec(·) is the vectorisation of a matrix. For an appropriate choice of parameters, this
function is compressing with factor 2. Alice’s hash function is then defined to be the binary
tree of depth r := logL. That is, for every level i ∈ [r], let xi,j ∈ Zt

q be the input to the j-th
execution of the basic compressing function HB on that level. Define:

di,j := HB(xi,j) = vec(B · (xi,j ⊗ It)) = vec(Xi,j)

and di = (di,j)j∈[2r−i−1]. Alice’s digest simply consist of the root of the tree. Since B is a
low-norm matrix, we can assume that xi,j remains low-norm as i increases.

Succinct OTE: Bob’s Message. On the other front, Bob samples r random vectors
s1, . . . , sr

$← Zk
q and, for every i ∈ [r] and h ∈ [t], he sends

z
(i)
h := s⊺i+1 ·Ah ·B+ e

(i)
h

⊺ + u⊺
h ⊗ s⊺i ⊗ g⊺

where g is the one-dimensional gadget, e
(i)
h is sampled from a low-norm Gaussian distribution

and s0 := y. First of all, let us notice that, under the standard LWE assumption, all of these
samples look random, so indeed y is computationally hidden. Furthermore, the total size of
Bob’s message is logarithmic in L. So what is left to be shown is how Alice and Bob can
obtain an additive secret sharing of x⊗ y, given the messages that they exchange.

Succinct OT: The Core Idea. Let us start by observing that Alice and Bob hold a
trivial additive secret sharing of d⊗ sr ⊗ g: Indeed Bob knows both d and sr, whereas g is
a fixed vector, so we can set Alice’s share to be zero.

We then proceed inductively, assuming that Alice and Bob hold an additive secret sharing
of di,j ⊗ si ⊗ g, for every j ∈ [2r−i−1], we describe how they can derive a (noisy) additive
secret-sharing of di−1,j⊗si−1⊗g for every j ∈ [2r−i]. In other words, we show how to “climb
one level up” the Merkle tree. A pictorial description of this procedure is shown in Fig. 1.
Observe that Alice can compute:

c⊺i,j,h = z⊺h · (xi,j ⊗ It)

= s⊺ ·Ah ·B · (xi,j ⊗ It) + e⊺h · (xi,j ⊗ It) + xi,j,h · (s⊺i−1 ⊗ g⊺)

= s⊺ ·Ah ·Xi,j︸ ︷︷ ︸
matrix

+ e⊺h · (xi,j ⊗ It)︸ ︷︷ ︸
noise

+xi,j,h · (s⊺i−1 ⊗ g⊺)

8



Figure 1: Depiction of the tree climbing procedure. Alice and Bob derive their shares of
x⊗ y by expanding the initial secret-sharing of d⊗ sr ⊗ g. Notice that Bob’s computation
is linear, whereas Alice relies on z(i) (denoting the concatenation of z

(i)
0 , . . . , z

(i)
t−1) to climb

from the i-th level to the above one.

where xi,j,h denotes the h-th entry of xi,j. In other words, we can think of the above term
as an LWE encryption of xi,j,h · (s⊺i−1⊗ g⊺). Next, since s⊺ ·Ah ·Xi,j is a bilinear function of
s and di,j, there exists a binary matrix Lin(Ah) such that:

(d⊺
i,j ⊗ s⊺i ⊗ g⊺) · Lin(Ah) = s⊺i ·Ah ·Xi,j.

The rest is linear algebra: By multiplying the (noisy) shares of di,j ⊗ si⊗g by the low-norm
matrix −Lin(Ah), Alice and Bob derive a (noisy) secret-sharing of −s⊺i ·Ah ·Xi,j. Once Alice
adds ci,j,h to her share, the parties obtain a noisy secret-sharing of xi,j,h · (si−1 ⊗ g). By
rearranging all of these, the parties obtain a noisy additive secret-sharing of di−1,j⊗ si−1⊗g
for every j ∈ [2r−i]. The bottom of the recursion yields a (noisy) additive secret sharing of
x⊗ y, as desired.

2.2 Compressing Lattice Encodings

Our main idea is to connect the above OTE procedure with the lattice encoding scheme of
[BGG+14], to create a compressed version of it. A BGG+ encoding of a vector x with respect
to the public matrix M and secret s consists of:

c⊺ := s⊺ · (M+ x⊺ ⊗G) + e⊺

where e is a noise term. Notice that if x is independent ofM, the vector c looks random under
LWE, so s remains secret. These encodings are extremely useful in cryptography [BGG+14,
GVW15, QWW18, LV22] due to their key-homomorphic properties: Given knowledge of x
(but not of s) and any circuit C, we can transform c into an encoding of C(x) under the
same secret s. Specifically, we can derive:

c⊺C := s⊺ · (MC + C(x)⊺ ⊗G) + e⊺C ,

9



here MC is a public matrix derived from just M and C, and eC is a noise term. As a
first step, we will use the above OTE protocol to compress such encodings to constant size,
in particular independent of the size of the input |x| = L. The idea is simple: Instead of
directly encoding x, we encode its OTE digest d. Thanks to the linear properties of the OTE
protocol, given knowledge of x, we will manage to expand the compressed encoding h into a
standard BGG+ encoding of x. At that point, we can perform all the desired homomorphic
operations. Finally, we can re-compress the result to obtain a compressed encoding of the
updated state.

Compressed Key-Homomorphic Encodings. Putting the above plan into action, we
see that a BGG+ encoding of d under the secret s and key M consists of:

h⊺ = s⊺ · (M+ d⊺ ⊗G) + e⊺

= s⊺ · (M+ d⊺ ⊗ Ik ⊗ g⊺) + e⊺

= s⊺ ·M+ d⊺ ⊗ s⊺ ⊗ g⊺ + e⊺.

In other words, h can be viewed as an encryption of d⊺ ⊗ s⊺ ⊗ g⊺. If sr = s, this coincides
with Bob’s share at the beginning of the tree climb. We recall that in order to climb the
tree, Bob just needs to perform linear operations on his share, and all of these are described
by low-norm matrices. Thus, thanks to the linear properties of these ciphertexts, we can
easily derive an encryption of Bob’s share of the tree top.

Now, imagine that we augment the compressed encodings with Bob’s OTE message.
Since x is public, we can compute Alice’s share of the tree top in the plain, and add it to
the encryption of Bob’s share. In this way, we obtain:

c⊺ = s⊺ ·M+ x⊺ ⊗ s⊺0 ⊗ g⊺ + e⊺

where M depends only on M and the CRS of the OTE, and e has low norm. This is almost
what we want, except that we have an encoding under a different secret s0. What we can
do however, is simply set s0 := s so that c becomes a proper BGG+ encoding of x.

The savvy reader might notice that this introduces a circularity: The vectors (z
(i)
h )h∈[t]

protect the privacy of si under that of si+1. That creates a chain of dependencies where the
privacy of s0 = s is protected under that of sr = s. This is exactly where the decomposed LWE
assumption (Section 1.2) enters into the picture, allowing us to prove the pseudorandomness
of our compressed encodings.

Key-Homomorphic Computations for RAM. Now that we have shown how to expand
BGG+ encodings back to their original form, it is clear that we can do key-homomorphic
computation as in the original scheme. It turns out that we can do even better: Note that
deriving an encoding for a single entry of x, let’s say xℓ, does not require us to re-expand the
whole vector. We just need to perform poly(λ, logL) computations, climbing up the branch
of the tree that leads to the ℓ-th leaf. Even more importantly, for this operation, we do not
need to know the whole vector x, but just the co-path towards the ℓ-th leaf.

10



Imagine we have a BGG+ encoding of x′
ℓ and we want to substitute xℓ with x′

ℓ in our
compressed encoding h. Even this computation can be performed in time poly(λ, logL).
This because our hash function is Zq-linear: The updated hash will be d′ := d+Hash(y ·uℓ)
where y := x′

ℓ − xℓ and uℓ denotes the ℓ-th element in the standard basis of ZL
q . It is easy

to see that computing Hash(y ·uℓ) requires only poly(λ, logL) computations. Indeed, all the
elements in the co-path to the ℓ-th leaf will be zeros. (More generally, we can see that any
vector x can be hashed in time linear in its Hamming weight.) In conclusion, to perform the
update, we just need to retrieve a BGG+ encoding of xℓ as we have described above. Then,
it is just a matter of applying the regular homomorphic operations (for circuits) to obtain a
BGG+ encoding of d′.

The two procedures we have just described allow us to homomorphically perform reads
and writes on the RAM tape x with poly(λ, logL) complexity. Together with the regular
BGG+ homomorphic properties, this completes the description of an algorithm to homo-
morphically evaluate a RAM program P on x for T steps in time T · poly(λ, logL), where
L denotes the tape size. In other words, we have obtained compressed, key-homomorphic
encodings for RAM.

We can summarise this fact in the following new key equation: There exist low-norm
matrices HP,T,x and KP,T , computable in time T · poly(λ, logL) and space poly(λ, logL),
such that: [

M+ d⊺ ⊗G, A0 ·B, . . . At−1 ·B
]
·HP,T,x = MP,T + d′⊺ ⊗G,

where MP,T := M ·KP,T , d = Hash(x) and d′ = Hash(P T (x)). In particular, KP,T will be
derived from M, the public parameters, the RAM program P and T . On the other hand,
HP,T,x will also depend on x. Above, P T (x) denotes the tape after the execution of T steps
of P on input x. For more discussion on our key-homomorphic encodings for RAM, we refer
to Section 5.

2.3 Applications

We now describe how our newly constructed key-homomorphic encodings are useful to build
well-known cryptographic primitives.

Laconic Function Evaluation. The key-homomorphic encodings for RAM directly yield
and AB-LFE and LFE for RAM, following the same approach as [QWW18]. Moreover, since
the encodings are compressed, the constructions will have rate-1 in the input x. In order to
prevent the noise in the encodings from growing proportionally to T (and therefore avoid any
cap on the running time of the computation), we can rely on the bootstrapping technique
of [HLL23]. This, however, requires us to rely on a circular version of decomposed LWE,
where we additionally provide the adversary with a GSW encryption [GSW13] of the secret
s using s itself as a secret key. Finally, we highlight that we can make our LFE rate-1 in the
output, following the approach of [AMR25].

We expand on the properties of our AB-LFE, given that this will be useful for our next
application. The scheme allows the server to generate a digest hP,T for T steps of the RAM

11



program P in time T · poly(λ, logL) and space poly(λ, logL). Here, L denotes the memory
complexity of P . Given hP,T , the client can generate an encryption of its message µ using
an attribute x. This consists of the pair (x, E), where the compressed encoding E can be
generated by a circuit of size poly(λ, logL), on input the AB-LFE digest hP,T , the message µ
and an OTE hash of x. We recall that the OTE hash can be derived in time |x|·poly(λ, logL).
Upon decryption, the server recovers µ only if P T (x) satisfies some condition specified by
the client (typically, if the k-th element on the tape coincides with some target value α).
We can easily modify our AB-LFE to multi-bit messages µ, so that decryption releases the
substring of µ corresponding to P T (x): For every j, the server learns the (2j)-th bit of µ or
the (2j + 1)-th one, depending on whether the j-th element in P T (x) is 0 or 1. For more
discussion on RAM AB-LFE and LFE, we refer to Section 6.

Witness Encryption for P. A witness encryption for P is a “privacy-free” version of
succinct randomised encodings. In more details, it corresponds to a primitive in which a
message µ is encrypted under a RAM program P , a runtime T and an input tape x. For
every j, decryption will recover the (2j)-th bit in µ or the (2j + 1)-th one depending on
whether the j-th element of P T (x) is 0 or not. Without any further restrictions, building
this primitive would be trivial: The encryptor just evaluates P T (x) and sends the substring
of µ corresponding to the result. This solution would, however, require the encryptor to run
in time proportional to T . In the scheme we are going to present, encryption will instead
run in time poly(λ, log T, logL), where L denotes the space complexity of P .

Our initial observation is that our AB-LFE scheme for RAM allows us to reduce the
problem to one in which the description size and the space complexity of P are both upper-
bounded by a fixed polynomial in λ: Our ciphertext could consist of a garbled circuit C̃ that,
on input the AB-LFE digest h of the universal RAM, outputs an AB-LFE encryption of µ.
Specifically, C̃ will generate a compressed encoding using h as AB-LFE digest and (x, P ) as
attribute (we hardcode the corresponding OTE hash). The AB-LFE decryption would thus
produce the substring of µ corresponding to P T (x).

Notice that garbling C̃ takes time poly(λ, logL, log T ), whereas the generation of h could
be performed using a RAM program D (with poly(λ) description size) in time T0 = T ·
poly(λ, logL) and space poly(λ, logL). This suggest an outline to speed-up the encryption
time, following the example of [GKP+13b]: Instead of directly providing the labels of C̃
associated with h, we encrypt all input labels using witness encryption for D. This ensures
that only the labels for h get released. Given the low space and description complexity of
D, we henceforth ignore the overhead dictated by these two quantities. Alas, the runtime of
the algorithm is still at least T (in fact has increased), so we need to do something different.

Amortising Computation. To actually speed-up the runtime of the encryptor, we rely
on the recursive technique from [AMZ24, BG25]: First, we consider the evaluation of the
universal RAM U on D; suppose that this requires T = T · poly(λ) steps. Instead of
computing an AB-LFE digest for T steps of U , we just compute a digest h′ for T/p steps.
This can be generated in time T/p · poly(λ) and can be reused across p chained AB-LFE
executions. Then, we use garbled circuits (as in [BG25]) to connect the output of one

12



evaluation to the input of the next one.

Formally, the ciphertext consists of p garbled circuits, C̃0, . . . , C̃p−1, along with the labels
of C̃0 corresponding to the inputs y0 := D and h′. The i-th circuit C̃i takes as input a tape
yi and the AB-LFE digest h′. The output includes the labels of C̃i+1 associated with h′ and
an AB-LFE encoding. This will be an encryption of the labels of the remaining input wires
of C̃i+1 (or the input labels of C̃, if i = p − 1). We use yi as attribute and h′ as digest. In
other words, by decrypting the AB-LFE encoding produced by C̃i, the decryptor will obtain

the labels of C̃i+1 associated with yi+1 := U
T
p (yi) and h′. Continuing in this way, for every

i, it will recover the labels of C̃ associated with h. This process is visualised in Fig. 2.

Since D has poly(λ)-bounded memory and description, all these garbled circuits can be
computed in time p · poly(λ). Thus, once again, the only computation that depends on T
is the derivation of the AB-LFE digest h′ and the corresponding labels for C̃0. By picking
a sufficiently large polynomial p(λ), we can ensure that h′ is derived by D in at most T/2
steps.

Achieving Full Efficiency and Full Security. We achieve the desired efficiency by
recursing the above construction: We start by substituting the labels of C̃0 associated with
h′ with an encryption of all labels using witness encryption for D. In this way, the encryption
time decreases by a factor of 2: The bulk of the computation is still concentrated in the
derivation of garbled circuit labels for an AB-LFE digest of U . The latter can be computed
by D in less than T/4 steps. Thus, we can keep recursing, halving the encryption time at
each iteration. We continue in this way until the encryption time becomes poly(λ, log T ).
At each recursive step, the decryption time will increase by an ever smaller additive factor.

Finally, using our witness encryption for P, we can easily build fully succinct randomised
encodings, again following the approach of [GKP+13b]: We just give an FHE encryption
of the input, a garbled circuit for the decryption (where the FHE secret key is hardcoded)
and a witness encryption (for P) of the input labels under the program that, on input the
FHE ciphertext, homomorphically evaluates the desired computation. By using RAM-FHE
[LMW23] instead of regular FHE, we can also obtain fully succinct randomised encodings
for RAM. Furthermore, we can even make the construction rate-1 in both the input and
output size using hybrid encryption and our LFE scheme for RAM (which has rate-1 in the
output). For more discussion on succinct randomised encodings and witness encryption for
P, we refer to Section 7.

Attribute-Based Encryption for RAM. Using our compressed encodings for RAM and
the corresponding key equation, we can easily build optimal bounded-time ABE for RAM
following the approach of Boneh et al. [BGG+14]: A ciphertext consists of a compressed
encoding of the attribute, along with a Regev encryption of the message µ using the encoding
secret s as randomness. Secret keys are associated with RAM programs P and running times
T and correspond to (partial) lattice trapdoors. Decryption succeeds if the first element on
the tape, after the execution of T steps of P , is 0. It would also be possible to make our
construction unbounded-time by relying on the bootstrapping technique of [HLL23], however,

13



Figure 2: Depiction of our witness encryption for P, from the point of view of the decryptor.
The top part represents the recursive construction for Ti steps of D. We use i to denote the
index of the recursive iteration. We recall that Ti+1 ≤ Ti/2. The bottom part represents the
final stage, where the plaintext µPT (x) is finally retrieved. Magenta square boxes represent
garbled circuits, all of them can be generated and evaluated in time poly(λ, logL, log T ).
We use square brackets to denote garbled circuit labels. Specifically, [x]ij denotes the labels

associated with the input x for j-th garbled circuit C̃
(i)
j at the i-th recursive iteration. We

use [x]C̃ to denote the labels associated with the input x for the final layer garbled circuit
C̃. Blue ovals represent AB-LFE ciphertexts. Within them, we specify the relative attribute
and the underlying AB-LFE digest, but we omit the encrypted messages. We use blue
dotted lines to denote the AB-LFE evaluation. Green ovals denote recursive call to witness
encryption. Within them is specified the evaluated RAM program and the relative number
of steps.

14



due to a lack of a (linear) key equation, this could be proven secure only by relying on the
public-coin evasive LWE heuristic [Wee22].

Before continuing with register ABE, we highlight two essential properties of our ABE
scheme. The first is that we do not need to know x to encrypt µ using x as an attribute: It
is sufficient to know an OTE hash of x. The second observation is that, if we hold a secret
key for a program P that is allowed to decrypt, we can retrieve the plaintext even if we do
not know the whole attribute x: It is sufficient to know the Merkle hash co-path of all tape
positions touched by P . For more discussion on RAM ABE, we refer to Section 8.

Register ABE. We show how to compile these ABE schemes to obtain register ABE. Let
N be the number of parties. For every i ∈ [N ], the CRS includes the ABE secret key for the
RAM program Ui that, on input x and

(rj, Pj, tj, sj)j∈[N ]

where Pj is the description of a RAM program, checks whether Ext(si, ri) = 0 and, if that is
the case, computes P ti

i (x). Above, Ext denotes a strong randomness extractor.

The register ABE secret key of the i-th party corresponds to a large random string ri.
The corresponding public key consists of the OTE Merkle hash di of ri along with the
description of the i-th party program Pi, its running time ti and an extractor seed si that
is sampled at random conditioned on Ext(si, ri) = 0. The public keys can be aggregated by
feeding their concatenation in the OTE Merkle hash. Thus, the master public key mpk has
size independent of N . The i-th party’s helper key hki will consist of the co-path for its
public key. (See Fig. 3 for a pictorial description)

To encrypt a message µ under an attribute x, we feed x and the master public key into
the OTE Merkle hash. Notice that, if this is done as in Fig. 3, by the recursive structure of
Merkle hash, the result d can be viewed as an OTE hash of:

(rj, Pj, tj, sj)j∈[N ] ,x

The ciphertext consists of an ABE encryption of µ using d as compressed attribute. Observe
that if the first element on P ti

i (x) is 0, the i-th party will be able to derive µ using the ABE
secret key for Ui. Indeed, it will know all the Merkle hash copaths of the positions touched
by Ui. On the other hand, no other party could perform the same operation, as they would
not have knowledge of ri. To formally see this, notice that the i-th party only publishes a
hash of ri, so nobody could tell whether Ext(si, ri) = 0 or Ext(si, ri) = 1. In the latter case,
ABE guarantees that µ remains private even given the secret key for Ui. For more discussion
on register ABE for RAM, we refer to Section 9.

3 Preliminaries

Notation. For any integer n ∈ N, we use [n] to denote the set {0, 1, . . . , n−1}. We assume
that all indices start from 0. We use δi,j to denote the Kroenecker delta, i.e. δi,j = 0 unless

15



Figure 3: Depiction of the Merkle hash tree corresponding to the OTE digest d. The blue
area on the right and at the bottom are public. The green areas correspond on the left,
correspond to the i-th party helper key and do not need to be private. The magenta area
on the top left corresponds to the i-th party secret key. Notice that the RAM program Ui

touches only the colored areas of the tree.

16



i = j; in that case δi,j = 1. We denote vectors using lowercase bold font, e.g. v. Matrices
will be denoted using uppercase bold font, e.g. A. We adopt the standard linear algebra
convention in which vectors correspond to columns. We use the transposition symbol ⊺ to
denote row vectors. We define the Kroenecker product between two matrices A and B as

A⊗B :=

 a0,0 ·B . . . a0,m−1 ·B
...

. . .
...

an−1,0 ·B . . . an−1,m−1 ·B


where n and m respectively denote the number of rows and columns of A and ai,j denotes
the entry in the i-th row and j-th column of A. We recall that for any matrices A,B,C,D
where the number of columns of A and B respectively match the number of rows of C and
D, it holds that

(A⊗B) · (C⊗D) = (A ·C)⊗ (B ·D).

Moreover, (A ⊗ B)⊺ = A⊺ ⊗ B⊺. We use vec(A) to denote the vectorisation of the matrix
A. Specifically, if A ∈ Zn×m, vec(A) consists of the n ·m-dimensional vector obtained by
vertically concatenating a0, . . . an−1 where a

⊺
i denotes the i-th row of A. We denote the k×k

identity matrix by Ik and the ℓ∞-norm by ∥·∥∞.

We denote the security parameter by λ. We say that a function f : N→ R is negligible if
|f(λ)| = 2−ω(log λ). We say that two ensembles of distributions X = (Xλ)λ∈N and Y = (Yλ)λ∈N
are ε(λ)-statistically indistinguishable (denoted by X ≈ε Y) if the statistical distance

SD(Xλ,Yλ) :=
∑
x

|Pr[Xλ = x]− Pr[Yλ = x]| ≤ ε(λ)

except for finitely many values of λ ∈ N. We say that X and Y are statistically indistin-
guishable (denoted by X ≈s Y), if they are ε(λ)-statistically indistinguishable for a negli-
gible function ϵ(λ) ≤ negl(λ). We say that X and Y are computationally indistinguishable
(denoted by X ≈c Y), if, there exists a negligible function negl(λ) such that, for every
non-uniform probabilistic polynomial time (PPT) adversary A, the advantage

AdvA(λ) :=
∣∣∣Pr [A(1λ, x) = 1

∣∣∣x $← Xλ

]
− Pr

[
A(1λ, x) = 1

∣∣∣x $← Yλ

]∣∣∣ ≤ negl(λ).

All logarithms are in base 2, unless it is explicitly expressed. We use GLn(R) to denote the
set of n×n invertible matrices over the ring R. We use ⌈·⌋ to denote rounding to the closest
integer. In a similar way, we use ⌈·⌋2 to denote the most-significant bit. We denote the
length of a string by |·|. We use Z≤ℓ

q to denote
⋃ℓ

i=1 Zi
q. We denote the XOR by ⊕.

RAM computations. A RAM program P with memory of size L consists of a circuit C
that takes as input a state st and a value v. The output consists of of an updated state st′,
an updated value v′ and a next location next ∈ [L]. We can run the machine on a tape x
containing L values: we start by setting st ← ⊥ and loc ← 0. At each step, we compute
(st′, v′, next)← C(st, v) where v is the loc-th element on the tape. Then, we substitute v with
v′, we update the state st← st′ and the location loc← next. This procedure is repeated for
as many times as needed. We denote the state of the tape after T steps by P T (x). We use
desc(P ) to denote the description of C as a binary string. We use |P | to denote |desc(P )|.

17



Theorem 3.1 (Universal RAM). There exists a RAM U such that, for any other RAM
program P with memory L, every tape x and runtime T , there exists T = T · O(|P |) such
that

UT (x, desc(P )) = (P T (x), aux)

where aux denotes some auxiliary material. Moreover, if P has memory of size L, U requires
L+O(|P |) memory.

3.1 Lattices and Hard Problems

We define the gadget matrix G = I ⊗ g⊺, where g⊺ is the row vector
[
1 2 . . . 2log q

]
. As

customary, we define the function G−1 as the binary decomposition operator, satisfying the
identity GG−1(x) = x for all x.

Let Dσ denote the discrete Gaussian distribution with parameter σ. We recall the fol-
lowing standard fact about Gaussians.

Lemma 3.2 (Gaussian Flooding). If X is sampled from Dσ then for any Y such that |Y | ≤ τ
and σ/τ ∈ λω(1), then the following distributions are statistically close:

X ≈s X + Y

where X
$← Dσ.

The Gaussian pre-image sampling procedure [GPV08] allows one to condition a Gaussian
sample on a arbitrary linear equation. We recall the main statistical property of pre-image
sampling.

Lemma 3.3 (Gaussian Sampling). Let k = k(λ), m = m(λ), σ = σ(λ), and q = q(λ) be
integer parameters with σ =

√
k · log q ·ω(

√
logm) and m ≥ 2k log q. Then, there exist PPT

algorithms TrapGen and PreSample such that the following two distributions are statistically
indistinguishable:

• Sample A
$← Zk×m

q and x
$← Dm

σ . Return (A,x,Ax).

• Sample (A, γ)
$← TrapGen(1k, 1m, q), v

$← Zk
q , and t

$← PreSample(γ,v, σ). Return
(A, t,v).

Lemma 3.4 (Partial Trapdoors [CHKP10, ABB10, BGG+14]). Let k = k(λ), m = m(λ),
ℓ = ℓ(λ), σ = σ(λ), B = B(λ) and q = q(λ) be integer parameters with σ = max(

√
k · log q, B)·

ω(
√
logm) and m ≥ 2k log q. Then, there exist PPT algorithms SampleRight and SampleLeft

such that, for every (possibly computationally unbounded) adversary A that outputs triples
(S, y, aux) where, S ∈ Zm×ℓ

q , ∥S∥∞ ≤ B ·(
√
m ·ℓ)−1 and y ̸= 0, the following two distributions

are statistically indistinguishable:

• Sample (A, γ)
$← TrapGen(1k, 1m, q) and v

$← Zk
q . Set B ← A · S + y · G, where

(S, y, aux)
$← A(1λ,A,v) and t

$← SampleRight(γ,B,v, σ). Return (A, t,v, aux).

18



• Sample A
$← Zk×m

q and v
$← Zk

q . Set B← A ·S+y ·G, where (S, y, aux)
$← A(1λ,A,v)

and t
$← SampleLeft(A,S, y,v, σ). Return (A, t,v, aux).

Moreover, in both cases, it holds that[
A, B

]
· t = v, ∥t∥∞ ≤ σ ·

√
λ.

We define the learning with errors (LWE) problem [Reg09] below. The works of [Reg09,
AP09] showed that the hardness of the LWE problem follows from the worst-case quantum
hardness SIVP and classical hardness of GapSVP.

Definition 3.5 (Learning with Errors). Let k = k(λ), m = m(λ), σ = σ(λ), and q = q(λ)
be integer parameters. The LWE assumption postulates the the following distributions are
computationally indistinguishable:

{A, s⊺A+ e⊺ (mod q)} ≈c {A,u⊺}

where A
$← Zk×m

q , s
$← Zk

q , e
$← Dm

σ , and u
$← Zm

q .

We also recall the recently introduced t-succinct LWE problem [Wee24]. Loosely speak-
ing, it assumes that the LWE problem remains hard, even when given a trapdoor (in the
sense of [GPV08]) for a related matrix.

Definition 3.6 (t-Succinct LWE). Let k = k(λ), m = m(λ), σ = σ(λ), and q = q(λ) be
integer parameters, with m ≥ 2k log q. Let n := k · log q. The t-succinct LWE assumption
postulates that the following distributions are computationally indistinguishable:

{A, s⊺A+ e⊺,W,T} ≈c {A,u⊺,W,T}

where (A, γ)
$← TrapGen(1k, 1m, q), s

$← Zk
q , e

$← Dm
σ , u

$← Zm
q , and

W =

 W0
...

Wt−1

 T =

T0,0 · · · T0,t−1
...

. . .
...

Tt,0 · · · Tt,t−1


for Tt,0, . . . ,Tt,t−1

$← Dm×n
σ , W0, . . . ,Wt−1

$← Zk×m
q and

∀i, j ∈ [t] Ti,j
$← PreSample(γ, δi,j ·G−Wi ·Tt,j, σ).

In particular, it holds that [
It ⊗A, W

]
·T = It ⊗G.

3.2 Key-Homomorphic Encodings à la BGG+ and HLL

In [BGG+14], Boneh et al. introduced LWE-based key-homomorphic encodings. Each en-
coding c is associated with a string x ∈ Zℓ

q for some ℓ ∈ N and is generated using a secret

s ∈ Zk
q and a public matrix A ∈ Zk×(ℓ·n)

q where n = k · log q:

c⊺ = s⊺ · (A+ x⊺ ⊗G) + e⊺.

19



Above e denotes a low-norm term. When we generate a fresh encoding the latter is usually
sample from the discrete Gaussian Dn·ℓ

σ . Observe that, for any public vector v, we can view
0 as an encoding of v with relation to the secret s and the public matrix −v⊺ ⊗G.

These encodings are homomorphic in the sense that, given an encoding of x under s and
A and a function f , we can derive an encoding of f(x) under the same secret s and another
matrix Af . Crucially, Af is publicly derivable and is independent of both x, s and the noise
e. This result is formalised in the following theorem.

Theorem 3.7 (Key Equation [BGG+14]). There exists deterministic polynomial time al-

gorithms EvalK and EvalH such that, for every matrix A ∈ Zk×(ℓ·n)
q , input x ∈ Zℓ

q and
algebraic circuit f , we have

(A+ x⊺ ⊗G) ·Hf,x = A ·Kf + f(x)⊺ ⊗G,

∥Hf,x∥∞ ≤ poly(λd, Bd)

where d denotes the multiplicative depth of f , B denotes an upper bound on the magnitude
of the wire values in f(x) and

Kf ← EvalK(f,A), Hf,x ← EvalK(f,A,x).

In particular, notice that c⊺ · Hf,x = s⊺ · (Af + f(x)⊺ ⊗G) + e⊺f where Af := A · Kf

and ∥ef∥∞ ≤ poly(λd, Bd) · ∥e∥∞. We therefore obtained an encoding of f(x) under s and
Af but with higher noise magnitude. Unfortunately, if the computation has particularly
high depth, the noise may end up reaching magnitude proportional to q. This is often
particularly problematic as it prevents us from efficiently extract information from the result
of the computation. For this reason, Hsieh, Lin and Luo [HLL23] recently introduced a
bootstrapping procedure to reduce the noise in the encodings. Their techniques intrinsically
rely on a circular version of LWE.

Theorem 3.8 (Encoding Evaluation with Bootstrapping [HLL23]). Suppose that q = q(λ),
k = k(λ), σ = σ(λ), σ′ = σ′(λ) and σ = σ(λ) are such that

√
λ · σ ≤ Bmax and Bbst ≤ Bmax

where
Bbst = (σ′ + σ) · 2O(log5 λ), Bmax ≤ 2

1
3
log q−ω(log λ).

Then, there exist deterministic polynomial time algorithms CEval and CEvalK such that, for
all inputs x ∈ Zℓ

q, algebraic circuit f and noise term e ∈ Zℓ·n
q such that ∥e∥∞ ≤ Bmax, the

following holds with probability 1− negl(λ),

CEval(f, c,A,x, ccirc,Acirc,S) = s⊺(Abts + f(x)⊺ ⊗G) + e⊺bts,

∥ebts∥∞ ≤ Bbst

where

Abts = CEvalK(f,A,Acirc)

c⊺ = s⊺ · (A+ x⊺ ⊗G) + e⊺

S =

[
W

s⊺ ·W + e⊺

]
− Bits(s)⊺ ⊗ Ik+1 ⊗ g⊺

20



c⊺circ = s⊺ · (Acirc + Bits(S)⊺ ⊗G) + ecirc
⊺

and the probability is taken over the randomness of

A
$← Zk×(ℓ·n)

q Acirc
$← Zk×(n·(n+log q)2)

q W
$← Zk×(n2+n·log q)

q

s
$← Dk

σ e
$← Dn2+n·log q

σ ecirc
$← Dn·(n+log q)2

σ′ .

Observe that in the above result, S is essentially a GSW encryption [GSW13] of s using
s itself as a secret key.

3.3 Information Theory

Recall the definition of the min-entropy of a random variable X as:

H∞(X) = − log (maxx Pr[X = x]) .

We recall the definition of average conditional min-entropy in the following.

Definition 3.9 (Average Conditional Min-Entropy). Let X be a random-variable supported
on a finite set X and let Z be a (possibly correlated) random variable supported on a finite
set Z. The average-conditional min-entropy H̃∞(X|Z) is defined as:

H̃∞(X|Z) = − log (Ez [maxx∈X Pr[X = x|Z = z]]) .

We also recall the chain rule of average min-entropy.

Theorem 3.10 (Chain Rule [DORS08]). Let X, Y and Z be random variables. Then,

H̃∞(X|Y, Z) ≤ H̃∞(X, Y |Z)− |Y |

where |Y | denotes the bit-length of the value of Y .

Next, we recall the definition of a seeded randomness extractor.

Definition 3.11 (Extractor). A function Ext : {0, 1}d×X → {0, 1}ℓ is called a seeded strong
average-case (k, ε)-extractor, if it holds for all random variables X with support X and Z
defined on some finite support that if H̃∞(X|Z) ≥ k, then it holds that the statistical distance
of the following distributions is a most ε:

{seed,Ext(seed, X), Z} ≈ε {seed, U, Z}

where seed
$← {0, 1}d and U

$← {0, 1}ℓ.

Recall that a hash function Hash : X → Y is a universal hash if for all x ̸= x′ ∈ X it
holds that:

Pr[Hash(x) = Hash(x′)] ≤ 1

|Y|
where the probability is taken over the choice of the hash function. It is shown [DRS04,
DORS08] that any universal hash function is an average-case randomness extractor.

21



Lemma 3.12 (Leftover Hash Lemma). Let X be a random-variable supported on a finite
set X and let Z be a (possibly correlated) random variable supported on a finite set Z such
that H̃∞(X|Z) ≥ k. Let Hash : X → {0, 1}ℓ, where ℓ ≤ k−2 log

(
1
ε

)
, be a family of universal

hash functions. Then Hash is a seeded strong average-case (k, ε)-extractor.

3.4 Garbled Circuits

We recall the definition of garbled circuits [Yao86, BHR12].

Definition 3.13 (Garbling Schemes). A garbling scheme consists of two PPT algorithms
(Garble,Eval) with the following syntax.

• Garble(1λ, C): On input the security parameter 1λ and a circuit C : {0, 1}n → {0, 1}m,
the garbling algorithm returns a garbled circuit C̃ and a set of 2n labels (labi,b)i∈[n],b∈{0,1}.

• Eval(C̃, (labi)i∈[n]): On input a garbled circuit C̃ and a set of n labels (labi)i∈[n], the
evaluation algorithm returns an output y ∈ {0, 1}m.

For correctness, we require that for all λ, all circuits C, and all inputs x, we have that:

Eval(C̃, (labi,xi
)i∈[n]) = C(x)

where (C̃, (labi,b)i∈[n],b∈{0,1})
$← Garble(1λ, C). We recall the security definition of garbling

schemes.

Definition 3.14 (Simulation Security). A garbling scheme (Garble,Eval) is simulation secure
if there exists a PPT simulator Sim such that for every circuit C and every input x, the
following distributions are computationally indistinguishable:{

C̃, (labi,xi
)i∈[n]

}
≈c Sim(1λ, C(x))

where (C̃, (labi,b)i∈[n],b∈{0,1})
$← Garble(1λ, C).

4 The Decomposed LWE Problem

In the following we introduce the hardness assumption that we will use in this work, that
we refer to as the decomposed LWE assumption. We formally define the problem below.

Definition 4.1 (Decomposed LWE). Let k = k(λ), m = m(λ), σ = σ(λ), σ̃ = σ̃(λ),
t = t(λ), and q = q(λ) be integer parameters. Let n := k · log q. The decomposed LWE
assumption postulates the the following distributions are computationally indistinguishable:{

Ai,Bj, s
⊺AiBj + s⊺G · δi,j + e⊺i,j

}
i,j∈[t] ≈c

{
Ai,Bj,u

⊺
i,j

}
i,j∈[t]

where Ai
$← Zk×m

q , Bj
$← Dm×n

σ , s
$← Zk

q , ei,j
$← Dn

σ̃ , and ui,j
$← Zn

q .

22



The following theorem shows that the decomposed LWE problem is at least as hard as
the t-succinct LWE problem. In our proof, we only consider the settings where the modulus
to noise ratio is super-polynomial, i.e., the so-called flooding regime. Although we do not
explicitly prove this in our work, we expect that the implication holds also in the polynomial
regime, with a more sophisticated argument.

Theorem 4.2. Suppose that m ≥ 2k · log q and σ =
√
k · log q · ω(

√
logm). If the t-succinct

LWE problem is hard, then the decomposed LWE assumption holds with a prime q and
σ̃/σ ∈ λω(1).

Proof. We prove the theorem with a Karp reduction, i.e., we are going to show how to map
any instance of the t-succinct LWE into a valid instance of decomposed LWE, with the same
solution. The statement follows because if one can break the decomposed LWE then we can
use this algorithm to break the t-succinct LWE problem as well.

On input a tuple (A,u⊺,W,T), where u is either uniform or an LWE sample, we proceed
as follows. Let us split the input matrices into blocks:

W =

 W0
...

Wt−1

 and T =


T0,0 T0,1 · · · T0,t−1
...

...
. . .

...
Tt−1,0 Tt−1,1 · · · Tt−1,t−1

B0 B1 · · · Bt−1


The decomposed LWE instance consists of the matrices {−Wi,Bi}i∈[t] and the vectors ui,j

computed as:
u⊺
i,j ← u⊺ ·Ti,j + ẽ⊺i,j

where ẽi,j
$← Dn

σ̃ . We analyze the distribution of the instance that we constructed.

• (Real) Consider the case where u = s⊺A+e⊺ is an LWE sample. Note that the matrices
−Wi are uniformly distributed in Zk×m

q , whereas the matrices Bi are (statistically close
to) sampled according to Dm×n

σ . By assumption, we have that T is Gaussian, subject
to:

ATi,j = G · δi,j −WiBj

for all i, j ∈ [t]. Thus, by linearity, we have that:

u⊺ ·Ti,j + ẽ⊺i,j = (s⊺A+ e⊺) ·Ti,j + ẽ⊺i,j

= s⊺G · δi,j − s⊺WiBj + e ·Ti,j + ẽ⊺i,j

≈s s
⊺G · δi,j − s⊺WiBj + ẽ⊺i,j

where the last implication follows by Lemma 3.2. This corresponds precisely to an
instance of the decomposed LWE problem.

• (Random) Consider the case where u is uniform in Zm
q . The correct distribution of the

matrices follows with the same argument as above, so all is left to be shown is that
the vectors ui,j are also uniformly distributed. We show this with a hybrid argument,
where we progressively substitute each ui,j with a uniformly sampled vector in Zn

q . In
the (i, j)-th hybrid, we modify the view of the distinguisher as follows:

23



– Hybrid (i, j, 0): This is the original distribution, and we define Zi,j := −WiBj.

– Hybrid (i, j, 1): We sample (Wi, γi)
$← TrapGen(1k, 1m, q), Zi,j

$← Zk×n
q , Bj

$←
PreSample(γi,−Zi,j, σ). In other words, Bj is distributed according to Dm×n

σ , but
conditioned on Zi,j = −WiBj. All other variables are unchanged. Statistical
indistinguishability follows by Lemma 3.3.

– Hybrid (i, j, 2): We sample Ti,j
$← Dm×n

σ , and compute Zi,j ← ATi,j −G · δi,j.
Statistical indistinguishability follows by another invocation of Lemma 3.3.

Notice that the variableTi,j is statistically close to a discrete Gaussian (see Lemma 3.3),
so the min entropy of each of its columns is at leastm and the only variable that depend
on Ti,j (besides ui,j) is ATi,j. Thus, by the chain rule, the conditional min entropy of
each column of Ti,j is at least m− n log q ≥ n log q, and we can conclude that u⊺ ·Ti,j

is statistically close to uniform, by Lemma 3.12. The series of hybrids is concluded by
substituting ui,j with uniform, then undoing the previous hybrid changes.

This concludes our proof.

The above theorem shows that the decomposed LWE problem is at least as hard as the
t-succinct LWE problem. However, we believe that the new problem is qualitatively weaker,
since it does not involve any lattice trapdoor, and thus a reduction in the reverse direction
is unlikely. Decomposed LWE seems to fall into the category of circularity assumptions. For
instance, if the function δi,j was substituted with the constant 0, then the problem is not
easier than LWE: Given LWE samples {s⊺Ai + e⊺i }i, one can generate a valid instance by
computing:

u⊺
i,j = (s⊺Ai + e⊺i )Bj + e⊺i,j ≈s s

⊺AiBj + e⊺i,j

where ei,j is sampled with a Gaussian parameter super-polynomially larger than that of ei.
More broadly, our problem can be thought of as a special case of a generalised variant of the
circular-LWE problem, akin to [MV24]. Given a distribution of matrices M for which the
LWE problem is hard, the generalised circular LWE assumption postulates that:

s⊺M+ f(s) + e⊺ ≈c u
⊺

for some (fixed) function f . This kind of assumptions are at the heart of known constructions
of fully-homomorphic encryption from lattices [Gen09], although the function f in that case
is somewhat different from ours. We leave a precise characterization of our assumption in
the context of circular security as ground for future work.

4.1 Variants of Decomposed LWE

We introduce a few variants of the decomposed LWE problems.

Definition 4.3 (Small-Secret Extended Decomposed LWE). Let k = k(λ), m = m(λ),
σ = σ(λ), σ̃ = σ̃(λ), σ′ = σ′(λ), t = t(λ), ℓ = ℓ(λ), and q = q(λ) be integer parameters.

24



Define n := k · log q. The extended decomposed LWE assumption postulates the the following
distributions are computationally indistinguishable:

A,B,Q,M

s⊺ ·M+ e⊺

(It ⊗ s⊺) ·
(
A ·B+ It ⊗ (Q ·G)

)
+ E

 ≈c {A,B,Q,M,v⊺,U}

where A
$← Z(t·k)×m

q ,B
$← Dm×(n·t)

σ , Q
$← GLk(Zq), M

$← Zk×ℓ
q , s

$← Dk
σ′, e

$← Dℓ
σ′,

E
$← Dt×(t·n)

σ̃ , U
$← Zt×(t·n)

q , and v
$← Zℓ

q.

Theorem 4.4. If σ′/(σ · σ̃) = λω(1) and ℓ = poly(λ), decomposed LWE implies small-secret,
extended decomposed LWE with the same choice of parameters.

Proof. We start by proving that decomposed LWE implies its extended version if s is sample
uniformly at random over Zk

q and Q = Ik. We proceed by means of a series of hybrids.

• Hybrid 0: This corresponding to the distribution of an extended decomposed LWE
sample but with s

$← Zk
q and Q = Ik.

• Hybrid 1: We change the distribution of M sampling: we set M to A0 · B1 · R,
where R

$← Dn×ℓ
σ and A0 denotes the 0-th k × m block in A and B1 denotes the

1-th m× n block in B. This hybrid is statistically indistinguishable from Hybrid 0 by
the leftover hash lemma. Indeed, R is independent of (A0,B1) and the function that
fA0,B1(x) := A0 ·B1 ·x is a 2-universal hash function (notice that A0 ·B1 is statistically
close to random, again, by the leftover hash lemma).

• Hybrid 2: We change the distribution of (U,v) sampling them at random. This hybrid
is indistinguishable from Hybrid 1 under decomposed LWE.

We sketch the reduction: suppose we are given a tuple (Ai,Bj,u
⊺
i,j)i,j∈[t] where u⊺

i,j is
either s⊺AiBj + δi,j · s⊺G+ e⊺i,j or uniformly random.

We define A as the vertical concatenation of A0, . . . ,At−1. We define B as the hori-
zontal concatenation of B0, . . . ,Bt−1. Let U be the matrix where the i-th row consists
of the horizontal concatenation of (u⊺

i,j)i∈[t]. Finally, we generate v by setting u⊺
0,1·R+ẽ⊺

for ẽ
$← Dℓ

σ̃.

We observe that, with this choice of A and B, we have the i-th row of (It ⊗ s⊺) · (A ·
B+ It ⊗G) + E consists of the horizontal concatenation of

s⊺ ·Ai ·Bj + δi,j · s⊺ ·G+ e⊺i,j

where e⊺i,j denotes the j-th n-dimensional block in the i-th row of E. This is identical
to the distribution of u⊺

i,j in a decomposed LWE sample. Notice also that if (ui,j)i,j∈[t]
were random, the distribution of U in the reduction is also random. We also observe
that

s⊺ ·M+ e⊺ = s⊺ ·A0 ·B1 ·R+ e⊺.

25



Notice that if this is identical to the distribution of u⊺
0,1 · R − e⊺0,1 · R + e⊺, if the

reduction received a real decomposed LWE sample. Notice also that this is statistically
indistinguishable from u⊺

0,1 ·R + e⊺ given that e is sampled from a discrete Gaussian

where the parameter is λω(1) times greater than ∥e⊺0,1 · R∥∞. Finally, observe that if
we obtained a random u0,1, the distribution of v⊺ = u⊺

0,1 ·R + e⊺ is statistically close
to random by the leftover hash lemma.

Next, we prove that if extended decomposed LWE is hard for s
$← Zk

q and Q← Ik, the prob-

lem is hard even when s
$← Zk

q and Q
$← GLk(Zq). The reduction is pretty straightforward:

given a tuple (A,B,Q,M,v⊺,U), we simply output ((It ⊗Q−1) ·A,B, Ik,Q
−1 ·M,v⊺,U).

Notice that, if the reduction obtained a real instance, the output is identical to an extended
decomposed LWE sample with Q← Ik (if the secret in the input tuple is s, the secret in the
output tuple is Q⊺ · s), otherwise, the distribution consists just of a random tuple.

Finally, we prove that extended decomposed LWE with s
$← Zk

q andQ
$← GLk(Zq) implies

the hardness of the version in which s
$← Dk

σ. We show a reduction: suppose we are given
a tuple (A,B,Q,M,v⊺,U) which is either a real extended decomposed LWE sample (with
uniformly sampled s), or uniformly random terms. Let W be a Zq-invertible k × k matrix
obtained by horizontally stacking columns of M among the first L. Notice that W exists
with overwhelming probability, assuming that L is sufficiently bigger than k and (we can
assume without loss of generality that the reduction receives L+ ℓ LWE samples as input).
Let w be the subvector of v containing all the entries corresponding with the columns of M
used to build W. In other words, if the reduction received an extended decomposed LWE
sample, it holds that w⊺ = s⊺ ·W − s⊺ where s

$← Dk
σ′ . Let M consist of the last ℓ columns

of M and let v denote the last ℓ entries of v. Finally, let e denote the noise term used in v
when this is an LWE sample. The reduction computes

A′ ← (It ⊗W−1) ·A
Q′ ←W−1 ·Q
U′ ← U− (It ⊗ (w⊺ ·W−1)) ·

(
A ·B+ It ⊗ (Q ·G)

)
M′ ←W−1 ·M
v′⊺ ← v⊺ −w⊺ ·W−1 ·M.

Then, it outputs (A′,B,Q′,M′,v′⊺,U′). We observe that, if the reduction received a real
extended decomposed LWE sample (with uniformly random s), we have

U′ = U− (It ⊗ (w⊺ ·W−1)) ·
(
A ·B+ It ⊗ (Q ·G)

)
= U− (It ⊗ (s⊺ − s⊺ ·W−1)) ·

(
A ·B+ It ⊗ (Q ·G)

)
= U− (It ⊗ s⊺) ·

(
A ·B+ It ⊗ (Q ·G)

)
+ (It ⊗ (s⊺ ·W−1)) ·

(
A ·B+ It ⊗ (Q ·G)

)
= (It ⊗ s⊺) ·

(
(It ⊗W−1) ·A ·B+ It ⊗ (W−1 ·Q ·G)

)
+ E

= (It ⊗ s⊺) ·
(
A′ ·B+ It ⊗ (Q′ ·G)

)
+ E.

Moreover,

v′⊺ = v⊺ −w⊺ ·W−1 ·M

26



= v⊺ − (s⊺W − s⊺) ·W−1 ·M
= v⊺ − s⊺ ·M+ s⊺ ·M′

= s⊺ ·M′ + e⊺.

In other words, the output of the reduction consists of a small-secret extended decomposed
LWE sample. If instead the input was a random tuple, the output is too.

The following is a circular variant of the small-secret decomposed LWE problem, which
roughly corresponds to additionally providing the distinguisher with a GSW encryption of
its own secret key.

Definition 4.5 (Small-Secret Circular Decomposed LWE). Let k = k(λ), m = m(λ), σ =
σ(λ), σ̃ = σ̃(λ), σ′ = σ′(λ), σ = σ(λ), t = t(λ), ℓ = ℓ(λ), and q = q(λ) be integer parameters.
Define n := k · log q. The small-secret, circular decomposed LWE assumption postulates the
the following distributions are computationally indistinguishable:

A,B,Q,M,

s⊺ ·M+ e⊺

(It ⊗ s⊺) ·
(
A ·B+ It ⊗ (Q ·G)

)
+ E[

K
s⊺ ·K+ e⊺

]
− Bits(s)⊺ ⊗ Ik+1 ⊗ gq


≈c {A,B,Q,M,v⊺,U,S}

where A
$← Z(t·k)×m

q ,B
$← Dm×(n·t)

σ , Q
$← GLk(Zq), M

$← Zk×ℓ
q , K

$← Zk×n·(n+log q)
q , s

$← Dk
σ′,

e
$← Dℓ

σ′, E
$← Dt×(t·n)

σ̃ , e
$← Dn·(n+log q)

σ , S
$← Z(k+1)×n·(n+log q)

q , and v
$← Zℓ

q.

5 Rate-1 Lattice Encodings for RAM Programs

In this section we describe the main technical contribution of our work, namely the lattice
encodings for RAM program. Let n := k · log q where k = Ω(λ) and let t := β · n ·m and
L := βr · n2. Our construction is given in Fig. 4 and we defer the description of the reading
and procedure to Section 5.1 and Section 5.2, respectively. We state the following claim,
which can be easily verified.

Lemma 5.1. Define Π := vec(It)
⊺ ⊗ Ik. Then, for every matrix M ∈ Z(t·k)×(t·n)

q and vector
s ∈ Zk

q , we have
s⊺ ·Π · (It ⊗M) = vec((It ⊗ s⊺) · Z)⊺.

The following lemma bounds the complexity of computing the hash depending on the
Hamming weight of the input string.

Lemma 5.2. If x ∈ ZL
q has Hamming weight w, we can compute Hash(pk,x) in time w ·

logL · poly(λ) on a RAM.

Proof. Suppose that x =
∑w−1

i=0 xi · uℓi where uℓi denotes the ℓi-th vector of the standard
basis of ZL

q . Since Hash is Zq-linear, we have that Hash(pk,x) =
∑w−1

i=0 xi · Hash(pk,uℓi).
Moreover, for every i ∈ [w], Hash(pk,uℓi) can be computed in time logL · poly(λ) (indeed, if
xi,j = 0, it holds that Xi,j = 0).

27



Succinct Lattice Encodings for RAM Programs

Setup(1λ): Sample A
$← Z(t·k)×m

q ,B
$← Dm×(t·n)

σ and Q
$← GLk(Zq). Then, compute

B← B · (It ⊗G−1(Q−1 ·G)) Z← Π · (It ⊗ (A ·B) + It ⊗ It ⊗G).

and return pk := (A,B,B,Q,Z).

Hash(pk,x): If |x| ≤ L, pad it with zeros. Set x0 ← x, then perform the following
operations for i = 0, . . . , r − 1:

1. Split xi into blocks in Zt
q. Let them be xi,0, . . . ,xi,βr−1−i−1.

2. For every j ∈ [βr−1−i], set Xi,j ← B · (xi,j ⊗ In).

3. Define xi+1 to be the vertical concatenation of vec(Xi,j) for j ∈ [βr−1−i].

Output d := xr and τ := (xi,j)i∈[r],j∈[βr−1−i].

Enc(pk,M,x): Sample s
$← Dk

σ′ , compute (d, τ)← Hash(pk,x),

h⊺ ← s⊺ · (M+ d⊺ ⊗G) + e⊺

z⊺ ← s⊺ · Z+ ẽ⊺

where e
$← Dn2·m

σ′ , E
$← Dt×(t·n)

σ̃ and ẽ ← vec(E · (It ⊗G−1(Q−1 ·G))). Finally,
output d, h, z and τ .

Path(τ, ℓ): Define ℓ0 ∈ [t], ℓi ∈ [β] and ℓj so that

ℓ = ℓ0 +
r−1∑
i=1

ℓi · t · βi−1, ℓj =
r−1∑

i=j+1

ℓi · βi−j−1.

Rewrite τ as (xi,j)i∈[r],j∈[βr−1−i] and output τℓ := (xi,ℓi
)i∈[r]

Figure 4: Succinct Lattice Encodings for RAM Programs

28



5.1 Reading Procedure

For every i ∈ [r], let πi be the function that takes as input a vector x ∈ Zt
q and ℓ ∈ [L], and

performs the following operations: First of all, it rewrites ℓ as

ℓ = ℓ0 +
r−1∑
j=1

ℓj · t · βj−1

where ℓ0 ∈ [t] and ℓj ∈ [β] for every j ≥ 1. If i ≥ 1, πi splits x into β blocks x0, . . . ,xβ−1 ∈
Zn·m

q , then it outputs xℓi . If instead i = 0, πi splits x into elements x0, . . . , xt−1 ∈ Zq, then
it outputs xℓ0 . The reading procedure is described in Fig. 5.

Lemma 5.3. There exists a deterministic polynomial time algorithms such that, for any
matrices X ∈ Zm×n

q and A ∈ Z(t·k)×m
q , we have

(vec(X)⊺ ⊗G) · Lin(A) = Π · (It ⊗ (A ·X))

Moreover, ∥Lin(A)∥∞ ≤ 1 and each of its columns has at most m · n non-zero entries.

Proof. Split A into k×m blocks A0, . . . ,At−1. Similarly, split Π · (It⊗ (A ·X)) into blocks
of size k× n. We observe that, for any i ∈ [t] and j ∈ [n], the i-th block of Π · (It⊗ (A ·X))
consists of Ai ·X. In other words, if we denote the j-th column in X by xj, the (i ·n+ j)-th
column of Π · (It ⊗ (A ·X)) is Ai · xj. Now, observe that, if we denote the ℓ-th columns of
Ai by ai,ℓ and the ℓ-th entry of xj by xj,ℓ, we have that

Ai · xj =
m−1∑
ℓ=0

xj,ℓ · ai,ℓ.

Moreover, for any v ∈ Zn2·m
q , we have

(vec(X)⊺ ⊗G) · v =
∑

j∈[n],ℓ∈[m]

xj,ℓ ·G · vj,ℓ

where (vj,ℓ)j,ℓ are obtained by splitting v into blocks in Zn
q . So, to satisfy the relation in

our claim, it is sufficient to set the (i · n + j)-th column of Lin(A) to the vector v where
vj,ℓ = G−1(ai,ℓ) for every ℓ ∈ [m], and all other blocks are instead entirely made of zeros.

The following lemma establishes the correctness of the reading procedure.

Lemma 5.4. Consider Fig. 4 and Fig. 5 and suppose that Dσ is B-bounded. Then, there
exist polynomial-time deterministic algorithms ReadK, ReadH such that, for any

(d, τ) = Hash(pk,x)

τℓ = Path(τ, ℓ)

h⊺ = s⊺ · (M+ d⊺ ⊗G) + e⊺h
z⊺ = s⊺ · Z+ ẽ⊺

29



Succinct Lattice Encodings for RAM Programs – Reading Procedure

Read(pk, z,h,M, τℓ,p,P, ℓ): Define ℓ0 ∈ [t], ℓi ∈ [β] and ℓj so that

ℓ = ℓ0 +
r−1∑
i=1

ℓi · t · βi−1, ℓj =
r−1∑

i=j+1

ℓi · βi−j−1.

Rewrite τℓ as (xi,ℓi
)i∈[r] and set hr ← h and Mr ←M. Then, for i = r − 1, . . . , 0,

compute

1. h′
i
⊺ ← z⊺ · (It ⊗ xi,ℓi

⊗ In) + h⊺
i+1 · Lin(−A)

2. M′
i ←Mi+1 · Lin(−A)

3. Hπi,xi,ℓi
,ℓ ← EvalH(πi,M

′
i,P,xi,ℓi

, ℓ)

4. Kπi
← EvalK(πi,M

′
i,P)

5. h⊺
i ←

[
h′
i
⊺, p⊺

]
·Hπi,xi,ℓi

,ℓ

6. Mi ←
[
M′

i, P
]
·Kπi

Let y be the ℓ0-th entry of x0,ℓ1
. Output y, c := h0 and C := M0.

Figure 5: Succinct Lattice Encodings for RAM Programs – Reading Procedure

30



p⊺ = s⊺ · (P+ Bits(ℓ)⊺ ⊗G) + e⊺p

(y, c,C) = Read(pk, z,h,M, τℓ,p,P, ℓ)

where ℓ ∈ [L], ∥x∥∞ ≤ T , it holds that

c⊺ =
[
h⊺, p⊺, z⊺

]
·Hx,ℓ

= s⊺ · (C+ y ·G) +
[
e⊺h, e⊺p, ẽ⊺

]
·Hx,ℓ

C =
[
M, P

]
·K

∥
[
e⊺h, e⊺p, ẽ⊺

]
·Hx,ℓ∥∞ ≤ (n3 ·m2 ·B · β)r ·O(T ) · ∥ẽ∥∞ + (log β · n ·m)r ·O (∥eh∥∞ + ∥ep∥∞)

where y is the ℓ-th entry of x, K := ReadK(A,M,P), Hx,ℓ := ReadH(A,M,P,d, τℓ, ℓ). In
particular, we have

C+ y ·G =
[
M+ d⊺ ⊗G, P+ Bits(ℓ)⊺ ⊗G, Z

]
·Hx,ℓ.

Finally, ReadK and ReadH can be evaluated in time poly(λ, logL) on a RAM.

Proof. We observe that M+ d⊺ ⊗G = Mr + vec(Xr−1,ℓr−1
)⊺ ⊗G. We define

Hx,ℓ :=

 r∏
i=1


HA 0 0

0 IlogL·n 0
Hr−i 0 It2·n

 ·
H

0
πr−i,xr−i,ℓr−i

,ℓ 0 0

H1
πr−i,xr−i,ℓr−i

,ℓ IlogL·n 0

0 0 It2·n



 ·

In0
0


K :=

(
r∏

i=1

([
HA 0
0 IlogL·n

]
·
[
K0

πr−i
0

K1
πr−i

IlogL·n

]))
·
[
In
0

]
where

Hπi,xi,ℓi
,ℓ =

[
H0

πi,xi,ℓi
,ℓ

H1
πi,xi,ℓi

,ℓ

]
Kπi

=

[
K0

πi

K1
πi

]
.

Then claim that[
M, P

]
·K+ y ·G =

[
M+ d⊺ ⊗G, P+ Bits(ℓ)⊺ ⊗G, Z

]
·Hx,ℓ

C =
[
M, P

]
·K.

and we defer the proof to Claim 5.5. We also observe that c⊺ =
[
h⊺, p⊺, z⊺

]
·Hx,ℓ. All

remains to prove is a bound on the norm ofHx,ℓ. We notice that ∥HA∥∞ ≤ 1, moreover, each
of its columns has at most n ·m non-zero entries. We also know that ∥Hi∥∞ = ∥xi,ℓi

∥∞ ≤
(t · n · B)i · T and each of its columns has at most t non-zero entries. Finally, we have
∥H0

πi,xi,ℓi
,ℓ∥∞, ∥H1

πi,xi,ℓi
,ℓ∥∞ ≤ 1. If i ≥ 1, each of column of H0

πi,xi,ℓi
,ℓ has at most log β

non-zero entries, whereas each of column of H1
πi,xi,ℓi

,ℓ has at most n · log β non-zero entries.

The columns of H0
π0,x0,ℓ0

,ℓ have instead at most log t non-zero entries, whereas, the columns

of H1
π0,x0,ℓ0

,ℓ have at most n · log t non-zero entries. We conclude that∥∥[e⊺h, e⊺p, ẽ⊺
]
·Hx,ℓ

∥∥
∞ = (n3 ·m2 ·B ·β)r ·O(T ) ·∥ẽ∥∞+(log β ·n ·m)r ·O (∥eh∥∞ + ∥ep∥∞) .

31



We complete the above proof with the following claim.

Claim 5.5. Define ℓr−1 := 0, HA := Lin(−A) and, for every i ∈ [r], Hi := (It ⊗ xi,ℓi
⊗ In).

Then, for every 1 ≤ i < r, we have

Mi + vec(Xi−1,ℓi−1)
⊺ ⊗G

=
[
Mi+1 + vec(Xi,ℓi

)⊺ ⊗G, P+ Bits(ℓ)⊺ ⊗G, Z
]
·

HA 0
0 IlogL·n
Hi 0

 ·Hπi,xi,ℓi
,ℓ.

Moreover, denoting the ℓ-th entry of x by y, we have

M0+y ·G =
[
M1 + vec(X0,ℓ0

)⊺ ⊗G, P+ Bits(ℓ)⊺ ⊗G, Z
]
·

HA 0
0 IlogL·n
H0 0

 ·Hπ0,x0,ℓ0
,ℓ.

Proof. We proceed by induction over i, starting from i = r − 1 and ending with i = 0. We
observe that

Z ·Hi = Z · (It ⊗ xi,ℓi
⊗ In)

= Π · (It ⊗ (A ·B) + It ⊗ It ⊗G) · (It ⊗ xi,ℓi
⊗ In)

= Π · (It ⊗ (A ·B · (xi,ℓi
⊗ In))) +Π · (It ⊗ xi,ℓi

⊗G)

= Π · (It ⊗ (A ·Xi,ℓi
)) + x⊺

i,ℓi
⊗G.

We also notice that, by inductive hypothesis,

(Mi+1 + vec(Xi,ℓi
)⊺ ⊗G) ·HA =(Mi+1 + vec(Xi,ℓi

)⊺ ⊗G) · Lin(−A)

=Mi+1 · Lin(−A) + (vec(Xi,ℓi
)⊺ ⊗G) · Lin(−A)

=M′
i −Π · (It ⊗ (A ·Xi,ℓi

)).

By putting our observations together, we obtain that

Z ·Hi + (Mi+1 + vec(Xi,ℓi
)⊺ ⊗G) ·HA = M′

i + x⊺
i,ℓi
⊗G.

To complete the proof of the claim, we just observe that

[
Mi+1 + vec(Xi,ℓi

)⊺ ⊗G, P+ Bits(ℓ)⊺ ⊗G, Z
]
·

HA 0
0 IlogL·n
Hi 0

 ·Hπi,xi,ℓi
,ℓ

=
[
M′

i + x⊺
i,ℓi
⊗G, P+ Bits(ℓ)⊺ ⊗G

]
·Hπi,xi,ℓi

,ℓ

=Mi + πi(xi,ℓi
, ℓ)⊺ ⊗G.

If i ≥ 1, this coincides with Mi + vec(Xi−1,ℓi−1
)⊺ ⊗G. If i = 0, we obtain M0 + y ·G.

Combining Lemma 5.4 with [HLL23] (see Theorem 3.8) we obtain the following lemma.

32



Lemma 5.6. Consider Fig. 4 and Fig. 5 and suppose that Dσ is B-bounded and Dσ̃ is
B̃-bounded. Suppose that

m · n ·Bbst + (t · n ·B)logL · B̃ ≤ Bmax,

Bbst = (σ′ + σ) · 2O(log5 λ), Bmax ≤ 2
1
3
log q−ω(log λ).

Then, there exist deterministic polynomial time algorithms CReadPH and CReadK such that,
for any x ∈ ZL

q , position ℓ ∈ [L] and noise terms eh ∈ Zn2·m
q and ep ∈ Zn·logL

q such that
∥eh∥∞, ∥ep∥∞ ≤ Bmax, the following holds with 1− negl(λ) probability:

y = xℓ

c⊺ = s⊺ · (C+ y ·G) + e⊺c
∥ec∥∞ ≤ Bbts

where

(d, τ) = Hash(pk,x)

τℓ = Path(τ, ℓ)

ẽ = vec(E · (It ⊗G−1(Q−1 ·G)))

h⊺ = s⊺ · (M+ d⊺ ⊗G) + eh
⊺

p⊺ = s⊺ · (P+ Bits(ℓ)⊺ ⊗G) + ep
⊺

z⊺ = s⊺ · Z+ ẽ⊺

S =

[
W

s⊺ ·W + e⊺

]
− Bits(s)⊺ ⊗ Ik+1 ⊗ gq

c⊺circ = s⊺ · (Acirc + Bits(S)⊺ ⊗G) + ecirc
⊺

(y, c) = CReadPH(pk, z,h,M,d, τℓ,p,P, ℓ, ccirc,Acirc,S)

C = CReadK(pk,M,P,Acirc)

and the probability is taken over the randomness of pk := (A,B,B,Q,Z)
$← Setup(1λ) and

M
$← Zk×(m·n2)

q P
$← Zk×(n·logL)

q Acirc
$← Zk×(n·(n+log q)2)

q W
$← Zk×n·(n+log q)

q

s
$← Dk

σ′ e
$← Dn2+n·log q

σ ecirc
$← Dn·(n+log q)2

σ′ E
$← Dt×(n·t)

σ̃

Finally, CReadPH and CReadK can be evaluated in time poly(λ, log q) on a RAM.

5.2 Writing Procedure

For every i ∈ [r], we define the function µB,i that takes as input a vector x (which length
depends on i) and ℓ ∈ [L], and performs the following operations: first of all, it rewrites ℓ as

ℓ = ℓ0 +
r−1∑
j=1

ℓj · t · βj−1

33



Succinct Lattice Encodings for RAM Programs – Writing Procedure

Write(pk,h,M,d, τℓ,p,P, ℓ, c,C, y, c′,C′, y′): Define ℓ0 ∈ [t], ℓi ∈ [β] and ℓj so that

ℓ = ℓ0 +
r−1∑
i=1

ℓi · t · βi−1, ℓj =
r−1∑

i=j+1

ℓi · βi−j−1.

Rewrite τℓ as (xi,ℓi
)i∈[r] and let x′

0 ← y′− y, M′
0 ← C′−C and h′

0 ← c′− c. Then,
for i = 0, . . . , r − 1, compute

1. x′
i+1 ← vec(B · (uℓi ⊗ x′

i ⊗ In))

2. HµB,i,x
′
i,ℓ
← EvalH(µB,i,M

′
i,P,x′

i, ℓ)

3. KµB,i
← EvalK(µB,i,M

′
i,P)

4. h′
i+1

⊺ ←
[
h′
i
⊺, p⊺

]
·HµB,i,x

′
i,ℓ

5. M′
i+1 ←

[
M′

i, P
]
·KµB,i

Output d′ ← d+ x′
r, τ

′
ℓ ← (xi,ℓi

+ x′
i)i∈[r], h

′ ← h+ h′
r and M′ ←M+M′

r.

Figure 6: Succinct Lattice Encodings for RAM Programs – Writing Procedure

where ℓ0 ∈ [t] and ℓj ∈ [β] for every j ≥ 1. If i ≥ 1, the vector x provided as input belongs
to Zn·m

q . In such case, the function µB,i outputs vec(B · (uℓi ⊗x⊗ In)) where uℓi denotes the
ℓi-th element in the standard basis of Zβ

q . If instead i = 0, the element x received by µB,i

belongs top Zq. In this other case, the function outputs vec(B · (uℓ0 ⊗ x ⊗ In)) where uℓ0

denotes the ℓ0-th element in the standard basis of Zt
q. The writing procedure is described in

Fig. 6.

The following lemma establishes the correctness of the writing procedure.

Lemma 5.7. Consider Fig. 4 and Fig. 6 and suppose that Dσ is B-bounded. Then, there
exist deterministic polynomial-time algorithms WriteP, WriteK and WriteH such that, for any

(d, τ) = Hash(pk,x)

τℓ = Path(τ, ℓ)

h⊺ = s⊺ · (M+ d⊺ ⊗G) + eh
⊺

z⊺ = s⊺ · Z+ ẽ⊺

p⊺ = s⊺ · (P+ Bits(ℓ)⊺ ⊗G) + ep
⊺

c⊺ = s⊺ · (C+ y ·G) + e⊺c
c′

⊺
= s⊺ · (C′ + y′ ·G) + e⊺c′

(d′, τ ′ℓ,h
′,M′) = Write(pk,h,M,d, τℓ,p,P, ℓ, c,C, y, c′,C′, y′)

where y is the ℓ-th entry in x, it holds that

(d′, τ ′) = Hash(pk,x+ (y′ − y) · uℓ)

34



τ ′ℓ = Path(τ ′, ℓ)

h′⊺ = h⊺ +
[
c′⊺ − c⊺, p⊺

]
·Hy′,y,ℓ

= s⊺ · (M′ + d′⊺ ⊗G) + (e⊺h +
[
e⊺c′ − e⊺c, e⊺p

]
·Hy′,y,ℓ)

M′ = M+
[
C′ −C, P

]
·K

∥
[
e⊺c′ − e⊺c, e⊺p

]
·Hy′,y,ℓ∥∞ ≤ (log(n ·B) · n ·m)r ·O(∥ec′ − ec∥∞ + β · n · ∥ep∥∞).

where

(d′, τ ′ℓ) := WriteP(pk,d, τℓ, y
′, ℓ) K := WriteK(B,C′,C,P)

Hy′,y,ℓ := WriteH(B,C′,C,P, y′, y, ℓ).

In particular, it holds that

M′ + d′⊺ ⊗G = M+ d⊺ ⊗G+
[
C′ −C+ (y′ − y) ·G, P+ Bits(ℓ)⊺ ⊗G

]
·Hy′,y,ℓ.

Finally, WriteP, WriteK and WriteH can be evaluated in time poly(λ, logL) on a RAM.

Proof. We start by observing that Hash is Zq-linear: All the operations we perform are
multiplications by B and rearranging of the terms. We also observe that

(x′
r, (δj,ℓi · x

′
i)i∈[r],j∈[βr−i−1]) = Hash(pk, (y′ − y) · uℓ)

where uℓ the ℓ-th vector of the standard basis of ZL
q (indeed, if any xi,j = 0, also Xi,j = 0).

By relying on the linearity of the hash, we therefore conclude that

(d′, τ ′) = Hash(pk,x+ (y′ − y) · uℓ).

Continuing with the proof, by the homomorphic properties of the BGG+ evaluation [BGG+14],
we easily derive that

M′
i+1 + x′

i+1
⊺ ⊗G =

[
M′

i + x′
i
⊺ ⊗G, P+ Bits(ℓ)⊺ ⊗G

]
·HµB,i,x

′
i,ℓ
.

Now, define

Hy′,y,ℓ :=

(
r−1∏
i=0

[
H0

µB,i,x
′
i,ℓ

0

H1
µB,i,x

′
i,ℓ

IlogL·n

])
·
[
In2·m
0

]

K :=

(
r−1∏
i=0

[
K0

µB,i
0

K1
µB,i

IlogL·n

])
·
[
In2·m
0

]

where HµB,i,x
′
i,ℓ

=

[
H0

µB,i,x
′
i,ℓ

H1
µB,i,x

′
i,ℓ

]
and KµB,i

=

[
K0

µB,i,

K1
µB,i

]
. It is easy to see that

M′ −M+ (d′ − d)⊺ ⊗G =
[
M′

0 + (y′ − y) ·G, P+ Bits(ℓ)⊺ ⊗G
]
·Hy′,y,ℓ,

M′ −M =
[
M′

0, P
]
·K

35



h′
r
⊺
=
[
c′⊺ − c⊺, p⊺

]
·Hy′,y,ℓ.

Finally, we observe that, for any vectors e0 and e1 of suitable length, we have

∥e⊺0 ·H0
µB,i,x

′
i,ℓ
∥∞ ≤ log(n ·B) · n ·m · ∥e0∥∞

∥e⊺1 ·H1
µB,i,x

′
i,ℓ
∥∞ ≤ t · n · ∥e1∥∞.

We conclude that

∥
[
e⊺c′ − e⊺c, e⊺p

]
·Hy′,y,ℓ∥∞ ≤ (log(n ·B) · n ·m)r ·O(∥ec′ − ec∥∞ + β · n · ∥ep∥∞).

5.3 Homomorphic Evaluation of RAM

In this section, we state our main theorems regarding the homomorphic evaluation of RAM
programs. In a slight abuse the notation, we write Path(τ, P T ) to mean⋃

ℓ∈ΩP,T

Path(τ, ℓ)

where ΩP,T is the set of all positions ℓ ∈ [L] that may be touched (read or written) during the
execution of P T . The following theorem follows by combining Lemma 5.4 and Lemma 5.7
with [BGG+14], and can be seen as stating a key equation for RAM programs.

Theorem 5.8. Consider Fig. 4, Fig. 5 and Fig. 6 and suppose that Dσ is B-bounded. There
exist deterministic polynomial-time algorithms RAMEvalP, RAMEvalH and RAMEvalK such
that, for any x ∈ ZL

2 , RAM program P , time T ∈ N and pk ∈ Supp(Setup(1λ)), it holds that

(d′, τ ′) = Hash(pk, P T (x))

τ ′P,T = Path(τ ′, P T )[
h⊺ z⊺

]
·HP,T,x = s⊺ · (M ·KP,T + d′⊺ ⊗G) +

[
e⊺h ẽ⊺

]
·HP,T,x∥∥[e⊺h ẽ⊺

]
·HP,T,x

∥∥
∞ ≤ poly(λT ·logβ L, BT ·logβ L) · (∥eh∥∞ + ∥ẽ∥∞)

where

(d, τ) = Hash(pk,x)

τP,T = Path(τ, P T )

h⊺ = s⊺ · (M+ d⊺ ⊗G) + eh
⊺

z⊺ = s⊺ · Z+ ẽ⊺

(d′, τ ′P,T ) = RAMEvalP(pk, 1T , P,d, τP,T )

HP,T,x = RAMEvalH(pk, 1T , P,M,d, τP,T )

KP,T = RAMEvalK(pk, 1T , P,M).

36



In particular, we have

M ·KP,T + d′⊺ ⊗G =
[
M+ d⊺ ⊗G, Z

]
·HP,T,x.

Finally, RAMEvalP, RAMEvalH and RAMEvalK can be evaluated in time T ·poly(λ, logL) on
a RAM.

Additionally combining Lemma 5.4 and Lemma 5.7 with [BGG+14] and the bootstrap-
ping procedure of [HLL23], we obtain the following theorem for unbounded evaluation of
RAM programs.

Theorem 5.9. Consider Fig. 4, Fig. 5 and Fig. 6 and suppose that Dσ is B-bounded and
Dσ̃ is B̃-bounded. Suppose that

m · n ·Bbst + (t · n ·B)logL · B̃ ≤ Bmax,

Bbst = (σ′ + σ) · 2O(log5 λ), Bmax ≤ 2
1
3
log q−ω(log λ).

Then, there exist deterministic polynomial time algorithms RAMCEvalPH and RAMCEvalK
such that, for any x ∈ ZL

2 , RAM program P , time T ∈ N and noise term eh ∈ Zn2·m
q such

that ∥eh∥∞ ≤ Bmax, the following holds with 1− negl(λ) probability:

(d′, τ ′) = Hash(pk, P T (x))

τ ′P,T = Path(τ ′, P T )

h′⊺ = s⊺ · (M′ + d′⊺ ⊗G) + e⊺h′

∥eh′∥∞ ≤ Bbts

where

(d, τ) = Hash(pk,x)

τP,T = Path(τ, P T )

ẽ = vec(E · (It ⊗G−1(Q−1 ·G)))

h⊺ = s⊺ · (M+ d⊺ ⊗G) + eh
⊺

z⊺ = s⊺ · Z+ ẽ⊺

S =

[
W

s⊺ ·W + e⊺

]
− Bits(s)⊺ ⊗ Ik+1 ⊗ gq

c⊺circ = s⊺ · (Acirc + Bits(S)⊺ ⊗G) + ecirc
⊺

(d′, τ ′P,T ,h
′) = RAMCEvalPH(pk, 1T , P, z,h,M,d, τP,T , ccirc,Acirc,S)

M′ = RAMCEvalK(pk, 1T , P,M,Acirc)

and the probability is taken over the randomness of pk := (A,B,B,Q,Z)
$← Setup(1λ) and

M
$← Zk×(m·n2)

q Acirc
$← Zk×(n·(n+log q)2)

q W
$← Zk×(n2+n·log q)

q

s
$← Dk

σ′ e
$← Dn2+n·log q

σ ecirc
$← Dn·(n+log q)2

σ′ E
$← Dt×(n·t)

σ̃

Finally, RAMCEvalPH and RAMCEvalK can be evaluated in time T ·poly(λ, log q) on a RAM.

37



6 Rate-1 AB-LFE for RAM Programs

In this section, we construct a rate-1 AB-LFE for RAM.

6.1 Definition

We recall the definition of attribute-based laconic function evaluation (AB-LFE) [QWW18]
for RAM programs. For convenience, we define only the version for single-bit messages, but
it is straightforward to generalize it to strings of arbitrary length.

Definition 6.1 (Attribute-Based Laconic Function Evaluation for RAM). Let ℓ := ℓ(λ) and
L := L(λ) be positive integers. An AB-LFE scheme for RAM consists of a tuple of PPT
algorithms (Setup,Hash,Enc,Dec) with the following syntax.

Setup(1λ): The setup algorithm is probabilistic, it takes as input the security parameter 1λ

and outputs a public key pk.

Compress(pk, 1T , P,y): The compression algorithm is deterministic, it takes as input a public
key, a running time 1T , the description of a RAM program P and an initial state for
the RAM y ∈ Z≤L−ℓ

2 . The output is a digest h.

Enc(pk, h,x, j, α, µ): The encryption algorithm is probabilistic, it takes as input a public key
pk, a digest h, an attribute x ∈ Z≤ℓ

2 , an index j ∈ [L], a value α, and a message
µ ∈ {0, 1}. The output is an encoding E.

Dec(pk, E, 1T , P,y): The decoding procedure is deterministic, it takes as input a public key
pk, an encoding E, a running time 1T , a RAM program P and its initial state y. The
output is a message µ ∈ {0, 1,⊥}.

For correctness, we require that there must exist a negligible function negl(λ) such that,
for every sufficiently large λ, every RAM program P , every running time T ∈ N, every
x ∈ Z≤ℓ

2 and y ∈ Z≤L−ℓ
2 , index j ∈ [L] and value α such that the j-th element in the state of

P T (x,y) is α, and every message µ ∈ {0, 1}, it holds that:

Pr
[
Dec(pk, E, 1T , P,y) ̸= µ

]
≤ negl(λ),

where the probability is taken over the randomness of the procedures pk
$← Setup(1λ),

h← Compress(pk, 1T , P,y) and E
$← Enc(pk, h,x, j, α, µ). We recall the definition of selective

security.

Definition 6.2 (Selective Security). An AB-LFE scheme (Setup,Compress,Enc,Dec) is se-
lectively secure if for every x ∈ Z≤ℓ

2 , y ∈ Z≤L−ℓ
2 and PPT adversary A that outputs a

tuple (j, α, P, 1T , aux) where the j-th entry in the state of P T (x,y) is not α, the following
distributions are computationally indistinguishable:

(pk,Enc(pk, h,x, j, α, 0), aux) ≈c (pk,Enc(pk, h,x, j, α, 1), aux)

where pk
$← Setup(1λ), h← Compress(pk, 1T , P,y) and (j, α, P, 1T , aux)

$← A(1λ, pk).

38



For a security parameter λ and a RAM program with running time T and memory L,
we require that the algorithms of AB-LFE satisfy the following efficiency requirements:

• The runtime of the Setup algorithm is bounded by poly(λ, logL).

• The runtime of the Enc algorithm is bounded by |x| · poly(λ, logL). Furthermore, the
Enc algorithm is split into two subroutines:

d← Hash(pk,x) and Ẽ
$← Complete(pk, h,d, j, α, µ)

where the runtime of Hash is bounded by poly(λ, logL), and the final encoding consists
of E := (x, Ẽ).

• The runtime of the Compress algorithm is bounded by (T + |y|) · poly(λ, logL) and its
memory is bounded by poly(λ, logL, |y|).

• The runtime of the Dec algorithms is bounded by (T + |x|) · poly(λ, logL).

6.2 Construction

Our construction is described in Fig. 7. We only present the construction for unbounded
RAM programs, which requires assuming the hardness of a circular variant of the decomposed
LWE assumption (Definition 4.5). It is straightforward to modify the scheme so that the
runtime of the RAM program is a-priori bounded (and the ciphertext grows with such
runtime) and this variant can be proven secure only invoking the hardness of the plain
decomposed LWE.

Let q ≥ 3
√
λ · σ′ · 2λ. To see that the construction in Fig. 7 is correct, we observe that,

by the linearity of the hash function, it holds that (d, τ) = E.Hash(pk′, (x,y)). In other
words, h is a succinct encoding for the concatenation of x and y. As a consequence, due to
Theorem 5.9 and Lemma 5.6, we have that

c⊺ = s⊺ · (Aj,α
P,T + (vj − α) ·G) + e⊺P,T

where vj the j-th entry of P T (x,y) and ∥eP,T∥∞ ≤ Bbst. In other words, if vj = α, we have
that

c⊺ = s⊺ ·Aj,α
P,T + e⊺P,T .

Continuing with the analysis, we obtain that

c′ − c⊺ ·G−1(u) = s⊺ ·Aj,α
P,T ·G

−1(u) + e′ + ⌈q/2⌋ · µ− s⊺ ·Aj,α
P,T ·G

−1(u)− e⊺P,T ·G
−1(u)

= ⌈q/2⌋ · µ+ e′ − e⊺P,T ·G
−1(u).

We conclude by observing that

|e′ − e⊺P,T ·G
−1(u)| ≤

√
λ · σ′ · 2λ + n ·Bbst < q/4.

In other words, ⌈(c′ − c⊺ ·G−1(u)⌋2 = µ.

Next, we show that the scheme satisfies the standard definition of selective security.

39



Rate-1 AB-LFE for RAM Programs

Setup(1λ): Compute pk′ := (A,B,B,Q,Z)
$← E.Setup(1λ), M

$← Zk×(n·m)
q and Acirc

$←
Zk×n·(n+log q)2

q . Output the public key pk := (A,B,B,Q,Z,M,Acirc)

Compress(pk, 1T , P,y): Compute (d0, τ0)← E.Hash(pk′,y′) where y′ is obtained by pad-
ding y with ℓ zeros at the beginning. Compute

AP,T ← RAMCEvalK(pk′, 1T , P,M,Acirc)

Output h := (AP,T ,d0).

Enc(pk, h,x, j, α, µ): Compute (d1, τ1) ← E.Hash(pk′,x) and set d ← d0 + d1. Then,

sample s
$← Dk

σ′ and W
$← Zk×n·(n2+n·log q)

2 and compute

S←
[

W
s⊺ ·W + e⊺

]
− Bits(s)⊺ ⊗ Ik+1 ⊗ g⊺

h⊺ ← s⊺ · (M+ d⊺ ⊗G) + e⊺

z⊺ ← s⊺ · Z+ ẽ⊺

c⊺circ ← s⊺ · (Acirc + Bits(S)⊺ ⊗G) + e⊺circ

where e
$← Dn2·m

σ′ , ecirc
$← Dn·(n+log q)2

σ′ , e
$← Dn·(n+log q)

σ , E
$← Dt×(t·n)

σ̃ and

ẽ← vec(E · (It ⊗G−1(Q−1 ·G))).

Finally, let Rj be the RAM program that just outputs the j-th entry in its state
and let T ′ be its running time. Set

Aj,α
P,T ← CReadK(pk′,AP,T ,−Bits(j)⊺ ⊗G,Acirc) + α ·G
c′ ← s⊺ ·Aj,α

P,T ·G
−1(u) + e′ + ⌈q/2⌋ · µ

where u
$← Zk

q and e′
$← D2λ·σ′ . Output E := (x,h, z,S, ccirc,u, c

′, j, α).

Dec(pk, E, 1T , P,y): If the j-th entry of P T (x,y) is not α, output⊥. Otherwise, compute
(d, τ)← E.Hash(pk′, (x,y)) and

AP,T ← RAMCEvalK(pk′, 1T , P,M,Acirc)

(d′, τ ′,h′)← RAMCEvalPH(pk′, 1T , P, z,h,M,d, τ, ccirc,Acirc,S)

(vj, c)← CReadPH(pk′, z,h′,AP,T ,d
′, τ ′,0,−Bits(j)⊺ ⊗G, j, ccirc,Acirc,S).

Output ⌈c′ − c⊺ ·G−1(u)⌋2.

Figure 7: Rate-1 AB-LFE for RAM Programs

40



Theorem 6.3. Assuming the hardness of the small-secret circular decomposed LWE problem,
the construction in Fig. 7 is a selectively secure AB-LFE scheme for RAM programs.

Proof. Suppose that the j-th entry of P T (x,y) (let it be vj) is not equal to α. We proceed
by means of an hybrid argument, showing that the distributions

(pk,Enc(pk, h,x, j, α, 0), aux) (pk,Enc(pk, h,x, j, α, 1), aux)

are both computationally indistinguishable from the distribution in Hybrid 4.

• Hybrid 0: This corresponds to (pk,Enc(pk, h,x, j, α, b), aux).

• Hybrid 1: We modify the distribution of c′. Specifically, we set

c′ ← ⌈q/2⌋ · µ+ e′ + c⊺ ·G−1(u)− s⊺ · u− e⊺P,T ·G
−1(u).

This hybrid is identical to the previous one. Indeed,

c⊺ ·G−1(u)− (vj − α) · s⊺ ·G ·G−1(u)− e⊺P,T ·G
−1(u) = s⊺ ·Aj,α

P,T ·G
−1(u).

• Hybrid 2: We modify the distribution of c′. Specifically, we set

c′ ← ⌈q/2⌋ · µ+ e′ − e′′ + c⊺ ·G−1(u)− s⊺ · u

where e′′
$← Dσ′ . This hybrid is statistically indistinguishable from the previous one

as e′ is sampled from a discrete Gaussian distribution with parameter 2λ times bigger
than σ′.

• Hybrid 3: we modify the distribution ofM andAcirc: we sampleM′ $← Zk×(n2·m)
q ,A′

circ
$←

Zk×n·(n+log q)2

q and we set M ← M′ − d⊺ ⊗G and Acirc ← A′
circ − Bits(S)⊺ ⊗G. This

hybrid is perfectly indistinguishable from Hybrid 2 (notice that this works only because
we are proving selective security).

• Hybrid 4: We modify the distribution of (h, z,S, ccirc, c
′): we sample all of the at

random except for z which we set to vec(U · (It⊗G−1(Q−1 ·G))) where U
$← Zt×(n·t)

q .
This hybrid is indistinguishable from Hybrid 3 under small-secret circular decomposed
LWE. Notice that c′ looks random because it is masked by s⊺ · u + e′′. The reduction
works as follows: given a tuple (A,B,Q,M,v⊺,U,S), we set B← B · (It⊗G−1(Q−1 ·
G)) and z ← vec(U · (It ⊗ G−1(Q−1 · G))). Then, we split M into three blocks

A′
circ ∈ Zk×n·(n+log q)2

q , M′ ∈ Zk×(n2·m)
q and u ∈ Zk

q . We split v accordingly: we derive

ccirc ∈ Zn·(n+log q)2

q , h ∈ Zn2·m
q and c′′ ∈ Zq. The rest is computed as in Hybrid 3. The

only exception is c′ which is computed as c′ ← ⌈q/2⌋ ·µ+e′+c⊺ ·G−1(u)− c′′. Observe
that if we received a real circular decomposed LWE sample, the view of the adversary
is as in Hybrid 3. Otherwise, the view of the adversary is as in Hybrid 4. Indeed,
notice that

z⊺ = s⊺ · Z+ ẽ⊺

41



= s⊺ ·Π · (It ⊗ (A ·B) + It ⊗ It ⊗G) + vec(E · (It ⊗G−1(Q−1 ·G)))⊺

= vec((It ⊗ s⊺) · (A ·B+ It ⊗G))⊺ + vec(E · (It ⊗G−1(Q−1 ·G)))⊺

= vec(((It ⊗ s⊺) · (A ·B+ It ⊗ (Q ·G)) + E) · (It ⊗G−1(Q−1 ·G)))⊺

≈c vec(U · (It ⊗G−1(Q−1 ·G)))⊺.

Given that the view of the adversary in Hybrid 4 is independent of the message, the proof
is concluded.

6.3 Fully-Secure LFE for RAM

Our AB-LFE scheme for RAM can be easily turned into a full-blown LFE [QWW18], i.e.,
the decoder will now receive P T (x,y) without learning any additional information about x.
We can obtain this using two approaches, both of them summarised in [QWW18], that we
sketch below.

The Garbled Circuit Approach. The first approach is due Goldwasser et al. [GKP+13b]:
We encrypt x using RAM-FHE [LMW23] and we garble the decryption circuit with the
secret-key hardcoded. Then, we use AB-LFE to encrypt the wire labels and ensure that we
only reveal those associated with the encryption of P T (x,y).

This construction can be made rate-1 in x by using hybrid encryption. However, both the
size of the LFE hash and that of the encoder message will suffer from a poly(λ) multiplicative
overhead in the output size.

The Dual Use Approach. The other solution is to make a non-black-box use of our
AB-LFE scheme and rely on the trick of [BTVW17]. Specifically, referring to Fig. 7, we now
drop µ and its encryption c′. The encoder will generate a RAM-FHE encryption [LMW23] of
x (we make it rate-1 in |x| using hybrid encryption) and will produce an AB-LFE encoding
for such ciphertext. Instead of homomorphically evaluating P , we will homomorphically
evaluate the RAM-FHE evaluation of P on the ciphertext. In other words, the decoder
will derive a BGG+ encoding [BGG+14] of the RAM-FHE encryption of P T (x,y) in time
proportional to T · poly(λ, logL). To ensure decryption, we make the encoder produce also
a GSW encryption [GSW13] of the RAM-FHE secret key skram-fhe using s as decryption key,
along with a BGG+ encoding of such ciphertext using s as a secret. Using this material, the
decoder is therefore able to derive a BGG+ encoding of the GSW encryption of P T (x,y) (we
are performing the RAM-FHE decryption inside GSW, inside BGG+ encodings). We recall
that the decryption key for such GSW ciphertext is the vector s under which the BGG+

encoding is generated. Therefore, using the trick of [BTVW17], we can obliviously perform
the decryption inside the encoding, obtaining

c̃⊺ = s⊺ ·A′′
P,T − P T (x,y)⊺ · ⌈q/2⌋+ ẽ⊺

where A′′
P,T is a matrix known to the decoder and computable in time T · poly(λ, logL)

given P and T , and ẽ is a noise vector with ℓ∞-norm smaller than q/4. To decrypt, we need

42



to provide the decoder with information about s⊺ · A′′
P,T . Notice that this vector has size

|P T (x,y)| · log q.
To make the scheme rate-1 in the output size, we therefore rely on a succinct MOLE2 as in

[AMR25, BJSS25, ARS24]: The decoder will compute a MOLE hash hMOLE ← MOLE.Hash(A′′
P,T )

at hashing time, sending it to the encoder. The encoder will augment its message with a
MOLE encoding of s and a rounded MOLE encoder share c0 ← ⌈MOLE.EncEval(hMOLE, s)⌋2.
The decoder will then retrieve c1 ←

⌈
MOLE.HashEval(EMOLE,A

′′
P,T )

⌋
2
which satisfies

c0 ⊕ c1 =
⌈
s⊺ ·A′′

P,T

⌋
2
.

Finally, it will obtain P T (x,y) = c0⊕c1⊕⌈c̃⌋2 (we are relying on the “distributed rounding”
trick of [DHRW16]). We have obtained an LFE scheme for RAM programs where the hash
size is poly(λ, logL) and the encoding size is |x|+ |P T (x,y)|+poly(λ, logL). Moreover, the
decoder running time is (T + |x|+ |y|) · poly(λ, logL).

7 Succinct Randomised Encodings

In the following we present our construction of succinct randomised encodings (SRE).

7.1 Witness Encryption for P

As a first step, we define the notion of witness encryption [GGSW13] for RAM programs. In
more details, a witness encryption scheme consists of two algorithms WE.Enc and WE.Dec
where WE.Enc(1λ, T, P,x, α, µ) takes as input the security parameter 1λ, a running time T ,
a RAM program P , its initial state x, a target vector α and a message µ and returns a
ciphertext c. We require that:

WE.Dec(1T , P,x, i, c) = µi

if the i-th bit of P T (x) is αi. We define security next.

Definition 7.1 (Semantic Security). We say that a witness encryption scheme (WE.Enc,
WE.Dec) is secure, if for all messages (µ(0), µ(1)), all programs P , all running time T , all

initial states x and all targets α such that µ
(0)
i = µ

(1)
i whenever the i-th bit of P T (x) coincides

with αi, it holds that the following distributions are computationally indistinguishable:

WE.Enc(1λ, T, P,x, α, µ(0)) ≈c WE.Enc(1λ, T, P,x, α, µ(1)).

Note that the notion is trivial to achieve if one does not place any further constraints:
The encryption algorithm can simply run P and check if the i-th output entry is αi, returning
µi if that is the case and ⊥ otherwise. In this work, we are interested in the settings where
the runtime of WE.Enc is much smaller (ideally poly-logarithmic) than that of P .

2A succinct MOLE (matrix oblivious linear evaluation) consists of a primitive that allows two parties,
a hasher holding a matrix A ∈ Zk×t

q and an encoder holding a vector s ∈ Zk
q , to derive an additive secret-

sharing of s⊺ ·A using one round of simultaneous interaction and total communication k ·poly(λ, log t). The
primitive can be built from LWE.

43



7.2 Construction of Witness Encryption for P

Suppose that µ has size m. Our compilation process starts from the following ingredients:

• A garbling scheme for circuits (Garble,Eval).

• The ABE-LFE for RAM programs (Setup,Compress,Hash,Complete,Dec) constructed
in Section 6. Given that we consider inputless programs, we omit the parameter y
from the inputs of Hash. Let ℓ := |h|, where h is the output of the Compress algorithm.
Notice that ℓ ≤ poly(λ).

As the first step, we reduce the memory of the encryption algorithm to a polynomial in-
dependent of the memory bound L. The new witness encryption ciphertext consists of
pk

$← Setup(1λ) and C̃, (labj,hj
)j∈[ℓ], where

h← Compress(pk, 1T
′
, U),

(
C̃, (labj,b) j∈[ℓ]

b∈{0,1}

)
$← Garble(1λ, C)

and C is the circuit that, on input h, returns(
Ei,αi

$← Complete(pk, h,d, i, αi, µi)
)
i∈[m]

for d := Hash(pk, (x, P )). Above, U denotes the universal RAM and T ′ denotes the time
required for U to evaluate P T (x). Notice that T ′ ≤ T ·O(|P |). Moreover, the operation will
have a O(|P |) additive overhead in memory. The decryption algorithm simply evaluates the
garbled circuit to recover the encoding E, which is decoded to µi if the i-th bit of P T (x) is
αi. Security follows immediately from the security of AB-LFE and the garbling scheme.

We can also see that, the encryption algorithm requires memory

(|x|+ |P |) · poly(λ) +m · poly(λ),

by the efficiency of the AB-LFE. Furthermore, except for Compress(pk, 1T
′
, U), which runs

in T · poly(λ) · |P | steps, the runtime of all other operations is at most

(|x|+ |P |) · poly(λ) +m · poly(λ).

Finally, the ciphertext size is just m · poly(λ).
Now, imagine that instead of directly providing (labj,hj

)j, we encrypt (labj,b)j,b using

another witness encryption scheme that computes Compress(pk, 1T
′
, U) and reveals the labels

based on the result of such computation. This would immediately lead to another witness
encryption scheme for P with potentially better efficiency: we just need the encryption of
(labj,b)j,b to run in time poly(λ, log T ). The good news is that achieving this for such RAM
program is easier than achieving this for the original program P . This is because there exists
a RAM program D that, on input pk, computes Compress(pk, 1T

′
, U) in time T ′ ·poly(λ) and

space poly(λ, logL, log|P |) = poly(λ). Moreover, the description of D is upper-bounded by
a fixed polynomial in λ. We can henceforth consider without loss of generality programs
whose memory and description size is bounded by a fixed polynomial poly(λ).

44



Basic Compiler. Next, we describe our basic compiler. We consider a program P with
tape of size L, for some L = poly(λ), which determines whether to output a tuple of L-many
messages (µ0,0, µ0,1 . . . , µL−1,0, µL−1,1). Specifically, decryption should reveal µj,b only if the
j-th bit output by P is b. Suppose that the description size of P is upper-bounded by a fixed
polynomial in λ and that P has runtime T . We then describe how to construct a witness
encryption for P with reduced runtime. Let p := p(λ) be a polynomial to be determined
later, we call this the compression parameter. The compiler is specified in Fig. 8.

Correctness. We show that during decryption,

lab
(k)
j = lab

(k)

j,y
(k)
j

and lab
(k)

w = lab
(k)

w,hw

where y(k) is obtained by running U on (x, P ) for k · T/p steps.

We proceed by induction over k starting from k = 0 until k = p. The claim is clearly
true for k = 0. We show that if it is true for k, it is also true for k+1. By the correctness of
garbled circuits, at the (k+1)-th step, for every j ∈ [L], w ∈ [ℓ] and b ∈ {0, 1}, it holds that

lab
(k+1)

w = lab
(k+1)

w,hw
, and Ek,j,b = Enc(pk, h,x(k), j, b, lab

(k+1)
j,b ; r

(k)
j,b ).

Therefore, by the correctness of the AB-LFE, we have that, for every k < p− 1

lab
(k+1)
j = lab

(k+1)

j,y
(k+1)
j

.

To conclude, by the correctness of AB-LFE, we obtain that, if the j-th bit output by P is 0,
lab

(p)
j = µj,0. Otherwise, lab

(p)
j = µj,1.

Efficiency and Parameters. We derive a bound on the runtime of the encryption al-
gorithm. Note that L = L + poly(λ) whereas T = T · poly(λ). The garbling algorithm to
compute {C̃k}k is bounded by p · poly(λ, L), since the runtime of the underlying circuit is a
fixed polynomial in the security parameter, and it is repeated p-many times (we recall that
L is bounded by a fixed polynomial poly(λ)). The only subroutine of the computation that
depends on T is the derivation of the AB-LFE digests h. This computation can be performed
by D on input pk in time

T · poly(λ)
p

and memory poly(λ, logL) by the efficiency property of the AB-LFE. By choosing a suffi-
ciently large polynomial p(λ), we can ensure that the running time remains smaller than
T/2. Overall, we obtained a witness encryption algorithm with:

• Runtime bounded by T
2
.

• Memory bounded by some fixed poly(λ).

• Output (i.e., ciphertext) size bounded by some fixed poly(λ, L, p) = poly(λ).

45



Basic Compiler – Witness Encryption for P

Enc(1λ, T, P,x, µ): Sample pk
$← Setup(1λ) and let y ← (x, P ). Let T and L be the

running time and the memory required by the universal RAM U to compute P T (x)
on input y. Then compute:

h← Compress(pk, 1
T
p , U)

Define the variables (lab
(p)
j,b := µj,b)j∈[L],b∈{0,1}, (lab

(p)
j,b := ⊥)j∈[L]\[L],b∈{0,1} and

(lab
(p)

w,b := ⊥)w∈[ℓ],b∈{0,1}. Then, for k = p− 1, . . . , 0:

1. Define Ck as the circuit that, on input a value y and an AB-LFE digest h,
outputs(

lab
(k+1)

w,hw

)
w∈[ℓ]

and
(
Enc(pk, h,y, j, b, lab

(k+1)
j,b ; r

(k)
j,b )
)
j∈[L],b∈{0,1}

where the random coins r
(k)
j,b are hardwired in the description of the circuit.

2. Garble (C̃k, (lab
(k)
j,b , lab

(k)

w,b)w∈[ℓ],j∈[L],b∈{0,1})
$← Garble(1λ, Ck).

The final ciphertext consists of:

c :=

(
pk,
(
C̃k

)
k∈[p]

,
(
lab

(0)

w := lab
(0)

w,hw

)
w∈[ℓ]

,
(
lab

(0)
j := lab

(0)
j,yj

)
j∈[L]

)

Dec(1T , P,x, c): For k = 0, . . . , p− 1, the decryption algorithm proceeds as follows:

1. Evaluate the k-th garbled circuit to obtain:((
lab

(k+1)

w

)
w∈[ℓ]

, (Ek,j,b) j∈[L]
b∈{0,1}

)
← Eval

(
C̃k, (labj)

(k)

j∈[L], (lab
(k)

w )w∈[ℓ]

)
2. For all j ∈ [L] and all b ∈ {0, 1}, compute:

l̃ab
(k+1)

j,b ←Dec(pk, Ek,j,b, 1
T/p, P )

lab
(k+1)
j :=

l̃ab
(k+1)

j,0 if lab
(k+1)
j,0 ̸= ⊥

l̃ab
(k+1)

j,1 otherwise.

Output (lab
(p)
j )j∈[L].

Figure 8: Basic Compiler – Witness Encryption for P

46



Decryption instead requires time T · poly(λ) and memory L · poly(λ).
Theorem 7.2. Let (Garble,Eval) be a secure garbling scheme and let (Setup,Compress,Enc,
Dec) be a secure AB-LFE scheme for RAM programs, then the construction as described
above in a semantically secure witness encryption for P.

Proof. We proceed by changing the distribution of the ciphertext in a series of hybrids.

• Hybrid 0: This is the original distribution, i.e., the ciphertext is computed as described
in Fig. 8.

For k = 0, . . . , p− 1, we define a series of sub-hybrids as follows:

• Hybrid (k, 0): The labels:(
lab

(k)

j,y
(k)
j

)
j∈[L]

and
(
lab

(k)

w,hw

)
w∈[ℓ]

and the circuit C̃k are simulated by feeding to the simulator the outputs:(
lab

(k+1)

w,hw

)
w∈[ℓ]

and
(
Ek,j,b

$← Enc(pk, h,y(k), j, b, lab
(k+1)
j,b )

)
j∈[L]

b∈{0,1}

Indistinguishability follows by the security of the garbling schemes.

• Hybrid (k, 1): For all j ∈ [L], let bj be the j-th bit of y(k+1). Compute:(
Ek,j,bj⊕1

$← Enc(pk, h,y(k), j, bj ⊕ 1,0)
)
j∈[L]

and indistinguishability follows by the security of the AB-LFE. Note that this hybrid
effectively erases all labels (lab

(k+1)

j,1⊕y
(k+1)
j

)j∈[L].

In the last hybrid, the messages µj,b such that the j-th output bit of the program is
different from b are erased from the view of the distinguisher. This concludes our proof.

Recursive Composition. Observe that after applying out basic compiler, the ciphertext

is once again split into two parts: the labels (lab
(0)

w,hw
)w∈[ℓ], which need computations pro-

portional to T and the remaining part, which can be computed in time poly(λ). To further
reduce the running time to poly(λ, log T ), our idea is simple: instead of directly providing

(lab
(0)

w,hw
)w∈[ℓ], we encrypt (lab

(0)

w,b)w,b under our witness encryption scheme, where we evaluate
D on pk for T0 := T/2 steps.

We will proceed in this way for log T recursive iterations, halving the encryption time at
every step. In particular, at the i-th iteration, we will augment the ciphertext with a new
witness encryption which will evaluate D for

Ti :=
Ti−1

2

47



steps. To summarise, after log T recursive iterations, we obtain a witness encryption scheme
for P where the encryption runtime is

(|x|+ |P |) · poly(λ) +m · poly(λ) + poly(λ, log T )

and the space complexity is

(|x|+ |P |) · poly(λ) +m · poly(λ) + poly(λ, log T ).

Decryption requires instead T ·poly(λ)·|P | runtime and L·poly(λ)+|P | space. As a matter of
fact, decryption requires us to sequentially evaluate a decryption for each recursive iteration
(it is not a nested execution of decryptions): In other words, the running times of the log T
decryptions will pile up additively.

7.3 Construction of SRE

Assuming the construction of a witness encryption for P with the above efficiency, one can
construct SRE using standard techniques. Recall that the only difference between witness
encryption and SRE is that SRE must also protect the privacy of the computation. To
achieve this, we can appeal to an idea of [GKP+13b]: We encrypt a description of the RAM
program P and its initial state x, using a fully-homomorphic encryption scheme and we run
a witness encryption for P on the homomorphic computation, evaluating a universal RAM.
The encrypted messages consist of the labels obtained by garbling the FHE decryption,
where the secret key is hard-coded. Witness encryption will ensure that only the labels for
the right FHE ciphertext will be revealed. This achieves the desired efficiency, except that
the evaluator now runs in time proportional to the circuit computing P . To achieve runtime
proportional to the RAM program P , we can instead use fully-homomorphic encryption for
RAM [LMW23]. Since this is a standard transformation, we omit details here and we refer
to [GKP+13b] for a formal analysis.

It is even possible to adapt this approach to make the encoding rate-1 in the size of the
output by relying on the rate-1 LFE sketched in Section 6.3: Instead of garbling the FHE
decryption, we garble the circuit that, on input a digest h′, produces

LFE.Enc(pk′, h′, skFHE)

where pk′
$← LFE.Setup(1λ) is made public and skFHE is the FHE secret key. The witness

encryption scheme will now compute LFE.Compress(pk′,FHE.Dec, ct) where ct is the output
of the FHE homomorphic evaluation.

8 Optimal Bounded-Time ABE for RAM

In this section we present our construction of ABE for RAM.

48



8.1 Definition

We recall the basic definitions of ABE.

Definition 8.1 (Bounded-Time ABE for RAM). Let L := L(λ) and T := T (λ) be positive
integers. A bounded-time ABE scheme for RAM consists of a tuple of PPT algorithms
(Setup,KeyGen,Enc,Dec) with the following syntax.

Setup(1λ, 1T ): The setup algorithm is probabilistic, it takes as input the security parameter
1λ, a running time upper bound 1T and outputs a master public key mpk and a master
secret msk.

KeyGen(msk, 1t, P ): The key generation algorithm is probabilistic, it takes as input a master
secret key, a running time 1t, where t ≤ T , and the description of a RAM program P .
The output is a secret key skP,t.

Enc(mpk,x, µ): The encryption algorithm is probabilistic, it takes as input a master public
key mpk, an attribute x ∈ Z≤L

2 , and a message µ ∈ {0, 1}. The output is a ciphertext
ct.

Dec(ct, skP,t): The decryption procedure is deterministic, it takes as input a ciphertext ct and
a secret key skP,t. The output is a message µ ∈ {0, 1,⊥}.

For correctness, we require that there must exist a negligible function negl(λ) such that,
for every sufficiently large λ, every RAM machine P , every running time t ≤ T , every
x ∈ Z≤L

2 such that the first entry of P t(x) is 0, and every message µ ∈ {0, 1}, it holds that:

Pr [Dec(ct, skP,t) ̸= µ] ≤ negl(λ),

where the probability is taken over the randomness of the procedures (mpk,msk)
$← Setup(1λ, 1T ),

skP,t
$← Hash(msk, 1t, P ) and ct

$← Enc(mpk,x, µ). We recall the definition of selective secur-
ity.

Definition 8.2 (Selective Security). An ABE scheme (Setup,KeyGen,Enc,Dec) is selectively
secure if, for every x ∈ Z≤L

2 , we have that the following distributions are computationally
indistinguishable:

(mpk,Enc(mpk,x, 0)) ≈c (mpk,Enc(mpk,x, 1))

where (mpk,msk)
$← Setup(1λ, 1T ), even if the distinguisher has unrestricted oracle access

to the modified KeyGen oracle that answers only queries (P, t) for which the first entry of
P t(x) is not 0.

For a security parameter λ, running time upper bound T and memory upper bound L,
we require that the algorithms of ABE satisfy the following efficiency requirements:

• The runtime of the Setup algorithm is bounded by poly(λ, T, logL).

• The runtime of the KeyGen algorithm is bounded by poly(λ, T, logL).

49



• The runtime of the Enc algorithm is bounded by |x| · poly(λ, T, logL). Furthermore,
the Enc algorithm is split into two subroutines:

(d, τ)← Hash(mpk,x) and c
$← Complete(mpk,d, µ)

where the runtime of Complete is bounded by poly(λ, T, logL), and the final encoding
consists of ct := (x, c).

• The runtime of the Dec algorithms is bounded by |x| · poly(λ, T, logL).

8.2 Construction

Let q ≥ σ · 2T ·logL·ω(log λ), σ ≥ 2T ·logL·ω(log λ) and m ≥ 2k log q. We present our construction
in Fig. 9.

To prove correctness, suppose that the first bit of P t(x) is y = 0. Due to Theorem 5.8
and Lemma 5.4, we have that

c⊺ = s⊺ · (AP,t + y ·G) + e⊺P,t

where ∥eP,t∥∞ ≤ poly(λt·logL, Bt·logL) · (B̃ + σ′). In other words, if y = 0, we have that

c⊺ = s⊺ ·AP,t + e⊺P,t.

We conclude that[
v⊺, z⊺, c⊺

]
· kP,t − c′

= (s⊺ ·
[
V, Z, AP,t

]
+
[
e⊺, ẽ⊺, e⊺P,t

]
) · kP,t − s⊺ · a− e′ + ⌈q/2⌋ · µ

= s⊺ ·
[
V, Z, AP,t

]
· kP,t +

[
e⊺, ẽ⊺, e⊺P,t

]
· kP,t − s⊺ · a− e′ + ⌈q/2⌋ · µ

= s⊺ · a+
[
e⊺, ẽ⊺, e⊺P,t

]
· kP,t − s⊺ · a− e′ + ⌈q/2⌋ · µ

= ⌈q/2⌋ · µ+
[
e⊺, ẽ⊺, e⊺P,t

]
· kP,t − e′.

Notice that ∥
[
e⊺, ẽ⊺, e⊺P,t

]
· kP,t − e′∥∞ ≤ σ · poly(λt·logL, Bt·logL) · (B̃ + σ′). Given our

choice of q, we obtain that
⌈[
v⊺, z⊺, c⊺

]
· kP,t − c′

⌋
2
= µ.

Theorem 8.3. Assuming the hardness of decomposed LWE, the construction in Fig. 9 is a
selectively secure, bounded time, attribute-based encryption scheme for RAM.

Proof. We proceed by means of a series of hybrids.

• Hybrid 0: This corresponds to the real world execution of the game. Specifically, we
challenge chiphertext consists of the encryption of b.

• Hybrid 1: We modify the distribution of M. First, we sample R
$← Zm×(n2·m)

2 and then
we set M ← V ·R − d⊺ ⊗G where d is the hash of the challenge x (we can do this
because we are proving selective security). This hybrid is statistically indistinguishable
from Hybrid 0 due to the leftover hash lemma.

50



Optimal Bounded-Time ABE for RAM

Setup(1λ, 1T ): Sample pk′ := (A,B,B,Q,Z)
$← E.Setup(1λ), M

$← Zk×(n·m)
q , (V, ν)

$←
TrapGen(1k, 1m, q) and a

$← Zk
q . Output mpk := (V,A,B,B,Q,Z,M, a) and

msk := ν.

KeyGen(msk, 1t, P ): Compute

A′
P,t ←M · RAMEvalK(pk′, 1t, P,M)

AP,t ←
[
A′

P,t, 0
]
· ReadK(A,A′

P,t,0).

Then, derive kP,t
$← SampleRight(msk,

[
Z, AP,t

]
, a, σ). Output skP,t =

(1t, P,A′
P,t,kP,t).

Enc(mpk,x, µ): Sample s
$← Dk

σ′ and compute (d, τ)← E.Hash(pk′,x). Then, compute

v⊺ ← s⊺ ·V + e⊺

h⊺ ← s⊺ · (M+ d⊺ ⊗G) + e⊺

z⊺ ← s⊺ · Z+ ẽ⊺

c′ ← s⊺ · a+ e′ − ⌈q/2⌋ · µ

where e
$← Dn2·m

σ′ , e′
$← Dσ′ , e

$← Dm
σ′ , E

$← Dt×(t·n)
σ̃ and ẽ← vec(E·(It⊗G−1(Q−1 ·

G))). Output ct := (x,v,h, z, c′).

Dec(ct, skP,t): If the first bit of P t(x) is not 0, output ⊥. Otherwise, derive (d, τ) ←
E.Hash(pk′,x). Then, compute

(d′, τ ′)← RAMEvalP(pk′, 1t, P,d, τ)

HP,t,x ← RAMEvalH(pk′, 1t, P, z,h,d, τ)

h′⊺ ←
[
h⊺, z⊺

]
·HP,t,x

c⊺ ←
[
h′⊺, 0⊺, z⊺

]
ReadH(A,A′

P,t,0,d
′, τ ′, 0).

Output
⌈[
v⊺ z⊺ c⊺

]
· kP,t − c′

⌋
2
.

Figure 9: Optimal Bounded-Time ABE for RAM

51



• Hybrid 2: We modify the distribution of the queried decryption keys. Specifically,
upon receiving a query for P, t, we compute the first entry y of P t(x) and set

kP,t
$← SampleLeft

([
V, Z

]
,

[
R 0
0 It2·n

]
·
[
HP,t,x, 0

]
·Hx′,0,−y, a, σ

)
where

(d′, τ ′)← RAMEvalP(pk′, 1t, P,d, τ)

HP,t,x ← RAMEvalH(pk′, 1t, P,M,d, τ)

Hx′,0 ← ReadH(A,A′
P,t,0,d

′, τ ′, 0).

Notice that [
V, Z

]
·
[
R 0
0 It2·n

]
·
[
HP,t,x, 0

]
·Hx′,0 − y ·G

=
[
V ·R, Z

]
·
[
HP,t,x, 0

]
·Hx′,0 − y ·G

=
[
M+ d⊺ ⊗G, Z

]
·
[
HP,t,x, 0

]
·Hx′,0 − y ·G

=
[
A′

P,t + d′⊺ ⊗G, 0
]
·Hx′,0 − y ·G

= AP,t + y ·G− y ·G
= AP,t.

Moreover, for every vector e of suitable length, it holds that∥∥∥∥[R 0
0 It2·n

]
·
[
HP,t,x, 0

]
·Hx′,0

∥∥∥∥
∞
≤ poly(λt·logβ L, Bt·logβ L) ≤ σ/ω(

√
logm).

By Lemma 3.4, this hybrid is statistically indistinguishable from Hybrid 1.

• Hybrid 3: We modify the distribution of V. Specifically, we sample it uniformly at
random. This hybrid is statistically indistinguishable from Hybrid 2.

• Hybrid 4: We modify the distribution of ct. Specifically, we sample v,h and c′ at
random and we set z to vec(U · (It⊗G−1(Q−1 ·G)))) where U

$← Zt×(t·n)
q . This hybrid

is indistinguishable from the previous one under the hardness of decomposed LWE.
This can be showed similarly to what we did in the proof of Theorem 6.3.

Notice that in Hybrid 4 the view of the adversary contains no information about the challenge
bit b. This ends the proof.

9 Rate-1 Register ABE from Rate-1 ABE

In this section we define and construct a new register ABE scheme, building on the previously
constructed ABE.

52



9.1 Definition

We recall the definition of Register ABE.

Definition 9.1 (Bounded-Time Register ABE for RAM). Let L := L(λ), N := N(λ), and
T := T (λ) be positive integers. A bounded-time register ABE scheme for RAM consists of a
tuple of PPT algorithms (Setup,KeyGen,Aggregate,Enc,Dec) with the following syntax.

Setup(1λ, 1T , 1N): The setup algorithm is probabilistic, it takes as input the security para-
meter 1λ, a running time upper bound 1T , a number of parties upper bound 1N and
outputs public parameters crs.

KeyGen(crs, t, P ): The key generation algorithm is probabilistic, it takes as input public para-
meters crs and a RAM program P and running time t ≤ T . The output is a public key
pk and a secret key sk.

Aggregate(crs, t0, P0, pk0, . . . , tn−1, PN−1, pkN−1): The aggregation algorithm is deterministic
and takes as input public parameters crs and N triples (ti, Pi, pki) where ti ≤ T , Pi is
a RAM program and pki is a public key. The output is an aggregated key mpk and N
helper keys (hpki)i∈[N ].

Enc(mpk,x, µ): The encryption algorithm is probabilistic, it takes as input an aggregated
public key mpk, an attribute x ∈ Z≤L

2 , and a message µ ∈ {0, 1}. The output is a
ciphertext ct.

Dec(ct, hpki, sk): The decryption procedure is deterministic, it takes as input a ciphertext ct,
a helper key hpki and a secret key sk. The output is a message µ ∈ {0, 1,⊥}.

For correctness, we require that there must exist a negligible function negl(λ) such that,
for every sufficiently large λ, every list of running times (tj)j∈[N ] where tj ≤ T , every list of

RAM (Pj)j∈[N ], every x ∈ Z≤L
2 , every i ∈ [N ] such that the first bit of P ti

i (x) is 0, and every
message µ ∈ {0, 1}, it holds that:

Pr [Dec(ct, hpki, ski) ̸= µ] ≤ negl(λ),

where the probability is taken over the randomness of the procedures

crs
$← Setup(1λ, 1T , 1N)

∀j ∈ [N ] : (pkj, skj)
$← KeyGen(crs, tj, Pj)

(mpk, (hpkj)j∈[N ])← Aggregate(crs, t0, P0, pk0, . . . , tN−1, PN−1, pkN−1)

ct
$← Enc(mpk,x, µ).

We recall the definition of very selective security.

Definition 9.2 (Very Selective Security). A register ABE scheme (Setup,KeyGen,Aggregate,
Enc,Dec) is very selectively secure if, for every polynomials N = N(λ) and T = T (λ), every
subset of corrupted parties C ⊆ [N ], randomness (rj)j∈C, RAM programs (Pj)j∈[N ], running

53



times (tj)j∈[N ] where tj ≤ T and every x ∈ Z≤L
2 where, for every j ∈ C, the first entry of

P
tj
j (x) is not 0, we have that the following distributions are computationally indistinguishable:

(crs, (pkj)j ̸∈C ,Enc(mpk,x, 0)) ≈c (crs, (pkj)j ̸∈C ,Enc(mpk,x, 1))

where

crs
$← Setup(1λ, 1T , 1N)

∀j ∈ C : (pkj, skj)← KeyGen(crs, tj, Pj; rj)

∀j ̸∈ C : (pkj, skj)
$← KeyGen(crs, tj, Pj)

(mpk, (hpkj)j∈[N ])← Aggregate(crs, t0, P0, pk0, . . . , tN−1, PN−1, pkN−1).

9.2 Construction

Our construction is based on a rate-1 ABE satisfying some additional properties:

• For any polynomial m = m(λ), the procedure Hash can be split into three parts
Hash0,Hash1,Hash2, given a (suitably padded) string

x := (x0,0, . . . ,x0,m−1,x1,0, . . . ,x1,m−1),

we have that Hash(mpk,x) = (d, τ) where

∀i ∈ [m], α ∈ {0, 1} : (d
(0)
α,i, τ

(0)
α,i )← Hash0(mpk,xα,i)

∀α ∈ {0, 1} : (d(1)
α , τ (1)α )← Hash1(mpk, (d

(0)
α,0, . . . ,d

(0)
α,m−1))

(d, τ (2))← Hash2(mpk, (d
(1)
0 ,d

(1)
1 )).

and for every Γ ⊆ {0, 1} × [m], we have that

Path(τ,Γ) =
⋃

(α,i)∈Γ

(τ (2) ∪ τ (1)α ∪ τ
(0)
α,i ).

Moreover, if, for every j ∈ {0, 1, 2} we denote the output size of Hashj by outj and the
input size by inj, we require that outj = poly(λ, log(inj)). Notice that we are essentially
asking that Hash has a Merkle tree structure as the construction in Section 8. In the
register ABE scheme we are about to present m = 2N .

• The decryption procedure succeeds even if we do not provide the full ciphertext.
Specifically, suppose our secret key is associated with the RAM program P t and
P t(x) = 0. Assume also that the ciphertext ct is split in (x, c) where c is produced
by Complete(mpk,d, µ), (d, τ) ← Hash(mpk,x). We require decryption to succeed
(with overwhelming probability) even if we are just provided with (τP,t,d, c) where
τP,t ← Path(τ, P t). Notice that our ABE scheme in Section 8 satisfies this property
as RAMEvalP and RAMEvalH work even if they receive as input τP,t instead of τ (see
Theorem 5.8).

54



For every i ∈ [N ], we define the RAM program Ui that performs the following operations:

1. It parses its tape as ((s0, t0, P0), r0, . . . , (sN−1, tN−1, PN−1), rN−1,x) where for every
j ∈ [N ], Pj is the description of a RAM program, tj ≤ T , rj and sj are binary strings
and x can be further split into 2N chunks x0, . . . ,x2N−1.

2. It checks whether Ext(si, ri) = 1 where Ext is a strong randomness extractor. In such
case, it outputs 1.

3. Otherwise, it computes P ti
i (x).

Let T be the running time of Ui. Notice that Ui never touches (sj, tj, Pj, rj)j ̸=i. The scheme
is specified in Fig. 10.

Correctness easily follows from the special correctness properties of our ABE scheme: We
observe that τi coincides with Path(τ, UT

i ) where

(d, τ) = Hash(mpk, ((s0, t0, P0), r0, . . . , (sN−1, tN−1, PN−1), rN−1,x)).

Notice also that, since Ext(si, ri) = 0 and the first entry of P ti
i (x) is 0, we have

UT
i ((s0, t0, P0), r0, (s1, t1, P1), r1, . . . , (sN−1, tN−1, PN−1), rN−1,x))

has the first entry equal to 0, so decryption succeeds.

Theorem 9.3. Suppose that ABE = (Setup,KeyGen,Hash,Complete,Dec) is a selectively
secure, bounded-time rate-1 ABE scheme for RAM with the properties described above. Let
Ext be a (λ, negl(λ))-strong randomness extractor and assume that in0− out0 ≥ λ. Then, the
construction in Fig. 10 is a very selectively secure, bounded-time, registered ABE scheme for
RAM.

Proof. We proceed by means of a series of hybrids.

• Hybrid 0: This corresponds to the real world execution of the game.

• Hybrid 1: We modify the distribution of the public keys of the honest parties. Spe-
cifically, at each query, we sample the strings s and r at random conditioned on
Ext(s, r) = 1. Since Hash0 is compressing, by the chain rule of min entropy,

H̃∞(r|d(0)) ≥ in0 − out0 ≥ λ.

So, since Ext is a (λ, negl(λ))-strong extractor, this hybrid is statistically indistinguish-
able from Hybrid 0.

• Hybrid 2: We modify the distribution of the ciphertexts. Specifically, instead of en-
crypting the challenge, we always encrypt 0. This hybrid is computationally indistin-
guishable from Hybrid 1 thanks to the special security properties of the ABE scheme.
Indeed, notice that for every i ∈ [N ] (including the indexes associated with honest
parties), the first entry of

UT
i ((s0, t0, P0), r0, (s1, t1, P1), r1, . . . , (sN−1, tN−1, PN−1), rN−1,x)

is different from 0.

55



Rate-1 Register ABE for RAM

Setup(1λ, 1T , 1N): Compute (mpk′,msk′)
$← ABE.Setup(1λ, 1T ) and, for every j ∈ [N ],

ki
$← ABE.KeyGen(msk′, 1T , Uj). Output crs := (mpk′, (kj)j∈[N ]).

KeyGen(crs, t, P ): Sample s
$← {0, 1}λ and r

$← {0, 1}in0 conditioned on Ext(s, r) = 0.
Then, compute (d(0), τ (0)) ← ABE.Hash0(mpk′, r). Output pk := (s,d(0)) and
sk := τ (0).

Aggregate(crs, t0, P0, pk0, . . . , tN−1, PN−1, pkN−1): For every j ∈ [N ], rewrite pkj as

(sj,d
(0)
2j+1) and compute (d

(0)
0,2j, τ

(0)
0,2j)← ABE.Hash0(mpk′, (sj, tj, Pj)). Then, set

(d
(1)
0 , τ

(1)
0 )← ABE.Hash1(mpk′, (d

(0)
0,0,d

(0)
0,1, . . . ,d

(0)
0,2N−1))

∀j ∈ [N ] : τ
(1)
0,j ← Path(τ

(1)
0 , 2j, 2j + 1).

Output mpk := (mpk′,d
(1)
0 ) and, for every j ∈ [N ], hpkj := (j, kj, τ

(1)
0,j , τ

(0)
0,2j).

Enc(mpk,x, µ): Rewrite x as (x0, . . . ,x2N−1) and compute

∀j ∈ [2N ] : (d
(0)
1,i , τ

(0)
1,j )← ABE.Hash0(mpk′,xj)

(d
(1)
1 , τ

(1)
1 )← ABE.Hash1(mpk′, (d

(0)
1,0,d

(0)
1,1, . . . ,d

(0)
1,2N−1))

(d, τ (2))← ABE.Hash2(mpk′, (d
(1)
0 ,d

(1)
1 )).

Output ct := (x, c) where c
$← ABE.Complete(mpk′,d, µ).

Dec(ct, hpki, sk): Rewrite x as (x0, . . . ,x2N−1) and compute

∀j ∈ [2N ] : (d
(0)
1,j , τ

(0)
1,j )← ABE.Hash0(mpk′,xj)

(d
(1)
1 , τ

(1)
1 )← ABE.Hash1(mpk′, (d

(0)
1,0,d

(0)
1,1, . . . ,d

(0)
1,2N−1))

(d, τ (2))← ABE.Hash2(mpk′, (d
(1)
0 ,d

(1)
1 ))

and set τi ← τ (2) ∪ τ (1)0,i ∪ τ
(1)
1 ∪ τ

(0)
0,2i ∪ sk∪

⋃
j∈[2N ] τ

(0)
1,j . Output ABE.Dec((τi, c), ki).

Figure 10: Rate-1 Register ABE for RAM

56



Notice that in Hybrid 2, the view of the adversary is independent of the challenge bit. This
ends the proof.

Acknowledgments

D.A. and G.M. are supported by the European Research Council through an ERC Start-
ing Grant (Grant agreement No. 101077455, ObfusQation). G.M. is also funded by the
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy - EXC 2092 CASA – 390781972. L.R. is supported by the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innova-
tion programme under grant agreement number 101124977 (DECRYPSIS) and the Danish
Independent Research Council under Grant-ID DFF-0165-00107B (C3PO).

References

[ABB10] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the
standard model. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of
LNCS, pages 553–572. Springer, Berlin, Heidelberg, May / June 2010. 18

[ACFQ22] Prabhanjan Ananth, Kai-Min Chung, Xiong Fan, and Luowen Qian. Collusion-
resistant functional encryption for RAMs. In Shweta Agrawal and Dongdai
Lin, editors, ASIACRYPT 2022, Part I, volume 13791 of LNCS, pages 160–194.
Springer, Cham, December 2022. 3

[AKY24a] Shweta Agrawal, Simran Kumari, and Shota Yamada. Attribute based encryp-
tion for turing machines from lattices. In Leonid Reyzin and Douglas Stebila, ed-
itors, CRYPTO 2024, Part III, volume 14922 of LNCS, pages 352–386. Springer,
Cham, August 2024. 7

[AKY24b] Shweta Agrawal, Simran Kumari, and Shota Yamada. Compact pseudorandom
functional encryption from evasive LWE. Cryptology ePrint Archive, Paper
2024/1719, 2024. 7

[AL18] Prabhanjan Ananth and Alex Lombardi. Succinct garbling schemes from func-
tional encryption through a local simulation paradigm. In Amos Beimel and
Stefan Dziembowski, editors, TCC 2018, Part II, volume 11240 of LNCS, pages
455–472. Springer, Cham, November 2018. 4

[AMR25] Damiano Abram, Giulio Malavolta, and Lawrence Roy. Oblivious tensor evalu-
ation and its applications. In 57th ACM STOC, 2025. 7, 11, 43

[AMZ24] Shweta Agrawalr, Giulio Malavolta, and Tianwei Zhang. Time-lock puzzles
from lattices. In Leonid Reyzin and Douglas Stebila, editors, CRYPTO 2024,
Part III, volume 14922 of LNCS, pages 425–456. Springer, Cham, August 2024.
4, 12

57



[AP09] Joel Alwen and Chris Peikert. Generating shorter bases for hard random lattices.
In STACS, 2009. 19

[ARS24] Damiano Abram, Lawrence Roy, and Peter Scholl. Succinct homomorphic
secret sharing. In Marc Joye and Gregor Leander, editors, EUROCRYPT 2024,
Part VI, volume 14656 of LNCS, pages 301–330. Springer, Cham, May 2024. 43

[AY20] Shweta Agrawal and Shota Yamada. Optimal broadcast encryption from pair-
ings and LWE. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020,
Part I, volume 12105 of LNCS, pages 13–43. Springer, Cham, May 2020. 5

[BCG+18] Nir Bitansky, Ran Canetti, Sanjam Garg, Justin Holmgren, Abhishek Jain,
Huijia Lin, Rafael Pass, Sidharth Telang, and Vinod Vaikuntanathan. Indistin-
guishability obfuscation for ram programs and succinct randomized encodings.
SIAM Journal on Computing, 47(3):1123–1210, 2018. 3, 4

[BDGM22] Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Factoring
and pairings are not necessary for IO: Circular-secure LWE suffices. In Mikolaj
Bojanczyk, Emanuela Merelli, and David P. Woodruff, editors, ICALP 2022,
volume 229 of LIPIcs, pages 28:1–28:20. Schloss Dagstuhl, July 2022. 3

[BG25] Nir Bitansky and Rachit Garg. Succinct randomized encodings from laconic
function evaluation, faster and simpler. In EUROCRYPT 2025, 2025. 4, 12

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko,
Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully
key-homomorphic encryption, arithmetic circuit ABE and compact garbled cir-
cuits. In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014,
volume 8441 of LNCS, pages 533–556. Springer, Berlin, Heidelberg, May 2014.
3, 7, 9, 13, 18, 19, 20, 35, 36, 37, 42

[BGL+15] Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Sidharth Telang. Suc-
cinct randomized encodings and their applications. In Proceedings of the forty-
seventh annual ACM symposium on Theory of Computing, pages 439–448, 2015.
3, 4

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled
circuits. In Ting Yu, George Danezis, and Virgil D. Gligor, editors, ACM CCS
2012, pages 784–796. ACM Press, October 2012. 22

[BJSS25] Elette Boyle, Abhishek Jain, Sacha Servan-Shreiber, and Akshayaran
Srinivasan. Simultaneous-message and succinct secure computation. In Crypto-
logy ePrint Archive, Paper 2025/096, 2025. 43

[BTVW17] Zvika Brakerski, Rotem Tsabary, Vinod Vaikuntanathan, and Hoeteck Wee.
Private constrained PRFs (and more) from LWE. In Yael Kalai and Leonid
Reyzin, editors, TCC 2017, Part I, volume 10677 of LNCS, pages 264–302.
Springer, Cham, November 2017. 42

58



[BÜW24] Chris Brzuska, Akin Ünal, and Ivy K. Y. Woo. Evasive LWE assumptions:
Definitions, classes, and counterexamples. In ASIACRYPT 2024, 2024. 7

[BV16] Zvika Brakerski and Vinod Vaikuntanathan. Circuit-ABE from LWE: Unboun-
ded attributes and semi-adaptive security. In Matthew Robshaw and Jonathan
Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS, pages 363–384.
Springer, Berlin, Heidelberg, August 2016. 7

[CHJV15] Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan. Suc-
cinct garbling and indistinguishability obfuscation for ram programs. In Pro-
ceedings of the forty-seventh annual ACM symposium on Theory of Computing,
pages 429–437, 2015. 3, 4

[CHKP10] David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or
how to delegate a lattice basis. In Henri Gilbert, editor, EUROCRYPT 2010,
volume 6110 of LNCS, pages 523–552. Springer, Berlin, Heidelberg, May / June
2010. 18

[CHW25] Jeffrey Champion, Yao-Ching Hsieh, and David J. Wu. Registered ABE and
adaptively-secure broadcast encryption from succinct LWE. Cryptology ePrint
Archive, Paper 2025/044, 2025. 5

[CW23] Valerio Cini and Hoeteck Wee. ABE for circuits with poly (λ)-sized keys from
LWE. In 64th FOCS, pages 435–446. IEEE Computer Society Press, November
2023. 7

[CW25] Valerio Cini and Hoeteck Wee. Faster abe for turing machines from circular
evasive lwe, 2025. 3, 7

[DHM+24] Fangqi Dong, Zihan Hao, Ethan Mook, Hoeteck Wee, and Daniel Wichs. Laconic
function evaluation and ABE for RAMs from (ring-)LWE. In Leonid Reyzin and
Douglas Stebila, editors, CRYPTO 2024, Part III, volume 14922 of LNCS, pages
107–142. Springer, Cham, August 2024. 3, 4, 5, 7

[DHMW24] Fangqi Dong, Zihan Hao, Ethan Mook, and Daniel Wichs. Laconic function eval-
uation, functional encryption and obfuscation for RAMs with sublinear compu-
tation. In Marc Joye and Gregor Leander, editors, EUROCRYPT 2024, Part II,
volume 14652 of LNCS, pages 190–218. Springer, Cham, May 2024. 3

[DHRW16] Yevgeniy Dodis, Shai Halevi, Ron D. Rothblum, and Daniel Wichs. Spooky
encryption and its applications. In Matthew Robshaw and Jonathan Katz,
editors, CRYPTO 2016, Part III, volume 9816 of LNCS, pages 93–122. Springer,
Berlin, Heidelberg, August 2016. 43

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy
extractors: How to generate strong keys from biometrics and other noisy data.
SIAM Journal on Computing, 38(1):97–139, 2008. 21

59



[DRS04] Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How to
generate strong keys from biometrics and other noisy data. In Christian Cachin
and Jan Camenisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages
523–540. Springer, Berlin, Heidelberg, May 2004. 21

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Mi-
chael Mitzenmacher, editor, 41st ACM STOC, pages 169–178. ACM Press,
May / June 2009. 6, 24

[GGSW13] Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption
and its applications. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum,
editors, 45th ACM STOC, pages 467–476. ACM Press, June 2013. 4, 43

[GKP+13a] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan,
and Nickolai Zeldovich. How to run Turing machines on encrypted data. In
Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043
of LNCS, pages 536–553. Springer, Berlin, Heidelberg, August 2013. 3

[GKP+13b] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan,
and Nickolai Zeldovich. Reusable garbled circuits and succinct functional en-
cryption. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th
ACM STOC, pages 555–564. ACM Press, June 2013. 12, 13, 42, 48

[GP21] Romain Gay and Rafael Pass. Indistinguishability obfuscation from circular se-
curity. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory
of Computing, pages 736–749, 2021. 3

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based
encryption for fine-grained access control of encrypted data. In Ari Juels, Re-
becca N. Wright, and Sabrina De Capitani di Vimercati, editors, ACM CCS
2006, pages 89–98. ACM Press, October / November 2006. Available as Crypto-
logy ePrint Archive Report 2006/309. 5

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard
lattices and new cryptographic constructions. In Richard E. Ladner and Cynthia
Dwork, editors, 40th ACM STOC, pages 197–206. ACM Press, May 2008. 18,
19

[GS18] Sanjam Garg and Akshayaram Srinivasan. A simple construction of iO for
Turing machines. In Amos Beimel and Stefan Dziembowski, editors, TCC 2018,
Part II, volume 11240 of LNCS, pages 425–454. Springer, Cham, November
2018. 4

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from
learning with errors: Conceptually-simpler, asymptotically-faster, attribute-
based. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I,
volume 8042 of LNCS, pages 75–92. Springer, Berlin, Heidelberg, August 2013.
11, 21, 42

60



[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based
encryption for circuits. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum,
editors, 45th ACM STOC, pages 545–554. ACM Press, June 2013. 7

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully ho-
momorphic signatures from standard lattices. In Rocco A. Servedio and Ronitt
Rubinfeld, editors, 47th ACM STOC, pages 469–477. ACM Press, June 2015. 9

[HHWW19] Ariel Hamlin, Justin Holmgren, Mor Weiss, and Daniel Wichs. On the plausib-
ility of fully homomorphic encryption for RAMs. In Alexandra Boldyreva and
Daniele Micciancio, editors, CRYPTO 2019, Part I, volume 11692 of LNCS,
pages 589–619. Springer, Cham, August 2019. 3

[HLL23] Yao-Ching Hsieh, Huijia Lin, and Ji Luo. Attribute-based encryption for cir-
cuits of unbounded depth from lattices. In 64th FOCS, pages 415–434. IEEE
Computer Society Press, November 2023. 4, 5, 7, 11, 13, 20, 32, 37

[HLWW23] Susan Hohenberger, George Lu, Brent Waters, and David J. Wu. Registered
attribute-based encryption. In Carmit Hazay and Martijn Stam, editors, EURO-
CRYPT 2023, Part III, volume 14006 of LNCS, pages 511–542. Springer, Cham,
April 2023. 5

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from
well-founded assumptions. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing, pages 60–73, 2021. 3

[JLS22] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from
LPN over Fp, DLIN, and PRGs in NC0. In Orr Dunkelman and Stefan Dziem-
bowski, editors, EUROCRYPT 2022, Part I, volume 13275 of LNCS, pages
670–699. Springer, Cham, May / June 2022. 3

[KLW15] Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability
obfuscation for Turing machines with unbounded memory. In Rocco A. Servedio
and Ronitt Rubinfeld, editors, 47th ACM STOC, pages 419–428. ACM Press,
June 2015. 3, 4

[LMW23] Wei-Kai Lin, Ethan Mook, and Daniel Wichs. Doubly efficient private inform-
ation retrieval and fully homomorphic RAM computation from ring LWE. In
Barna Saha and Rocco A. Servedio, editors, 55th ACM STOC, pages 595–608.
ACM Press, June 2023. 3, 13, 42, 48

[LV22] Alex Lombardi and Vinod Vaikuntanathan. Correlation-intractable hash func-
tions via shift-hiding. In Mark Braverman, editor, ITCS 2022, volume 215,
pages 102:1–102:16. LIPIcs, January / February 2022. 9

[MV24] Daniele Micciancio and Vinod Vaikuntanathan. SoK: Learning with errors,
circular security, and fully homomorphic encryption. In Qiang Tang and Vanessa
Teague, editors, PKC 2024, Part II, volume 14604 of LNCS, pages 291–321.
Springer, Cham, April 2024. 24

61



[QWW18] Willy Quach, Hoeteck Wee, and Daniel Wichs. Laconic function evaluation
and applications. In Mikkel Thorup, editor, 59th FOCS, pages 859–870. IEEE
Computer Society Press, October 2018. 4, 9, 11, 38, 42

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryp-
tography. Journal of the ACM, 2009. 19

[SW05] Amit Sahai and Brent R. Waters. Fuzzy identity-based encryption. In Ronald
Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 457–473.
Springer, Berlin, Heidelberg, May 2005. 5

[VWW22] Vinod Vaikuntanathan, Hoeteck Wee, and Daniel Wichs. Witness encryption
and null-IO from evasive LWE. In Shweta Agrawal and Dongdai Lin, editors,
ASIACRYPT 2022, Part I, volume 13791 of LNCS, pages 195–221. Springer,
Cham, December 2022. 7

[Wee22] Hoeteck Wee. Optimal broadcast encryption and CP-ABE from evasive lat-
tice assumptions. In Orr Dunkelman and Stefan Dziembowski, editors, EURO-
CRYPT 2022, Part II, volume 13276 of LNCS, pages 217–241. Springer, Cham,
May / June 2022. 7, 15

[Wee24] Hoeteck Wee. Circuit ABE with poly(depth, λ)-sized ciphertexts and keys from
lattices. In Leonid Reyzin and Douglas Stebila, editors, CRYPTO 2024, Part III,
volume 14922 of LNCS, pages 178–209. Springer, Cham, August 2024. 4, 6, 7,
19

[Wee25] Hoeteck Wee. Almost optimal kp and cp-abe for circuits from succinct lwe. In
EUROCRYPT 2025, 2025. 5, 7

[WW21] Hoeteck Wee and Daniel Wichs. Candidate obfuscation via oblivious LWE
sampling. In Anne Canteaut and François-Xavier Standaert, editors, EURO-
CRYPT 2021, Part III, volume 12698 of LNCS, pages 127–156. Springer, Cham,
October 2021. 3

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended ab-
stract). In 27th FOCS, pages 162–167. IEEE Computer Society Press, October
1986. 22

62


	1 Introduction
	1.1 Our Results
	1.2 The Decomposed LWE Problem

	2 Technical Overview
	2.1 A Primer on Succinct Oblivious Tensor Evaluation
	2.2 Compressing Lattice Encodings
	2.3 Applications

	3 Preliminaries
	3.1 Lattices and Hard Problems
	3.2 Key-Homomorphic Encodings à la BGG+ and HLL
	3.3 Information Theory
	3.4 Garbled Circuits

	4 The Decomposed LWE Problem
	4.1 Variants of Decomposed LWE

	5 Rate-1 Lattice Encodings for RAM Programs
	5.1 Reading Procedure
	5.2 Writing Procedure
	5.3 Homomorphic Evaluation of RAM

	6 Rate-1 AB-LFE for RAM Programs
	6.1 Definition
	6.2 Construction
	6.3 Fully-Secure LFE for RAM

	7 Succinct Randomised Encodings
	7.1 Witness Encryption for P
	7.2 Construction of Witness Encryption for P
	7.3 Construction of SRE

	8 Optimal Bounded-Time ABE for RAM
	8.1 Definition
	8.2 Construction

	9 Rate-1 Register ABE from Rate-1 ABE
	9.1 Definition
	9.2 Construction


