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Abstract. Updatable public-key encryption (UPKE) allows anyone to update a public key while
simultaneously producing an update token, given which the secret key holder could consistently update
the secret key. Furthermore, ciphertexts encrypted under the old public key remain secure even if the
updated secret key is leaked – a property much desired in secure messaging. All existing lattice-based
constructions of UPKE update keys by a noisy linear shift. As the noise accumulates, these schemes
either require super-polynomial-size moduli or an a priori bounded number of updates to maintain
decryption correctness.
Inspired by recent works on cryptography based on the lattice isomorphism problem, we propose
an alternative way to update keys in lattice-based UPKE. Instead of shifting, we rotate them. As
rotations do not induce norm growth, our construction supports an unbounded number of updates with
a polynomial-size modulus. The security of our scheme is based on the LWE assumption over hollow
matrices – matrices which generate linear codes with non-trivial hull – and the hardness of permutation
code equivalence. Along the way, we also show that LWE over hollow matrices is as hard as LWE over
uniform matrices, and that a leftover hash lemma holds for hollow matrices.

1 Introduction

In secure (group) messaging protocols, a strongly desired notion is forward security – messages sent before a
compromise remain unknown to the attacker. Perhaps the most known example is that of the ephemeral
Diffie-Hellman key exchange, where the two parties use fresh secret values a and b every interaction and
exchange (authenticated with a long-term secret) public values ga and gb to form a shared secret ga·b. Forward
secrecy is guaranteed by the decisional Diffie-Hellman assumption, even if the authentication mechanism is
also compromised. However, this requires interaction at every key exchange, so a more desirable solution is
that of a forward-secure (FS) public-key encryption (PKE) [CHK03].

In a FS-PKE, the key generation algorithm outputs an initial key-pair (pk0, sk0), after which every
subsequent public key pki can be computed from the previous public key pki−1 (by anyone) and similarly
every subsequent secret key ski can be computed from the previous secret key ski−1 (only by the initial
holder). The central property of a FS-PKE is that even if ski is compromised, any message encrypted under
pkj for j < i remains hidden to the attacker, in other words it is only possible to move forwards in the secret
key chain sk0 → sk1 → · · ·, but not backwards.4 Unfortunately, forward secure schemes typically suffer in
efficiency. It has been argued [DJK22] that the update mechanism, which yields the chains of public and
secret keys, is unnecessarily strict and requires the parties to stay synchronised, which is not always suitable
in the context of secure messaging.
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1.1 Updatable Public-Key Encryption

To remedy these concerns, the notion of updatable public-key encryption (UPKE) was introduced by [JMM19]
and [ACDT20] as a slight relaxation of forward security. A UPKE is a PKE scheme (KGen,Enc,Dec) that
comes with an update mechanism in the form of two additional algorithms UpdPk and UpdSk. Instead of
having strict chains of public and private keys, any sender, including a malicious one, can decide to update
another user’s public key pk by running UpdPk and generate a new public key pk′ along with an update token
up, which the receiver can use to update their corresponding secret key sk to sk′ by running UpdSk.

A UPKE scheme is deemed secure if it admits a relaxed notion of forward security. Namely, a UPKE
scheme is secure if an exposed secret key sk′ does not reveal the messages encrypted under any prior public
key, provided at least one honest update was applied in the update chain leading to sk′, that is an update
whose randomness is not controlled by the adversary.

Both of the approaches of [JMM19] and [ACDT20], while having major efficiency improvements over
Forward-Secure PKE schemes, rely on the hardness of discrete logarithms, which is not post-quantum secure.
The authors of [DKW21] then constructed the first post-quantum secure UPKE scheme; like ours, it is based
on the dual-Regev PKE [GPV08], and proved it secure in the standard model. Their security proof, however,
relies on the noise-drowning technique and thus requires a super-polynomial modulus. The number of updates
is also bounded, since each update adds a small random vector to the (short) secret key, making it longer
with every update. Recently, a construction proposed in [HPS23] requires only a polynomial modulus while
also relying on the learning with errors (LWE) assumption for security; however, the growing noise issue
persists, as they again support only a bounded number of updates.

1.2 Our Contributions

We construct a UPKE scheme whose IND-CPA security as a PKE is based on the LWE assumption: it
is a mild variant of the dual-Regev PKE scheme. Briefly, LWE states that (A,A · s + e) and (A,u) are
indistinguishable, where A is a (possibly tall) random matrix mod q, s is a random vector mod q and e a
vector with entries following a (discrete) Gaussian distribution. Our scheme’s update mechanism is based on
the (decision) permutation code equivalence (PCE) assumption, in the Random Oracle Model (ROM). Briefly,
PCE states that under some conditions (see below), (A,O ·A ·U) and (A,B) are indistinguishable for A,B
tall random matrices mod q, where O is a permutation matrix and U is an invertible matrix. In other words,
the IND-CR-CPA security (Definition 7) of our UPKE follows from the LWE and PCE assumptions in the
ROM. Both LWE and PCE are conjectured to be post-quantum secure (under certain caveats we discuss
below). Since the update mechanism consists of applying a uniformly random signed permutation to the
key-pair, updating is “free” in the sense that there is no accumulation of small noise in the key material that
eventually renders it useless (such as in all prior LWE-based schemes). As a consequence, there is no practical
upper bound on the number of updates in our construction.

The interplay of LWE and PCE is complicated by “hull attacks”. Concretely, a uniformly random tall
matrix A over Zq forming a dual-Regev public key can be seen as a column generator matrix of a linear
code over Zq. It is well-known that random codes have small hull dimension [Sen97], in fact the hull is most
likely trivial as soon as q > 2. There exist algorithms for PCE that are exponential in the dimension of the
hull but polynomial in every other parameter, providing de facto polynomial solvers for PCE on random
codes [Sen00,BOST19]: The complexity of the support splitting algorithm [Sen00] is proportional to qh where
h is the hull dimension, and the complexity of the BOS algorithm [BOST19] is proportional to nh where n is
the length of the code. Hence, we need to restrict ourselves to matrices whose columns generate linear codes
with a hull dimension h that push these complexities above 2λ for the desired security parameter λ.5

To this end, we first give an algorithm for sampling a uniformly random code with a desired hull dimension.
We were not able to find such an algorithm anywhere in literature, although sampling random codes with a
sufficiently high hull dimension has been reported to be efficient (e.g. [BBPS21]).We then show that there
exists an efficient reduction from LWE to LWE with the promise that the instance matrix generates a linear
5 We review this literature in Appendix A.
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code with hull dimension h. This allows us to replace uniformly random dual-Regev public key matrices with
matrices that generate codes with a desired hull dimension. We also show that if the codewords are long
enough, a version of the Leftover Hash Lemma (LHL) is true, which allows us to sample dual-Regev key-pairs
where the public key matrix generates a linear code with a specified hull dimension.

We present example parameters in Table 1. As can be seen from that table, our parameters are not
practical. The central reasons for this are (a) the reliance on a variant of the LHL instead of LWE for the
security of the public key and (b) instantiating our scheme over Z instead of some more general ring of
integers of a cyclotomic number field. As a consequence, our parameters as is are worse when compared
to [HPS23] for all number of updates considered in their work. We note that the parameters in [HPS23] are
given for Module LWE rather than plain LWE. We refer to Section 1.4 for more discussions.

Table 1: Parameters for the given λ and p with c = 0.25 and s = 8.

λ p n k log2(q) h |ctxt| |up|

128 2 7313 450 13 27 11.6 KiB 1485.7 KiB
128 16 11000 550 16 26 21.5 KiB 687.6 KiB
192 32 20250 900 18 37 44.5 KiB 1708.7 KiB
256 32 29688 1250 19 48 68.9 KiB 3525.6 KiB

[HPS23] with 220 updates

128 – – – 36 – 9.1 KiB 27 KiB

1.3 Technical Overview

Consider the inhomogeneous dual-Regev PKE scheme, where the secret key is a short vector r ∈ Zn
q , and

the public key is a uniformly random tall matrix A ∈ Zn×k
q and a vector u ∈ Zk

q such that rT ·A = uT.
The current paradigm of lattice-based UPKE schemes [DKW21,HPS23] has been to somehow add a small
random noise ρ to the public key. This noise is then encrypted as an update token in UpdPk, and in UpdSk ρ
is decrypted and added to the secret key in a way that makes the new key-pair is valid.

Our main idea is to instead take a random lattice isometry O ∈ On(R) and rotate the public key into
A′ = O ·A ·U and u′ = UT · u, where U is a wlog. the systematic form transformation, but can in principle
be any random basis change. The update token is then just the encryption of the seed ρ for O – i.e. we have
O = H(ρ) where H is modelled as a Random Oracle – under A, and the new secret key is computed again by
rotation r′ = O · r. Since OT ·O = I and U is full-rank, the new key-pair satisfies r′

T ·A′ = u′
T, and crucially

‖r′‖ = ‖r‖, i.e. its quality does not deteriorate. As we are dealing with q-ary lattices (by completing the basis
A with q · ei), we require that the updated keys are integral as well, so we limit ourselves to O ∈ On(Z)
which is a finite group of signed permutations, that is the automorphisms of Zn. As far as we are aware, no
prior work combines “established” lattice techniques such as LWE with those developed around the Lattice
Isomorphism Problem (LIP) [DvW22]. Note that LIP over q-ary lattices (with q prime) and restricted to
integral isometries is precisely the signed permutation equivalence problem (SPCE) for linear codes over Zq.
As SPCE is easy for random codes due to hull attacks, we limit ourselves to public keys A that generate a
code with hull dimension h big enough so that hull attacks are not efficient, and we show how to do this
securely in Sections 3 and 4.

The security proof proceeds in four stages. First, we simplify the IND-CR-CPA game by showing that the
update oracle can be simulated. We also plant a “bad” query into the RO, i.e. the seed ρ for O, giving the
adversary a free win if they ever query it. The adversary’s view, omitting u for brevity, consists of(

pk0 = A, pk = O ·A ·U, sk = O · r, ctxt← Enc(A,msgb), up← Enc(A, ρ)
)
.
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Notice that giving sk to the adversary leaks the multiset of entries of r, up to signs. To eliminate this, we
choose r ∈ {±1}n. It will become clear why in the next stage.

Second, we replace the updated pk and sk with a fresh key-pair (B, r′). This is indistinguishable if PCE
is hard.6 Indeed, take a decision-PCE instance (G,H) and denote by u,v the sum of their respective rows.
Thus, the all 1’s vector [1]n is a valid secret key for both (G,u) and (H,v), which crucially is fixed by
any permutation. We now randomise the instance to make it a proper SPCE instance by multiplying each
code with a random isometry, that is we sample OG and OH and construct G̃ = OG ·G, r = OG · [1]n,
H̃ = OH ·H, r′ = OH · [1]n. Distinguishing equivalent (G̃, H̃) from a random pair is thus as hard as solving
decision-PCE for (G,H), even if we leak r′ since it is uniformly random in {±1}n. The adversary’s view is
the following: (

pk0 = A, pk = B, sk = r′, ctxt← Enc(A,msgb), up← Enc(A, ρ)
)
.

Note that the challenger still knows a corresponding secret key r such that rT ·A = u. We abandon this
structure in the third stage of the proof by changing (A,u) everywhere it is used for (A′,u′) where u′ is
uniformly random. To show this is indistinguishable we use a version of LHL for matrices with a hull. In the
fourth and final stage, we replace all LWE ciphertexts with random values, so the adversary’s view is(

pk0 = A′, pk = B, sk = r′, ctxt←$ Zn
q , up←$ Zn×λ

q

)
.

Since the only way to win now is to query RO(ρ), the advantage of the adversary in the last game is 2−λ,
thus the scheme is IND-CR-CPA secure in the ROM assuming LWE and PCE for codes with hull dimension
h is hard.

1.4 Open Problems

While the composition of LWE with PCE enables updatable public-key encryption with parameters that are
independent of the number of updates, the concrete performance of our construction for realistic choices of
settings remains low. There are several avenues to improving performance.

Avoiding the Leftover Hash Lemma. Our reduction relies on the LHL to argue that we may “forget” the secret
key in the security experiment. This necessitates parameters n = (1 + c) · k · log q which in turn necessitate
larger q >

√
n · σ to “accommodate” the noise. Replacing the invocation of the LHL with an application

of some LWE-like assumption, cf. [LP11], would reduce parameters by more than an order of magnitude.
While in this work we show that (A,A · s+ e) remains indistinguishable from random, this change would
require us showing that (A, rT ·A) remains computationally indistinguishable for dimensions shorter than
those required for an LHL-type argument.

Larger distributions of secret keys. Our reduction makes critical use of χ = U({±1}) when sampling the
secret key r←$ χn. This is because that distribution is guaranteed to leak no information about O. Yet, while
sampling the secret from a discrete Gaussian as r←$ DZm,σ and outputting O · r would leak information
about O it seems plausible the underlying PCE problem remains hard. In other words, it seems plausible
that PCE offers some form of leakage resilience. Establishing this would allow for smaller parameters.

Multi-key variant. Standard LWE-style reductions proving multi-key instances secure, e.g. rTi ·A = uT
i mod q

do not translate to our setting. This is because our reduction hardcodes r = [1]
n at one step and later

randomises it using a diagonal matrix. Overcoming this limitation would allow to amortise the cost of
encrypting λ bits.
6 Note that we plant a PCE instance, not an SPCE instance.
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Module variant. A natural extension is to consider a module variant of our construction. We note that
while e.g. [HPS23] simply assumes their security proof translates from Z to R := Z[x]/f(x), where f(x) is a
cyclotomic polynomial, such an assumption would be more questionable in our setting. This is because we
are not aware of any work studying PCE over modules, i.e. over Rn×k

q . Studying this problem would allow
using the Module-LWE machinery [LS15]. We note that PCE is defined also over finite extension fields Fqn .

2 Preliminaries

We write [A‖B] for [AT | BT]
T, i.e. for stacking A on top of B. We call an affine conic F (x, y) = a · x2 + b ·

xy + c · y2 + d · x+ e · y + f over Zq smooth if D = b2 − 4 · a · c 6= 0 (mod q). A smooth affine conic over Zq

admits either q − 1 or 2 · q − 1 solutions if D ∈ QR(Zq), and either 1 or q + 1 solutions if D /∈ QR(Zq) (see
Appendix B).

Let q be a prime, and n ≥ k > 0 be positive integers. An [n, k]-linear code C over Zq of length n and
dimension k is a k-dimensional vector subspace of Zn

q . Its vectors are called codewords, and it is typically
represented by a full-rank generator matrix G ∈ Zn×k

q whose columns generate C. As we can always choose a
different basis, any G′ = G ·U for U ∈ GLk(Zq) is also a generator matrix for C. The systematic form of C
is the unique generator matrix S for C such that there exists a permutation matrix P so that P · S is of the
form

[
Ik‖M

]
, where M ∈ Z(n−k)×k

q , and is thus the canonical choice of basis. For a generator matrix G of C,
we denote by SF(G) the systematic form of C computed by column-reducing G.

A code may equivalently be represented as the kernel of its parity check matrix H ∈ Zn×(n−k)
q , that is

we have v ∈ C ⇐⇒ vT ·H = 0. If
[
Ik‖M

]
is the systematic form of C, then

[
−MT‖In−k

]
is a parity check

matrix for C. The code generated by H is called the dual code to C, i.e. C⊥ = {y ∈ Zn
q ; ∀x ∈ C : xT · y = 0}.

The generator matrices of C⊥ are precisely the parity check matrices of C, vice versa.
A code C is called self-orthogonal (also weakly self-dual) if C ⊆ C⊥. The intersection of a code with its

dual is called the hull of C, and is denoted by hull(C) = C ∩ C⊥. It follows that a code is self-orthogonal if
and only if hull(C) = C. A vector x ∈ Zn

q is called self-orthogonal if xT · x = 0.

Lemma 1 (Special case of [Sen97, Thm. 4.18]). Let n, k be positive integers with 2 · k ≤ n, and let q be
prime. The probability that a randomly sampled [n, k]-linear code over Zq has a trivial hull is

⌈
k
2

⌉∏
i=1

(
1− 1

q2·i−1

)
·
(
1 +O

(
k

q
n
2

))
≥ 1− 1

q
− 1

q2
.

In particular, this is always greater than 1
2 for odd primes q.

Proof. We apply the formula given in [Sen97, Thm. 4.18] for hull dimension h = 0. For the particular case,
observe that it follows from [Sen97, Cor. 4.17] that the constant in O

(
k

q
n
2

)
is positive, hence the factor of

1 +O
(

k

q
n
2

)
is at least 1 and negligibly close to it. Then we bound

⌈
k
2

⌉∏
i=1

(
1− 1

q2·i−1

)
·
(
1 +O

(
k

q
n
2

))
≥

⌈
k
2

⌉∏
i=1

(
1− 1

q2·i−1

)
≥ 1−

⌈
k
2

⌉∑
i=1

1

q2·i−1

≥ 1−
∞∑
i=1

1

q2·i−1
= 1− q

q2 − 1
=

q2 − q − 1

q2 − 1
≥ q2 − q − 1

q2
= 1− 1

q
− 1

q2
,

where we use the Weierstrass product inequality.
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2.1 Indistinguishable Distributions

Two [n, k]-linear codes C,C′ over Zq are permutation equivalent, if there exists a permutation π ∈ Sn such that
C′ = {(vπ−1(1), . . . ,vπ−1(n)) ; v ∈ C}. Further, C and C′ are linearly equivalent, if there exists a permutation
π ∈ Sn and a vector u ∈ (Z∗q)n such that C′ = {(u1 · vπ−1(1), . . . ,un · vπ−1(n)) ; v ∈ C}. If the entries of u
are limited to ±1, we say C and C′ are signed permutation equivalent.

In terms of generator matrices, two codes generated by generator matrices G and H, respectively, are
permutation equivalent if there exist a permutation matrix P and a non-singular matrix U such that
H = P ·G ·U. Similarly, the codes are signed permutation equivalent if there exists a signed permutation
matrix O and a non-singular matrix U such that H = O ·G ·U. An n × n matrix M over Zq is called
monomial, if it can be written as M = D ·P, where P is a n×n permutation matrix, and D = diag(d1, . . . , dn)
is a diagonal matrix with di ∈ Z∗q (and similarly M = P ·D′ for the same P and invertible diagonal D′). In
other words, M has exactly one non-zero entry in each row and each column. Then the codes generated by G
and H, respectively, are linearly equivalent if there exists a monomial matrix M and a non-singular matrix
U such that H = M ·G ·U. This interpretation gives rise to the following computational problems, adapted
from [SS13, Prob. 1] and [DG23, Def. 10], respectively.

Definition 1 (Permutation Code Equivalence). Let D be a distribution on the subset full-rank matrices
in Zn×k

q and let G←$ D. Let H0 ←$ D, H1 = P ·G ·U for a n× n permutation matrix P and non-singular
U ∈ GLk(Zq), both chosen uniformly at random, and let b←$ {0, 1}.

– The problem ∆PCEn,k,q(D) is to find b given (G,Hb).
– The problem sPCEn,k,q(D) is to find P (or equivalently U) given (G,H1).

Definition 2 (Signed Permutation Code Equivalence). Let D be a distribution on the subset full-rank
matrices in Zn×k

q and let G ←$ D. Let H0 ←$ D, H1 = O ·G ·U for a n × n signed permutation matrix
O ∈ On(Z) and non-singular U ∈ GLk(Zq), both chosen uniformly at random, and let b←$ {0, 1}.

– The problem ∆SPCEn,k,q(D) is to find b given (G,Hb).
– The problem sSPCEn,k,q(D) is to find O (or equivalently U) given (G,H1).

Remark 1. We formulate the PCE and SPCE problems using a random basis change, despite our construction
in Section 5 using the systematic form instead. We note here that the two formulations are equivalent, as any
PPT algorithm may compute the systematic form in the former case, or apply a random basis change in the
latter case.

In Definitions 1 and 2, if D is the distribution that samples uniformly random [n, k]-linear codes over
Zq with some fixed hull dimension h ≤ k, we omit D and write PCEh

n,k,q and SPCEh
n,k,q. If h is big enough,

both problems are conjectured to be hard [SS13], which we review in Appendix A. We will also rely on the
Learning with Errors assumption.

Definition 3 (Learning With Errors [Reg05]). For integers k, q ≥ 1, an error distribution χ over Z,
and a distribution D over Zk

q , the (decision) LWE problem is to distinguish, given arbitrarily many samples,
the uniform distribution over Zk

q × Zq from Aq,k,χ(s) for s sampled from D, where Aq,k,χ(s) samples a← Zk
q

uniformly and e← χ, then outputs (a,b = 〈a, s〉+ e mod q).
If the number of samples is limited to n ∈ Z, the problem is denoted by LWEk,n,q,χ(D). If D is uniform

over Zk
q , we omit it.

The following lemma is a slight modification of the binary Leftover Hash Lemma [Reg09, Claim 5.3].

Lemma 2 (Leftover Hash Lemma). Let Dreal be the distribution of (A ←$ Zn×k
q ,u = AT · r for

r←$ {±1}n), and let Dunif be the distribution of (A←$ Zn×k
q ,u←$ Zk

q ). Then

E[∆ (Dreal,Dunif)] ≤
√

qk/2n.

In particular, if n ≥ (1 + c) · k · log2(q) for a positive real constant c > 0, then ∆ (Dreal,Dunif) ≤ negl(k).
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Proof. In the proof of [Reg09, Claim 5.3] simply replace every binary vector b with the vector [(−1)bi ]bi∈b.
Regarding the particular case, observe

E[∆ (Dreal,Dunif)] ≤
√
qk−(1+c)·k = q−

c·k
2 ,

which is negligible in k.

2.2 Dual-Regev PKE

We rely on a variant of the Dual-Regev Public-Key Encryption scheme.

Definition 4 (Dual-Regev PKE [GPV08]). The signed-secret dual-Regev PKE scheme (Figure 1) is a
variant of dual-Regev PKE in the sense that the long-term secret vector r ∈ {±1}n is a random signed vector.

KGen(1λ)

A←$ Zn×k
q

r←$ {±1}n

uT := rT ·A mod q

return (pk = (A,u), sk = r)

Dec(sk, ctxt)

return
⌊

p
q
(c1 − 〈r, c0〉 mod q)

⌉

Enc(pk = (A,u),msg ∈ Z ∩ [−p/2, p/2))

x←$ Zk
q

e←$ χn

e′ ←$ χ

c0 := A · x+ e mod q

c1 := 〈u,x〉+ e′ +
⌊

q
p

⌉
·msg mod q

return ctxt := (c0, c1)

Fig. 1: Dual-Regev PKE scheme with r ∈ {±1}n.

The proofs of correctness and security of the signed-secret dual-Regev PKE follow analogously from those
of the original scheme [GPV08] and are omitted. We note that, for proving security, we rely on Lemma 2
instead of the binary Leftover Hash Lemma.

Proposition 1. Let k ≥ Ω(λ) and ε ≤ negl(λ). If χ = DZ,s is the discrete Gaussian distribution7 over Z with
parameter s ≥

√
2ηε(Z) above

√
2 times the smoothing parameter8 of Z, so that the convolution theorem of

[MP13, Theorem 3.3 (eprint)] applies, and q > p2/2+p·s·
√

(λ+ 1) · (n+ 1), then the signed-secret dual-Regev
PKE from Definition 4 is correct with overwhelming probability in λ. If q is prime and n ≥ (1 + c) · k · log2(q)
for some real c > 0, and if there exists a PPTalgorithm against the IND-CPA security of the signed-secret
dual-Regev PKE, then there exists a PPTalgorithm against the LWEk,n,q,χ(U ({±1})) problem.

2.3 Updatable Public-Key Encryption

We recall the necessary definitions for updatable public-key encryption, the scheme we are constructing in
this work.

Definition 5 (UPKE [DKW21, Def. 3]). An updatable (public-key) encryption (UPKE) scheme for a
message space M is a set of five PPT algorithms:

– (pk, sk) ← KGen(1λ): takes as input 1λ, where λ is the security parameter, and outputs an initial
public-private key pair (pk, sk).

7 We recall that, for any x ∈ Z, DZ,s(x) = ρs(x)/ρs(Z) where ρs(x) = exp(−πx2/s2).
8 We refer to [MR04] for the formal definition.
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IND-CR-CPAΠ,A(1λ)

i := 0 // key update counter

b←$ {0, 1}
(pk0, sk0)← KGen(1λ)

(st,msg0,msg1)← AUpdO(pk0)

tEnc := i

ctxt← Enc(pktEnc ,msgb)

st← AUpdO(ctxt, st)

tUpd := i

(pktUpd+1, uptUpd)← UpdPk(pktUpd)

sktUpd+1 ← UpdSk(sktUpd+1, uptUpd)

b′ ← A(pktUpd+1, sktUpd+1, uptUpd , st)

return b = b′

Oracle UpdO(ρ)

// Update honestly using potentially

// malicious randomness.

(pki+1, upi)← UpdPk(pki; ρ)

ski+1 ← UpdSk(ski, upi)

i := i+ 1

Fig. 2: The IND-CR-CPA game for a UPKE scheme.

– ctxt← Enc(pk,msg): takes as input a public key pk and a message msg ∈ M, and outputs a ciphertext
ctxt.

– msg← Dec(sk, ctxt): takes as input a secret key sk and a ciphertext ctxt, and outputs a message msg or
⊥ on failure.

– (pk′, up)← UpdPk(pk): takes as input a public key pk, and outputs a new public key pk′ and an update
token up.

– sk′ ← UpdSk(sk, up): takes as input a secret key sk and an update token up, and outputs a new secret key
sk′.

Definition 6 (UPKE Correctness [DKW21, p. 264]). A UPKE scheme (KGen,Enc,Dec,UpdPk,UpdSk)
for a message space M is said to be correct if

– (KGen,Enc,Dec) is a correct PKE scheme for message space M, and
– For any λ, t ∈ N, any (pk0, sk0) ∈ KGen(1λ), any (pki+1, upi) ∈ UpdPk(pki) and ski+1 ∈ UpdSk(ski, upi)

for i ∈ [t], any message msg ∈M, it holds that

Pr
[
Dec(ski+1,Enc(pki+1,msg)) = msg

]
≥ 1− negl(λ)

for any i ∈ [t], where the probability is taken over the randomness of Enc.

Definition 7 (IND-CR-CPA Security of UPKE [DKW21, Def. 4]). An UPKE scheme admits
indistinguishability under chosen randomness chosen plaintext attacks, if any efficient (stateful) adversary A
has negligible advantage in winning the security game in Figure 2.

3 How to Sample a Hull

In this section, we provide explicit algorithms for sampling a random self-orthogonal vector of a code and
sampling a random linear code of a given hull dimension. We first introduce some notation, then consider the
behaviour of self-orthogonal codewords in a given code, and an algorithm for sampling uniformly random
self-orthogonal codewords.
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Definition 8 (h-hollow). Let n ≥ k ≥ h integers and q a prime power. We call a code C h-hollow, if it
has hull dimension h. A matrix A ∈ Zn×k

q is called h-hollow if it is full-rank and generates a [n, k]-linear
h-hollow code over Zq.9

Lemma 3. Let n ≥ k and h ≤ k− 2 be integers and q prime. Any h-hollow matrix A ∈ Zn×k
q has 2 columns

v,w such that 〈v,w〉2 6= 〈v,v〉 · 〈w,w〉.

Proof. Denote C̃ = Span(A). Since the inner product on Zn
q is bilinear and any change of basis U ∈ GLk(Zq)

is a linear transformation, it is enough to find a basis of C̃ such that the property holds. Since h ≤ k− 2, there
exists a subcode C of C̃ of dimension h+2 with hull(C) = hull(C̃), and a subcode C′ of C of dimension 2 that has
trivial intersection with hull(C). Let v,w be a basis of C′. If 〈v,v〉 = 〈w,w〉 = 〈v,w〉 = 0, then C′ ⊆ hull(C),
a contradiction. If 〈v,w〉 = 0, and only one of 〈v,v〉 and 〈w,w〉 is non-zero, again C′ ∩ hull(C) 6= {0}. If
〈v,v〉 = 〈w,w〉 = 0, but 〈v,w〉 6= 0, the condition is satisfied, and likewise if only one of 〈v,v〉 and 〈w,w〉 is
0. The remaining case is that 〈v,v〉 and 〈w,w〉 are both non-zero. Let w′ = w − 〈v,w〉〈v,v〉 · v. Then v,w′ also
generate C′, and satisfy the condition, since 〈w′,w′〉 = 0 would again yield a contradiction.

The key observation of this section is the following.

Proposition 2. Given a generator matrix G for an [n, k]-linear code C over Zq, a codeword x =
∑k

i=1 ai ·gi

is self-orthogonal in C if and only if (a1, . . . , ak) is a root of the polynomial yT ·GT ·G · y ∈ Zq[y] where y is
a vector of k unknowns.

Definition 9. Denote by Vq,G the set of self-orthogonal codewords of a code C given by a generator matrix
G, and by U (Vq,G) the uniform distribution on it.

Lemma 4. Let n > k ≥ 2 integers and q prime. Every [n, k]-linear code over Zq has at least qk−2 self-
orthogonal codewords.

Proof. The proof is an application of Warning’s Second Theorem [CW35, Satz 3], which states that a
polynomial of degree d in m variables over Zq that has at least one root must have at least qm−d (distinct)
roots. By Proposition 2, the self-orthogonal codewords of a code C given by a generator matrix G ∈ Zn×k

q are
precisely the solutions Vq,G to a homogeneous quadratic equation in k variables over Zq. Since the equation
is homogeneous, it has at least one solution, namely the zero vector is always self-orthogonal, hence it must
have at least qk−2 solutions since it is degree-2.

Remark 2. The Ax-Katz Theorem [Kat71], a well-known improvement of the (First) Chevalley-Warning
Theorem [CW35] (which states the number of solutions of a system of r polynomials, each of total degree di,
in m variables over Zq is congruent to 0 modulo q if

∑r
i=1 di < m), states that the number of solutions to

a polynomial system with m variables over Zq is congruent to 0 modulo qµ for µ =
⌈

m−
∑r

i=1 di

maxi=1,...,r{di}

⌉
. This

would only give us that we have at least qdk/2e−1 self-orthogonal vectors, despite the stronger statement
about the congruence modulo powers of q of the number of self-orthogonal vectors. While this number is still
exponential in k, the often neglected Warning’s Second Theorem from Chevalley’s and Warning’s original
paper gives us a better lower bound on the number of self-orthogonal vectors.

We describe an algorithm SSO which, given G, samples from U (Vq,G).

Definition 10 (SSO). Let n, k, h, q be positive integers with k < n, h ≤ min{k, n − k} − 2, q odd prime,
and let G be a generator matrix of a [n, k]-linear h-hollow code C over Zq. Consider the algorithm on the left
in Figure 3 that returns a self-orthogonal codeword of C.10

9 Note that the term hollow matrix already has multiple meanings in mathematics, e.g. a sparse matrix or a matrix
with all 0’s on the diagonal.

10 SSO stands for Sample Self-Orthogonal.
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Lemma 5. Assume the notation of Definition 10, and let halt ∈ N. The algorithm SSO is PPT and aborts
with negligible probability in n if halt ≥ n · (q + 1).11 Furthermore, the distribution of its outputs conditioning
on not aborting is precisely U (Vq,G).

Proof. We discuss efficiency and correctness, failure probability and uniformity of the output, respectively.

Efficiency and correctness. Assume the algorithm SSO returns with a vector y. Then y is self-orthogonal by
Proposition 2. The algorithm is clearly efficient, since it, in the worst case, computes O

(
k2
)

inner products
to reorder G, then samples halt · (k − 2) elements from Zq, solves halt conic equations over Zq, samples from
a set with at most 2 · q − 1 elements once, and computes one multiplication of G with the vector [ci]

k
i=1.

Computing the solutions to the conic equation naïvely requires the computations of the Jacobi symbol, a
square root [Coh93, Sec. 1.5.1] and an inverse [Coh93, Sec. 1.6], each q times, together costing q · O

(
log42(q)

)
.

The worst case cost of running the algorithm is therefore O
(
halt · k · q · log42(q) + k2

)
.

Failure probability. We now analyse the failure probability of SSO. Denote by gi the columns of G. By the
condition on h and Lemma 3, one can always reorder the columns of G such that 〈gk−1,gk−1〉 · 〈gk,gk〉 6=
〈gk−1,gk〉2. We thus have that, for every choice of c1, . . . , ck−2, the function F (x, y) defines a smooth conic,
since the coefficient a in front of x2 is 〈gk−1,gk−1〉, the coefficient b in front of x · y is 2 · 〈gk−1,gk〉, the
coefficient c in front of y2 is 〈gk−1,gk−1〉, so the discriminant of F (x, y) is

DG = b2 − 4 · a · c = 4 · 〈gk−1,gk〉2 − 4 · 〈gk−1,gk−1〉 · 〈gk,gk〉 6= 0 (mod q),

since q 6= 2. Recall from Section 2 and Appendix B that if DG ∈ QR(Zq), then the number of conic
solutions is S ∈ {q − 1, 2 · q − 1}, and if DG /∈ QR(Zq), then S ∈ {1, q + 1}. Suppose first DG ∈ QR(Zq). The
algorithm can only return ⊥ if for each of the halt repetitions the conic F (x, y) has q− 1 solutions. Indeed the
algorithm must have then sampled u←$ U ([0, 1]) such that u > q−1

2·q−1 (which is not possible if S = 2 · q − 1),

which happens with probability q
2·q−1 , thus the failure probability is at most

(
q

2·q−1

)halt
. Analogously for

DG /∈ QR(Zq), the conic in each repetition must have 1 solution to return ⊥, and the algorithm must sample

u > 1
q+1 , which happens with probability q

q+1 , making the failure probability at most
(

q
q+1

)halt
. The overall

failure probability is thus at most(
q

q + 1

)halt
=

((
1− 1

q + 1

)q+1
) halt

(q+1)

≤ e
−halt
(q+1) ≤ e−n,

where the last inequality is due to halt ≥ n · (q + 1).

Uniform sampling. To show this algorithm samples from U (Vq,G), assume again it did not halt with ⊥ but
with a self-orthogonal vector y ∈ C. It remains to be shown that any other self-orthogonal vector in v ∈ C is
just as likely to have been chosen. Since a smooth affine conic always has at least 1 solution, we have that

Vq,G =
{
v = [c1, . . . , ck−2, x, y]

T ; ci ∈ Zq, F (x, y) = vT ·GT ·G · v = 0
}
,

so the algorithm samples each vector with non-zero probability. Let M = MaxSols(DG) be the maximum
number of solutions to the obtained conic, which is q + 1 if DG /∈ QR(Zq) and 2 · q − 1 if DG ∈ QR(Zq).
Regardless of the number of solutions S to the obtained conic, the probability of each vector being sampled is

Pr[v←$ SSO(G, halt) |v 6= ⊥ ] =
1

qk−2
· 1
S
· Pru←$[0,1]

[
u ≤ S

M

]
=

1

qk−2
· 1
S
· S
M

=
1

qk−2
· 1

M
.

11 We remark in Appendix B that the algorithm in practice requires fewer than n · (q+1) repetitions for overwhelming
success probability.
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Since M only depends on DG, which depends only on G and is fixed at the beginning of execution, the
probability of every self-orthogonal vector being sampled must be the same, that is SSO samples from
U (Vq,G).

We will use the above algorithm to construct random linear codes that have a desired hull dimension.

Definition 11 (SampleCode). Let n, k, h, q be positive integers with 2 · k ≤ n, 2 · h ≤ k,12 and q odd prime.
Consider the algorithm on the right in Figure 3 that outputs a generator matrix for a [n, k]-linear h-hollow
code over Zq.

SSO(G, halt)

D := 〈gk−1,gk〉2 − 〈gk−1,gk−1〉 · 〈gk,gk〉
if D = 0 : reorder columns to get ineq.
M := MaxSols(D)

f := xT ·GT ·G · x
for _ := 1, . . . , halt do

for i := 1, . . . , k − 2 do ci ←$ Zq

F (x, y) = f(c1, . . . , ck−2, x, y)

rs := roots of F
u←$ U ([0, 1]); if u > |rs|

M
: continue

(ck−1, ck)←$ rs

return y :=
∑k

i=1 ci · gi

return ⊥

SampleCode(n, k, h, q)

A(0) ←$ Zn×(k−h)
q

if rank(A(0)) 6= k − h : return ⊥
if dimhull(A(0)) 6= 0 : return ⊥
for i = 1, . . . , h do

y(i) ← SSO(A⊥
(i−1), n · (q + 1))

if rank([A(i−1),y(i)]) < k − h+ i :

return ⊥
A(i) := [A(i−1),y(i)]

return SF(A(h))

MaxSols(D)

if D ∈ QR(Zq) : return 2 · q − 1

if D /∈ QR(Zq) : return q + 1

return ⊥

Fig. 3: The SSO and SampleCode algorithms.

Lemma 6. Assume the notation of Definition 11. The SampleCode algorithm is PPT, it successfully termi-
nates with probability at least

(
1− 1

q −
1
q2

)
· (1 − negl(n)), the output matrix generates a h-hollow code C,

and C is uniformly random in the set of all [n, k]-linear h-hollow codes over Zq.

Proof. We discuss efficiency and correctness, failure probability and uniformity of the output, respectively.

Efficiency and correctness. First assume the algorithm SampleCode outputs a matrix A. The algorithm
outputs a full-rank n× k matrix over Zq, since we start with a full-rank n× (k − h) matrix and append h

columns that increment the rank, otherwise we return ⊥. The starting matrix A(0) ∈ Zn×(k−h)
q is 0-hollow,

otherwise we return ⊥, and each appended column y(i) increments the hull dimension. Indeed, y(i) is by
Lemma 5 orthogonal to itself and every vector in the code given by Ai−1, since it belongs to the dual code
given by A⊥(i−1). In other words, y(i) must be in the hull of A(i). The rank condition ensures y(i) is not
already in the hull of A(i−1), thus incrementing the hull dimension.

12 We note that in our experiments, SampleCode also successfully generates self-dual codes, that is n = 2 · k and h = k.
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Failure probability. We now analyse the probability that SampleCode returns ⊥. The initial A(0) ←$ Zn×(k−h)
q

will be of full rank k − h with probability

k−h−1∏
i=0

(
1− q−n+i

)
≥ 1− k − h

qn−(k−h−1)
≥ 1−

n
2

q
n
2

overwhelming in n, where the bound is obtained using the Weierstrass product inequality. The matrix A(0)

now generates a uniformly random [n, k − h]-linear code, and using Lemma 1 gives the code generated by
A(0) is 0-hollow with probability at least 1− 1

q −
1
q2 .

Next, SSO returns a uniformly random self-orthogonal vector y(i) in A⊥(i−1) except with negligible
probability in n by Lemma 5, since halt = n · (q + 1). Denoting γ = q+1

q and m = n · (q + 1), the sampler
succeeds with probability at least 1− 1

γm each of the h times. If y(i) is already in Span(A(i−1)) then it must
by construction be in hull(A(i−1)). Hence for i = 1, . . . , h in the algorithm, the matrix A(i−1) generates a
[n, k − h + i − 1]-linear (i − 1)-hollow code over Zq, and by Lemma 4 the probability we have sampled a
vector already in the current hull is bounded by

qi−1

|Vq,A⊥
(i−1)
|
≤ qi−1

qn−(k−h+i−1)−2 = q2 i−(n−(k−h)) ≤ qh−(n−k).

The probability that this does not happen in any iteration of the loop is therefore at least(
1− qh−(n−k)

)h
≥ 1− h

qn−k−h
≥ 1−

n
4

q
n
4
,

since we need to be successful all h times, otherwise we return ⊥. The bound is again obtained using the
Weierstrass product inequality. Thus, the success probability that the algorithm returns a code generator
matrix is at least(

1− 1

q
− 1

q2

)
·
(
1−

n
2

q
n
2

)
·
(
1−

n
4

q
n
4

)
·
(
1− h

γm

)
=

(
1− 1

q
− 1

q2

)
· (1− negl(n)).

Uniform sampling. Assuming SampleCode outputs a matrix A(h), observe that SampleCode first samples
a uniformly random [n, k − h]-linear code generator matrix A(0) with a trivial hull, and then samples a
uniformly random self-orthogonal [n, h]-subcode generator matrix Y of the code given by A⊥(0), after which it
returns SF([A(0),Y]).

Consider instead an algorithm SampleUnifCode which first samples a uniformly random self-orthogonal
[n, h]-linear code generator matrix Y(U) and then samples a uniformly random [n, k − h]-subcode A(U) of
the code given by Y⊥(U) such that dimhull(A(U)) = 0 and Span(A(U)) ∩ Span(Y(U)) = {0}. Recall that
Span(Y(U)) ⊆ Span(Y⊥(U)) since Y(U) is self-orthogonal. Finally, SampleUnifCode outputs SF([A(U),Y(U)]).
We have that SampleUnifCode samples uniformly random h-hollow codes, since, for any two codes C1,C2 with
dimhull(Ci) = h, the probability of Y(U) spanning hull(C1) is the same as it spanning hull(C2). Then the
sampled A(U) is subject only to linear constraints given by 〈yi,aj〉 = 0 for all i = 1, . . . , h and j = 1, . . . , k−h.

We now show that SampleCode and SampleUnifCode sample from the same distribution. Suppose A(U),Y(U)

are as in SampleUnifCode, and consider a run of SampleCode where we fix A(0) := A(U), i.e. that output by
SampleUnifCode. The algorithm SampleCode then samples Y, generating a uniformly random self-orthogonal
subcode of A⊥(0). We have Span(A(0)) ⊆ Span(Y⊥(U)) and Span(A(0)) ∩ Span(Y(U)) = {0}. Moreover,
Span(Y) ⊆ Span(A⊥(0)) and also Span(A(0)) ∩ Span(Y) = {0}, i.e. both Y(U) and Y span a uniformly
random self-orthogonal [n, h]-subcode of the code given by A⊥(0).

Conversely, let A(0),Y as in SampleCode, and consider a run of the algorithm SampleUnifCode where
we fix Y(U) := Y, i.e. to that output by SampleCode. The algorithm SampleUnifCode then samples A

generating a uniformly random subcode of Y⊥ with Span(A) ∩ Span(Y) = {0}. But by construction also
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Span(A(0)) ⊆ Span(Y⊥) and Span(A(0)) ∩ Span(Y) = {0}, i.e. both A(0) and A span a uniformly random
[n, k − h]-subcode of the code given by Y⊥(U) that has trivial intersection with Y(U) and a trivial hull.

Summarising, let Drest
1 ,Dhull

1 be distributions of A(0) and Y in SampleCode, and Drest
2 ,Dhull

2 the distributions
of A(U),Y(U) in SampleUnifCode. We have shown that

Pr
[
Y(U) ←$ Dhull

2

∣∣A(U) ←$ Drest
2

]
= Pr

[
Y ←$ Dhull

1

∣∣A(U) ←$ Drest
2

]
and

Pr
[
A(0) ←$ Drest

1

∣∣Y ←$ Dhull
1

]
= Pr

[
A(U) ←$ Drest

2

∣∣Y ←$ Dhull
1

]
.

By definition of conditional probability this implies

Pr
[
Y(U) ←$ Dhull

2 ∧A(U) ←$ Drest
2

]
= Pr

[
Y ←$ Dhull

1 ∧A(U) ←$ Drest
2

]
and

Pr
[
A(0) ←$ Drest

1 ∧Y ←$ Dhull
1

]
= Pr

[
A(U) ←$ Drest

2 ∧Y ←$ Dhull
1

]
.

Corollary 1. If A ∈ Zn×k
q generates a uniformly random [n, k]-linear h-hollow code over Zq and y ←$

U
(
Vq,A⊥

)
, then [A,y] generates a uniformly random [n, k + 1]-linear (h+ 1)-hollow code over Zq.

Proof. Follows from the last part of the proof of Lemma 6.

4 Hollow Lattice Problems

We show that LWE with the promise that the instance matrices have a specified hull dimension h is as hard
as standard LWE. We also show that a Leftover Hash Lemma variant applies to tall enough matrices with
specific hull dimensions.

We begin with our LWE reduction. Roughly, the reduction works by translating an LWE sample (A,b),
where A has dimension n× (k − h), into a new LWE sample (A′,b′), where A′ has dimension n× k and the
[n, k]-linear code generated by the columns of A′ is h-hollow. We consider first the special case of h = 1 to
illustrate the reduction, then extend it with induction to a general h.

Definition 12 (Hollow LWE). Assume the notation of Definitions 3 and 8. The hollow LWE problem
with n samples, prime power q, and hull dimension h ≥ 0 is denoted by LWEh

k,n,q,χ(D), and is the problem
LWEk,n,q,χ(D) with the promise that the sample matrix A = [a1, . . . ,an]

T is h-hollow.

Lemma 7 (LWEk,n,q,χ → LWE0
k,n,q,χ). Assume the notation of Definition 12 and q prime. If there exists a

(t, ε)-algorithm A for LWE0
k,n,q,χ, then there exists a (t, ε′)-algorithm B for LWEk,n,q,χ where

ε′ ≥ ε ·
(
1− 1

q
− 1

q2

)
·
k−1∏
i=0

(
1− qi−n

)
.

Proof. The algorithm B just checks that the LWE instance matrix A is full-rank and has trivial hull, and
forwards the instance to A if both checks pass. The matrix A is full-rank with probability

∏k−1
i=0

(
1− qi−n

)
,

and it has trivial hull (provided it is full rank) with probability at least 1− 1
q −

1
q2 by Lemma 1.

Lemma 8 (LWE0
k−1,n,q,χ → LWE1

k,n,q,χ). Assume the notation of Definition 12 and q odd prime. If there
exists a (t, ε)-algorithm A for LWE1

k,n,q,χ, then there exists a (t+ poly(λ), ε′)-algorithm B for LWEk−1,n,q,χ

where γ = q+1
q and

ε′ ≥ ε ·
(
1− γ−n·(q+1)

)
·
(
1− qk+1−n) .

Proof. The algorithm B receives an LWE instance (A,b) where A ∈ Zn×(k−1)
q and b← Zn

q . The matrix A is
0-hollow by assumption. It computes the dual [n, n− k + 1]-linear code A⊥ and samples a self-orthogonal
vector y ←$ U

(
Vq,A⊥

)
using the algorithm from Definition 10 on A⊥ and halt = n · (q + 1). If y is ⊥ or

13



linearly depends on the columns of A, then B aborts. It also samples uniformly at random s0 ←$ Zq and an
invertible matrix U←$ GLk(Zq), and computes

A′ := [A | y] ·U, b′ := b+ s0 · y.

Lastly B calls A on (A′,b′) and returns its output bit.
Suppose B does not abort. If (A,b) was sampled from Aq,k−1,χ(s) with A 0-hollow for some uniformly

random s ∈ Zk−1
q , then b′ is a real LWE sample for the secret s′ = U−1 · [sT, s0]

T, which is distributed
uniformly because s0 was uniform and U is a uniformly random bijection on Zk

q . Indeed, for each row A′i of
A′ we have that

A′i · s′ = [Ai | yi] ·U ·U−1 · [sT, s0]
T
= Ai · s+ s0 · yi = bi + s0 · yi.

If however b was sampled from the uniform distribution on Zn
q , then b′ is also distributed according to the

uniform distribution in Zn
q , since the map x 7→ x+ s0 · y (mod q) is a bijection on Zn

q . In both cases A′ is
a uniformly random 1-hollow matrix by Corollary 1. The algorithm B is therefore correct with the same
probability ε as A, and it is clearly efficient by Lemma 5.

We now evaluate the probability that B does not abort. Firstly, A is 0-hollow, in particular it is full-rank.
Hence A generates an [n, k − 1]-linear code over Zq and has a dual [n, n− k + 1]-linear code generated by
A⊥. The algorithm from Definition 10 samples y←$ U

(
Vq,A⊥

)
with probability at least 1− 1

γn·(q+1) which is
negligible in n by Lemma 5, and y is linearly independent from the columns of A with probability at least
1− qk+1−n by Lemma 4. Thus ε′ is as claimed.

Corollary 2 (LWEi−1
k−1,n,q,χ → LWEi

k,n,q,χ). Assume the notation of Definition 12 and q odd prime. If there
exists a (t, ε)-algorithm A for LWEi

k,n,q,χ, then there exists a (t+ poly(λ), ε′)-algorithm B for LWEi−1
k−1,n,q,χ

where γ = q+1
q and

ε′ ≥ ε ·
(
1− γ−n

)
·
(
1− qk+i−n) .

Proof. The reduction proceeds exactly the same as the reduction in Lemma 8, but the probability that
B aborts differs slightly. Concretely, by Lemma 4 the probability of sampling a vector which is linearly
independent on the vectors forming the hull is at least 1− qk+i−n. Again by Corollary 1 the output matrix
A′ is a uniformly random i-hollow matrix.

Theorem 1. Assume the notation of Definition 12 and q odd prime. If there exists a (t, ε)-algorithm A for
LWEh

k,n,q,χ then there exists a (t+ poly(λ), ε′)-algorithm B for LWEk−h,n,q,χ where γ = q+1
q and

ε′ ≥ ε ·
(
1− 1

q
− 1

q2

)
·
(
1− h

γn·(q+1)

)
·
k−h∏
i=0

(
1− qi−n

)
·

h∏
i=1

(
1− qk+i−n) .

Proof. The proof is a conjunction of the checks in Lemma 7, and using Lemma 8 once and Corollary 2
(h− 1) times. Namely, the algorithm B, given (A,b), first runs the reduction in Lemma 7 to check if A is
0-hollow, and then follows Lemma 8 to produce (A′,b) with A′ being h-hollow. We note that this procedure,
if successful, produces a full-rank A′. Then it applies the procedure of Corollary 2 (h − 1) times, again
incrementing the rank and hull dimension each time.

We now proceed to prove that we may still apply the Leftover Hash Lemma even if the matrix whose
rows we sum has a guaranteed hull dimension. Our reduction works by noticing that a sufficient number of
entries per column are uniformly random regardless of hull, allowing us to appeal to the standard LHL.

Lemma 9 (Hollow LHL). Let n ≥ (1 + c) · k · log2(q) + k + h for a positive real constant c > 0, let h ≤ k
2 ,

and q an odd prime. Let A ∈ Zn×k
q be a uniformly random h-hollow matrix, r←$ {±1}n uniformly at random,

and u←$ Zk
q uniformly at random. Then the pairs (A, rT ·A) and (A,uT) are statistically close in k.
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Proof. For any A, we can decompose it as A = [A(0),Y] ·U where Y generates hull(A), A(0) generates
the rest of Span(A), and U is the corresponding basis change. Without loss of generality, we may assume
that A is given in the form A = [A(0),Y], since multiplication by U is bijective and preserves the uniform
distribution. Denote by ai for i = 1, . . . , k − h the columns of A(0), and by yi for i = 1, . . . , h the columns of
Y. Observe that

rT ·A = [〈r,a1〉, . . . , 〈r,ak−h〉, 〈r,y1〉, . . . , 〈r,yh〉] .

We proceed by induction. Denote y1 = G · x for G ∈ Zn×(n−k+h)
q the systematic form generator matrix

of A⊥(0). We claim that all but two entries of x can be chosen uniformly at random. Indeed, let gi,gj be any
two columns of G satisfying the property of Lemma 3. Sample x[`] for ` 6= i, j uniformly from Zq, and set
x[i] = v and x[j] = w for v, w variables over Zq. Define the function

F (v, w) = xT ·GT ·G · x.

By Lemma 3, F (v, w) = 0 defines a smooth conic, since the coefficient a in front of v2 is 〈gi,gi〉, the coefficient
b in front of v · w is 2 · 〈gi,gj〉, the coefficient c in front of w2 is 〈gj ,gj〉, so the discriminant of F (v, w) is

b2 − 4 · a · c = 4 · 〈gi,gj〉2 − 4 · 〈gi,gi〉 · 〈gj ,gj〉 6= 0 (mod q),

since q 6= 2. The smooth affine conic F (v, w) admits a solution, that is we may find v0, w0 ∈ Zq such that
setting x[i] = v0 and x[j] = w0 yields a self-orthogonal vector y = G ·x, hence in the hull of A. Note however
that since G is in systematic form, all entries of x appear as entries in y1, wlog. as the first n− k + h entries.
Let I1 be the set of the first n− k + h indices of y1 without i and j. Then since

n− k + h− 2 ≥ (1 + c) · (k − h) · log2(q),

we have by Lemma 2 that 〈r[I1],y1[I1]〉 is statistically close to uniform.
Further, take i > 1, assume 〈r[Ij ],yj [Ij ]〉 is statistically close to uniform for j < i, and denote yi = G · x

for G the systematic form generator matrix of [A(0),y1, . . . ,yi−1]
⊥. Observe that [A(0),y1, . . . ,yi−1] is

(i− 1)-hollow, and thus so is its dual. Hence by Lemma 3 there exists a pair of columns gi′ ,gj′ satisfying the
property of Lemma 3. As above, we define a smooth conic and obtain its root to construct yi whose first
n− k + h entries are uniformly random, except the entries at indices i′ and j′, which are determined by the
conic. Let Ii bet the set of the first n − k + h indices of yi without i′ and j′. We have by Lemma 2 that
〈r[Ii],yi[Ii]〉 is statistically close to uniform. By the same argument as in the proof of Lemma 6, the vectors
y1, . . . ,yh are linearly independent, and thus span hull(A).

Let I =
⋂h

i=1 Ii be the set of at least n − k + h − 2 · h = n − k − h indices. We have 〈r[I],Y[I]〉 is
statistically close to uniform. Since in particular also n ≥ (1 + c) · (k − h) · log2(q) + k + h, the product
〈r[I],A[I]〉 is statistically close to uniform by Lemma 2, and hence 〈r,A〉 is statistically close to uniform
since

n− k − h ≥ (1 + c) · k · log2(q).

5 Updatable Public-Key Encryption

We define our updatable public-key encryption scheme that relies on PCE to update dual-Regev keys with
orthogonal matrices in On(Z), that is the automorphisms of Zn which are precisely signed permutations.
We first consider the standard definitions given in [DKW21], then present our scheme as a dual-Regev PKE
scheme endowed with an update mechanism, and prove it secure in the Random Oracle Model. Finally, we
select example parameters.

Definition 13. Let h, k, n, p, q ∈ N, with h ≤ k ≤ n, p < q and q prime, distribution χ over Z, and hash
functions family H from {0, 1}∗ to On(Z), be parametrised by λ. We construct an updatable public-key
encryption scheme for the message space M = Z ∩ [−p/2, p/2) in Figure 4.
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KGen(1λ)

// try sampling at most log2(q − 1) times

A← SampleCode(n, k, h, q)

r←$ {±1}n

uT := rT ·A mod q

H←$H
pk := (A,u,H)

sk := r

return (pk, sk)

Dec(sk, ctxt)

return
⌊

p
q
· (c1 − 〈r, c0〉 mod q)

⌉
UpdSk(sk, up)

// decrypt blog2(p)c bits at a time

ρ← Dec(sk, up)

O := H(ρ)

r′ := O · r
return sk′ := r′

Enc(pk,msg ∈ Z ∩ [−p/2, p/2))

x←$ Zk
q

e←$ χn

e′ ←$ χ

c0 := A · x+ e mod q

c1 := 〈u,x〉+ e′ +
⌊

q
p

⌉
·msg mod q

return ctxt := (c0, c1)

UpdPk(pk)

ρ←$ {0, 1}λ

O := H(ρ)

(A′,U) := SF(O ·A)

u′T := uT ·U mod q

pk′ := (A′,u′)

// encrypt blog2(p)c bits at a time

up← Enc(pk, ρ)

return (pk′, up)

Fig. 4: Construction of updatable encryption.

Theorem 2. If p, q, s, χ is such that
∥∥χn+1

∥∥ ≤ s
√
n+ 1 with overwhelming probability and q > p2

2 + 2 · p ·
(n+ 1) · s, then the UPKE in Figure 4 is correct.

Proof. By Lemma 6, SampleCode fails with probability negligibly close to at most 1
q + 1

q2 ≤
1

q−1 . Trying
sampling log2(q−1) times guarantees success of KGen(1λ) except with probability at most 2−λ. The correctness
of decryption follows immediately from Proposition 1. To verify correctness after updating, observe that if
((A,u), r)← KGen(1λ), we have for any O ∈ On(Z) and U the systematic form transform of O ·A, that

(O · r)T · (O ·A ·U) = r ·A ·U = uT ·U.

so the updated key-pair ((O ·A ·U,UT · u),O · r) is valid.

5.1 Security Proof

We prove the security of our construction from Definition 13 in the Random Oracle Model assuming the
Learning with Errors problem and the Permutation Code Equivalence problem for h-hollow codes are hard.

Lemma 10. Assume the notation of Figure 4. For any key-pair (pk, sk)← KGen(1λ), any orthogonal matrix
O ∈ On(Z) used to update (pk, sk) to (pk∗, sk∗), and any message msg ∈M, the following holds:

(a) If (c0, c1)← Enc(pk,msg), then c∗ = (O · c0, c1) is distributed according to Enc(pk∗,msg).
(b) Conversely, if c∗ = (c∗0, c

∗
1) ← Enc(pk∗,msg), then c = (O−1 · c∗0, c∗1) is distributed according to

Enc(pk,msg).

Proof. We have c0 = A · x+ e for x←$ Zk
q and e←$ χn, and thus

O · c0 = O ·A ·U ·U−1 · x+O · e,
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where U ∈ GLk(Zq) is the systematic form transformation matrix of O ·A. Observe that O ·A ·U is precisely
pk∗. Since x is uniformly random, so is x∗ = U−1 · x. Since e← χn, so is O · e, since χn samples entry-wise
and is thus not affected by permuting the entries, and χ is symmetric around 0 ∈ Zq and is thus not affected
by changing the sign. This is consistent with

c1 = 〈u,x〉+ e′ +

⌊
q

p

⌉
·msg = 〈UT · u,U−1 · x〉+ e′ +

⌊
q

p

⌉
·msg (mod q).

The converse follows by remarking that if O updates (pk, sk) to (pk∗, sk∗), then O−1 updates (pk∗, sk∗) to
(pk, sk).
Theorem 3. Let n, k, h, q be positive integers parametrised by λ with n ≥ (1+c)·k·log2(q)+k+h for a positive
real constant c > 0, 2 · h ≤ k and q prime. Assuming the advantage of any PPTadversary in distinguishing
LWEh

k,n,q,χ and in distinguishing ∆PCEh
n,k,q is negligible in λ, the UPKE scheme from Definition 13 is

IND-CR-CPA secure.
Proof. We proceed through a sequence of hybrids. Throughout we denote by εi the advantage of the adversary
A against game Gamei.

Game0(λ): The game given in Figure 5 is the usual IND-CR-CPA game for our construction. The challenger
runs (pk0, sk0) ← KGen, sets time T := 0 and samples b ←$ {0, 1}, then sends pk0 to the adversary A.
The adversary A with access to the update oracle UpdO sends back messages msg0,msg1. The challenger
then runs ctxt← Enc(pkT ,msgb), and sends ctxt to A. Once the adversary is done querying UpdO, the
challenger performs an honest update by running (pk, up)← UpdPk(pkT ) and sk← UpdSk(skT , up), and
sends (pk, sk, up) to A, who returns a bit.

Game0(λ)

T := 0; b←$ {0, 1}

(pk0, sk0)← KGen(1λ)

(st,msg0,msg1)← AUpdO,RO(pk0)

ctxt← Enc(pkT ,msgb)

st← AUpdO,RO(ctxt, st)

(pk∗, up)← UpdPkRO(pkT )

sk∗ ← UpdSkRO(skT , up)

b′ ← ARO(pk∗, sk∗, up, st)

return b = b′

UpdO(ρ)

(pkT+1, upT )← UpdPkRO(pkT ; ρ)

skT+1 ← UpdSkRO(skT , upT )

T := T + 1

RO(ρ)

if ρ /∈ Q : Q[ρ]←$On(Z)
return Q [ρ]

Game1(λ)

T := 0; b←$ {0, 1}
ρ∗ ←$ {0, 1}λ; Q[ρ∗] := O∗ ←$On(Z)
(pk0, sk0)← KGen(1λ)

(st,msg0,msg1)← AUpdO,RO(pk0)

ctxt← Enc(pk0,msgb)

st← AUpdO,RO(ctxt, st)

(pk∗, sk∗, up)← Upd∗(pkT , skT ,O
∗)

b′ ← ARO(pk∗, sk∗, up, st)

return b = b′

Upd∗(pk, sk,O∗)

parse (A,v)← pk

parse r← sk

A∗,U := SF(O∗ ·A)

pk∗ := A∗

sk∗ := O∗ · r
up← Enc(pk0, s)

return (pk∗, sk∗, up)

Fig. 5: Game0 and Game1
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Game1(λ): This game given in Figure 5 is the same as Game0, except that the challenge ciphertext ctxt and
the final update token up are encrypted with respect to pk0 instead of the public key of their respective
epoch.
Denote by Oi the update transformation in epoch i, i.e. Oi updates pki−1 to pki. By Lemma 10,
knowing the cumulative O = OT · · ·O1 in any epoch T , an adversary playing Game0 upon receiving
ctxt = (c0, c1)← Enc(pkT ,msgb) can always compute ctxt∗ = (O−1 ·c0, c1) which is distributed exactly as
Enc(pk0,msgb), and likewise with the encryptions in up (for a later epoch). The converse is also true, i.e.
given a ciphertext ctxt = (c0, c1)← Enc(pk,msg), any adversary can always compute ctxt∗ = (O · c0, c1)
for their chosen O that is distributed exactly as Enc(pk∗,msg) where pk∗ is pk updated with O. Thus,
for any adversary winning Game0 with advantage ε0 we can construct an adversary B winning Game1
with advantage ε1 = ε0 (and vice versa).

Game2(λ): This game given in Figure 6 is the same as Game1, except that the adversary does not have access
to UpdO.

Game2(λ)

���T := 0; b←$ {0, 1}; ρ∗ ←$ {0, 1}λ; Q[ρ∗] := O∗ ←$On(Z); (pk0, sk0)← KGen(1λ)

(st,msg0,msg1)← ARO(pk0); ctxt← Enc(pk0,msgb); st← ARO(ctxt, st)

(pk∗, sk∗, up)← Upd∗(pk0, sk0,O
∗); b′ ← ARO(pk∗, sk∗, up, st)

return b = b′

Fig. 6: Game2

For any adversary A winning Game1 with advantage ε1 we can construct an adversary B winning Game2
with advantage ε2 = ε1 by noticing that UpdO can be simulated using RO. Indeed, B is just A except
that any time it wants to call UpdO with randomness ρ, it instead calls O← RO(ρ) and then manually
updates the current key pkT with O as in UpdPk. Notice the updated keys pkT of any epoch T are not
used anywhere in Game1.
At this point, there is no need to keep the epoch counter T anymore. Simplifying notation, the view of
the adversary is (

pk0 = (A,u), pk = (O ·A ·U,UT · u), sk = O · r,

ctxt← Enc((A,u),msgb), up = Enc((A,u), ρ∗) ;

rT ·A ≡ u, O = RO(ρ∗)
)
,

where r is the initial secret key.
Game3(λ): This game given in Figure 7 is the same as Game2, except that if the adversary ever queries

RO(ρ?), the game immediately returns 1, i.e. aborts with a win for the adversary. To denote this bad
query we write ROρ∗ instead of RO. Note the game still performs the honest update with O = Q[ρ?]
without aborting, but the adversary is now rewarded for querying the random seed ρ? for O.
We have ε2 ≤ ε3 where ε3 is the sum of the advantage of the adversary winning by guessing b and the
probability of the adversary winning by querying RO(ρ?).

Game4(λ): This game given in Figure 7 is the same as Game3, except that O←$On(Z) and not O← RO(ρ∗).
In the Random Oracle Model O is independent of ρ∗ until ρ∗ is queried and we have ε4 = ε3. In more
detail, we can separate two cases. If A never queries ROρ∗(ρ∗) then Game4 is identical to Game3 and the
advantage is the same, since O←$ On(Z) in both cases. However, if A at any point queries ROρ∗(ρ∗), it
automatically wins, so the advantage cannot decrease.
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Game3(λ)

b←$ {0, 1}
ρ∗ ←$ {0, 1}λ; Q[ρ∗] := O∗ ←$On(Z)
(pk0, sk0)← KGen(1λ)

(st,msg0,msg1)← AROρ∗ (pk0)

ctxt← Enc(pk0,msgb)

st← AROρ∗ (ctxt, st)

(pk∗, sk∗, up)← Upd∗(pk0, sk0,O
∗)

b′ ← AROρ∗ (pk∗, sk∗, up, st)

return (b = b′) ∨ free_win

Game4(λ)

b←$ {0, 1}
ρ∗ ←$ {0, 1}λ; ����Q[ρ∗] := O∗ ←$On(Z)
(pk0, sk0)← KGen(1λ)

(st,msg0,msg1)← AROρ∗ (pk0)

ctxt← Enc(pk0,msgb)

st← AROρ∗ (ctxt, st)

(pk∗, sk∗, up)← Upd∗(pk0, sk0,O
∗)

b′ ← AROρ∗ (pk∗, sk∗, up, st)

return (b = b′) ∨ free_win

ROρ∗(ρ)

if ρ = ρ∗ : free_win := 1; return ⊥
if ρ /∈ Q : Q[ρ]←$On(Z)
return Q [ρ]

Fig. 7: Game3 and Game4

The view of the adversary is as follows(
pk0 = (A,u), pk = (O ·A ·U,UT · u), sk = O · r,

ctxt← Enc((A,u),msgb), up = Enc((A,u), ρ∗) ;

rT ·A ≡ u, O←$On(Z)
)
,

where r is the initial secret key.
Game5(λ): This game given in Figure 8 is the same as Game4, except that (pk, sk) = ((B,v), r′) is a freshly

sampled key unrelated to ((A,u), r). We show that Game4 is indistinguishable from Game5 under the
PCE assumption (Definition 1) in Lemma 11. Then ε5 = ε4 + εPCE, where εPCE is the advantage of the
adversary in winning ∆PCEh

n,k,q, negligible by assumption. The view of the adversary is(
pk0 = (A,u), pk = (B,v), sk = r′, ctxt← Enc((A,u),msgb),

up = Enc((A,u), ρ∗) ; rT ·A ≡ u, r′
T ·B ≡ v

)
,

where r is the initial secret key.
Game6(λ): This game given in Figure 8 is the same as Game5, except that the h-hollow A and vector u are

sampled uniformly at random, without knowing the new corresponding r such that rT ·A = uT. The
games Game5 and Game6 are indistinguishable by Lemma 9, and we get ε6 = ε5 + εLHL, where εLHL is
the negligible statistical distance from Lemma 9. The adversary’s view is(

pk0 = (A,u), pk = (B,v), sk = r′, ctxt← Enc((A,u),msgb),

up = Enc((A,u), ρ∗) ; r′
T ·B ≡ v

)
.

Game7(λ): This game given in Figure 9 is the same as Game6, except that ctxt ←$ Zn+1
q and up = [ui ←$

Zn+1
q ]

λ/ log2(p)
i=1 . The games Game6 and Game7 are indistinguishable by using Theorem 1 in a standard

hybrid argument, and we get ε7 = ε6 + h · εh, where εh is the advantage of winning LWEh
k,n,q,χ from

Definition 12, negligible by the LWE assumption.
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Game5(λ)

b←$ {0, 1}; ρ∗ ←$ {0, 1}λ

(pk0, sk0)← KGen(1λ)

(st,msg0,msg1)← AROρ∗ (pk0)

ctxt← Enc(pk0,msgb)

st← AROρ∗ (ctxt, st)

(pk∗, sk∗)← KGen(1λ)

up← Enc(pk0, ρ
∗)

b′ ← AROρ∗ (pk∗, sk∗, up, st)

return (b = b′) ∨ free_win

Game6(λ)

b←$ {0, 1}; ρ∗ ←$ {0, 1}λ

pk0 ← SampleCode(n, k, h, q)× U
(
Zk
q

)
(st,msg0,msg1)← AROρ∗ (pk0)

ctxt← Enc(pk0,msgb)

st← AROρ∗ (ctxt, st)

(pk∗, sk∗)← KGen(1λ)

up← Enc(pk0, ρ
∗)

b′ ← AROρ∗ (pk∗, sk∗, up, st)

return (b = b′) ∨ free_win

Fig. 8: Game5 and Game6

Game7(λ)

b←$ {0, 1}; ρ∗ ←$ {0, 1}λ; pk0 ← SampleCode(n, k, h, q)× U
(
Zk
q

)
(st,msg0,msg1)← AROρ∗ (pk0); ctxt←$ Zn+1

q ; st← AROρ∗ (ctxt, st)

(pk∗, sk∗)← KGen(1λ); up←$ Z(n+1)×(λ/ log2(p))
q ; b′ ← AROρ∗ (pk∗, sk∗, up, st)

return (b = b′) ∨ free_win

Fig. 9: Game7

The advantage of the adversary of guessing b′ = b in Game7 is clearly 0 since ctxt is uniformly random
with no relation to msgb. The adversary can therefore only win Game7 by querying RO(ρ∗), that is with
negligible probability 2−λ.

Lemma 11. If there exists a (t, ε)-algorithm A that distinguishes Game4 from Game5, then there exists a
(poly(λ) + t, ε)-algorithm B for ∆PCEh

n,k,q.

Proof. The algorithm B receives a PCE instance A,B where either B = P ·A ·U for a secret permutation
matrix P and U wlog. the systematic form transformation for P ·A, or random with respect to the hull
dimension h. It then computes

aT =

n∑
i=1

Ai, bT =

n∑
i=1

Bi,

where Ai and Bi are rows of A and B, respectively. Observe that multiplication of the all 1’s row ([1]n)T

with A and B gives precisely aT and bT.
The algorithm B then randomises the instance. It samples two uniformly random signed permutations

OA = PA ·DA,OB = PB ·DB ←$On(Z), two uniformly random basis changes UA,UB ←$ GLk(Zq), and
computes

Ã = OA ·A ·UA, ãT = aT ·UA, r = OA · [1]n,
B̃ = OB ·B ·UB, b̃T = bT ·UB, r′ = OB · [1]n.

Observe r is a uniformly random element of {±1}n and rT · Ã = ãT, and that r′ is the same for B̃.
Let us show that if (A,B) is a real PCE instance, then ((Ã, ã), r) is distributed according to KGen(λ),

and ((B̃, b̃), r′) is exactly the key pair updated with O = OB ·P ·O−1A , which is a uniformly random signed
permutation, since the vector [1]n is fixed by any permutation, including P. Similarly, if (A,B) is a random
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instance, then ((Ã, ã), r) and ((B̃, b̃), r′) are both distributed independently according to KGen(λ). Indeed,
define the sets

T =
{
(A, r) ; r ∈ {±1}n s.t. AT · r = a

}
, S =

{
A ; AT · [1]n = a

}
,

where A ranges over [n, k]-linear code generator matrices over Zq with hull dimension h and a is some fixed
vector. We show there exists a surjective function f : T → S that is regular in the sense that there exists a
constant C depending only on the parameters such that for every A ∈ S we have |f−1(A)| = C. For a pair
(A, r) ∈ T let Dr ∈ diag({±1}n) be the unique diagonal matrix such that Dr · r = [1]n. The function f maps
(A, r) 7→ D ·A. The function f is surjective since for every A ∈ S we have (A, [1]n) ∈ f−1(A). For regularity
note that if f(A, r) = f(A′, r′) then A = D−1r ·Dr′ ·A′, that is A and A′ have the same rows up to a sign,
so for every A ∈ S we have |f−1(A)| = 2n, concluding the proof.

In particular, this means that the uniform distribution on S factors through f to the uniform distribution
on T , and vice versa. Given a random element A ∈ S, picking a uniformly random D ∈ diag({±1}n) and
outputting (D ·A,D · [1]n) gives a random element of T . Observe also that applying a permutation before or
after the diagonal matrix does not change the distribution, since permutations are bijections on T (applied
to both entries of the pair) and on S.

Thus B proceeds as shown in Figure 10. It sets (pk0, sk0) = ((Ã, ã), r) and (pk, sk) = ((B̃, b̃), r′), and
samples b ←$ {0, 1} and ρ∗ ←$ {0, 1}λ, which it encrypts into up = [ui ← Enc(pk0, ρ

∗
i )]ρ∗

i∈ρ∗ . It then plays
the game as A expects, also simulating the RO queries, and returns the final output of A. If (A,B) is a real

B(A,B)

ρ∗ ←$ {0, 1}λ; b←$ {0, 1}
(pk0, sk0) := ((Ã, ã), r)

(st,msg0,msg1)← AROρ∗ (pk0)

ctxt← Enc(pk0,msgb)

st← AROρ∗ (ctxt, st)

(pk, sk) := ((B̃, b̃), r′)

up := [ui ← Enc(pk0, ρ
∗
i )]ρ∗i ∈ρ∗

b′ ← AROρ∗ (pk, sk, up, st)

return (b = b′)

ROρ∗(ρ)

if ρ /∈ {0, 1}λ : abort

if ρ = ρ∗ : abort

if ρ ∈ Q :

return Q [ρ]
else :

O←$On(Z)
Q[ρ] := O

return O

Fig. 10: An adversary B against PCE.

PCE instance, then we are simulating Game4, and if (A,B) is a random instance, then we are simulating
Game5. The success probability of B is the same as that of A, and all additional operations B performs use
only linear algebra which are efficient.

5.2 Parameter Selection

We select parameters for our scheme based on a security parameter λ. There are multiple constraints we
must take into account. First, for our construction to be correct we require q > p2

2 + p · s ·
√
(λ+ 1) · (n+ 1)

where s is the Gaussian parameter of the error distribution χ. Second, for the underlying dual-Regev to be
secure, we require LWEk,n,q,χ to be hard, and the particular case of Lemma 2 satisfied. Third, for the update
mechanism to be secure, we require PCEh

n,k,q to be hard and by Lemma 9 a slightly higher bound on n than
in Lemma 2.

Regarding the hardness of PCEh
n,k,q, we observe in Appendix A that the hull dimension h needs to be large

enough to mitigate traditional hull attacks [Sen00,BOST19], and collision-based attacks on the hull [Sen00,
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Prop. 12].13 For the hull attacks, we make a conservative estimate that the SSA algorithm [Sen00] runs in
O
(
qh
)

time, and that the BOS algorithm runs in O
(
nh
)

time, and so we require h ≥ max
{

λ
log2(q)

, λ
log2(n)

}
.

Since q ≥ n in LWE, we take h ≥
⌈

λ
log2(n)

⌉
. For the hull collision attack, we observe in Appendix A that we

require 1
2 ·H

(
h
n

)
· n ≥ λ, where H is the binary entropy function.

For the Hollow LHL bound from Lemma 9, observe we require

n− λ

log2(n)
≥ (1 + c) · k · log2 q + k =

(
1 + c+

1

log2(q)

)
· k · log2(q),

thus it is enough to consider a slightly larger constant c than in Lemma 2. It remains only to set k large
enough for LWEk,n,q,χ to be hard and the above bound is satisfied. Our Python script estimating parameters
is to this document14 and uses the Lattice Estimator [APS15]15 to construct parameters based
on the security parameter λ, the LHL constant c, the Gaussian parameter s, and the message space size p.
Note that the required hull dimension h is low compared to k and n, so it does not play a significant role in
the above LHL bound. We present our parameters along with ciphertext and update token sizes in KiB in
Table 1.
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from dataclasses import dataclass
from estimator.estimator import LWE, ND
from sage.all import log, ceil, floor, sqrt, RR
import sys
import os


class HiddenPrints:
    def __enter__(self):
        self._original_stdout = sys.stdout
        sys.stdout = open(os.devnull, "w")

    def __exit__(self, exc_type, exc_val, exc_tb):
        sys.stdout.close()
        sys.stdout = self._original_stdout


def _kb(v):
    """
    Convert bits to kilobytes.
    """
    return round(float(v / 8.0 / 1024.0), 1)


def hulldim(n, k, log_q, secpar=128):
    def entropy(x):
        return RR(-x * log(x, 2) - (1 - x) * log(1 - x, 2))

    def CF_attack(n, k, q):
        return 0.5 * entropy(k / n) * n

    # hull collision attacks min h
    h_collision = k
    for h in range(1, k + 1):
        cf = CF_attack(n, h, 2**log_q)
        if cf >= secpar:
            h_collision = h
            break
    # hull attacks min h
    h_hull = max(ceil(secpar / log_q), ceil(secpar / log(n, 2)))
    return max(h_collision, h_hull)


@dataclass
class UPKEParams:
    """
    All solvers return an instance of this class.
    """

    secpar: int
    k: int
    n: int
    log_q: int
    p: int

    def __repr__(self):
        return f"UPKE(k: {self.k:4d}, n: {self.n: 4d}, q: 2^{self.log_q})"

    def ct(self):
        return _kb((self.n + 1) * self.log_q)

    def update(self):
        return _kb(self.secpar / floor(log(self.p, 2)) * (self.n + 1) * self.log_q)

    def hulldim(self):
        return hulldim(self.n, self.k, self.log_q, self.secpar)

    def display(self):
        print(f"{self}: h = {self.hulldim()}, |ct| = {self.ct()}, |upd| = {self.update()}")


def upke_params(secpar=128, c=0.25, sigma=3.2, p=32, lwe_kwds=None):
    """
    Estimate UPKE parameters and sizes.
    """
    for k in range(300, 1500, 50):
        # LWE correctness condition
        for log_q in range(10, 30):
            if 2**log_q / sqrt(log_q) >= p**2 / 2 + p * sigma * sqrt((secpar + 1) * (1 + c) * k):
                break

        # LHL condition
        # NOTE ignoring - secpar/log(n)
        n = ceil((1 + c) * k * log_q)

        lwe = LWE.Parameters(
            n=k,
            m=n,
            q=2**log_q,
            Xs=ND.UniformMod(2**log_q),
            Xe=ND.DiscreteGaussian(sigma),
        )
        # NOTE these won't matter
        deny_list = ("arora-gb", "bkw", "bdd_hyrbid", "bdd_mitm_hybrid")
        with HiddenPrints():
            if lwe_kwds is None:
                lwe_kwds = {}
            costs = LWE.estimate(lwe, deny_list=deny_list, **lwe_kwds)

        if min(cost["rop"] for cost in costs.values()) > 2**secpar:
            upke = UPKEParams(secpar, k, n, log_q, p)
            return upke


def table1():
    """
    [EC:AlbBenLai25]: Table 1
    """
    rows = [
        {"secpar": 128, "p": 2},
        {"secpar": 128, "p": 16},
        {"secpar": 192, "p": 32},
        {"secpar": 256, "p": 32},
    ]
    for row in rows:
        upke = upke_params(secpar=row["secpar"], p=row["p"])
        upke.display()
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A Hardness of (Permutation) Code Equivalence

This section provides a short survey on the hardness of solving PCE. We consider two attacks that rely on
finding codewords with with low hamming weight, namely Leon’s algorithm [Leo82] and its improvement in
the case of large fields by Beullens [Beu20a]. Both focus on finding codewords with colliding multisets, hence
we call them collision attacks. Another collision-based attack was recently introduced by Chou, Persichetti,
and Santini [CPS23], and further improved by Nowakowski [Now24]. We then consider hull attacks, namely
Sendrier’s Support Splitting Algorithm [Sen00] which excels when the hull dimension is small, and the
so-called BOS algorithm by Bardet, Otmani and Saeed-Taha [BOST19], which exploits a trivial hull (and can
also be extended to any small hull dimension). Hull attacks can be especially devastating, since random codes
typically have small dimension that asymptotically depends only on q [Sen97], forcing us to restrict ourselves
to weakly self-dual codes or similar families of codes with a large hull dimension. For a more thorough survey
on the hardness of code equivalence, one should see [BBPS21,BBPS23] and [CPS23, App. A].

By the weight of the codeword ω(x) we mean its Hamming weight, i.e. the number of its non-zero entries
as a vector. More generally, we denote the support of a set of codewords A as S(A) and define it as the subset
of indices S(A) ⊆ {1, . . . , n} such that i ∈ S(A) if and only if A has a codeword with a non-zero entry at i.
Clearly ω(x) = |S({x})|. We denote by Bw(C) the set of all codewords of C with weight w, and denote by
Aw(C) the same set up to multiplication by scalars, i.e. if ω(x) = w for x ∈ C then there exists precisely one
a ∈ Z∗q such that a · x ∈ Aw(C).

Proposition 3 ([BBPS21, Prop. 1]). For a random code C and any weight w ≤ n, the expected cardinality
of Aw(C) is given by

Nw ≈
(
n

w

)
· (q − 1)

w−2 · qk−n+1.

A.1 Information Set Decoding

For the first two collision-based algorithms, we will need an algorithm for Information Set Decoding (ISD) as
a subroutine to find low-weight codewords. These are many ISD algorithm, e.g. Beullens uses the Lee-Brickell
algorithm [LB88] in [Beu20a] because of the simplified heuristic analysis, while in [BBPS21] the authors use
the Peters algorithm [Pet10] and the authors of [CPS23] compare their algorithm to Prange’s [Pra62]. We
summarise Beullens’ estimates for Lee-Brickell made in [Beu20b, Sec. 2.2].

Beullens estimates that the Lee-Brickell algorithm (with parameter p = 2) finds a distinguished codeword
x of target weight w after approximately

C∞(q, n, k, w) = O

(
q ·
(
n
w

)(
n−k
w−2

) )
row operations. If the number N = (q − 1) · Nw of codewords of weight w is small enough (i.e. the
weight is sufficiently small), the cost of finding (any) one codeword of weight w is then estimated as
C1(q, n, k, w) ≈ C∞(q,n,k,w)

N . Finding L distinct codewords of weight w therefore costs

CL(q, n, k, w) ≈ C∞(q, n, k, w) ·

(
L−1∑
i=0

q

L− i

)
,

which simplifies to
CL(q, n, k, w) ≈

L

N
· C∞(q, n, k, w)

if L is much smaller than N . If we wish to find all codewords, i.e. L = N , a better cost to note is then

CN (q, n, k, w) ≈ C∞(q, n, k, w) · ln(N),

since
∑N

i=1
1
i ≈ ln(N).
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A.2 Leon’s Algorithm

The first algorithm we cover is due to Leon [Leo82], and the main idea is somewhat similar to the approach of
solving LIP using invariants in [DvW22]. Suppose we have two codes C1 and C2 for which π(C1) = C2. Then
for each subset X ⊆ C1 there exists a subset Y ⊆ C2 of the same cardinality such that π(X) = Y . The first
thing to note is that among all the mappings between X and Y , π (restricted to X) must be one of them.
The second thing to notice is that the map π preserves “geometric” invariants, namely that ω(x) = ω(π(x))
for all x ∈ C1 (cf. [DvW22] on geometric invariants). For this reason, Leon’s algorithm focuses on finding sets
of low-weight codewords that span each code, finding permutations between them, and checking whether
these permutations are exactly π on the entire code C1. Denote by S(X,Y ) the subgroup of permutations
σ ∈ Pn such that σ(X) = Y .

For a target weight w, the algorithm thus proceeds roughly as follows:

1. Compute Bw
i := Bw(Ci) for i = 1, 2.

2. Find (the group generators of) S(Bw
1 , B

w
2 ).

3. Check whether σ(C1) = C2 for σ ∈ S(Bw
1 , B

w
2 ).

Leon proved in [Leo82] that the complexity of the last two steps is polynomial in the cardinality of Bw
i ,

which can be estimated as (q − 1) ·Nw by Proposition 3. Hence w needs to be small enough (slightly larger
than the minimum distance of the code, estimated by the Gilbert-Varshamov bound for linear codes [Ber15,
Thm. 13.74]), lest the sets Bw

i are too large. It w is too small, then there may be too many permutations to
efficiently check, i.e. the subgroup S(Bw

1 , B
w
2 ) is too large. For finding low-weight codewords, the standard

is to use an algorithm based on ISD. Denote by CISD(q, n, k, w) the time complexity of an ISD algorithm
searching for a codeword of weight w in an [n, k]-linear code over Zq. The complexity of the attack is then
estimated from below as follows.

Proposition 4 ([BBPS21, Prop. 3]). Let C1 be a random [n, k]-linear code over Zq, and C2 = π(C1) for
a random permutation π ∈ Pn. Then time required for Leon’s algorithm with the target weight parameter w to
find the permutation π given C1 and C2, i.e. to solve sPCE, is at least

O

(
CISD(q, n, k, w) · 2

Nw∑
i=1

1

i

)
,

where w is such that Nw ≥ 2. We can estimate this further [Beu20b] by

O(CISD(q, n, k, w) · ln(Nw)).

A.3 Beullens’ Algorithm

Beullens [Beu20b] refines Leon’s algorithm by observing that not only does a permutation preserve the
Hamming weight of a codeword, it also preserves its (non-zero) multiset of entries. The main improvement
comes from the second observation that if the field is large enough (i.e. there are a lot of possible entries),
the converse holds as well with large probability. That is, if x ∈ C1 and y ∈ C2 are low-weight codewords
with the same multiset of entries, then with large probability π(x) = y. Namely, suppose we have Bw

1 and
Bw

2 for w small, and x ∈ Bw
1 with a unique multiset, then we can immediately see which y ∈ Bw

2 it gets
mapped to by π. The main idea is that if Zq is sufficiently large, then with large probability a lot of multisets
of the codewords in Bw

1 will be unique, therefore we can gather pairs (x, π(x)), from which we recover π.
Heuristically, at least Ω(log(n)) such pairs suffice to recover π.

Another improvement Beullens’ algorithm makes is that it avoids computing the entirety of the sets Bw
i

for i = 1, 2, using the fact that ISD-based algorithms for finding low-weight codewords can be tuned to how
many codewords they output, making this algorithm probabilistic. Instead of computing the entirety of Bw

i ,
Beullens’ algorithm computes Θ

(√
|Bw

1 | log(n)
)
= Θ

(√
(q − 1)Nw log(n)

)
elements of Bw

1 and Bw
2 , from

which one expects to find Θ(log(n)) pairs (x, π(x)) with unique multisets, enough to recover π.
The algorithm proceeds roughly as follows:
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1. Set w maximal such that n!
(n−w)!q

−n+k < 1
4 log(n) and w ≤ n− k + 1.

2. Use an ISD algorithm repeatedly to generate a list L that contains

` =
√
|Bw

1 |q−n+k−12 log(n)

pairs of the form (x, lex(x)) where x ∈ Bw
1 and lex(x) is the lexicographically first element of the set

{σ(a · x) ; σ ∈ Pn, a ∈ Z∗q} (notice again only non-zero entries play a role, since permutations that put
the n− w zero entries in x to the beginning are lexicographically below others, so we may just ignore
them).

3. Initialize an empty list P and again use an ISD algorithm repeatedly to generate y ∈ Bw
2 . If there

is a (x, lex(x)) ∈ L such that lex(x) = lex(y) (i.e. they have the same multiset of entries up to scalar
multiplication), then append (x, y) to P . Stop when P has 2 · log(n) elements.

4. Iterate over all permutations σ ∈ Pn that satisfy 〈σ(x)〉 = 〈y〉 (recall we considered codewords up to
multiplication by a scalar) for all (x, y) ∈ P , until a permutation is found such that σ(C1) = C2.

Step 1 is optional and can be replaced by giving w as a parameter as in Leon’s algorithm. The number of
entries ` generated by an ISD algorithm in step 2 can also be adjusted.

Beullens estimates the complexity of his algorithm is dominated by the cost of computing |L| low-weight
codewords using an ISD algorithm (concretely Lee-Brickell), which is 2 · CISD(q, n, k, w), which is according
to the above estimated as

2 · C|L|(q, n, k, w) ≈ C∞(q, n, k, w) · |L|
Nw

.

We note that the authors of [BBPS23] also improve the LCE version of Beullens’ algorithm, but we are
mainly focused on PCE.

A.4 Algorithm from Canonical Forms

Recently, Chou, Persichetti, and Santini [CPS23] introduced a new version of code equivalence they call
Canonical Form Linear (resp. Permutation) Equivalence Problem, abbreviated CF-LEP (resp. CF-PEP).
They prove it computationally equivalent to LCE (resp. PCE), and while the upshot is that this allows them
to significantly reduce the size of LESS signatures, the reduction also yields a new algorithm for LCE and
PCE for large finite fields Zq. Nowakowski [Now24] then extended the algorithm to smaller fields Zq, and
both algorithms have the following complexity.

Proposition 5 ([Now24, Thm. 4.4]). Let H: [0, 1] → R be the binary entropy function H(x) = −x ·
log2(x)− (1− x) · log2(x), and let r = k

n be the rate of the codes. Then the complexity of the Canonical Forms
algorithm in solving LCE is estimated as

Θ
(
2

1
2 ·H(r)·n

)
.

A.5 Support Splitting Algorithm

Neither of the above attacks depends in complexity on the dimension of the hull. This next attack provides
a polynomial solver for PCE for any fixed hull dimension, but is exponential in the hull dimension. As we
mention above, the hull dimension of a random [n, k]-linear code is typically a small constant, meaning this
attack efficiently solves PCE unless we limit ourselves to a subset of codes with large hull dimension, such as
weakly self-dual codes.

We say a function S : Cn,k,q × {1, . . . , n} → T mapping to some set T , where Cn,k,q is the set of all
[n, k]-linear codes over Zq, is a signature function for a code C, if for every i ∈ {1, . . . , n} and every π ∈ Pn

we have that S(C, i) = S(π(C), π(i)). We say a signature function is fully discriminant, if we also have that
S(C, i) 6= S(C, j) for i 6= j. Clearly, given two permutation equivalent codes C1 and C2 = π(C1) and a fully
discriminant signature S (for either one) we can recover the permutation π, since S(C1, i) = S(C2, j) ⇐⇒
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j = π(i). If one has such a signature function, the Support Splitting Algorithm (SSA) essentially consists of
finding collisions between S(C1, i) and S(C2, j).

The signature function proposed by Sendrier [Sen00] for use in SSA is based on the hull space of a code,
which is founded in his earlier observation [Sen97] that the hull dimension of a random code will be small. In
particular, denote by Ci the code obtained by taking a code C and puncturing it at position i ∈ {1, . . . , n},
i.e. simply forgetting that entry. We recall that for a code C, its weight enumerator is a bivariate polynomial
defined as

ω(C)(x, y) =

n∑
w=0

Nw · xwyn−w.

Then the signature function S proposed is the following

S(C, i) =
{
ω
(
hull(Ci)

)
, ω
(
hull((C⊥)i)

)}
.

Since computing the hull of a code is efficient, requiring only linear algebra with a cost of about O(nω)
operations in Zq for ω the linear algebra constant, the computational bottleneck is the weight enumerator
function, as it usually entails enumerating all of the codewords. Denoting by h the dimension of the hull
of an [n, k]-linear code, one can estimate [BBPS21] a cost of O

(
n · qh

)
for each computation of the weight

enumerator. Again observing heuristically that using around ln(n) punctures is enough to obtain a fully
discriminant signature for a code, the complexity estimate of the SSA algorithm is the following.

Proposition 6 ([BBPS21, Prop. 7]). Let C1 be a random [n, k]-linear code over Zq with hull dimension
h ≤ min{k, n− k}, and let C2 = π(C1) for a random permutation π. Then the complexity of using SSA to
recover π given C1 and C2 is estimated as

O
(
n3 + n2 · qh · ln(n)

)
.

A.6 The BOS Algorithm

While practically speaking, SSA is a polynomial PCE solver for random codes, it clearly fails when the hull
of the code is trivial. In this case, Bardet, Otmani, and Saeed-Taha [BOST19] showed that solving PCE
essentially amounts to solving the weighted version of the graph isomorphism problem (WGI). Consider
undirected weighted graphs and represent them as they adjacency matrices, i.e. the entry at position (i, j) is
equal to ξ if and only if the vertices respectively labeled i and j are connected by a (directed) edge of weight
ξ. Two graphs are (permutation) isomorphic if one can be obtained from the other by permuting its vertices
while preserving the edge weights. In terms of adjacency matrices, two graphs represented by A1 and A2

are isomorphic if and only if there exists a permutation matrix P such that A2 = P ·A1 · PT. The main
observation of [BOST19] is the following.

Proposition 7 ([BBPS21, Thm. 2]). Let C1 and C2 be [n, k]-linear codes over Zq with trivial hulls. For
i = 1, 2 denote by Gi a generator matrix (of columns) for Ci and define Ai = Gi · (Gi ·GT

i )
−1 ·GT

i . Then C1

and C2 are permutation equivalent, i.e. C2 = π(C1), if and only if A2 = P ·A1 ·PT where P is the permutation
matrix associated to π.

Given that the graph adjacency matrices can be computed in O(nω) (the cost of matrix multiplication
and inversion), the cost of the BOS algorithm is

O(nω · CWGI(n)),

where CWGI(n) is the cost of solving WGI for graphs with n vertices. Note that WGI can be solved in
quasi-polynomial time in the worst case [Bab16]. More generally, if the hull dimension is non-trivial and
denoted by h, the complexity of the BOS algorithm is asymptotically estimated as

O
(
h · nω+h+1 · CWGI(n)

)
.
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A.7 Summary

We ran the attack estimator provided with [Beu20a] on our parameters, and extended it to also consider
the new attack reported in [CPS23,Now24]. We observe that the three collision-based attacks do not impact
lattice parameters when run on the parameters of the whole code (the estimator reports upwards of 1700
bits of complexity for each collision-based attack). However, since our codes are not self-orthogonal, one may
reduce the complexity of these attacks by consider only the hulls of the instance codes.

Indeed, for two permutation equivalent codes C1 = π(C2), we have that H1 = π(H2), where Hi = hull(Ci)
for i = 1, 2 [Sen00, Prop. 12]. It is well-known [Sen00] that a generator matrix for Hi can be computed
efficiently using echelon forms. Since the complexity of ISD depends on the rate r = k

n of the code, the worst
case being r = 1

2 , one may therefore reduce the complexity of collision-finding by considering just the hulls of
the codes, having a strictly smaller rate h

n < k
n .

We observe that the complexity of canonical forms algorithms was always the lowest, leading to the
requirement that

1

2
·H
(
h

n

)
· n ≥ λ,

where H is the binary entropy function, h, n the dimension and length of the hull, and λ the security parameter.
Notice that the complexity of running collision attacks on the hull is indeed lower than on the entire code,
since H

(
h
n

)
≤ H

(
k
n

)
as soon as 0 < h < k ≤ n

2 . We report minimal hull dimensions required for particular
security parameters and parameter sets in Table 1. Table 2 compares the hull dimension h required by
both hull attacks and hull collision attacks. We observe the latter is always greater for our parameter sizes,
thus in our parameter selection in Section 5.2, we consider both the hull collision attack and the usual hull
attacks [Sen00,BOST19].

Table 2: Parameters for the given λ and p with c = 0.25 and s = 8 noting hcoll and hhull coming from hull
collision and the usual hull attacks, respectively.

λ p n k log2(q) hcoll hhull

128 2 7313 450 13 27 10
128 16 11000 550 16 26 10
192 32 20250 900 18 37 14
256 32 29688 1250 19 48 18

B Solving Affine Conics Over Fq

In this section, we discuss solving affine conic equations, and construct a provably uniform sampler for
solutions to conic equations using rejection sampling.

B.1 Number of Solutions to Affine Conic Equations

This section summarises [BDR]. An affine conic over a field F is a quadratic equation in 2 variables of the
form

F (x1, x2) = a x2
1 + b x1 · x2 + c x2

2 + d x1 + e x2 + f.

If char(F) 6= 2, we may conveniently write the variables, the quadratic form, and the linear form as matrices

x =

[
x1

x2

]
, Q =

[
a b

2
b
2 c

]
, l =

[
d
e

]
,
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and obtain an equivalent formulation of an affine conic

F (x) = xT ·Q · x+ lT · x+ f.

A conic is called smooth, or non-degenerate, if its discriminant D = b2 − 4 · a · c is non-zero. Equivalently,
its quadratic form Q is invertible. From now on let F = Zq for an odd prime q, and let conics be smooth.

It is well-known that since char(F) 6= 2, any symmetric quadratic form over F is diagonalisable in the
sense of quadratic forms, that is there exists an invertible matrix A such that AT ·Q ·A = D where D is a
diagonal conjugate to Q. Further, define the vector

s = −1

2
·Q−1 · l.

Since A is invertible, the transformation x̃ = A · x+ s corresponds to a change a coordinates, hence the
number of solutions to F (x) = 0 is equal to the number of solutions of F (x̃) = 0. Indeed, there is a bijective
correspondence between the two solution sets that maps a root r of F (x) to r̃ = A · r+ s which is a root of
F (x̃), and the map r = A−1 · (r̃− s) that maps back.

Observe that the change of coordinates x̃ precisely annihilates the linear component, that is

F (A · x+ s)

= (A · x+ s)T ·Q · (A · x+ s) + l · (A · x+ s) + f

= xT ·AT ·Q ·A · x+ 2 · sT ·QT ·A · x+ lT ·A · x+ sT ·Q · s+ lT · s+ f

= xT ·D · x+ sT ·Q · s+ lT · s+ f

= xT ·D · x+ f − sT ·Q · s

Denote the diagonal entries of D by d1 and d2, the entries of x̃ by x̃1 and x̃2, and the new constant by
f ′ = f − sT ·Q · s. We have obtained a new affine conic

F (x̃1, x̃2) = d1 · x̃2
1 + d2 · x̃2

2 + f ′

whose solutions bijectively correspond to the solutions of F (x1, x2) via the above change of coordinates.
Recall that since D is full-rank, we have that d1 · d2 6= 0. We have shown that every smooth conic can be
equivalent via a change of coordinates to a smooth conic of such form. The number of solutions of an affine
conic equation is then characterised completely by the following statement.

Lemma 12 ([BDR, Sec. 2.1]). Let F (x1, x2) = d1 ·x2
1 + d2 ·x2

2 + f ′ with d1 · d2 6= 0 be a smooth conic over
Zq for q odd prime, and denote by VF the set of its points VF =

{
(x1, x2) ∈ Z2

q ; F (x1, x2) = 0
}

. Then

|VF | =


1 if f ′ = 0 and − d1 · d2 /∈ QR(Zq)

q − 1 if f ′ 6= 0 and − d1 · d2 ∈ QR(Zq)

q + 1 if f ′ 6= 0 and − d1 · d2 /∈ QR(Zq)

2 · q − 1 if f ′ = 0 and − d1 · d2 ∈ QR(Zq).

Corollary 3. Let F (x1, x2) = a ·x2
1+ b ·x1x2+ c ·x2

2+d ·x1+ e ·x2+f with D = b2−4 ·a · c 6= 0 be a smooth
conic over Zq for q odd prime, and denote by VF the set of its points VF =

{
(x1, x2) ∈ Z2

q ; F (x1, x2) = 0
}

.
Then

|VF | =


1 if f ′ = 0 and D /∈ QR(Zq)

q − 1 if f ′ 6= 0 and D ∈ QR(Zq)

q + 1 if f ′ 6= 0 and D /∈ QR(Zq)

2 · q − 1 if f ′ = 0 and D ∈ QR(Zq),

where
f ′ = f +

c · d2 − b · d · e+ a · e2

D
.
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Proof. Since

dx1
· dx2

= det(D) = det(A)2 · (a · c− b2

4
)

and 4 is always a quadratic residue, we have that checking whether −dx1
· dx2

is a quadratic residue is
equivalent to checking whether D = b2 − 4 · a · c is a quadratic residue.

A quick calculation shows that

sT ·Q · s = c · d2 − b · d · e+ a · e2

4 · a · c− b2
=

c · d2 − b · d · e+ a · e2

−D
.

Then we have
f ′ = f − sT ·Q · sT = f +

c · d2 − b · d · e+ a · e2

D
.

B.2 Rejection Sampling for the Conic Solver

We next apply the above observations in the context of the SSO algorithm defined in Definition 10 and
its analysis in the proof of Lemma 5. Adopting the notation there, observe that D = b2 − 4 · a · c being a
quadratic residue depends only on the matrix G which generates the code from which we wish to sample
self-orthogonal vectors.16

If we sample the first k−2 coefficients c1, . . . , ck−2 uniformly at random from U (Zq), and then a uniformly
random solution to the resulting smooth conic, the probabilities sampling each self-orthogonal vector of
Span(G) are not the same. Indeed, if D ∈ QR(Zq) we have that

– if there are q − 1 solutions, the probability of each one being sampled is 1
qk−2 · 1

q−1 , and
– if there are 2 · q − 1 solutions, the probability of each one being sampled is 1

qk−2 · 1
2·q−1 .

To make the probabilities equal, the sampler must only accept the first case with probability q−1
2·q−1 , and

always accept the second case, making the probability of each self-orthogonal vector being sampled exactly
1

qk−2 · 1
2·q−1 .

If D /∈ QR(Zq) we have that

– if there is only 1 solution, the probability of it being sampled is 1
qk−2 ,

– if there are q + 1 solutions, the probability of each one being sampled is 1
qk−2 · 1

q+1 .

To make the probabilities equal, the sampler must only accept the first case with probability 1
q+1 , and always

accept the second case, making the probability of each self-orthogonal vector being sampled exactly 1
qk−2 · 1

q+1 .
The sampler from Figure 3 thus correctly samples from U (Vq,G). When D ∈ QR(Zq), the failure probability

is bounded from above by
(

q
2·q−1

)halt
, and by

(
q

q+1

)halt
when D /∈ QR(Zq). Indeed, rejection can only happen

in the case of q − 1 solutions (resp. 1 solution), which we conservatively bound by 1, and when u > q−1
2·q−1

(resp. u > 1
q+1 ), which happens with probability q

2·q−1 (resp. q−1
q ).

Remark 3. We can determine the expected failure probability under the heuristic assumption that for a
uniformly random code generator matrix G we have that f ′ is a uniformly random field element in Zq

if (c1, . . . , ck−2) are uniformly random. The case of q − 1 solutions (resp. 1 solution) then happens with
probability exactly q−1

q (resp. 1
q ), thus

E[⊥ ← SSO(G, halt)] =


(

(q−1)2
2·q2−q

)halt
D ∈ QR(Zq),(

1
q+1

)halt
D /∈ QR(Zq)

<
1

2halt ,

16 There is some choice there since multiple pairs of columns could satisfy the smoothness condition, however once we
pick a pair this property is fixed.
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over the internal randomness of the algorithm.
It is worth noting that it is not true that for any code generator matrix G, the value f ′ follows the uniform

distribution over the randomness of (c1, . . . , ck−2). This would imply that every code [n, k]-linear code over
Zq has the same number of self-orthogonal codewords, which is not the case. For example, the [n, 2]-linear
code Ci,j over Z3 generated by any two standard unit vectors ei, ej with i 6= j has only one self-orthogonal
codeword, the all-zeroes vector [0]n, in other words the inner product on Ci,j is always non-degenerate. Take
for contrast any self-orthogonal [n, 2]-linear code over Z3, where every codeword is self-orthogonal, perhaps
the [6, 2]-linear code generated by e1 + e2 + e3 and e4 + e5 + e6. The above assumption instead states that
this holds on average, for a random code generator matrix G.

C Dehulling Linear Codes

In this section, we explicitly write down the algorithms for finding the dual, the hull, and an algebraically
complementary 0-hollow subcode to the hull of a linear code. We also sketch out why finding permutation
equivalent 0-hollow complementary subspaces to the hulls of the permutation equivalent linear codes is a
hard computational problem despite the efficiency of finding an algebraically complementary subspace. We
call these two complementary spaces algebraic and geometric dehullings, respectively.

Let C be a [n, k]-linear h-hollow code over Zq for h < k with hull H ⊂ C. Algebraically speaking, there
exists a 0-hollow subcode T ⊂ C of dimension k − h such that C = H⊕ T (that is each v ∈ C can be written
as v = h + t where h ∈ H and t ∈ T, and H ∩ T = {0}), and T ∼= C/H. Here the elements of the quotient
space are the equivalence classes of the equivalence relation on C defined as v ≡ w ⇐⇒ v −w ∈ H, and
denoted by v+H for any representative v. The code T is necessarily 0-hollow, since any vector orthogonal to
the entirety of T would immediately fall in H, contradicting the maximality of H.

Note, however, that this correspondence is not geometric. In an inner product space equipped with a non-
degenerate bilinear form 〈·, ·〉, the orthogonal complement space T would be defined by T = {v ∈ C ; v⊥H},
and found by considering the left kernel of any generating matrix H for H. The inner product on C admits
many self-orthogonal vectors by Lemma 4, and the hull H of C is defined precisely as the largest subspace of
C wrt. inclusion such that {v ∈ C ; v⊥H} = C, so this approach fails here.

Dual(A)

A′ := reduced echelon form of A
P := perm. s.t. (P ·A′)[1, . . . , k] = Ik

M := (P ·A′)[k + 1, . . . , n]

A⊥ := PT · [−MT||In−k]

return A⊥

Hull(A)

M = [A|Dual(A)]

H = basis of left kernel of M
return H

Dehull(A)

H := Hull(A)

B := basis of Span(A)/Span(H)

T := lift B to Span(A)

return T

Fig. 11: Algorithms for computing the dual and the hull of a code.

C.1 Geometric Dehulling is Hard

If one could efficiently find 0-hollow subcodes Ti such that Ci = Hi⊕Ti and also T1 = π(T2), then [BOST19]
can be used to mount an attack against sPCE for C1,C2 using the DehullAttack algorithm from Figure 12.
While we can efficiently “dehull” a code algebraically, that is find a 0-hollow T such that C = hull(C)⊕Span(T),
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finding geometric dehullings of permutation equivalent codes that are permutation equivalent themselves is
hard if PCE is hard, as seen in Figure 12.

The main idea of the algebraic dehulling algorithm is to simply construct a vector space basis for
T ∼= C/ hull(C) from distinct equivalence classes to get a subcode of C of dimension n− k. One may optionally
randomise to get a random basis. The algorithm is described in Figure 11, with a reduction sketch from
sPCE to the problem of finding geometric dehullings in Figure 12.

DehullAttack(A,B)

// C1 = Span(A) and C2 = Span(B)

H1 := Hull(A) ; H2 := Hull(B)

T1,T2 ← find complements to H1,H2 such that Span(T1) = π(Span(T2))

Π := {π′ ; Span(T1) = π′(Span(T2))} using [BOST19]
for π′ ∈ Π if C1 = π′(C2) : return π′

return ⊥

Fig. 12: A potential dehull attack on PCE with the geometric dehulling step marked in gray.
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D Code for Parameter Selection

The script is also .
from dataclasses import dataclass
from estimator . estimator import LWE , ND
from sage .all import log , ceil , floor , sqrt , RR
import sys
import os

class HiddenPrints :
def __enter__ ( self ):

self . _original_stdout = sys. stdout
sys. stdout = open (os.devnull , "w")

def __exit__ (self , exc_type , exc_val , exc_tb ):
sys. stdout . close ()
sys. stdout = self . _original_stdout

def _kb(v):
"""
Convert bits to kilobytes .
"""
return round ( float (v / 8.0 / 1024.0) , 1)

def hulldim (n, k, log_q , secpar =128):
def entropy (x):

return RR(-x * log(x, 2) - (1 - x) * log (1 - x, 2))

def CF_attack (n, k, q):
return 0.5 * entropy (k / n) * n

# hull collision attacks min h
h_collision = k
for h in range (1, k + 1):

cf = CF_attack (n, h, 2** log_q )
if cf >= secpar :

h_collision = h
break

# hull attacks min h
h_hull = max(ceil( secpar / log_q ), ceil( secpar / log(n, 2)))
return max( h_collision , h_hull )

@dataclass
class UPKEParams :

"""
All solvers return an instance of this class .
"""

secpar : int
k: int
n: int
log_q : int
p: int

def __repr__ ( self ):
return f"UPKE(k: {self.k:4d}, n: {self.n: 4d}, q: 2^{ self. log_q })"

def ct( self ):
return _kb (( self .n + 1) * self . log_q )

def update ( self ):
return _kb( self . secpar / floor (log( self .p, 2)) * ( self .n + 1) * self . log_q )

def hulldim ( self ):
return hulldim ( self .n, self .k, self .log_q , self . secpar )

def display ( self ):
print (f"{self }: h = {self. hulldim ()} , |ct| = {self.ct ()} , |upd| = {self. update ()}")

def upke_params ( secpar =128 , c=0.25 , sigma =3.2 , p=32 , lwe_kwds =None ):
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"""
Estimate UPKE parameters and sizes .
"""
for k in range (300 , 1500 , 50):

# LWE correctness condition
for log_q in range (10 , 30):

if 2** log_q / sqrt( log_q ) >= p**2 / 2 + p * sigma * sqrt (( secpar + 1) * (1 + c) * k):
break

# LHL condition
# NOTE ignoring - secpar /log(n)
n = ceil ((1 + c) * k * log_q )

lwe = LWE. Parameters (
n=k,
m=n,
q=2** log_q ,
Xs=ND. UniformMod (2** log_q ),
Xe=ND. DiscreteGaussian ( sigma ),

)
# NOTE these won ’t matter
deny_list = ("arora -gb", "bkw", " bdd_hyrbid ", " bdd_mitm_hybrid ")
with HiddenPrints ():

if lwe_kwds is None:
lwe_kwds = {}

costs = LWE. estimate (lwe , deny_list =deny_list , ** lwe_kwds )

if min(cost["rop"] for cost in costs . values ()) > 2** secpar :
upke = UPKEParams (secpar , k, n, log_q , p)
return upke

def table1 ():
"""
[EC: AlbBenLai25 ]: Table 1
"""
rows = [

{" secpar ": 128 , "p": 2},
{" secpar ": 128 , "p": 16} ,
{" secpar ": 192 , "p": 32} ,
{" secpar ": 256 , "p": 32} ,

]
for row in rows:

upke = upke_params ( secpar =row[" secpar "], p=row["p"])
upke. display ()
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