
Traceable Threshold Encryption without Trusted Dealer∗

Jan Bormet 1 Jonas Hofmann 1 Hussien Othman 1

1 Technical University of Darmstadt, Darmstadt, Germany
{jan.bormet,jonas.hofmann1}@tu-darmstadt.de, hussien.othman@gmail.com

Abstract

The fundamental assumption in t-out-of-n threshold encryption is that the adversary can
only corrupt less than t parties. Unfortunately, it may be unfounded in practical scenarios
where shareholders could be incentivized to collude. Boneh, Partap, and Rotem (Crypto’24)
recently addressed the setting where t or more shareholders work together to decrypt illegally.
Inspired by the well-established notion of traitor tracing in broadcast encryption, they added
a traceability mechanism that guarantees identifying at least one of the colluders. They
provide several constructions that enable traceability, all of which require a trusted dealer
to distribute the secret shares. While the trusted dealer can be replaced with a DKG
for conventional threshold encryption, it is unclear how to do so without compromising
traceability. As thresholdizing is meant to mitigate a single point of failure, a natural question
that remains is: Can we construct an efficient traceable threshold encryption scheme that
does not rely on a trusted party to distribute the secret shares?

In this paper, we achieve two dealerless traceable threshold encryption constructions
with different merits by extending the PLBE primitive of Boneh et al. (Eurocrypt’06)
and combining it with the silent setup threshold encryption construction of Garg et al.
(Crypto’24). Our first construction achieves an amortized ciphertext of size O(1) (for O(n)
ciphertexts). Our second construction achieves constant ciphertext size even in the worst
case but requires a less efficient preprocessing phase as a tradeoff. Both our constructions
enjoy a constant secret key size and do not require any interaction between the parties.

An additional restriction in the constructions of Boneh et al. is that they can only
guarantee to find at least one colluder, leaving techniques to identify more traitors as an
open problem. In this paper, we take a first step towards solving this question by formalizing
a technique and applying it to our first construction. Namely, our first construction enables
tracing t traitors.

1 Introduction

Threshold encryption [22, 23] is a fundamental tool for secure encryption amongst multiple
parties, as it allows generating a succinct ciphertext which can be decrypted by a committee
of parties. At its core, semantic security holds only as long as less than t-out-of-n parties are
compromised. While assuming that an adversary cannot obtain t shares seems reasonable, this
model is insufficient in practice. In the real world, committee members might be incentivized
to give away or sell their secret keys or decryption shares, potentially allowing an adversary to
break the scheme’s security.

∗This work was partially supported by the European Research Council (ERC) under the European Union’s
Horizon 2020 and Horizon Europe research and innovation programs (grant CRYPTOLAYER-101044770) and the
German Research Foundation (DFG) via the DFG CRC 1119 CROSSING (project S7).

Recently, Boneh, Partap, and Rotem [9] addressed this problem by establishing the notion of
traceability in threshold encryption schemes. Namely, they consider an adversarially produced
stateless decoder box built by a set of at least t colluders, where the decoder takes a ciphertext
as input and outputs its decryption. Then, given black-box access to the decoder, a party called
the tracer can trace back the decoder to at least one of the colluders who built it. In [9], they
provide three constructions with different merits. Their approach is to adapt existing traitor
tracing schemes (in the non-threshold setting) to the threshold encryption setting. In particular,
they convert the schemes of [8] and [30]. However, all of their constructions suffer from a major
drawback: the requirement of a trusted dealer to distribute the secret shares among the parties.
In many applications of threshold encryption, this dealer imposes a severe compromise on security.
For example, in encrypted mempools for blockchains [3, 18, 25], which motivated the work of
[9], a trusted authority could violate the encrypted transactions’ privacy, resulting in a drastic
financial loss.

Unfortunately, the standard technique of replacing the trusted dealer with a traditional
distributed key generation (DKG) [37, 29, 41] protocol is not feasible since, in such protocols,
each coalition of t parties can compute the secret share of any other party. Consequently, such a
coalition can frame an honest party by embedding its secret share in the generated decoder box.
One might consider replacing the trusted dealer with a generic MPC protocol, but this solution is
much less efficient than DKG solutions in terms of communication and computation complexity.
Therefore, an interesting direction that was left open by [9] is to construct a DKG protocol
among the parties and the tracer, where the tracer learns only the information needed for tracing,
and the parties only learn the information required for decryption. In particular, a crucial
requirement from such DKG is that a set of parties of size t must not learn the secret shares of
the remaining n− t parties. Motivated by the importance of getting rid of a trusted dealer in
threshold encryption and the significance of the succinct ciphertext in threshold encryption, the
main question we study in this paper is:

Question 1.1. Can we construct an efficient traceable threshold encryption scheme with constant-
size ciphertext1 that does not require a trusted dealer?

In this paper, we answer this question in the affirmative by introducing new traceable threshold
encryption constructions in the silent setup model [27, 28, 20]. In this setting, each party samples
its secret share and publishes some auxiliary public information that facilitates the decryption.
Thus, since secret shares are entirely independent, such a setting maintains the aforementioned
crucial property in a traceable threshold encryption scheme without requiring a trusted dealer.
Furthermore, as there is no interaction between the parties in the setup phase (hence called
silent), this setting is much more practical than the generic MPC-based and traditional DKG
solutions.

Another drawback of the constructions of [9] is that they can only guarantee to trace the
decoder back to at most one traitor from the set of colluders. Indeed, this restriction is inherent
to the techniques they use in their constructions. This is because they adapt non-threshold traitor
tracing schemes to the threshold setting, but the techniques used in these schemes are designed
to catch a single traitor, which is the best one can hope for in the non-threshold setting. In
threshold traitor tracing, however, catching up to t traitors could be achievable since a minimum
of t colluders are required to construct a successful decoder. Realizing constructions that support
tracing more traitors requires fundamentally new definitions and techniques. Therefore, the
following is another vital question left open by [9].

Question 1.2. Can we construct an efficient traceable threshold encryption scheme that guarantees
to trace any decoder back to more than one, optimally t, colluders?

1Note that there is a trivial construction with O(n) size ciphertext.

2

In this paper, we take a first step towards answering this question. In particular, we put
forward formal definitions that capture this problem and present a construction with an O(1)
amortized ciphertext size (and linear in the worst case), which is guaranteed to trace t colluders.

The Model. Following [9], we consider a model where colluders build a stateless decoder. The
tracing is done via black-box access to the decoder. For successful tracing, we require that
the tracing algorithm outputs a subset of colluders without framing any innocent parties. We
emphasize that our first construction works in the public tracing model, i.e., there is no trusted
authority for tracing, and anyone can trace a decoder. Conversely, in our second and main
construction, tracing requires some private information (i.e., the tracing key tk). Hence, only
the party that knows the tracing key can trace decoders. Crucially, the tracer is not trusted for
confidentiality. That is, an adversary who obtains the tracing key cannot break the semantic
security of the scheme as long as it has corrupted less than t parties. In other words, in the
worst case, if the tracer acts maliciously, the security guarantees in our construction will be as in
traditional threshold encryption schemes. This feature distinguishes our construction from [9],
which requires a trusted tracer and a trusted dealer.

1.1 Our Contributions

Our contributions can be summarized as follows.

• New Model: We introduce a new model for constructing traceable threshold encryption
schemes. Namely, we define Traceable Silent Threshold Encryption (TSTE). In our model,
we require neither a trusted dealer nor an interaction between the parties. Furthermore,
we also present a model with a preprocessing phase, which enables us to construct more
efficient schemes.

• New Building Block: We give a formal treatment of Oblivious Silent Threshold Encryption
(OSTE), a new building block that we define. It extends silent threshold encryption
(STE) [28], allowing it to be used for tracing. We define the primitive and provide formal
security notions. In particular, we elevate a well-known primitive called Private Linear
Broadcast Encryption (PLBE) [11] to the threshold encryption setting. We introduce
relaxed requirements compared to PLBE in our definition and show how to realize a more
efficient TSTE scheme using them. Furthermore, we transform any OSTE scheme, which
satisfies our relaxed requirements, to Traceable Silent Threshold Encryption (TSTE).

• New Constructions: We present two OSTE constructions (and hence TSTE constructions)
that are built upon [28]. Compared to [9], our constructions require neither a trusted dealer
nor interaction between the parties. Importantly, we achieve constructions with parameter
sizes comparable to [9]. In particular, our main construction enjoys constant-size ciphertext
and secret keys. We summarize and compare our constructions to [9] in Figure 1.

• More Traitors: We formalize a technique to guarantee that more than one traitor is
identified in tracing. We apply the technique to our first construction, enabling it to trace
t traitors.

1.2 Overview of Our Constructions

In this paper, we follow the line of work on revocation-based traitor tracing. In particular, we
adapt Private Linear Broadcast Encryption (PLBE) [11] to the threshold setting. Briefly, there
are two encryption methods in PLBE: Enc and TrEnc. The Enc method is used for regular

3

Construction |sk| |pk| |ct|
No trusted

dealer?
Public

tracing?
Traitors
found

Naive [9] O(1) O(n) O(n) ✓ ✓ t

First [9] O(n2) O(n2) O(1) ✗ ✗ 1
Second [9] O(n2) O(1) O(1) ✗ ✗ 1
Third [9] O(1) O(n1/3) O(n1/3) ✗ ✗ 1

This paper: Sec. 5.2 O(1) O(n2)
O(n) worst case
O(1) amortized

✓ ✓ t

This paper: Sec. 6 O(1) O(n4) O(1) ✓ ✗ 1

Figure 1: Our constructions compared to [9]. The comparatively best results are highlighted in
green.

encryption and TrEnc for tracing. TrEnc takes an index i ∈ {0, . . . , n} as input and encrypts the
message such that only parties with index > i can decrypt. Then, during tracing, the tracer
queries the decoder with TrEnc(0),TrEnc(1), . . . ,TrEnc(n) and considers party i ∈ [n] to be a
traitor if the decryption probability drops significantly when i is revoked. Tracing from PLBE
relies on three critical PLBE properties. The first is indistinguishability, by which we require
Enc and TrEnc(0) to be indistinguishable except with negligible probability. The second is index
hiding, by which we require that any adversary that does not know ski can distinguish between
TrEnc(i− 1) and TrEnc(i) only with negligible probability. Third, message privacy requires that
ciphertexts from TrEnc(n) (i.e., everyone is revoked) can not be decrypted except with negligible
probability. Intuitively, these properties facilitate tracing because initially, for TrEnc(0), the
decoder’s success probability must be as high as for normal decryption due to indistinguishability,
but in the end, for TrEnc(n), it must be negligible due to message privacy. Hence, for at least
one i, the success probability must drop significantly. Index hiding ensures it can only drop if
the decoder knows ski, so the identified party must be a colluder.

In our constructions, we show how to achieve traceability from the construction of [28] using
the aforementioned revocation technique. We realize the equivalent of PLBE in the silent setup
threshold encryption setting of [28]. Garg et al. propose a novel threshold encryption scheme in
the silent setup setting, where parties can non-interactively publish individual public keys using
a one-time setup (CRS). A useful extension of the construction of [28] is that an encryptor can
dynamically choose which parties are in the decryption committee for their ciphertext. We utilize
this feature to realize TrEnc, allowing the tracer to revoke parties. Notably, our key challenge
is to realize TrEnc without revealing which parties have been revoked. Our constructions are
proven secure in the Generic Group Model (GGM) [40].

Next, we summarize this paper’s main techniques and building blocks.

Oblivious Silent Threshold Encryption. In Section 3, we define Oblivious Silent Threshold
Encryption (OSTE), which extends silent threshold encryption STE [28] by a revocation func-
tionality (as in PLBE). In Section 4.1, we show how to transform any OSTE scheme to Traceable
Silent Threshold Encryption (TSTE). In OSTE, we allow a ciphertext ct to be encrypted to a set
of parties S such that any entity that does not know the secret share ski is oblivious to whether
the i-th party is among the set S or not. This extension is powerful in tracing, where the tracer
can revoke parties and use a similar algorithm as for PLBE. The OSTE definition introduces
the TrEnc algorithm, which is used for tracing queries. Informally, TrEnc takes as parameter a
message m and a set of revoked parties R and encrypts the message m to the set [n] \ R.

We establish three requirements for OSTE, analogous to the requirements for PLBE. As

4

for PLBE, the indistinguishability property requires that normal encryption is indistinguishable
from TrEnc(∅) (i.e., the message is encrypted to all parties). A key difference is the index hiding
requirement, which we call membership hiding in OSTE. Informally, membership hiding captures
the property of obliviousness, as discussed above. Only the party that holds ski can distinguish
whether the i-th party is revoked or not. Membership hiding extends index hiding, defined in
PLBE, in the sense that we do not fix a specific order of revocations. That is, index hiding
is defined for a fixed revocation order A = {i1, i2, . . . , }, but we allow arbitrary orders in our
definition. This extension enables us to guarantee tracing more than one traitor. We elaborate
on this in Section 4.2. Furthermore, in our definition, we relax the indistinguishability and
membership hiding requirements, as follows. In the relaxed indistinguishability, we allow the
adversary to distinguish between Enc and TrEnc(∅) with some fixed non-negligible probability.
Similarly, in the relaxed membership hiding, we allow the adversary to distinguish if party ski is
revoked with some fixed non-negligible probability. Interestingly, in Section 4.1, we transform any
OSTE scheme that fulfills our relaxed definition to a traceable threshold encryption scheme. We
highlight that this relaxation is essential for our second construction, which requires preprocessing,
as discussed later in this section.

We next discuss the main techniques used to achieve our OSTE constructions.

Rerandomization. In the STE construction of [28], when a ciphertext ct is encrypted to a set
of parties S (i.e., only parties in S can participate in decryption) and threshold t, each party
in S can compute a partial decryption share non-interactively. Afterward, anyone can build
an aggregation key ak, combining (at least) t partial decryption shares to decrypt ct. The
aggregation key ak is S-specific and can be computed from public information (i.e., the CRS and
the public keys of all parties in S). However, the restriction here is that the ak can be computed
if and only if the set S is known. As we discussed, for our use case in tracing, we would like to
hide whether a party i is in the set S or not (membership hiding of OSTE). Hence, in Section 5,
we modify the STE scheme to achieve this property. To this end, we rerandomize all public keys
of all the parties by masking them with a random element such that pk′i ← αpki if i ∈ S and
pk′i ← ᾱipki if i ̸∈ S, i.e., all keys of unrevoked parties are masked with the same value. We
then compute the aggregation key ak with respect to the new public keys and include it in the
ciphertext. We adjust the encryption of [28], accounting for the rerandomization, such that any
party can still use its secret share ski to compute its partial decryption and prove that parties
outside of S cannot participate in decryption. Intuitively, this trick conceals whether a party has
been revoked since a decryptor that does not know ski cannot distinguish αpki from ᾱipki. We
show this by a reduction to the external Diffe Hellman (XDH) assumption (dealing with practical
attacks such as rushing adversary).

A drawback of this approach is that we increase the size of the ciphertext by the size of ak,
which is linear in the number of parties. However, we observe that ak can be reused in multiple
ciphertexts. Hence, we propose two techniques to decrease the ciphertext size: amortization
and preprocessing. We sketch the amortization approach in Section 5.3 and construct a second
scheme using the preprocessing approach in Section 6.

Preprocessing. In Section 6, we reduce the size of the ciphertext of our first construction by
adding a preprocessing phase. This allows us to remove the rerandomized aggregation key
ak, which is of size O(n), from the ciphertext. Informally, after all parties have published
their public keys, we run a preprocessing phase, in which we generate a polynomial-size set of
predefined encryption and aggregation keys K = {(ek1,ak1), . . . , (ekN ,akN)}. Importantly, the
set K includes keys used to encrypt to all parties and keys used to encrypt only to subsets of
parties S ⊆ [n]. Let’s assume, for simplicity, that Ri = {1, . . . , i}, then for 0 ≤ i ≤ n, the set

5

K should contain a subset of keys Ki that enables only the parties in Si = [n] \ Ri to decrypt.
Observe that these keys are essential for tracing, where we revoke subsets of parties. All keys
in K are computed using the same algorithm as for the first OSTE construction. Crucially, no
one except for the tracer should be able to distinguish which keys correspond to which set, as
indistinguishability and membership hiding are not fulfilled otherwise. In Enc, the encryption key
ek is chosen uniformly at random from the set K. We next briefly describe the tracing procedure.
Let’s first consider an attempt to realize the TrEnc algorithm. Recall that the keys in set Ki

revoke Ri, and let’s assume that the tracer, in TrEnc(Ri), samples a key at random from the set
Ki and encrypts using this key. Unfortunately, this attempt does not satisfy indistinguishability
since the keys in TrEnc(∅) and Enc are chosen from different distributions. To see why this is a
problem, consider an adversary that chooses a set of keys L ⊂ K and generates a decoder that
decrypts only if it sees one of these keys. As the adversary can distinguish the subset Ki−1 if i
is a colluder, it can choose, e.g., L = Ki−1. Therefore, such a decoder will decrypt ciphertexts
that are encrypted using Enc with some probability ϵ but decrypt TrEnc(∅) ciphertexts with
probability 0, breaking the indistinguishability property. To overcome this, for each Sj for
j ∈ {0, . . . , n}, we ensure that the probability of getting a ciphertext that is encrypted to the set
Sj (i.e., sampling a key from Kj in encryption) is the same (up to a negligible factor) in both
Enc and TrEnc(R0). While this solution solves the indistinguishability issue, it introduces a
similar problem for membership hiding. We solve it similarly by ensuring that the distribution of
keys in TrEnc(Ri−1) ciphertexts is indistinguishable from TrEnc(Ri) for any adversary who does
not know ski. Informally, in TrEnc(Ri), the key is sampled from the sets Kj , where j ≥ i with a
certain probability. The intuition is that due to membership hiding property of the first OSTE
construction, an adversary that does not hold skj cannot distinguish Kj from Kj−1.

Yet, indistinguishability and membership hiding of this construction are not immediate. For
example, the adversary could win the membership hiding game for index i with non-negligible
probability. To see this, note that the adversary could sample a random key k ∈ K and assume
that it is in Ki−1. Then, given a challenge ciphertext ct, which is encrypted under TrEnc(Ri−1)
or TrEnc(Ri), it would return 1 if the key used to encrypt ct is k and 0 otherwise. Since the
size of K is polynomial and in TrEnc(Ri) the keys are not sampled from Ki−1, the adversary
would win with non-negligible advantage. However, we prove that by choosing the appropriate
parameters, we can upper bound the advantage of the adversary by some δ that is sufficient for
traceability following Theorem 4.5. This holds due to our relaxation on the indistinguishability
and membership hiding advantage requirements. Intuitively, we prove that the adversary cannot
sample a subset of keys L ⊆ K such that the probability of sampling a key from L in TrEnc(Ri)
falls apart by more than δ from sampling a key from L in TrEnc(Ri−1). Finally, to amplify the
correctness of the scheme, we require the encryptor to choose λc keys from the set K and encrypt
the message using them.

1.3 Discussion and Future Work

We next discuss interesting extensions, limitations, and open problems left by our work.

Multiverse Threshold Encryption. As mentioned in [28], their silent threshold encryption
construction also implies a threshold encryption construction in the multiverse setting [1]. In
this setting, a universe is defined as a tuple (U, tU), where U ⊆ [n] and tU is the associated
threshold; only parties in U can participate in decryption. In multiverse, we support arbitrary
universes, so each party needs to publish a single (sk, pk) pair for use in any of its universes.
Our constructions inherit this feature from [28]. In particular, in our second construction, which
requires preprocessing, we can run preprocessing per universe. Note that this is another advantage

6

of our approach compared to the generic MPC solution. In MPC, a party must be involved in
the execution of MPC for each of its universes, while in our approach, it needs to publish a single
public key only once.

Broadcast Encryption. Our constructions also imply a traitor tracing scheme in the broadcast
encryption setting (when t = 1) without a central authority. This may be compared to the tracing
scheme without central authority of [14]. In particular, we achieve a constant size ciphertext
where they achieve a

√
n ciphertext. However, in their construction, they rely on a transparent

setup to generate the CRS, whereas in our construction, as in the underlying STE construction
of [28], we rely on a structured CRS which is similar to the KZG polynomial commitment scheme
[34]. We leave the problem of getting rid of the non-transparent CRS as an interesting future
direction.

Decryption Oracle. In our main construction, we assume an adversary that does not have
access to a decryption oracle. We note that this is consistent with other traitor tracing schemes,
particularly the work of [9]. Unfortunately, traceability is not guaranteed in our preprocessing
construction when the adversary gets access to a decryption oracle since then the adversary can
learn non-trivial information about the tracing key (by inspecting which encryption keys produce
correct decryption and which do not). Hence, an interesting question for future research is how
to achieve traceability in the presence of a decryption oracle. We note that a possible direction is
to restrict ourselves to the model in which the number of decryption oracle calls is bounded by a
polynomial [19] (that is fixed in the setup), thus restricting the information the adversary can
reveal about the tracing key.

More traitors. Our first construction guarantees catching t traitors. However, our second
construction guarantees catching only a single traitor. A possible direction for future work is to
adapt our technique to enable tracing more than one traitor with our second construction.

Efficiency and Practicality. While we achieve efficient sizes asymptotically, our second construc-
tion does not scale well practically, as it requires a relatively expensive preprocessing of size O(n4).
However, we provide the construction as a proof of concept for a dealerless traceable threshold
encryption construction with constant ciphertext size, which does not require any interaction
between the parties. An interesting direction is to explore how to improve the efficiency of the
preprocessing phase. In particular, to reduce the dependency on n.

1.4 Additional Related Work

To the best of our knowledge, there are no other traceable threshold encryption constructions
besides [9]. Some other recent works study collusion resistance of secret sharing [10, 24, 33], but
it is not clear how to extend these techniques to construct traceable threshold cryptography
schemes. The notion of traitor tracing was first introduced by Chor et al. [17], initially referring
to piracy protection for proprietary data. Since then, there has been extensive research on traitor
tracing in the broadcast encryption setting (see, e.g., [42] for a good overview). Mostly, the works
on traitor tracing aim to achieve optimal parameter sizes, in particular, obtaining a sublinear
ciphertext. The most recent advance in this direction was due to Zhandry [43], who constructed
a pairing-based traitor tracing scheme with optimal parameters, i.e., all the parameters are
independent of the number of parties. Some other works achieved similar parameters but using
other tools such as LWE [31, 16] and indistinguishability obfuscation (iO) [12, 32].

7

The most related traitor tracing construction to our work is the construction of Branco et al.
[14]. They address a similar problem but in the non-threshold setting. Namely, they aim to get
rid of the central authority that distributes keys among the parties. As a building block, they
construct a pairing-based registered functional encryption scheme (RFE) [26] in which, like the
silent setup setting of [28], the parties sample their keys independently and publish auxiliary
information. They show that traitor tracing can be reduced to realizing Quadratic RFE and
achieve a construction with sub-linear ciphertext. Other recent works also studied paring-based
QFE in the registered setting [21, 44]. Another work addressing traitor tracing without central
authority is due to Luo [35], but this construction uses indistinguishability obfuscation (iO), an
inefficient tool.

2 Preliminaries

Notation. We denote the security parameter by λ and the correctness parameter by λc. We
write negl(λ) for functions that are negligible in λ and poly(λ) for polynomials in λ. We denote
the number of parties by n. In the O notation we ignore factors other than n. For integers
a, b ∈ N, we denote the set {1, . . . , b} by [b] and the set {a, . . . , b} by [a, b]. We write y ← A(x; r)
to execute the algorithm A on input x with randomness r and assign the result to y. If A is
executed with uniform randomness, we abbreviate y $← A(x) to indicate that A is probabilistic.
Further, we use ≈c to denote that two random variables are computationally indistinguishable.
For a security game Game, we denote by AdvGame

A (x) the success probability of the adversary A
when running in the security game Game(x) (AdvGame

A (x) = Pr[GameA(x) = 1]). If Game is
a distinguishing game (i.e. if the adversary is tasked with guessing a random bit b), then the
advantage is the success probability over guessing the bit AdvGame

A (x) = Pr[GameA(x) = 1]−1/2.
We denote by H = {ω, ω2, . . . , ωl} the multiplicative subgroup generated by the l-th root of
unity ω ∈ Zp (ωl = 1) for l = |H| = n + 1. Further, we denote by Li(x) the Lagrange basis
polynomial of element i with respect to H. By Z(x), we denote the vanishing polynomial on H,
i.e., Z(x) = xl − 1.

Lemma 2.1 (Univariate Sumcheck [4, 38]). Let n = poly(λ), A(x) =
∑|H|

i=1 ai · Li(x) and B(x) =∑|H|
i=1 bi · Li(x). It holds that

A(x) ·B(x) =

∑
i aibi
|H|

+Qx(x) · x+QZ(x) · Z(x),

where where both Qx and QZ are polynomials with degree ≤ |H| − 2 defined as

Qx(x) =
∑
i

aibi
Li(x)− Li(0)

x

QZ(x) =
∑
i

aibi
L2
i (x)− Li(x)

Z(x)
+
∑
i ̸=j

aibj
Li(x)Lj(x)

Z(x)

The original sumcheck is concretely stated for bi = 1. In this case, we treat general inner products
as a straightforward generalization (see [15]).

Non-Interactive Zero-Knowledge Proofs of Knowledge. Our constructions rely on Non-Interactive
Zero-Knowledge Proofs of Knowledge (NIZK-PoKs). A NIZK-PoK proof system PSR is a tu-
ple of algorithms PSR = (Setup,Prove,Verify,Sim,Ext) to prove knowledge of witnesses w to
statements χ in the corresponding relation R. A detailed definition can be found in Appendix A.

8

Bilinear Pairings. A bilinear pairing ensemble E = (G1, [1]1,G2, [1]2,GT , p, ◦) is an ensemble
of cyclic groups G1 with generator [1]1, G2 with generator [1]2 and GT of prime order p with a
pairing operation ◦ : G1 ×G2 → GT that satisfies bilinearity and non-degeneracy. We usually
write ◦ infix.

We rely on the external Diffie-Hellman assumption [2, 5].

Definition 2.2 (XDH). Let G be an algorithm to generate a pairing ensemble E. The external
Diffie-Hellman problem (XDH) is hard for G if for all PPT adversaries A there exists a negligible
function negl such that∣∣∣Pr[A(1λ, E, [x]1, [y]1, [xy]1) = 1]− Pr[A(1λ, E, [x]1, [y]1, [v]1) = 1]

∣∣∣ ≤ negl(λ),

where E $← G(1λ) and x, y, v $← Zp.

Some of our security proofs rely on the Generic Group Model (GGM) [40]. We also stress
that the XDH assumption holds in generic groups. We list the necessary definitions and theorems
in Appenidix A.

3 Oblivious Silent Threshold Encryption

In this section, we define oblivious silent threshold encryption (OSTE), extending the definition
of silent threshold encryption [28].

Definition 3.1 (Oblivious Silent Threshold Encryption). An oblivious silent threshold encryption
scheme consists of a tuple of algorithms (Setup, KGen, IsValid, Prep, Enc, TrEnc, PartDec,
PartVfy, DecAggr) with the following syntax:

• CRS $← Setup(1λ, n): On input the security parameter λ and number of parties n, Setup
outputs a common reference string CRS.

• (sk, pk,hint, π) $← KGen(1λ,CRS): On input the CRS, KGen outputs a secret key sk, a
public key pk, a hint, and a proof of knowledge π that the party knows sk corresponding to
pk and hint.

• 1/0 ← IsValid(CRS, pk,hint, π): On input the CRS, a public key pk, a hint hint, and a
proof π, IsValid outputs 1 if the public key is valid and 0 otherwise.

• (K, π, tk) $← Prep(CRS, {pki,hinti}i∈[n]): The Prep algorithm receives the CRS and all
public keys and hints {pki,hinti}i∈[n] as input. It outputs a preprocessing K, a proof π,
and a tracing key tk.

• 1/0← PreVfy(CRS, {pki,hinti}i∈[n],K, π): Given the CRS, n public keys and hints as well
as a preprocessing K and corresponding proof π, PreVfy outputs 1 if the preprocessing
proof is valid and 0 otherwise.

• ct $← Enc(CRS,K, t,m): On input the CRS, a preprocessing K, a threshold t, and a
message m, Enc outputs a ciphertext ct.

• ct $← TrEnc(CRS, tk,K, t,m,R): Given the CRS, the tracing key tk, a preprocessing K,
a threshold t, the message m, and a set of revoked parties R ⊆ [n], TrEnc outputs a
ciphertext ct. Sometimes, we abuse notation and write TrEnc(R) to refer to trace-encrypt
with revoked set R whenever the remaining inputs are clear from the context.

9

• σ ← PartDec(sk, ct): On input a secret key sk and a ciphertext ct, PartDec outputs a
partial decryption σ.

• m← DecAggr(CRS,K, ct, {σi}i∈S): On input the CRS, the set of keys K, a ciphertext ct
and a set of partial decryptions {σi}i∈S , DecAggr outputs a message m.

The correctness is standard, i.e., we require that every coalition S ⊆ [n], where |S| ≥ t,
decrypts with overwhelming probability (see Appendix B for a formal definition).

We require three tracing-related properties named indistinguishability, membership hiding,
and message privacy. To formally define these, we first introduce an additional parameter X .
For an OSTE scheme, X denotes the set of all possible sets of parties that can be revoked
using TrEnc (hence X ⊆ P([n])). In standard PLBE, one can only revoke parties linearly (i.e.
X = {∅, {1}, {1, 2}, . . . , [n]}). Looking ahead, we want to construct OSTE schemes that allow for
more than one, or even all possible revocation orders (X = P([n])), which we will use to identify
more than 1 and up to t traitors (see Section 4.2).

Goyal et al. [31] show that only decoder-based definitions of indistinguishability and mem-
bership hiding imply a (private) tracing scheme. In the following, we present definitions of
distinguishing decoders as discussed in [31].

Definition 3.2 (Distinguishing Decoders [31]). For any δ ∈ [−1/2, 1/2], PPT algorithm D,
n = poly(λ), t < n, any CRS, any m ∈ GT , and any preprocessing K we say that

• D is δ-DistEnc,TrEnc, if

Pr

D(ctb) = b

∣∣∣∣∣∣∣
b $← {0, 1};

ct0 ← Enc(CRS,K, t,m);

ct1 ← TrEnc(CRS, tk,K, t,m, ∅)

 ≥ 1

2
+ δ.

• D is δ-DistR,R∪{i} for revoked set R ⊆ [n] if

Pr

D(ctb) = b

∣∣∣∣∣∣∣
b $← {0, 1};

ct0 ← TrEnc(CRS, tk,K, t,m,R);
ct1 ← TrEnc(CRS, tk,K, t,m,R∪ {i})

 ≥ 1

2
+ δ.

Indistinguishability. The indistinguishability notion captures that one cannot construct a
decoder that has advantage δ for distinguishing if a given ciphertext ct was created using either
Enc or TrEnc with no revoked parties (R = ∅). In the indistinguishability game GameInd
(Figure 2), the adversary can control all parties. The adversary wins the indistinguishability
game if the decoder is δ-DistEnc,TrEnc according to Definition 3.2.

Definition 3.3 (δ-Indistinguishability.). An OSTE scheme E is δ-indistinguishable for δ ∈
[−1/2, 1/2] if for all PPT adversaries A, there exists a negligible function negl such that
AdvGameInd

A,E (1λ, n, δ) ≤ negl(λ), where GameIndA is defined in Figure 2.

δ-Membership Hiding. The δ-membership hiding notion is a generalization of the index hiding
property for PLBE [11]. Intuitively, our definition states that an adversary can not build a
decoder that has advantage δ of distinguishing whether a party i is revoked for a ciphertext or
not, even if the adversary corrupts all parties other than i and chooses the remaining set of
revoked parties R. The membership hiding game GameMH accounts for this by verifying that
both R ∈ X and R∪ {i} ∈ X (i.e., both sets can be revoked by the scheme).

10

GameIndA(1
λ, n, δ):

CRS $← Setup(1λ, n)
({pkℓ,hintℓ, πℓ}ℓ∈[n], t, st)

$← A(1λ,CRS)
(K, π, tk) $← Prep(CRS, {pki,hinti}i∈[n])

(D,m) $← A(K, π, st)

return δ-DistEnc,TrEnc(D)

GameMHA(1
λ, n,X , δ):

CRS $← Setup(1λ, n)
(i, st) $← A(1λ,CRS)
(ski, pki,hinti, πi)

$← KGen(1λ,CRS)
(R, {pkℓ,hintℓ, πℓ}ℓ∈[n]\{i}, t, st)

$← A(pki,hinti, πi, st)

(K, π, tk) $← Prep(CRS, {pki,hinti}i∈[n])

(D,m) $← A(K, π, st)

return δ-DistR,R∪{i}(D)
∧R ∈ X ∧R ∪ {i} ∈ X ∧ i ∈ [n] ∧ i ̸∈ R
∧ ∀i ∈ [n] : IsValid(CRS, pki,hinti, πi)

∧ ∀i, j ∈ [n], i ̸= j : pki ̸= pkj

Figure 2: The indistinguishability and membership hiding games for OSTE schemes.

Definition 3.4 (δ-Membership Hiding). An OSTE scheme E is δ-membership hiding for a subset
X ⊆ P([n]) and δ ∈ [−1/2, 1/2] if for all PPT adversaries A, there exists a negligible function
negl such that AdvGameMH

A,E (1λ, n,X , δ) ≤ negl(λ), where GameMHA is defined in Figure 2.

GameMPA(1
λ, n,X):

CRS $← Setup(1λ, n)
(T , st) $← A(1λ,CRS)
for i ∈ [n], i /∈ T do

(ski, pki,hinti, πi)
$← KGen(1λ,CRS)

({pki,hinti, πi}i∈T , t,R,m0,m1, st)
$← A({pki,hinti, πi}i/∈T , st)

(K, π, tk) $← Prep(CRS, {pki,hinti}i∈[n])

b $← {0, 1}
ct $← TrEnc(CRS, tk,K, t,mb,R)
b′ $← ATrEnc(CRS,tk,K,t,·,R)(st,K, π, ct)
return b = b′ ∧ |T \ R| < t ∧ T ⊆ [n] ∧R ∈ X

∧ ∀i ∈ T : IsValid(CRS, pki,hinti, πi)

∧ ∀i, j ∈ [n], i ̸= j : pki ̸= pkj

∧ PreVfy(CRS, {pki,hinti}i∈[n],K, π)

Figure 3: The message privacy game for OSTE schemes.

Message Privacy. For message privacy, we ensure that an adversary that holds less than t shares
of unrevoked parties cannot decrypt the message. This is different from normal IND-CPA since
the adversary may corrupt more than t parties overall.

Definition 3.5 (Message Privacy for OSTE). An OSTE scheme E fulfills message privacy for a
subset X ⊆ P([n]) if for all PPT adversaries A, it holds that AdvGameMP

A,E (1λ, n,X) ≤ negl(λ),
where GameMPA is defined in Figure 3.

11

Security. Our security notion is a standard IND-CPA definition, i.e., an adversary who corrupts
a set of parties |T | < t cannot decrypt ciphertexts. Note that in this game, the adversary
generates the preprocessing K itself (it outputs K and π). This captures the requirement that
the party that generates the preprocessing is untrusted for security, but only for traceability. We
refer to the full definition in Appendix B.

4 Traceable Silent Threshold Encryption

In this section, we define traceable silent threshold encryption (TSTE) and present a reduction
from OSTE to TSTE.

Definition 4.1 (Traceable Silent Threshold Encryption). A traceable silent threshold encryption
scheme consists of a tuple of algorithms (Setup, KGen, IsValid, Prep, PreVfy, Enc, PartDec,
PartVfy, DecAggr, Trace), such that:

• ct $← TraceD(CRS, tk,K, t, ϵ): Given the CRS, the preprocessing K, the tracing key tk, a
bound on the quality of a decoder ϵ, and blackbox access to a decoder D, Trace outputs a
list of colluding parties T .

The remaining algorithms are defined as for OSTE schemes (Definition 3.1).

The correctness and CPA-security of TSTE are defined similarly to OSTE. We present them
in Appendix C.

GameTRA(1
λ, n, ϵ):

CRS←$ Setup(1λ, n, c)
(T , st)←$A(1λ,CRS)
for i /∈ T do

(ski, pki,hinti, πi)←$ KGen(1λ,CRS, n)
({pki,hinti, πi}i∈T , t, st)← A({pki,hinti, πi}i/∈T , st)

(K, π, tk) $← Prep(CRS, {pki,hinti}i∈[n], ϵ)

(D,m0,m1)
$← A(K, π, st)

T ′ ← TraceD(CRS, tk,K, t, ϵ)
return ϵ-Distm0,m1(D) ∧ (T ′ = ∅ ∨ T ′ ̸⊆ T)
∧ ∀i ∈ T : IsValid(CRS, pki,hinti, πi) ∧ ∀i, j ∈ [n], i ̸= j : pki ̸= pkj

Figure 4: Decoder-based traceability definition (GameTR) for TSTE schemes. Note that the Prep
algorithm is executed by a trusted party in GameTR, but is run by the adversary in IND-CPA.

Traceability. Our decoder-based definition of traceability makes use of distinguishing decoders.

Definition 4.2 (Distinguishing Decoders for TSTE [31]). For any ϵ ∈
[
−1

2 ,
1
2

]
, PPT algorithm

D, n = poly(λ), t < n, any CRS, and any preprocessing K and tracing key tk, we say D is
ϵ-Distm0,m1 for messages m0,m1, if

Pr

[
D(ctb) = b

∣∣∣∣∣ b $← {0, 1};
ctb ← Enc(CRS, tk,K, t,mb);

]
≥ 1

2
+ ϵ.

We say that D is an ϵ-good decoder if D is ϵ-Distm0,m1 .

12

Definition 4.3 (Traceability for TSTE). We call a TSTE scheme E traceable for ϵ ∈ [−1/2, 1/2],
if for all PPT adversaries A and n = poly(λ) there exists a negligible function negl(λ) such that
AdvGameTR

A,E (1λ, n, ϵ) ≤ negl(λ), where GameTRA is defined in Figure 4.

4.1 Transforming OSTE to Traceable Silent Threshold Encryption

In this section, we show that an OSTE scheme can be used to build a TSTE scheme. Let E be an
OSTE scheme as defined in Definition 3.1. We construct a TSTE scheme ΠTSTE that builds upon
E . In fact, all TSTE algorithms that are also defined for OSTE run the corresponding algorithm
of E . In addition, we construct a Trace algorithm for ΠTSTE, for which we present pseudocode in
Figure 5. The Trace algorithm proceeds similarly to tracing algorithms built for PLBE schemes
[11]. However, in the threshold encryption setting, if the decoder shows a high success probability
after we revoke n− t parties, we consider all t remaining parties to be colluders.

Remark 4.4 For simplicity, we assume the revocation order L = {Ri}i∈[0,n], where Ri =
{1, 2, . . . , i} and R0 = ∅. However, our Trace algorithm does not require a specific order
of revocation. That is, a tracer is free to choose any order of revocation from the orders that are
supported by the underlying OSTE construction (i.e., within the set X in Definition 3.4). In
Section 4.2, we discuss how we utilize this property to guarantee tracing more than one traitor.

TraceD,m0,m1(CRS,K, tk, t, ϵ)

W = 27 · 3n2λ/ϵ; p−1 ← ϵ; T ′ ← ∅
for i ∈ [0, n− t]

ai ← 0

for j ∈ [W]

b $← {0, 1}
ct $← E .TrEnc(CRS, tk,K, t,mb,Ri)

if D(ct) = b then ai ← ai + 1

p̂i ← ai/ (W)

Condition 1. if p̂i−1 − p̂i ≥
ϵ

4(n− t)
then T ′ ← T ′ ∪ {i}

Condition 2. if p̂n−t ≥
ϵ

4
then T ′ ← T ′ ∪ {n− t+ 1, . . . , n}

return T ′

Figure 5: ΠTSTE: Blackbox tracing from an OSTE scheme, denoted by E .

Theorem 4.5 Let E be an OSTE scheme for the linear revocation order X = L, as defined in
Definition 3.1, with (ϵ

16)-Indistinguishability (by Definition 3.3) and (ϵ
16n)-Membership hiding

(by Definition 3.4) for ϵ ∈ [−1/2, 1/2] where ϵ = 1/poly(λ). Then, for every n ∈ poly(λ), and
every λ ∈ N, the ΠTSTE scheme, depicted in Figure 5, is a traceable silent threshold encryption
scheme (by Definition 4.1) that fulfills traceability for ϵ. Furthermore, the secret share size, the
public key size, and the message size are as in E.

The correctness and security are straightforward. For completeness, we put the proofs in
Appendix D. We next discuss traceability. The major challenge in proving traceability compared
to classical PLBE scheme is that in our setting, we allow the adversary to distinguish between
Enc and TrEnc(R0) ciphertexts and between TrEnc(Ri−1) and TrEnc(Ri) with non-negligible

13

advantage. Nevertheless, we show that we can build a TSTE scheme that fulfills traceability from
an OSTE scheme that is δ1-indistinguishable and δ2-membership hiding, per Definitions 3.3 and
3.4, respectively, where δ1 and δ2 are non-negligible and fixed in the proof. That is, we prove the
following lemma.

Lemma 4.6 For every n ∈ poly(λ), every ϵ ∈ [−1/2, 1/2] where ϵ = 1/poly(λ), every λ ∈ N,
and every probabilistic polynomial-time adversary A there exist probabilistic polynomial-time
adversaries A1,A2, and A3 such that

AdvGameTR
A,ΠTSTE

(
1λ, n, ϵ

)
≤AdvGameInd

A1,E

(
1λ, n, δ1

)
+AdvGameMP

A2,E

(
1λ, n

)
+ n ·AdvGameMH

A3,E

(
1λ, n, δ2

)
+ negl(λ)

for δ1 =
ϵ
16 , δ2 =

ϵ
16n , and a negligible function negl.

The full proof is given in Appendix E. We next discuss the ideas behind the proof.

Proof Sketch of Lemma 4.6. Recall that in the traceability game, the adversary provides a
distinguishing decoder Dm0,m1 that can distinguish encryptions of m0 from encryptions of m1,
per Definition 4.2. Let pi for 0 ≤ i ≤ n− t be the distinguishing advantage of Dm0,m1 when it
is queried with the ciphertext ct = TrEnc(mb,Ri). We show that the probability of winning
the traceability game, as defined in Figure 4, is upper bounded by the probability of winning
one of the three games of (ϵ/16)-indistinguishability, (ϵ/16n)-membership hiding, or message
privacy, where the probability is over the random choice of b from {0, 1}. First, observe that the
adversary wins the traceability game only in the following two cases:

• Case 1: T ′ = ∅. This happens only if p̂i−1 − p̂i <
ϵ

4(n−t) for any i ∈ [n− t] (Condition 1 in
ΠTSTE) and p̂n−t <

ϵ
4 (Condition 2 in ΠTSTE).

• Case 2: T ′ ̸= ∅ and T ′ ̸⊆ T . This happens only if p̂i−1 − p̂i ≥ ϵ
4(n−t) for some honest party

i ∈ [n− t] or when p̂n−t ≥ ϵ
4 and at least one of the parties {n− t+ 1, . . . , n} is honest.

We show that if Case 1 holds, then p̂0 should be much smaller than ϵ, that is, ϵ − p̂0 > ϵ/4.
Indeed, if p̂0 ≥ 3ϵ

4 , then either for at least one i it must hold that p̂i−1− p̂i ≥ ϵ
4(n−t) or, otherwise,

it holds that p̂n−t ≥ ϵ
4 , so Case 1 will not hold. Hence, we show that if ϵ − p̂0 > ϵ

4 (i.e., Case
1 holds), then the adversary can construct a distinguishing decoder in the indistinguishability
game with advantage δ1 = ϵ/16. To show this, we first show by Chernoff bound that p0 − p̂0 <

ϵ
8

with overwhelming probability. Thus, ϵ− p0 >
ϵ
8 . The distinguishing decoder works as follows.

Given a ciphertext ct, which is either Enc(mb) or TrEnc(mb,R0), it returns 0 if Dm0,m1(ct) = b
and 1 otherwise. Observe that the distinguishing decoder wins with advantage ϵ if ct is encrypted
using Enc and with advantage 1− p0 if ct is encrypted using TrEnc(R0) (since in this case, it
returns 1 if and only if D fails). Therefore, the distinguishability advantage of the distinguishing
decoder is 1

2ϵ+
1
2(1− p0) ≥ ϵ

16 , as required.
Next, we show that if Case 2 holds, then:

• If p̂n−t ≥ ϵ
4 holds, then the adversary can break the message privacy of the scheme.

Indeed, since in this case, the adversary can distinguish between TrEnc(m0,Rn−t) and
TrEnc(m1,Rn−t) with less than t parties (since the first n − t parties are revoked and,
according to the condition, not all the remaining t parties are colluders).

• If p̂i−1−p̂i ≥ ϵ
4(n−t) for some honest party, then the adversary can construct a distinguishing

decoder in the membership hiding game with distinguishing advantage ϵ
16(n−t) >

ϵ
16n . To

14

see this, we first show using the Chernoff bound that p̂i − pi <
ϵ

16(n−t) with overwhelming
probability. Thus, pi−1 − pi ≥ ϵ

8(n−t) with overwhelming probability. The distinguishing
decoder works as follows. Given a ciphertext ct, which is either TrEnc(mb,Ri−1) or
TrEnc(mb,Ri) for b ∈ {0, 1}, it outputs 0 if Dm0,m1(ct) = b and 1 otherwise. Then, the
distinguishing decoder wins with probability 1

2pi−1 +
1
2(1− pi) ≥ ϵ

16(n−t) >
ϵ

16n . This holds
since the probability to output 0 when ct is encrypted to Ri−1 is exactly the advantage of
the decoder Dm0,m1 in decrtpting ct, which, by definition, happens with probability pi−1.
On the other hand, when ct is encrypted to Ri, the distinguishing decoder returns 1 only
when the decoder D fails to decrypt, which, by definition, happens with probability 1− pi.

4.2 k-Traceability

We next discuss how our ΠTSTE can be extended to achieve k-traceability, that is, catching k
traitors for some 1 ≤ k ≤ t. The idea relies on the fact that in our tracing algorithm Trace in
Figure 5, the tracer executes at most n − t iterations, where in the i-th iteration, it revokes
i parties. Therefore, at the end of the tracing, at least t parties are never revoked in any of
the previous iterations. Hence, by the nature of the tracing algorithm, if a traitor is found
due to Condition 1, it cannot be any of these t parties. In the rest of the discussion, w.l.g, we
assume that a single traitor is returned in each execution of Trace (if we hit Condition 2, then t
traitors are returned anyway). For a given k, we execute Trace k times with respect to different
revocation sets. That is, let Ti be the set of i traitors that were detected after the i-th execution,
then in the (i+ 1)-th execution, we run tracing for revocation sets that do not revoke any party
in T . That is, we use the set of revocation sets SR = {∅, {j1}, {j1, j2}, . . . , {j1, . . . , jn−t}}, which
is induced by the revocation order [j1, . . . , jn−t], such that jv ̸= ℓ for every ℓ ∈ Ti and every
1 ≤ v ≤ n− t. Hence, by the discussion above, in the (i+ 1)-th execution, we get a traitor that
is not in Ti. In the end, after (at most) k executions, we get k traitors. To achieve this, however,
we require the underlying OSTE to support all revocation sets used in all executions, i.e., all
these revocation sets must be included in X , as per Definition 3.4. We call such X a k-trace set.

Theorem 4.7 Let k ∈ N such that 1 ≤ k ≤ t ≤ n. If there exists an OSTE scheme that fulfills
(ϵ/16n)-membership hiding and (ϵ/16)-indistinguishability for a k-trace set X , then there exists a
traceable silent setup threshold encryption scheme with threshold t in which the tracing procedure
returns at least k traitors.

As instantiation of Theorem 4.7, in Section 5 we present an OSTE construction that fulfills
membership hiding with X = P([n]), thus tracing t traitors.

5 The First OSTE Construction

In this section, we present our ΠOSTE construction. Our construction is based on the silent
threshold encryption of [28]. We start by presenting a high-level overview of the construction of
[28]. Then, we discuss the modifications we make to achieve the properties of OSTE.

5.1 Starting Point: The STE Scheme of [28]

The Setting. The construction relies on a powers-of-τ trusted setup, i.e., the CRS is ([1]1,2, [τ]1,2,
. . . , [τn]1,2), in an asymmetric pairing ensemble. Then, each party i ∈ [n] samples its secret and
public shares (ski, pki), computes a hinti = ([skiτ]1, . . . , [skiτ

n]1) using the CRS, and publishes
pki and hinti. hinti is an auxiliary information used during encryption and decryption. From
{pki,hinti}i∈[n], each entity can compute an encryption key ek =

∑
i∈[0,n][skiLi(τ)]1. Furthermore,

15

an aggregation key ak that corresponds to ek is computed from the hints. Then, using ek, anyone
can encrypt a message that is decrypted using t secret shares and ak. Note that both ek and ak
are public.
The Intuition. The idea follows that of the Boneh-Franklin identity-based encryption scheme [6],
which is essentially a witness-encryption to the statement “I know a BLS signature on the identity”
[7]. In particular, in [28], the decryption key is basically a witness that the decryptor knows σ∗

and aPK such that σ∗ is verified as [γ]2 ◦ aPK = [1]1 ◦ σ∗, where σ∗ is an aggregation of at least
t partial signatures for a set of signers S = {i1, . . . , it}, where ij ∈ [n], and aPK is an aggregated
public key that combines {pk0, pki1 , . . . , pkit}.
Linear Constraints. In order to compute a witness for knowing such an aPK, the aggregator
computes polynomials B,Qx, and QZ that fulfill the sumcheck equation (Lemma 2.1), as follows:

ek ◦ [B(τ)]2 = aPK ◦ [1]2 + [Qx(τ)]1 ◦ [τ]2 + [QZ(τ)]1 ◦ [Z(τ)]2 (1)

Notably, B is the polynomial extension of the set vector (i.e., B(ωi) = 0 where i ̸∈ S); all
evaluations can be computed using the hints and the CRS. This proves that if σ∗ is verified, then
aPK is indeed an inner product of ek and the set S, which means that aPK is an aggregation of
the public keys in S. Additionally, three critical constraints need to be verified linearly: First,
that B represents an authorized subset. That is, the polynomial B is non-zero in at least t
positions, which is achieved by a degree check that deg(B) ≤ n− t. Second, the degree of Qx is at
most |H| − 2, which is a requirement of the sumcheck lemma. Third, that B(ω0) = 1 (including a
dummy party) to ensure that the trivial solution of setting B to the zero-polynomial is not valid.
For notation, we henceforth assume that sk0 = 1 for the dummy party. We summarize how to
verify these constraints linearly in Appendix F. Each one of the restrictions is represented as a
linear equation in the matrix A, which we present next.
Encryption and Decryption. The encryption proceeds as follows:

• Given a message m ∈ GT , sample a random tag γ ∈ Zp and compute:

A =

ek(τ) [1]2 [Z(τ)]2 [τ]2 0 0 0 0
0 0 0 [τ]2 [1]2 0 0 0
0 [γ]2 0 0 0 [1]1 0 0

[τ t]1 0 0 0 0 0 [1]2 0
[1]1 0 0 0 0 0 0 [τ − ω0]2

// aPK valid (sumcheck)

// deg(Qx) ≤ |H| − 2

// σ∗ is valid

// B is authorized

// dummy party

Note that all the entries in A are fixed (the same for all ciphertexts) except for [γ]2, which
must be unique for every ciphertext.

• Sample s = (s1, . . . , s5)
$← Z5

p and compute:

ct = (ct1, ct2, ct3) = ([γ]2, s
⊺ ·A, s⊺ · b+ m),

where b = ([0]T , [0]T , [0]T , [0]T , [1]T)
⊺.

For decryption, the aggregator collects partial decryptions from a set of parties S ⊆ [n], where
|S| ≥ t. The partial signature of the i-th party is simply σi ← ski · [γ]2. Then, the aggregator
computes

m = ct3 − ct2 ◦ w
= [s5]T + m− s⊺A ◦ w
= [s5]T + m− [s5]T = m,

where w is the witness vector such that A ◦ w = b. Importantly, such w can be computed using
the aggregated key ak, and it guarantees that all constraints in A are fulfilled.

16

5.2 Our OSTE Construction

We first introduce a construction with ciphertext size linear in n and then present a technique in
Section 5.3 to amortize the ciphertext size to O(1).

To construct an OSTE scheme, we need a mechanism to encrypt a ciphertext such that
membership hiding holds. In the STE construction of [28], the aggregation key ak alone clearly
reveals which parties can participate in decryption. Let us inspect the encryption key ek again:
ek =

∑
i∈[0,n][skiLi(τ)]1. Assume that we need to revoke a set R ⊆ [n] (the dummy party is

never revoked), then the first attempt would be to randomize the public share of each party
j ∈ R and use the new pk′j for computing ek instead of [skj]1 (the old public share). Intuitively,
any party j ∈ R cannot participate in the decryption since it does not hold the new secret share
corresponding to the new public share pk′j . However, to ensure correctness, we note that it is
necessary to accommodate the new public shares in the computation of the aggregation key ak.
Unfortunately, this requires revealing which public keys were randomized; hence, membership
hiding would not hold.

To solve this issue, we propose to rerandomize all public keys instead of only for the parties
in R. That is, we sample a random field element α and a vector ᾱ = (ᾱj)j∈R and rerandomize
all unrevoked parties’ public shares with α and that of each parties j ∈ R with ᾱj . We adjust
the hints accordingly and publish the resulting aggregation key ak along with the ciphertext.
This rerandomization solves the membership hiding issue because without knowing α, ᾱi and
ski, but only [α]1 and [ski]1, adversaries are unable to determine if the rerandomized public key
pk′i is equal to α · pki or ᾱi · pki (we will reduce this to the XDH problem to prove membership
hiding in Lemma 5.3). For correctness, the signature verification equation is now verified against
[α]1 instead of [1]1. Thus, partial signatures from unrevoked parties will be accepted as their
public keys are randomized with α. For message privacy, we show that an aggregator cannot
include a partial signature from a revoked party in R. Informally, this holds since verifying the
aggregated signature against [α]1 requires the aggregated public key âPK to be α · aPK (where
aPK is the aggregated key before the randomization), and thus the aggregation can only include
keys that are masked by α.

Finally, we highlight that we obtain a linear ciphertext size in the worst case, but as we
discuss in Section 5.3, the amortized size is O(1). Furthermore, we elaborate on reducing the
ciphertext size in Section 6.

5.2.1 The ΠOSTE Construction

Our construction relies on a rerandomization algorithm (Figure 6) that realizes the rerandom-
ization idea as discussed above. This algorithm is used in Enc and TrEnc to generate a new
encryption key, which is then used to encrypt the message in a similar way to STE (as discussed
in Section 5.1). The Enc and TrEnc algorithms are depicted in Figure 7. Partial decryption
works as in [28] by computing σi ← ski · [γ]2. Aggregation of partial decryption shares is also
unchanged compared to [28], but the aggregator now uses the rerandomized aggregation key ak
to compute aPK and evaluate the polynomials Qx, QZ and other components of the witness w.
As such, the aggregation is performed as if sk′i = αski for unrevoked parties and sk′i = ᾱiski for
revoked parties. We present all algorithms omitted here in Appendix G.

We note that the rerandomization algorithm Rand supports arbitrary revoked sets R ∈ P([n]),
which in turn allows us to use ΠOSTE to guarantee tracing t traitors (see Theorem 4.7). Our
OSTE construction supports public tracing and does not have any preprocessing, so we omit the
tracing key tk and set the preprocessing to K := {pki,hinti}i∈[n]. We next discuss the properties
of the construction.

17

Rand(CRS, {pki,hinti}i∈[n],R)

α $← Z∗
p

∀i ∈ R : ᾱi
$← Z∗

p

Let ri ← α ∀i ∈ [0, n] \ R // Randomize with α for unrevoked parties.

Let ri ← ᾱi ∀i ∈ R // Randomize with ᾱi for revoked parties i.

for i = 0, . . . , n do

aki,0 ← ripki
aki,1 ←

[
riski(Li(τ)− Li(0))

]
1

aki,2 ←
[
riski

Li(τ)− Li(0)

τ

]
1

aki,3 ←
[
riski

Li(τ)
2 − Li(τ)

Z(τ)

]
1

aki,4 ←

 ∑
j∈[n],j ̸=i

rjskj
Li(τ)Lj(τ)

Z(τ)

1

ek←
∑

i∈[0,n]

[riskiLi(τ)]1

return ([α]1,ek,ak := {(aki,0, . . . ,aki,4)}i∈[0,n])

Figure 6: The rerandomization algorithm. Note that all group elements can be computed using
the powers-of-τ CRS and hints. The ak and ek are the same as in [28] with the rerandomization
highlighted in gray.

Correctness. To see that correctness is not violated, consider how the aggregator combines t
partial decryptions to decrypt a ciphertext with respect to the rerandomized public keys and
hints. First, the aggregator computes an aggregated key âPK = α · aPK, which is consistent with
the new public keys. Then, it can compute the polynomials Qx and QZ that satisfy Equation 1
since the new public keys are consistent with the ek used to encrypt the message. To satisfy the
third restriction (i.e., the aggregated signature σ∗ is valid), we modify the signature verification
equation to

[α]1 ◦ [σ∗]2 = âPK ◦ [γ]2
instead of the original BLS verification. To enforce this, the encryptor replaces the [1]1 in A2,5

with [α]1. Hence, correctness follows from the discussion above, and the correctness of the STE
construction of Garg et al. [27].

Before establishing the security of our ΠOSTE construction, we address a rushing adversary
attack that is made possible by the silent setup setting. In this attack, the adversary selects its
own public key based on those of honest parties to break membership hiding.

Rushing Adversary. The construction, as discussed above, is subject to a rushing adversary
attack in the membership hiding game GameMH (Figure 2). To see this, observe that an
adversary could choose the secret key for a corrupted party j dependent on an honest party’s
public key pki. Then, it can distinguish whether party i is revoked as follows. After receiving pki
and hinti, the adversary could publish pkj = x · pki and hintj = x · hinti for an arbitrary x ∈ Z∗

p

with x ̸= 1, and choose, e.g., R = ∅. After the adversary receives a ciphertext ct = ([γ]2,ak, . . .),
it reveals if i is revoked by the simple check that akj,0 = x · aki,0. First, to see why this check is

18

Enc(CRS, {pki,hinti}i∈[n], t,m)

([α]1,ek,ak) $← Rand(CRS, {pki,hinti}i∈[n], ∅)

return enc(CRS, [α]1,ek,ak, t,m)

TrEnc(CRS, {pki,hinti}i∈[n], t,m,R)

([α]1,ek,ak) $← Rand(CRS, {pki,hinti}i∈[n],R)

return enc(CRS, [α]1,ek,ak, t,m)

enc(CRS, [α]1,ek,ak, t,m)

γ $← Zp

Assemble the matrix A with the
following values:
A0,0 ← ek
A2,1 ← [γ]2

A2,5 ← [α]1

s := (s1, . . . , s5)
$← Z5

p

ct← ([γ]2,ak, s⊺ ·A, s5 + m)

return ct

Figure 7: The Enc and TrEnc algorithms of our OSTE construction. enc acts as a helper
algorithm to both Enc and TrEnc. In enc, we refer to matrix A from Section 5.1.

sufficient, note that if i is not revoked, aki,0 = α · pki. Then, as party j is not revoked (j ̸∈ R0),
it must hold that akj,0 = α · pkj = α · x · pki.

To mitigate this attack, we require each party to attach a NIZK proof of knowledge of their
corresponding secret key sk to their public key (pk,hint). We further require that all parties have
distinct public keys to avoid replay attacks of these proofs. Following Definition A.1, we formally
define a proof system PSKGen through the relation RKGen of statements χ = (CRS, pk,hint) and
witnesses w = sk ∈ Z∗

p, such that (χ,w) ∈ RKGen if pk = [sk]1 and hint = ([skτ]1, . . . , [skτ
n]1).

The following theorem summarizes our result for ΠOSTE.

Theorem 5.1 The OSTE scheme ΠOSTE as described in Section 5.2 fulfills correctness, δ-
indistinguishability, message privacy, δ′-membership hiding, and IND-CPA security for n = poly(λ)
and any δ, δ′ ∈ [−1/2, 1/2], where δ, δ′ = 1/poly(λ). It has ciphertext size |c| = O(n) and amor-
tized ciphertext of size O(1).

We defer the discussion on the amortization to Section 5.3. We next discuss the security of
the construction. Indistinguishability is trivial, as Enc and TrEnc(R = ∅) are identical. In the
following, we discuss message privacy and membership hiding.

Lemma 5.2 (Message Privacy of ΠOSTE). For n = poly(λ) and X = P([n]), ΠOSTE fulfills message
privacy (Definition 3.5), if PSKGen is zero-knowledge (Definition A.1).

For message privacy, we prove that an adversary who corrupts less than t unrevoked parties
cannot decrypt a ciphertext. Our proof is carried out in the GGM, using the master theorem
(Theorem A.3). Intuitively, message privacy holds since the signature verification is done
against [α]1, and the aggregated public key âPK needs to be consistent with ek to fulfill the
sumcheck restriction. Hence, âPK must equal αaPK (where aPK is the aggregation before the
randomization). Thus, aPK cannot use public keys not masked with α (i.e., keys of revoked
parties). If the adversary tries to use such keys, it will need to find a linear combination such
that the sum of these keys in âPK is zero. To find such a combination without knowing ᾱi, the
adversary must fix points on the polynomial B, resulting in a degree larger than n− t. So, the
degree check of B would not pass. We give a full proof of Lemma 5.2 in Appendix H.

We note that for the ΠOSTE construction IND-CPA-security can be considered as a special
case of message privacy, where R = ∅, because we define Enc(·) = TrEnc(·,R = ∅) for ΠOSTE. In

19

addition, the fact that the adversary is trusted for preprocessing in IND-CPA is irrelevant for
ΠOSTE. Therefore, message privacy implies IND-CPA security of ΠOSTE.

Lemma 5.3 (Membership Hiding of ΠOSTE). Let n = poly(λ). Our ΠOSTE construction, as
described in Section 5.2, is membership hiding for arbitrary δ = 1

poly(λ) with δ ∈ [− 1/2, 1/2] if the
XDH assumption (Definition 2.2) holds and PSKGen is zero-knowledge and simulation-extractable
(Definition A.1).

At its core, our membership-hiding proof works by embedding an XDH challenge [x]1, [y]1, T
into the rerandomization for a ciphertext ct such that x corresponds to ski, and y corresponds to
α. If the challenge T = [xy]1 ≡ [αski]1, then party i is not revoked for ct and if T = [v]1 for a
random v ≡ ᾱi · ski, then party i is revoked for ct. We query the decoder on ct and a reference
ciphertext, where we randomly choose to revoke i or not. We compare the results to determine
whether T = [xy]1 or T = [v]1.

Proof. Intuitively, our OSTE construction is membership hiding because an adversary that only
learns [α]1 and [ski]1 for some i should be unable to distinguish between [α · ski]1 (reflecting the
case where party i is not revoked by TrEnc) and [ᾱi · ski]1 (representing the case where party i is
revoked), which is reminiscent of the XDH problem in bilinear groups (Definition 2.2). The same
argument applies to the re-randomized ak.

We formally prove this through a series of game hops with a final reduction to the XDH
assumption in G1. Let Game0 be the membership hiding experiment for the ΠOSTE construction
GameMHΠOSTE (Figure 2). We proceed with the first game hop, where we simulate the proof πi
on behalf of the honest party.

Game1: In this game, we modify how the challenger computes the proof πi that is attached
to pki and hinti on behalf of the honest party at position i. In particular, we replace πi by
a simulated proof as πi

$← Sim(td, pki,hinti), where Sim is the simulator for the proof system
PSKGen.

Claim 5.4 If the proof system PSKGen is zero-knowledge (Definition A.1), then Game0 and
Game1 are computationally indistinguishable.

Proof. The computational indistinguishability follows directly from the computational indistin-
guishability of a real proof and a simulated proof as stated by the zero-knowledge property of
PSKGen.

In our final reduction to XDH, we will need to know the secret keys that are chosen by the
adversary for the parties at positions [n] \ {i} so we can properly embed the XDH challenge into
their re-randomized public keys and hints. We use the simulation-extractability of PSKGen to
extract skℓ from πℓ for all ℓ ∈ [n] \ {i}.

Game2: In Game2, we use the extractor of PSKGen to extract {skℓ}ℓ∈[n]\{i} from the adver-
sary’s proof as skℓ

$← PSKGen.Ext(td, (CRS, pkℓ,hintℓ), πℓ). We add an additional abort condition,
where Game2 outputs 0, if there exists an ℓ such that pkℓ ̸= [skℓ]1 or hintℓ ̸= ([skℓτ]1, . . . , [skℓτ

n]1).

Claim 5.5 For all n = poly(λ) and all PPT adversaries A there exists a PPT adversary B such
that ∣∣∣Pr[Game1,A(1

λ, n,X , δ) = 1]− Pr[Game2,B(1
λ, n,X , δ) = 1]

∣∣∣
≤ (n− 1) ·Advsim-extract

B,PSKGen
(1λ).

20

Proof. First, observe that for all A it holds that

Pr[Game1,A(1
λ, n,X , δ) = 1] ≥ Pr[Game2,A(1

λ, n,X , δ) = 1],

because we only add an additional abort condition. Let Pr[Game1,A(1
λ, n,X , δ) = 1] −

Pr[Game2,A(1
λ, n,X , δ) = 1] = ε. Then, with probability ε, the adversary A hits the additional

abort condition in Game2. We construct a PPT reduction B that runs in the simulation-
extractability game of PSKGen. Given CRSPSKGen , B embeds it in the global CRS and sim-
ulates Game2 to A as follows. B runs A(1λ,CRS) and receives i ∈ [n]. Then, the reduc-
tion samples a random (ski, pki,hinti,_) $← KGen(1λ,CRS) and simulates the proof πi using
the Sim(td, (CRS, pki,hinti)) oracle provided by the simulation-extractability game and sends
(pki,hinti, πi) to A. In return B receives {pkℓ,hintℓ, πℓ}ℓ∈[n]\{i}. B chooses a random ℓ∗ ∈ [n]\{i}
and outputs (χ∗, π∗) = ((CRS, pkℓ∗ ,hintℓ∗), πℓ∗) to the simulation-extractability game.

Observe that χ∗ = (CRS, pkℓ∗ ,hintℓ∗) ̸∈ Q = {(CRS, pki,hinti)}2, whenever either Game1,A
or Game2,A would output 1 because of the check in GameMH that pki ̸= pkℓ for all i ̸= ℓ.
Further, it holds that with probability ε there exists an ℓ′ ∈ [n] \ {i} such that (χℓ′ , skℓ′) ̸∈ RKGen.
B chooses ℓ∗ = ℓ′, hence B wins the simulation-extractability game with probability at least
ε/(n− 1).

SimRand([x]1, [y]1, T, τ, {skℓ}ℓ∈[n]\{i},R, i)

Sample ᾱℓ
$← Z∗

p ∀ℓ ∈ R
for ℓ ∈ [0, n] \ R with ℓ ̸= i do

akℓ,0 ← skℓ · [y]1 (= [αskℓ]1)

akℓ,1 ← skℓ(Lℓ(τ)− Lℓ(0)) · [y]1 (= [αskℓ(Lℓ(τ)− Lℓ(0))]1)

akℓ,2 ← skℓ
Lℓ(τ)− Lℓ(0)

τ
· [y]1

akℓ,3 ← skℓ
Lℓ(τ)

2 − Lℓ(τ)

Z(τ)
· [y]1

akℓ,4 ←
∑

j∈[0,n]\R,j ̸=ℓ,j ̸=i

skj
Lℓ(τ)Lj(τ)

Z(τ)
· [y]1 +

∑
j∈R

ᾱjskj
Lℓ(τ)Lj(τ)

Z(τ)
+

Lℓ(τ)Li(τ)

Z(τ)
· T

for ℓ ∈ R do

akℓ,0 ← [ᾱℓskℓ]1

. . .

aki,0 ← T

aki,1 ← (Lℓ(τ)− Lℓ(0)) · T
. . .

ek←
∑

ℓ∈[0,n]\R,ℓ̸=i

skℓLℓ(τ)[y]1 +
∑
ℓ∈R

[ᾱℓskℓLℓ(τ)]1 + Li(τ) · T

return ([y]1,ek,ak)

Figure 8: The simulation of the rerandomization algorithm for the challenge ciphertext, where
α corresponds to y. Note that the reduction can compute all values because it knows τ and
{skℓ}ℓ∈[n]\{i}.

2With Q, we refer to the set of statements that the reduction requests a simulated proof for (see Definition A.1).

21

We conclude our proof with a reduction from Game2 to the XDH assumption (Definition 2.2).
Let A be a PPT adversary against Game2. We construct a PPT reduction B that internally uses
A to break the XDH assumption. Let bXDH be the internal bit of the XDH experiment. Initially,
B receives an XDH challenge ([x]1, [y]1, T), where either T = [xy]1 for (bXDH = 0) or T = [v]1 for
(bXDH = 1).

First, B samples τ $← Zp and generates the CRS. It queries A(1λ,CRS) to receive i ∈ [n].
B now embeds the XDH challenge into the public key and hint that it generates on behalf of
party i. In particular, B sets pki ← [x]1 and hinti ← (τ [x]1, . . . , τ

n[x]1). Observe that, in doing
so, B simulates for ski = x without knowing x itself. After sending pki,hinti and the simulated
proof πi to A, the reduction receives {pkℓ,hintℓ}ℓ∈[n]\{i} and the extracted {skℓ}ℓ∈[n]\{i} as well
as the set R, and the threshold t. As the preprocessing for ΠOSTE is just equal to the public keys
and hints of all parties, B sends those again to A and receives a decoder D as well as a message
m. In the following, we write TrEnc(R) as a shorthand for TrEnc(CRS, tk,K, t,m,R) as well as
R0 = R, and R1 = R∪ {i}.

Next, B samples a random bit β and computes ct $← TrEnc(Rβ). Additionally, B samples
a challenge ciphertext c′, embedding the XDH challenge such that, in the rerandomization, α
is equivalent to y. Further, T is equivalent to [αski]1 if bXDH = 0, or [ᾱiski]1 if bXDH = 1. The
details are shown in Figure 8.

Next, B computes ct′ as enc(CRS, [y]1,ek,ak,m). Observe that now ct = TrEnc(RbXDH),
i.e., if T = [xy]1, then B simulates ct′ $← TrEnc(R), and if T = [v]1, then B simulates ct′ $←
TrEnc(R∪ {i}). Finally, B outputs b = β, if D(ct′) = D(ct) and b = 1− β otherwise. If A would
lose the game on some technicality, say, duplicate two honest party’s public keys, then B just
outputs a random bit.

Let pw be the probability that B wins under the condition that A outputs a δ −DistR,R∪i

decoder D. Then, the following holds:

pw =Pr

b = bXDH

∣∣∣∣∣∣∣
β $← {0, 1}; ct $← TrEnc(Rβ);

bXDH
$← {0, 1}; ct′ $← TrEnc(RbXDH);

b← β if D(ct′) = D(ct) else b← 1− β

=Pr

[
D(ct′) = bXDH

∣∣∣∣∣ bXDH
$← {0, 1};

ct′ $← TrEnc(RbXDH)

]
· Pr

[
D(ct) = β

∣∣∣∣∣ β $← {0, 1};
ct′ $← TrEnc(Rβ)

]

+Pr

[
D(ct′) ̸= bXDH

∣∣∣∣∣ bXDH
$← {0, 1};

ct′ $← TrEnc(RbXDH)

]
· Pr

[
D(ct) ̸= β

∣∣∣∣∣ β $← {0, 1};
ct $← TrEnc(Rβ)

]

=Pr

[
D(ct) = β

∣∣∣∣∣ β $← {0, 1};
ct′ $← TrEnc(Rβ)

]2
+ Pr

[
D(ct) ̸= β

∣∣∣∣∣ β $← {0, 1};
ct′ $← TrEnc(Rβ)

]2

=

(
1

2
+ δ

)2

+

(
1

2
− δ

)2

=
1

4
+ δ + δ2 +

1

4
− δ + δ2

=
1

2
+ 2δ2

22

We get the following advantage for B against XDH.

1

2
+ AdvXDH

B (1λ, G)

≥ AdvGame2
A (1λ, δ) · pw +

(
1−AdvGame2

A (1λ, δ)
)(1

2

)
= AdvGame2

A (1λ, δ)

(
1

2
+ 2δ2

)
+
(
1−AdvGame2

A (1λ, δ)
)(1

2

)
=

1

2
+ AdvGame2

A (1λ, δ) · 2δ2

Summarizing, we conclude that for all adversaries A there exist PPT reductions B1, B2, and
B3 such that

AdvGameMHΠOSTE
A (1λ, n,P([n]), δ) ≤

AdvPSKGen-zk
B1

(1λ) + (n− 1) ·AdvPSKGen-sim-ext
B2

(1λ) +
1

2δ2
AdvXDH

B3
(1λ,G).

5.3 Amortization

As we discussed, the ciphertext size in our OSTE is linear in the number of parties. We note that
the bottleneck in this construction is the aggregation key ak that is attached to the ciphertext.
An observant reader might have noticed that a triple of ([α]1,ek,ak) could be reused in many
ciphertexts. This, however, opens the door for hardcoding attacks, where an adversary hardcodes
([α]1,ek,ak) into a decoder such that it refuses to decrypt for any other rerandomizations.
This decoder can not be traced, as we need to generate new rerandomizations for tracing
ciphertexts. We can find a tradeoff between efficiency and traceability guarantees by reusing a
single rerandomization for a limited number of ciphertexts. Consequently, one could attach ak
only once to the batch of ciphertexts, and as a result, we pay the overhead of O(n) only once per
batch. Hence, for a batch of size O(n), we get an amortized size of O(1). Also, note that we
can reuse rerandomization without affecting IND-CPA security, even if the party who initially
samples the rerandomization is malicious (see Section 6). We next discuss a practical setting
where this amortization could be beneficial.

Epoch-based Traceable Threshold Decryption. In epoch-based threshold decryption, an epoch
public key is generated for each epoch. Then, users can encrypt their messages under the public
key of the current epoch. For some applications, the committee decrypts all ciphertexts at the
end of the epoch, and the system moves to the next epoch. We note that this model is used in
practice, e.g., in a threshold encrypted mempool [13, 18, 25], which is a tool for MEV prevention.
This is the primary use case for traceable threshold decryption that motivated the work of [9]. In
our setting, we sample and publish a new rerandomization ki = ([αi]1,eki,aki) at the beginning
of each epoch. It is crucial that ki gets revealed only at the beginning of the epoch. Otherwise,
if, for example, we publish many epoch keys in advance, the adversary could generate a decoder
that decrypts ciphertexts for only a few epochs (by hardcoding the corresponding encryption
keys) and refuse to decrypt for others. By publishing the epoch key in the beginning, we can
trace any decoder that aims to decrypt ciphertexts for more than a single epoch, since such a
decoder cannot hardcode the encryption keys of the epochs, as they are published only in the
future. The requirement of a decoder that decrypts for more than one single epoch is reasonable

23

in practice, as decoders that refuse to decrypt for new ki are no longer useful starting from the
next epoch and can be considered somewhat less valuable.

Finally, we need to ensure that whoever samples ki can not break the IND-CPA security
of the scheme. This attack is introduced since the entity running the rerandomization is not
the encryptor itself and, therefore, may act maliciously by embedding some corrupted keys
into ek and using the corresponding secret keys to decrypt. To circumvent this issue, we can
attach a NIZK proof of knowledge of R, α, and ᾱ such that ([α]1,ek,ak) is a result of an honest
evaluation of the rerandomization algorithm Rand. Further, we can prove that knowledge of α
(and ᾱ) does not help the adversary in decrypting any ciphertext that was honestly generated
from the corresponding rerandomization. As this technique also appears in the preprocessing
approach, we will elaborate on this formally in Section 6. We do not formalize the amortization
approach further but instead focus on a preprocessing technique that allows us to get constant
size ciphertext in Section 6.

6 Our OSTE Construction based on Preprocessing

In this section, we present our main OSTE construction, denoted by ΠOSTEP, in which we add
a preprocessing phase to reduce the size of the ciphertext of the ΠOSTE construction. In the
preprocessing phase, a set of encryption keys is generated and used by all parties, including the
tracer. In OSTE with preprocessing, unlike for ΠOSTE, using keys other than the preprocessing
output is prohibited. We summarize the model using the following definition.

Definition 6.1 (OSTE with Preprocessing (OSTEP)). We say that an OSTE scheme is an OSTE
scheme with preprocessing, if the set of possible encryption keys, along with their corresponding
aggregation keys, is computed and published in advance during the preprocessing phase after all
parties have published their public keys and hints. Further, the encryption keys used in Enc and
TrEnc are restricted to these pregenerated encryption keys only.

Let L = {∅, {1}, {1, 2}, . . . , [n]} be the linear revocation order. Throughout this section, we
imply X = L when referring to membership hiding and message privacy. The following theorem
summarizes the main result of this section.

Theorem 6.2 The ΠOSTEP construction is an OSTEP scheme with (ϵ
16)-indistinguishability (per

Definition 3.3) and (ϵ
16n)-membership hiding with X = L (per Definition 3.4) such that the secret

share size is 1 group element per party, the public key size is O(n4), and the ciphertext size is
O(1), where n = poly(λ) is the number of parties of the scheme, λ ∈ N is the security parameter,
and ϵ ∈ [−1/2, 1/2] such that ϵ = 1/poly(λ).

As a corollary of Theorem 4.5 and Theorem 6.2, we achieve a traceable silent threshold
encryption scheme (per Definition 4.1).

Remark 6.3 Note that our construction requires knowing the decoder’s advantage ϵ in advance.
This is referred to as threshold traitor tracing [36]3. Zhandry [42] presented a compiler for
eliminating the tracing threshold without affecting the dependence of the parameter sizes on n.
We can get rid of fixing ϵ by using this compiler.

6.1 The ΠOSTEP Construction

Overview. We denote by Rj the set of revoked parties up to j (Rj = [j] and R0 = ∅). Further,
we say that a ciphertext ct revokes a subset R if for every i ∈ R it holds that the party pi cannot

3This is unrelated to the threshold encryption setting.

24

Prep(CRS, {pki,hinti}i∈[n], ϵ)

N ← 1024 · (n+ 1)λλ2
cn

2/ϵ2; d← N/(n+ 1)

for j = 0, . . . , n do

for ℓ ∈ [d] do

([α]1,ek,ak, π) $← RandAndProve(CRS, {pki,hinti}i∈[n],Rj)

Ktr[j, ℓ]← ([α]1,ek,ak, π)
Denote by Ktr[j] the set {Ktr[j, ℓ]}ℓ∈[d] of tracing keys that revoke the set Rj .

for ℓ ∈ [N] do

([α]1,ek,ak, π) $← RandAndProve(CRS, {pki,hinti}i∈[n],R0)

Knorm[ℓ]← ([α]1,ek,ak, π)
K $← Shuffle(Knorm,Ktr)

return (K, tk := (Knorm,Ktr), π := {πℓ}ℓ∈[|K|])

Figure 9: The preprocessing of the ΠOSTEP construction. The Shuffle algorithm computes
a random permutation. The sets Knorm, Ktr, and K are interpreted as sequences and the
RandAndProve algorithm is as defined above.

be part of the decryption committee of ct. That is, its decryption share for ct will be invalid.
Similarly, we say that an encryption key ek revokes a subset R if every ciphertext ct, encrypted
under ek, revokes the set R.

Roughly speaking, we preprocess multiple rerandomizations for different revoked sets. For
encryption, the encryption key ek is randomly selected from the preprocessed set of keys.
Since ek may correspond to a key that revokes some parties, potentially causing decryption
failure for certain coalitions, we encrypt the message under multiple keys to amplify decryption
correctness. In tracing, the tracer utilizes dedicated tracing keys from the predefined set. The
key challenge in our construction is designing Prep, Enc, and TrEnc that achieve the properties
of indistinguishability, membership hiding, and message privacy.

The ΠOSTEP construction is depicted in Figures 9 and 10. We next describe the main
components of the construction.

Preprocessing. The preprocessing algorithm Prep is shown in Figure 9. In Prep, an entity
generates encryption keys using the rerandomization algorithm introduced in Section 5.2 (Figure 6).
We generate N encryption keys (along with their corresponding aggregation keys) that are
intended for tracing, denoted by Ktr, where for every 0 ≤ j ≤ n, we generate N/(n+ 1) keys
that revoke the set Rj . In addition, we generate N encryption keys that revoke no party and
are not used for tracing (conceptually, these keys revoke the set R0), denoted by Knorm. Note
that there are keys that revoke R0 (i.e., revoke no party) in both Ktr and Knorm. The keys in
Ktr that revoke the set R0 are used by TrEnc(·,R0) queries (see Figure 5). Finally, the set of
encryption keys is Ktr ∪Knorm. Crucially, we publish the encryption keys in a random order
K $← Shuffle(KTr ∪ Knorm) to hide the type of each key (i.e., which set it revokes) from the
adversary. Note that Ktr and Knorm are stored in their original order as a private tracing key.
Here, we treat all sets as sequences, which means that we also store the index (in practice, the
tracing key can be the random permutation applied by Shuffle). We get |Knorm| = |Ktr| = N
and |K| = 2N .

Observe that the entity running the preprocessing phase could act maliciously and generate
encryption keys such that a ciphertext can be decrypted using secret keys under its control. That

25

is, it can use malicious public keys, for which it knows the corresponding secret keys instead
of the correct public keys of the parties. To mitigate this attack, it is required to attach a
NIZK proof of knowledge to the rerandomization algorithm that proves knowledge of a witness
w = (R, α, ᾱ := {ᾱℓ}ℓ∈R) to the statement χ = (CRS, {pki,hinti}i∈[n], [α]1,ek,ak). The relation
RRand for corresponding proof system PSRand (Definition A.1) is defined as

RRand =
{
(χ,w) : ([α]1,ek,ak) = Rand(CRS, {pki,hinti}i∈[n];α, ᾱ)

}
.

We define the algorithm RandAndProve, extending Rand (Figure 6), in which we attach to the
output of Rand a proof of knowledge in PSRand. Intuitively, the additional proof prevents the
adversary from using its own secret keys, which it might use to break semantic security. We
discuss the proofs of semantic security and message privacy in Appendix I.

Enc(CRS,K, t,m)

for ℓ ∈ [λc] do

idx $← [|K|] without repetitions
([α]1,ek,ak)← K[idx]
(c1, c2, c3, c4)

← enc(CRS, [α]1,ek,ak,m)

// Replace c2 = ak, with idx.

ctℓ ← (c1, idx, c3, c4)
return ct← (ct1, . . . , ctλc)

TrEnc(CRS, tk := (Knorm,Ktr),K, t,m,Rj)

for ℓ ∈ [λc] do

Sample as follows without repetitions:
With prob. 1/2 + (j + 1)/(2n+ 2) do

k := ([α]1,ek,ak) $← KTr[j]

With prob. (n− j)/(2n+ 2) do

k := ([α]1,ek,ak) $←
⋃

v∈{j+1,...,n}

KTr[v]

idx← Index of k in K
(c1, c2, c3, c4)← enc(CRS, [α]1,ek,ak,m)

// Replace c2 = ak, with the index idx.

ctℓ ← (c1, idx, c3, c4)
return ct← (ct1, . . . , ctλc

)

Figure 10: The Enc and TrEnc algorithms of ΠOSTEP with respect to correctness parameter λc.
The helper function enc is as defined for ΠOSTE in Figure 7.

Encryption. The encryption algorithms are presented in Figure 10. For normal encryption
(Enc), we choose λc different keys at random from the preprocessing K and encrypt under them.
We replace the ak part in the ciphertexts with the respective index such that the ciphertext size
is now constant in the number of parties n. As some keys revoke certain parties from contributing
to decryption, we need to encrypt under multiple keys to amplify decryption correctness.

In TrEnc, we encrypt the message m with respect to the revoked set Rj . Note that the
execution of TrEnc requires the tracing key tk = (Knorm,Ktr), i.e., the tracer needs to know
which keys in K revoke which parties. Denote by Ktr[j] the set of keys that revoke the set
Rj . As a first attempt, let us sample λc keys from Ktr[j] and encrypt the message m under
these keys. While this attempt satisfies message privacy, an adversary can distinguish a normal
encryption from TrEnc(R0), breaking indistinguishability. In particular, a normal encryption
would likely also include some tracing keys that revoke Rj for j > 0. Hence, an adversary,
given the preprocessing K, the indices in the λc ciphertexts, and the secret keys of some parties,
could trivially check if any of the used keys revoke anyone. To overcome this, when executing
TrEnc(R0), we also sample some keys from KTr[j] for j > 0. Let k1, . . . , kλc be the preprocessing
keys from Knorm ∪ Ktr used to encrypt the ciphertext ct. We next consider two cases. If
ct was encrypted using Enc, then Pr[ki revokes R0] =

1
2 + 1

2n+2 , since this event happens if

26

ki ∈ Knorm ∪Ktr[0]. Furthermore, for every 1 ≤ j ≤ n, it holds that Pr[ki revokes Rj] =
1

2n+2 ,
since this event happens if ki ∈ Ktr[j]. If ct was encrypted as TrEnc(R0), then we simulate the
first case by choosing ki from Ktr[0] with probability 1

2 + 1
2n+2 and with probability 1

2n+2 from
Ktr[j] for every 1 ≤ j ≤ n. Observe that the distributions in both cases are indistinguishable to
the adversary due to the indistinguishability property of the underlying OSTE scheme. Namely,
if kj revokes no party, the adversary cannot know if kj ∈ Ktr[0] or kj ∈ Knorm. We extrapolate
this argument for membership hiding, i.e., when executing TrEnc(Rj), we also sample some keys
from Ktr[j

′], where j′ > j. To see why the distributions are identical (except for negligible
difference), we rely on the membership hiding property of the underlying OSTE scheme, i.e., an
adversary that does not know skj can not distinguish between keys in Ktr[j − 1] and keys in
Ktr[j].

6.2 Proof of Theorem 6.2

The correctness of the scheme is straightforward given the correctness of the ΠOSTE construction.
The correctness is lower bounded by 1− 1

2λc
since the probability to sample a key that does not

revoke any party is at least 1/2. We need to prove that our ΠOSTEP construction fulfills IND-CPA,
(ϵ
16)-indistinguishability (Definition 3.3), (ϵ

16n)-membership hiding (Definition 3.4), and message
privacy (Definition 3.5). The full proofs for message privacy and IND-CPA security can be found
in Appendix I. We next prove the indistinguishability property and membership hiding.

Remark 6.4 We note that the tracing authority is trusted for tracing but not semantic security.
The tracing key tk does not give the adversary any advantage in the semantic security game.
This holds since tk only reveals which keys revoke which parties. In fact, in our IND-CPA security
game (Figure 11), the preprocessing is sampled by the adversary, which means security is required
to hold, even if the adversary knows α and ᾱ.

Indistinguishability. As for ΠOSTE, observe that tracing keys that trace R0 (the keys in Ktr[0])
are identically distributed to normal encryption keys (the keys in Knorm). Hence, a decoder
can only distinguish normal ciphertexts from TrEnc(R0) ciphertexts through the difference of
distributions, with respect to K, that are generated by Enc and TrEnc(R0). In particular, we
show that the adversary cannot choose a subset of encryption keys that enables him to construct
a decoder that distinguishes between normal ciphertexts and TrEnc ciphertexts with significant
probability, i.e., 1/2 + ϵ/16.

Lemma 6.5 The ΠOSTEP construction, as presented in Section 6.1, is (ϵ/16)-indistinguishable for
ϵ = 1/poly(λ), per Definition 3.3, for some d = O(λ2

cλn
2/ϵ2).

Proof. Consider δ = ϵ
16 for an ϵ ∈ 1

poly(λ) . Let n = poly(λ) and let A be a PPT adversary. We

show for construction ΠOSTEP that AdvGameInd(1λ,n,δ)
A ≤ negl(λ), where GameIndA is defined in

Figure 2.
First, note that in order to win GameInd(1λ, n, δ), the adversary A is required to output

a distinguishing decoder box D which is a δ-DistEnc,TrEnc for δ = ϵ/16, per Definition 3.2. As
we consider only stateless decoders, D cannot rely on runtime information, such as how often
a key has occurred. Furthermore, note that ΠOSTEP ensures that the same encryption key
cannot be used twice in the same ciphertext. Consequently, D cannot assess the size of the
keyspace from which keys are sampled. Also, recall that the keys in Knorm are distributed
identically to the keys in Ktr[0]. As the preprocessing K is randomly permuted according to
tk, an adversary who does not know tk can only guess whether a given key that revokes R0

either belongs to Knorm or Ktr[0]. Essentially, by construction, the only difference between

27

Enc ciphertexts and TrEnc(R0) ciphertexts is that the latter does not use keys from Knorm.
Therefore, to break indistinguishability, D can only try to use some strategy that utilizes the
keys in Knorm ∪Ktr[0]. I.e., its behavior would depend on the occurrence of one or more of
these keys in the ciphertext ct. Let us assume that the adversary chooses a subset of keys
K ⊆ Knorm ∪Ktr[0] for which D fixes a behavior. We show that the probabilities of drawing
a key from K when, in the indistinguishability game, b = 0 or b = 1 fall apart by less than
ϵ/16 with overwhelming probability. As a result, we get that the probability that D behaves
significantly differently in the two cases, and as such is ϵ

16 -DistEnc,TrEnc, is negligible. That is, we
show that Pr [D(ctb) = b] < 1

2 + ϵ
16 with overwhelming probability.

To see this, consider the subset of keys K and let L0 = |K ∩Knorm| and L1 = |K ∩Ktr[0]|.
Furtheremore, let ct be a ciphertext that is either an Enc ciphertext or a TrEnc(R0) ciphertext
and let k1, . . . , kλc denote the keys used to encrypt ct, that is, the j-th component of ct is
encrypted under kj . By construction, when b = 0 (i.e., normal encryption), for every key
1 ≤ j ≤ λc, it holds that Pr[kj ∈ Knorm] = 1/2 and Pr[kj ∈ Ktr[0]] =

1
2n+1 . When b = 1 (i.e.,

TrEnc(R0)), these probabilities are 0 and 1
2 + 1

2(n+1) , respectively. Let y0, y1 be the expected
size of K ∩ {k1, . . . , kλc} when b = 0 and b = 1, respectively. For D to break indistinguishability,
it must behave sufficiently differently for b = 0 and b = 1. Then, since the adversary cannot
distinguish which keys are from L0 and which are from L1, it must hold that |y0 − y1| ≥ ϵ/16
with overwhelming probability. By construction, it holds that y0 = λc · (12

L0
d(n+1) +

1
2(n+1)

L1
d) and

y1 = λc · (12
L1
d + 1

2(n+1)
L1
d). By the requirement that |y0 − y1| ≥ ϵ/16, we get

|L0 − L1(n+ 1)| ≥ 2dϵ(n+ 1)

16λc
. (2)

W.l.o.g, assume that L0 > L1 and let µ denote the expected size of L0. Since |Knorm| =
(n+ 1) · |Ktr[0]| and A picks keys from Knorm ∪Ktr[0] at random, with the same distribution
for Knorm and Ktr[0] (since he can not distinguish between the two sets), then the expected size
of L1 is µ

n+1 . Furtheremore, it holds that L0 − µ = µ
n+1 − L1. Thus, for inequality 2 to hold, it

must hold that:

|L0 − µ+ (L0 − µ)(n+ 1)| ≥ 2dϵ(n+ 1)

16λc

|L0 − µ| ≥ 2dϵ(n+ 1)

16λc(n+ 2)
.

By the Chernoff bound, for δc =
2dϵ(n+1)

16λc(n+2)µ , we obtain

Pr [|L0 − µ| > δcµ] ≤ 2e−µδ2c/3. (3)

As µ ≤ |Knorm| = d(n+1), it holds that for some d = O(λ
2
cλn

2

ϵ2
), the probability in Equation 3 is

negligible. Therefore, inequality 2 could hold only with negligible probability. Hence, constructing
a distinguishing decoder D with advantage ϵ

16 could happen only with negligible probability.
The probability of winning the indistinguishability game is negligible for any subset K chosen
by the adversary. By union bound, the probability is also negligible if the adversary chooses a
polynomial number of sets K.

Membership Hiding. The following lemma captures the membership hiding property of ΠOSTEP.

28

Lemma 6.6 The ΠOSTEP construction, as presented in Section 6.1, is membership hiding for
δ = ϵ/16n and ϵ = 1/poly(λ), per Definition 3.4, for some d = O(λλ2

cn
2/ϵ2).

Proof. Let n = poly(λ), δ = ϵ
16n , and ϵ ∈ 1

poly(λ) . We show that

AdvGameMH
A,ΠOSTEP

(1λ, n, δ) ≤ negl(λ)

Our proof proceeds in two steps: First, we show that the keys in Ktr[i−1] are indistinguishable
from those in Ktr[i] for any adversary that does not know ski. Intuitively, this follows from the
membership hiding property of the underlying ΠOSTE scheme. Then, in the second step, relying
on the fact that the only difference between TrEnc(·,R(i − 1)) and TrEnc(·,R(i)) is that the
former uses also keys from Ktr[i− 1] while the latter does not, we show that the adversary can
not artificially choose a set of keys K from the set of Ktr[i−1]∪Ktr[i] that allows distinguishing
between ciphertexts that use keys in Ktr[i] from ciphertexts that do not. In combination, the
indistinguishability of keys in Ktr[i] and Ktr[i− 1] and the limited advantage an adversary can
gain based on their occurrence imply membership hiding.

Proving that Ktr[i− 1] ≈c Ktr[i]. Ultimately, we aim to show that GameMHΠOSTEP (Figure 2) is
computationally close to a variant of the game, where in the preprocessing, we sample all keys in
Ktr[i− 1] by revoking Ri instead of Ri−1, i.e., equivalently to Ktr[i]. We do so through a series
of game hops involving the zero-knowledge and simulation-extractability property of the proof
system PSKGen and the zero-knowledge property of PSRand (Definition A.1). We reduce the final
step, where we substitute the keys for Ktr[i− 1], to the XDH assumption (Definition 2.2).

Before our reduction to XDH, we need to simulate the KGen proof on behalf of party i,
extract the secret keys from the KGen proofs the adversary sends on behalf of all other parties,
and simulate the Rand proofs for the preprocessing keys in Ktr[i− 1]. These steps are necessary
because, in our reduction to XDH, we embed the XDH challenge into the public key of party i.
The reduction needs to know the secret keys of the honest parties to simulate the preprocessing
keys with respect to the XDH challenge, which is why we need to extract them. Further, the
reduction does not know ski, as well as α and possibly ᾱi−1 for Ktr[i− 1], so these proofs must
be simulated.

Let Game0 be the the membership hiding game GameMHΠOSTEP for ΠOSTEP.
Game1: In the first game hop, we replace the proof πi in PSKGen that the challenger attaches

to the public keys and hints of the honest party with a simulated one

πi
$← PSKGen.Sim(tdKGen,CRS, pki,hinti).

Claim 6.7 If the proof system PSKGen is zero-knowledge (Definition A.1), then Game0 and
Game1 are computationally indistinguishable.

Proof. The claim follows directly from the zero-knowledge property of PSKGen. In particular, it
holds that

(CRS, pki,hinti, πi) ≈c (CRS, pki,hinti,PSKGen.Sim(tdKGen,CRS, pki,hinti))

for (pki,hinti, πi) $← KGen(1λ).

Game2: In Game2, we use the extractor of PSKGen to extract {skℓ}ℓ∈[n]\{i} from the proofs at-
tached to the adversary’s public keys and hints as skℓ

$← PSKGen.Ext(tdKGen, (CRS, pkℓ,hintℓ), πℓ).
Additionally, Game2 aborts if there exists an ℓ ∈ [n] \ {i} such that pkℓ ̸= [skℓ]1 or hintℓ ̸=
([skℓτ]1, . . . , [skℓτ

n]1).

29

Claim 6.8 For all n = poly(λ) and all PPT adversaries A there exists a PPT adversary B such
that ∣∣∣Pr[Game1,A(1

λ, n,L, δ) = 1]− Pr[Game2,B(1
λ, n,L, δ) = 1]

∣∣∣
≤ (n− 1)Advsim-extract

B,PSKGen
(1λ).

The proof of the above claim is identical to that in the membership hiding proof for ΠOSTE
(Lemma 5.3).

Game3: In Game3, we replace the proofs attached to re-randomizations in Ktr[i− 1] with
simulated ones. In particular, we set

k.π $← PSRand.Sim(tdRand, (CRS, {pkℓ,hintℓ}ℓ∈[n], k.[α]1, k.ek, k.ak))

for all k ∈ Ktr[i− 1].

Claim 6.9 For all PPT adversaries A there exists a PPT adversary B such that∣∣∣Pr[Game2,A(1
λ, n,L, δ) = 1]− Pr[Game3,A(1

λ, n,L, δ) = 1]
∣∣∣

≤ d ·Advzero-knowledge
B,PSRand

(1λ),

where d = N/(n+ 1).

Proof. The claim follows from a simple hybrid argument over the N/(n+ 1) proofs in Ktr[i− 1].

Game4: In Game4, we finally modify how the keys in Ktr[i− 1] are sampled. In particular,
we sample each key in k ∈ Ktr[i − 1] by re-randomizing with respect to the revoked set Ri

instead of Ri−1, i.e., for all k ∈ Ktr[i − 1], we sample k $← Rand(CRS, {pkj ,hintj}j∈[n],Ri).
Note that in Game3, the corresponding proofs are already simulated.

Claim 6.10 For all PPT adversaries A there exists a PPT adversary B and a negligible function
negl such that ∣∣∣Pr[Game3,A(1

λ, n,L, δ) = 1]− Pr[Game4,A(1
λ, n,L, δ) = 1]

∣∣∣
≤ d ·AdvXDH

B,G (1λ) + negl(λ),

where d = N/(n+ 1).

Proof. We prove the claim through a hybrid argument. Let H0 be Game3, Hd be Game4 and
Hu, for 0 < u ≤ d be the game, where we replace the first u keys of Ktr[i− 1] with keys that
revoke Ri. We can upper-bound the success probability of any PPT adversary A to distinguish
between Game3 and Game4 by that of an adversary A′ who tries to distinguish Hu−1 from Hu

for arbitrary 0 < u ≤ d:∣∣∣Pr[Game3,A(1
λ, n,L, δ) = 1]− Pr[Game4,A(1

λ, n,L, δ) = 1]
∣∣∣

≤ d ·
∣∣∣Pr[Hu−1,A′(1λ, n,L, δ) = 1]− Pr[Hu,A(1

λ, n,L, δ) = 1]
∣∣∣

To conclude the proof, we show that we can further upper bound the success probability of
A′ by reducing to XDH.

30

Let A′ be a PPT adversary that distinguishes between Hu−1 and Hu. We construct a PPT
reduction B that internally uses A′ to break the XDH assumption (Definition 2.2) for the pairing
ensemble G.

First, B receives an XDH challenge [x]1, [y]1, T , where either T = [xy]1 or T = [v]1 for a
random v $← Z∗

p. The reduction B samples a random τ $← Zp and generates the CRS. Then, it
runs A′(1λ,CRS) to receive the party’s index i. It simulates a public key pki and hint hinti for i
by embedding the XDH challenge as follows:

pki ← [x]1, and hinti ← (τ [x]1, . . . , τ
n[x]1).

Observe that B therefore simulates ski = x without knowledge of x. B further simulates a
proof πPSKGen

i according to both Hu−1 and Hu and runs A′(pki,hinti, πPSKGen
i). As a response, B

receives a revoked set R4 as well as the corrupted public keys and hints with attached proof
{pkℓ,hintℓ, πPSKGen

ℓ }
ℓ∈[n]\{i}. Again, according to both games, B extracts the secret keys skℓ from

the proofs πPSKGen
ℓ , aborting if the extraction is unsuccessful for any ℓ (in case either game aborts,

B outputs 0).
Next, B simulates the preprocessing as follows. B generates all preprocessing keys in Knorm

and Ktr[j] for j ̸= i− 1 honestly. To generate tracing keys for Ktr[i− 1, q] where q ∈ [d], B does
the following:

• For q < u, generate tracing keys that revoke the set Ri.

• For q > u, generate tracing keys that revoke the set Ri−1

• For q = u, embed the XDH challenge into the re-randomization by executing

([α]1,ek,ak)← SimRand([x]1, [y]1, [z]1, T, τ, {skℓ}ℓ∈[n]\{i},Ri−1, i),

where SimRand is the same simulation algorithm that we use in the membership hiding
proof of ΠOSTE (Figure 8). B can also simulate the corresponding proof in PSRand, as
required by both hybrids, because the statement is part of LRand.

Let bXDH be the internal bit of the XDH challenge. If bXDH = 0, then T = [xy]1 ≡ [αski]1 (i.e.,
party i is unrevoked in Ktr[i− 1, u]) and we simulate the preprocessing for Hu−1. If bXDH = 1,
then T = [v]1 ≡ [ᾱiski]1 (i.e., party i is revoked in Ktr[i−1, u]) and we simulate the preprocessing
for Hu.

The reduction assembles the preprocessing and sends it to A′, receiving a decoder D and a
message m. Finally, B checks if A′ wins either game (both games have the same win condition)
by checking if D is δ-DistRi−1,Ri according to Definition 3.25 and whether the remaining winning
conditions apply. If A′ wins, then B outputs 1. Otherwise, B outputs 0.

Further, recall that if bXDH = 0, then B simulates Hu−1 as the key for Ktr[i− 1, u] does not
revoke party i. If bXDH = 1, then B simulates Hu as party i is revoked in Ktr[i− 1, u]. Hence,
we can bound the probability of A′ to distinguish as follows:∣∣∣Pr[Hu−1,A′(1λ, n,L, δ) = 1]− Pr[Hu,A′(1λ, n,L, δ) = 1]

∣∣∣
≤
∣∣∣Pr[B(1λ, E, [x]1, [y]1, [xy]1) = 1]− Pr[B(1λ, E, [x]1, [y]1, [v]1) = 1]

∣∣∣+ negl(λ)

≤ AdvXDH
B,G (1λ) + negl(λ),

4As ΠOSTEP only supports the linear revocation order, it must hold that R = Ri−1. Otherwise, either game
will output 0.

5Note that while B can not compute the exact probability, it can approximate it up to negligible error negl(λ)
using a polynomial number of queries by applying a Chernoff bound.

31

where E $← G(1λ) and x, y, v $← Z∗
p.

Overall, we can bound the success probability of any PPT adversary A to distinguish between
Game3 and Game4 by∣∣∣Pr[Game3,A(1

λ, n,L, δ) = 1]− Pr[Game4,A(1
λ, n,L, δ) = 1]

∣∣∣
≤ d ·AdvXDH

B,G (1λ) + negl(λ),

for some negligible function negl.

Proving the negligibility of AdvGameMH
A,ΠOSTEP

. First note that in order to win AdvGameMH
A,ΠOSTEP

(1λ, n, δ),
the adversary A is required to return a distinguishing decoder D which is a δ-DistR,R∪{i} (per
Definition 3.2) for δ = ϵ/(16n). Similarly to our argument in Lemma 6.5, we need only to
prove that the adversary cannot find a subset of keys K from Ktr[i− 1] ∪Ktr[i] by which the
probability of drawing a key from K when b = 0 in the membership hiding game falls apart
from the probability when b = 1 by more than ϵ

16n . To see this, let Li−1 = |K ∩Ktr[i − 1]|
and Li = |K ∩Ktr[i]|. Further, let ct be the challenge ciphertext that is either TrEnc(Ri−1)
or TrEnc(Ri) and let k1, . . . , kλc be the encryption keys from Knorm ∪Ktr that are used in the
encryption of ct. By construction, it holds that Ktr[i− 1] = Ktr[i] = d and when b = 0, i.e., ct
is TrEnc(Ri−1), then it holds that Pr[kj ∈ Ktr[i− 1]] = 1

2 +
i

2(n+1) and Pr[kj ∈ Ktr[i]] =
1

2(n+1) .
When b = 1, i.e., ct = TrEnc(Ri), then these probabilities are 0 and 1

2 + i+1
2(n+1) , respectively. Let

y0, y1 be the expected size of K ∩ {k1, . . . , kλc} when b = 0 and b = 1, respectively. Similarly
to Lemma 6.5, we argue that the adversary can win the membership hiding game only if it
holds that |y0 − y1| > ϵ/(16(n− t)). This is required since, as we showed, the adversary can not
distinguish between keys from Li−1 and keys from Li. Thus, its strategy would depend only on
the occurrence of the keys in Li−1 ∪ Li. We next show that

|y0 − y1| <
ϵ

16n
(4)

with overwhelming probability when we choose the appropriate d as in the lemma.
First, note that:

y0 = λc

((
1

2
+

i

2(n+ 1)

)
Li−1

d
+

1

2(n+ 1)

Li

d

)
and

y1 = λc

(
1

2
+

i+ 1

2(n+ 1)

)
Li

d
.

Hence, Equation 4 would not hold if and only if

|Li−1 − Li| ≥
ϵd

16nλc

(
2(n+ 1)

n+ i+ 1

)
. (5)

W.l.g, assume that Li−1 > Li and let µ denote the expected size of Li−1. Since |Ktr[i− 1]| =
|Ktr[i]| and A picks keys from Ktr[i − 1] ∪ Ktr[i] at random, with the same distribution
for Ktr[i − 1] and Ktr[i], then it holds that the expected size of Li is also µ. Therefore,
Li−1 − µ = µ− Li. Hence, from Equation 5, we get it must hold that

|Li−1 − µ| > ϵd

32nλc
.

32

By the Chernoff bound, for δc =
ϵd

32nλcµ
, it holds that:

Pr
[
|Li−1 − µ| > ϵd

32nλc

]
≤ 2e−µδ2C/3,

which is negligible if

λ ≤ µδ2C/3 =
ϵ2d2

(32)23n2λ2
cµ

.

Thus, since µ ≤ d/2, it must hold that d = O(λ
2
cλn

2

ϵ2
). Given this number of keys, the probability

that a subset K can influence the success probability of D by δ = ϵ
16n is only negligible. As the

adversary can try only a polynomial number of sets K, then by union bound, the probability of
winning the game will be negligible.

References

[1] Baird, L., Garg, S., Jain, A., Mukherjee, P., Sinha, R., Wang, M., Zhang, Y.: Threshold
signatures in the multiverse. In: 44th IEEE Symposium on Security and Privacy, SP (2023)
(Cited on page 6.)

[2] Ballard, L., Green, M., de Medeiros, B., Monrose, F.: Correlation-resistant storage via
keyword-searchable encryption. Cryptology ePrint Archive, Paper 2005/417 (2005), https:
//eprint.iacr.org/2005/417 (Cited on page 9.)

[3] Bebel, J., Ojha, D.: Ferveo: Threshold decryption for mempool privacy in bft networks.
Cryptology ePrint Archive (2022) (Cited on page 2.)

[4] Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.: Aurora:
Transparent succinct arguments for r1cs. In: Advances in Cryptology - EUROCRYPT 2019.
Springer (2019) (Cited on page 8.)

[5] Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M.K. (ed.)
Advances in Cryptology - CRYPTO 2004. Springer (2004) (Cited on page 9.)

[6] Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Annual
international cryptology conference. Springer (2001) (Cited on page 16.)

[7] Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: International
conference on the theory and application of cryptology and information security. Springer
(2001) (Cited on page 16.)

[8] Boneh, D., Naor, M.: Traitor tracing with constant size ciphertext. In: Proceedings of the
2008 ACM Conference on Computer and Communications Security, CCS (2008) (Cited on
page 2.)

[9] Boneh, D., Partap, A., Rotem, L.: Accountability for misbehavior in threshold decryption
via threshold traitor tracing. In: Advances in Cryptology - CRYPTO. Lecture Notes in
Computer Science, vol. 14926. Springer (2024) (Cited on page 2, 3, 4, 7, 23.)

[10] Boneh, D., Partap, A., Rotem, L.: Traceable secret sharing: Strong security and efficient
constructions. In: Annual International Cryptology Conference. pp. 221–256. Springer (2024)
(Cited on page 7.)

33

https://eprint.iacr.org/2005/417
https://eprint.iacr.org/2005/417

[11] Boneh, D., Sahai, A., Waters, B.: Fully collusion resistant traitor tracing with short
ciphertexts and private keys. In: Annual International Conference on the Theory and
Applications of Cryptographic Techniques. Springer (2006) (Cited on page 3, 10, 13, 39.)

[12] Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and more from
indistinguishability obfuscation. Algorithmica (2017) (Cited on page 7.)

[13] Bormet, J., Faust, S., Othman, H., Qu, Z.: Beat-mev: Epochless approach to batched
threshold encryption for mev prevention. Cryptology ePrint Archive (2024) (Cited on
page 23.)

[14] Branco, P., Lai, R.W., Maitra, M., Malavolta, G., Rahimi, A., Woo, I.K.: Traitor tracing
without trusted authority from registered functional encryption. In: International Conference
on the Theory and Application of Cryptology and Information Security. Springer (2024)
(Cited on page 7, 8.)

[15] Campanelli, M., Nitulescu, A., Ràfols, C., Zacharakis, A., Zapico, A.: Linear-map vector
commitments and their practical applications. In: International Conference on the Theory
and Application of Cryptology and Information Security. Springer (2022) (Cited on page 8.)

[16] Chen, Y., Vaikuntanathan, V., Waters, B., Wee, H., Wichs, D.: Traitor-tracing from
LWE made simple and attribute-based. In: Theory of Cryptography - 16th International
Conference, TCC (2018) (Cited on page 7.)

[17] Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Advances in Cryptology - CRYPTO’94.
Springer (1994) (Cited on page 7.)

[18] Choudhuri, A.R., Garg, S., Piet, J., Policharla, G.V.: Mempool privacy via batched threshold
encryption: Attacks and defenses. Cryptology ePrint Archive (2024) (Cited on page 2, 23.)

[19] Cramer, R., Hanaoka, G., Hofheinz, D., Imai, H., Kiltz, E., Pass, R., Shelat, A., Vaikun-
tanathan, V.: Bounded cca2-secure encryption. In: Advances in Cryptology - ASIACRYPT
2007 (2007) (Cited on page 7.)

[20] Das, S., Camacho, P., Xiang, Z., Nieto, J., Bünz, B., Ren, L.: Threshold signatures from
inner product argument: Succinct, weighted, and multi-threshold. In: Proceedings of the
2023 ACM SIGSAC Conference on Computer and Communications Security (2023) (Cited
on page 2.)

[21] Datta, P., Pal, T., Yamada, S.: Registered FE beyond predicates: (attribute-based) linear
functions and more. In: Advances in Cryptology - ASIACRYPT 2024 (2024) (Cited on
page 8.)

[22] Desmedt, Y.: Society and group oriented cryptography: A new concept. In: Pomerance, C.
(ed.) Advances in Cryptology - CRYPTO ’87 (1987) (Cited on page 1.)

[23] Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.) Advances in
Cryptology - CRYPTO ’89 (1989) (Cited on page 1.)

[24] Dziembowski, S., Faust, S., Lizurej, T., Mielniczuk, M.: Secret sharing with snitching. In:
Proceedings of the 2024 on ACM SIGSAC Conference on Computer and Communications
Security. pp. 840–853 (2024) (Cited on page 7.)

34

[25] Dziembowski, S., Faust, S., Luhn, J.: Shutter network: Private transactions from threshold
cryptography. Cryptology ePrint Archive, Paper 2024/1981 (2024), https://eprint.iacr.
org/2024/1981 (Cited on page 2, 23.)

[26] Francati, D., Friolo, D., Maitra, M., Malavolta, G., Rahimi, A., Venturi, D.: Registered
(inner-product) functional encryption. In: Advances in Cryptology - ASIACRYPT 2023
(2023) (Cited on page 8.)

[27] Garg, S., Jain, A., Mukherjee, P., Sinha, R., Wang, M., Zhang, Y.: hints: Threshold
signatures with silent setup. In: 2024 IEEE Symposium on Security and Privacy (SP). IEEE
(2024) (Cited on page 2, 18.)

[28] Garg, S., Kolonelos, D., Policharla, G.V., Wang, M.: Threshold encryption with silent setup.
In: Advances in Cryptology - CRYPTO 2024. pp. 352–386. Springer (2024) (Cited on page 2,
3, 4, 5, 6, 7, 8, 9, 15, 16, 17, 18, 37, 42, 43, 44, 46, 49.)

[29] Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key generation for
discrete-log based cryptosystems. Journal of Cryptology 20, 51–83 (2007) (Cited on page 2.)

[30] Gong, J., Luo, J., Wee, H.: Traitor tracing with n1/3-size ciphertexts and o(1)-size keys
from k-lin. In: Advances in Cryptology - EUROCRYPT 2023 (2023) (Cited on page 2.)

[31] Goyal, R., Koppula, V., Waters, B.: Collusion resistant traitor tracing from learning
with errors. In: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of
Computing (2018) (Cited on page 7, 10, 12.)

[32] Goyal, R., Vusirikala, S., Waters, B.: Collusion resistant broadcast and trace from positional
witness encryption. In: Public-Key Cryptography - PKC 2019 (2019) (Cited on page 7.)

[33] Goyal, V., Song, Y., Srinivasan, A.: Traceable secret sharing and applications. In: Advances
in Cryptology–CRYPTO 2021: 41st Annual International Cryptology Conference, Virtual
Event, August 16–20, 2021, Proceedings, Part III 41. pp. 718–747. Springer (2021) (Cited
on page 7.)

[34] Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polynomials and
their applications. In: Advances in Cryptology - ASIACRYPT. pp. 177–194. Springer (2010)
(Cited on page 7.)

[35] Luo, J.: Ad hoc broadcast, trace, and revoke. IACR Communications in Cryptology (2024)
(Cited on page 8.)

[36] Naor, M., Pinkas, B.: Threshold traitor tracing. In: Advances in Cryptology - CRYPTO ’98
(1998) (Cited on page 24.)

[37] Pedersen, T.P.: A threshold cryptosystem without a trusted party. In: EUROCRYPT ’91
(1991) (Cited on page 2.)

[38] Ràfols, C., Zapico, A.: An algebraic framework for universal and updatable snarks. In:
Annual International Cryptology Conference. Springer (2021) (Cited on page 8.)

[39] Rotem, L., Segev, G.: Algebraic distinguishers: From discrete logarithms to decisional
uber assumptions. In: Theory of Cryptography: 18th International Conference, TCC 2020,
Durham, NC, USA, November 16–19, 2020, Proceedings, Part III 18. pp. 366–389. Springer
(2020) (Cited on page 37.)

35

https://eprint.iacr.org/2024/1981
https://eprint.iacr.org/2024/1981

[40] Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Advances in
Cryptology—EUROCRYPT’97: International Conference on the Theory and Application
of Cryptographic Techniques Konstanz, Germany, May 11–15, 1997 Proceedings 16. pp.
256–266. Springer (1997) (Cited on page 4, 9.)

[41] Tomescu, A., Chen, R., Zheng, Y., Abraham, I., Pinkas, B., Golan-Gueta, G., Devadas,
S.: Towards scalable threshold cryptosystems. In: 2020 IEEE Symposium on Security and
Privacy (2020) (Cited on page 2.)

[42] Zhandry, M.: New techniques for traitor tracing: Size and more from pairings. In: Annual
International Cryptology Conference. Springer (2020) (Cited on page 7, 24.)

[43] Zhandry, M.: Optimal traitor tracing from pairings. Cryptology ePrint Archive (2024) (Cited
on page 7.)

[44] Zhu, Z., Li, J., Zhang, K., Gong, J., Qian, H.: Registered functional encryptions from
pairings. In: Advances in Cryptology - EUROCRYPT 2024 (2024) (Cited on page 8.)

A Preliminary Definitions

Definition A.1 (NIZK-PoK). Let R be an NP-relation of statement-witness pairs (χ,w) ∈ R a
non-interactive zero-knowledge proof system of knowledge PSR for R is a tuple of algorithms
PSR = (Setup,Prove,Verify, Sim,Ext) with the following syntax:

• (CRS, td) $← Setup(1λ). Given the security parameter λ, the Setup algorithm outputs a
common reference string CRS and a simulation and extraction trapdoor td. The CRS is
implicit input to all subsequent algorithms.

• π $← Prove(χ,w). Given a statement-witness pair (χ,w), the Prove algorithm outputs a
proof π.

• 1/0← Verify(χ, π). Given a statement χ and a proof π, the Verify algorithm outputs 1, iff
π is valid for χ.

• π $← Sim(td, χ). Given the trapdoor td and a statement χ, the simulation algorithm Sim
outputs a simulated proof π.

• w $← Ext(td, χ, π). Given the trapdoor td, a statement χ and a proof π, the extractor Ext
returns a witness w.

A proof system PSR must fulfill the following properties.

• Correctness: For all (χ,w) ∈ R it holds that Verify(χ,Prove(χ,w)) = 1.

• Simulation-Extractability: For all PPT adversaries A, negligible function negl such that

Pr

Verify(χ, π) = 1 ∧
(χ,w) ̸∈ R ∧

χ ̸∈ Q

:

(CRS, td) $← Setup(1λ)
(χ, π) $← ASim(td,·)(1λ,CRS)

w $← Ext(td, χ, π)

 ≤ negl(λ),

where Q is the set of A’s queries to the Sim(td, ·) oracle.

36

• Zero-Knowledge: For all (χ,w) ∈ R it holds that

(CRS, χ,Prove(χ,w)) ≈c (CRS, χ,Sim(td, χ)) ,

where (CRS, td) $← Setup(1λ).

Definition A.2 (Independence [39]). Let p ∈ N be a prime, let m, t1, t2, tt ∈ N, let l1 ∈
Fp[X1, ..., Xm]t1 , l2 ∈ Fp[X1, ..., Xm]t2 , lt ∈ Fp[X1, ..., Xm]tt be tuples of polynomials such that
l1[0] = l2[0] = lt[0] = 1, and let f ∈ F[X1, ..., Xm] be a polynomial. We say that f is dependent
on (l1, l2, lt) if there exist integers {ki}i∈[t], {k′i}i∈[t], {k′′i }i∈[t] such that

f =
∑
i,j∈[t]

ki · l1[i] · k′j · l2[j] +
∑
i∈[t]

k′′i · t[i]

If f is not dependent on (l1, l2, lt), we say that it is independent of (l1, l2, lt).

We require the Master Theorem to prove the security of our construction(s).

Theorem A.3 (Master Theorem [28]). Let p ∈ N be a prime, let m, t1, t2, t3 ∈ N, let l1 ∈
Fp[X1, ..., Xm]t1 , l2 ∈ Fp[X1, ..., Xm]t2 , lt ∈ Fp[X1, ..., Xm]t3 be tuples of polynomials of maximum
degree dr, ds and dt respectively. Let f ∈ F[X1, ..., Xm] be a polynomial of degree at most df .
Denote d = max{dr, ds, dt, df} and t = t1 + t2 + t3. If f is independent of (l1, l2, lt), then for
any generic ppt adversary A that makes at most q group oracle queries∣∣∣∣∣∣∣Pr

A
p, h1[l1(x)]

h2[l2(x)],

hT [f(x)]

 = 1

− Pr

A
p, h1[l1(x)]

h2[l2(x)],

hT [r]

 = 1

∣∣∣∣∣∣∣ ≤

(q + t+ 2)2 · d
2p

where h1, h2 and hT denote handles for groups G1,G2 and GT and the probabilities are taken
over the choices of x $← Zn

p and r $← Zp.

B Remaining Definitions for OSTE schemes

Definition B.1 (Correctness for OSTE). We call an OSTE protocol correct if for all n = poly(λ),
t < n, all S ⊆ [n] with |S| ≥ t it holds that

Pr

 DecAggr(CRS,K, ct, {σi}i∈S) = m
∧ ∀i ∈ [n] : IsValid(CRS, pki,hinti, πi) = 1

∧ PreVfy(CRS, {pki,hinti}i∈[n],K, π) = 1

 ≥ 1− negl(λ),

where CRS $← Setup(1λ, n), (ski, pki,hinti, πi) $← KGen(1λ) for all i ∈ [n], (K, π, tk) $←
Prep(CRS, {pki,hinti}i∈[n]), ct $← Enc(CRS,K, t,m), as well as σi ← PartDec(ski, ct) for each
i ∈ [n].

Definition B.2 (IND-CPA security for OSTE). An OSTE scheme E is IND-CPA secure if for all
PPT adversaries A, there exists a negligible function negl(λ) such that

AdvIND-CPA
A,E (1λ, n) ≤ 1

2
+ negl(λ)

where IND-CPAA is defined in Figure 11.

37

IND-CPAA(1
λ, n):

CRS $← Setup(1λ, n)
(T , st) $← A(1λ,CRS)
for i ∈ [n], i /∈ T do

(ski, pki,hinti, πi)
$← KGen(1λ,CRS)

({pki,hinti, πi}i∈T , t,K, π,m0,m1, st)
$← A({pki,hinti, πi}i/∈T , st)

b $← {0, 1}
ct $← Enc(CRS,K, t,mb)

b′ $← A(ct, st)
return b = b′ ∧ T ⊆ [n] ∧ |T | < t

∧ ∀i ∈ T : IsValid(CRS, pki,hinti, πi)

∧ ∀i, j ∈ [n], i ̸= j : pki ̸= pkj

∧ PreVfy(CRS, {pki,hinti}i∈[n],K, π)

Figure 11: A game-based IND-CPA security definition for OSTE and TSTE schemes.

C TSTE Correctness and Security Definitions

Definition C.1 (Correctness for TSTE). We call a TSTE scheme correct with respect to parameter
λc if for all n = poly(λ), t < n, all S ⊆ [n] with |S| ≥ t and for

CRS← Setup(1λ, n);
∀i (ski, pki,hinti, πi) $← KGen(1λ);

(K, π, tk) $← Prep(CRS, {pki,hinti}i∈[n], ϵ);
ct $← Enc(CRS,K, t,m);

∀i σi ← PartDec(ski, ct)

it holds that

Pr

DecAggr(CRS,K, ct, {σi}i∈S) = m

∧ ∀i ∈ [n] : IsValid(CRS, pki,hinti, πi) = 1

∧ PreVfy(CRS, {pki,hinti}i∈n],K, π) = 1

∧ ∀i ∈ S : PartVfy(ct, σi, pki) = 1

 ≥ 1− negl(λc)

Security. Like OSTE schemes, TSTE must fulfill a IND-CPA security definition. The security
definitions for OSTE and TSTE definitions both concern the Enc function. A definition concerning
Enc is sensible in the context of honest encryptions, while a consistent definition for both schemes
simplifies our transformation between the two (Section 4.1).

Definition C.2 (IND-CPA security for TSTE). We call a TSTEP scheme E IND-CPA secure, if for
all PPT adversaries A and n = poly(λ)

AdvIND-CPA
A,E (1λ, n) ≤ negl(λ)

where IND-CPAA is defined in Figure 11.

38

D TSTE Correctness and Security Proofs

Lemma D.1 Consider scheme ΠTSTE defined in Section 4.1 for M = poly(λ). Let E denote the
underlying OSTE scheme. If E fulfills security, ΠTSTE is secure.

Proof. The security of ΠTSTE is directly implied by the security of E . Recall that both OSTE
and TSTE schemes employ the same security definition. Further, our construction instantiates
all functions of ΠTSTE with their counterpart in E if such a counterpart exists. Thus, ΠTSTE must
be secure.

E Full Traceability Proof for ΠTSTE

In the following, we prove Lemma 4.6.

Proof. Our proof takes inspiration from [11] but considers the decoder-based definitions of
indistinguishability and membership-hiding. Compared to tracing schemes building on classical
PLBE, adversaries against TSTE schemes can use the preprocessing output. This allows them
to build decoders with a small but non-negligible advantage in the indistinguishability and
membership hiding games. Consequently, our proof does not require the indistinguishability
advantage δ1 or the membership hiding advantage δ2 to be negligible. This is a major difference
to classical PLBE constructions and a requirement when building a TSTE scheme from our
construction in the preprocessing model. We show that it is possible to achieve traceability
nonetheless by imposing upper bounds of δ1 ≤ ϵ

16 and δ2 ≤ ϵ
16n .

Consider a decoder box D in the traceability game GameTR (Figure 4) and a fixed order
of revocation of parties. Let pi denote the advantage that D has in distinguishing between the
encryption of two messages m0 and m1 for Ri, meaning that the first i parties of the revocation
order have been revoked. Let p̂i denote the approximation of pi measured by the Trace algorithm
using W queries and let T ′ be the set returned by the algorithm. In the following, denote the
number of iterations of the tracing algorithm by W . For ΠTSTE, we set W = 27 · 3n2 λ

ϵ .
In any GameTR execution that is won by the adversary, the Trace algorithm either does not

trace any party (T ′ = ∅) or traces an honest party (T ′ ̸⊆ T). In the first case, by the conditions
of the Trace algorithm (Figure 5) presented in Figure 5, it must hold that p̂i−1 − p̂i <

ϵ
4(n−t)

for all i ∈ [n − t] (Condition 1) and p̂n−t <
ϵ
4 (Condition 2). As a result of the small success

probability remaining after n− t revocation steps and the bounded difference between success
probabilities in each step, the initial advantage p̂0 must be small. For the quality of the decoder
ϵ, it holds that

ϵ− p̂0 =ϵ− p̂n−t −
n−t∑
i=1

(p̂i−1 − p̂i)

>ϵ− (n− t)
ϵ

4(n− t)
− ϵ

4
>

ϵ

4

If D wins the traceability game by framing an honest party, it either holds that p̂n−t ≥ ϵ
4

and one of the last t parties to be revoked is honest, or p̂i−1 − p̂i ≥ ϵ
4(n−t) for an honest i. If D is

successful, at least one of the following statements must hold:

1. T ′ = ∅ and ϵ− p̂0 >
ϵ
4 .

2. T ′ ̸⊆ T and p̂n−t ≥ ϵ
4 .

3. T ′ ̸⊆ T and p̂i−1 − p̂i ≥ ϵ
4(n−t) for an honest i.

39

In the rest of the proof, we treat cases (1), (2), and (3) separately and show that they impose a
contradiction to the indistinguishability, message privacy, and membership hiding properties of
E . For each case, we use the traceability adversary A to construct an adversary that breaks one
of the properties if A has non-negligible advantage.

Consider case (1). Given an adversary A in GameTR, we build an adversary A1 playing the
indistinguishability game GameIndOSTE

A1
(1λ, n, δ1) as defined in Figure 2. We then show that A1

breaks indistinguishability if A has non-negligible advantage. Given a decoder D output by A,
A1 builds a decoder box D′ that distinguishes between Enc encryptions and TrEnc encryptions
for R = ∅ with advantage at least δ1. A1 proceeds as follows:

• Obtain CRS from the challenger, generate hints, relay the necessary information to A and
obtain hints, and t in return, obtain K and relay it to A.

• Sample b $← {0, 1}.

• Obtain traceability decoder D and messages m0,m1 from A.

• Output (D′,mb) where D′(ct) =
{
0 if D(ct) = b

1 else
.

To analyize the success probability of A1, consider that A outputs an ϵ-Distm0,m1 decoder
with probability AdvGameTR

A,ΠTSTE
(1λ, n, ϵ). In case (1), it holds that ϵ− p̂0 >

ϵ
4 . Using the Chernoff

bound, we find that

Pr
[
p0 − p̂0 >

ϵ

8

]
≤2e−W ϵ2

82·3·p0 ≤ 2e−λ

which is negligible. It holds that ϵ − p0 ≥ ϵ
8 with overwhelming probability. Given an Enc

ciphertext, D′ outputs the correct result with probability ϵ. For ciphertexts computed using
TrEnc this probability is (1− p0), as D′ only outputs 1 if the result of D is incorrect. This results
in an overall success probability of 1

2ϵ+
1
2(1− p0) =

1
2 + ϵ−p0

2 . With overwhelming probability, it
holds that 1

2 + ϵ−p0
2 − 1

2 ≥
ϵ
16 ≥ δ1. Overall, we find that:

AdvGameTR
A,ΠTSTE

(1λ, n, ϵ) ≤ AdvGameInd
A1,E (1λ, n, δ1) + negl(λ)

We have shown by reduction that the first case contradicts the fact that E fulfills indistinguisha-
bility with parameter δ1.

Consider now case (2). Using A we build an adversary A2 playing the message privacy game
GameMPA2(1

λ, n) as defined in Figure 3. We show that A2 breaks the message privacy of E if
A has non-negligible probability. A2 proceeds as follows:

• Obtain CRS from the challenger, relay information to A, and obtain T and hints for
compromised parties in return. Obtain K from the challenger and relay it to A.

• Obtain traceability decoder D and messages m0,m1 from A.

• Sample a bit β.

• Obtain the encryption ct′ of mβ from the TrEnc oracle. Obtain the challenge ciphertext ct.

• Return b′ ←

{
β if D(ct) = D(ct′)
1− β else

.

40

In case (2), it holds that p̂n−t >
ϵ
4 . A2 wins GameMP if it has a non-negligible advantage in

distinguishing between encryptions of m0 and m1. By the Chernoff bound, it holds that

Pr
[
pn−t − p̂n−t >

ϵ

8

]
≤2e−W ϵ2

82·3·p0 ≤ 2e−λ

whereby pn−t >
ϵ
8 with overwhelming probability. If D is a good decoder, A2 wins the message

privacy game if both calls to D yield the correct result or if both are wrong. This occurs
with a probability of

(
1
2 + ϵ

8

)2
+
(
1
2 −

ϵ
8

)2
= 1

2 + 2
(
ϵ
8

)2. As ϵ
8 is non-negligible, this results

in a non-negligible advantage of breaking message privacy. A2 produces a good decoder with
probability AdvGameTR

A,ΠTSTE
(1λ, n, ϵ), which in turn is non-negligible. Note that in case (2), we assume

that one of the last t parties to be revoked is honest and is framed by the adversary. Because of
this, A2 wins GameMP if it sets R = [n− t] as less than t of its shares are used for decryption.
We find that

AdvGameTR
A,ΠTSTE

(1λ, n, ϵ) ≤ AdvGameMP
A2,E (1λ, n) + negl(λ)

We have shown a contradiction to the message privacy of E in the second case.
Finally, consider case (3). We build an adversary A3 from A that plays the membership hiding

game GameMHOSTE
A3

(1λ, n, δ2), depicted in Figure 2. We then show that A3 breaks membership
hiding if A has a non-negligible advantage. To do so, A3 produces a decoder box D′ that is a
δ2-DistR,R∪{i} as follows

• Obtain CRS from the challenger, relay information to A, obtain hints for compromised
parties from A, choose i as one of the honest indices, and sample the remaining hints.

• Relay K to A and obtain D, m0, m1 in return.

• Sample b $← {0, 1}.

• Return (D′,mb) where D′(ct) =
{
0 if D(ct) = b

1 else
.

In case (3) it holds that p̂i−1 − p̂i ≥ ϵ
4(n−t) for an honest i. Using the Chernoff bound, we

find that pi−1 − pi ≥ ϵ
8(n−t) with overwhelming probability, as

Pr
[
pi−1 − pi <

ϵ

8(n− t)

]
≤Pr

[
pi − p̂i ≥

ϵ

16(n− t)

]
≤e−W 2ϵ2

(16(n−t))2·3·pi ≤ negl(λ)

The probability that this statement holds for the same i that A3 chooses in GameMH is 1
n−t .

Then, D′ returns 0 if i is not revoked with probability pi−1 and 1 for revoked i with probability
1− pi, since it only outputs i if D’s output is incorrect. Overall, D′ returns the correct result
with probability 1

2pi−1 +
1
2(1− pi) =

1
2 + pi−1−pi

2 . With overwhelming probability, it holds that
1
2 + pi−1−pi

2 − 1
2 ≥

ϵ
16(n−t) ≥ δ2. In consequence:

AdvGameTR
A,ΠTSTE

(1λ, n, ϵ) ≤ (n− t)AdvGameMH
A3,E (1λ, n, δ2) + negl(λ)

We have shown a contradiction to the membership hiding property of E in case (3).
Combining all three results, we find that any one of the three statements that are implied

by the existence of a traceability adversary A with non-negligible success probability implies a

41

contradiction to the indistinguishability, message privacy or membership hiding properties of the
underlying OSTE scheme E . It holds that

AdvGameTR
A,ΠTSTE

(
1λ, n, ϵ

)
≤AdvGameInd

A1,E

(
1λ, n, δ1

)
+ AdvGameMP

A2,E

(
1λ, n

)
+ (n− t)AdvGameMH

A3,E

(
1λ, n, δ2

)
+ negl(λ).

F Remaining linear constraints of STE [28]

We briefly elaborate on the remaining constraints and how Garg et al. linearly verify them.

Verifying that deg(Qx) ≤ |H| − 2. To comply with the sumcheck lemma (Lemma 2.1), one
must ensure that Qx has degree at most |H| − 2 To prove that Qx has degree at most |H| − 2 for
|H| = n+ 1 linearly, we require the aggregator to evaluate a polynomial Q̂x(X) = Qx(X) ·X at
position τ . The corresponding equation is

[Qx(τ)]1 ◦ [τ]2 = [Q̂x(τ)]1 ◦ [1]2.

This ensures that Qx is of maximum degree |H| − 2 = n− 1 because if Qx were of higher degree,
say n, then Q̂x would be of degree n+ 1, which the aggregator can not interpolate at position τ
since the CRS only reaches up to [τn]. Before we can understand the check that the set B is
authorized, we mention that we always include a dummy party at position 0 and assume that its
secret key is also 0.

Forcing non-trivial witnesses. Furthermore, we force the aggregator to interpolate B(ω0) = 1
(i.e., a dummy party must be included) to ensure that B is non-zero. This requirement can be
linearly verified through a KZG opening proof, i.e., we force the verifier to compute [Q0(τ)]1
for a polynomial Q0 such that B(X)− 1 = Q0(X)(X − ω0). The verification is the linear KZG
verification:

[1]1 ◦ [B(τ)]2 = [Q0(τ)]1 ◦ [τ − ω0]2 + [1]T

Ensuring that B is authorized. To ensure that B is authorized (i.e., the threshold is met), Garg
et al. again use a degree check. In particular, they force the aggregator to compute [B̂(τ)]1 such
that B̂(X) = B(X) ·Xt. The reasoning behind this is that the aggregator has to set B(ωi) = 0
for every party i that it does not know a partial decryption of, as the sumcheck equation enforces
to aggregate the public keys correctly, and the signature check ensures that the aggregated
signature is valid under aPK. Further, the aggregator has to set B(ω0) = 1 to compute the
opening proof for the dummy party. Assuming that the aggregator has an insufficient amount
of partial signatures, say t − 1, then B would have to be 0 in n − (t − 1) positions and 1 at
position ω0, which means that the aggregator has to interpolate B with respect to n − t + 2
positions. The degree of B is therefore n− t+ 1, which means the degree of B̂ is n+ 1. Hence,
the aggregator with insufficient partial signatures is unable to evaluate [B̂(τ)], as the CRS only
contains powers-of-τ up to [τn]1,2. An aggregator with t partial signatures, however, would have
a polynomial B of degree n− t, which means it is able to evaluate [B̂(τ)]1, as B̂ is of degree n.
The corresponding linear verification equation is

[B(τ)]2 ◦ [τ t]1 = [B̂(τ)]1 ◦ [1]2.

42

G Remaining Algorithms of ΠOSTE

In Section 5.2, we already introduced the most important algorithms, i.e., the re-randomization
Rand, encryptions Enc and TrEnc, the partial decryption PartDec, and the proof system PSKGen.

For completeness, we present the remaining algorithms Setup, KGen, IsValid, Prep, PreVfy,
and DecAggr. Note that they are largely similar to those of STE in [28].

Setup. The setup algorithm samples a random τ $← Zp and generate the CRS as

([1]1,2, [τ]1,2, [τ
2]1,2, . . . , [τ

n]1,2).

Key Generation. In KGen, a party samples a random sk $← Z∗
p and computes the public key as

pk← [sk]1 and hint← ([skτ]1, [skτ
2]1, [skτ

n]1)). Additionally, it generates a proof in PSKGen as
π $← PSKGen.Prove((CRS, pk,hint), sk). To validate the correctness of the public key and hint,
the IsValid algorithm runs PSKGen.Verify((CRS, pk,hint), π).

Preprocessing. Our ΠOSTE construction has no preprocessing and supports public tracing.
Hence we just set K := {pki,hinti}i∈[n] and the tracing key tk := ⊥. Accordingly, the PreVfy
algorithm always outputs 1.

DecAggr(CRS, ct, {σi}i∈S)

([γ]2,ak, ct3, ct4)← ct
Interpolate B on {(ω0, 1), (ωi, 0)i[n]\S}

[B(τ)]2 ←

 n∑
j=0

B(ωj)Lj(τ)

2

[B̂(τ)]1 ← [τ tB(τ)]1

aPK← 1

n+ 1

(∑
i∈S

B(ωi)aki,0 + [1]1

)

σ∗ ← 1

n+ 1

(∑
i∈S

B(ωi)σi + [γ]2

)

[Qx(τ)]1 ←
n∑

i=0

B(ωi)aki,2

[Q̂x(τ)]1 ←
n∑

i=0

B(ωi)aki,1

[Q0(τ)]1 ←
[
B(τ)− 1

τ − ω0

]
1

[QZ(τ)]1 ←
n∑

i=0

B(ωi)aki,3 +
n∑

i=0

B(ωi)aki,4

w ← ([B(τ)]2,−aPK,−[QZ(τ)]1,−[Qx(τ)]1, [Q̂x(τ)]1, σ
∗,−[B̂(τ)]1,−[Q0(τ)]1)

⊺

return m← ct3 − ct2 ◦ w

Figure 12: The aggregation algorithm of ΠOSTE.

43

DecAggr. The aggregation algorithm is identical to that of STE but uses the re-randomized
aggregation key ak that is part of the ciphertext instead of a global one. The full algorithm is
shown in Figure 12.

H Full Message Privacy Proof for ΠOSTE

In the following, we present the detailed proof of Lemma 5.2.

Proof. This proof resembles the proof presented in the original paper by Garg et al. [28]. For
completeness, we give the full details of the proof, accounting for changes in the encryption
scheme, the definition, and the additional group elements the adversary is presented with. We
show the lemma via a reduction to the master theorem as presented in Theorem A.3. The master
theorem holds in the generic group model [28], and we present a reduction to it for generic
adversaries. We present a series of game hops, simplifying the message privacy game before
finally reducing it to the master theorem. In particular, we consider the following games:

Game0: We define Game0 ← GameMP.
Game1: Game1 is equivalent to Game0, but the adversary does not get access to a TrEnc

oracle.
Game2: Game2 is equivalent to Game1, but we replace the proofs π attached to the hints

by simulated proofs as Sim(td, pki,hinti) where Sim is the simulator of the proof system PS,
executed on a trapdoor td.

We show

AdvGameMP
A (1λ, n) =AdvGame0

A (1λ, n)

H.1
≤ AdvGame1

A (1λ, n) + negl(λ)

H.2
≤ AdvGame2

A (1λ, n) + negl(λ)

H.3,H.4
≤ negl(λ)

In the final step of our proof, we present our reduction to the master theorem (Lemma H.3) and
prove that our parameters for the master theorem are linearly independent as per Definition A.2
(Lemma H.4).

Lemma H.1 For all PPT adversaries A, for n = poly(λ), and considering scheme ΠOSTE, there
exists a PPT adversary B such that

AdvGame0
A,ΠOSTE

(1λ, n) = AdvGame1
B,ΠOSTE

(1λ, n)

Note that there is no private tracing key in the context of ΠOSTE. Therefore, any adversary
can compute TrEnc on their own. More formally, for any adversary A in Game0, there exists an
adversary B in Game1 which performs the same steps as A but evaluates the TrEnc function on
its own instead of calling the oracle. As both obtain the same result, their success probability
must be the same.

Lemma H.2 For a PPT adversary A, for n = poly(λ), and considering scheme ΠOSTE instantiated
with a zero-knowledge proof system PSRand, it holds that Game1 and Game2 are computationally
indistinguishable.

The computational indistinguishability follows directly from the computational indistinguisha-
bility of a real and a simulated proof as stated by the zero-knowledge property of PSRand.

44

Lemma H.3 Consider a generic PPT adversary A that makes up to q queries to the group oracle.
Let n = poly(λ) and consider construction ΠOSTE defined in Section 5. Let R ∈ X be a set of
revoked parties, and let T be the set of parties compromised by the adversary. We show that for
each choice of R and T , the following statement holds:

AdvGame2
A (1λ, n) ≤ negl(λ)

Proof. Consider an adversary A in Game2. Recall the master theorem as defined in Theorem A.3
for the following choice of polynomial lists:

l1 =
(
α, s1ek + s4τ

t + s5, s3α,
[
τ i, [skjτ

i]j∈[n], [αskjτ
i]j∈V , [ᾱjskjτ

i]j∈R
]
i∈[0,n]

)
l2 =

(
s1 + s3γ, s1Z(τ), s1τ + s2τ, s2, s4, s5Z0, γ, [τ

i]i∈[0,n]
)

lT =(1)

f =s5

where l1, l2 and lT are lists of polynomials in y = (τ, γ, α, ᾱ1, . . . , ᾱn, sk1, . . . , skn, s1, . . . , s5),
V = [n] \ R is the set of non-revoked (valid) parties and H = [n] \ T is the set of honest parties.
Note that the polynomial lists implicitly also depend on R and T , yet these values are known
to the adversary. We consider ek with respect to specific R and T in our proof. We show, by
reduction, that an adversary A in Game2 can be used to distinguish between f and random
input in the master theorem, thereby upper-bounding A’s success probability by a negligible
function. We construct a distinguisher B that uses A as a subroutine to achieve that.

First, we motivate our choices of l1, l2, lT, and f for our instantiation of the master theorem.
In the context of our reduction, B wants to use A to gain significant advantage in distinguishing
(l1, l2, lT, f) from (l1, l2, lT, r) for the instantiations given above. To do so, B obtains a challenge
and uses it to simulate Game2 to A perfectly. All information that is required to do so is
included in the polynomial lists. While the first polynomials in lists l1 and l2 correspond to the
components of the ciphertext itself, the latter polynomials correspond to the information in the
CRS, hints, and rerandomized hints.

Adversary B simulates Game2 as follows: Given the challenge (l1, l2, lT), B relays labels for
elements [τ i]1 for i ∈ [0, n] to A as the CRS. B also gives a list of labels for the public keys
and hints of honest parties, [skiτ j]i∈H,j∈[0,n] to A. As defined in Game2, B simulates the honest
parties’ hints, using the simulator of proof system PSKGen. B then outputs a list of labels for the
hints of corrupted parties. As A can control the group oracle, they can assign the labels of the
adversary to the specific hints given in l1. Then, A computes the preprocessing output, including
the encryption key in l1 and its corresponding aggregation key. Note that both these keys can be
computed knowing R, T , and the elements of l1, as described in the Rand function (Figure 6).

Finally, after obtaining the preprocessing output, A returns two messages m0,m1 to be
encrypted. B samples a random bit β and encrypts message mβ as ([γ]2,ak, s⊺ · A, s5 + mβ).
The components of s⊺A are taken from l1 and l2, [γ]2 is taken from l2 and ak refers to the
corresponding ak computed during preprocessing.

Finally, the reduction outputs 0 ifA produces the correct result and 1 otherwise. As B perfectly
simulates Game2 to A, B has at least the same success probability as A when distinguishing
f from random. However, the master theorem states that for independent polynomial lists, a
polynomial number of group oracle queries, polynomial size, and order of the polynomial lists,
the advantage of any adversary in distinguishing the two cases should only be negligible. We
show that the polynomial lists (l1, l2, lT) are independent in Lemma H.4. This implies that
AdvGame2

A,ΠOSTE
(1λ, n) can only be negligible.

45

Lemma H.4 Let

l1 =
(
α, s1ek + s4τ

t + s5, s3α,
[
τ i, [skjτ

i]j∈[n], [αskjτ
i]j∈V , [ᾱjskjτ

i]j∈R
]
i∈[0,n]

)
l2 =

(
s1 + s3γ, s1Z(τ), s1τ + s2τ, s2, s4, s5Z0, γ, [τ

i]i∈[0,n]
)

lT =(1)

f =s5

be lists of polynomials in Zp. It holds that l1, l2 and lT are independent of f , according to
Definition A.2.

Proof. This proof proceeds similarly to the independence proof for the original silent setup
scheme in [28]. Towards a contradiction, we assume that a linear combination of group elements
exists that allows the adversary to compute f = s5. We then extract requirements on the values
of some of the combinations’ coefficients to reach a contradiction to the univariate sumcheck,
as detailed in Lemma 2.1. In detail, this involves using partial derivatives to extract the five
equations detailed in Section 5.1 from the linear combination that need to be fulfilled for a correct
decryption.

Intuitively, these equations imply an upper bound on the degree of polynomial B that an
adversary multiplies with the first component of the ciphertext. This limitation expresses the
lower bound of t parties required for decryption. At the same time, the univariate sumcheck, in
combination with the five equations, imposes a lower bound on the degree of B, expressing the
constraint of the number of valid shares the adversary actually has. The lower bound is larger
than the upper bound, which yields a contradiction.

More formally, let 1n denote the n-dimensional unit vector and let 1 = 13+(2n+1)(n+1) and
1′ = 17+(n+1). Furthermore, let ⊙ denote the Hadamard product (point-wise multiplication) for
matrices and let ai,∗ and a∗,j denote the row i and column j of a matrix A, respectively. Assume
towards contradaction that the polynomial lists (l1, l2, lT, f) are linearly dependent. Then there
exist coefficients K = (ki,j) ∈

(
Z3+(2n+1)(n+1)
p × Z7+(n+1)

p

)
, kT ∈ Zp, such that

s5 =1(K ⊙ l1
⊺ · l2)1′ ⊺ + kT · lT

This linear combination includes all possible combinations of group elements in l1 and l2 that
might be used to compute s5. Consider now the differential:

∂

∂si
s5 =

∂

∂si
1(K ⊙ l1

⊺ · l2)1′ + kT · lT

for i ∈ [1, ..., 5]. Differentiating with respect to s1, . . . , s5 eliminates all terms that do not contain
the variable, simplifying the expression to the following five equations (compare Section 5.1):

0 =k2,∗l2
⊺ek + k∗,1l1

⊺ + k∗,2l1
⊺Z(τ) + k∗,3l1

⊺τ (1)
0 =k∗,3l1

⊺τ + k∗,4l1
⊺ (2)

0 =k∗,1l1
⊺γ + k3,∗l2

⊺α (3)
0 =k2,∗l2

⊺τ t + k∗,5l1
⊺ (4)

1 =k2,∗l2
⊺ + k∗,6l1

⊺Z0 (5)

The adversary can compute s5 only if there are coefficients such that all the above equations are
fulfilled. Observe that ki,j = 0 for all summands that consist of a product of variables unique
in their equation. For instance, ki,j = 0 for a term ki,jαγτ if αγτ appears nowhere else in the

46

equation. Such unique combinations of variables cannot be expressed as a linear combination of
other summands. The same might be observed by considering the derivative of the equation in
all combination variables.

With this observation, we impose constraints on the coefficient vectors, eliminating terms from
the equations one after the other. For each equation, we mark summands that are eliminated
by constraints of the observed equation in blue and eliminations by constraints of previously
observed equations in grey . To simplify notation, we abbreviate the hint terms as follows:

Hi =
[[
skjτ

i
]
j∈[n] ,

[
αskjτ

i
]
j∈V ,

[
ᾱjskjτ

i
]
j∈R

]
Expanding equation (2), we find:

0 =k∗,3τ

 α , s1ek + s4τ
t + s5 , s3α ,

[
τ i, Hi

]
i∈[0,

n−1

�n]

⊺

+k∗,4

(
α , s1ek + s4τ

t + s5 , s3α ,
[
τ i, Hi

]
i∈[0,n]

)⊺
,

where k∗,3l1
⊺ can only contain factors of τ i where i < n. Summands that contain τn+1 are unique

in this equation and must have a coefficient of 0. This captures the degree-check property this
equation aims to enforce. Expanding equation (3) yields:

0 =k∗,1γ

(
α, s1ek + s4τ

t + s5 , s3α ,
[
τ i , Hi

]
i∈[0,n]

)⊺

+k3,∗α
(
s1 + s3γ , s1Z(τ) , s1τ + s2τ , s2 , s4 , s5Z0 , γ, [τ

i]i∈[0,n]

)⊺
.

An adversary can only use terms containing γα and constants to solve this equation. This
captures the validity of the aggregated signature. Notably, they cannot validate an aggregated
signature using the public keys and hints of parties they do not control. From equation (4), it
follows that:

0 =k2,∗τ
t

 s1 + s3γ , s1Z(τ) , s1τ + s2τ , s2 , s4 , s5Z0 , γ , [τ i]
i∈[0,

n−t

�n]

⊺

+k∗,5

(
α , s1ek + s4τ

t + s5 , s3α ,
[
τ i, Hi

]
i∈[0,n]

)
,

again limiting the maximum degree of τ i terms that may be used to fulfill this equation. In
particular, k2,∗l2⊺ cannot contain τ i terms for i > n− t, enforcing a degree check on k2,∗l2

⊺. This
ensures that an adversary must use at least t shares to decrypt correctly.

By equation (5) it holds that 1 = k2,∗l2
⊺ + k∗,6(τ − 1)l1

⊺. This implies that k2,∗l2
⊺ = 1

if τ = 1. Therefore, k2,∗l2
⊺ cannot be the zero polynomial. The same may be observed by

expanding the terms of the equation. Finally, it holds for equation (1), that:

0 =k2,∗ek
(
s1 + s3γ , s1Z(τ) , s1τ + s2τ , s2 , s4 , s5Z0 , γ , [τ i]

i∈[0, n− t]

)⊺
+k∗,1

(
α, s1ek + s4τ

t + s5 , s3α ,
[
τ i , Hi

]
i∈[0,n]

)⊺

+k∗,2Z(τ)
(
α , s1ek + s4τ

t + s5 , s3α ,
[
τ i, Hi

]
i∈[0,n]

)⊺
+k∗,3τ

(
α , s1ek + s4τ

t + s5 , s3α ,
[
τ i, Hi

]
i∈[0, n− 1]

)⊺

.

47

In the following, let g1 = k2,∗l2
⊺, g2 = k∗,1l2

⊺, g3 = k∗,2l1
⊺, and g4(τ) = k∗,3l1

⊺. Note that
our constraints imply, as discussed above, that deg(g1) ≤ n− t, deg(g2) ≤ 0, deg(g3) ≤ n, and
deg(g4) ≤ n− 1. Consider that by definition

ek =
∑

i∈[n]\(T∪R)

αskiLi(τ) +
∑

i∈R\T

ᾱiskiLi(τ)

+
∑

i∈T ∪{0}\R

ακiLi(τ) +
∑

i∈T ∩R
ᾱiκiLi(τ),

where ski, α, and ᾱj for j ∈ [n] are variables in l1, l2, lT and f and κi for i ∈ T are keys known
to the adversary (constants in (l1, l2, lT). Now, consider the Lagrange basis form of polynomial
g1(y) =

∑
i∈[n] biLi(τ), where bi denotes the function value of g1 at positions ωi. The univariate

sumcheck in the context of equation (1) equates to:

ek · g1
2.1
=

∑
i∈[n]\(T∪R)

αskibi +
∑

i∈R\T

ᾱiskibi +
∑

i∈T ∪{0}\R

ακibi +
∑

i∈T ∩R
ᾱiκibi

+Qx(τ) · τ +QZ(τ) · Z(τ).

By equation (1), it also holds that:

(1)
= − (g2 + g3Z(τ) + g4τ)

Recall that all unique combinations of variables must have a coefficient of 0 and Z(τ) = τn+1− 1.
As g4 is of degree at most n − 1 and Qx(τ) is of the same degree by definition, the only
polynomials of degree τn+1 or larger are QZ(τ)Z(τ) and g3Z(τ). Further, note that g3 must
be a polynomial computed using the CRS. Assume that polynomial (g3 − QZ(τ))(τ

n+1 − 1)
contains a term involving ski for some i ∈ [n], and a factor of τ j where j ≤ n. Then the equation
must include a term involving the same ski with a factor of τ j+n+1 and inverted coefficient. As
(g3 −QZ(τ))(τ

n+1 − 1) is the only polynomial with τ coefficients of degree larger than n this
leads to a contradiction. Thereby, (g3 −QZ(τ)(τ

n+1 − 1) cannot contain terms involving ski.
Similarly, (g4 − QX(τ))τ cannot contain terms involving ski that are constant in τ , as

g4 −QX(τ) must be also be a valid polynomial.
As a result, terms αski, ᾱiski, and ᾱiκi can appear only in the first two as well as the fourth

term originating from the sumcheck. It follows that bi = 0 for each i ∈ [n] \ (T \ R). Given
its Lagrange basis form, g1 must have at least n − |T \ R| roots. As g1 cannot be the zero
polynomial, this implies that deg(g1) ≥ n− |T \ R|. Since |T \ R| < t by virtue of the message
privacy game, it holds that deg(g1) > n− t. However, by the constraints imposed by the equation
system, it holds that n− t ≥ deg(g1). We arrive at a contradiction. Therefore, (f, l1, l2, lT) must
be linearly independent.

I Message Privacy and Security for ΠOSTEP

Lemma I.1 Consider an arbitrary PPT adversary A and let n = poly(λ). If PSRand is zero-
knowledge, ΠOSTEP as presented in Section 6 fulfills message privacy.

Observe that the differences between ΠOSTE and ΠOSTEP are the added preprocessing and
the restriction of the keyspace to the pre-generated keys. However, the challenger is responsible
for preprocessing in GameMP. Message privacy can, therefore, be proven in exactly the same
fashion as for ΠOSTE. The lemma follows immediately from Lemma 5.2.

48

Lemma I.2 Consider an arbitrary PPT adversary A and let n = poly(λ). If PSRand is sound and
zero-knowledge, ΠOSTEP as presented in Section 6 is IND-CPA secure.

In contrast to ΠOSTE, IND-CPA security of ΠOSTEP does not follow immediately from its
message privacy. In IND-CPA, the adversary is trusted with computing the preprocessing output.
For ΠOSTEP, this implies that the rerandomization values α and ᾱj are known to the adversary.
In the following, we present a proof sketch for IND-CPA security of construction ΠOSTEP.

IND-CPA follows similarly to the message privacy proof by a reduction to the master theorem.
Since the values of α and ᾱj are now known to the adversary, the polynomial lists of the master
theorem simplify to

l1 =
(
s1ek + s4τ

t + s5, s3,
[
τ i, [skjτ

i]j∈[n]
]
i∈[0,n]

)
l2 =

(
s1 + s3γ, s1Z(τ), s1τ + s2τ, s2, s4, s5Z0, γ, [τ

i]i∈[0,n]
)

lT =(1)

f =s5.

Similarly to the message privacy proof, we present two game hops before reducing the final game
hop to the master theorem.

Game0: We define Game0 ← IND-CPA.
Game1: Game1 is equivalent to Game0, but the adversary merely chooses α, {ᾱj}j∈R and

sends them to the challenger who instead computes the preprocessing output.
Game2: Game2 is equivalent to Game1, but we replace the proofs π attached to the hints

by simulated proofs as PSKGen.Sim(td, pki,hinti) where Sim is the simulator of the proof system
PSKGen, executed on a trapdoor td.

We then show that

AdvGame0
A (1λ, n) ≤AdvGame1

A (1λ, n) + negl(λ)

by a reduction to the soundness of proof system PSRand (soundness is implied by simulation-
extractability). As long as PSRand is sound, an adversary is forced to compute the preprocessing
honestly, only learning α, {ᾱj}j∈R in the process.

Further, we prove that

AdvGame1
A (1λ, n) ≤AdvGame2

A (1λ, n) + negl(λ)

by a reduction to the zero-knowledge property of PSRand. This reduction is equivalent to the
proof of Lemma H.2.

Finally, we prove that

AdvGame2
A (1λ, n) ≤negl(λ)

by a reduction to the master theorem. The reduction is built in exactly the same way as for
the proof of Lemma H.3, but using the modified polynomial lists above. Since the reduction
has knowledge of α and {ᾱj}j∈R, it can simulate Game2 to A in the same way as for message
privacy. Using the master theorem requires the polynomial lists (l1, l2, lt, f) to be independent.
As the polynomial lists used in this proof consider the rerandomization to be known, they are
the same used in the security proof of the original STE construction of [28]. The independence
of these lists of polynomials has already been proven in [28], concluding our proof.

49

	Introduction
	Our Contributions
	Overview of Our Constructions
	Discussion and Future Work
	Additional Related Work

	Preliminaries
	Oblivious Silent Threshold Encryption
	Traceable Silent Threshold Encryption
	Transforming OSTE to Traceable Silent Threshold Encryption
	k-Traceability

	The First OSTE Construction
	Starting Point: The STE Scheme of [garg2024threshold]
	Our OSTE Construction
	Amortization

	Our OSTE Construction based on Preprocessing
	The PiOSTEP Construction
	Proof of Theorem 6.2

	Preliminary Definitions
	Remaining Definitions for OSTE schemes
	TSTE Correctness and Security Definitions
	TSTE Correctness and Security Proofs
	Full Traceability Proof for Pi_TSTE
	Remaining linear constraints of STE [garg2024threshold]
	 Remaining Algorithms of PiOSTE
	Full Message Privacy Proof for PiOSTE
	Message Privacy and Security for PiOSTEP

