
Publicly Verifiable Generalized Secret Sharing and Its Application in Building
Decentralized Exchange

Liang Zhang
HKUST

Dongliang Cai
Fudan University

Tao Liu
Hainan University

Haibin Kan*
Fudan University

Jiheng Zhang*
HKUST

Abstract
Generalized secret sharing (GSS), which can offer more flexi-
bility by accommodating diverse access structures and condi-
tions, has been under-explored in distributed computing over
the past decades. To address the gaps, we propose the pub-
licly verifiable generalized secret sharing (PVGSS) scheme,
enhancing the applicability of GSS in transparent systems.
Public verifiability is a crucial property to gain trustworthi-
ness for decentralized systems like blockchain. We begin by
introducing two GSS constructions, one based on Shamir’s se-
cret sharing and the other on the linear secret sharing scheme
(LSSS). Next, we present PVGSS schemes that combine GSS
with non-interactive zero-knowledge (NIZK) proofs. Fur-
ther, we construct a decentralized exchange (DEX) based
on PVGSS scheme, where any users can participate in ex-
changes and engage in arbitrage. Specifically, users can fairly
swap ERC-20 tokens with passive watchers, who earn prof-
its by providing arbitration services. The critical property of
"fairness" required by the DEX is ensured through a sophisti-
cated access structure, supported by the PVGSS scheme. We
provide a comprehensive evaluation on the performance of
the PVGSS schemes and the monetary costs for users in the
DEX. The results demonstrate the feasibility and practicality
of this approach in real-world applications.

1 Introduction

Secret sharing (SS) [1] is widely adopted in decentral-
ized and distributed systems [2], such as threshold cryptosys-
tems [3], distributed storage [5], MPC [6], federated learn-
ing [4] and BFT consensus [7]. Various variant protocols of
SS have been proposed, fostering the application of SS in
cryptographic protocols and distributed systems.

On the one hand, linear secret sharing scheme (LSSS) [19,
21, 40] is put forwarded, since most SS schemes are linear.
LSSS is proved to be equal to the notion of monotone span
program [8]. On the other hand, to detect potential faulty
behavior and enhance transparency for SS-based protocols,

verifiable secret sharing (VSS) [9, 14] and publicly verifiable
secret sharing (PVSS) [11, 12, 15] are proposed. While VSS
enables shareholders to detect faulty dealers, PVSS allows
for public verifiability by any party.

Generalized secret sharing (GSS) [16, 17] extends beyond
threshold secret sharing, enabling the implementation of gen-
eralized access structures (GAS). Ciphertext-policy attribute-
based encryption (CPABE) [18,19] combines arbitrary mono-
tone access structure with public key encryption, establishing
a promising cryptographic primitive using attributes strings.
The construction and broader potential applications of GSS
are still being explored and developed.

In this paper, we put forward publicly verifiable general-
ized secret sharing (PVGSS) to enrich the family of SS proto-
cols. We first provide two constructions of GSS scheme (i.e.,
Shamir SS-based and LSSS-based). Then, we formalize the
definition of PVGSS and its security requirements. Further,
we construct PVGSS scheme by hiding shares of GSS scheme
and attaching non-interactive zero knowledge (NIZK) proofs
to prove the correctness in hiding. Moreover, we build a de-
centralized exchange to highlight the practicality of PVGSS
schemes. Table 1 depicts the distinguishes of cryptographic
primitives that are related to secret sharing.

Table 1: Comparison of (PV)SS, CPABE and PVGSS

Scheme
accountable

dealer
or encryptor

accountable
shareholders
or authorities

insecure
channel

public
verifiability

GAS-
supported

SS ✗ ✗ ✗ ✗ ✗

VSS ✓ ✓ ✗ ✗ ✗

PVSS ✓ ✓ ✓ ✓ ✗

GSS ✗ ✗ ✗ ✗ ✓

CPABE ✗ ✗ ✓ ✗ ✓

PVGSS ✓ ✓ ✓ ✓ ✓

1.1 Potential of Generalized Access Structure
Generalized access structure (GAS) [17,19,40] extends the

traditional threshold-based access control to support more

complex and flexible authorization requirements. Unlike
threshold schemes, GAS enables the definition of arbitrary
monotone access structures. Features of GAS include:

Monotonicity: GAS is defined by a monotone access struc-
ture, meaning if a set of participants is authorized to access
a secret, any superset of that group is also authorized. This
property ensures logical consistency in access control.

Expressiveness: GAS supports monotone access structure,
enabling granular and precise control over who can recon-
struct a secret.

Scalability: GAS efficiently supports large and dynamic
participant sets, making it suitable for applications with evolv-
ing access needs, such as multi-organizational collaborations.

Adaptability: GAS can be tailored to various real-world
applications, such as role-based access, weighted systems, or
conditional hierarchies in decentralized environments.

1.2 Critical Role of Public Verifiability
Blockchain’s momentum over the past decade stems from

its ability to ensure transparency, decentralization and smart
contracts. It revolutionizes industries by enabling trustless
systems [22], empowering individuals [23], and fostering in-
novation in finance, healthcare, and global collaboration. Pub-
lic verifiability [24, 25] therefore is critical when conducting
privacy-preserving computation in a transparent blockchain
or open environment.

Public verifiability is a fundamental property of certain
cryptographic algorithms that allows any entity, regardless
of its involvement in the initial operation, to independently
verify the correctness of a computation or proof. This feature
guarantees trust and transparency in cryptographic systems
by enabling third-party validation without compromising the
confidentiality of the underlying data. Therefore, it plays a
crucial role in enforcing accountability by providing transpar-
ent validation and traceability.

Merkle tree [26] and accumulators [27] are often employed
to prove membership of specific data in a set publicly. Signa-
ture schmes [28, 50] are leveraged to achieve authentication,
i.e., enabling public verifiability of identities. NIZK systems,
such as Fiat-Shamir heuristic based Σ protocol [35, 36] and
zkSNARKs [29], are often adopted to prove knowledge of
plaintext or correctness of operations in a public manner.

1.3 Contributions
• We introduce the concept of publicly verifiable general-

ized secret sharing (PVGSS), which extends the family
of secret sharing (SS) schemes. GSS enhances SS by
providing versatile access control as an atomic crypto-
graphic primitive. Additionally, PVGSS enables public
verifiability and accountability. Both GSS and PVGSS
are valuable in the fields of cryptography and blockchain,
as discussed in Section 8.

• For the first time, we explicitly demonstrate that LSSS is
a specific instance of the GSS scheme. We also present
two PVGSS constructions that combine the GSS scheme
with NIZK proofs, where the GSS scheme is derived
from either recursive Shamir secret sharing or LSSS.

• We construct a decentralized exchange (DEX) based
on the proposed PVGSS scheme to highlight the
application. The underlying access structure, i.e.,
(2 o f (Alice,Bob,(t o f (W1,W2, · · · ,Wn)))), enables the
DEX to achieve fairness for exchangers and optimistic
arbitration with fault-tolerant arbitrators. Moreover, the
incentive mechanism is carefully designed to ensure the
practicality and usability of the DEX.

2 Related Works

2.1 (Publicly) Verifiable Secret Sharing

Dealer in traditional SS scheme may distribute invalid
shares to deviate from the protocol. To mitigate this problem,
VSS [9, 14] ensures that participants can verify the validity
of the shares distributed by the dealer, while PVSS [12, 15]
extends this by allowing any external observer to verify the
integrity of the shares.

The first VSS scheme, proposed by Feldman [9], enhances
Shamir’s secret sharing by adding public commitments to
ensure share validity. Shareholders verify their shares against
these commitments, ensuring the dealer’s honesty without
revealing the secret. Recently, polynomial commitments [10,
13, 14] are widely adopted to design new VSS schemes. The
secret shares of VSS should not be transferred publicly.

Stadler [15] put forward the first PVSS scheme in 1996.
Intuitively, PVSS can be achieved by integrating public key
encryption into VSS schemes, allowing secret shares to be
delivered and verified on public channels. For example, El-
Gamal, RSA and Pailler cryptosystem are incorporated in
[15, 44], [43] and [45], respectively. Early PVSS schemes
require O(nt) verification complexity, where n and t are the
amount of shareholders and threshold value, respectively. In
2017, Cascudo et al. [12] introduced SCRAPE PVSS which
for the first time achieves O(n) verification complexity. As
the core technique, Reed-Solomon code is employed to make
all encrypted shares be verified in a linear operation.

Recently, Cascudo et al. successively proposed ALBA-
TROSS [42], HEPVSS/DHPVSS [41] and qCLPVSS [11],
which all maintain O(n) verification complexity. ALBA-
TROSS [42] leverages low-degree exponent interpolation to
generate NIZK proof, which is essentially acquired from Σ

protocol and Fiat-Shamir heuristic. HEPVSS [41] also uses
ElGamal to encrypt secret share, while DHPVSS [41] lever-
ages Shamir secret sharing on a group G to hide shares.
qCLPVSS [11] for the first time enables users to recover
the original secret s ∈ Zq by leveraging class group. Recover-

ing the original secret s can make PVSS applicable in more
wider applications, such as distributed key generation [2, 11]
and MPC [11, 41] protocols.

2.2 Access Structures in Secret Sharing
As is well known, traditional SS, VSS, and PVSS proto-

cols [1, 9, 11, 12, 15] are designed around the threshold access
structure (TAS). Benaloh et al. [17] introduced the concept of
generalized secret sharing (GSS) based on recursive thresh-
old secret sharing, where GAS is inherently implied. Beyond
schemes based on TAS or GAS, some other protocols have
explored specific types of access control mechanisms.

Particularly, Simmons [34] points out that real-world appli-
cation require more versatile capabilities for secret sharings.
In weighted secret sharing (WSS) [31, 37], each participant
is assigned a positive weight. Only if the sum of weights of
some participants exceeds the predefined threshold value, can
the secret be reconstructed.

In multipartite secret sharing (MSS) [32, 33], an access
structure defined over n participants is partitioned into disjoint
m(≪ n) compartments, where participants within the same
compartment have equal weights. In MSS, each compartments
must achieve a specific internal agreement before contribut-
ing to the reconstruction of the secret. Tassa et al. [33] point
out that any GAS can be regarded as a multipartite access
structure with singleton compartments. Hence, reconstructing
the secret in MSS scheme depends only on the number of par-
ticipants from each compartment, rather than their individual
identities. In this way, practical applications can focus on m
compartments, where TAS is applied, instead of n individuals.
However, participants may be designed in different access
structures in a single system, resulting in different divisions
of disjoint compartments.

Hierarchical secret sharing (HSS) [38, 39], also referred as
multilevel secret sharing [34,38], place participants in disjoint
levels according to their importance. HSS can be applied
in managing staffs in big companies, where employees are
assigned to different levels with different privileges. HSS
is categorized into disjunctive and conjunctive types [30].
Further, Drăgan et al. [30] introduce the distributive weighted
threshold secret sharing, where participants at the same level
have the same weight, and the threshold values are 1.

Though GSS may not "ideal" [30–33], GSS can satisfy the
application scenarios where MSS, WSS or HSS apply.

3 Preliminaries

3.1 Shamir Secret Sharing
Definition 1 (Shamir SS) Shamir secret sharing (SS)
scheme allows a dealer to split a secret into n shares for n
shareholders. With only a threshold t(≤ n) shares, the secret
can be successfully recovered, while fewer than t shares

reveal nothing about the secret. Shamir SS is defined with
following two algorithms.

• {s1,s2, · · · ,sn}← Share(s,n, t): Inputs a secret s∈Zq, n
and t, chooses a polynomial f (x) = s+∑

t−1
i=1 aixi, where

ai
R←− Zq. Finally, the algorithm outputs n shares f (i),

i ∈ [1,n].

• s← Recon(Q): Inputs any t shares Q⊆ {s1,s2, · · · ,sn},
reconstructs the secret s via the Lagrange interpolation
algorithm.

Definition 2 (Shamir SS on a Group G) Definition 1 has
introduced the original Shamir secret sharing scheme, where
a secret s ∈ Zq is shared and recovered. Here we consider
how to share secret S ∈G and the dealer does not know the
value s such that S = gs. The Shamir secret sharing on a
group of order q is defined as below:

• {S1,S2, · · · ,Sn}←GrpShare(S,n, t): Inputs a secret S∈
G, n and t, chooses a polynomial f (x) =∑

t−1
i=1 aixi, where

ai
R←− Zq. Set Si = S ·g f (i), i ∈ [0,n]. Obviously, S0 = S.

• S← GrpRecon(Q): Inputs any t shares Q, reconstructs

the secret S← S0 = ∏i∈I S
∏ j∈I, j ̸=i

− j
i− j

i , where I is the set
containing indexes of the shares Q.

3.2 (Generalized) Access Structure
Definition 3 (AS/GAS [17, 19, 40]) Let P = {P1, · · · ,Pn} be
a set of parties. A collection A ∈ 2P is a (generalized) access
structure (AS/GAS), if it meets the following two conditions:

• non-triviality: if B ∈ A, then |B| ̸= 0.

• monotonicity: if B ∈ A, B⊆C, then C ∈ A.

If B ∈ A, we say A is satisfied by B or B is an authorized set;
Otherwise, A is not satisfied by B or B is unauthorized.

For example, (P1 ∧ P2) ∨ (P2 ∧ P3) and 1 o f (2 o f
(P1,P2,P3),(1 o f (P1,P4))) are access structures, as shown
by Figure 16 and Figure 17 in Appendix A. The disjunction
(or conjunction) in a boolean formula based access structure
is equal to gate value of 1 (or 2) in a threshold-gate based ac-
cess structure. Hence, we only consider threshold-gate based
access structure in this paper.

Corollary 1 The boolean or threshold-gates based access
structure can be regarded as a proposition, which outputs
true given an authorized set and outputs false otherwise.

Corollary 2 An access structure A can be regarded as a
recursive data structure, meaning that any node x in A with
its children nodes is also an access structure, denoted by
Ax. For example, there are 8 sub access structures in A of
Figure 17.

Corollary 3 If B ∈ A, there exists a path (i.e., a leaf node to
the root node) in which each sub access structure is satisfied
by B. We call it a satisfied path.

3.3 Linear Secret Sharing Scheme

Definition 4 (LSSS [19, 21, 40]) Let P be a set of sharehold-
ers. A linear secret sharing scheme ∏ over a ring Zq for P is
a tuple (M,ρ), where M ∈ Zm×l

q is a share-generating matrix
and ρ is a row-labeling function. The scheme ∏ consists of
the following two algorithms:

• {s1,s2, · · · ,sm} ← LSSSShare(s,A): To share a value

s ∈ Zq, randomly choose v2, . . . ,vn
R←− Zq and set v⃗ =

[s,v2, . . . ,vn]
⊤. Then, s = Mv⃗ is the vector of shares,

where si ∈ Zq belongs to shareholder ρ(i) for each
i ∈ [m].

• s← LSSSRecon(A,Q): Let Q⊆ P be a set of sharehold-
ers and let IQ = {i ∈ [m] : ρ(i) ∈ Q} be the row indices

associated with Q. Let MQ ∈Z
|IQ|×l
N be the matrix formed

by taking the subset of rows in M that are indexed by IQ.
Only if Q is an authorized set, then there exists a vector
wQ ∈ Z|IQ|N such that w⊤QMQ = [1,0, . . . ,0]. Further, the
secret s can be reconstructed by ∑i∈IQ wisi.

Remark: Access control can be represented either as
A [40] or (M,ρ) [19]. Denote |A| as the number of leaf
nodes of an access structure A, i.e., |A|= m.

3.4 Σ Protocol and NIZK Proof

Let R be a relation and LR = {x|∃w : (x,w) ∈ R } be the
corresponding language. A Σ protocol (P1,P2,V) is a three-
move public-coin protocol between a prover and a verifier.
Firstly, the prover calculates a commitment a = P1(x); Sec-
ondly, the verifier randomly selects a challenge value e R←−
{0,1}λ, where λ is the security parameter; Lastly, the prover
returns the response value z = P2(x,a,e). If V (x,a,e,z) = 1,
the verifier is convinced that the prover has a witness w satis-
fying (x,w) ∈ R .

A non-interactive zero-knowledge (NIZK) proof of knowl-
edge of witness x is obtained by applying the Fiat-Shamir
heuristic, with a random oracle. Model the random oracle us-
ing a random function, H : {0,1}∗→{0,1}λ. Consequently,
the NIZK proof is denoted as (a,e = H(x,a),z).

The NIZK proof has the properties of completeness, sound-
ness and zero-knowledge. Completeness means that a valid
proof always convinces the verifier; Soundness means that
false statements cannot produce valid proofs (except negligi-
bly); Zero-Knowledge means that the proof reveals nothing
beyond the statement’s truth.

3.5 Blockchain and Ethereum

Blockchain is a decentralized, distributed ledger technol-
ogy that enables secure, transparent, and tamper-proof record-
keeping. Ethereum is an open-source blockchain platform that
facilitates the execution of smart contracts and decentralized
applications. Users can monitor Ethereum events to receive
notifications about specific data updates. The gas mechanism
in Ethereum is a key component that governs the execution
of transactions and smart contracts. Gas is a unit of measure-
ment for computational work, used to prevent abuse of the
network by requiring users to pay for resources consumed
during transaction processing or contract execution. Ethereum
request for comment 20 (ERC-20)1 is a widely adopted stan-
dard for the creation and implementation of fungible tokens
on the Ethereum blockchain. ERC-20 provides a standardized
set of rules and interfaces that ensure interoperability of to-
kens within the Ethereum ecosystem. This standard defines
essential functions such as transfer(), allowance(), and
transferFrom(), which facilitate token transfers between
accounts, as well as the allowance mechanism for spending
tokens on behalf of others.

4 Generalized Secret Sharing

Definition 5 (GSS) A generalized secret sharing (GSS)
scheme [17] allows a dealer to share a secret s ∈ Zq us-
ing arbitrary monotone access structure. The secret s can
be recovered only given an authorized set. A GSS scheme is
defined by the following two algorithms.

• {s1,s2, · · · ,s|A|}← GSSShare(s,A): Inputs a value s ∈
Zq and an access structure A, outputs the secret shares
{s1,s2, · · · ,s|A|}, where |A| is the size of A.

• s← GSSRecon(A,Q): Inputs an access structure A and
an authorized set Q⊆ {s1,s2, · · · ,s|A|}, reconstructs the
secret s.

Definition 6 (GSS on Group G) Definition 5 has intro-
duced the original Shamir secret sharing scheme, where a
secret s ∈ Zq is shared and recovered. Here we consider how
to share secret S ∈G and the dealer does not know the value
s such that S = gs. The Shamir secret sharing on a group of
order q is defined as below:

• {S1,S2, · · · ,S|A|}←GrpGSSShare(S,A): Inputs a value
S ∈ G and an access structure A, outputs the secret
shares {S1,S2, · · · ,S|A|}, where |A| is the size of A.

• S← GrpGSSRecon(A,Q): Inputs an access structure
A and an authorized set Q ⊆ {S1,S2, · · · ,S|A|}, recon-
structs the secret S.

1https://eips.ethereum.org/EIPS/eip-20

https://eips.ethereum.org/EIPS/eip-20

Below, we introduce two types of GSS schemes, which
differ based on the shared secret, s ∈ Zq or S ∈G. And, each
type is initialized using two primitives, i.e., Shamir SS and
LSSS.

(1) GSS based on Shamir SS: Benaloh et al. [17] had intro-
duced the construction, which can be obtained by replacing
GrpShare (and GrpRecon) with Share (and Recon) in Fig-
ure 2. We do not provide additional elaboration here.

(2) GSS based on LSSS: It is obvious that LSSS is an in-
stance of GSS scheme. Figure 1 presents the GSS construction
using LSSS.

Functionality GSS using LSSS
{s1,s2, · · · ,s|A|}← GSSShare(s,A) :

{s1,s2, · · · ,sm}← LSSSShare(s,A)
(s)← GSSRecon(A,Q) :

s← LSSSRecon(A,Q)

Figure 1: GSS based on LSSS

(3) GSS on Group G based on Shamir SS: Without loss of
generalization, an access structure A is a set of shareholders
who are constraint by the threshold gate (refer to Figure 17
as an example). The non-leaf nodes are threshold gate values
and the leaf nodes are identifiers of shareholders. The GSS
scheme attaches a share for each (non-leaf or leaf) node and
it is described by Figure 2.

Functionality GSS on Group G using Shamir SS
{S1,S2, · · · ,S|A|}← GrpGSSShare(S,A) :

set FR← S for the root node R.

For non-leaf node x with nx children nodes and threshold-gate tx:

{Sx1 ,Sx2 , · · · ,Sxnx}← GrpShare(Fx,nx, tx)
set Fz← Sx j , where z is the jth child of x

For the ith leaf node z in A:
Si = Sx j , where z is the jth child of its parent node x

(S)← GrpGSSRecon(A,Q) :

Denote path as the satisfied path (cf. Corollary 3)

For each node x in path from leaf to root:

Fx ← GrpRecon(Qx), where Qx ⊆ {Fx1 , · · · ,Fxnx
} gener-

ated at node x and |Qx| ≥ tx. (Remark: if x is a leaf node, Fx = Qx.)

S← FR, where R is the root node.

Figure 2: GSS scheme on Group G based on Shamir SS

(4) GSS on Group G using LSSS: LSSS handles an access
structure as input. Intuitively, an LSSS can be directly used
to construct a GSS scheme. We first depict how to construct
LSSS on group G by Figure 3. Then, we apply it to construct
GSS on group G, as Figure 4 presents. Apparently, LSSS (on

group G) is an instance of GSS (on group G).

Functionality LSSS on Group G
{S1,S2, · · · ,S|A|}← GrpLSSSShare(S,A) : denote S = gs and s
is unknown.

(M,ρ)← A

v⃗ = [1,v2, . . . ,vn]
⊤, where v2, . . . ,vn

R←− Zq.

(s1, · · · ,s|A|)←Mv⃗

Si = Ssi = gs·si for i ∈ [1, · · · |A|]
(S)← GrpLSSSRecon(A,Q) :

IQ = {i ∈ [m] : ρ(i) ∈ Q}

MQ ∈ Z|IQ|×l
N

find wQ ∈ Z|IQ|
N such that w⊤QMQ = [1,0, . . . ,0]

S←∏i∈IQ
Swi

i = ∏i∈IQ
gs·si·wi = (gs)∑i∈IQ

wi·si = gs

Figure 3: LSSS on Group G

Functionality GSS on Group G using LSSS
{S1,S2, · · · ,S|A|}← GrpGSSShare(S,A) :

{S1,S2, · · · ,S|A|}← GrpLSSSShare(S,A)
(S)← GrpGSSRecon(A,Q) :

S← GrpLSSSRecon(A,Q)

Figure 4: GSS on Group G based on LSSS

Note: The GSS based on Shamir SS requires polynomial
evaluation in the secret sharing and Lagrange interpolation in
the secret recovery; The GSS based on LSSS needs to handle
matrix multiplication both in secret sharing and recovery.
Security proofs of GSS schemes are discussed in Appendix C.

5 Publicy Verifiable Generalized Secret Shar-
ing (PVGSS)

5.1 Definition of PVGSS

Definition 7 (PVGSS) Publicly verifiable generalized secret
sharing (PVGSS) scheme allows a dealer to split a secret
using arbitrary monotone access structure in a publicly veri-
fiable manner. Hence, shares are encrypted and can be deliv-
ered in a public communication channel. Besides, the correct-
ness of the encrypted shares can be verified by any external
party. The PVGSS scheme includes following five algorithms.

• (ski,pki)← PVGSSSetup(λ) : Inputs the system secu-
rity parameter λ, outputs a key pair (ski,pki) for each
shareholder Pi.

• ({Ci},prfs)←PVGSSShare(s,A,{pki}): Inputs a value
s, an access structure A and the public keys {pki}, out-
puts the encrypted shares {Ci} and the corresponding
NIZK proofs prfs.

• (0/1) ← PVGSSVerify({Ci},prfs,A): Inputs the en-
crypted shares {Ci}, NIZK proofs prfs and the access
structure A, outputs 1 if the shares are correctly en-
crypted. Otherwise, outputs 0.

• (Si)← PVGSSPreRecon(Ci,ski): Inputs the ciphertext
Ci and the corresponding secret key ski, outputs a de-
crypted share Si.

• (0/1) ← PVGSSKeyVrf(Ci,Si,pki): Inputs the en-
crypted share Ci, the decrypted share Si and the public
key pki, outputs 1 if Si is corrected decrypted from Ci.

• (S) ← PVGSSRecon(A,Q,{Ci}): Inputs the access
structure A and a set of decrypted shares Q, outputs
the recovered secret S(= gs).

PVGSS scheme is required to achieve below security prop-
erties.
• Correctness: The scheme ensures that if the secret shar-

ing process is correctly followed, any authorized subset of
participants can reconstruct the secret S.
•Verifiability: Anyone can verify that the encrypted shares

provided by the dealer are correct without knowing the ac-
tual secret. Besides, users can also check correctness of the
decrypted shares in the reconstruction phase.
• IND1-secrecy: The secret remains hidden from unautho-

rized parties prior to the reconstruction phase.

Definition 8 (Correctness) The PVGSS is correct if for all
authorized set Q of A, each s in the secret space,

Pr

PVGSSVerify ({Ci},prfs,A) = 1 ∧
PVGSSKeyVrf(Ci,Si,pki) = 1,

∀i ∈ IQ ∧S′ = gs

∣∣∣∣∣∣∣∣∣∣
(ski,pki)← PVGSSSetup(λ);

({Ci},prfs)← PVGSSShare(s,A,{pki})
∀i ∈ IQ,(Si)← PVGSSPreRecon(Ci,ski)

(S′)← PVGSSRecon(A,Q,{Ci});

= 1

Definition 9 (Verifiability of Encrypted Shares) The
PVGSS satisfies verifiability of encrypted shares if for every
PPT A ,

Pr[PVGSSVerify ({Ci},prfs,A) = 1∧
∄s ∈ S s.t. ({Ci}i∈[n],∗)← PVGSSShare(s,A,{pki}) |

(·,{pki})← PVGSSSetup(λ),({Ci},prfs)← A((pki,A)]≤ negl(λ)

Definition 10 (Verifiability of Share Decryption) The
PVGSS satisfies verifiability of share decryption if for every
PPT A ,

Pr[PVGSSKeyVrf(C,S, pk) = 1∧
∄sk ∈ SK s.t. S← PVGSSPreRecon(C,sk) |
(·,{pki})← PVGSSSetup(λ),(pk,C,S)← A({pki}]≤ negl(λ)

Definition 11 (IND1-secrecy) IND1-secrecy standards for
indistinguishability of secrets. PVGSS achieves IND1-secrecy
if for any polynomial time adversary A without an authorized
set, A win the following game played against a challenger
with negligible advantage.

• Setup: The challenger initiates the PVGSSSetup algo-
rithm of the PVGSS protocol as the dealer and transmits
all public information to A . Additionally, it generates
both secret and public keys for all honest shareholders
and sends the corresponding public keys to A .

• Corrupt: A generates secret keys for the corrupted share-
holders and forwards the respective public keys to the
challenger.

• Challenge: The challenger randomly selects values x0
and x1 from the secret space. Further, it randomly selects
b ∈ {0,1}. The distribution phase of the protocol is then
executed with x0 as the secret. The challenger sends all
public information produced in this phase, along with
xb, to A .

• Output: A then outputs a guess b′ ∈ {0,1}.

The A’s advantage in the game is defined as |Pr[b = b′]− 1
2 |.

5.2 PVGSS Construction Based on GSS

As is known, PVSS schemes are constructed based on SS.
Informally speaking, PVSS combines SS and public key en-
cryption with verifiability. Intuitively, PVGSS can be con-
structed similarly by replacing SS with GSS. Note that we
leverage the original GSS scheme in the sharing phase and
employ GSS on group G in the reconstruction phase. Refer to
Appendix B for an illustrative depiction of our concept from
SS to PVGSS. Figure 5 demonstrates a PVGSS construction
by taking advantage of GSS scheme and NIZK proofs. The
NIZK proofs are acquired by incorporating Σ protocol [35]
and Fiat-Shamir heuristic [36].

In the PVGSSSetup algorithm, each shareholder j gener-
ates its key pair (ski,pki), where pki = gski and ski is randomly
chosen from Zq.

In the PVGSSShare algorithm, the dealer first invokes
GSSShare algorithm to generate secret shares based on the
access structure A. Denote |A| as the number of leaf nodes
of A. Then, it hides the |A| shares directly using the targeted
shareholder’s public key, i.e., pksi . Next, it executes the Σ

protocol and Fiat-Shamir heuristic to generate NIZK proofs.
Specifically, {C′i}, c, {ŝi} are the commitment, the challenge
value and the response value, respectively. Therefore, the
NIZK proof prfs is ({C′i},c,{ŝi}). To this end, the dealer has
successfully generated encrypted secret shares {Ci} and the
corresponding NIZK proof prfs which can be adopted to prove
the dealer’s honesty.

Functionality PVGSS Based on GSS

(ski,pki)← PVGSSSetup(λ) :

ski
R←− Zq

pki← gski

({Ci},prfs)← PVGSSShare(s,A,{pki}) :

{s1,s2, · · · ,s|A|}← GSSShare(s,A)
Ci = pksi

i ∀i ∈ [1, ..., |A|]

s′ R←− Zq

(s′1, ...,s
′
|A|) = GSSShare(s′,A)

C′i = pk
s′i
i ∀i ∈ [1, ..., |A|]

c← H({Ci},{C′i})
ŝ← s′− c · s
ŝi← s′i− c · si ∀i ∈ [1, ..., |A|]
prfs← ({C′i},c, ŝ,{ŝi})

(0/1)← PVGSSVerify({Ci},prfs,A) :

C′i
?
=Cc

i ·pk
ŝi
i ∀i ∈ [1, ..., |A|]

ŝ ?
= GSSRecon(A,{ŝi}).

(Si)← PVGSSPreRecon(Ci,ski) :

Si =C1/ski
i = gsi

(0/1)← PVGSSKeyVrf(Ci,Si,pki) :

e(Si,pki)
?
= e(Ci,g)

(S)← PVGSSRecon(A,Q,{Ci}) :

S← GrpGSSRecon(A,Q) where S = gs and Q⊆
{S1, · · · ,S|A|} is an authorized set of A.

Figure 5: PVGSS scheme based on GSS and NIZK proofs

In the PVGSSVerify algorithm, any (external) party can
check whether the dealer has honestly performed the sharing
phase with two equations. The first equation is identical to
the Schnorr signature [28], which allows the dealer to prove
knowledge of {si}. The second equation implies that all the re-
sponse values {ŝi} are correctly generated using the challenge
value c. Refer to Theorem 1 for details about the correctness.

In the PVGSSPreRecon algorithm, each shareholder Pi de-
crypts Ci with its secret key ski and obtains Si = gsi . Note that
original secret share si is still kept unknown.

In the PVGSSRecon algorithm, the user collects a set Q =
{Si} and checks the correctness of each Si. Given enough
authorized decrypted shares, i.e., an authorized set Q, the user
can reconstruct a secret S using GrpGSSRecon algorithm.

Computational Complexity: The PVGSSShare algorithm
costs 2|A| group exponentiations to calculate Ci and C′i . The
PVGSSVerify algorithm requires |A| exponentiations to ver-
ify the correctness of each Ci. The PVGSSPreRecon algo-
rithm costs an exponentiation for each shareholder. The

PVGSSVerify algorithm requires 2 bilinear pairing for each
Si. The PVGSSRecon algorithm takes |IQ| exponentiations,
where IQ denotes an authorized set of the access structure
A. Matrix multiplication in the LSSS-based construction,
and polynomial evaluation and Lagrange interpolation in the
Shamir SS-based construction, are omitted.

Communicational Complexity: In the PVGSS sharing
phase, the dealer outputs 2|A| G elements and (|A|+ 1) Z
elements. During the reconstruction phase, |IQ| G elements
are collected by the user.

5.3 Security Analysis
Theorem 1 (Correctness) The PVGSS construction satisfies
correctness defined by Definition 8.

Proof. If the dealer is honest and outputs {Ci} and prfs
using GSSShare based on the access structure A, then
PVGSSVerify ({Ci},prfs,A) = 1. That is implied by Schnorr
signature [28], where each (Ci,c,(C′i , ŝ)) contained in prfs
comprise of a Σ protocol [28] and GSS correctness. If
PVGSSPreRecon is applied to (Ci,ski) honestly, then Si = gsi

and PVGSSKeyVrf(Ci,Si, pki) = 1,∀i ∈ IQ. Given an au-
thorized set Q of A, we have the reconstructed value S′ ←
GrpGSSRecon(A,Q) which in turn equals S = gs also due to
GSS correctness.

GrpGSSRecon based on LSSS : S′ = ∏i∈IQ Swi
i =

g∑i∈IQ si·wi = gs.
GrpGSSRecon based on Shamir SS: For each node x

from leaf to root R: Fx ← GrpRecon(Qx), where Qx ⊆
{Fx1 , · · · ,Fxnx } generated at node x and |Qx| ≥ tx. Due to the
correctness of Shamir SS, every Fx is correct. Consequently,
S′ = FR = gs.

Therefore, the PVGSS satisfies correctness defined by Def-
inition 8.

Theorem 2 (Verifiability of Encrypted Shares) If NIZK
proof with soundness error negligible in λ, then PVGSS has
verifiability of encrypted shares, defined by Definition 9.

Proof. If PVGSSVerify ({Ci},prfs,A) = 1, then except with
soundness error negl(λ) of NIZK, there exists si such that
Ci = pksi

i and C′i = Cc
i · pkŝi

i . Except with probability 1/q,
{ŝi} are not GSS shares of ŝ with ŝ = GSSRecon(A,{ŝi})
holding. Further, {si} are not GSS shares of s with probability
1/q, due to homomorphism. Therefore, the PVGSS satisfies
verifiability of encrypted shares by Definition 9.

Theorem 3 (Verifiability of Share Decryption) If bilinear-
ity of bilinear map holds, then PVGSS has verifiability of
share decryption.

Proof. If PVGSSKeyVrf(C,S, pk) = 1, then we have
e(S,pk) = e(C,g). Obviously, pk = gsk, and we can get fol-
lowing by bilinearity of bilinear map:

e(C,g) = e(S,pk) = e(S,g)sk = e(Ssk,g)

Then, we have C = Ssk, thus ∃sk ∈ SK s.t. S ←
PVGSSPreRecon(C,sk). Therefore, the PVGSS satisfies ver-
ifiability of share decryption defined by Definition 10.

Theorem 4 (IND1-secrecy) The PVGSS is IND1-secrecy,
defined by Definition 11, under DDH assumption.

Proof. Firstly, the NIZK proofs prfs of PVGSSShare re-
veal nothing about the secret s or shares {si}, due to zero-
knowledge property. Then, we argue that, if there exists an
adversary APriv which can break the IND1-secrecy property
of PVGSS, then there exists an adversary ADDH which can
use APriv to break DDH assumption.

As shown in Figure 5, the expression for PVGSS is the
same whether based on Shamir SS or LSSS. For simplicity,
we focus on the Shamir SS-based PVGSS, where there exists a
node that cannot be satisfied by any unauthorized set, as stated
in Corollary 3. At this node, we assume it is not satisfied by
the maximum unauthorized set. That means, we can consider
A as a (t,n) threshold access structure, and assume APriv can
corrupts the t−1 first shareholders.

Let (g,gα,gβ,gγ) be an instance of the DDH problem. Then
ADDH using APriv can simulate an IND game as follows:

• Setup: The challenger sets h = gα and runs
PVGSSSetup. For t ≤ i ≤ n, ADDH samples ri

R←− Zq
and sends the values pki = gri to APriv.

• Corrupt: For 1≤ i≤ t−1, APriv samples ski
R←− Zq and

sets pki = hski and sends this to the challenger.

• Challenge: For 1 ≤ i ≤ t − 1, the challenger samples
si

R←− Zq and sets Ci = pksi
i . For t ≤ i ≤ n, the chal-

lenger generates gsi and p(x) is the polynomial of degree
at most t determined by p(i) = si and p(0) = β. Note
that ADDH knows gβ (but does not know β) and gsi for
1≤ i≤ t−1. So ADDH can use Lagrange interpolation
to compute gsi = gp(i) for t ≤ i≤ n and it also generates
shares Ci = gsi ri = pki

si . The challenger creates NIZK
proof prfs as the dealer does in the PVGSSShare algo-
rithm. Finally, the challenger send ({Ci},prfs) to APriv
with gγ as xb.

• Output: APriv make a guess b′.

If b′= 0, ADDH guess that γ=α ·β, if b′= 1 ADDH guess
that γ is a random element. The challenge phase informa-
tion ({Ci},prfs) sent to APriv is distributed exactly like
a sharing of the value hβ = gαβ. If gγ sent to APriv is the
secret shared by PVGSS, γ = α ·β. So the advantage of
ADDH is the same as the advantage of APriv.

6 Building a Decentralized Exchange

While centralized exchanges (CEXs), such as Binance [47]
and Coinbase [46], offer high liquidity, advanced features,

and ease of use, they also come with inherent risks. These
include reliance on a central authority, which may lead to
vulnerabilities such as security breaches, mismanagement,
or censorship. Additionally, users must relinquish control of
their private keys, creating potential single points of failure
(SPOF). To address these challenges, decentralized exchanges
(DEXs) have emerged as an alternative, providing a trustless
and transparent trading environment where users retain full
control over their assets and transactions are secured through
blockchain technology.

Hash time-locked contract (HTLC) [48, 49] and adaptor
signature [50, 53] have shown promising opportunity in im-
plementing fair atomic swap [51,52], which is the primary re-
quirement for designing DEXs. However, these methods have
flaws in fostering the DeFi markets, limiting their world-wide
application in DEX. There is no straightforward arbitration
mechanism, leading to long time waits or risks in the event
of disputes or non-cooperation, such as a party refusing to
reveal a preimage or signature. Besides, these methods focus
primarily on ensuring fairness between the two trading parties
through cryptographic mechanisms. [54] They often overlook
the broader economic incentives for other participants, such
as liquidity providers or arbitrageurs, who play a crucial role
in fostering a thriving market ecosystem.

Automated market maker (AMM) based DEXs (such as
Uniswap [55] and Curve [56]) eliminate the need for direct
counterparties by using liquidity pools and mathematical algo-
rithms to determine token prices [57]. This approach simpli-
fies trading, improves accessibility, and removes the reliance
on strict time-locks or preimage disclosures, making it an
attractive option for both new and experienced users. Never-
theless, liquidity providers (LPs) have to store token pairs into
DEX and face impermanent loss when asset prices in the pool
change significantly. High slippage occurs during large trades,
making AMMs less efficient for high-value transactions. Vul-
nerability to front-running and miner extractable value attacks
exposes traders to unfair costs [58, 59]. AMMs also suffer
from capital inefficiency, requiring large liquidity to reduce
slippage, while locking funds with suboptimal returns [60].

Table 2: Comparisons of different exchanges

Exchanges
Fariness
provider Arbitrageurs No

SPOF
Arbitration

No
slippage

Divergence
Losslessness

CEX CEX N/A ✗ ✗ ✓ ✓

HTLC-based Miners N/A ✓ ✗ ✓ ✓

AMM-based Smart contract LPs ✓ ✗ ✗ ✗

Ours Smart contract Watchers ✓ ✓ ✓ ✓

Due to the existing obstacles, we propose a novel DEX built
on a transparent and trustless protocol using the proposed
PVGSS scheme. Trades are executed on smart contract with-
out manipulation, ensuring equitable outcomes and preventing
exploitation by any participant. Our design incentivizes arbi-
trageurs (wathers) by rewarding them for providing passive
arbitration services, ensuring active participation and foster-

Figure 6: Overview of the DEX between two exchangers (i.e., Alice and Bob) with passive watchers

ing a robust and dynamic marketplace. Unlike AMM-based
models, the arbitrageurs in our DEX has no impermanent loss
and traders exchange at their expected prices without slippage.
Table 2 compares the above mentioned exchanges.

6.1 High-Level Overview

Based on the proposed PVGSS scheme, we design a DEX
to allow exchangers to express their willing fairly and si-
multaneously. In this research, we merely focus on ERC-20
token exchange. The DEX involves two roles: exchangers
and watchers. Anyone can be exchangers and watchers. Each
exchanger holds specific types of ERC-20 tokens, while mul-
tiple watchers collectively form a passive notary committee
to address potential disputes.

Take two exchangers, i.e., Alice and Bob, and n watchers
as an example. As shown by Figure 6, the DEX optimisti-
cally runs in two communication rounds for Alice and Bob.
In the first round, swap1, each exchanger commits to a secret
using PVGSSShare, where all the n+ 2 entities are consid-
ered as shareholders. The correctness of the commitment
is guaranteed by the PVGSSVerify algorithm. Refer to Sec-
tion 6.2 for the detailed design of access structure. In the
second round, swap2, each exchanger reveals its decrypted
share using PVGSSPreRecon. The correctness of share de-
cryption is ensured by PVGSSKeyVrf. Then, both Alice and
Bob jointly recover each other’s secrets using PVGSSRecon.

In the pessimistic occasion where a player complains to
the watchers, who will be involved to resolve dispute using
PVGSSPreRecon. Note that the access structure of the DEX
not only tolerates a faulty exchanger but also tolerates n− t
faulty watchers.

To promote the prosperity of the DEX, an incentive and
penalty mechanism of all the entities should be fully consid-
ered. The fundamental assumption is that everyone is rational,
and everyone acts in pursuit of profit. Hence, we devise dif-

ferent incentive polices for all occasions in Section 6.4.

6.2 Access Structure for the DEX

Suppose the two exchangers are Alice and Bob
and the n watchers are W1, · · · ,Wn. Figure 7 depicts
the concrete access structure with threshold gates, i.e.,
(2 o f (Alice,Bob,(t o f (W1,W2, · · · ,Wn)))). Based on Corol-
lary 1, we can infer that the set [Alice,Bob] is an authorized
set. Apparently, if both Alice and Bob are honest, they can
recover any secrets of PVGSS instance.

Figure 7: The access structure leveraged by Alice and Bob

Without loss of generality, if Bob is absent in a PVGSS
instance, Alice and at least t watchers can collectively re-
cover the secret. This shows the feature of fault tolerance, i.e.,
the access structure allows fault of one exchanger and n− t
watchers. By Lemma 1, we argue that t can be set to 1 without
affecting fairness.

Figure 7 shows the simplest access structure in building a
DEX. A DEX can, in fact, adopt a more sophisticated access
structure, allowing different watchers to hold varying weights
or privileges. This enables the application of Game Theory to
incentivize profit-driven competition effectively. That will be
future work and it is out of discussion in this paper.

6.3 Construction of the DEX
Figure 8 describes the functionality FDEX defined in smart

contract, which interacts with n+2 entities (i.e., 2 exchangers
and n ≥ 1 watchers) in session id. For convenience of de-
scription, denote the two exchangers as Alice and Bob. Both
Alice and Bob leverages the same access structure A, as de-
scribed by Figure 7. Suppose the n watchers are randomly
chosen from the registered arbitrageurs for each id. Two expi-
ration time ∆t1 and ∆t2 are indicators for distinguishing the
optimistic and pessimistic cases. Appendix D illustrates the
primary data structures and global variables/events in imple-
menting FDEX.

Suppose Alice, Bob and n watchers have registered their
public keys via the register(id,pki) interface. Without loss
of generality, Alice lists v1 amount of Token1 for sale
and expects to exchange v2 amount of Token2.2 Alice
and Bob freeze their tokens by freeze(id,Token1,v1) and
freeze(id,Token2,v2), respectively.

Bob invokes swap1(id,{CiB},prfsB
), where ({CiB},prfsB

)

← PVGSSShare(sB,A,{pki}) and sB
R←− Zq. If Bob is hon-

est (i.e., {CiB} is stored in smart contract), Alice then sends
swap1(id,{CiA},prfsA

) and swap2(id,SA) simultaneously to
FDEX, where SA ← PVGSSPreRecon(CA,skA). If Alice is
honest (i.e., {CiA} and SA are recorded in smart contract),
Bob invokes swap2(id,SB).

To this end, if both exchangers are honest, Alice (or Bob)
could recover the Bob (or Alice) secret value hidden in {CiB}
(or {CiA}) by gsB ← PVGSSRecon(A,(SA,SB),{CiB}) (or
gsA). Hence, they reach a consensus on the swap and anyone
can invoke determine(id) of FDEX to terminate the exchange.
Note that though SA and SB are published on blockchain and
secrets gsA and gsB are computable by anyone, the exchange
does not reveal individual private keys.

Without loss of generality, we consider Bob is malicious in
the pessimistic cases.

• If Bob does not execute swap1 honestly, Alice will wait
to time ∆t2 with failure termination. The complain func-
tion in FDEX guarantees that Bob cannot complain to
watchers if he has not invoked swap1 honestly.

• Or if Bob does not execute swap2 honestly in ∆t1,
Alice can initiate complain(id) to notify watch-
ers. Each watcher Pi will generate his PVGSS
share Si ← PVGSSPreRecon(Ci,ski) and up-
load it to FDEX via swap2(id,Si). With at least t
pieces of {Si} collected, Alice can obtain gsB ←
PVGSSRecon(A,(SA,{Si}),{CiB}), representing a
success termination. In case not enough watchers
provide services, the swap will be failure and faulty
watchers will be punished.

2Obviously, v1 ·PriceToken1 ≈ v2 ·PriceToken2 . We assume that exchang-
ers are rational and they can obtain Token prices from other exchanges or
websites.

Functionality FDEX

For session id, the contract manages two expiration
time ∆t1 and ∆t2 > ∆t1, a termination variable state.

• Upon receiving (register, id, pkx) from an entity,
store the public key pkx of the entity x.

• Upon receiving (freeze, id,Token,v) from Alice
or Bob, freeze v token Token in smart contract.

• Upon receiving (withdraw, id) from Alice or
Bob, if state = failure and current time ts > ∆t2,
transfer the v frozen token Token to the sender.
Otherwise, abort.

• Upon receiving (swap1, id,{Ci},prfs) from Alice
or Bob, invoke PVGSSVerify({Ci},prfs,A). If it
returns 0, abort. Otherwise, store {Ci}.

• Upon receiving (swap2, id,Sx) from an entity, in-
voke PVGSSKeyVrf(Cx,Sx,pkx). If it returns 0,
abort. Otherwise, store Sx and notify exchangers.

• Upon receiving (complain, id) from a complainer
(i.e., Alice or Bob), if current time ts > ∆t1, and
both Alice and Bob have invoked swap1 honestly,
then notice all watchers. (Each watcher Pi sends
the (swap2, id,Si) message for the complainer.)

• Upon receiving (determine, id) by anyone, set
state = success and transfer Alice/Bob’s token
to Bob/Alice’ account, if one of below conditions
is satisfied before ∆t2:

– Both Alice and Bob have invoked swap2
honestly.

– Either Alice or Bob has invoked swap2 hon-
estly, and at least t watchers have invoked
swap2 honestly.

Otherwise, set state = failure and send back to-
kens to Alice/Bob’s account.

Figure 8: The functionality FDEX in smart contract

6.4 Incentive Mechanism

Figure 9 presents the mindmap to illustrate all cases of
results and the corresponding incentive policy a swap instance.
A swap instance ends with either success or failure definitely.
Specifically, the success can be determined before ∆t2 and the
failure is determined only after ∆t2. All entities are required
to make stakes in the system. The number of swap instances
a watcher can serve simultaneously is proportional to the

amount of its stakes.

Figure 9: The incentive and penalty mechanism

The success result includes three cases. The first case is
optimistic scenario where both exchangers honestly invoke
swap1 and swap2 before ∆t1. In this case, the watchers are
not involved and each of them is rewarded with a small tip.
The second case shows the scenario where one exchanger
does not execute swap2 before ∆t2. Then, the other exchanger
notice the n watchers to resolve the dispute. In this case,
faulty exchanger and watchers are punished to reward the
honest watchers who send swap2 before ∆t2. The third case
introduces the scenario where some exchanger may propose
false complaint. In this case, the complainer will be punished.

The failure results also contains three cases. The first case
means at least one exchangers give up in ∆t1. Hence, the faulty
exchanger will be punished and all watchers are rewarded.
The second case means both exchangers negotiate to abort the
swap instance before ∆t2, then all watchers are rewarded. The
third case is an unexpected scenario, where honest complaint
is raised but unresolved due to insufficient honest watchers.
We impose penalties on the complainee and faulty watchers
to compensate the complainant and honest watchers.

6.5 Property Analysis
Before describing the achieved properties, we argue the

potential threats to the DEX has little impacts.

Lemma 1 (Dos attack) An exchanger or (even up to n)
watchers, who abort the protocol, can not bias the fairness.

Proof. As described in Section 6.3, if an exchanger aborts
without executing swap1 or more than n− t watchers abort
without providing arbitration, the swap instance ends with
failure; Otherwise, the instance ends with success. Fairness
is guaranteed according to the protocol termination result and
only faulty entities will bear specific loss. Thus, it is feasible
to set t = 1 with arbitrary n≥ 1 in practice.

Lemma 2 (Collusion/Coercion attack) An exchanger col-
luding with (even up to n) malicious watchers cannot break
the fairness.

Proof. The exchanging tokens are locked in the smart contract
until termination. Both the exchange protocol and smart con-
tracts are transparent and publicly verifiable. The final state of
an exchange instance is either success or failure, determined
no later than ∆t2. If state = success, the locked tokens are
transferred to the counterparties’ accounts; otherwise, they
are returned to the respective exchangers’ accounts. Conse-
quently, even if an exchanger colludes with all n watchers,
they cannot gain any advantage over the smart contract. Fur-
thermore, inactive or malicious entities are penalized.

Lemma 3 (Sybil attack) An arbitrageur cannot gain dispro-
portionate profits through generating fake identities.

Proof.An arbitrageur can be selected as a watcher in propor-
tion to the amount of currency they have deposited. This
implies that the nothing-at-stake attack is also eliminated. If a
swap instance is ongoing, a proportional amount of deposited
currency is locked, rendering a Sybil attack meaningless.

Below, we prove the security properties by Claims.

Claim 1 (Decentralization) No trusted manager is required
to execute the protocol or manage participants.

Proof. As designed, anyone can register with deposited digital
currency as an exchanger or a arbitrageur. Anyone is equal
before the smart contract. By Lemma 3, we prove that it is
infeasible for arbitrageurs to gain additional profits by gener-
ating fake identities.

Claim 2 (Fairness) Either exchangers acquire the counter-
part’s token or neither acquires.

Proof.According to the determine functionality in FDEX, the
state of a swap instance is determined as either success or
failure based on the actions of exchangers and watchers. A
success results in a successful exchange, while a failure en-
sures the return of tokens to exchangers, guaranteeing fairness.
Additionally, as demonstrated in Lemma 1 and Lemma 2, nei-
ther DoS attacks nor collusion attacks affect fairness.

Claim 3 (Termination) An exchanging instance should be
terminated at specific time point.

Proof. A swap instance can terminate with success at any time
before ∆t1 if both exchangers act honestly. The parameter
∆t1 allows exchangers to file complaints through the smart
contract. And the complaints should be handled in ∆t2 by
the watchers. Consequently, the swap instance is guaranteed
to reach a definitive termination by ∆t2, regardless of the
presence of faulty entities.

Claim 4 (Arbitration with Optimism and Statelessness)
The watchers can resolve dispute and they are not involved if
no disputes arise.

Proof. As the access structure designs (cf. Section 6.2), if an
exchanger aborts in swap2, at least t watchers can be of help in
guaranteeing fairness with success termination. As describe in
Section 6.3, the swap instance can normally ends with success
if both exchangers are honest and watchers are not involved,
showing the optimism of them. Moreover, watchers can take
action according to smart contract’s status without requiring
additional storage for each swap instance, demonstrating their
statelessness.

Claim 5 (Accountability) Dishonest behaviors can be de-
tected and faulty entities is punished.

Proof. The whole protocol is designed through smart contract
and all operations are publicly verifiable by any third party.
Specifically, the public verifiability is ensured by Theorem 2
and Theorem 3. Therefore, it is feasible to find out faulty
entities and punish them by confiscating a certain percentage
of their deposits.

Claim 6 (Incentive Compatibility) The protocol compre-
hensively considers interests of exchangers and watchers,
forcing them to behave honestly.

Proof. By Claim 3, we show that the state is determined no
later than ∆t2. As illustrated in Section 6.4, all possible out-
comes for the state values and the corresponding incentives
are considered. Besides, the protocol considers both exchang-
ers and arbitrageurs, who are accountable by Claim 5. Thus,
we can design sophisticated incentive mechanisms to encour-
age honest behavior and penalize faulty actions, promoting
the adoption of the DEX. Figure 9 illustrates the detailed
incentive mechanisms.

7 Experimental Evaluation

We implement our PVGSS scheme using Golang (off-
chain) and Solidity (on-chain). We implement the threshold-
based LSSS matrix in Golang using the method provided
by [70]. To make on-chain and off-chain operations com-
patible, we choose BN128 as the asymmetric elliptic curve
group, which is the official supported by Ethereum. The
on-chain exponentiation and pairing cost are about 400003

and 80000 ∗ k+ 1000004, respectively, where k is the num-
ber of pairing points. All the our benchmarks of PVGSS
schemes are executed on a Intel (R) Core (TM) i7-11800H
@2.30GHz with 4GB RAM running Ubuntu 22.04.5 LTS and
Golang1.22.0. The source code of contract is deployed and
available on Ethereum Sepolia testnet5.

We choose the access structure designed for the DEX (cf.
Figure 7) to evaluate the performance of the PVGSS scheme,

3https://eips.ethereum.org/EIPS/eip-196#gas-costs
4https://eips.ethereum.org/EIPS/eip-197#gas-costs
5https://sepolia.etherscan.io/address/

0xfc725a86fe14ee68b645f9d92e832b0d843045ee#code

where t = n/2+1 and n ranges from 100 to 1000. Figure 10-
13 show the off-chain computational overheads of the PVGSS
schemes. The cost of PVGSSShare and PVGSSRecon are
super-linear, due to polynomial evaluation and Lagrange inter-
polation in Shamir SS-based approach and matrix multiplica-
tion in LSSS-based approach. Besides, the PVGSSPreRecon
algorithm costs about 8.2ms. It can be seen all algorithms
can be calculated within seconds given n = 1000, indicating
practicality of the PVGSS schemes in large-scale systems.

200 400 600 800 1,000

0

200

400

600

800

The number of watchers n

Ti
m

e
co

st
(m

s)

LSSS-based
Shamir SS-based

Figure 10: Cost of
PVGSSShare

200 400 600 800 1,000

50

100

150

The number of watchers n

Ti
m

e
co

st
(m

s)

LSSS-based
Shamir SS-based

Figure 11: Cost of
PVGSSVerify

200 400 600 800 1,000

500

1,000

1,500

2,000

The number of watchers n

Ti
m

e
co

st
(m

s)

LSSS-based
Shamir SS-based

Figure 12: Cost of n times of
PVGSSKeyVrf

200 400 600 800 1,000

0

100

200

300

The number of watchers n

Ti
m

e
co

st
(m

s)

LSSS-based
Shamir SS-based

Figure 13: PVGSSRecon with
an authorized set size t +1

2 4 6 8 10

0.6

0.8

1

·106

The number of watchers n

G
as

Shamir SS-based
LSSS-based

Figure 14: On-chain gas cost
of swap1+ swap2

2 4 6 8 10

0.5

1

1.5

2

·105

The number of watchers n

G
as

complain
determine

Figure 15: On-chain cost of
complain and determine

Further, we evaluate the gas consumption of the practice.
The swap2, which invokes PVGSSKeyVrf, roughly costs a
constant amount gas (i.e., 253784) for each exchanger. Fig-
ure 14 depicts the gas consumption of the swap1+ swap2 on
smart contract. In swap1, calculation of PVGSSVerify and
storage of {Ci} are included. It can be observed that the

https://eips.ethereum.org/EIPS/eip-196#gas-costs
https://eips.ethereum.org/EIPS/eip-197#gas-costs
https://sepolia.etherscan.io/address/0xfc725a86fe14ee68b645f9d92e832b0d843045ee#code
https://sepolia.etherscan.io/address/0xfc725a86fe14ee68b645f9d92e832b0d843045ee#code

PVGSSShare based on LSSS is slightly more efficient, as
matrix multiplication is somewhat more computationally in-
tensive than Lagrange interpolation in Solidity. Figure 15
shows the gas cost of functionality complain and functional-
ity determine.

As of the time of writing (January 11, 2025), the gas price
is 4.49 gwei, and the price of ETH is 3,260 USD. Table 3
presents the monetary cost of each operation on the smart
contract. For convenience, only the Shamir SS-based PVGSS
is evaluated. The gray cells highlight the optimistic case,
where the cost for each exchanger is only $8.3/$11.9/$15.6 for
n = 1/5/9 and t = 1. If watchers are involved in the pessimistic
case, the complaint cost is less than 1 USD, and each watcher
incurs a cost of approximately 3.7 USD (as swap2 requires).

Table 3: Monetary cost of the on-chain operations

Operation Gas cost USD
register 167767 $2.5
freeze 71250 $1.0

swap1

n=1 310787 $4.5
n=5 559855 $8.2
n=9 808882 $11.8

swap2 253784 $3.7
total, i.e., n=1 564571 $8.3

swap1+ swap2 n=5 813639 $11.9
(Shamir SS-based) n=9 1062603 $15.6

complain

n=1 38894 $0.6
n=5 55166 $0.8
n=9 71414 $1.0

determine

n=1 68917 $1.0
n=5 127209 $1.9
n=9 185499 $2.7

8 Other Applications

The novel GSS or PVGSS primitive can be applied in both
cryptographic and blockchain fields. We list some of the top-
ics, which are of independent interests.
• Role-based access control (RBAC) [61]. (PV)GSS sup-

ports hierarchical RBAC by creating nested or multi-level
access structures. Roles higher in the hierarchy can recon-
struct secrets using fewer shares, while lower roles require
stricter compliance.
•Attribute-based cryptosystem. PVGSS can significantly

enhance attribute-based cryptosystems [18–20] by ensuring
trust, transparency, and robustness in key distribution and ac-
cess control. In attribute-based cryptosystems, access policies
and attributes play a central role in granting decryption capa-

bilities. Integrating PVGSS provides accountability, particu-
larly in settings involving untrusted cloud servers or external
authorities. Additionally, PVGSS can strengthen outsourced
attribute-based encryption by ensuring the correctness of out-
sourced computations.
• Fine-grained MPC. Participants have equal rights in tra-

ditional SS or VSS based MPC protocols, such as distributed
key generation [2] and federated learning [4]. With (PV)GSS,
it will be possible to investigate MPC protocols with fine-
grained access control policy.
• Blockchain oracle. Blockchains and smart contracts

typically cannot access external information directly, so ora-
cles [62] provide the necessary data feed, such as price feeds,
weather data, or other real-world events. PVGSS-based solu-
tion can enhance decentralization and public verifiability.
• Layer 2 (Bridge [63], Relay network [64] or Chan-

nel [65]). Layer 2 [66] refers to a set of technologies built on
top of a blockchain’s base layer to address scalability issues,
increase transaction throughput, and reduce costs without
compromising the security and decentralization. Essentially,
Layer 2 solutions help blockchain networks scale by process-
ing transactions off-chain. PVGSS-based approaches can be
incorporated to enhance trustworthiness and traceability.
• On-chain secret escrow. PVGSS can be effectively used

in on-chain secret escrow systems [67–69] to provide secure
and verifiable management of secrets while ensuring trans-
parency and trust. In such systems, PVSS allows participants
to securely share a secret (e.g., a decryption key, private key, or
access credentials) without a trusted third party, ensuring that
the secret can only be accessed under specified conditions.

9 Conclusion

We begin by introducing the concept of publicly verifiable
generalized secret sharing (PVGSS) and propose two con-
structions: one based on Shamir secret sharing and the other
on linear secret sharing schemes (LSSS). Furthermore, we de-
sign a decentralized exchange (DEX) leveraging the PVGSS
schemes, fully integrated incentive mechanisms. Comprehen-
sive experiments and detailed analysis demonstrate the feasi-
bility of the DEX in real-world applications. Looking ahead,
we plan to further explore (PV)GSS-related research. First,
we aim to implement additional applications discussed in Sec-
tion 8 and beyond. Second, we intend to formalize verifiable
generalized secret sharing (VGSS, akin to VSS [14]) and ex-
amine its constructions. Lastly, we will explore variations
of (PV)GSS schemes, such as proactive (PV)GSS [71] and
q-PVGSS, inspired by [11].

Open Science

This research is committed to the principles of Open Sci-
ence, promoting transparency, accessibility, and collabora-
tion. All data, methodologies, and research findings will be
made publicly available to foster reproducibility and fur-
ther academic inquiry. The smart contract code which keeps
anonymity for reviews has been deployed on the Ethereum
Sepolia testnet. By adopting open science practices, we aim
to enhance the integrity of research, increase knowledge dis-
semination, and contribute to the advancement of science in a
more inclusive and equitable manner.

Ethical Considerations

This research adhered to ethical guidelines to ensure the
rights, privacy, and well-being of all participants. Conflicts of
interest were disclosed, and we acknowledge the contributions
of prior works through proper citation. Our research aims to
have a positive societal impact while adhering to the highest
standards of academic integrity and responsibility.

References

[1] Shamir, A. How to share a secret. Comm. of the ACM,
1979, 22(11), 612-613.

[2] Das, S., Yurek, T., Xiang, Z., Miller, A., Kokoris-Kogias,
L. and Ren, L. Practical asynchronous distributed key
generation. In S&P, 2022, pp. 2518-2534.

[3] Sahai, A., and Waters, B. Fuzzy identity-based encryp-
tion. In Eurocrypt, 2005, pp. 457-473.

[4] Rathee, M., Shen, C., Wagh, S. and Popa, R.A. Elsa:
Secure aggregation for federated learning with malicious
actors. In S&P, 2023, pp. 1961-1979.

[5] Dauterman, E., Rathee, M., Popa, R.A. and Stoica, I.
Waldo: A private time-series database from function
secret sharing. In S&P, 2022, pp. 2450-2468.

[6] Feneuil, T. and Rivain, M. Threshold linear secret shar-
ing to the rescue of MPC-in-the-head. In Asiacrypt,
2023, pp. 441-473.

[7] Gao, Y., Lu, Y., Lu, Z., Tang, Q., Xu, J. and Zhang,
Z. Dumbo-ng: Fast asynchronous bft consensus with
throughput-oblivious latency. In CCS, 2022, pp. 1187-
1201.

[8] Karchmer, M. and Wigderson, A. On span programs.
In Annual Structure in Complexity Theory Conference,
1993, pp. 102-111.

[9] Feldman, P. A practical scheme for non-interactive veri-
fiable secret sharing. In FOCS, 1987, pp. 427-438.

[10] Zhang, Z., Li, W., Guo, Y., Shi, K., Chow, S.S., Liu, X.
and Dong, J. Fast RS-IOP Multivariate Polynomial Com-
mitments and Verifiable Secret Sharing. In USENIX Se-
curity, 2024, pp. 3187-3204.

[11] Cascudo, I., and David, B. Publicly verifiable secret
sharing over class groups and applications to DKG and
YOSO. In Eurocrypt, 2024, pp. 216-248.

[12] Cascudo, I., and David, B. SCRAPE: Scalable random-
ness attested by public entities. In ACNS, 2017, pp. 537-
556.

[13] Kate, A., Zaverucha, G.M. and Goldberg, I., Constant-
size commitments to polynomials and their applications.
In Asiacrypt, 2010, pp. 177-194.

[14] Abraham, I., Jovanovic, P., Maller, M., Meiklejohn, S.
and Stern, G. Bingo: Adaptivity and asynchrony in veri-
fiable secret sharing and distributed key generation. In
Crypto, 2023, pp. 39-70.

[15] Stadler, M. Publicly verifiable secret sharing. In Euro-
crypt, 1996, pp. 190-199.

[16] Ito, M., Saito, A. and Nishizeki, T. Secret sharing
scheme realizing general access structure. Electronics
and Communications in Japan, 1989, 72(9), 56-64.

[17] Benaloh, J., and Leichter, J. Generalized secret sharing
and monotone functions. In Crypto, 1990.

[18] Bethencourt, J., Sahai, A., and Waters, B. Ciphertext-
Policy Attribute-Based Encryption. In S&P, 2007, pp.
321-334.

[19] Lewko, A., and Waters, B. Decentralizing attribute-
based encryption. In Eurocrypt, 2011, pp. 568-588.

[20] Okamoto, T. and Takashima, K. Decentralized attribute-
based signatures. In PKC, 2013, pp. 125-142.

[21] Garg, R., Lu, G., Waters, B. and Wu, D.J. Reducing the
CRS size in registered ABE systems. In Crypto, 2024,
pp. 143-177.

[22] Zamyatin, A., Harz, D., Lind, J., Panayiotou, P., Gervais,
A. and Knottenbelt, W. Xclaim: Trustless, interoperable,
cryptocurrency-backed assets. In S&P, pp. 193-210.

[23] Dunphy, P., Garratt, L. and Petitcolas, F. Decentralizing
digital identity: Open challenges for distributed ledgers.
In EuroS&PW, 2018, pp. 75-78.

[24] Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kiss-
ner, L., Peterson, Z. and Song, D., 2007, October. Prov-
able data possession at untrusted stores. In CCS, 2007,
pp. 598-609.

[25] Scafuro, A., Siniscalchi, L. and Visconti, I. Publicly ver-
ifiable proofs from blockchains. In PKC, 2019, pp. 374-
401.

[26] Szydlo, M., 2004. Merkle tree traversal in log space and
time. In Eurocrypt, 2004, pp. 541-554.

[27] Kemmoe, V.Y. and Lysyanskaya, A., 2024, December.
RSA-Based Dynamic Accumulator without Hashing
into Primes. In CCS, 2024, pp. 4271-4285.

[28] Schnorr, C.P., 1990. Efficient identification and signa-
tures for smart cards. In Crypto, 1990, pp. 239-252.

[29] Setty, S. Spartan: Efficient and general-purpose zk-
SNARKs without trusted setup. In Crypto, 2020, pp.
704-737.

[30] Drăgan, C.C. and Ţiplea, F.L., . Distributive weighted
threshold secret sharing schemes. Information sciences,
2016, 339, 85-97.

[31] Beimel, A., Tassa, T., and Weinreb, E. Characterizing
ideal weighted threshold secret sharing. In TCC, 2005,
pp. 600-619.

[32] Chen, Q., Tang, C. and Lin, Z. Efficient explicit con-
structions of multipartite secret sharing schemes. IEEE
TIT, 2021, 68(1), 601-631.

[33] Tassa, T., and Dyn, N. Multipartite secret sharing by
bivariate interpolation. JoC, 2009, 22(2), 227-258.

[34] Simmons, G.J., 1988, August. How to (really) share a
secret. In Eurocrypt, 1988, pp. 390-448.

[35] Damgård, I. On Σ-protocols. Lecture Notes, University
of Aarhus, Department for Computer Science, 2002.

[36] Fiat, A., and Shamir, A. How to prove yourself: Practical
solutions to identification and signature problems. In
Eurocrypt, 1986, pp. 186-194.

[37] Garg, S., Jain, A., Mukherjee, P., Sinha, R., Wang, M.
and Zhang, Y. Cryptography with weights: MPC, en-
cryption and signatures. In Crypto, 2023, pp. 295-327.

[38] Tassa, T. Hierarchical threshold secret sharing. JoC,
2007, 20(2), 237-264.

[39] Chattopadhyay, A.K., Saha, S., Nag, A. and Nandi, S. Se-
cret sharing: A comprehensive survey, taxonomy and ap-
plications. Computer Science Review, 2024, 51, 100608.

[40] Rouselakis, Y., and Waters, B. Efficient statically-secure
large-universe multi-authority attribute-based encryp-
tion. In FC, 2015, pp. 315-332.

[41] Cascudo, I., David, B., Garms, L., and Konring, A.
YOLO YOSO: fast and simple encryption and secret
sharing in the YOSO model. In Asiacrypt, 2022, pp.
651-680.

[42] Cascudo, I., and David, B. ALBATROSS: publicly at-
testable batched randomness based on secret sharing. In
Asiacrypt, 2020, pp. 311-341.

[43] Fujisaki, E., and Okamoto, T. A practical and provably
secure scheme for publicly verifiable secret sharing and
its applications. In Eurocrypt, 1998, pp. 32-46.

[44] Schoenmakers, B. A Simple Publicly Verifiable Secret
Sharing Scheme and Its Application to Electronic. In
Crypto, 1999, pp. 148-164.

[45] Ruiz, A., and Villar, J. L. Publicly verifiable secret shar-
ing from Paillier’s cryptosystem. In SAC, 2005.

[46] Coinbase, https://www.coinbase.com

[47] Binance, https://www.binance.com/en

[48] Hash Time Locked Contracts, https://en.bitcoin.
it/wiki/Hash_Time_Locked_Contracts.

[49] Tsabary, I., Yechieli, M., Manuskin, A. and Eyal, I.
MAD-HTLC: because HTLC is crazy-cheap to attack.
In S&P, 2021, pp. 1230-1248.

[50] Erwig, A., Faust, S., Hostáková, K., Maitra, M. and Ri-
ahi, S. Two-party adaptor signatures from identification
schemes. In PKC, 2021, pp. 451-480.

[51] Thyagarajan, S.A., Malavolta, G. and Moreno-Sanchez,
P. Universal atomic swaps: Secure exchange of coins
across all blockchains. In S&P, 2022, pp. 1299-1316.

[52] Zhang, L., Kan, H., Qiu, F. and Hao, F. A Publicly Veri-
fiable Optimistic Fair Exchange Protocol Using Decen-
tralized CP-ABE. CJ, 2024, 67(3), pp.1017-1029.

[53] Aumayr, L., Ersoy, O., Erwig, A., Faust, S., Hostáková,
K., Maffei, M., Moreno-Sanchez, P. and Riahi, S. Gen-
eralized channels from limited blockchain scripts and
adaptor signatures. In Asiacrypt, 2021, pp. 635-664.

[54] Augusto, A., Belchior, R., Correia, M., Vasconcelos, A.,
Zhang, L. and Hardjono, T. Sok: Security and privacy
of blockchain interoperability. In S&P, 2024, pp. 3840-
3865.

[55] Uniswap, https://app.uniswap.org.

[56] Curve, https://curve.fi.

[57] Xu, J., Paruch, K., Cousaert, S. and Feng, Y. Sok: Decen-
tralized exchanges (dex) with automated market maker
(amm) protocols. ACM Comp. Surv., 2023, 55(11), 1-50.

https://www.coinbase.com
https://www.binance.com/en
https://en.bitcoin.it/wiki/Hash_Time_Locked_Contracts
https://en.bitcoin.it/wiki/Hash_Time_Locked_Contracts
https://app.uniswap.org
https://curve.fi

[58] Daian, P., Goldfeder, S., Kell, T., Li, Y., Zhao, X., Bentov,
I., Breidenbach, L. and Juels, A. Flash boys 2.0: Fron-
trunning in decentralized exchanges, miner extractable
value, and consensus instability. In S&P, 2020, pp. 910-
927.

[59] Baum, C., David, B. and Frederiksen, T.K. P2DEX:
privacy-preserving decentralized cryptocurrency ex-
change. In ACNS, 2021, pp. 163-194.

[60] Heimbach, L., Schertenleib, E. and Wattenhofer, R.
Risks and returns of uniswap v3 liquidity providers. In
AFT, 2022, pp. 89-101.

[61] Zhu, Y., Ahn, G.J., Hu, H., Ma, D. and Wang, S. Role-
based cryptosystem: A new cryptographic RBAC system
based on role-key hierarchy. IEEE TIFS, 2013, 8(12),
2138-2153.

[62] Park, S., Bastani, O. and Kim, T. ACon2: Adaptive Con-
formal Consensus for Provable Blockchain Oracles. In
USENIX Security, 2023, pp. 3313-3330.

[63] Xie, T., Zhang, J., Cheng, Z., Zhang, F., Zhang, Y., Jia, Y.,
Boneh, D. and Song, D. zkbridge: Trustless cross-chain
bridges made practical. In CCS, 2022, pp. 3003-3017.

[64] Li, Y., Liu, H. and Tan, Y. POLYBRIDGE: A crosschain
bridge for heterogeneous blockchains. In ICBC, 2022,
pp. 1-2.

[65] Dziembowski, S., Faust, S. and Hostáková, K. General
state channel networks. In CCS, 2018, pp. 949-966.

[66] Gangwal, A., Gangavalli, H.R. and Thirupathi, A. A sur-
vey of Layer-two blockchain protocols. Journal of Net-
work and Computer Applications, 2023, 209, 103539.

[67] Benhamouda, F., Gentry, C., Gorbunov, S., Halevi, S.,
Krawczyk, H., Lin, C., Rabin, T. and Reyzin, L. Can
a public blockchain keep a secret?. In TCC, 2020, pp.
260-290.

[68] Goyal, V., Kothapalli, A., Masserova, E., Parno, B. and
Song, Y. Storing and retrieving secrets on a blockchain.
In PKC, 2022, pp. 252-282.

[69] Cerulli, A., Connolly, A., Neven, G., Preiss, F.S. and
Shoup, V. vetkeys: How a blockchain can keep many
secrets. Cryptology ePrint Archive. 2023.

[70] Liu, Z., Cao, Z. and Wong, D.S. Efficient generation of
linear secret sharing scheme matrices from threshold
access trees. Cryptology ePrint Archive. 2010

[71] Shoup, V. and Smart, N.P. Lightweight asynchronous
verifiable secret sharing with optimal resilience. JoC,
2024, 37(3), p.27.

A Access Structure Examples

Figure 16: An example access structure using boolean
formula, where {P1,P2} and {P2,P3} are authorized sets.

Figure 17: An example access structure using threshold
gate, where {P1,P2} and {P2,P3,P4} are authorized sets.

B Illustrative Overview of PVGSS

As described in Section 4, LSSS (on group G) can be
directly used as GSS (on group G) scheme. Also, GSS (on
group G) can be constructed by recursively leveraging Shamir
SS (on group G). To generate NIZK proofs of knowledge of
shares si ∈Z, we employ GSS in the sharing phase for PVGSS.
Similar to most PVSS schemes [12, 41, 42], we recover a
secret S ∈G, where GSS on group G is applied. Therefore,
we derive two PVGSS constructions: one based on Shamir’s
SS and the other on LSSS. Figure 18 illustrate our concept
vividly.

Figure 18: High-level overview of our PVGSS construction

C Security Proof of GSS Schemes

We first depict the security properties of GSS scheme, then
argue the constructions in Section 4 satisfy the properties.
• Correctness: If the secret sharing process is correctly

followed, any authorized set of participants can reconstruct
the secret.
• Secrecy: Nothing information about the secret is revealed,

given any unauthorized set of participants.
GSS based on LSSS: As the scheme is built directly on

LSSS, the correctness and secrecy are self-evident.
Shamir SS scheme on Group G:

• Correctness: The shares are Si = S · g f (i), i ∈ [0,n].
Following the correctness of Shamir SS scheme, in-
puts any t shares Q, we can reconstruct the secret

∏i∈I S
∏ j∈I, j ̸=i

− j
i− j

i = S · g f (0) = S, where I is the set con-
taining indexes of the shares Q.

• Secrecy: If less than t shares can reconstruct the secret,
then we have ∑i∈I f (i)∏ j∈I, j ̸=i

− j
i− j = f (0), |I|< t, which

violates the security properties of Shamir SS scheme.

GSS on group G based on Shamir SS: For any node in GSS
scheme on G, the correctness and secrecy can be derived
directly from those of Shamir SS scheme on G. Thus the
correctness and secrecy of GSS scheme on group G are
satisfied.

LSSS on Group G:

• Correctness: The shares are Si = Ssi = gs·si for i ∈
[1, · · · |A|]. Q is a authorized set with IQ = {i ∈ [m] :

ρ(i) ∈ Q} and MQ ∈ Z|IQ|×l
N , which means there exists

wQ ∈Z
|IQ|
N such that w⊤QMQ = [1,0, . . . ,0]. Following the

correctness of LSSS scheme, we have ∑i∈IQ wi · si = 1,

thus S = ∏i∈IQ Swi
i = ∏i∈IQ gs·si·wi = (gs)

∑i∈IQ wi·si = gs

is correct.

• Secrecy: If unauthorized set Q can reconstruct gs =

∏i∈IQ Swi
i , then it can find wQ ∈ Z|IQ|N such that w⊤QMQ =

[1,0, . . . ,0], which violates the security properties of
LSSS scheme, as only authorized sets can find such wQ
and reconstruct.

GSS on GroupG using LSSS: As the scheme is built directly
on LSSS on G, the correctness and secrecy are inherently
ensured.

D Structs and Global States in FDEX

1 struct Order {
2 address seller; //Order creator
3 address tokenSell; // Token to sell (e.g., ETH)
4 uint256 amountSell; // Amount to sell (e.g., 2 ETH)
5 address tokenBuy; // Token to buy (e.g., USDT)
6 uint256 amountBuy; // Amount to buy (e.g., 7000 USDT)
7 bool isActive; // Order state
8 }
9 // Store orders

10 mapping(uint256 => Order) public orders;
11

12 // values to track session state
13 enum SessionState { Active , halfSwap1 , finishSwap1 , halfSwap2 , Complain , Success , Failure }
14 struct Session {
15 SessionState state; // Session state
16 address[] exchangers; // seller as exchanger[0], buyer as exchanger[1] in the session
17 address[] watchers; // Watchers in the session
18 mapping(address => G1Point) Cshares1; //shares from seller
19 mapping(address => G1Point) Cshares2; //shares from buyer
20 mapping(address => G1Point) shares; //decrypted shares
21 uint256 t1; // Expiration time t1
22 uint256 t2; // Expiration time t2
23 bool[2] seller_flag; // swap flag of seller
24 bool[2] buyer_flag; // swap flag of buyer
25 mapping(address => bool) watcher_flag; //submit flag of watcher
26 }
27 // Store sessions
28 mapping(uint256 => Session) public sessions;
29

30 //Events in the smart contract
31 event TokensReceived(address token , address from , uint256 amount);
32 event TokensFrozen(address token , address from , uint256 amount , uint256 sessionId);
33 event TokensSwapped(address token , address from , uint256 amount , uint256 sessionId);
34 event ComplaintFired(address complainer , uint256 sessionId);
35 event SessionStateUpdated(uint256 sessionId , SessionState state);
36 event UserNotified(uint256 sessionId , address user);
37 event OrderCreated(uint256 orderId , address seller , address tokenSell , uint256 amountSell ,

address tokenBuy , uint256 amountBuy);
38 event SessionCreated(uint256 orderId , address seller , address buyer , address[] watchers ,

uint256 t1, uint256 t2);
39 event Incentivized(address user , uint256 amount);
40 event Penalized(address user , uint256 amount);

	Introduction
	Potential of Generalized Access Structure
	Critical Role of Public Verifiability
	Contributions

	Related Works
	(Publicly) Verifiable Secret Sharing
	Access Structures in Secret Sharing

	Preliminaries
	Shamir Secret Sharing
	(Generalized) Access Structure
	Linear Secret Sharing Scheme
	 Protocol and NIZK Proof
	Blockchain and Ethereum

	Generalized Secret Sharing
	Publicy Verifiable Generalized Secret Sharing (PVGSS)
	Definition of PVGSS
	PVGSS Construction Based on GSS
	Security Analysis

	Building a Decentralized Exchange
	High-Level Overview
	Access Structure for the DEX
	Construction of the DEX
	Incentive Mechanism
	Property Analysis

	Experimental Evaluation
	Other Applications
	Conclusion
	Access Structure Examples
	Illustrative Overview of PVGSS
	Security Proof of GSS Schemes
	Structs and Global States in FDEX

