
1

Publicly Verifiable Threshold Proxy Re-encryption
and Its Application in Data Rights Confirmation

Tao Liu, Liang Zhang*, Haibin Kan and Jiheng Zhang

Abstract—Proxy re-encryption (PRE) has been regarded as an
effective cryptographic primitive in data sharing systems with
distributed proxies. However, no literature considers the honesty
of data owners, which is critical in the age of big data. In this
paper, we fill the gap by introducing a new proxy re-encryption
scheme, called publicly verifiable threshold PRE (PVTPRE).
Briefly speaking, we innovatively apply a slightly modified
publicly verifiable secret sharing (PVSS) scheme to distribute
the re-encryption keys to multiple proxies. Consequently, we
achieve publicly verifiability of data owners non-interactively.
Then, the correctness of data users in decryption and public
verifiability of proxies in re-encryption are guaranteed seamlessly
through execution of the PVSS reconstruction algorithms. We
further prove that PVTPRE satisfies IND-CPA security. Besides,
we put forward a privacy-preserving data rights confirmation
framework by providing clear principles for data ownership
and usage, based on the PVTPRE scheme and blockchain.
Blockchain plays the role of data bank and smart contract engine,
providing reliable storage and verification for all framework.
To our knowledge, we are the first to systematically investigate
data rights confirmation considering privacy as well as public
verifiability, addressing the growing need for robust mechanisms
to protect data rights and ensure transparency. Finally, we
conduct comprehensive experiments to illustrate the correctness,
feasibility and effectiveness. The experimental results show that
our PVTPRE outperforms other PREs in many aspects.

Index Terms—Threshold proxy re-encryption, Publicly verifi-
able, Data rights confirmation, Blockchain, PVSS

I. INTRODUCTION

Data sharing [1]–[3] plays a vital role in fostering collab-
oration among businesses, researchers, and developers, driv-
ing new discoveries, technologies, and solutions. Proxy re-
encryption (PRE) [4]–[6] is a significant extension of public
key encryption that enables a proxy to convert delegator’s
ciphertext into a new ciphertext for a delegatee. This pow-
erful cryptographic primitive finds extensive applications in
secure data sharing, including in fields such as medical data
collaboration [7]–[9], the Internet of Things [10], cloud com-
puting [11], [12] and data trading [13].

Tao Liu and Liang Zhang are with School of Cyberspace Security (School
of Cryptology), Hainan University, Haikou, 570228, China. Liang Zhang is
also with Department of Industrial Engineering and Decision Analytics, Hong
Kong University of Science and Technology. (e-mail: jb8181632@gmail.com;
briliasm@gmail.com)

Haibin Kan is with School of Computer Science, Fudan University, Shang-
hai 200433, China, Shanghai Engineering Research Center of Blockchain,
Shanghai 200433, China and Yiwu Research Institute of Fudan University,
Yiwu City 322000, China. (e-mail: hbkan@fudan.edu.cn)

Jiheng Zhang is with Department of Industrial Engineering and Decision
Analytics, Hong Kong University of Science and Technology. (e-mail: ji-
heng@ust.hk)

*Corresponding author

In PRE schemes, the honesty of the proxy plays a crucial
role in practical applications. Luo et al. [11] highlight that
in traditional PRE schemes, the proxy may disclose the re-
encryption key, leading to potential abuse of the re-encryption
key. To mitigate this issue, they propose a public traceable
PRE scheme. However, the traceability algorithm requires the
re-encryption key as input, which must be made publicly
available during the tracing process.

Moreover, ensuring the correctness of the re-encrypted ci-
phertext produced by the proxy is also critical in PRE schemes.
In other words, detecting malicious activities by the proxy
during the re-encryption process is a key consideration. Ohata
et al. [5] are the first to address this issue and introduce
the concept of “re-encryption verifiability”. Specifically, they
propose a verifiable PRE scheme based on the re-splittable
threshold public key encryption scheme [14], which achieves
re-encryption verifiability. Some other PRE schemes [15]
achieve verifiability by relying on a “claim” algorithm, which
requires disclosing the plaintext and the re-encryption key.
This approach necessitates an additional communication round
to determine whether the proxy is faulty.

Many PRE schemes rely on a single semi-trusted proxy
to perform the re-encryption process. However, this approach
is vulnerable to a single point of failure and is not suitable
for distributed systems. To address this limitation, multi-proxy
or threshold re-encryption schemes have been introduced and
extensively studied [6], [16]–[18]. In (t, n)-threshold PRE
schemes, the re-encrypted ciphertext is generated by collabo-
ration of at least t out of n proxies. In terms of computational
complexity, many threshold PRE schemes [16]–[18] require
bilinear pairings.

Furthermore, none of previous literatures considers the
honesty of the delegator (i.e., the data owner). Previous PRE
schemes [5], [6], [10]–[12], [15], [19]–[21] rely on transmit-
ting re-encryption keys through private and secure channels.
In real-world scenarios, proxies must ensure that the received
keys can be correctly used for re-encryption, and the delegatee
(i.e., the data user) needs to verify that the decrypted data
matches their expectations. In the event of a data sharing
failure, it is essential to determine which entity is responsible
for the issue. Therefore, both the encryption and re-encryption
keys should be verifiable or accountable.

We address the aforementioned challenges by proposing
a publicly verifiable threshold proxy re-encryption (PVT-
PRE) scheme based on publicly verifiable secret sharing
(PVSS) [22]–[24]. PVSS is a variant of secret sharing
scheme [25] that enables anyone to verify the correctness
of the shares publicly. By designating the delegator as the

PVSS dealer and the proxies as PVSS shareholders, we
can elegantly construct the PVTPRE scheme. Consequently,
re-encryption keys can be sent using public channels and
whether the delegator has generated re-encryption keys can be
checked publicly. The underlying PVSS protocol we employ is
DHPVSS [22]. Compared to other PVSS schemes, DHPVSS
utilizes the dealer’s private key when generating the encrypted
secret shares, a feature that is crucial for the security of PRE
schemes.

Based on the proposed PVTPRE and blockchain [26],
we present a data rights confirmation framework. Due to
its decentralization, security, transparency, and immutability,
blockchain serves as both the data bank and the smart contract
engine. The data bank is designed for data storage, manage-
ment, and governance. Specifically, we implement the data
bank by integrating IPFS with Ethereum. On one hand, the
outputs of PVTPRE algorithms are uploaded to the blockchain
and automatically verified by smart contracts. On the other
hand, the ownership, control, and usage rights of data are
recorded on the blockchain to ensure the transparency and
traceability of data rights confirmation. The proposed frame-
work also accounts for potential threats posed by all participat-
ing entities, ensuring its robustness in practical applications.

Summarily, our contributions are as follows.

• By innovatively applying the PVSS scheme to construct
threshold PRE, we introduce the concept of PVTPRE
and provide a concrete construction using the DHPVSS
scheme. Additionally, we formally prove the security
requirements of the scheme.

• The PVTPRE not only supports multiple proxies with
threshold tolerance, but also guarantees verifiability of
the proxies when performing re-encryption.

• For the first time, the honesty of the delegator (data
owner) is incorporated into our PRE scheme. Specifically,
the delegator in our PVTPRE is held accountable for
generating the re-encryption keys for the proxies.

• We integrate the PVTPRE and blockchain into a data
rights confirmation framework, enabling data manage-
ment in a transparent yet verifiable manner. Furthermore,
as a complement to PVTPRE, we provide a dispute
resolution method, allowing the data owner to be held
accountable during data encryption.

• We provide a comprehensive comparison with related
works in terms of complexity and evaluate the compu-
tational cost based on the Ethereum-compatible BN128
curve. Experimental results demonstrate that the pairing-
free PVTPRE scheme achieves plausible performance.

II. RELATED WORKS

PRE is proposed by Blaze et al. [4] and has been extensively
studied by the academic community for decades. Numerous
PRE schemes with varying properties have been proposed
to meet the diverse demands of different applications. In the
following section, we focus on describing the characteristics
of recent PRE schemes, with particular emphasis on their
verifiability.

Traceable proxy re-encryption. Given the risk of re-
encryption key abuse during the delegation process in PRE—
whether due to malicious behavior by the proxy or collusion
between the proxy and the delegatee—the concept of traceable
proxy re-encryption [27] scheme has been introduced. While
this primitive does not completely eliminate the risk of re-
encryption key abuse, it provides a deterrent to potential
abusers. Guo et al. [28] propose a generic construction of
traceable PRE, embedding collusion-resistant codes into the
re-encryption key to enable traceability of any abuse. Recently,
Luo et al. [11] introduced a public trace-and-revoke PRE
scheme, claiming that their approach can identify abusers of
the re-encryption key and revoke their decryption capabilities.
This work opens a new avenue of research for addressing the
problem of re-encryption key abuse.

Autonomous path proxy re-encryption. Blaze et al. [4]
classify proxy re-encryption (PRE) schemes based on the
number of allowed transformations. If a PRE scheme permits
the ciphertext to be transformed multiple times (e.g., from
Alice to Bob, from Bob to Carol, and so on), it is considered
multi-hop; otherwise, it is single-hop. In a multi-hop scheme,
only the first proxy is determined by the delegator. To ensure
that the entire proxy process remains under the delegator’s
control, the concept of autonomous path proxy re-encryption
(AP-PRE) [19] is introduced. Lin et al. [29] observe that the
access policy used in AP-PRE schemes, which allows the
delegator to predefine the entire decryption path, supports only
linked paths and does not allow proxies in the path to generate
authorized branches for accessing other data. This limitation
may lead to excessively long linked paths in practice. To
address this issue, Lin et al. [29] propose a generalized
autonomous path proxy re-encryption scheme (ABP-PRE) that
supports branching functionality.

Threshold proxy re-encryption. Recently, several threshold
PRE schemes have been proposed and applied to specific sce-
narios. For instance, Feng et al. [16] introduce a certificateless
threshold PRE scheme and apply it to data sharing in cloud-
chain collaboration within industrial IoT environments. Patil
et al. [17] propose a new threshold PRE scheme designed for
networks with resource-constrained environments. However,
all of these schemes require pairing operations. More recently,
Zhao et al. [30] propose a threshold PRE scheme called AB-
TPRE, which is based on key-policy attribute-based encryption
and the (t, n)-threshold secret sharing scheme [25]. In their
scheme, the re-encryption key is split into n shares, with
each proxy receiving one share to generate a re-encrypted
ciphertext share. Nunez et al. [6] also draw on Shamir’s Secret
Sharing [25] to propose a threshold PRE scheme, Umbral, that
does not require pairing operations. This scheme utilizes secret
distribution and secret reconstruction techniques during the re-
encryption key generation and decryption phases, respectively.
In this paper, the construction of our threshold PRE scheme is
inspired by their approaches, and our PRE is also pairing-free.

Verifiable proxy re-encryption. Recently, some researches
have focused on the public verifiability property of PRE [5],
[6], [15]. Ohata et al. [5] propose a verifiable PRE scheme
based on the re-splittable threshold public key encryption
scheme [14], achieving re-encryption verifiability. However,

in their scheme, only the delegatee is permitted to verify the
correctness of the re-encrypted ciphertext, thereby detecting
and suppressing malicious behavior by the proxy. Other exter-
nal users cannot perform such verification, which may lead to
situations where the delegatee maliciously accuses the proxy.
In the threshold PRE scheme Umbral, proposed by Nunez
et al. [6], corresponding zero-knowledge proofs are generated
during the re-encryption process to ensure the correctness of
the re-encrypted ciphertext. This guarantees the public veri-
fiability of the re-encryption operation, meaning any verifier
can check the correctness of the re-encrypted ciphertext. Ge
et al. [15] propose a verifiable PRE scheme, VF-CP-ABPRE,
based on ciphertext-policy attribute-based encryption [31].
They leverage the technique of commitment and message-lock
encryption (MLE) [32] to guarantee the correctness of the re-
encrypted ciphertext, which can be publicly verified. Although
the aforementioned researches have mentioned the properties
of verifiability or public verifiability, they are limited to
the re-encrypted ciphertext. These works consider only the
verifiability of the re-encrypted ciphertext and overlook the
verifiability of the re-encryption key.

III. PRELIMINARIES

A. Shamir SS on Groups

A (t, n)-threshold Shamir Secret Sharing (SS) scheme [25]
(where 0 < t < n) enables a dealer to share a secret s ∈ Zp

among n shareholders. Any set of at least t shares, provided
by the shareholders, can reconstruct the secret s ∈ Zp. The
Shamir SS on Groups scheme [22] allows a dealer to share
a secret S = gs, where S is an element of a group G
with generator g. The scheme can be described using two
algorithms as follows:

• ({Ai}i∈[n],m(X)) ← GS.Share(ppsh, S). In the algo-
rithm, the dealer first selects a random (t − 1)-degree
polynomial m(X) with {αi} are the coefficients, satis-
fying m(α0) = 0. The dealer then computes the share
Ai = S · gm(αi) and securely sends to shareholder i.

• S ← GS.Recon(ppsh, T , {Ai}i∈T). Given a set of share-
holders T , each shareholder i ∈ T first computes the La-
grange interpolation coefficients λi,T = Πj∈T ,j ̸=i

α0−αj

αi−αj
,

where T ⊆ [n] and |T | ≥ t. The dealer’s secret is
recovered as S = Πi∈T A

λi,T
i .

B. Discrete Logarithm Equality (DLEQ)

The discrete logarithm equality (DLEQ) problem involves
proving the equality of two discrete logarithms for two group
elements. Given two generators a and b of an elliptic curve
group, and a secret value x ∈ Zp, where A = ax and B = bx.
The goal is to prove that logaA = logbB without revealing
x. A non-interactive zero knowledge (NIZK) proof of DLEQ
can be constructed by leveraging Σ-protocol [33] and Fiat-
Shamir heuristic [34]. The protocol can be described using
two algorithms as follows:

• πx ← DLEQ.Proof(x; a,A, b, B). The algorithm enables
a prover to generate an NIZK proof πx to prove that the
discrete logarithms of A and B are equal.

• (0/1) ← DLEQ.Verify(a,A, b, B, πx). This algorithm
allows any external verifier to verify that the prover
knows the discrete logarithm x without revealing it.

C. Publicly verifiable Secret Sharing

Compared to traditional secret sharing schemes [25] (where
0 < t < n), the PVSS scheme can not only enable a dealer
to share secrets among n shareholders, but also allow any
external verifier to verify the validity of all the secret shares
from both the dealer and shareholders. The PVSS proposed
by Cascudo et al. [22] can be described as below:

• pp ← PVSS.Setup(1λ, t, n). Given security parame-
ters λ, t and n, a list of public parameters pp =
(G, g, t, n, α0, {(αi, vi)}i∈[n]) are generated, where G is
a a group with generator g, α0, α1, ..., αn ∈ Zp are
randomly selected values and vi = Πj∈[n],j ̸=i(αi−αj)

−1.
• ({Ci}, πsh) ← PVSS.Share(pp, pkD, skD, {pki}, S).

The algorithm takes public parameters pp, the dealer’s
key pair (pkD, skD), n shareholders’ public keys and the
secret S(= gs, where s ∈ Zp) as inputs. It generates
n encrypted shares for the shareholders and a DLEQ
proof πsh. Note that private keys skD and {ski}i∈[n]

are randomly selected values from Zp and public keys
pkD = gskD and {pki = gski}i∈[n].

• (0/1) ← PVSS.Verify(pp, pkD, {(pki, Ci)}i∈[n], πsh).
The algorithm allows any external verifier uses pp, pkD,
{(pki, Ci)}i∈[n] and πsh to verify the validity of the
encrypted shares from the dealer.

• (Ai, πDeci) ← PVSS.PreRecon(pp, pkD, pki, ski, Ci).
Each shareholder i to decrypt his encrypted share Ci and
generate the corresponding zero knowledge proof πDeci.

• (0/1) ← PVSS.VerifyDec(pp, pkD, pki, Ci, Ai, πDeci).
The algorithm allows any external verifier to verify the
validity of the decrypted share from shareholder i.

• S ← PVSS.Recon(pp, {Ai}i∈T). This algorithm recon-
structs the orginal secret S on group G using at least t
shares by calling GS.Recon.

PVSS schemes generally satisfy the following properties:
• Correctness Correctness guarantees that if the dealer and

at least t shareholders follow the protocol, the recon-
structed secret will be identical to the original secret.

• Public Verifiability Public Verifiability allows any exter-
nal verifier to validate the correctness of all the secret
shares from both the dealer and shareholders.

• IND1-Secrecy IND1-Secrecy [35] ensures that any set of
fewer than t shareholders cannot gain any information
about the original secret.

D. Ethereum Blockchain

Ethereum [36] is a decentralized, open-source blockchain
platform that enables developers to build and deploy de-
centralized applications (dApps). It provides a programmable
environment through smart contracts, which are self-executing
contracts. Transactions in smart contract execution consumes
“Gas”, a unit that measures the computational resources
required for an operation or storage cost. Gas fees ensure

efficient use of resources. The ability to verify operations pub-
licly makes Ethereum an ideal tool for building decentralized
systems.

IV. PUBLICLY VERIFIABLE THRESHOLD PROXY
RE-ENCRYPTION (PVTPRE)

A. Definition

The entities in PVTPRE include the delegator A, the dele-
gatee B and the set of proxies {i}i∈[n]. The PVTPRE scheme
consists of the following algorithms:

• PRE.Setup(1λ, t, n, l) : The algorithm takes λ, t, n, l
as inputs and outputs the public parameters par and the
global parameter s. The parameter s is privately held by
the delegator A.

• PRE.KeyGen(par) : On input of the public parameters
par, all entities {j}j∈{A,B,i} use this algorithm to gen-
erate a public/private key pair (pkj , skj).

• PRE.ReKeyGen(pkB , skA, pkA, {pki}i∈[n], s) : This al-
gorithm takes all entities’ public keys, the delegator’s
private key and the global parameter s as inputs to
generate the re-encryption keys {ckFragi}i∈[n] for all
proxies along with proof πsh.

• PRE.ReKeyVerify(pkA, pkB , {ckFragi, pki}i∈[n], πsh) :
On input of all public keys, the re-encryption keys and
the proof, this algorithm verifies the correctness of the
re-encryption keys. If the algorithm outputs “1”, the re-
encryption keys are correct; otherwise, they are incorrect.

• PRE.Enc2(pkA,M, s) : On input of A’s public key,
s, and data M , the algorithm outputs the second level
ciphertext C that can be re-encrypted into the first level
ciphertext C ′.

• PRE.Enc1(pkB , pkA, skA,M, s) : The algorithm takes
the public keys of A and B, A’s private key, M and
s to generate the first level ciphertext C ′ that cannot be
re-encrypted.

• PRE.ReEnc(pkA, {ckFragi, pki, ski}i∈[n], C) : Given
A’s public key, all proxies’ key pairs, the re-encryption
keys and the second level ciphertext, the re-encryption
algorithm outputs the first level ciphertext C ′ along with
the proofs {πrei}i∈[n].

• PRE.ReEncVerify(ckFragi, C
′
2i, πrei, pki, pkA) : The al-

gorithm takes as input the re-encryption keys, the first-
level ciphertext, the proxies’ public keys, A’s public key,
and the proofs {πrei}. It outputs “1” to indicate that the
first level ciphertext is valid, or “0” to indicate that it’s
invalid.

• PRE.Dec2(skA, C) : On input A’s private key and second
level ciphertext, the algorithm outputs the data M .

• PRE.Dec1(pkA, skB , C
′, T) : On input public key of A

and the private key of B, the first level ciphertext and the
set of proxies T , the algorithm outputs the data M .

The PVTPRE satisfies the following properties:
• Correctness: The delgator and the delegatee can cor-

rectly decrypt the second level and first level ciphertext,
respectively.

• Public verifiability: The re-encryption keys and the re-
encrypted ciphertext are publicly verifiable.

• Fault tolerance: A delegatee colluding with at most t−1
malicious proxies cannot recover the plaintext.

• Secrecy: The PVTPRE satisfies IND-CPA security and
its definition is given in Appendix B, following the def-
initions in [19], [20]. Besides, colluding proxies cannot
recover the plaintext.

B. Construction

Figure 1 illustrates the concrete construction of the proposed
PVTPRE scheme. The construction mainly utilizes PVSS as
a cryptographic primitive. Below, we provide detailed ex-
planations of the implementation of the primary algorithms:
PRE.Setup, PRE.ReKeyGen, PRE.ReKeyVerify, PRE.ReEnc,
and PRE.Dec1.

The PRE.Setup(1λ, t, n, l) algorithm takes as inputs
λ, t, n, l to generate the public parameters par =
(pp,H,KDF) and the global parameter s. The pp =
(G, g, t, n, α0, {(αi, vi)}i∈[n]) is generated by PVSS.Setup.
The key derivation function KDF : G → {0, 1}l is modeled
as a random oracle. H is a random oracle that maps inputs
to a polynomial with degree less than n − t − 2. Moreover,
the global parameter s is randomly selected from Zp, is one-
time use only, and is privately owned by the delegator A. In
the subsequent algorithms, we omit the public parameters par
from the input.

In the PRE.ReKeyGen(pkB , skA, pkA, {pki}i∈[n], s) algo-
rithm, delegator A generates re-encryption keys {ckFragi}
for the designated proxies, along with the corresponding NIZK
proof πsh using PVSS.Share algorithm. Note that we have
made a slight modification to the PVSS.Share algorithm: the
public key pkB of the delegatee is incorporated into the share
encryption process, as depicted in Figure 1. This modification
prevents proxies from recovering the key seed from {C ′

2i},
thereby ensuring the confidentiality of the delegator’s data.
When considering pkB · pki as a whole, which represents the
public key of shareholder i in the DHPVSS scheme [22], the
modification is essentially equivalent to the original DHPVSS
scheme and does not impact its security.

In the PRE.ReKeyVerify(pkA, pkB , {ckFragi, pki}i∈[n], πsh)
algorithm, the PVSS.Verify algorithm is used to verify the
validity of the re-encryption keys generated by the delegator
A. When invoking the PVSS.Verify algorithm, pkB · pki can
similarly be treated as a whole.

In the PRE.ReEnc(pkA, {ckFragi, pki, ski}i∈[n], C) algo-
rithm, the delegator’s public key, the re-encryption keys,
proxies’ private keys and the second level ciphertext are used
to generate the first level ciphertext C ′ = (C1, {C ′

2i}i∈[n]),
along with the corresponding NIZK proofs {πrei}i∈[n], which
ensure the validity of the first-level ciphertext. This process
corresponds to the PVSS.PreRecon algorithm.

The PRE.ReEncVerify(ckFragi, C
′
2i, πrei, pki, pkA) algo-

rithm executes the PVSS.VerifyDec algorithm to verify the
validity of the first level ciphertext, i.e., re-encrypted cipher-
text.

In the PRE.Dec1(pkA, skB , C
′, T) algorithm, the first level

C ′ is first parsed as (C1, {C ′
2i}i∈[n]). Then, the subset

{C ′
2i}i∈T are decrypted using the delegatee’s private key to

Functionality The proposed publicly verifiable threshold PRE scheme

(par, s)← PRE.Setup(1λ, t, n, l) :

pp← PVSS.Setup(1λ, t, n), where pp = (G, g, t, n, α0, {(αi, vi)}i∈[n])

par ← (pp,H,KDF)

s
R←− Zp (s is private to the delegator)

(pkj , skj)← PRE.KeyGen() :

skj
R←− Zp, pkj ← gskj

({ckFragi}i∈[n], πsh)← PRE.ReKeyGen(pkB , skA, pkA, {pki}i∈[n], s) :

PVSS.Share



ppsh ← pp \ {vi}i∈[n],
({kFragi}i∈[n],m(X))← GS.Share(pp, gs),

∀i ∈ [n], ckFragi ← (pkB ·pki)skA · kFragi,
m∗ ← H(pkA, pkB , {(pki, ckFragi)}i∈[n]),

V ← Πn
i=1ckFrag

vi·m∗(αi)
i , U ← Πn

i=1(pkB ·pki)vi·m
∗(αi),

πsh ← DLEQ.Proof(skA; g, pkA, U, V)

(0/1)← PRE.ReKeyVerify(pkA, pkB , {ckFragi, pki}i∈[n], πsh) :

PVSS.Verify


m∗ ← H(pkA, pkB , {(pki, ckFragi)}i∈[n]),

V ← Πn
i=1ckFrag

vi·m∗(αi)
i , U ← Πn

i=1(pkB ·pki)vi·m
∗(αi),

(0/1)← DLEQ.Verify(g, pkA, U, V, πsh)

C ← PRE.Enc2(pkA,M, s) :

K ← KDF(gs), C1 ← AES.Enc(M,K)

C ← (C1, C2 = pks
A)

C′ ← PRE.Enc1(pkB , skA,M, s) :

K ← KDF(gs), C1 ← AES.Enc(M,K)

({kFragi}i∈[n],m(X))← GS.Share(pp, gs)

∀i ∈ [n], C′
2i ← pkskA

B · kFragi

C′ ← (C1, {C′
2i}i∈[n])

(C′, {πrei}i∈[n])← PRE.ReEnc(pkA, {ckFragi, pki, ski}i∈[n], C) :

Parse C as (C1, C2)

∀i ∈ [n], PVSS.PreRecon
{

C′
2i ← ckFragi/pk

ski
A ,

πrei ← DLEQ.Proof(ski; g, pki, pkA, ckFragi/C
′
2i)

C′ ← (C1, {C′
2i}i∈[n])

(0/1)← PRE.ReEncVerify(ckFragi, C
′
2i, πrei, pki, pkA) :

PVSS.VerifyDec
{

(0/1)← DLEQ.Verify(g, pki, pkA, ckFragi/C
′
2i, πrei)

M ← PRE.Dec2(skA, C) :

Parse C as (C1, C2)

K ← KDF(C
1/skA
2), M ← AES.Dec(C1,K)

M ← PRE.Dec1(pkA, skB , C
′, T) :

Parse C′ as (C1, {C′
2i})

∀i ∈ T , kFragi ← C′
2i/pk

skB
A

PVSS.Recon

{
ppsh ← pp \ {vi}i∈[n],
P reK ← GS.Recon(ppsh, T , {ckFragi}i∈T)

K ← KDF(PreK), M ← AES.Dec(C1,K)

Fig. 1: Construction of the proposed publicly verifiable threshold PRE scheme

generate the shares {kFragi}i∈T of the key seed. These t
shares are subsequently used to recover the key seed via the
PVSS.Recon algorithm. After the key seed is recovered, the
same operations as in the PRE.Dec2 algorithm are performed
to decrypt C1 and obtain the plaintext M .

C. Security Analysis

Correctness: The correctness of the decryption algorithm
can be explained as follows:

• Given C is the second level ciphertext, decryption of C
by leveraging PRE.Dec2 is correct, due to Equations (1)
and (2).

KDF(C
1/skA

2) = KDF(gs) = K (1)

AES.Dec(AES.Enc(M,K),K) = M (2)

• Given C ′ is the first level ciphertext (i.e. the re-encrypted
ciphertext), decryption of C ′ by leveraging PRE.Dec1 is
correct, due to Equations (3), (4) and (2).

C ′
2i/pk

skB

A = (kFragi · pkskA

B)/pkskB

A = kFragi (3)

GS.Recon({kFragi ∈ GS.Share(gs)}i∈T) = gs (4)

Public verifiability: In our PRE scheme, the public verifi-
ability is primarily reflected in two aspects: first, the public
verifiability of re-encryption keys, and second, the public
verifiablity of the re-encryption ciphertext (i.e., the first level
ciphertext).

Theorem 1: The re-encryption keys in our PRE scheme
are publicly verifiable. Namely, any external verifier with
publicly known information can verify the correctness of the
re-encryption keys generated by the delegator.
Proof : The public verifiability property of the re-encryption
keys essentially inherits from the DHPVSS [22]. In our
PRE scheme, the PRE.ReKeyGen algorithm used by dele-
gator to generate the re-encryption keys corresponds to the
PVSS.Share algorithm, and the generated re-encryption keys
are associated with the encryption shares. Since the encryption
shares in the DHPVSS scheme have been proven to possess
the property of public verifiability, the re-encryption keys
generated in our PRE scheme also exhibit public verifiability.

Theorem 2: The first level ciphertext in our PRE scheme is
publicly verifiable. Namely, any external verifier with publicly
known information can verify the correctness of the re-
encryption ciphertext generated by proxies.

Proof : Simultaneously with the generation of the first
level ciphertext, we require each proxy i to generate a
non-interactive zero-knowledge proof πrei concerning the
re-encryption ciphertext, in order to ensure the correct-
ness of the re-encryption ciphertext. More precisely, if
PRE.ReEncVerify(ckFragi, C

′
2i, πrei, pki, pkA) = 1 then

πrei is a valid proof of knowledge of discrete log-
arithm equality for g, pki, pkA, ckFragi/C

′
2i. There-

fore, the proxy i’s private key ski such that pki =
gski and ckFragi/C

′
2i = pkski

A can be extracted
from πrei. Therefore C ′

2i = ckFragi/pk
ski

A , and so
PRE.ReEnc(pkA, {ckFragi, ski}i∈[n], C) = ({C ′

2i}i∈[n], ·)
for any randomness input to this algorithm.

Fault tolerance: This property can be proved by Theorem 6
in Appendix C.

Secrecy: The proof of IND-CPA security and resistance to
collusion attacks can be found in Appendix C.

D. Complexity

We compare the computational complexity between our
PVTPRE with previous schemes in Table I. In the table, n
represents the number of proxies, t denotes the threshold value.
m is the size of the set of user attributes with access rights, and
r refers to the total number of attributes in scheme [15] based
on attribute-based encryption. The results show that many
algorithms in PVTPRE has lower computational overhead
compared to Umbral, which achieve similar functionalities,
with both schemes being paring-free. Moreover, only the
proposed PVTPRE allows for the verification of the validity
of re-encryption keys.

V. APPLICATION IN DATA RIGHTS CONFIRMATION

In this section, we present the framework for data rights
confirmation, based on the proposed PVTPRE scheme. The
framework enables the realization of the three rights (owner-
ship, control and usage) separation model. Figure 2 provides
a high-level overview of the proposed framework, leveraging
the PVTPRE algorithms.

As illustrated in Figure 2, our framework primarily consists
of four entities: data owner A, data user B, authorizers {i},
and data bank. Under the three rights separation model, the
rights and responsibilities of each entity are defined as follows:

• Data owner A: Data owner A, the PRE delegator, is the
producer and owner of the data. A retains full ownership

TABLE I: Computation complexity

Ref. Multiple PRE.Enc2 PRE.ReKeyGen PRE.ReKeyVerify PRE.ReEnc PRE.ReEncVerify PRE.Dec1
proxies Exp. Pair. Exp. Pair. Sup. Exp. Exp. Pair. Sup. Exp. Exp. Pair.

[37] ✗ 4 1 1 - ✗ - 1 1 ✗ - 1 1
[29] ✗ 4 1 4 1 ✗ - - 1 ✗ - 2 2
[10] ✗ 2 1 3 - ✗ - - 1 ✗ - 1 1
[38] ✗ 4 - 5 - ✗ - 1 1 ✗ - 2 3
[15] ✗ 3r+5 4 m+3r+8 2 ✗ - r 2r+2 ✓ 3 r+3 2r+1
[5] ✗ 1 - 4 - ✗ - 4 - ✓ 2 6 -
[16] ✓ 4 1 n+1 - ✗ - 3t 2t ✗ - 1 -

Umbral [6] ✓ 3 - 2n+3 - ✗ - 5n - ✓ 6n 2t+3 -
Our ✓ 2 - 4n+2 - ✓ 2n+4 3n - ✓ 4n t+1 -

rights over the data and has the authority to decide who
may access and use the data generated by him.

• Data user B: Data user B, the PRE delegatee, can submit
a request to gain usage rights for A’s data.

• Authorizers {i}: The set of authorizers, PRE proxies,
forms a decentralized committee. These authorizers are
fault-tolerant in data control, as they are responsible for
performing data re-encryption.

• Data Bank: Data bank is composed of two primary
components: the blockchain and a distributed file sys-
tem. The blockchain is responsible for data registration
and rights certification, ensuring transparency and trace-
ability throughout the rights confirmation process. The
distributed file system, e.g., IPFS, is tasked with securely
and efficiently storing data files.

In the following description, we omit details regarding the
initialization, such as the setup of public parameters and the
key pair generation.

A. Ownership of Dara owner

Without loss of generality, we assume that the data owner
A has already generated some data through certain activities,
which we treat as a data file.
(1) To manage the data safely and efficiently, A first encrypts

the data file using the PRE.Enc2 algorithm, producing the
corresponding second level ciphertext file C = (C1, C2).

C1 is then stored in the distributed file system, which
returns the hash of C1 to the owner A.

(2) Subsequently, A generates metadata for the plaintext data
file and uploads it to the data bank. The structure and
descriptions of the fields in metadata are detailed in
Table II, similar to Zhang et al. [39].

TABLE II: Metadata to describe the ownership

Field Type Description
ID string identifier of the data owner
hash string the hash of C1 within the second level ciphertext stored

in data bank
size int256 the size of the data file
description string a brief description of the data content
timestamp uint the time of uploading the metadata from the local

Upon receiving the Metadata uploaded by the data owner
A, the smart contract on blockchain first checks the existence
of the Metadata on blockchain by the hash field value hash
of Metadata. If the Metadata has already been recorded on
blockchain, it indicates that A is attempting to illegitimately
claim ownership of the data, and this malicious behavior will
be suppressed. Conversely, if it is not found on the blockchain,
it confirms that data owner A is indeed the producer of
the corresponding data, and the smart contract records the
Metadata on blockchain. At this point, the data ownership
confirmation process for data owner A is formally concluded.

Fig. 2: Overview of our data rights confirmation framework

B. Data control by Authorizers

In our setting, the n authorizers collectively form a decen-
tralized committee, each sharing equal control rights over the
data owned by A. The control over the owner’s data is implied
through the execution of the re-encryption algorithm. We now
continue with the introduction of the data rights confirmation
framework, as illustrated in Figure 2.
(3) Suppose B sends a data usage request to blockchain. The

request includes the identities of data owner and data user,
the hash of C1, and current timestamp.

(4) Data owner A then extracts data user’s public key pkB
from the request.

(5) A leverages the PRE.ReKeyGen algorithm to generate the
re-encryption keys {ckFragi} along with the NIZK proof
πsh and uploads them to blockchain.

(6) The smart contract invokes the PRE.ReKeyVerify algo-
rithm to verify the proof πsh. If the result returns “1”, it
indicates that the delegator A has honestly generated the
re-encryption keys.

(7) Each authorizer i downloads the corresponding re-
encryption key ckFragi from blockchain.

(8) Authorizer i then leverages the PRE.ReEnc algorithm to
generate C ′

2i of the first level ciphertext C ′ = (C1, {C ′
2i})

and the corresponding NIZK proof πrei, which are up-
loaded to blockchain.

(9) The uploaded re-encrypted ciphertext is verified by the
smart contract using the PRE.ReEncVerify algorithm. If
the verification result for πrei is “1”, it indicates that
authorizer i agrees to grant B the right to use the data.
Otherwise, authorizer i is regarded as faulty.

(10) Denote the number of correct proofs {πrei} as num .
The smart contract collects at least t(≤ num) correct
proofs and records the corresponding data control history
according to Table III.

TABLE III: The table to describe data Control

Field Type Description
user’s ID string the identity of the data user granted the right

of use for certain data
authorizers’ ID strings the identities of the authorizers who agree

to grant the right of use
hash string the hash of C1 within the second level

ciphertext stored in data bank
states bool whether num ≥ t is satisfied

timestamp uint the time of the notarization posted

C. Usage for Data user

If a threshold of authorizers have uploaded correct re-
encrypted ciphertext, the user B can access A’s data with
following steps.

(11) B downloads C ′ = (C1, {C ′
2i}) from data bank.

(12) B decrypts C ′ leveraging the PRE.Dec1 algorithm with
his private key to access the desired data.

We now consider the case where the decrypted data is
incorrect, i.e., the data owner is malicious during the execution
of the PRE.Enc2 algorithm. In this case, the data user B can
submit a dispute to blockchain, accusing the data owner A of

malicious behavior. The dispute pkskB

A , along with {πdis}, is
constructed by Equation (5), which eliminate the possibility
of false accusation.

{πdis} ← DLEQ.Proof(skB ; g, pkB , pkA, pk
skB

A) (5)

The legitimacy of the dispute can be verified by Equation (6).
Additionally, anyone can compute kFragi and recover the
PreK, as the user does, to confirm that the correct data M
cannot be obtained, thereby proving that the data owner is
malicious in executing the PRE.Enc2 algorithm.

DLEQ.Verify(g, pkB , pkA, pk
skB

A , πdis)
?
= 1. (6)

VI. EVALUATION

We evaluate the proposed PVTPRER scheme and the data
rights confirmation framework. Table IV describes the specific
environment used of our experiments. The source code is
available on Github1.

TABLE IV: Experiment environment

Virtual Machine VMware Workstation
CPU Intel (R) Core (TM) i7-11800H @2.30GHz
Operating System Ubuntu 22.04.5 LTS
Programming Language Golang, Solidity
Compiler Go 1.22.0, Solc 0.8.20
Elliptic Curve BN128
Blockchain Ethereum test network
Distributed File System IPFS

First, we introduce the performance of the primary algo-
rithms involved in the proposed PVTPRE scheme, namely,
PRE.Enc2, PRE.ReKeyGen, PRE.ReEnc, PRE.ReEncVerify,
PRE.Dec1, and PRE.ReKeyVerify. Additionally, we compare
the results of these experiments with Umbral [6]. In the
implementation of PRE.Enc2 and PRE.Dec1, the symmetric
encryption used in both schemes is realized with the AES-
256 encryption algorithm in GCM mode.

Figure 3 illustrates the computation cost of PRE.Enc2
algorithm as the size of the data increases. It can be seen
that the computation cost of PRE.Enc2 increases linearly with
the size. For a data size of 100 MB, it costs about 33.4 ms in
our scheme while Umbral incurs a cost of about 34.5 ms.

Figure 4, Figure 5, Figure 6, and Figure 7 depict the compu-
tation cost of PRE.ReKeyGen, PRE.ReEnc, PRE.ReEncVerify,
and PRE.Dec1, respectively, as the number of proxies (n)
increases. It can be observed that computational overhead of
all these algorithms increases linearly with the number of
proxies n. Furthermore, all operations can be accomplished
within 100 ms given n = 100, demonstrating their practicality.
Except the PRE.ReKeyGen algorithm, our PVTPRE signif-
icantly outperforms Umbral. The PRE.ReKeyGen algorithm
incurs higher computational overhead due to the additional
NIZK proofs that need be generated. The NIZK proofs are
adopted in the PRE.ReKeyVerify algorithm, the cost of which
is shown in Figure 8. The experimental result is align with the
complexity analysis presented in Table I.

1https://github.com/AppCrypto/PVTPRE

https://github.com/AppCrypto/PVTPRE

0 20 40 60 80 100

0

10

20

30

The size of data (MB)

tim
e

(m
s)

Our
Umbral [6]

Fig. 3: Computation cost of
PRE.Enc2

20 40 60 80 100
0

10

20

30

40

50

The number of proxies

tim
e

(m
s)

Our
Umbral [6]

Fig. 4: Computation cost of
PRE.ReKeyGen

20 40 60 80 100

0

20

40

60

80

100

The number of proxies

tim
e

(m
s)

Our
Umbral [6]

Fig. 5: Computation cost of
PRE.ReEnc

20 40 60 80 100

0

20

40

60

80

100

The number of proxies

tim
e

(m
s)

Our
Umbral [6]

Fig. 6: Computation cost of
PRE.ReEncVerify off-chain

20 40 60 80 100

5

10

15

The number of proxies

tim
e

(m
s)

Our : t = n/2 + 1

Our : t = 2n/3 + 1

Umbral [6] : t = n/2 + 1

Umbral [6] : t = 2n/3 + 1

Fig. 7: Computation cost of
PRE.Dec1

20 40 60 80 100

5

10

15

The number of proxies

tim
e

(m
s)

Our : t = n/2 + 1

Our : t = 2n/3 + 1

Fig. 8: Computation cost of
PRE.ReKeyVerify off-chain

[37] [29] [10] [6] Our
0

1

2

3

Ref.

tim
e

(m
s)

Fig. 9: Computation cost of
PRE.Enc2

[37] [29] [10] [6] Our
0

1

2

3

Ref.

tim
e

(m
s)

Fig. 10: Computation cost of
PRE.ReKeyGen

[37] [29] [10] [6] Our
0

0.5

1

1.5

2

Ref.

tim
e

(m
s)

Fig. 11: Computation cost of
PRE.ReEnc

[37] [29] [10] [6] Our
0

1

2

3

Ref.

tim
e

(m
s)

Fig. 12: Computation cost of
PRE.Dec1

20 40 60 80 100
0

2

4

6

8

·106

The number of proxies

G
as

Our : t = n/2 + 1

Our : t = 2n/3 + 1

Fig. 13: Gas cost of
PRE.ReKeyVerify on-chain

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2
·107

The number of proxies

G
as

Our
Umbral [6]

Fig. 14: Gas cost of
PRE.ReEncVerify on-chain

For the PRE.Dec1 algorithm, the computation cost is de-
pendent on the threshold t. Therefore, in our experiments, in
addition to varying the number of proxies n, we measure the
algorithm’s time overhead by setting different threshold values
t, including t = n/2 + 1 and t = 2n/3 + 1. As shown in
Figure 7, the computation cost is lower when t = n/2 + 1
compared to when t = 2n/3+1. Furthermore, it is obvious that
under the same conditions, the computation cost of PVTPRE
is lower that of Umbral.

Furthermore, to better highlight the computational complex-
ity advantages of our PRE scheme, we conduct a broader
set of comparative experiments with recent related works,
includes [6], [10], [29], [37]. In these experiments, we pri-
marily compare PRE.Enc2, PRE.ReKeyGen, PRE.ReEnc, and
PRE.Dec1 algorithms, with the results presented in Fig-
ure 9, Figure 10, Figure11, and Figure 12, respectively. Note
that [29], [37], and [10] are single-proxy PRE schemes,
with [29] being multi-hop PRE schemes. To conduct fair
comparison, we set the number of proxies n and the threshold
t to “1” in both PVTPRE and Umbral, and the number of hops
to “1” in [29].

The underlying elliptic curve BN128 is an asymmetric,
with the overhead of exponentiation on G2 being significantly
higher than that on G1. Figure 9, Figure 11, and Figure 12
demonstrate that the overhead of PRE.Enc2, PRE.ReEnc, and
PRE.Dec1 algorithms in our scheme are the lowest, owing to
the absence of pairing operations, as shown in Table I. [37]
demonstrates the best performance for PRE.ReKeyGen algo-
rithm, as shown in Figure 10. This is because it only involves
a single exponentiation operation on group G1. In contrast,
[29] requires multiple operations on G2 in its PRE.ReKeyGen
algorithm, leading to the highest cost.

The PVTPRE is applied within the data rights confir-
mation framework, where blockchain is leveraged to ex-
ecute verification algorithms, specifically PRE.ReKeyVerify
and PRE.ReEncVerify. Figure 13 and Figure 14 show the
on-chain gas consumption of the PRE.ReKeyVerify and
PRE.ReEncVerify algorithms, respectively. The gas cost of the
re-encryption keys verification algorithm PRE.ReKeyVerify
on-chain exhibits super-linear growth as the number of proxies
increases. This is because the verification process involves n
iterations, with each iteration requiring the computation of a

polynomial of degree n − t − 2. In contrast, the off-chain
verification time cost increases linearly with the number of
proxies, as shown in Figure 8. This is due to the fact that the
computational overhead of polynomial evaluations over finite
fields in Golang is negligible compared to the cost of group-
based operations.

20 40 60 80 100

0

0.5

1

1.5

2

·107

The number of authorizers (proxies) n

G
as

Matedata
usage request

Control : t = n/2 + 1

Control : t = 2n/3 + 1

Fig. 15: Gas cost of storage in
data control

20 40 60 80 100

1

1.5

2

2.5

3

·105

The number of authorizers (proxies) n

G
as

submit dispute
verify dispute

Fig. 16: Gas cost regarding
disputes

Additionally, we evaluate the gas consumption required to
implement the traceability of data ownership, rights of control
and use, within the data rights confirmation framework. This
includes storing the Metadata and Control information on
the blockchain. We also assess the gas consumption required
for data user to submit the usage request. As shown in
Figure 15, the gas costs for storing Metadata and submitting
data usage request are both constant, at 555,168 and 353,926,
respectively. This is due to the fixed, constant size of the fields
contained in these two segments. The gas cost for storing
data Control information increases linearly with the number
of authorizers (proxies). This is because it includes the ID of
all authorizers who have agreed to grant the data rights to the
data user, as detailed in Table III.

Finally, we evaluate the gas costs for submitting and ver-
ifying the dispute. As shown in Figure 16, the gas costs for
these two operations are constant, at 306,261 and 106,831,
respectively.

VII. CONCLUSION

In this paper, we propose a novel threshold proxy re-
encryption scheme based on publicly verifiable secret sharing,
referred to as publicly verifiable threshold PRE (PVTPRE).
The public verifiability of our PRE scheme is demonstrated not
only in the first-level ciphertext but also in the re-encryption
keys, a feature absent in prior research. We also analyze the
security of PVTPRE, including correctness, public verifiabil-
ity, fault tolerance, and secrecy. Furthermore, based on the
proposed PVTPRE, we design a non-interactive data rights
confirmation framework, which is well-suited in transparent
and accountable data management. Finally, we evaluate the
performance of our PVTPRE scheme through comparative
experiments conducted both on-chain and off-chain. The ex-
perimental results validate the feasibility and effectiveness of
our PVTPRE scheme.

REFERENCES

[1] Eltayieb, N., Elhabob, R., Abdelgader, A. M., Liao, Y., Li, F., & Zhou, S.
Certificateless Proxy Re-encryption with Cryptographic Reverse Firewalls

for Secure Cloud Data Sharing. Future Generation Computer Systems,
2025, 162, 107478.

[2] Rodrigues, B., Amorim, I., Silva, I., & Mendes, A. Patient-centric health
data sovereignty: an approach using Proxy re-encryption. In European
Symposium on Research in Computer Security, 2023, pp. 199-215.

[3] Zhang, L., Ou, Z., Hu, C., Kan, H., & Zhang, J. Data sharing in the
metaverse with key abuse resistance based on decentralized CP-ABE,
IEEE Transactions on Computers, 2024, accepted.

[4] Blaze, M., Bleumer, G., & Strauss, M. Divertible protocols and atomic
proxy cryptography. In EUROCRYPT, 1998, pp. 127-144.

[5] Ohata, S., Kawai, Y., Matsuda, T., Hanaoka, G., & Matsuura, K. Re-
encryption verifiability: How to detect malicious activities of a proxy in
proxy re-encryption. In CT-RSA 2015: The Cryptographer’s Track at the
RSA Conference 2015, 2015, 20-24.

[6] Nunez, D. A. V. I. D. Umbral: a threshold proxy re-encryption scheme.
NuCypher Inc and NICS Lab, University of Malaga, Spain. 2018.

[7] Pei, H., Yang, P., Li, W., Du, M., & Hu, Z. Proxy Re-Encryption for
Secure Data Sharing with Blockchain in Internet of Medical Things.
Computer Networks, 2024, 245, 110373.

[8] Rodrigues, B., Amorim, I., Silva, I., & Mendes, A. Patient-centric health
data sovereignty: an approach using Proxy re-encryption. In European
Symposium on Research in Computer Security, 2023, (pp. 199-215).
Cham: Springer Nature Switzerland.

[9] Liu, S., Qin, H., Taniar, D., Liu, W., Li, Y., & Zhang, J. A certificate-
based proxy re-encryption plus scheme for secure medical data sharing.
Internet of Things, 2023, 23, 100836.

[10] Pei, H., Yang, P., Li, W., Du, M., & Hu, Z. Proxy Re-Encryption for
Secure Data Sharing with Blockchain in Internet of Medical Things.
Computer Networks, 2024, 245, 110373.

[11] Luo, F., Wang, H., Susilo, W., Yan, X., & Zheng, X. Public trace-
and-revoke proxy re-encryption for secure data sharing in clouds. IEEE
Transactions on Information Forensics and Security, 2024.

[12] Chen, W. H., Fan, C. I., & Tseng, Y. F. CCA-Secure Key-
Aggregate Proxy Re-Encryption for Secure Cloud Storage. arXiv preprint
arXiv:2410.08120, 2024.

[13] Long, Y., Peng, C., Chen, Y., Tan, W., & Sun, J. BFFDT: Blockchain-
based Fair and Fine-Grained Data Trading Using Proxy Re-Encryption
and Verifiable Commitment. IEEE Internet of Things Journal, 2024.

[14] Hanaoka, G., Kawai, Y., Kunihiro, N., Matsuda, T., Weng, J., Zhang, R.,
& Zhao, Y. Generic construction of chosen ciphertext secure proxy re-
encryption. In Topics in Cryptology–CT-RSA 2012: The Cryptographers’
Track at the RSA Conference 2012, San Francisco, CA, USA, February
27–March 2, 2012. Proceedings (pp. 349-364). Springer Berlin Heidel-
berg.

[15] Ge, C., Susilo, W., Baek, J., Liu, Z., Xia, J., & Fang, L. A verifiable
and fair attribute-based proxy re-encryption scheme for data sharing in
clouds. IEEE Transactions on Dependable and Secure Computing, 2021,
19(5), 2907-2919.

[16] Feng, J., Li, Y., Wang, T., & Liu, S. A Certificateless Threshold Proxy
Re-Encrypted Data Sharing Scheme With Cloud-Chain Collaboration in
Industrial Internet Environments. IEEE Internet of Things Journal, 2024.

[17] Patil, S. M., & Purushothama, B. R. Non-transitive and collusion
resistant quorum controlled proxy re-encryption scheme for resource
constrained networks. Journal of Information Security and Applications,
2020, 50, 102411.

[18] Chen, X., Liu, Y., Li, Y., & Lin, C. Threshold proxy re-encryption
and its application in blockchain. In Cloud Computing and Security: 4th
International Conference, ICCCS 2018, Haikou, China, June 8–10, 2018,
Revised Selected Papers, Part IV 4 (pp. 16-25). Springer International
Publishing.

[19] Cao Z, Wang H, & Zhao Y. AP-PRE: Autonomous path proxy re-
encryption and its applications. IEEE Transactions on Dependable and
Secure Computing, 2017, 16(5): 833-842.

[20] Weng, J., Chen, M., Yang, Y., Deng, R., Chen, K., & Bao, F. CCA-
secure unidirectional proxy re-encryption in the adaptive corruption model
without random oracles. Science China Information Sciences, 2010 53,
593-606.

[21] B. Libert, & D. Vergnaud, Unidirectional chosen-ciphertext secure proxy
re-encryption, International Workshop on Public Key Cryptography, 2008,
pp. 360–379.

[22] Cascudo, I., David, B., Garms, L., & Konring, A. YOLO YOSO: Fast
and Simple Encryption and Secret Sharing in the YOSO Model. In
ASIACRYPT, 2022, pp. 651-680.

[23] Cascudo, I., & David, B. SCRAPE: Scalable Randomness Attested by
Public Entities. In ACNS, 2017, pp. 537-556.

[24] Gentry, C., Halevi, S., & Lyubashevsky, V. Practical non-interactive
publicly verifiable secret sharing with thousands of parties. In Annual
International Conference on the Theory and Applications of Crypto-
graphic Techniques, 2022, (pp. 458-487). Cham: Springer International
Publishing.

[25] Shamir A. How to share a secret. Communications of the ACM, 1979,
22(11):612-613.

[26] Buterin, V. Ethereum white paper. 2013.
[27] Libert, B., & Vergnaud, D. Tracing malicious proxies in proxy re-

encryption. In Pairing-Based Cryptography–Pairing 2008: Second Inter-
national Conference, Egham, UK, September 1-3, 2008. Proceedings 2
(pp. 332-353). Springer Berlin Heidelberg.

[28] Guo, H., Zhang, Z., Xu, J., & Xia, M. Generic traceable proxy re-
encryption and accountable extension in consensus network. In Computer
Security–ESORICS 2019: 24th European Symposium on Research in
Computer Security, Luxembourg, September 23–27, 2019, Proceedings,
Part I 24 (pp. 234-256). Springer International Publishing.

[29] Lin, Z., Zhou, J., Cao, Z., Dong, X., & Choo, K. K. R. Generalized
autonomous path proxy re-encryption scheme to support branch function-
ality. IEEE Transactions on Information Forensics and Security, 2023.

[30] Zhao, F., Weng, J., Xie, W., Li, M., & Weng, J. HRA-secure attribute-
based threshold proxy re-encryption from lattices. Information Sciences,
2024, 655, 119900.

[31] Bethencourt, J., Sahai, A., & Waters, B. Ciphertext-policy attribute-based
encryption. In2007 IEEE symposium on security and privacy (SP’07),
2007, May (pp. 321-334). IEEE.

[32] Bellare, M., Keelveedhi, S., & Ristenpart, T. Message-locked encryption
and secure deduplication. In Annual international conference on the
theory and applications of cryptographic techniques, 2013, (pp. 296-312).
Berlin, Heidelberg: Springer Berlin Heidelberg.

[33] Chaum, D., & Pedersen, T. P. Wallet databases with observers. In
CRYPTO, 1992, pp. 89-105.

[34] Fiat, A., & Shamir, A. How to prove yourself: Practical solutions to
identification and signature problems. In CRYPTO, 1968, pp. 186-194.

[35] Heidarvand, S., & Villar, J. L. Public verifiability from pairings in secret
sharing schemes. In SAC, 2009, pp. 294-308.

[36] H. Chen, M. Pendleton, L. Njilla, & S. Xu. A survey on ethereum
systems security: Vulnerabilities, attacks, and defenses. ACM Computing
Surveys, 2020, 53(3):1-43.

[37] Guo, H., Zhang, Z., Xu, J., An, N., & Lan, X. Accountable proxy re-
encryption for secure data sharing. IEEE Transactions on Dependable
and Secure Computing, 2018, 18(1), 145-159.

[38] Maiti, S., Misra, S., & Mondal, A. CBP: Coalitional-Game-Based
Broadcast Proxy Re-Encryption in IoT. IEEE Internet of Things Journal,
2023, 10(17), 15642-15651.

[39] Zhang, L., Kan, H., & Huang, H. Patient-centered cross-enterprise
document sharing and dynamic consent framework using consortium
blockchain and ciphertext-policy attribute-based encryption. In Proceed-
ings of the 19th ACM International Conference on Computing Frontiers,
2022, pp. 58-66.

[40] Bao, F., Deng, R. H., & Zhu, H. Variations of diffie-hellman problem.
In International conference on information and communications security,
2003, pp. 301-312.

APPENDIX

A. Decision Diffie-Hellman and Divisible Decision Diffie-
Hellman Assumptions

Let G is a cyclic group of prime order p with generator
g. Decision Diffie-Hellman (DDH) problem is defined as the
task of determining whether the equation T = gab holds
given (g, ga, gb, T), where a, b ∈ Zp. The DDH assumption is
defined as the assertion that no probabilistic polynomial-time
(PPT) adversary has a non-negligible advantage in solving the
DDH problem.

Divisible Decision Diffie-Hellman (DDDH) [40] problem
is defined as the task of determining whether the equation
T = g(b/a) holds given (g, ga, gb, T), where a, b ∈ Zp. The
DDDH assumption is defined as the assertion that no PPT
adversary has a non-negligible advantage in solving the DDDH
problem.

B. Security Definition

To formalize the CPA security notion for PRE schemes, we
first introduce the following possible oracles, which together
model the capabilities of an adversary A:

• Public key oracle Opk(j) : Takes public parameter j as
input, run PRE.KeyGen, and return pkj to A.

• Private key oracle Osk(pkj) : Returns the private key skj
corresponding to pkj to A.

• Re-encryption key oracle Ork(pkB , pkA, {pki}) : Runs
PRE.ReKeyGen, and returns {ckFragi}i∈[n] to A.

• Re-encryption oracle Ore(pkA, {ckFragi}i∈[n], C) :
Runs PRE.ReEnc, and returns the first level ciphertext
C ′ to A.

Remark 1: Note that in the CPA analysis of our PRE
scheme, neither the generation of the first level challenge
ciphertext nor the generation of the second level challenge
ciphertext involves the secret key of the proxy party. This can
be clearly seen from the PRE.Enc1 and PRE.Enc2 algorithms.
To simplify the proof process, we assume that the public-
private key pairs {(pki, ski)}i∈[n] for the proxies have been
pre-generated, and that the proxies have not been corrupted
by the adversary (since the CPA proof focuses on the security
of the ciphertext). Additionally, the public keys of proxies
are known to the adversary. Therefore, we will omit the part
involving the Opk and Osk oracles that generates the key pairs
for the proxies in the following discussion. As for the case of
proxies corruption, we will discuss it later.

1) Security of second level ciphertext: We define a game
between a PPT adversary A, who operates in two phases
find and guess, and the challenger B. Let the identity of the
challenged delegator be denoted as A∗, and the identity of the
user outside the proxies (i.e., the delegators A and delegatees
B) be denoted by j. The game can be described with the
following experiment:

Experiment 1: ExpIND-2PRE-CPA
Γ,A (λ, t, n, l)

1: par ← PRE.Setup(1λ, t, n, l)

2: (pkA∗ , pkB ,M0,M1, st)← A
Opk,Osk,Ork,Ore

find (par),
where |M0| = |M1|, and st is some state information

3: d
R←− {0, 1}

4: C∗ ← PRE.Enc2(pkA∗ ,Md)

5: d′ ← AOpk,Osk,Ork,Ore
guess

6: return d′

During the above experiment, the following requirements
should be satisfied:

• A can not issue the private key query Osk(pkA∗);
• A can not issue the private key query Osk(pkB), and

the re-encryption key query Ork(pkB , pkA∗ , {pki}i∈[n])
at the same time;

• A can not simultaneously issue the re-encryption query
Ore(pkA∗ , {ckFragi}i∈[n], C

∗) and the private key
query Osk(pkB).

Then, with respect to the above experiment
ExpIND-2PRE-CPA

Γ,A (λ, t, n, l), we define A’s advantage against
IND-2PRE-CPA security as follows:

AdvIND-2PRE-CPA
Γ,A (λ, t, n, l) = |Pr[d′ = d]− 1/2|.

Definition 1 (IND-2PRE-CPA): We say that our
proposed PRE scheme Γ is (t, qpk, qsk, qrk, qre, ϵ)-
IND-2PRE-CPA secure if there no t-time adversary A
such that AdvIND-2PRE-CPA

Γ,A (λ, t, n, l) ≥ ϵ, where qpk, qsk, qrk,
and qre are the numbers of queries to oracles Opk,Osk,Ork,
and Ore, respectively.

2) Security of first level ciphertext:
Definition 2 (IND-1PRE-CPA): For the first level ciphertext

of our scheme, if it is IND-CPA secure, i.e., the first level
ciphertext is indistinguishable against any PPT adversary A,
we say that our PRE scheme is IND-1PRE-CPA secure.

C. Security Proof

The IND-2PRE-CPA security for our scheme is asserted by
the following theorem.

Theorem 3: Under the divisible decision Diffie-Hellman
assumption (DDDH assumption) in standard model, our pro-
posed PRE scheme as shown in Figure 1 is IND-2PRE-CPA
secure. The scenario of the IND-2PRE-CPA proof is depicted
in Figure 17.

Fig. 17: The scenario of the IND-2PRE-CPA proof

Proof : First, we assume the key derivation function KDF
is a pseudorandom function and the symmetric encryption
algorithm AES is secure, which ensures that the adversary
cannot use known information to obtain valid decryption
results. Besides, we assume H is collision resistant. Then, let
A be an adversary who can break the (t, qpk, qsk, qrk, qre, ϵ)-
IND-2PRE-CPA security with non-negligible advantage ϵ, and
we can construct a challenger B using A to break the DDDH
assumption also with non-negligible probability.

We set a properly-distributed tuple (g, ga, gb, T) ∈ G3×GT

as challenger B’s input, which is a DDDH instance. If T =
gb/a, B tries to output β = 1; Otherwise, B tries to output
β = 0. The IND-2PRE-CPA game between adversary A and
B can be described as following:

• Setup. By Remark 1, B generates the public parameters
par and the proxies’ key pairs {(pki, ski)}i∈[n] leverag-
ing PRE.Setup algorithm and PRE.KeyGen algorithm,
respectively in this phase. And the challenger B then
gives par and {pki}i∈[n] to adversary A and maintains
the private keys in private. Moreover, B randomly selects
a delegator A∗ who will be challenged by adversary A.
During the game, B maintains two tables PK and RK

to record related information of the public keys and re-
encryption keys, respectively. They are initially empty.

• Find phase. In this phase, A can issue queries in the
IND-2PRE-CPA game. And B answers the queries for
A as follows:

– Public key query Opk(j) : B selects a random value
xj ∈ Zp, and flips a random coin cj ∈ {0, 1}. Note
that Pr[cj = 0] = Pr[cj = 1] = 1

2 . If cj = 0, B sets
pkj = (g)xj . Otherwise, B sets pkj = (ga)xj . Then,
B records (pkj , xj , cj) in table PK and returns pkj
to A.

– Private key query Osk(pkj) : B first accesses the
tuple (pkj , xj , cj) from the table PK. If cj = 1, B
aborts. Otherwise, B returns xj to A.

– Re-encryption key query Ork(pkB , pkA, {pki}) :
The challenger B first accesses tuples (pkA, xA, cA)
and (pkB , xB , cB) from PK, where A and B denote
identity of any delegator and delegatee, respectively.
Then, B generates the re-encryption keys for the
adversary A according to the following cases:
∗ cA = 1 ∧ cB = 1 : B aborts.
∗ cA = 1 ∧ cB = 0 : It means skA = a · xA and

skB = xB , B proceeds as follows:
· Compute gs with a random value s.
· Execute GS.Share to generate the shares of gs

and encrypt them by pk
(ski+skB)
A to get re-

encryption keys {ckFragi}i∈[n].
· Compute m∗ = H(pkA, pkB , {pki, ckFragi}),
V = Πn

i=1ckFrag
vi·m∗(αi)
i ,

U = Πn
i=1pk

(ski+skB)·vi·m∗(αi)
A .

· Generate the proof πsh leveraging DLEQ.Proof.
Then, B returns ({ckFragi}i∈[n], πsh) to
the adversary A and records the tuple
({kFragi, ckFragi}i∈[n], πsh, s, A,B) in table
RK.

∗ cA = 0 : It means that skA = xA. B runs
PRE.ReKeyGen(pkB , skA, pkA, {pki}i∈[n], s)
with a random value s and returns
({ckFragi}i∈[n], πsh) to the adversary A.
A can leverage PRE.ReKeyVerify to verify the
validity of the re-encryption keys. Then, B records
the tuple ({kFragi, ckFragi}i∈[n], πsh, s, A,B)
in table RK.

– Re-encryption query Ore(pkA, {ckFragi, ski}, C) :
B first checks whether the corresponding tuple
({kFragi, ckFragi}i∈[n], πsh, s, A,B) is in table
RK. If not, B returns “⊥” indicating an invalid
query. Otherwise, B parses C as (C1, C2) and ac-
cesses (pkA, xA, cA) and (pkB , xB , cB) from table
PK. B then generates the re-encryption ciphertext
(i.e., the first level ciphertext) for A according to the
following cases:
∗ cA = 1 ∧ cB = 1 : B aborts.
∗ cA = 1 ∧ cB = 0 : It means skA = a ·

xA and skB = xB , B first accesses the tu-
ple ({kFragi, ckFragi}i∈[n], πsh, s, A,B) corre-
sponding to the re-encryption keys {ckFragi}

and computes C ′
2i = pkskB

A · kFragi, and
the NIZK proof πrei. Then, B returns C ′ =
(C1, {C ′

2i}i∈[n]) and the corresponding NIZK
proofs {πrei}i∈[n] to A. A can verify the va-
lidity of the first level ciphertext leveraging
PRE.ReEncVerify.

∗ cA = 0 : It means skA = xA. ∀i ∈ [n], B
computes C ′

2i = ckFragi/pk
skA
i , and the NIZK

proof πrei. Then, B returns C ′ = (C1, {C ′
2i}i∈[n])

and the corresponding NIZK proofs {πrei}i∈[n]

to A. A can verify the validity of the first level
ciphertext leveraging PRE.ReEncVerify.

• Challenge. When A judges that the find phase is over,
he outputs a public key pkA∗ and two messages M0 and
M1 of equal length. B responds as follows:

– Access (pkA∗ , xA∗ , cA∗) from PK. If cA∗ = 0, B
aborts. Otherwise, it means that skA∗ = a ·xA∗ , and
B proceeds to execute the rest steps.

– Randomly select d ∈ {0, 1}. Set C∗
1 =

AES.Enc(KDF(T),Md), C∗
2 = (gb)xA∗ . Obviously,

if T = gb/a, C∗ is indeed a valid challenge ciphertext
under public key pkA∗ . To see this, setting s∗ = b/a,
we have:
C∗

1 = AES.Enc(KDF(T),Md) = AES.Enc(KDF(
gs

∗
),Md)

C∗
2 = (gb)xA∗ = (ga)xA∗ ·(b/a) = (ga)xA∗ ·s∗ =

pks
∗

A∗

Refer to the statement in [20], when T is uniform
and independent in GT , the challenge ciphertext C∗

is independent of d in A’s view.
• Guess phase. In this phase, A can also issue queries in

the IND-2PRE-CPA game and B answers these queries
for A as in the Find phase.

• Output. Finally, A outputs a guess d′ ∈ {0, 1}. If d′ = d,
B outputs 1, in which case it indicates that T = gb/a, and
(g, ga, gb, T) is a DDDH tuple; Otherwise, B outputs 0
indicating that T is a random element in GT .

Next, we begin to analyze the simulation. Obviously, the
simulations of oracle Opk is perfect since the event of B
aborting during the simulation does not occur. We denote the
event of B aborting during the simulation of oracles Osk, Ork,
Ore or in Challenge phase by Abort. When cA = 1, B aborts
during the query to the private key oracle Osk, and when
cA∗ = 0, B aborts during Challenge phase. So, the probability
of the event of B aborting during the simulation of oracle Osk

or in Challenge phase is 1
2 . When cA = 1∧ cB = 1, B aborts

during the query to the re-encryption key query Ork and the
re-encryption query Ore. So, the probability of the event of
B aborting during the simulation of oracles Ork or Ore is 1

4 .
Consequently, we have Pr[¬Abort] = (12)

qsk+1 · (34)
qrk+qre .

Let ϵB denote the advantage of B to break the DDDH
assumption, we have ϵB ≥ ϵ · (12)

qsk+1 · (34)
qrk+qre , where

ϵ is the non-negligible probability with which A can break
the IND-2PRE-CPA of our PRE scheme.

Thus, Theorem 3 is proved.
The IND-1PRE-CPA security for our scheme is asserted by

the following theorem.

Theorem 4: Under the DDDH and the DDH assump-
tions, our proposed PRE scheme as shown in Figure 1 is
IND-1PRE-CPA secure.
Proof : For the first level ciphertext C ′, we can parse
it as two parts: C1, which is included in the second level
ciphertext, and {C ′

2i}i∈[n], which is constructed analogously
to the output of the PVSS.Share algorithm. From Theorem 3,
we know that C1 is IND-CPA secure under the DDDH
assumption. Now, for the second field of the first level cipher-
text {C ′

2i}i∈[n], it is analogous to the decrypted shares held
by shareholders in DHPVSS [22], with the key distinction
that {C ′

2i}i∈[n] remains encrypted using the delegatee B’s
key. This ensures that the adversary A cannot recover the
original secret from {C ′

2i}i∈[n]. Under the DDH asumption,
DHPVSS satisfies IND1-Secrecy, meaning that the adversary
cannot distinguish between two different shared secrets before
recovering the original secret. Consequently, our PRE scheme
inherits this property. Specifically, under the DDH assumption,
given {C ′

2i}i∈[n], the adversary A cannot distinguish between
two different shared secrets (since they cannot recover the
orginal secret from {C ′

2i}i∈[n]), which satisfies the definition
of IND-CPA. Thus, Theorem 4 is proved.

Regarding collusion attacks, we consider the following two
cases. The first case involves a collusion attack by at least t
proxies without the delegatee; the second case is a collusion
attack involving at most t − 1 proxies together with the
delegatee.

Theorem 5: Even if an external adversary A controls more
than t proxies to conduct a collusion attack, he cannot obtain
the original plaintext data of the delegator A.
Proof : First, from Theorem 3 and Theorem 4, we know that
our PRE scheme is IND-CPA secure. Therefore, the only way
for an external adversary A to access the plaintext from the
ciphertext is to recover the key seed used in the symmetric
encryption. In our scheme, the key seed is shared among n
proxies as a secret in the DHPVSS scheme. However, unlike
the original DHPVSS scheme, we also use the delegatee’s
public key, in addition to the delegator’s private key (as the
dealer) and the proxies’ public keys (as the shareholders),
when encrypting the shares. This guarantees that proxies will
not be able to access the key seed from the re-encryption keys
(as encrypted shares). Therefore, even if the number of proxies
controlled by the external adversary A reaches the threshold,
he still cannot access the key seed. Theorem 5 is proved.

Theorem 6: Even if an external adversary A controls at most
t−1 proxies and the delegatee B to conduct a colluding attack,
he cannot obtain the original plaintext data of the delegator A.
This property can be referred to as Fault tolerance.
Proof : Based on the analysis of Theorem 5, it is evident that
when the external adversaryA controls the delegatee B and t−
1 proxies, he can access t−1 shares of the key seed. However,
due to the IND1-Secrecy property of PVSS, the adversary A
cannot extract any information about the seed key from these
t− 1 shares. Therefore, Theorem 6 is proved.

	Introduction
	Related Works
	Preliminaries
	Shamir SS on Groups
	Discrete Logarithm Equality (DLEQ)
	Publicly verifiable Secret Sharing
	Ethereum Blockchain

	Publicly Verifiable Threshold Proxy Re-encryption (PVTPRE)
	Definition
	Construction
	Security Analysis
	Complexity

	Application in Data Rights Confirmation
	Ownership of Dara owner
	Data control by Authorizers
	Usage for Data user

	Evaluation
	Conclusion
	References
	Appendix
	Decision Diffie-Hellman and Divisible Decision Diffie-Hellman Assumptions
	Security Definition
	Security of second level ciphertext
	Security of first level ciphertext

	Security Proof

