
Homomorphic Encryption for Large Integers
from Nested Residue Number Systems

Dan Boneh and Jaehyung Kim

Stanford University

February 25, 2025

Abstract

Existing fully homomorphic encryption (FHE) schemes primarily support a
plaintext space defined over a relatively small prime. However, in some important
applications of FHE one needs arithmetic over a large prescribed prime. In this
paper we construct a new FHE system that is specifically designed for this pur-
pose. Our system composes three layers of residue systems to enable much better
performance than was previously possible. Our experiments show that for arith-
metic modulo a 256-bit integer, when compared to the TFHE-rs implementation
of 256-bit arithmetic, our new system achieves a factor of a thousand better mul-
tiplication throughput and a factor of ten better latency. Moreover, for a 2048-bit
prime modulus we achieve far better performance than was previously possible.

1

Contents
1 Introduction 3

1.1 Our results . 4
1.2 Technical Overview . 5
1.3 Related Work . 7

2 Preliminaries 7
2.1 CKKS Basics . 8
2.2 Discrete CKKS . 9

3 Single Layer RNS System 12
3.1 Asymmetric Modular Reduction . 12
3.2 The RNS-based Encryption Scheme . 13
3.3 Homomorphic Base Conversion . 15

4 Double Layer RNS System 18
4.1 Homomorphic Rescaling . 18
4.2 The Nested RNS-based Encryption Scheme 19
4.3 Homomorphic Base Conversion . 21

5 Efficiency Analysis 23
5.1 Achieving Arbitrary Precision . 23
5.2 In Moderate Precision . 24

6 Experiments 24
6.1 Parameters . 25
6.2 Results and Analysis . 25
6.3 Comparison with Prior Works . 26

2

1 Introduction
Fully homomorphic encryption (FHE) [Gen09] schemes enable arithmetic operations
over encrypted data. The supported arithmetic operations are typically defined mod-
ulo relatively small primes. However, in several important applications of FHE there
is a need for arithmetic modulo a prescribed large integer. We review two examples
informally:
• A universal thresholdizer [BGG+18, EY24] uses threshold FHE to compile any

(deterministic) signature scheme1 into a one-round threshold signature scheme. The
high level idea is to first homomorphically run the (non-threshold) signing algorithm
on the encrypted signing key and the cleartext message m to obtain an encrypted
signature on m. Then have the threshold signing parties use FHE threshold decryption
to release the cleartext signature on m. This gives a one-round threshold signature
scheme where the final signature is a standard signature for the non-threshold scheme.

• A universal blinder uses FHE to compile any (deterministic) signature scheme into
a one-round blind signature scheme [Cha82]. Here the client sends an encrypted mes-
sage m to the signer. The signer runs the signing algorithm homomorphically on the
cleartext secret key and the encrypted message m, and sends the resulting encrypted
signature back to the client. The client decrypts and obtains the desired signature
on m. This gives a one-round blind signature scheme where the final signature is a
standard signature for the non-blind scheme. Note that the signer must send back a
verifiable FHE ciphertext [KVMH24, ABPS24] to convince the client that it ran the
signing algorithm correctly2. Otherwise, the signer may be able to link the request
to a subsequent published signature.

In both cases the signing algorithm is run homomorphically, and we therefore refer to
these constructions as homomorphic signing.

While these constructions may seem to be only of theoretical interest, they be-
come quite interesting when applied to widely used signature schemes such as ECDSA
and Schnorr [BS23, Ch. 19]. Current constructions for threshold and blind variants of
Schnorr [KG20, Lin22, FW24] require two or more rounds. Threshold and blind variants
of ECDSA are even more complicated [DKLS24, QCY21]. The universal thresholdizer
and universal blinder are the only known constructions for a one-round threshold and
a one-round blind variants of ECDSA and Schnorr signatures, where the final signa-
ture is backwards compatible with an ECDSA or Schnorr verifier. While a universal
thresholdizer [AAB+24] and universal blinder [Fis06] can be built from general (suc-
cinct) non-interactive zero-knowledge, the resulting signatures are very different from a
signature in the underlying scheme.

The ECDSA and Schnorr signature schemes are used in practice over an elliptic
curve group defined over a 256-bit or a 384-bit prime. Consequently, running the signing
algorithms inside an FHE requires support for arithmetic modulo a prescribed 256-bit
or 384-bit large prime.

The universal thresholdizer and blinder are also useful when applied to other signa-
ture schemes. For example, Gennaro, Halevi, and Rabin [GHR99] designed a signature
scheme in the standard model that operates in RSA-like groups. That scheme is not
easily made threshold or blind because the signature is not a linear function of the secret
key (as in the RSA signature scheme). However, the universal thresholdizer and blinder
can nevertheless compile this scheme into a one-round threshold and blind scheme. Here,

1The signing algorithm of any signature scheme can be made deterministic by derandomizing it using
a secure PRF applied to (pk,m). The PRF secret key becomes part of the secret signing key [BS23,
Ex. 13.6].

2If a PRF is used to derandomize the signing algorithm, then the client will be given a certified
commitment to the PRF secret key, to be used in FHE verification.

3

running the signing algorithm homomorphically requires arithmetic modulo a prescribed
2048-bit integer.

Current FHE schemes perform poorly when required to support arithmetic modulo
such a large 256-bit, 384-bit, or 2048-bit prescribed integer. For example, for ECDSA
homomorphic signing, the reported running time3 for generating a single signature over
Secp256k1 using Zama’s TFHE is two days on a 64 cores machine.

1.1 Our results
We construct a new FHE system specifically designed for fast arithmetic operations
modulo a prescribed large integer. The key innovation is the ability to very efficiently
support a different plaintext modulus in every slot of a single RLWE ciphertext. This
lets us use a Chinese Remainder (CRT) representation to support a very large smooth
plaintext modulus in a single ciphertext. We then leverage this to support a large
prescribed (non-smooth) plaintext modulus in a single ciphertext. Our scheme builds
upon a recent work by Kim and Noh [KN24] on modular reductions in CKKS. We
generalize that construction to support a different plaintext modulus in every slot.

Large Plaintext Modulus. A ciphertext in our FHE scheme is an RLWE vector
of a certain dimension N . We use nested CRT and homomorphic base conversion, as
explained below, to support a plaintext modulus as large as O(N) bits. For example,
using the standard logN = 16 ring dimension we achieve up to 30, 000 bits of smooth
plaintext modulus in a single ciphertext, with an efficiency that was not possible before.
This enables us to support up to 10, 000 bits of a prescribed (non-smooth) modulus.
We can similarly support multiple slots of a smaller modulus, such as a 2048-bit RSA
modulus or the popular prime 2255 − 19 used to define the elliptic curve 25519 [Ber06].

Flexible Choice of Primes. One of the difficulties in using BGV/BFV is that one
needs to carefully choose the plaintext space for efficiency. This stems from the fact
that the slot structure in BGV/BFV requires certain special properties to support the
Number Theoretic Transform (NTT). For example, to support full slots (i.e. N slots for
a ring of degree N), one must use a prime p such that 2N divides p− 1, or a product of
such primes. However, N is typically as large as 216, and this severely limits the choice
of prime modulus that defines the plaintext space. In our new FHE scheme, there is
more flexibility in the choice of prime modulus because we rely on the Discrete Fourier
Transform (DFT) in characteristic zero (over C), instead of relying on NTT.

Universal Parameter Set. The FHE scheme enables a single ciphertext to support a
vector of plaintexts, where each plaintext space is defined over a different large prescribed
modulus.

Performance. We report on our performance experiments in Section 6. A summary
is shown in Table 1, which shows the latency and throughput of our FHE for 255-bit,
384-bit, and 2048-bit moduli. These running times are all single threaded on a Mac.
We expect that a multi-threaded implementation will be more than ten times faster.

It is also illustrative to compare the running time of this new FHE to the performance
of Zama’s TFHE library for 256-bit arithmetic. We show in Section 6 that the through-
put is about a thousand times higher. More importantly, the latency for a single 256-bit
multiplication is about ten times lower. For ECDSA homomorphic signing, this means
that one can expect that the time to generate a single signature will be approximately

3https://github.com/zama-ai/bounty-ecdsa-signature/blob/master/tutorial.md

4

https://github.com/zama-ai/bounty-ecdsa-signature/blob/master/tutorial.md

ten times lower than in previous experiments. When generating a batch of signatures,
the amortized time per signature should be about a thousand times lower.

log(s) # slots Zs multiply time
latency amortized time

255 32 254 sec 7.94 sec
384 32 259 sec 8.09 sec
2048 4 330 sec 82.5 sec

Table 1: Timing for a modular homomorphic multiplication over Zs. The number of
slots refers to the number of Zs elements that fit in a single ciphertext. The 255 bit
prime used is the elliptic curve prime 2255 − 19. The 384 bit prime used is the P-384
prime for elliptic curves. The 2048 bit row refers to a modulus of that size. The times
were measured on a single threaded Mac with 32GB of RAM.

1.2 Technical Overview
Our FHE scheme is built on top of a homomorphic computer that supports two data
types Z and R. The computer supports addition and multiplication over each data type,
possibly type casting between them as necessary. The computer also supports modular
reduction by a small integer t. These computations can be managed in parallel in a
single RLWE ciphertext of dimension N with N/2 slots. For example, in Figure 1 we
are given two vectors filled with elements in either Z or R, and we can perform element-
wise operations on them. In Section 2 we explain how such a homomorphic computer
can be instantiated using the modular reduction framework of Kim and Noh [KN24]. In
this section we treat this homomorphic computer as a black box.

Our construction proceeds in four layers, where each layer builds on the one before
it. We briefly describe each layer in turn. The details are provided in Sections 3 and 4.

Homomorphic Residue Number System (RNS). In Section 3.1 we generalize the
modular reduction method from [KN24] by showing that modular reduction can be taken
with respect to different moduli in different slots. That is, in one slot we can perform a
mod p reduction, while in another slot we perform a mod p′ reduction, for p ̸= p′. This
observation lets us allocate k slots to a CRT system where k moduli p1, . . . , pk are used
to implement arithmetic in Zp for p :=

∏k−1
i=0 pi. Since the vectors contain N/2 slots in

total, this lets us operate on (N/2)/k slots of Zp elements in parallel.

Homomorphic Base Conversion. A large smooth plaintext modulus is insufficient
for the applications described in the introduction. Instead, we need support for a large
prescribed modulus, such as a 384-bit elliptic curve prime. To do so, first recall the fast
base conversion from [HPS19] that is used to switch an element x represented in the

-0.16 -2 3.79 · · · 14 2.97 3

-0.22 3 5.03 · · · -2 2.97 -1

Figure 1: A visualization of the homomorphic computer operating on two vectors

5

CRT basis {pi}0≤i<k to an element [x]r in Zr. Naively, this can be done by lifting the
given element x to Z and then reducing the result modulo r. However, that would be
quite expensive as it would require a mod r operation inside the FHE. Instead [HPS19]
converts x as follows

[x]r :=

[
k−1∑
i=0

yi · [p̂i]r − v · [p]r

]
r

where
p := p0 · · · pk−1, p̂i := p/pi
yi :=

[
[x]pi · p̂−1

i

]
pi

v :=
∑k−1

i=0 ⌊yi/pi⌉

This conversion can be used to implement a mod r reduction for an arbitrary integer r. In
particular, converting from {pi}0≤i<k to Zr and converting back can be expressed using
only arithmetic over Zpi

, Z, and R (with moderate precision). This lets us implement
Zr arithmetic without expensive mod r operations inside the FHE.

Nested Residue Number System (RNS). Although our homomorphic RNS sys-
tem provides both large integer arithmetic and arbitrary modular reduction, it fails to
support a very large modulus due to the lack of sufficiently many primes. As the homo-
morphic computer can only reduce modulo a small integer (up to 4 or 8 bits), there are
not enough primes to construct a CRT system expressing a large smooth modulus. At
most we can represent a 100-bit modulus. To overcome this, we make use of a secondary
CRT layer on top of the first CRT system. That is, we may choose a larger CRT basis
{rj}0≤j<ℓ, simulate each Zrj arithmetic with the arbitrary modular reduction in the
previous paragraph, and combine them to support Zr ≃

∏ℓ−1
j=0 Zrj arithmetic. The end

result is support for N/(2kℓ) parallel slots, each one providing arithmetic over Zr, inside
a single RLWE ciphertext.

Nested Base Conversion. In order to support arbitrary modular reduction, we need
to simulate the homomorphic computer we initially had, which supports not only mod-
ular reduction but also arithmetic over Z and R. Addition and multiplication over Z
can be supported directly by embedding Z inside Zp, relying on Zp operations. Arith-
metic over R is more difficult since we can only use integer arithmetic. We follow the
framework of CKKS [CKKS17] that “integer arithmetic plus rescaling implies fixed point
arithmetic.” As in CKKS, we construct a new rescaling Rescalerj = x 7→ (x− [x]rj)/rj
from modular reduction by rj for each j. Using these ingredients, we simulate the
homomorphic base conversion again to modulo reduce by any large integer.

A visualization of the complete construction is shown in Figure 2.

p0 p0 p0 p0p1 p1 p1 p1p2 p2 p2 p2

r0 r0r1 r1

s s

Z4
p ≃

(∏2
i=0 Zpi

)4Z2
r ≃

(∏1
j=0 Zrj

)2Z2
s

Figure 2: A visualization of the nested CRT system. Given N/2 = 12 slots, we first
construct four copies of a CRT system Zp ≃ Zp0 × Zp1 × Zp2 . We then embed Zr0 and
Zr1 inside Zp, to support two copies of a second CRT system Zr ≃ Zr0 × Zr1 . Finally,
we embed Zs inside Zr and obtain two slots for Zs arithmetic.

6

1.3 Related Work
Since Gentry [Gen09] proposed the first fully homomorphic encryption (FHE) system,
many others have been proposed. For integer computations, a standard choice is to
use BGV [BGV12] or BFV [Bra12, FV12], as they naturally support Zt arithmetic for
t ∈ Z>0. For applications that require large plaintext precision, one can use BGV/BFV
with a large plaintext modulus t. However, as the noise growth is proportional to t,
supporting a large t requires large parameters (e.g. a large ciphertext modulus and
RLWE ring dimension). As a result, supporting even a few hundred bits of plaintext
modulus is nearly impractical. To tackle this problem, CLPX [CLPX18] suggests to
replace the modulus t with the polynomial t = X − b ∈ Z[X], for some b. Such a choice
significantly reduces the noise growth and efficiently handles large integers. However,
bootstrapping for such a large modulus is unknown which means that it cannot support
unlimited computations.

Recently, an elegant generalization of BFV and CLPX, called Generalized BFV [GV24]
(GBFV), was suggested. GBFV achieves both high precision arithmetic (including boot-
strapping) and SIMD capability which has not been possible with earlier schemes. The
key idea is to use a generalized t(x) ∈ Z[X] and choose t(x) carefully to support boot-
strapping via switching to BFV and appropriate slot structure for SIMD. In addition,
they suggest several choices of t(x) with different precision and number of slots. For
instance, they instantiated log(N) = 14 bootstrapping for p = 216+1, which was nearly
impossible with BFV. Despite the improvements, GBFV still cannot support very large
precision bootstrapping as they use large precision BFV linear transformations as a sub-
routine. Furthermore, for the BGV/BFV family the efficiency is bound to the plaintext
modulus t. In particular, the number of parallel slots is determined by how the ring
Zt[X]/ΦM (X) splits. If it splits completely then it enjoys maximum parallelism, but
otherwise, parallelism is somewhat limited. As a result, the BGV/BFV family often
uses a plaintext moduli such as 216 + 1 that split (almost) completely.

Other options for a high plaintext modulus include CGGI [CGGI16]/DM [DM15] and
CKKS [CKKS17]. In CGGI/DM, computing over a large modulus directly is difficult
as it significantly increases the FHE parameters, as in BGV/BFV. Instead, one can
use radix decomposition [CLOT21], Chinese Remainder Theorem (CRT) [CKLM24a,
CKLM24b], or a hybrid between the two [BBB+23]. However, these approaches are
not efficient as they require a significant number of bootstrappings. In CKKS, one can
rely on the usual CKKS operations to support arithmetic over C (or R) that contains
Z. A more favorable choice is to use the recent developments of the discrete variant
of CKKS [DMPS24, CKKL24, BCKS24, BKSS24, KN24] which handles integers more
efficiently than the original CKKS.

Recently, [Kim25] suggested a decomposition-based approach to handle large inte-
gers, successfully supporting power-of-two moduli like 32 or 64 bits. However, their
method is not efficient for a high modulus, because one needs to bootstrap O(p) times
to support p-bit arithmetic.

Table 2 compares the existing approaches for supporting a large plaintext modulus
with our new FHE.

2 Preliminaries
Let N be an integer that is a power-of-two. Let Q > 0 be an integer,R = Z[X]/(XN+1),
and RQ = R/QR. The vectors are denoted in bold lower case (e.g. v,w). Given a real
number r ∈ R, ⌊r⌉ ∈ Z is the rounding of r sending to the closest integer. Unless stated
otherwise, we identify Zt with [−t/2, t/2) ⊂ Z for t ∈ Z>0.

7

Arbitrary Bootstrapping Compactness Arbitrary
precision Bootstrapping Compactness modulus

BGV/BFV Classic ✗ ✗ ✓ ✗
CRT ✓ ✓ ✗ ✗

CLPX [CLPX18] ✓ ✗ ✓ ✗

GBFV [GV24] ✓ ▲ ✓ ✗

[Kim25] ✓ ✓ ✗ ✗

This paper ✓ ✓ ✓ ✓

Table 2: Comparing the support for a large prescribed modulus in different systems.
The arbitrary modulus column denotes whether the scheme supports an arbitrarily large
plaintext modulus. The bootstrapping column denotes whether the scheme supports
bootstrapping for such computations. The compactness column denotes whether it
supports a high modulus using a single RLWE ciphertext (or equivalent). The arbitrary
modulus column denotes whether it can choose an arbitrary integer as the plaintext
modulus. The BGV/BFT CRT row refers to the use of multiple BGV/BFV ciphertexts
with a different plaintext modulus to implement a high plaintext modulus. The ▲ mark
for GBFV bootstrapping means that it supports large precision bootstrapping but it
cannot support an arbitrarily large plaintext modulus.

2.1 CKKS Basics
In CKKS, complex messages in CN/2 are first encoded to a plaintext in R and then
encrypted to a ciphertext in R2

Q. We first explain how encoding and encryption are
defined.

Discrete Fourier Transform. In order to connect CN/2 with R, the CKKS scheme
uses the discrete Fourier transform (DFT) and its inverse (iDFT). The discrete Fourier
transform DFT : R[X]/(XN + 1)→ CN/2 is defined as

r(X) ∈ R[X]/(XN + 1) 7→ (r(ζi))0≤i<N/2 ∈ CN/2, (1)

where ζi = ζ5
i

for a primitive 2N -th root of unity ζ. The reason for defining ζi this way
is that the automorphism group of the ring Z[X]/(XN + 1) is generated by −1 and 5.
With this setup, (1) defines a ring isomorphism, and in particular a (scaled) 2-norm
isometry in the sense that

∥DFT(r)∥2 =

√
N

2
· ∥r(X)∥2

for all r ∈ R[X]/(XN +1). The inverse DFT denoted as iDFT : CN/2 → R[X]/(XN +1)
is defined as the inverse of DFT.

Encoding Structure. Let z ∈ CN/2 be a complex vector. The encoding Ecd : CN/2 →
R is defined as

z ∈ CN/2 7→ ⌊∆ · iDFT(z)⌉ ∈ R,

where ∆ ∈ R>0 is a scaling factor used to preserve the precision. The decoding Dcd :
R → CN/2 is its approximate inverse defined as

m(X) ∈ R 7→ 1

∆
· DFT(m) ∈ CN/2.

8

Encryption. The CKKS encryption is inherited from RLWE. In other words, given a
plaintext m ∈ R, a CKKS ciphertext encrypting m is a pair (b, a) ∈ R2

Q such that

(b, a) · sk = m+ e

for a secret key sk = (1, s) ∈ R2 and a small error e ∈ R. Unlike other schemes,
the error in CKKS ciphertexts is not separated from the underlying plaintext. In this
regard, CKKS encryption is an approximate encryption, allowing some errors in it. This
sometimes leads to security issues (e.g. IND-CPAD [LM21, LMSS22]).

Homomorphic Operations. Note that both encoding and encryption functions are
(approximate) ring homomorphisms, meaning that we can directly use this property to
enable addition and multiplication on ciphertexts. Given ct1 = (b1, a1), ct2 = (b2, a2) ∈
R2

Q, the addition of ct1 and ct2 is defined as

ct1 + ct2 = (b1 + b2, a1 + a2) ∈ R2
Q.

The multiplication of ct1 and ct2 is defined as

ct1 ⊗ ct2 = (b1b2, b1a2 + a1b2, a1a2) ∈ R3
Q.

For multiplication, the ciphertext length has increased and we now need to inner product
with (1, s, s2) instead of (1, s) to decrypt it. In order to decrease the length of the
ciphertext, we use relinearization, which is an RLWE key switching from the secret key
s2 to s. That is, given a ciphertext ct = (c0, c1, c2) ∈ R3

Q, the relinearization is defined
as

Relin(c0, c1, c2) = (c0, c1) + KeySwitchs2→s(0, c2)

where KeySwitchs2→s switches the secret key from s2 to s. In addition, if the scaling
factors of ct1 and ct2 are ∆, the product ct1 ⊗ ct2 has scaling factor of ∆2. In order to
decrease the size of the scaling factor, we use rescaling, which is an approximate division.
Given ct = (b, a) ∈ R2

Q and q | Q, the rescaling of ct by q is defined as

RSq(ct) = (⌊b/q⌉, ⌊a/q⌉) ∈ R2
Q/q.

Bootstrapping. Unlike the exact schemes (BGV/BFV/CGGI/DM) whose bootstrap-
ping cleans the noise of a ciphertext, the CKKS bootstrapping increases the ciphertext
modulus while approximately preserving its content. As a black box, the CKKS boot-
strapping is defined as follows:

Definition 1 (CKKS Bootstrapping). Let q,Q be integers such that q < Q. Let
ct = Enc◦Ecd(z) be a CKKS ciphertext encrypting a vector z. The CKKS bootstrapping
BTS : R2

q → R2
Q outputs

BTS(ct) = Enc ◦ Ecd(z′) ∈ R2
Q

where z ≃ z′.

A typical bootstrapping [CHK+18] includes homomorphic linear transformations (i.e.
CtS and StC) and homomorphic modular reduction (i.e. EvalMod), and therefore is
significantly more expensive than other homomorphic operations.

2.2 Discrete CKKS
The original CKKS [CKKS17] is defined over the complex plane C. Since Z ⊂ C, it
naturally supports any integer arithmetic. However, using CKKS for integers without
adaptation is not so efficient as it wastes some of its capabilities. The recent approaches
for discrete computations over CKKS (initiated in [DMPS24]) provide an efficient frame-
work for handling integers through arithmetic operations and look-up tables.

9

Discrete Computation and Encoding. In [DMPS24], the authors suggested using
CKKS for discrete data by restricting the message space. To elaborate, the message
space of discrete CKKS is a discrete set (e.g. {0, 1},Zn), and there is an additional
encoding structure attached to it so that we can connect the discrete space with C.

Definition 2 (Discrete Encoding). Let U ⊆ C be a discrete set. A discrete CKKS
ciphertext ct ∈ R2

Q is a CKKS ciphertext that encrypts a vector z ∈ UN/2. That is,

Dcd(ct · (1, s)) = z + e

where e ∈ CN/2 is a small complex vector. We denote z as the underlying message and
e as the underlying error.

The most straightforward encoding is to use the identity encoding Z ↪→ C, which
is to regard an integer vector z ∈ ZN/2 as a valid element of CN/2 and use the usual
CKKS encoding Ecd : CN/2 → R. As Z ↪→ C is a ring homomorphism, homomorphic
operations in CKKS can be directly inherited to the new encoding structure.

One of the key advantages of using discrete data rather than approximate data is
that we can use interpolation rather than approximation. This allows us to efficiently
evaluate discontinuous functions which is very difficult with the usual approximation-
based methods in CKKS (e.g. [CKK20]). Another advantage is that one can distinguish
the error from the message. When one decrypts and decodes a discrete CKKS cipher-
text, one can identify the real message as the closest element of U , removing the error.
Furthermore, by using proper polynomial evaluations, one can remove the error ho-
momorphically. For instance, if the message space is restricted to {0, 1}, the function
h1 : R→ R [DMPS24] defined as h1(x) = 3x2−2x3 can be used as a cleaning polynomial
that sends the points near 0 and 1 to closer to 0 and 1, respectively. Note that this
cleaning corresponds to the bootstrapping framework in the exact schemes.

Definition 3 (Cleaning). Let U ⊆ C be a discrete set used for discrete encoding. Let
ct ∈ R2

Q be a discrete CKKS ciphertext whose underlying message and error are z and
e, respectively. A cleaning function Clean : R2

Q → R2
Q′ maps ct to ct′ ∈ R2

Q′ such
that the underlying message remains to be the same and the underlying error decreases
significantly. That is,

∥e′∥ ≪ ∥e∥

where e′ is the underlying error of ct′ and ∥ · ∥ is a norm over CN/2 (e.g. ∥ · ∥∞, ∥ · ∥2).

In this regard, discrete CKKS has two bootstrappings, one for refreshing the error
(i.e. Cleaning) and the other for raising the modulus (i.e. CKKS bootstrapping).

The following work [CKKL24] focused on improving the performance of interpolation
(i.e. look-up tables) both in terms of efficiency and numerical stability. They mainly
suggest to use the roots-of-unity encoding

{ζit | 0 ≤ i < t} ↪→ C

where ζt = e2πi/t is the primitive t-th root of unity. One of the biggest advantages
of using roots-of-unity is that it supports numerically stable look-up table evaluation
(i.e. polynomial interpolation) unlike identity encoding. In addition, it provides a very
efficient cleaning function such as x 7→ ((t + 1)x − xt+1)/t. For efficiency, [CKKL24]
suggests using multivariate interpolation over the roots of unity, as it decreases the
polynomial degree (hence decreasing the modulus consumption). Although they are not
the first ones to use multivariate polynomials for better efficiency (e.g. [ADE+23]), they
thoroughly analyzed the precision and efficiency for the first time.

10

Discrete Bootstrapping. To bootstrap discrete data, one can indeed rely on the
usual CKKS bootstrapping [CHK+18] as the encoded data are still real numbers. For
better efficiency, one may consider constructing a dedicated bootstrapping for discrete
data, denoted as discrete bootstrapping.

Definition 4 (Discrete Bootstrapping). Let q,Q be integers such that q < Q, and
U ⊆ C be a discrete encoding set. Let ct ∈ R2

q be a discrete CKKS ciphertext over U .
The discrete bootstrapping DiBTS : R2

q → R2
Q is defined as

DiBTS(ct) = ct′

where ct′ is a discrete ciphertext encrypting the same message as ct but in a larger
modulus.

We observe that the discrete bootstrapping needs not to work for all message space
over C, but only over a discrete set U . Hence, one can construct a more efficient
bootstrapping than the usual one (e.g. via interpolation rather than approximation).

Following [BKSS24], we provide a simplified overview of the state-of-the-art discrete
bootstrapping instantiation.

1. Slots-to-Coefficients (StC) : Given ct = Enc◦Ecd(z) ∈ R2
q encrypting a discrete

message z ∈ Zt ⊂ Z, we output a ciphertext ct′ = Enc((q0/t) · z(X)) ∈ R2
q0 where

z(X) is a polynomial in R whose coefficients corresponds to the coordinates of z.
In other words, we put the slots into coefficients.

2. Modulus Raising (ModRaise) : Given ct = Enc((q0/t) · z(X)) ∈ R2
q0 , we output

a ciphertext ct′ = Enc((q0/t) · z(X) + q0 · I(X)) ∈ R2
Qtop

where I ∈ R is a small
integer polynomial and Qtop > q0.

3. Coefficients-to-Slots (CtS) : Given ct = Enc((q0/t) · z(X) + q0 · I(X)) ∈ R2
Qtop

,
output a ciphertext ct′ = Enc ◦ Ecd((1/t) · z + I). In other words, we put the
coefficients into slots, while adjusting the scaling factors.

4. Homomorphic Exponentiation4 (EvalExp) : Given a ciphertext ct = Enc ◦
Ecd((1/t) ·z+I), output a ciphertext ct′ = Enc◦Ecd(e2πiz/t) by homomorphically
evaluating a complex exponential x 7→ e2πix.

5. Homomorphic Look-up Table5 (LUT) : Given a ciphertext ct = Enc◦Ecd(e2πiz/t)
and a look-up table LUT : Zt 7→ Zt, output a ciphertext ct = Enc ◦ Ecd ◦ LUT(z).
This can be instantiated with a proper polynomial interpolation.

Note that the previous works [BKSS24, AKP24] further optimize this framework in
terms of efficiency and better cleaning functionality. However, we only need discrete
bootstrapping in a black-box manner, so we use the above framework for simplicity.

Modular Reduction. More recently, [KN24] introduced an efficient modular reduc-
tion for CKKS based on [BKSS24]. The idea is to perform RLWE modular reduction
at the bottom modulus q0 to a coefficients-encoded ciphertext and use discrete boot-
strapping to bootstrap it. If one simply inserts a modular reduction step between StC
and ModRaise of the discrete bootstrapping framework described in the previous para-
graph and uses the identity look-up table, one achieves a modular reduction in addition
to bootstrapping. This is a simplified (non-iterative, integer) version of the modular
reduction in [KN24], and is detailed in Algorithm 1. Note that [KN24] extends the
algorithm by iterative bootstrapping and discretization. However, we rely only on the
most basic (degenerate) case in our paper.

4First introduced in [BGGJ20] to transform CGGI/DM ciphertexts into CKKS.
5This is based on the look-up table evaluation in [CKKL24].

11

Algorithm 1: IntModt [KN24]
Setting: ∆StC = q0/t where ∆StC denotes the scaling factor after StC.
Input : ct = Encsk ◦ Ecd(z) ∈ R2

q where z ∈ ZN/2.
Output: ctout = Enc ◦ Ecd([z]t) ∈ R2

Q.
1 ct′ ← [StC(ct)]q0 ;
2 ctout ← LUTid ◦ EvalExp ◦ CtS ◦ModRaise(ct′) ;
3 return ctout

3 Single Layer RNS System
In this section, we propose an efficient homomorphic encryption scheme for evaluating
over large integers. The basic idea is to use CRT as in [CKLM24a, CKLM24b], but we
use CRT across slots rather than ciphertexts. To enable this, we generalize the modular
reduction framework in [KN24] and evaluate different modular reductions across slots.
As a result, we can put at most N/2 CRT moduli in a single ciphertext, supporting a
large modulus within the ciphertext. Furthermore, we homomorphically evaluate the
fast base conversion from [HPS19] to enable homomorphic modular reduction for a large
modulus.

3.1 Asymmetric Modular Reduction
The modular reduction in [KN24] evaluates modulo p in a SIMD manner, as it is based
on CKKS. We generalize the modular reduction so that the i-th slot evaluates modulo
pi for each 0 ≤ i < N/2. This relies on the fact that CKKS can evaluate different
polynomials across the slots by using plaintext-ciphertext multiplication rather than
constant-ciphertext multiplication.

Let {fi}0≤i<N/2 be a family of polynomials of degree at most d and let

fi(x) = ai0 + ai1x+ · · ·+ aidx
d ∈ C[x].

For each 0 ≤ j ≤ d, let aj = (a0j , a1j , . . . , a(N/2−1)j) ∈ CN/2. Given a ciphertext
ct = Enc ◦ Ecd(z) encrypting a complex vector z ∈ CN/2, evaluating {fi} for each slot i
in parallel can be described as

Ecd(a0) + Ecd(a1) · ct+ · · ·+ Ecd(ad) · ctd

and can be evaluated with log2(d + 1) multiplicative depths. Its computational com-
plexity is not very different from evaluating the same polynomial across the slots, as the
only difference is that we use plaintext-ciphertext multiplication instead of constant-
ciphertext multiplication, and the cost increase is negligible. This is rephrased from the
parallel look-up table evaluation in [CKKL24, Section 4.2].

Based on the distinct polynomial evaluation, we propose a modular reduction that
takes different modulo pi across slots. We modify only two parts of the modular re-
duction algorithm in Algorithm 1. First of all, we add an additional scaling factor
adjustment step right before taking modulo q0. To be more specific, we ensure that
taking modulo q0 can be used to take modulo pi homomorphically, and the output has
elements of Zpi

encoded in the most significant bits. Secondly, we modify the look-up
table step LUT so that it evaluates the identity look-up table idi : Zpi

→ Zpi
for each i

in parallel. The detailed algorithm is described in Algorithm 2.
Note that the scaling factor adjustment can be included into StC and LUT{idi} is

just as efficient as evaluating the same look-up table across slots, which means that

12

Algorithm 2: IntMod{pi}0≤i<N/2

Setting: ∆StC denotes the scaling factor after StC.
Input : ct = Encsk ◦ Ecd(z) ∈ R2

q where z ∈ ZN/2

Output: ctout = Enc ◦ Ecd([zi]pi
)0≤i<N/2 ∈ R2

Q.
1 ct′ ← [Ecd((q0

∆StC·pi
)0≤i<N/2) · StC(ct)]q0 ;

2 ctout ← LUT{idi} ◦ EvalExp ◦ CtS ◦ModRaise(ct′) ;
3 return ctout

the computational complexity is almost the same as the usual modular reduction in
Algorithm 1. The correctness is checked by the correctness of the parallel polynomial
evaluation, which directly comes from the correctness of CKKS.

3.2 The RNS-based Encryption Scheme
Based on the generalized modular reduction in Section 3.1, we build an efficient FHE
scheme for larger integers. In this subsection, we describe the scheme in detail, focusing
on how to enable large-precision integer arithmetic. Let k | N/2 be a (power-of-two)
divisor of N/2, {pi}0≤i<k be mutually coprime integers, and p =

∏
0≤i<k pi. We define

an FHE scheme over Zp as follows.

Encoding Structure. Let CRT :
∏

0≤i<k Zpi
→ Zp be a CRT isomorphism and

iCRT be its inverse. We extend CRT and iCRT to maps between
∏

0≤i<k Z
N
2k
pi and Z

N
2k
p .

Let ι :
∏

0≤i<k Z
N
2k
pi → ZN/2 be an inclusion extended from Zpi 7→ [−pi/2, pi/2). The

encoding IEcd : Z
N
2k
p → R is defined as

IEcd(m) = Ecd ◦ ι ◦ iCRT(m)

and the decoding IDcd : R → Z
N
2k
p is defined as its approximate inverse,

IDcd(p(X)) = CRT ◦ ι−1 ◦ Dcd(p(X)).

To clarify, the modulus for each slot is distributed as in Figure 3.

p0 p0 · · · p0 p1 p1 · · · p1 · · · · · · pk−1 pk−1 · · · pk−1

Figure 3: The assigned modulus for each slot 0 ≤ i < N/2.

Modular Reduction. Encryption, decryption, addition, and multiplication are di-
rectly inherited from CKKS. Note that addition and multiplication give only addition
and multiplication over Z, which means that it does not immediately give arithmetic
over Zp. To complete the homomorphic operations, we need to define homomorphic
modular reduction, which we rely on the discussions in the previous subsection. In
other words, the modular reduction Modp : R2

q → R2
Q is defined as

Modp(ct) = IntMod{pi}0≤i<k
(ct)

where we duplicate {pi}0≤i<k
N
2k times to get the desired modular reduction. The

straightforward way of using modular reduction is to modular-reduce every time we

13

perform addition or multiplication, but a more efficient approach is to delay the mod-
ular reduction until the precision budget is full. Such strategy was briefly mentioned
in [KN24, Section 5.1] and will be used throughout the following sections.

Theorem 1 (Scheme Correctness). Let ct1, ct2 ∈ R2
Q be encrypting m1,m2 ∈ Z

N
2k
p ,

respectively. Then Modp(ct1+ ct2) and Modp(ct1 · ct2) encrypt m1+m2 and m1⊙m2,
respectively.

Proof. Let n1 = ι◦ iCRT(m1) and n2 = ι◦ iCRT(m2) as in the definition of IEcd. As the
natural inclusion Z ↪→ C is a ring homomorphism, ct1 + ct2 and ct1 · ct2 encrypt vectors
n1 +n2 and n1 ⊙n2, respectively. At this point, the value in slot i may not belong to
Zpi as we performed addition and multiplication over integers. The modular reduction
function Modp performs [·]pi for each slot i, enabling addition and multiplication over
Zpi

instead of Z. Finally, as CRT is an isomorphism, we see that we achieved addition
and multiplication over Zp.

Automorphisms. Let leftRoti and rightRoti be usual CKKS rotations for index 0 ≤
i < N/2. Automorphisms are inherited from CKKS rotations, which can be categorized
into two types. The first type is of rotation index 0 ≤ i < N

2k . This type of rotation is

an analogue of the usual CKKS rotation as the vector in Z
N
2k
p is rotated as usual, except

that we need some masking. That is, in order to left rotate by index α, one first needs
to mask both the α slots on the left and the N

2k − α slots on the right, right rotate the
former by α, left rotate the latter by α, and add them together.

Definition 5 (Outer Rotation). Let ct ∈ R2
Q be encrypting m ∈ Z

N
2k
p . The outer

rotation by index 0 ≤ α < N
2k is defined as

OutLeftRotα(ct) = leftRotα(y · ct) + rightRot N
2k−α((1− y) · ct)

where y is the mask vector that has α 0’s and N
2k − α 1’s.

The second type is of rotation index N
2kβ for 0 ≤ β < k. This type of rotation

rotates inside the CRT structure, meaning that the order (p0, p1, . . . , pk−1) is shifted to
(pβ , pβ+1, . . . , pk−1, p0, . . . , pβ−1).

Definition 6 (Inner Rotation). Let ct ∈ R2
Q be encrypting m ∈ Z

N
2k
p . The inner

rotation by index 0 ≤ β < k is defined as

InLeftRotβ(ct) = leftRotNβ
2k

(ct).

The first type of rotation can be used for multivariate evaluation (e.g. matrix-vector
multiplication) as in the original CKKS whereas the second type of rotation can be used
to enable computations that need to be defined over different modulo arithmetic (e.g.
look-up tables).

Cleaning. As the scheme relies on the discrete variant of CKKS, we need to clean
the errors as in [DMPS24]. For efficiency, we prefer cleaning in the roots-of-unity state
as described in [CKKL24]. Therefore, cleaning is performed inside of bootstrapping
rather than outside, which means that we may put an additional cleaning step during
Modp. As illustrated in [BKSS24, AKP24], there is an alternative option to find an
appropriate polynomial interpolation with vanishing derivatives, which improves the
efficiency greatly. In this paper, we only need cleaning in a black box manner so one
may choose any options they want.

14

3.3 Homomorphic Base Conversion
Let r <

√
p be a large modulus for which we take a modular reduction. We keep the CRT

structure in the previous subsection, meaning that the encrypted data is stored modulo
pi for 0 ≤ i < k. The key observation is that we can perform base conversion from {pi}
to {r} and vice versa, without having an intermediate ciphertext encrypting a large
integer modulo r. We homomorphically evaluate the fast base conversion in [HPS19]
that uses floating point arithmetic. Using this technique allows us to compute base
conversion with look-up tables of size O(pi) rather than O(r).

We first recall the fast base conversion in [HPS19]. For simplicity, we discuss the
case where the input moduli are {pi}0≤i<k and the output modulus is r. The fast base
conversion of x ∈ Zp (for p =

∏k−1
i=0 pi) to r can be described as

[x]r =

[
k−1∑
i=0

yi · [p̂i]r − v · [p]r

]
r

where p̂i = p/pi ∈ Z, yi = [[x]pi · p̂i
−1]pi , and

v =

⌊
k−1∑
i=0

yi
pi

⌉
.

The key observation is that yi and [p̂i]r depend only on the modulus pi, and v can be
computed with simple (real number) additions. Hence, when homomorphically evaluat-
ing the base conversion, we do not need to handle a large modulus p =

∏k−1
i=0 pi directly

but needs k small moduli pi and one small precision real number computer.
For efficiency, we do not compute the last [·]r, resulting in

k−1∑
i=0

yi · [p̂i]r − v · [p]r = [x]r + re (2)

for some small error e ∈ Z. For modulo pi, we need to computek−1∑
j=0

yj · [[p̂j]r]pi − v · [[p]r]pi

pi

. (3)

Here [[p̂j]r]pi and [[p]r]pi can be precomputed so we only need to compute yj for each j
and compute v. We prove the correctness property as follows.

Theorem 2 (Modulo Arithmetic over CRT Basis). Let p =
∏k−1

i=0 pi be a CRT system
and r be a target modulus. Given x ∈ Z such that |x| < p/2, let

x′ =

k−1∑
i=0

yi · [p̂i]r − v · [p]r

where p̂i = p/pi, yi = [[x]pi
· p̂i−1]pi

, and v =
⌊∑k−1

i=0
yi

pi

⌉
. Then we have x ≡ x′ modulo

r and

|x′| ≤ 1

4

(
k +

k−1∑
i=0

pi

)
· r.

Proof. We first check the property x ≡ x′ modulo r. It suffices to show that

k−1∑
i=0

yi · p̂i − v · p ≡ x (mod r).

15

Since
k−1∑
i=0

yi · p̂i − v · p ≡ xi · p̂i−1 · p̂i ≡ xi = [x]pi (mod pi)

for each j, we have that

k−1∑
i=0

yi · p̂i − v · p ≡ x (mod pj).

In addition, as

k−1∑
i=0

yi · p̂i − v · p = p ·

(
k−1∑
i=0

yi
pi
−

⌊
k−1∑
i=0

yi
pi

⌉)
∈ [−p/2, p/2)

we have that
∑k−1

i=0 yi · p̂i − v · p = x which implies that they are equal modulo r.
Second, we check the upper bound of |x′|. By triangle inequality,

|x′| ≤
k−1∑
i=0

|yi| · (r/2) + v · (r/2) ≤

(
k−1∑
i=0

(pi/2) + (k/2)

)
· (r/2).

Hence we have the desired upper bound.

Next, we discuss how to evaluate Equation (3) homomorphically in parallel.

1. Compute yi and v: Since we start with a CRT system storing [x]pi
for each i,

we can compute yi in parallel across slots. We end with modular reduction and
have fresh yi’s in the largest modulus. Next, v can be approximately computed as
rotation-sum and constant multiplication (at most one multiplicative depth). In
other words, we compute

∑k−1
i=0 yi/pi and regard it as a valid discrete encoding of

v = ⌊
∑k−1

i=0 yi/pi⌉.

2. Computing the rest: By a proper rotation-sum, the i-th slot computes

k−1∑
j=0

yj · [[p̂j]r]pi

in a parallel manner. Next, by using a ciphertext having v across the slots (in the
previous step), compute

v · [[p]r]pi

in parallel. Finally, we subtract and modular reduce.

The total cost should be roughly 2-3 times the bootstrapping cost. The detailed algo-
rithm is described in Algorithm 3. The correctness of the algorithm is checked by the
individual components in Section 3.2 and the following lemma.

Lemma 1. Let p, pi, r, x, yi, v, x′ be as in Theorem 2. If |x| ≤ ϵp, then∣∣∣∣∣v −
k−1∑
i=0

yi
pi

∣∣∣∣∣ ≤ ϵ.

16

Algorithm 3: IModr

Setting: R = Z[X]/(XN + 1), RQ = R/QR, k | N/2.

Input : ct = Encsk ◦ IEcd(z) ∈ R2
Q where z ∈ Z

N
2k
p is a small vector.

Output: ctout = Enc ◦ IEcd([z]r + re) ∈ R2
Q.

1 ct′ ← ct · ([p̂i−1]pi)0≤i<k;
2 cty ← Modp(ct

′);
3 ctv ← cty · (1/pi)0≤i<k;
4 for i = 0 to log2(k)− 1 do
5 ctv ← ctv + InLeftRotk/2i+1(ctv);
6 end for
7 ctout ← 0;
8 for i = 0 to k − 1 do
9 ct′ ← cty · ([[p̂j]r]pj−i

)0≤j<k;
10 ctout ← ctout + InLeftRoti(ct

′);
11 end for
12 ctv ← ctv · ([[p]r]pi)0≤i<k;
13 ctout ← ctout − ctv;
14 ctout ← Modp(ctout);
15 return ctout

Proof. In the proof of Theorem 2, we checked that

k−1∑
i=0

yi · p̂i − v · p = x.

After dividing by p, we get
k−1∑
i=0

yi/pi − v = x/p.

Hence, ∣∣∣∣∣v −
k−1∑
i=0

yi
pi

∣∣∣∣∣ = |x/p| ≤ ϵ.

This finishes the proof.

Theorem 3 (Correctness of IModr). Let ct = Encsk ◦ IEcd(z) be a ciphertext encrypting
a vector z = (zj)0≤j< N

2k
∈ Z

N
2k
p such that |zj | ≪ mini(p̂i) for each 0 ≤ j < N

2k . Then
Algorithm 3 evaluates a correct (lazy) modular reduction.

Proof. We assume that the components in Section 3.2 are correct. We observe that Al-
gorithm 3 homomorphically evaluates all the procedures to evaluate x′ in Theorem 2,
except that it approximately evaluates v by choosing

∑k−1
i=0 yi/pi as a representative of

v. Since |zj | ≪ mini(p̂i), Lemma 1 tells us that the error

k−1∑
i=0

yi
pi
− v =

x

p

is sufficiently smaller than 1/pi for every 0 ≤ i < k, which is enough to be regarded as
a valid encoding of an integer (in the CRT system) after multiplying [[p]r]pi

. Finally,
Theorem 2 finishes the proof.

17

Next, we discuss the base conversion within the set {pi}0≤i<k. In particular, we
consider the base conversion from PI = {pi | i ∈ I} ⊆ {pi}0≤i<k to P[k]\I = {pi | i ̸∈ I}.
As in the previous case, we use the fast base conversion in [HPS19] but this time the
base conversion is exact. For each i ∈ [k] \ I, the base conversion can be described as

{xi}i∈I 7→

[∑
i∈I

yi · [p̂i]pj
− v · [p]pj

]
0≤j<k

where p̂i =
(∏

u∈I pu
)
/pi, yi = [[x]pi

· p̂i−1]pi
, and

v =

⌊∑
i∈I

yi
pi

⌉
.

Unlike in the previous case, we can take the final [·]pj
as its representation is in the

moduli chain. We assume that the input of the base conversion is sufficiently small
so that we can apply an analogue of Lemma 1. The evaluation is almost identical
to Algorithm 3, and we leave it as an exercise. We denote the base conversion defined
here as BaseConvI . This type of base conversion is not very useful at this point, but will
be used as an ingredient in the next section.

Theorem 4 (Correctness of BaseConvI). Let ct = Encsk ◦ IEcd(z) be a ciphertext en-
crypting a vector z = (zj)0≤j< N

2k
∈ Z

N
2k
p such that |zj | ≪ mini∈I(p̂i) for each 0 ≤ j < N

2k .
Then BaseConvI evaluates a correct modular reduction by

∏
i∈I pi.

Proof. It suffices to show that
∑

i∈I yi/pi is a good representation of v. Similarly as in
Theorem 3, we have ∑

i∈I

yi
pi
− v =

[x]pI

pI

where pI =
∏

i∈I pi. Therefore, the representation error is much less than 1/pj for each
0 ≤ j < N

2k , leading to sufficient precision.

4 Double Layer RNS System
Although the scheme in Section 3 provides efficient homomorphic computations over
large integers, its practical performance is somewhat limited. The main problem is
that there are not enough number of mutually coprime moduli. Recall that the (non-
iterative) modular reduction in [KN24] can only handle moduli of moderate size (e.g.
4 to 8 bits). For instance, for logN = 16, the maximum modulus is a scale of 10 bits
(see [BKSS24]), and the number of primes less than 1024 is 172 which is way smaller
than N/2 = 32768. To tackle this issue, we observe that we can build an additional
CRT layer upon the CRT layer so that we can enable an even larger modulus.

4.1 Homomorphic Rescaling
Given two different types of base conversions in the previous section, we can naturally
define homomorphic rescaling which mimics the rescaling in CKKS. That is, given x ∈
Zp, we can either take [x]r + re for a large modulus r or [x]∏

i∈I pi
, and define rescaling

by subtracting it from the original ciphertext and multiply the modular inverse of the
modulus. For the latter, one loses the data for {pi}i∈I while division, so it should be
recovered using an extra base conversion. To be explicit, we can briefly illustrate the
algorithms as follows.

18

Definition 7 (Rescale by r). Let ct = Encsk ◦ IEcd(z) be a ciphertext encrypting a
vector z = (zj)0≤j< N

2k
∈ Z

N
2k
p such that |zj | ≪ mini(p̂i) for each 0 ≤ j < N

2k . The

rescaling of ct by r (that is coprime with
∏k−1

i=0 pi) is defined as

Rescaler(ct) = r−1 · (ct− IModr).

Definition 8 (Rescale by
∏

i∈I pi). Let ct = Encsk ◦ IEcd(z) be a ciphertext encrypting

a vector z = (zj)0≤j< N
2k
∈ Z

N
2k
p such that

• |[zj]pI
| ≪

∏
i∈I pi/maxi∈I(pi) and

• |zj | ≪
∏

0≤i<k pi/maxi ̸∈I pi

for each 0 ≤ j < N
2k . The rescaling of ct by

∏
i∈I pi is defined as

RescalepI
= BaseConv[k]\I

(∏
i∈I

pi

)−1

· (ct− BaseConvI(ct))

 .

Note that Rescaler is an approximate rescaling as in CKKS, while RescalePI
gives

an exact result. One caution here is that RescalePI
works properly only when both the

underlying message of ct is much smaller than
∏

i∈I pi and the message of(∏
i∈I

pi

)−1

· (ct− BaseConvI(ct))

is much smaller than
∏

i∈[k]\I pi. This holds only in very specific circumstances but can
be useful in the next subsections.

Theorem 5 (Rescale Correctness). The rescaling operations in Definitions 7 and 8 are
correct.

Proof. The correctness of Definition 7 follows directly from Theorem 3. It remains to
show the correctness of Definition 8.

Since |[zj]pI
| ≪

∏
i∈I pi/maxi∈I(pi), by Theorem 4 we have that(∏

i∈I

pi

)−1

· (ct− BaseConvI(ct))

gives the correct rescaling. Next, the condition |zj | ≪
∏

0≤i<k pi/maxi ̸∈I pi tells us
that the message after rescaling by pI is less than

∏
i ̸∈I pi/maxi ̸∈I pi. According to

Theorem 4, this ensures the correctness of the last base conversion. This finishes the
proof.

4.2 The Nested RNS-based Encryption Scheme
Using modular reduction in the previous section and the rescaling in the prior subsection,
we construct a nested two-layer RNS system to encode large integers. Let k | N/2 be
the number of first layer moduli as before, and let ℓ | (N/2)/k be an integer which will
be the number of second layer moduli. There are two sets of mutually coprime integers,
namely {pi}0≤i<k and {rj}0≤j<ℓ, where maxj(rj) ≪ (

∏
i pi)

1/2. Let r =
∏

j rj . We
define an FHE scheme over Zr as follows.

19

Encoding Structure. In addition to the encoding IEcd, we attach an additional CRT.
Let CRT′ :

∏
0≤j<ℓ Zrj → Zr be a CRT isomorphism and iCRT′ be its inverse. We extend

CRT′ and iCRT′ to maps between (
∏

0≤j<ℓ Zrj)
N
2kℓ and Z

N
2kℓ
r . Let ι′ : (

∏
0≤j<ℓ Zrj)

N
2kℓ →

Z
N
2k
p be an inclusion extended from Zrj 7→ [−rj/2, rj/2). The encoding JEcd : Z

N
2kℓ
r → R

is defined as
JEcd(m) = IEcd ◦ ι′ ◦ iCRT′(m)

and the decoding JDcd : R → Z
N
2kℓ
r is defined as its approximate inverse,

JDcd(p(X)) = CRT′ ◦ ι′−1 ◦ IDcd(p(X))

where ι′−1 involves modular reduction by rj for each j. To clarify, the modulus for
each slot is distributed as in Figure 4. Note that the first layer ordering and the second
layer ordering are different. In particular, the first layer ordering maps

∏
Z

N
2k
p to

∏
i Z

N
2k
pi

whereas the second layer ordering maps
∏

Z
N
2kℓ
r to (

∏
j Zrj)

N
2kℓ .

r0 r1 r0 r1 r0 r1 r0 r1 r0 r1 r0 r1 r0 r1 r0 r1
p0 p0 p0 p0 p1 p1 p1 p1 p2 p2 p2 p2 p3 p3 p3 p3

Figure 4: The assigned modulus for each slot 0 ≤ i < N/2.

Arithmetics Operations. Encryption, decryption, addition, and multiplication are
directly inherited from CKKS. As addition and multiplication give only addition and
multiplication over Z, we need homomorphic modular reduction to control its size. For
this, we rely on the modular reduction in Algorithm 3. We extend this in a similar
manner so that each slot that corresponds to rj modular reduce by rj . We denote
this extension as Mod′r = IMod{rj}0≤j<ℓ

. Note that Rescaler in Definition 7 extends to
Rescale′r = Rescale{rj}0≤j<ℓ

.

Theorem 6 (Scheme Correctness). Let ct1, ct2 ∈ R2
Q be encrypting m1,m2 ∈ Z

N
2kℓ
r ,

respectively. Then Mod′r(ct1+ ct2) and Mod′r(ct1 · ct2) encrypt m1+m2 and m1⊙m2,
respectively.

Proof. This immediately follows from the correctness of IModr which was proved in
Theorem 3. The condition maxj(rj) ≪ (

∏
i pi)

1/2 is used to ensure that the product
ct1 · ct2 does not overflow.

Automorphisms Automorphisms are inherited from the single-layer scheme. The
inner rotation InLeftRotβ rotates over pi’s, so it is not so useful in the second layer. Now
the outer rotation OutLeftRotα is classified into two cases: inner and outer rotations for
Z

N
2kℓ
r .

Definition 9 (Inner Rotation). Let ct ∈ R2
Q be encrypting m ∈ Z

N
2kℓ
r . The inner

rotation by index 0 ≤ j < ℓ is defined as

OInLeftRotj(ct) = OutLeftRotj(ct).

The outer rotations need an additional level of masking to be supported with OutLeftRot’s,
as in the outer rotations of layer 1. Since we rely only on inner rotations, we do not
illustrate this further.

20

Cleaning. Since the first layer is already an exact FHE scheme, we do not need any
extra cleaning. Therefore, it suffices to control the errors only in the first layer, which
one can refer to Section 3.

4.3 Homomorphic Base Conversion
Let s ≪ (

∏
j rj)

1/2 be a large modulus. We somewhat repeat the homomorphic base
conversion in Section 3.3 but this time in the second layer. Note that we already have
all the ingredients: addition, multiplication, modular reduction, and rescaling. In par-
ticular, a combination of multiplication and rescaling gives real number computation as
in the philosophy of CKKS, which is essential in evaluating the fast base conversion in
[HPS19].

In order to compute

v ≈
ℓ−1∑
i=0

yi
ri

where yi = [[x]ri · r̂i
−1]ri , we need homomorphic division by ri.

As Rescale{ri}0≤i<ℓ
itself is not so precise, we multiply and divide by

∏
i∈I pi via

RescalepI
, resulting in an exact result. The algorithm is described in Algorithm 4.

Algorithm 4: JMods

Setting: R = Z[X]/(XN + 1), RQ = R/QR, k, ℓ | N/2, I ⊆ {0, 1, . . . , k − 1},
maxj r

2
j ≪

∏
i̸∈I pi,

∏
i∈I pi > (k + 4 +

∑k−1
i=0 pi) · ℓ/2.

Input : ct = Encsk ◦ JEcd(z) ∈ R2
Q where z ∈ Z

N
2kℓ
r satisfies

∥z∥∞/r ≪ min

(
1/max

i∈I
(pi), 1/ max

0≤j<ℓ
(rj)

)
and

∥ι′ ◦ iCRT′(z)∥∞ ≪
∏
i ̸∈I

pi/max
i

pi.

Output: ctout = Enc ◦ JEcd([z]s + se) ∈ R2
Q for some small e.

1 ct′ ← ct · IEcd ◦ ι′(([r̂i−1]ri)0≤i<ℓ);
2 cty ← Mod′r(ct

′);
3 ctv ← Rescale{ri}0≤i<ℓ

(cty · IEcd(
∏

i∈I pi));
4 for i = 0 to log2(ℓ)− 1 do
5 ctv ← ctv + OInLeftRotℓ/2i+1(ctv);
6 end for
7 ctv ← RescalepI

(ctv);
8 ctout ← 0;
9 for i = 0 to ℓ− 1 do

10 ct′ ← cty · IEcd ◦ ι′([[r̂j]s]rj−i)0≤j<ℓ;
11 ctout ← ctout + OInLeftRoti(ct

′);
12 end for
13 ctv ← ctv · IEcd ◦ ι′([[r]s]ri)0≤i<ℓ;
14 ctout ← ctout − ctv;
15 ctout ← Mod′r(ctout);
16 return ctout

21

Theorem 7 (Correctness of JMods). The homomorphic modular reduction in Algo-
rithm 4 is correct.

Proof. We first check the required conditions of Rescale{ri}0≤i<ℓ
and RescalepI

.
For checking Rescale{ri}0≤i<ℓ

, we see that(∏
i∈I

pi

)
· ∥ι′ ◦ iCRT′(z)∥∞ ≪

 ∏
0≤i<k

pi

 / max
0≤i<k

(pi)

which satisfies the condition of Definition 7. For checking RescalepI
, let v be the vector

that ctv is encrypting (via IEcd) before applying rescaling in Line 7 of Algorithm 4. By
definition, it should be encrypting

≈

(∏
i∈I

pi

)
·
ℓ−1∑
i=0

yi
ri

for each slot where
∑ℓ−1

i=0
yi

ri
is sufficiently close to the integer v. In particular, the error

is less than ∥z∥∞/r < 1/maxi∈I pi due to Lemma 1. This checks the first condition of
Definition 8. For the second condition, we see that

∥v∥∞ ≤ max

(∏
i∈I

pi

)
·

∣∣∣∣∣
ℓ−1∑
i=0

yi
ri

∣∣∣∣∣ < ℓ

2
·
∏
i∈I

pi ≪
∏

0≤i<k pi

maxi ̸∈I pi

as desired.
Next, we check if the algorithm correctly evaluates v =

⌊∑ℓ−1
i=0 yi/ri

⌉
. As we are

computing in parallel, we describe only computations inside a single slot and illustrate
how the underlying message changes through computations.

After the Line 3 of Algorithm 4, we have(⌊(∏
i∈I

pi

)
· yj
rj

⌉
+ ej

)
0≤j<ℓ

for some small error e = (ej)0≤j<ℓ. According to Theorem 2, each ej satisfies

|ej | ≤
1

4

(
k +

k−1∑
i=0

pi

)
.

Through rotation sum, we get

ℓ−1∑
j=0

⌊(∏
i∈I

pi

)
· yj
rj

⌉
+

ℓ−1∑
j=0

ej =

(∏
i∈I

pi

)
·
ℓ−1∑
j=0

yi
rj

+ e′

for some small e′ ∈ Z upper bounded as

|e′| ≤
ℓ−1∑
j=0

|ej |+ ℓ− 1 <
1

4

(
k + 4 +

k−1∑
i=0

pi

)
· ℓ.

Lastly, due to the condition∏
i∈I

pi >
1

2

(
k + 4 +

k−1∑
i=0

pi

)
· ℓ > 2 · |e′|,

RescalepI
(ctv) computes the exact rescale so it gives ⌊

∑ℓ−1
j=0 yj/rj⌉ as desired.

The rest of the algorithm is checked by the correctness of individual operations. This
finished the proof.

22

5 Efficiency Analysis
In this section, we discuss the efficiency of the proposed methods and compare them
with the previous works.

5.1 Achieving Arbitrary Precision
We first analyze how much precision we can achieve through our approach, and how
it compares to the state-of-the-art high-precision works. To start with, we observe the
(asymptotic) relations between the moduli we use during (nested) modular computa-
tions. In particular, we have the following inequalities.

• log(pi) ≤ n for some n due to the efficiency of discrete bootstrapping [BKSS24].

• r2j <
∏k−1

i=0 pi/maxi pi from Theorem 3.

• s2 < min (r/maxi∈I pi, r/max0≤j<ℓ rj) from Theorem 7.

• r2j <
∏

i ̸∈I pi/max0≤i<k pi from Theorem 7.

Roughly speaking, we have

log r =

ℓ−1∑
j=0

log rj =

ℓ−1∑
j=0

k−1∑
i=0

O(log pi) =

ℓ−1∑
j=0

k−1∑
i=0

O(n) = O(kℓn)

and
log s = O(log r) = O(kℓn).

Since the only requirement for kℓ is that kℓ ≤ N , we have that both log r and log s can
be as large as O(N). In other words, we can instantiate O(N) bit modular multiplication
using a single RLWE ciphertext of dimension N .

We compare this with the previous high-precision FHE methods. For a fair com-
parison, we mainly compare with the RLWE-based schemes. We start with the original
BGV/BFV whose maximum precision is determined by the available modulus logQP
which depends on N . For typical choices of N (e.g. logN = 15, 16), it usually supports
up to tens of modulus. To support higher precision, one may consider a radix or CRT ver-
sion of BGV/BFV (as the CGGI/DM family did in [CLOT21, CKLM24a, CKLM24b]).
The CRT-based one might be preferable in terms of computational complexity. In this
case, bootstrapping is also naturally supported as we can bootstrap individual cipher-
texts to bootstrap the whole ciphertext tuple. However, this scheme is not very efficient
as the size of the ciphertext tuple depends on the number of CRT moduli, leading to a
very large size for supporting high precision. To overcome this problem, one may con-
sider exploiting the polynomial ring as in CLPX [CLPX18] or its generalization [GV24].
Although they support high precision within a single ciphertext, high-precision boot-
strapping is not efficiently supported. In particular in [GV24], they use BFV bootstrap-
ping with large precision as a subroutine which prevents one from instantiating very
large precision. On the CKKS side, one may consider the recent radix-based approach
from [Kim25]. Similar to the CRT BGV/BFV approach, it supports both high-precision
arithmetic and bootstrapping but struggles to achieve good latency due to having a large
number of ciphertexts. On the other hand, our method solves all the problems men-
tioned above: it supports arbitrary precision and bootstrapping within a single RLWE
ciphertext. See Table 2 for a detailed comparison.

In addition to what was discussed above, our scheme has a new functionality that
all the other approaches did not have, modular arithmetic for arbitrary modulus. The

23

CRT or radix-based approaches cannot support arbitrary modulus as they use smaller
chunks to enable higher precision. CLPX and GBFV also have limited choice of moduli,
as they need to be cyclotomic moduli. Furthermore, they cannot use all the cyclotomic
moduli options as the type of the modulus affects the performance. On the other hand,
we may choose an arbitrary modulus as long as it satisfies the upper bound. In this
regard, our scheme enables arbitrary precision and modulus for the first time which can
be useful in many applications such as homomorphic signing discussed in Section 1.

5.2 In Moderate Precision
As our method allows us to use as many slots as we want, we may choose a moderate
target modulus (e.g. 32 or 64 bits) for modular arithmetic. The first layer without
homomorphic modular reduction (i.e. IModr) already gives modulo arithmetic over Zp

where p =
∏k−1

i=0 pi. On top of the first layer CRT system, we may rely on the modular
reduction IModr to reduce by an arbitrary modulus. If we need a relatively larger
modulus, we may use multiple ri’s to represent a large integer or use JMods for modular
reducing over large arbitrary modulus. Long story short, all the intermediate steps
can be used to instantiate modular integer computations, and these options provide a
trade-off between precision and the number of parallelisms.

For simplicity, we discuss the trade-off for the first layer CRT system without IModr.
The trade-off is naturally extended to higher layers. Recall that we use k moduli
p0, p1, . . . , pk−1 to instantiate modulo p =

∏k−1
i=0 pi arithmetic. As we use k slots for

each Zp addition and multiplication, we have N
2k many Zp slots. The k = 1 case corre-

sponds to the small integer modular arithmetic illustrated in [KN24], whereas we may
choose k as the number of primes less than or equal to n bits which gives the highest
possible modulus in the first layer. Between these two cases are middle grounds, where
we can adjust the trade-off between the precision p and the number of slots N

2k .
As the radix-based method [Kim25] also provides modular arithmetic for moderate

precision, we may compare our method with [Kim25]. There are two key differences
between the two approaches. One difference is that our method has better latency
due to in-ciphertext parallelization, whereas the radix-based one does not naturally
support high-precision computation in a single ciphertext. They may put all the digits
inside a single ciphertext and use slot rotations to compute across the digits, but they
cannot enjoy full parallelism as the modular reduction algorithm (i.e. denoted as Reduce
in [Kim25]) is not directly parallelizable. On the other hand, the CRT structure allows
us to evaluate everything completely in parallel, resulting in much better latency. The
downside of the CRT-based approach is that it does not directly support moduli of the
form dk which is a standard data type for modern computers. To solve this issue, it is
tempting to use the modular reduction IModr. Although this provides an extra overhead
(i.e. more bootstrapping), the latency of this approach is still plausible as the overhead
does not depend on the target precision. Nevertheless, the CRT-based solution does not
have the full capability that the radix-based method has, such as efficient comparison,
shifting, and arbitrary function evaluation. In this regard, there is a clear trade-off
between the radix-based and the CRT-based approaches.

6 Experiments
We provide some proof-of-concept implementations for our method, focusing on the
double layer RNS system. We built our code upon the Lattigo [lat24] library in golang.
All of our parameters satisfy ≈ 128 bits of security according to [BTPH22]. All of
our experiments are run single-threaded on Apple M1 Pro with 32GB of RAM running
macOS Sequoia 14.4.1. The running time and precision are measured after at least 20

24

iterations. Unless stated otherwise, the running time of other works were tested in the
same environment. Throughout the section, the precision listed in the tables refers to
the logarithm of the size of the underlying error, as a discrete CKKS ciphertext.

6.1 Parameters
We first designed a discrete bootstrapping [BKSS24] parameter set and constructed rest
of the parameters upon it. We describe the discrete bootstrapping parameter set we
used throughout the implementations in Table 3. This parameter can afford up to 7
multiplicative depths for evaluating look-up tables.

Table 3: Main FHE parameter set used for the experiments. Here N denotes the ring
dimension, QP denotes the maximum key switching modulus, (h, h̃) denote the dense
and spare Hamming weight for the sparse secret encapsulation [BTPH22], respectively,
and logQ and logP denote the size and number of primes used for ciphertext and
auxiliary modulus, respectively. When written as X × Y , it denotes having Y many X
bit moduli. Names in the second row under logQ denote how many moduli are reserved
for each operation.

logN logQP (h, h̃) dnum
logQ

logP
Base StC Mult LUT EvalExp CtS

16 1518 (192, 32) 5 52 42× 3 52× 3 52× 7 52× 8 48× 3 52× 5

For the first layer modular reduction, we followed the framework of [KN24] while
instantiating the homomorphic look-up table with Hermite interpolation. In particular,
we chose pi ≤ 26 − 2 = 62 and the interpolation polynomial degree ≤ 27 − 2 = 126
so that we can evaluate it with 7 multiplicative depths. There are k = 16 moduli in
the first layer. For the second layer, we chose rj ≈ 215 which satisfies the condition
r2j ≪ mini(p̂i) needed for Theorem 3 as well as the conditions of Algorithm 4. There are
ℓ = 64 moduli in the second layer. The parameter details are specified in Table 4. Note
that the base bootstrapping (which enables the modular reduction for the first layer)
takes 15.0 seconds. We slightly modify the nested CRT parameters (e.g. k, ℓ, log(rj))
in the following experiments, but they are kept the same unless stated otherwise.

Table 4: Nested CRT Parameters. Here log(p) denotes the size of the first layer moduli
pi, log(r) denotes the size of the second layer moduli rj , and k, ℓ denote the number of
first and second layer moduli, respectively.

log(p) log(r) k ℓ log(
∏k−1

i=1 pi) log(
∏ℓ−1

j=0 rj) IntMod{pi}0≤i<k
time

6 15 16 64 77.1 960 15.2 sec

6.2 Results and Analysis
We describe our single and double-layer RNS system experiments which follow the al-
gorithms in Sections 3 and 4. Note that each step enables unique functionality, which
is not only a subroutine for the higher layers but also a useful operation as it is. In
this regard, we start from the very bottom layer and illustrate the functionality of each
layer.

First Layer CRT Multiplication. We observe that the asymmetric modular reduc-
tion already enables modular arithmetic with relatively smaller modulus. To be more

25

precise, it provides a trade-off between the number of slots and the size of the moduli.
Table 5 shows that executing the same asymmetric modular reduction algorithm,

but with different moduli choices, can be used to achieve various plaintext modulus size.
The more plaintext moduli we use, the less parallelism we have.

First Layer Modular Reduction. We experimented the first layer modular reduc-
tion Mod′r. It enables Zr ≃

∏ℓ−1
j=0 Zrj for 15 bit primes rj and variable ℓ. This also

introduces a trade-off between plaintext modulus size and the number of slots, and the
modulus size can vary from 15 bits to ≈ 30 000 bits. We chose specific r to handle the
later examples. The experimental results are shown in Table 6.

Second Layer Modular Reduction We experimented the second layer modular
reduction (denoted as JMods) which computes modular arithmetic over a very large s
(can be at most ≈ 10 000 bits in our setting). The experimental results for homomorphic
modular multiplication are shown in Table 7. In particular, we experimented the elliptic
curve prime 2255− 19 and P-384 and a modulus of size 2048 bits, which were motivated
in Section 1.

6.3 Comparison with Prior Works
We compare our results with the state-of-the-art methods on homomorphic integer mul-
tiplication, namely [GV24], [Kim25], and TFHE-rs [Zam22] which bootstrap in a rea-
sonable amount of time on moderately large (≥ 64 bit) precision. We give the detailed
timing numbers in Table 8.

Compared to TFHE-rs [Zam22], our method outperforms their homomorphic mul-
tiplication both in terms of latency and throughput. Interestingly, even for a single
multiplication it is preferable to use our method although it is known that CGGI/DM
schemes provide good latency. For instance, when evaluating 256 bit multiplication, our
method is an order of magnitude faster in terms of latency and three orders of magnitude
faster in terms of throughput. However, this does not mean that our scheme is better
in every aspect, as the radix-based approach they use allows wider range of operations.

Compared to the radix-based CKKS approach in [Kim25], our scheme is better both
in terms of latency and throughput. In particular, when evaluating ≥ 64 bit homo-
morphic multiplication,6 our latency is more than an order of magnitude faster while
keeping the throughput better.

One may compare our result with the state-of-the-art high precision BGV/BFV
bootstrapping in [KSS24]. For achieving ≈ 256 bits of precision, our method is an order
magnitude faster in terms of latency but two orders of magnitude slower in terms of
throughput. This suggests that there is a trade-off between latency and throughput
between these methods. When the plaintext modulus becomes even larger (e.g. more
than a thousand bit), then our method becomes preferable as they would need larger
ring dimension (e.g. logN = 17) and much worse latency (e.g. several hours). Note
that the highest plaintext modulus size ever implemented for BGV/BFV bootstrapping
was around 234 bits (in [KSS24]), whereas our bootstrapping supports up to ≈ 30, 000
bits in logN = 16.

Acknowledgments. This work was funded by NSF, DARPA, and the Simons Founda-
tion. Opinions, findings, and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of DARPA.

6We compare 64 bit multiplication of [Kim25] and 77.1 bit multiplication of ours.

26

k log(
∏k−1

i=0 pi) # Slots Modp time Amortized time precision
16 77.1 2048 15.2 sec 7.42 ms −32.0
8 35.5 4096 14.8 sec 3.61 ms −32.3
4 20.0 8192 14.6 sec 1.78 ms −32.3
2 9.75 16384 14.2 sec 0.867 ms −33.6
1 5.00 32768 13.9 sec 0.424 ms −33.5

Table 5: Asymmetric Modular Reduction gives adjustable precision modular arithmetic.
Here we executed Modp = IntMod{pi}0≤i<k

with varying k and {pi}. The precision
denotes the maximum of all errors across different slots and iterations, in log base 2.

log(r) ℓ # slots Zr mult time precisionlatency amortized time
960 64 32 31.2 sec 975 ms −26.0
7679 512 4 31.4 sec 7.85 sec −26.2

Table 6: Modular Homomorphic Multiplication over Zr ≃
∏ℓ−1

i=0 Zri , instantiated as
multiplication plus Mod′r for each i. The precision denotes the maximum of all errors
across different slots and iterations, in log base 2.

log(s) # slots Zs mult time precisionlatency amortized time
255 32 254 sec 7.94 sec −24.34
384 32 259 sec 8.09 sec −24.7
2048 4 330 sec 82.5 sec −31.9

Table 7: Modular Homomorphic Multiplication over Zs, instantiated as multiplication
plus JMods. The precision denotes the maximum of all errors across different slots
and iterations, in log base 2. Here the 255 and 384 bit primes are the elliptic curve
primes 2255 − 19 and P-384, respectively, and 2048 bit modulus is an RSA modulus.
For log(s) = 2048, we added extra cleaning to get sufficient precision, leading to slightly
worse latency (but better precision).

log(t) # slots latency throughput

TFHE-rs [Zam22]
64

1
36.2 sec 36.2 sec

128 144 sec 144 sec
256 574 sec 574 sec

[Kim25] 64 16384 220 sec 13.4 ms

This paper
77.1 2048 15.2 sec 7.42 ms
128 256 33.6 sec 131 ms
256 128 33.7 sec 263 ms

[KSS24] 168 ≤ 65536 128 sec ≥ 1.95 ms
234 ≤ 131072 392 sec ≥ 2.99 ms

Table 8: Comparison with the state-of-the-art integer multiplications. Here log(t) refers
to the logarithm of the plaintext modulus. We compare latency and throughput of an
execution of single multiplication plus bootstrapping. Timings for [KSS24] are borrowed
from [KSS24, Table 4] which is measured in a similar environment. All other timings
are measured in the machine described at the beginning of the section. Note that our
log(t) = 77.1 implementation is relying on Modp whereas our log(t) = 128, 256 is relying
on Mod′r.

27

References
[AAB+24] Marius A. Aardal, Diego F. Aranha, Katharina Boudgoust, Sebastian

Kolby, and Akira Takahashi. Aggregating falcon signatures with labrador.
In CRYPTO 2024, volume 14920 of Lecture Notes in Computer Science,
pages 71–106. Springer, 2024.

[ABPS24] Shahla Atapoor, Karim Baghery, Hilder V. L. Pereira, and Jannik
Spiessens. Verifiable FHE via lattice-based SNARKs. IACR Communi-
cations in Cryptology, 1(1), 2024.

[ADE+23] E. Aharoni, N. Drucker, G. Ezov, E. Kushnir, H. Shaul, and O. Soceanu.
E2E near-standard and practical authenticated transciphering. Cryptology
ePrint Archive, Paper 2023/1040, 2023.

[AKP24] A. Alexandru, A. Kim, and Y. Polyakov. General functional bootstrapping
using CKKS. Cryptology ePrint Archive, Paper 2024/1623, 2024.

[BBB+23] L. Bergerat, A. Boudi, Q. Bourgerie, I. Chillotti, D. Ligier, J.-B. Orfila, and
S. Tap. Parameter optimization & larger precision for (t)fhe. J. Cryptol.,
2023.

[BCKS24] Y. Bae, J. H. Cheon, J. Kim, and D. Stehlé. Bootstrapping bits with
CKKS. In EUROCRYPT, 2024.

[Ber06] Daniel J. Bernstein. Curve25519: New diffie-hellman speed records. In
Public Key Cryptography - PKC 2006, volume 3958 of Lecture Notes in
Computer Science, pages 207–228. Springer, 2006.

[BGG+18] Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim,
Peter M. R. Rasmussen, and Amit Sahai. Threshold cryptosystems from
threshold fully homomorphic encryption. In CRYPTO 2018, volume 10991
of Lecture Notes in Computer Science, pages 565–596. Springer, 2018.

[BGGJ20] C. Boura, N. Gama, M. Georgieva, and D. Jetchev. CHIMERA: Combining
ring-LWE-based fully homomorphic encryption schemes. J. Math. Crypt.,
2020.

[BGV12] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully homo-
morphic encryption without bootstrapping. In ITCS, 2012.

[BKSS24] Y. Bae, J. Kim, D. Stehlé, and E. Suvanto. Bootstrapping small integers
with CKKS. In ASIACRYPT, 2024.

[Bra12] Z. Brakerski. Fully homomorphic encryption without modulus switching
from classical GapSVP. In CRYPTO, 2012.

[BS23] Dan Boneh and Victor Shoup. A Graduate Course in Applied Cryptography
(version 0.6). January 2023. Available at https://toc.cryptobook.us/.

[BTPH22] J.-P. Bossuat, J. Troncoso-Pastoriza, and J.-P. Hubaux. Bootstrap-
ping for approximate homomorphic encryption with negligible failure-
probability by using sparse-secret encapsulation. In ACNS, 2022.

[CGGI16] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. Faster fully ho-
momorphic encryption: Bootstrapping in less than 0.1 seconds. In ASI-
ACRYPT, 2016.

28

https://toc.cryptobook.us/

[Cha82] David Chaum. Blind signatures for untraceable payments. In CRYPTO
’82, pages 199–203. Plenum Press, New York, 1982.

[CHK+18] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song. Bootstrapping for
approximate homomorphic encryption. In EUROCRYPT, 2018.

[CKK20] J. H. Cheon, D. Kim, and D. Kim. Efficient homomorphic comparison
methods with optimal complexity. In ASIACRYPT, 2020.

[CKKL24] H. Chung, H. Kim, Y.-S. Kim, and Y. Lee. Amortized large look-up ta-
ble evaluation with multivariate polynomials for homomorphic encryption.
IACR eprint 2024/274, 2024.

[CKKS17] J. H. Cheon, A. Kim, M. Kim, and Y. Song. Homomorphic encryption for
arithmetic of approximate numbers. In ASIACRYPT, 2017.

[CKLM24a] P. Chartier, M. Koskas, M. Lemou, and F. Méhats. Fully homomorphic
encryption on large integers. Cryptology ePrint Archive, Paper 2024/155,
2024.

[CKLM24b] P. Chartier, M. Koskas, M. Lemou, and F. Méhats. Homomorphic sign
evaluation with a RNS representation of integers. In ASIACRYPT, 2024.

[CLOT21] I. Chillotti, D. Ligier, J.-B. Orfila, and S. Tap. Improved programmable
bootstrapping with larger precision and efficient arithmetic circuits for
TFHE. In ASIACRYPT, 2021.

[CLPX18] H. Chen, K. Laine, R. Player, and Y. Xia. High-precision arithmetic in
homomorphic encryption. In CT-RSA, 2018.

[DKLS24] Jack Doerner, Yashvanth Kondi, Eysa Lee, and Abhi Shelat. Threshold
ECDSA in three rounds. In IEEE Symposium on Security and Privacy,
pages 3053–3071. IEEE, 2024.

[DM15] L. Ducas and D. Micciancio. FHEW: Bootstrapping homomorphic encryp-
tion in less than a second. In EUROCRYPT, 2015.

[DMPS24] N. Drucker, G. Moshkowich, T. Pelleg, and H. Shaul. BLEACH: Cleaning
errors in discrete computations over CKKS. J. Cryptol., 2024.

[EY24] Ehsan Ebrahimi and Anshu Yadav. Strongly secure universal thresholdizer.
In Kai-Min Chung and Yu Sasaki, editors, ASIACRYPT 2024, volume
15486 of Lecture Notes in Computer Science, pages 207–239. Springer, 2024.

[Fis06] Marc Fischlin. Round-optimal composable blind signatures in the common
reference string model. In CRYPTO 2006, volume 4117 of Lecture Notes
in Computer Science, pages 60–77. Springer, 2006.

[FV12] J. Fan and F. Vercauteren. Somewhat practical fully homomorphic encryp-
tion. Cryptology ePrint Archive, Paper 2012/144, 2012.

[FW24] Georg Fuchsbauer and Mathias Wolf. Concurrently secure blind schnorr
signatures. In EUROCRYPT 2024, volume 14652 of Lecture Notes in Com-
puter Science, pages 124–160. Springer, 2024.

[Gen09] C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC,
2009.

29

[GHR99] Rosario Gennaro, Shai Halevi, and Tal Rabin. Secure hash-and-sign sig-
natures without the random oracle. In EUROCRYPT ’99, volume 1592 of
Lecture Notes in Computer Science, pages 123–139. Springer, 1999.

[GV24] R. Geelen and F. Vercauteren. Fully homomorphic encryption for cyclo-
tomic prime moduli. Cryptology ePrint Archive, Paper 2024/1587, 2024.

[HPS19] S. Halevi, Y. Polyakov, and V. Shoup. An improved rns variant of the bfv
homomorphic encryption scheme. In CT-RSA, 2019.

[KG20] Chelsea Komlo and Ian Goldberg. FROST: flexible round-optimized
schnorr threshold signatures. In Selected Areas in Cryptography, volume
12804 of Lecture Notes in Computer Science, pages 34–65. Springer, 2020.

[Kim25] J. Kim. Efficient homomorphic integer computer from CKKS. Cryptology
ePrint Archive, Paper 2025/066, 2025.

[KN24] J. Kim and T. Noh. Modular reduction in CKKS. Cryptology ePrint
Archive, Paper 2024/1638, 2024.

[KSS24] J. Kim, J. Seo, and Y. Song. Simpler and faster BFV bootstrapping for
arbitrary plaintext modulus from CKKS. In CCS, 2024.

[KVMH24] Christian Knabenhans, Alexander Viand, Antonio Merino-Gallardo, and
Anwar Hithnawi. vfhe: Verifiable fully homomorphic encryption. In Proc.
of the 12th Workshop on Encrypted Computing & Applied Homomorphic
Cryptography, pages 11–22. ACM, 2024.

[lat24] Lattigo v6. Online: https://github.com/tuneinsight/lattigo, August
2024. EPFL-LDS, Tune Insight SA.

[Lin22] Yehuda Lindell. Simple three-round multiparty schnorr signing with full
simulatability. Cryptology ePrint Archive, Paper 2022/374, 2022.

[LM21] B. Li and D. Micciancio. On the security of homomorphic encryption on
approximate numbers. In EUROCRYPT, 2021.

[LMSS22] B. Li, D. Micciancio, M. Schultz, and J. Sorrell. Securing approximate
homomorphic encryption using differential privacy. In CRYPTO, 2022.

[QCY21] Xianrui Qin, Cailing Cai, and Tsz Hon Yuen. One-more unforgeability
of blind ECDSA. In ESORICS 2021, volume 12973 of Lecture Notes in
Computer Science, pages 313–331. Springer, 2021.

[Zam22] Zama. TFHE-rs: A Pure Rust Implementation of the TFHE Scheme for
Boolean and Integer Arithmetics Over Encrypted Data, 2022. https://
github.com/zama-ai/tfhe-rs.

30

https://github.com/tuneinsight/lattigo
https://github.com/zama-ai/tfhe-rs
https://github.com/zama-ai/tfhe-rs

	1 Introduction
	1.1 Our results
	1.2 Technical Overview
	1.3 Related Work

	2 Preliminaries
	2.1 CKKS Basics
	2.2 Discrete CKKS

	3 Single Layer RNS System
	3.1 Asymmetric Modular Reduction
	3.2 The RNS-based Encryption Scheme
	3.3 Homomorphic Base Conversion

	4 Double Layer RNS System
	4.1 Homomorphic Rescaling
	4.2 The Nested RNS-based Encryption Scheme
	4.3 Homomorphic Base Conversion

	5 Efficiency Analysis
	5.1 Achieving Arbitrary Precision
	5.2 In Moderate Precision

	6 Experiments
	6.1 Parameters
	6.2 Results and Analysis
	6.3 Comparison with Prior Works

