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Abstract. With the growing emphasis on data privacy, secure multi-
party computation has garnered significant attention for its strong secu-
rity guarantees in developing privacy-preserving machine learning (PPML)
schemes. However, only a few works address scenarios with a large num-
ber of participants. The state of the art by Liu et al. (LXY24, USENIX
Security’24) first achieves a practical PPML protocol for up to 63 parties
but is constrained to semi-honest security. Although naive extensions to
the malicious setting are possible, they would introduce significant over-
head.
In this paper, we propose Helix, a scalable framework for maliciously se-
cure PPML in the honest majority setting, aiming to enhance both the
scalability and practicality of maliciously secure protocols. In particular,
we report a privacy leakage issue in LXY24 during prefix OR operations
and introduce a round-optimized alternative based on a single-round
vectorized three-layer multiplication protocol. Additionally, by exploit-
ing reusability properties within the computation process, we propose
lightweight compression protocols that substantially improve the effi-
ciency of multiplication verification. We also develop a batch check pro-
tocol to reduce the computational complexity of revealing operations in
the malicious setting. For 63-party neural network inference, compared
to the semi-honest LXY24, Helix is only 1.9× (1.1×) slower in the online
phase and 1.2× (1.1×) slower in preprocessing under LAN (WAN) in the
best case.

Keywords: secure multi-party computation · malicious security · honest
majority · privacy-preserving machine learning.

1 Introduction

Machine learning (ML) is increasingly applied across diverse domains, including
medicine, finance, and recommendation systems. However, this widespread suc-
cess has raised significant privacy concerns regarding both models and personal
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data. As such, privacy-preserving techniques should be employed to ensure the
privacy of the data used in machine-learning-as-a-service.

Secure multi-party computation (MPC) [38] is a notable approach for en-
abling privacy-preserving machine learning (PPML). MPC allows n parties to
collaboratively compute a function over their private inputs while ensuring in-
put privacy and output correctness. Nowadays, MPC-based PPML has made
significant progress, particularly under the semi-honest setting [15,29,37], where
adversaries honestly follow the protocol but try to learn secret values. Never-
theless, in real-world scenarios involving large numbers of participants, such as
federated learning, expecting that all individual parties are semi-honest is overly
strong and impractical. Therefore, there is an urgent need for scalable protocols
that support efficient PPML with many parties in the malicious setting, where
adversaries can arbitrarily deviate from the protocol.

However, existing malicious PPML protocols primally focus on 2-4 parties
[10,19,21,28,32,39], where one party is corrupt. In the most recent work, Liu et
al. [24] utilize Shamir secret sharing [35] to design scalable PPML protocols under
the semi-honest secure honest majority model. Their approach enables efficient
PPML inference with up to 63 parties. For ease of reference, we denote this work
[24] as “LXY24”. Trivially, the protocols in LXY24 can be adapted to malicious
security using standard techniques [3,4,17,23], with the primary challenge being
the verification of multiplication and revealing operations. Nevertheless, due to
the inherent design limitations of the protocols in LXY24 and large scale of
applications, the naive extensions face two critical issues as follows.

First, a privacy leakage issue exists in LXY24. The comparison protocol in
LXY24 achieves both constant rounds and low communication costs without
requiring a gap between the domains of shares and secrets. However, rigorous
security analysis reveals a privacy leakage issue in the prefix OR protocol, which
serves as the core and bottleneck of the comparison protocol. This vulnerability
can expose all input values of the prefix OR operation. Consequently, it indicates
that the n-party comparison protocols over fields, with no gap requirement, still
encounter a trade-off5 between rounds and communication costs.

Second, the verification step exhibits performance limitations. In large-scale
applications, the number of verified multiplication triples N and revealing op-
erations m are both considerable. In such cases, the multiplication verification
method in [23] incurs significant communication overhead due to its complex-
ity linear in N . Protocols that achieve sublinear communication [3, 4, 17] have
higher computational complexity, which also grows linearly with N . Similarly,
for reconstruction with Shamir secret sharing, the computational complexity of
the correctness check is linear in m. As a result, in practical scenarios with large
N and m, such as neural network (NN) inference, existing verification methods
either suffer from high communication overhead or computational complexity,
which causes a significant performance gap between malicious and semi-honest
protocols.

5 For further details, please refer to § 7.
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To address the first issue, we propose a secure and round-optimized alterna-
tive solution for the prefix OR operation based on the DN [13] protocol. Specif-
ically, by leveraging the Beaver triples [2], we extend the vectorized two-layer
DN multiplication in LXY24 to a three-layer version without increasing online
communication. The two-layer and three-layer multiplication protocols enable
prefix multiplications with 2-4 inputs to be completed in only one online round.
Ultimately, by utilizing these efficient building blocks and performing computa-
tions in groups of four, we construct an efficient prefix multiplication protocol
that effectively resolves the dual problem of prefix OR.

To address the second issue, we primarily utilize the random linear combi-
nation technique [8,14], which introduces randomness to reduce the verification
scale while ensuring correctness with overwhelming probability. First, we employ
the multiplication verification protocol in [17] to achieve sublinear communica-
tion and tailor it to machine learning applications based on the linearity of
Shamir secret sharing. In addition, to further reduce computational complexity,
our key insight is that large numbers of multiplication operations, such as those
in matrix multiplication, share a common multiplier or involve multipliers related
through affine transformations. Thus, rather than verifying such triples indepen-
dently, we propose a lightweight compression protocol to consolidate them into
a single triple with random linear combinations. In this way, we can significantly
reduce N , thereby improving verification efficiency and enhancing practicality.
Specifically, we reduce the verification count to 1

mo of the original requirement
for two matrices of dimensions m×n and n× o. Moreover, for the verification of
revealed sharings, we optimize computational complexity by deferring the pro-
cess to a batch execution after circuit evaluation, which is similar to the batch
MAC check procedure in SPDZ [12,14].

Building upon the above techniques, we enhance the protocols in LXY24 to
efficiently achieve malicious security and introduce Helix, a scalable framework
designed for multi-party machine learning inference with malicious security in
the honest majority setting.

Contributions In brief, we summarize our main contributions as follows.

– We identify and address the privacy leakage issue in the prefix OR protocol
proposed in LXY24. Specifically, we adopt a three-layer version of the vector-
ized two-layer multiplication protocol in LXY24, without increasing online
communication. We further combine these two protocols to design an opti-
mized prefix OR protocol, achieving the online complexity of log4ℓ rounds
with O(ℓlog4ℓ) field elements per party.

– We present a lightweight multiplication triple compression protocol by lever-
aging the reusability properties, leading to a significant reduction in the num-
ber of verified multiplications. This new protocol works for any verification
technique, which is of independent interest. Additionally, we propose a batch
check protocol for revealed sharings, which reduces the computational com-
plexity of revealing operations. Furthermore, we extend the multiplication
verification protocol in [17] to support machine learning applications.
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– We implement Helix and evaluate its performance in secure NN inference
with varying numbers of parties, ranging from 3 to 63. The results high-
light the practicality and scalability of Helix. In the best case, Helix is 1.9×
(1.1×) slower in the online phase and 1.2× (1.1×) slower in preprocessing
under LAN (WAN) compared to the state-of-the-art semi-honest secure pro-
tocol, LXY24 [24]. Additionally, compared to the naive approach that directly
employs the protocol from [17] for malicious security, Helix achieves at most
2.6× faster online NN inference in LAN.

2 Preliminaries

Notations Let P1, . . . , Pn be the n parties to do the secure computation. We
denote scalar, vector, and matrix by lowercase letter x, lowercase bold letter x,
and uppercase bold letter X, respectively. Let X(i, j) denote the element at the
i-th row and j-th column in matrix X, and x(i) the i-th element in vector x.
Denote the functionality and protocol used in the semi-honest setting by F sh and
Πsh, respectively. Similarly, Fmal (F for simplicity) and Πmal (Π for simplicity)
are employed in the malicious setting.

2.1 Shamir Secret Sharing

This work is based on Shamir’s (t, n)-threshold scheme [35], where n is the
number of parties, t is the number of corrupted parties, and n ≥ 2t + 1. For
the rest of the paper, we assume maximal corruption in this setting, and thus
n = 2t+1. To share a secret x ∈ Fp with degree t, a uniformly random polynomial
f(X) of degree t is chosen under the constraint that f(0) = x. Each party
Pi holds the share f(αi), where αi ∈ Fp is the unique identifier for Pi. For
convenience, we set αi = i. Following LXY24, the finite field Fp is defined over a
fixed Mersenne prime p = 2ℓ − 1, with examples including ℓ = 31, 61.

We denote the degree-t sharing as [·]-sharing. Multiplying two degree-t shar-
ings yields a degree-2t sharing, denoted by [[·]]-sharing, with no communication.
Additionally, any linear function or addition by a constant can be performed
locally. Thus, for simplicity, we write [a + b mod p] = [a + b] = [a] + [b] and
[[a · b mod p]] = [[ab]] = [a] · [b] for shares [a] and [b].

2.2 Useful Techniques in the Semi-Honest Setting

Sharing and Revealing As explained above, Πsh
Share works as follows: the

dealer chooses a random polynomial f(X) and sends each Pi the point f(i).
To reveal a secret [x], at least t parties send their shares to Pking, who then
reconstructs x and sends it back to other parties. We write x← Πsh

Reveal([x]) and
x ← Πsh

Reveal([[x]]) for the revealing of degree-t and degree-2t sharings6, respec-
tively. Following LXY24, we measure the round complexity of a protocol by the
number of rounds of parallel invocations of Πsh

Reveal.
6 Similarly, for degree-2t sharings, at least 2t parties send their shares to Pking.
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Random Sharings Generation Based on the Vandermonde matrix and shar-
ing protocol Πsh

Share, random degree-t sharings and random double sharings can
be efficiently generated. We define the generation protocols as [r] ← Πsh

Rand and
([r], [[r]])← Πsh

DoubleRand, respectively.

DN Multiplication The multiplication between two degree-t sharings can be
realized by DN [13] multiplication with the use of ([r], [[r]]). We write the DN mul-
tiplication protocol as [xy] ← Πsh

Mult([x], [y]). In essence, the DN multiplication
protocol performs a degree reduction from [[xy]] to [xy] by revealing [[xy]] + [[r]]
and computing [xy] = (xy+ r)− [r]. For two vectors of degree-t sharings [x] and
[y], to compute [x · y], we can first compute [[x · y]] = [x] · [y] and then apply
the same approach as the DN multiplication protocol to compute [x · y] from
[[x · y]]. We define the protocol as Πsh

InnerProd.
The consecutive multiplication of three degree-t sharings can be achieved

in a single online round through the vectorized two-layer DN multiplication
protocol [16, 24], denoted as {xyzi}mi=1 ← Πsh

2L-DN([x], [y], {[zi]}mi=1). In the pre-
processing phase, parties generate m + 1 pairs of double sharings ([r], [[r]]) and
{([ri], [[ri]])}mi=1. In the online phase, parties first compute [[u]] = [x] · [y]+ [[r]] and
[[ui]] = [r] · [−zi] + [[ri]] locally. Subsequently, they simultaneously reveal [[u]] and
[[ui]], and the result [xyzi] can be expressed as u · [zi] + ui − [ri].

Optimization using PRG The communication complexity of the above proto-
cols can be further reduced by utilizing pseudo-random generators (PRG) [16,23].
For a detailed theoretical complexity analysis, see [24]. In the complexity analysis
across this work, we adopt the costs from the PRG-optimized version.

2.3 Useful Techniques in the Malicious Setting

Correctness Check of Revealed Degree-t Sharings In the malicious set-
ting, revealing a degree-t sharing requires each party to distribute its share to
all other parties. Then the correctness of the revealed sharings can be checked
as follows: each party Pi uses any of the t + 1 shares to compute the unique
degree-t polynomial, and checks that all other shares lie on the same polyno-
mial. If not, then it outputs ⊥ and aborts. We write the protocol for revealing
degree-t sharings with correctness check as ΠReveal-Check.

Batch Correctness Check of Shares In [23], the correctness of m degree-t
sharings can be checked in batch utilizing ΠReveal-Check. For [x1], . . . , [xm], the
parties first generate m non-zero random field elements {αi}mi=1 and a random
sharing [r] using Πsh

Rand. Then compute [v] =
∑m

i=1 αi · [xi] + [r] locally. Fi-
nally, each party broadcasts its share of [v] and checks the correctness using
ΠReveal-Check. If no abort, then the parties accept all input sharings. We write
the above process as ΠShareCheck. Based on ΠShareCheck, it is easy to obtain ma-
liciously secure protocols ΠShare,ΠRand and ΠDoubleRand. For more details, please
refer to [23].
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Random Coins Generation There are two methods to implement the proto-
col ΠCoin. First, as described in [17], [23], the parties invoke Πsh

Rand to generate
a random sharing and then reveal the result with the use of ΠReveal-Check. The
second method, as described in [12], requires each party to sample a seed and
broadcast its commitment. The parties then reveal all commitments and XOR
the seeds. Finally, random field elements can be generated by utilizing PRG.

2.4 Security Model

We consider security against static malicious adversaries in the honest-majority
setting. Specifically, an adversary corrupts t < n/2 parties at the beginning of the
protocol execution and can deviate from the protocol specification arbitrarily.
The goal of our security model is to prove that the malicious adversary has
no impact on the computational result or the privacy of the sensitive inputs.
Formally, we model and prove the security of our protocols under the universal
composition (UC) framework [5], and assume familiarity with this.

3 Improved Bitwise Primitives

In this section, we first analyze the potential privacy leakage issue associated
with the prefix OR protocol introduced in LXY24 (§ 3.1). Next, we propose a
semi-honest secure and round-optimized alternative solution (§ 3.4) leveraging
two- and three-layer DN multiplication protocols (§ 3.2, § 3.3). In § 5, we apply
these protocols to the malicious setting.

3.1 The Security Issue in LXY24

In LXY24, the prefix OR operation for inputs {ai}ℓi=1, where ai ∈ {0, 1}, is calcu-
lated by solving its dual problem. This involves first computing āi = 1− ai, and
then performing prefix multiplication F sh

PreMult on {āi}ℓi=1. The resulting prefix
OR values {bj}ℓj=1 are given by bj = 1 −

∏j
i=1 āi. The functionality F sh

PreMult in
LXY24 is implemented based on the constant-round prefix multiplication tech-
niques proposed in [1, 6, 11, 30]. Specifically, in the preprocessing phase, parties
prepare ℓ pairs of correlated random sharings ([ri], [r

′
i]) where r′1 = r−11 and

r′i = ri−1r
−1
i for i > 1. In the online phase, for each i ∈ [1, ℓ], the parties com-

pute and reveal ci ← Πsh
MultPub([āi], [r

′
i]) and then locally compute [ri] ·

∏i
j=1 cj ,

which yields the prefix products.
However, we observe that this instantiation fails to UC-securely realize the

functionality F sh
PreMult as defined in LXY24, because the public values {ci}ℓi=1 are

not uniformly distributed over Fp when handling binary inputs, leading to a po-
tential privacy leakage issue 7. To begin with, all the correlated random elements
{(ri, r′i)}ℓi=1 are non-zero, as the computation of r′i necessitates a multiplicative
7 Previous works [1, 6, 11, 30] handle inputs over F∗

p and thus they do not encounter
such issue.
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inverse. Moreover, each element in {āi}ℓi=1 is either 0 or 1 in the prefix OR
protocol. As a consequence, if āi = 0, the corresponding public value ci is also
0, whereas if āi = 1, ci becomes non-zero. Hence, an adversary can deduce the
private values {āi}ℓi=1 by observing if the public values {ci}ℓi=1 are equal to 0.

3.2 Vectorized Three-Layer DN Multiplication

We extend Πsh
2L-DN to a three-layer protocol using Beaver triples [2], without

increasing online communication cost. For ease of description, we consider the
general case where the last two multipliers are vectors of the same length, i.e., cal-
culating {[xyziwi]}mi=1. we begin by computing the standard DN multiplication
[[u]] = [x] · [y]+ [[r]] and [[ui]] = [zi] · [wi]+ [[ri]], where ([r], [[r]]) and {([ri], [[ri]])}mi=1

are random double sharings. Since [r] and [ri] are generated in the preprocessing
phase, [r · ri] can be precomputed, which forms a Beaver triple ([r], [ri], [r · ri]).
Next, u and ui can be revealed in a single round, and then [xyziwi] is computed
in the Beaver form as u · ui − u · [ri] − ui · [r] + [ci]. Therefore, the vectorized
three-layer DN multiplication Πsh

3L-DN can be realized with a single round of online
complexity. The detailed protocol is described in Fig. 1.

Protocol Πsh
3L-DN

Input: [x], [y], {[zi]}mi=1 and {[wi]}mi=1

Output: {[xyziwi]}mi=1

Preprocessing:
1. Invoke F sh

DoubleRand to generate m + 1 pairs of double sharings ([r], [[r]]) and
{([ri], [[ri]])}mi=1.

2. For 1 ≤ i ≤ m, all parties invoke F sh
Mult on ([r], [ri]) to compute [ci].

Online:
1. Compute [[u]] = [x] · [y] + [[r]] and [[ui]] = [zi] · [wi] + [[ri]] for 1 ≤ i ≤ m.
2. Reveal u← Πsh

Reveal([[u]]) and ui ← Πsh
Reveal([[ui]]).

3. For 1 ≤ i ≤ m, all parties locally compute [xyziwi] = u·ui−u·[ri]−ui ·[r]+[ci].

Fig. 1. Vectorized three-layer DN multiplication protocol.

The online complexity is 1 round with 2(m + 1) field elements per party.
As for the preprocessing phase, all random values can be generated in 2 rounds
with 4m + 1 field elements per party (including m + 1 for Πsh

DoubleRand, and 3m
for Πsh

Mult).
Moreover, our extension approach can generalize DN multiplication to an

arbitrary of inputs, albeit requiring exponential communication in the prepro-
cessing phase [20]. We restrict our implementations to 2-4 inputs, as the proto-
cols involving more inputs yield marginal online performance improvements for
subsequent protocols while significantly increasing the preprocessing overhead.
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3.3 Block Prefix Multiplication

Block prefix multiplication is defined as the prefix multiplication for a small num-
ber of inputs, such as 3 or 4, which can be realized using Πsh

2L-DN and Πsh
3L-DN.

Specifically, the three-element prefix multiplication protocol Πsh
PreMul3 can be triv-

ially derived from the protocol Πsh
2L-DN, with [xy] computed locally as u− [r]. The

four-element prefix multiplication protocol Πsh
PreMul4 described in Fig. 2 can be

constructed by combining Πsh
PreMul3 and Πsh

3L-DN in parallel, where [xy] and [xyz]
are computed using Πsh

PreMul3, and [xyzw] is computed through Πsh
3L-DN. Especially,

the resulting protocol requires only 3 reveals since [[u]] = [x] · [y] + [[r]] needs to
be computed and revealed just once.

For Πsh
PreMul3, the complexity is identical to that of Πsh

2L-DN. As for Πsh
PreMul4 (in

comparison to the PreOpL method in [34]), the online complexity is reduced to 1
round (from 2 rounds) with 6 field elements per party (reduced from 8 elements),
while the preprocessing complexity increases to 2 rounds (from 1 round) with 6
field elements per party (increased from 4 elements).

Protocol Πsh
PreMul4

Input: [a1], [a2], [a3] and [a4]
Output: [a1], [a1 · a2], [a1 · a2 · a3], [a1 · a2 · a3 · a4]
Preprocessing:
1. Invoke F sh

DoubleRand to generate 3 pairs of double sharings ([r], [[r]]), ([r1], [[r1]]) and
([r2], [[r2]]).

2. Invoke F sh
Mult on ([r], [r2]) to compute [c].

Online:
1. Compute [[u]] = [a1]·[a2]+[[r]], [[u1]] = [r]·[−a3]+[[r1]] and [[u2]] = [a3]·[a4]+[[r2]].
2. Reveal u← Πsh

Reveal([[u]]), u1 ← Πsh
Reveal([[u1]]) and u2 ← Πsh

Reveal([[u2]]).
3. Compute [b] = u1 − [r1].
4. All parties locally compute [a1 · a2] = u − [r], [a1 · a2 · a3] = u · [a3] + [b] and

[a1 · a2 · a3 · a4] = u · u2 − u · [r2]− u2 · [r] + [c].

Fig. 2. Four-element prefix multiplication protocol.

For Πsh
PreMul3, the online complexity is 1 round with 4 field elements per party

and the preprocessing complexity is 1 round with 2 field elements per party. As
for Πsh

PreMul4, the online complexity is 1 round with 6 field elements per party and
the preprocessing complexity is 2 rounds with 6 field elements per party.

3.4 Prefix OR Protocol

Our prefix OR protocol Πsh
PreOR follows the method in LXY24, with the substi-

tution of our secure prefix multiplication subprotocol for binary inputs. Fig. 3
shows our optimized prefix multiplication construction for 61-bit inputs, where
operators , , and represent two-element, three-element, and four-element
multiplications, respectively.
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a1 a61

b1 b61

Fig. 3. Prefix multiplication circuit for 61-bit inputs, where bi =
∏i

j=1 aj for i ∈ [1, ℓ].

In our construction, computations in the first round can be sequentially
grouped into sets of four and efficiently executed using our block prefix multipli-
cation protocols. From the second round, consecutive identical operators can be
bundled together and computed collectively using vectorized DN multiplication
protocols. As a result, by leveraging the protocols in § 3.2 and § 3.3, we derive
our efficient prefix multiplication protocol Πsh

PreMult.
Since Πsh

PreMult is fundamentally based on the DN multiplication protocol, it
avoids the security issues encountered with binary inputs in [24]. Additionally,
the associativity of field multiplication allows for a straightforward correctness
proof of our prefix multiplication circuit. Hence, our protocol Πsh

PreMult UC-secure
realizes the functionality F sh

PreMult as described in [24].
Note that the prefix OR only requires one invocation of prefix multiplication,

while other steps can be done locally. Therefore, the resulting protocol Πsh
PreOR

achieves a better trade-off between online rounds and communication, with only
a slight increase in preprocessing complexity. Specifically, the online complexity is
log4 ℓ rounds with O(ℓ log4 ℓ) field elements per party, while the PreOpL protocol
in [34] requires log2 ℓ rounds and O(ℓ log2 ℓ) field elements per party. Details are
given in Table 1. Furthermore, using this efficient Πsh

PreOR, we could design a fast
comparison protocol with O(log4 ℓ) online rounds.

4 Achieving Malicious Security

Helix uses batch verification techniques to detect any potential malicious behav-
ior in multiplication and degree-t revealing operations. In particular, after the
circuit evaluation step, Helix initially employs compression protocols (§ 4.1) to
substantially reduce the number of required multiplication verifications. Then,
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Table 1. Round and communication complexity of prefix OR protocol with Shamir
secret sharing. Numbers of communication are reported in field elements per party.
The naive approach performs the OR operation sequentially ℓ times for ℓ inputs.

Protocol
31 bits 61 bits

Rounds Communication Rounds Communication

Online Prep. Online Prep. Online Prep. Online Prep.

Naive 30 1 60 30 60 1 120 60
PreOpL [34] 5 1 150 75 6 1 352 176

Ours 3 2 130 107 3 2 290 268

it utilizes the general batch multiplication verification protocol (§ 4.2) to verify
the compressed multiplication triples. Lastly, Helix introduces a batch checking
for revealed degree-t sharings (§ 4.3).

Before delving into the details of our maliciously secure protocols, we first
provide an important lemma that will be applied in the proofs of almost all
subsequent lemmas.

Lemma 1. Let δ1, δ2, . . . , δm ∈ Fp, where not all the δi’s are zero, and suppose
that each δi is independent from the uniform distribution sampling αj, for any
j ∈ [1,m]. Then we have

Pr
α1,...,αm←RFp

(
m∑
i=1

αi · δi = 0

)
≤ 1

p
.

Proof. Suppose that δk ̸= 0. Thus, in this case,
∑m

i=1 αi · δi = 0 if and only if

αk = −δ−1k · (
m∑

i=1,i̸=k

αi · δi). (1)

Since αk is randomly sampled and chosen independently of all other values, the
probability that Eq. (1) holds is at most 1

p .

4.1 Lightweight Compression protocol

In this subsection, we propose lightweight multiplication triple compression pro-
tocols based on the property of reusability. These protocols effectively reduce
the number of triples to be verified while ensuring security.

Intuition We begin with the definition of reusable multiplication triples and
reusable inner-product triples.

Definition 1 (Reusable Multiplication Triples). For m triples (x1, y1, z1),
..., (xm, ym, zm), where zi = xi · yi for all i ∈ [1,m], if each xi can be expressed
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as a public invertible affine transformation of a common value x over Fp, such
that xi = fi(x) = ai · x + bi with ai ̸= 0, and each yi is unique, then these m
triples are defined as reusable multiplication triples with a reuse degree of m.

The definition of reusable inner-product triples can be derived straightforwardly
from Definition 1 by substituting multiplication triples with inner-product triples.
When existing multiplication verification protocols [17, 23] are applied to verify
the correctness of reusable triples, they treat these triples as independent enti-
ties, ignoring the inherent interdependence among them [26,32]. This introduces
considerable redundant computations, resulting in substantial verification over-
head. To address this, our intuition is to compress these reusable triples into a
single one, inspired by the batch MAC check procedure in SPDZ [12,14]. Taking
reusable multiplication triples as an example, since all affine transformations are
publicly known and invertible, each xi can be converted into the common value
x using the inverse transformation f−1i (xi) = a−1i (xi − bi). Additionally, yi and
zi can be processed locally to compute z′i = a−1i zi − a−1i biyi, which forms the
new triple (x, yi, z

′
i). Furthermore, we employ the linear combination technique

with random coefficients αi to compress yi and z′i, such that y =
∑m

i=1 αiyi and
z =

∑m
i=1 αiz

′
i. Since all these triples share the common value x, the resulting

combined values naturally satisfy the multiplication relationship z = x · y.
It is worth noting that the computations in machine learning, such as neural

network inference, exhibit the strong reusability property. Specifically, matrix
multiplication, which is widely used in fully connected and convolutional layers
of NN, contains reusable inner-product triples, while comparison used in almost
all of the activation functions of NN, includes reusable multiplication triples.

Protocols Our compression protocol for reusable multiplication triples is illus-
trated in Fig. 4. According to the reuse degree m, the number of multiplication
triples to be verified can be reduced to 1

m of the original amount.

Protocol ΠReComp

Input: ([x1], [y1], [z1]), ..., ([xm], [ym], [zm]), where xi = ai · x+ bi with ai ̸= 0
Output: ([x], [y], [z])
The Procedure:
1. For 1 ≤ i ≤ m, all parties set [z′i] = a−1

i [zi]− a−1
i bi[yi].

2. Invoke FCoin to generate m random elements α1, ..., αm.
3. All parties locally compute: [y] =

∑m
i=1 αi · [yi] and [z] =

∑m
i=1 αi · [z′i].

Fig. 4. Compression protocol for reusable multiplication triples.

The compression protocol for reusable inner-product triples can be easily
realized by substituting inputs with a set of reusable inner-product triples. As for
matrix multiplication, we first highlight the inherent two-dimensional reusability
property. Specifically, for a matrix triple (X,Y,Z), where X ∈ Fm×n

p , Y ∈
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Fn×o
p and Z ∈ Fm×o

p , row-wise reusability property exists in X and column-wise
reusability in Y. This means that any row vector in X forms a set of reusable
inner-product triples with all column vectors in Y, while any column vector in
Y and all row vectors in X are also reusable inner-product triples.

Thus, to compress matrix triples, we extend ΠReComp to ΠReComp2D based on
a two-stage approach. First, using the row-wise reusability, we linearly combine
the m row vectors in X and Z, separately, with random coefficients {αi}mi=1.
This yields an n-dimensional vector x and an o-dimensional vector z. Next, we
exploit the column-wise reusability by linearly combining the o column vectors
in Y and each element in z with new random coefficients {βi}oi=1, resulting in
an n-dimensional vector y and a scalar z. This procedure yields (x,y, z), which
satisfies the inner-product operation and thus compresses a matrix triple into a
single inner-product triple. Details are illustrated in Fig. 5.

Protocol ΠReComp2D

Input: ([X], [Y], [Z]), where X ∈ Fm×n
p , Y ∈ Fn×o

p and Z ∈ Fm×o
p

Output: ([x], [y], [z]) which is a triple of n-dimensional [·]-shared inner product
The Procedure:
1. Invoke FCoin to generate m+ o random elements α1, ..., αm and β1, ..., βo.
2. For 1 ≤ k ≤ n, all parties locally compute:

• [x(k)] =
∑m

i=1 αi · [X(i, k)] and [y(k)] =
∑o

j=1 βj · [Y(k, j)]
3. All parties compute [z] =

∑m
i=1(

∑o
j=1 αi · βj · [Z(i, j)]).

Fig. 5. Compression protocol for matrix triples.

For the given matrix triple (X,Y,Z), the naive approach requires verification
of mo inner-product triples of length n. However, after compression through our
ΠReComp2D, only a single n-dimensional inner-product triple is required, reducing
the verification count to 1

mo of the naive requirement.

Security The security of ΠReComp and ΠReComp2D are established in Lemma 2
and Lemma 3, respectively.

Lemma 2. If at least one multiplication triple is incorrect, then the compressed
multiplication triple output by ΠReComp is correct with probability at most 1

p .

Proof. Suppose the adversary introduces incorrect values zi = xi · yi + ei for all
i ∈ [1,m] and at least one ei ∈ Fp is nonzero. Then we have

z′i = a−1i zi − a−1i biyi = a−1i (xi · yi + ei)− a−1i biyi

= a−1i (xi − bi) · yi + a−1i ei = x · yi + a−1i ei

Next,

z =

m∑
i=1

αi · z′i =
m∑
i=1

αi · (x · yi + a−1i ei) = x · y +
m∑
i=1

αi · a−1i · ei.
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Since a−1i ̸= 0 and αi’s are randomly sampled by FCoin, the probability that
z = x · y holds is at most 1

p , as established by Lemma 1.

Lemma 3. If the matrix triple is incorrect, then the compressed inner-product
triple output by ΠReComp2D is correct with probability less than 2

p .

Proof. Suppose the adversary causes incorrect matrix triple Z = X ·Y+E and
E ∈ Fm×o

p is not a zero matrix. Then we have

z =

m∑
i=1

αi · (
o∑

j=1

βj · Z(i, j)) = x · y +

m∑
i=1

αi · (
o∑

j=1

βj ·E(i, j)).

Assume that there exists a non-zero element in the k-th row of E. Thus, in this
case, Z = X ·Y if and only if

αk · (
o∑

j=1

βj ·E(k, j)) = −
m∑

i=1,i̸=k

αi · (
o∑

j=1

βj ·E(i, j)). (2)

Our aim is to show that Eq. (2) holds with probability 2/p. Let ∆ =
∑o

j=1 βj ·
E(k, j). We have the following cases.

Case 1 (∆ ̸= 0). Eq. (2) holds if and only if

αk = ∆−1 ·

− m∑
i=1,i̸=k

αi · (
o∑

j=1

βj ·E(i, j))

 .

Since αk is randomly sampled by FCoin and chosen independently of all other
values, the probability that Eq. (2) holds is at most 1/p.

Case 2 (∆ = 0). In this case, the equality may hold. Nevertheless, the proba-
bility that ∆ = 0 is at most 1/p, since βj is distributed uniformly over Fp and
not known to the adversary before introducing E(k, j).

In summary, the probability that Eq. (2) holds is at most 1
p + (1− 1

p ) ·
1
p < 2

p .

Usage Our compression protocols are executed in batches after the circuit eval-
uation step and before the multiplication verification step. As a result, the mul-
tiplication verification protocol only needs to perform batch verification on the
compressed triples, thereby reducing the complexity of the verification step. Note
that when using the batch strategy above, the random coefficients used in com-
pression protocols can be reused across separate compression instances for both
reusable multiplication triples and matrix triples without compromising secu-
rity. Moreover, our compression protocols are verification-method independent,
meaning that they can be integrated with any verification approach to narrow
the performance gap between malicious and semi-honest protocols.
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4.2 General Batch Multiplication Verification

In this subsection, we adapt the multiplication verification protocol from [17] to
the machine learning setting, which enables it to handle an arbitrary number
of multiplication triples and various types of triples, including [·]-shared mul-
tiplication triples, inner-product triples, and multiplication triples with public
outputs.

Normalization We replace the de-linearization protocol in [17] with a normal-
ization protocol ΠNorm shown in Fig. 6. Instead of computing exponentiations,
we use FCoin to generate multiple independent random elements for securely
combining triples. The inner product triple ([x⋆], [y⋆], [z⋆]) is integrated into our
protocol by scaling [x⋆] and [z⋆] with a random value r⋆ and appending each
r⋆[x⋆(i)] to the final output triple. For multiplication triples with public out-
puts ([xζ ], [yζ ], zζ), we leverage the linearity of Shamir secret sharing to add the
public rζzζ to the secret-shared [z], incorporating it into ΠNorm as well.

Protocol ΠNorm

Input: Let N = m1 +
∑m2

i=1 ni +m3, N
′ = m1 +m2 +m3.

– m1 pairs of [·]-shared multiplication: {([xi], [yi], [zi])}m1
i=1

– m2 pairs of [·]-shared inner product: {({[x⋆
i (j)], [y

⋆
i (j)]}

ni
j=1, [z

⋆
i ])}m2

i=1

– m3 pairs of [·]-shared multiplication with public output: {([xζ
i ], [y

ζ
i ], z

ζ
i )}

m3
i=1

Output: ([a], [b], [c]) which is a triple of N -dimensional [·]-shared inner product
The Procedure:
1. All parties invoke FCoin to generate N ′ random field elements
{ri}m1

i=1, {r
⋆
i }m2

i=1, {r
ζ
i }

m3
i=1.

2. For 1 ≤ i ≤ m1, all parties set [xi] = ri · [xi].
3. For 1 ≤ i ≤ m2, 1 ≤ j ≤ ni, all parties set [x⋆

i (j)] = r⋆i · [x⋆
i (j)].

4. For 1 ≤ i ≤ m3, all parties set [xζ
i ] = rζi · [x

ζ
i ].

5. Compute [z] =
∑m1

i=1 ri · [zi], [z
⋆] =

∑m2
i=1 r

⋆
i · [z⋆i ] and zζ =

∑m3
i=1 r

ζ
i · z

ζ
i .

6. All parties set:
[a] = (..., [xi1 ], ..., [x

⋆
i2(j)], ..., [x

ζ
i3
], ...), [b] = (..., [yi1 ], ..., [y

⋆
i2
(j)], ..., [yζ

i3
], ...),

[c] = [z] + [z⋆] + zζ , where i1 ∈ [1,m1], i2 ∈ [1,m2], j ∈ [1, ni2 ], i3 ∈ [1,m3].

Fig. 6. Normalization protocol.

Lemma 4. If at least one input tuple is incorrect, then the resulting inner-
product triple output by ΠNorm is correct with probability at most 1

p .

Proof. Suppose the adversary causes incorrect values zi = xi · yi + ei, z
⋆
i =

x⋆
i · y⋆

i + e⋆i , z
ζ
i = xζ

i · y
ζ
i + eζi and at least one of ei, e⋆i , e

ζ
i is non-zero. Then we

have

c =

m1∑
i=1

ri · zi +
m2∑
i=1

r⋆i · z⋆i +

m3∑
i=1

rζi · z
ζ
i = a · b+

m1∑
i=1

riei +

m2∑
i=1

r⋆i e
⋆
i +

m3∑
i=1

rζi e
ζ
i .
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Since the three
∑

have a symmetric structure, we can uniformly represent them
as
∑N ′

i=1 ri · ei. Therefore, in this case, c = a · b if and only if

N ′∑
i=1

ri · ei = 0. (3)

Since at least one ei is non-zero and the ri values are distributed uniformly over
Fp, the probability that Eq. (3) holds is at most 1

p by Lemma 1.

General Dimension-Reduction When N = m1τ + m2 with m2 less than
the compression parameter τ , a simple approach for dimension reduction is as
follows. First, divide the N triples into τ + 1 groups, where the first τ groups
are m1-dimensional inner-product triples and the last is m2-dimensional. Then,
compress the first τ groups to one m1-dimensional inner-product triple according
to the Extend-Compress protocol in [17]. Finally, combine the compressed
triple with the last m2-dimensional triple using uniformly random numbers, as
in ΠNorm, resulting in an (m1 +m2)-dimensional inner-product triple.

To further reduce communication rounds, we implement the following opti-
mizations.
(1) Polynomial calculations, f(·) and g(·), in Extend-Compress are indepen-

dent of the inner product F sh
InnerProd invoked in the dimension-reduction proce-

dure. Thus, two invocations of F sh
InnerProd can be executed in parallel, thereby

reducing one communication round.
(2) When combining the m1- and m2-dimensional triples, the generation of the

random number can be merged into the last step of the Extend-Compress
protocol.

Consequently, based on rigorous security analysis, we construct a generalized
version, ΠDimReduce, without adding communication rounds. Details of ΠDimReduce

are provided in Fig. 7.

Lemma 5. If the input inner-product tuple is incorrect, then the resulting inner-
product tuple output by ΠDimReduce is correct with probability at most 2τ−1

p .

Proof. According to Lemma 9 in [17], at least one tuple among the τ + 1 inner-
product tuples, {([ai], [bi], [ci])}τi=1, ([u], [v], [w]), is incorrect. First, if any of the
first τ inner-product tuples are incorrect, then by Lemma 7 in [17], the tuple
([a′], [b′], [c′]) is also incorrect with probability 1 − 2τ−2

p . Second, if the first τ

tuples are all correct, it must be that u ·v ̸= w. Thus, with probability 1− 2τ−2
p ,

either ([a′], [b′], [c′]) or ([u], [v], [w]) is incorrect.
Suppose the adversary induces incorrect values c′ = a′ ·b′+e1 and w = u·v+

e2, with at least one ei ∈ Fp not equal to zero. Then we have c = a ·b+r′ ·e1+e2.
In this case, c = a · b if and only if r′ · e1 + e2 = 0. Since r′ is randomly sampled
by FCoin and chosen independently of e1 and e2, the probability of this condition
holding is at most 1

p .
In summary, the probability that the resulting inner-product tuple is correct

is at most 2τ−2
p + (1− 2τ−2

p ) · 1p < 2τ−1
p .
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Protocol ΠDimReduce

Input: A N -dimensional [·]-shared inner product ([x], [y], [z]). Let τ denote the
compression parameter. Let N = m1τ +m2, where m2 < τ .
Output: A (m1 +m2)-dimensional [·]-shared inner product ([a], [b], [c]).
The Procedure:
1. All parties interpret [x], [y] as:

[x] = ([a1], [a2], ..., [aτ ], [u])
[y] = ([b1], [b2], ..., [bτ ], [v]),
where {[ai], [bi]}τi=1 are vectors of dimension m1 and [u], [v] are vectors of
dimension m2.

2. Locally compute [f(·)] and [g(·)] by using {[ai]}τi=1 and {[bi]}τi=1 respec-
tively. f(·) and g(·) are vectors of degree-(τ − 1) polynomials such that
∀i ∈ [1, τ ],f(i) = ai, g(i) = bi.

3. For i ∈ [τ + 1, 2τ − 1], all parties locally compute [ai] = [f(i)], [bi] = [g(i)].
4. For i ∈ [1, 2τ − 1], all parties invoke F sh

InnerProd on ([ai], [bi]) to compute [ci] and
set [w] = [z]−

∑τ
i=1[ci].

5. Locally compute [h(·)] by using {[ci]}2τ−1
i=1 .

6. Invoke FCoin to generate two random field elements r and r′.
7. Compute [a′] = [f(r)], [b′] = [g(r)], [c′] = [h(r)].
8. All parties output [a] = (r′ · [a′], [u]), [b] = ([b′], [v]) and [c] = r′ · [c′] + [w].

Fig. 7. General dimension reduction protocol.

Multiplication Verification with Sub-linear Communication We con-
struct a general batch multiplication verification protocol ΠMultVerify by combin-
ing normalization, general dimension reduction, and randomization processes,
following the approach of [17]. ΠMultVerify achieves sub-linear communication com-
plexity, and its security can be easily derived from the results in [17].

4.3 Batch Checking for Revealed Degree-t Sharings

To reduce the computational complexity of correctness checks in degree-t re-
vealing, we defer the check procedure to be completed in batches and propose
ΠReveal in Fig. 8. In the online phase, only revealing under semi-honest security
is required. In the verification phase, by using random linear combinations, the
correctness of all revealed values can be checked in batch through the Lagrange
interpolation method. The computational complexity in our ΠReveal is O(m+t2),
which is more efficient compared to the original method with a complexity of
O(mt2).

Note that after revealing degree-t or degree-2t sharing, view comparisons
are essential. Otherwise, a malicious adversary can launch a differential attack
during the next degree-t reveal. We now analyze this potential attack, similar to
the one in [20]. Consider a circuit that initially contains a revealing operation
with input [a] or [[a]]. Then, a is used in a local linear operation with other secret
values, for example, computing [c] = a · [b] + [r]. Finally, the degree-t sharing [c]
is revealed. Suppose Pking is controlled by a malicious adversary and chooses to
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Protocol ΠReveal

Input: [x1], [x2], ..., [xm]
Online:
1. Reveal x′

i ← Πsh
Reveal([xi]).

2. Compare the hash of the view†. If inconsistent, then abort.
Verification:
1. Invoke FCoin to generate m random elements α1, ..., αm.
2. The parties locally compute: [y] =

∑m
i=1 αi · [xi] and y′ =

∑m
i=1 αi · x′

i. Let
[z] = [y]− y′.

3. Reveal z ← ΠReveal-Check([z]) with correctness check.
4. If z is not equal to 0 then abort, otherwise continue.

† Each party stores a string of its view on all broadcasted values up to now [23].

Fig. 8. Batch checking for revealed degree-t sharings.

send two different values, such as a and a+e, where e is known to the adversary,
to two honest parties (say P1 and P2). Following this, each party performs the
local linear operations with a+e computed as [c]+e · [b]. Consequently, there are
two different secret shares within the network: P1 holds a share of [c], while P2

holds a share of [c] + e · [b]. In the final phase, both P1 and P2 send their shares
to Pking. Since only t + 1 shares are needed to reconstruct a degree-t sharing,
a malicious adversary controlling t parties can simultaneously reconstruct c and
c+ e · b. Thus, by calculating the difference, the adversary can learn b in clear.

Especially, when only 2t parties send their shares to Pking for revealing
degree-2t sharings, which is a common approach for optimized performance, an
opportunity for optimization arises. Specifically, since revealing a degree-2t shar-
ing requires 2t+1 shares, Pking needs at least 2t+2 different shares to recover two
distinct values, which makes differential attacks infeasible for degree-2t reveal-
ing. Therefore, the view comparison process can be executed before the degree-t
revealing (and also before ΠReveal-Check). For degree-2t revealing, the comparison
can be performed after the circuit evaluation step and before the verification step,
as proposed in [23]. This strategy optimizes both the communication rounds and
overhead.

We provide the correctness of ΠReveal in Lemma 6.

Lemma 6. If at least one of the public values x′i does not equal xi, then the
probability that the check phase passes is at most 1

p .

Proof. The proof relies on the security of degree-t reconstruction with correctness
check, and the probability analysis is similar to that in Lemma 2. Therefore, for
simplicity, we omit the details.
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5 Applications to Machine Learning

In this section, we present our construction of maliciously secure machine learn-
ing building blocks, including matrix multiplication, truncation, and ReLU.

5.1 Matrix Multiplication

Under Shamir secret sharing, matrix multiplication can be easily implemented
using vector inner product. In the malicious security setting, we can further
leverage ΠReComp2D and ΠMultVerify to achieve efficient correctness verification,
which yields ΠMatMult.

5.2 Truncation

We extend the fixed-point multiplication protocol Πsh
Fixed-Mult in LXY24 to against

malicious adversaries. First, we adapt the semi-honest secure protocol Πsh
SolvedBits

for malicious security by incorporating maliciously secure FRand and ΠMultVerify.
Next, we extend ΠTrunc-Triple to ΠTrunc-Quadruple to generate the truncation quadru-
ple ([r′], [[r]], [r], [rmsb]), which can be easily achieved since [r] is already gen-
erated by ΠSolvedBits in ΠTrunc-Triple. Finally, based on ΠTrunc-Quadruple, we can
construct ΠFixed-Mult by verifying the correctness of the multiplication triple
([a], [b], c− 2ℓ−2 − [r]) using ΠMultVerify.

5.3 ReLU

We first leverage FDoubleRand and ΠMultVerify to obtain maliciously secure protocols
Π2L-DN, Π3L-DN, ΠPreMul3 and ΠPreMul4. Subsequently, based on these subprotocols,
ΠPreOR can be implemented with malicious security. Ultimately, we can realize
ΠReLU using ΠPreOR, Π2L-DN and ΠReveal, following the method described in LXY24.

To further improve efficiency, we utilize the protocol ΠReComp before ΠMultVerify

in our prefix multiplication protocol ΠPreMult. As shown in § 3.4, the first-round
computation utilizes ΠPreMul4, where triples (a3,−r, u1− r1) and (a3, a4, u2− r2)
constitute reusable multiplication triples. Starting from the second round, the
inputs to m consecutive , , and operators can be expressed as {x, {yi}mi=1},
{x, y, {zi}mi=1}, and {x, y, z, {wi}mi=1}, respectively. Since operators are imple-
mented through DN protocol, the set {(x, yi, xyi)}mi=1 forms reusable multipli-
cation triples with degree m. Similarly, operators realized through Π2L-DN,
yield reusable triples {(r,−zi, ui − ri)}mi=1 in step 1 of Π2L-DN. For operators
implemented via Πsh

3L-DN, the set {(z, wi, ui − ri)}mi=1 in step 1 of Π3L-DN also
constitutes reusable multiplication triples. Consequently, after compression by
ΠReComp, the complexity of the number of triples to be verified can be reduced
from O(ℓlog4ℓ) to O(ℓ). In particular, the 31-bit (resp. 61-bit) protocol requires
verification of only 16 (resp. 55) triples, indicating a reduction in the number of
verified triples to 24% (resp. 38%) of the original 66 (resp. 145) triples.
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6 Evaluation

6.1 Evaluation Setup

We implement Helix in C++8 using the open-source framework hmmpc-public
[24]. Consistent with LXY24, our evaluation focuses on scenarios involving 3PC,
7PC, 11PC, 21PC, 31PC, and 63PC. The experiments are conducted on Aliyun
ECS using 11 ecs.c6a.8xlarge machines, each equipped with 32 vCPUs and 64 GB
of RAM. We consider two network settings: LAN and WAN. These are simulated
using the Linux tc command, with a bandwidth of 10Gbps (100Mbps) in LAN
(WAN), and an average round-trip time of approximately 0.3ms (40ms) in LAN
(WAN).

In our implementation, we utilize the Mersenne prime p = 261−1 for Shamir
secret sharing scheme to ensure 40-bit statistical security in the malicious setting.
For fixed-point multiplication, the number of fractional bits is set to 13. In terms
of the Eigen library [18], we allocate 8 cores to each party to accelerate matrix
multiplications.

We assess the secure multi-party inference capabilities of Helix and compare
its performance against two baselines: i) the semi-honest scheme LXY24 with the
substitution of our secure prefix OR subprotocol. ii) a naive maliciously secure
scheme, refer to as "LXY24+", that does not employ the optimized methods
described in § 4. We evaluate 3 standard neural networks on the MNIST dataset
[22]: a 3-layer DNN derived from SecureML [29] (Network-A), a 3-layer CNN
derived from Chameleon [33] (Network-B), and a 4-layer CNN derived from
MiniONN [25] (Network-C).

6.2 Evaluation on Neural Network Inference

The Number of Verified Multiplication Triples We first discuss the re-
duction in the number of multiplication triples to be verified achieved by Helix
compared to LXY24+. The experimental results are presented in Table 2. These
results illustrate that, after applying our compression protocols in § 4.1, the
number of verified triples required in the online phase can be reduced to 9.9%
for Network A, 23.4% for Network B, and 26.2% for Network C. This signifi-
cant reduction in the problem scale of multiplication verification highlights the
effectiveness of our compression protocols.

Running Time in the LAN Setting In Table 3, we evaluate the online
and preprocessing time for NN inference in the LAN setting. On average, our
maliciously secure Helix is 2.5× slower in the online phase and 1.5× slower in
preprocessing compared to the semi-honest secure LXY24. Notably, for 63 parties,
our protocol achieves an online (preprocessing) performance of 0.736 (5.512)
seconds for Network-C, which is 1.9× (1.2×) slower than LXY24. To the best of

8 The implementation will be open-sourced on GitHub upon publication.
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Table 2. Comparing the number of verified triples between LXY24+ and Helix.

Protocol Network-A Network-B Network-C

Online Preprocessing Online Preprocessing Online Preprocessing

LXY24+ 157184 43874 268160 183130 2248620 1748070
Helix 15632 36962 62644 153970 590161 1468890

Factor 9.9% 84.2% 23.4% 84.1% 26.2% 84%

Table 3. Online and Preprocessing time for NN inference in the LAN setting. All
numbers are reported in seconds. The compression parameter τ in the multiplication
verification protocol is 4.

Stage #PC Network-A Network-B Network-C

LXY24 LXY24+ Helix LXY24 LXY24+ Helix LXY24 LXY24+ Helix

Online

3PC 0.009 0.055 0.022 0.017 0.092 0.04 0.121 0.693 0.262
7PC 0.01 0.057 0.026 0.018 0.09 0.044 0.126 0.652 0.268
11PC 0.011 0.061 0.029 0.019 0.091 0.048 0.13 0.638 0.283
21PC 0.014 0.075 0.043 0.023 0.104 0.065 0.167 0.708 0.345
31PC 0.02 0.094 0.062 0.029 0.135 0.086 0.212 0.824 0.43
63PC 0.048 0.199 0.152 0.062 0.278 0.18 0.392 1.403 0.736

Prep.

3PC 0.023 0.048 0.041 0.096 0.169 0.155 0.924 1.529 1.347
7PC 0.031 0.059 0.053 0.134 0.204 0.187 1.262 1.86 1.775
11PC 0.041 0.07 0.065 0.167 0.242 0.23 1.662 2.244 2.158
21PC 0.056 0.098 0.094 0.231 0.319 0.314 2.219 2.879 2.786
31PC 0.066 0.127 0.122 0.265 0.375 0.373 2.471 3.141 3.16
63PC 0.179 0.331 0.315 0.508 0.699 0.704 4.431 5.468 5.512

our knowledge, this is the first maliciously secure PPML protocol to support 63
parties.

Compared to LXY24+, our protocol achieves a 1.3× to 2.6× improvement in
online inference time, with the improvement positively correlated with the pa-
rameter size of neural networks. This is because larger network parameters result
in more multiplication triples requiring verification, increasing the computational
complexity when using the verification protocol in [17]. Consequently, the ben-
efits of our compression protocols become more pronounced as the parameter
size grows. Moreover, for preprocessing running time, the improvement is less
significant, as the compression factor stabilizes at approximately 84% (compared
to a 10% to 30% improvement in the online phase) according to Table 2.

Running Time in the WAN Setting Table 4 presents the online and prepro-
cessing time of the three protocols in the WAN setting. The online (preprocess-
ing) running time of Helix is, on average, 1.5× (1.6×) that of LXY24. Compared
to LXY24+, Helix is slightly faster in both phases, though the difference is less
significant than in the LAN setting.
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Table 4. Online and preprocessing time for NN inference in the WAN setting. All
numbers are reported in seconds. The compression parameter τ in the multiplication
verification protocol is 32.

Stage #PC Network-A Network-B Network-C

LXY24 LXY24+ Helix LXY24 LXY24+ Helix LXY24 LXY24+ Helix

Online

3PC 0.563 1.147 1.013 0.69 1.305 1.233 3.348 4.684 4.063
7PC 0.576 1.164 1.029 0.799 1.409 1.339 4.72 5.665 5.352
11PC 0.582 1.171 1.037 0.765 1.38 1.313 5.038 6.057 5.544
21PC 0.636 1.24 1.102 0.985 1.735 1.627 7.284 8.585 7.704
31PC 0.697 1.323 1.18 1.273 2.051 1.932 9.547 11.267 10.004
63PC 0.961 1.928 1.826 3.529 4.48 4.451 19.512 24.031 21.624

Prep.

3PC 0.386 1.037 0.813 0.756 1.549 1.427 6.365 7.726 7.396
7PC 0.355 1.019 0.795 0.913 1.642 1.503 7.999 9.023 9.477
11PC 0.39 1.054 0.831 0.901 1.675 1.508 7.97 9.706 9.236
21PC 0.427 1.124 0.897 1.399 2.294 2.13 12.752 13.517 13.281
31PC 0.518 1.242 1.013 1.754 2.906 2.763 16.757 19.1 18.742
63PC 1.66 2.403 2.267 4.252 6.47 6.533 30.302 33.483 32.322

Note that our compression protocols combined with the verification proto-
col in [17], primarily reduce computational complexity, with limited impact on
communication costs. However, in the WAN setting, communication complexity
becomes the dominant factor affecting inference performance rather than com-
putational cost. As a result, the performance of Helix and LXY24+ is similar in
this scenario. Furthermore, thanks to the sublinear communication of [17], the
communication overheads of the maliciously secure Helix and LXY24+ are com-
parable to those of the semi-honest LXY24. Overall, the three protocols exhibit
closer performance in the WAN setting than in the LAN setting.

Communication We report only the communication overhead of Helix with τ =
4 in Table 5, as the three protocols demonstrate similar communication costs.
The values in brackets in Table 5 roughly represent the total communication
overhead introduced by the verification step in the malicious setting. Specifically,
for Network-C with 63PC, the communication overhead of the verification step
is only 0.057 MB (1.927 MB) in the online (preprocessing) phase, accounting for
just 0.02% (3.6%) of the total communication overhead of Helix.

7 Related Works

For comparison protocols over fields in the n-party setting, Catrina and de
Hoogh [6] achieve both small constant rounds and low communication costs
by assuming a large gap between secrets and shares. Damgård et al. [11] first
study the comparison without the gap requirement, and propose a constant-
round prefix OR protocol that is the critical component for realizing gap-free
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Table 5. Online and preprocessing communication cost per party of Helix for NN
inference. All numbers are reported in MB. The compression parameter τ in the multi-
plication verification protocol is 4. Increments compared to LXY24 are given in brackets.

#PC Network-A Network-B Network-C

Online Prep. Online Prep. Online Prep.

3PC 0.438(0.002) 0.913(0.024) 1.842(0.002) 3.814(0.093) 17.629(0.003) 36.41(0.867)
7PC 0.565(0.004) 1.176(0.04) 2.371(0.005) 4.906(0.155) 22.664(0.007) 46.815(1.435)
11PC 0.602(0.007) 1.25(0.048) 2.517(0.007) 5.206(0.176) 24.039(0.01) 49.655(1.616)
21PC 0.636(0.013) 1.315(0.057) 2.643(0.014) 5.459(0.198) 25.191(0.019) 52.026(1.78)
31PC 0.652(0.019) 1.342(0.065) 2.692(0.02) 5.554(0.211) 25.606(0.028) 52.871(1.843)
63PC 0.682(0.038) 1.383(0.085) 2.757(0.04) 5.668(0.238) 26.067(0.057) 53.788(1.927)

comparison. Nishide and Ohta [30] improve the efficiency of the protocols in [11]
without using the bit-decomposition protocol. However, the comparison proto-
cols in [11, 30] both incur impractically high communication costs. The most
recent work, Rabbit [27] leverages the OR-version of PreOpL protocol in [34] to
bring communication costs to a practical level while depending on logarithmic-
round complexity. As a result, for n-party comparison protocols over fields with
no gap requirement, existing works exhibit a trade-off between rounds and com-
munication costs, primarily due to the complexity of prefix OR operations.

In the malicious and honest-majority setting, the primary challenge lies in
verifying the correctness of multiplications. Lindell and Nof [23] propose a ver-
ification protocol using the triple sacrifice technique [14], which offers low com-
putational complexity while requiring communication linear to the number of
multiplication gates. Boneh et al. [3] first employ distributed zero-knowledge
proofs to achieve sublinear communication at the expense of higher computa-
tional complexity. Building on this work, Boyle et al. [4] subsequently develop
a practical verification protocol based on 3PC replicated secret sharing. Goyal
and Song [17] extend the polynomial interpolation-based compression protocol
in [31], designing a verification protocol that also achieves sublinear communi-
cation while improving practical performance.

In the context of MPC-based PPML, existing works that support malicious
security in the honest-majority setting, mainly focus on 3-4 parties with one
corrupt party. ABY3 [28], BLAZE [32] and Falcon [36] employ 3PC replicated
secret sharing (RSS) to provide ML inference with malicious security. Works [7,9,
19,21] aim to further enhance efficiency in a 4PC setting. More recently, MPClan
[20] leverages the RSS scheme to provide maliciously secure ML inference with up
to 9 parties. However, RSS-based approaches incur exponential storage overhead,
so it is infeasible to scalable to a large number of parties, e.g., 63, as us.
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8 Conclusion

In this paper, we propose a scalable framework, Helix, for multi-party machine
learning inference with malicious security in the honest majority setting. We
design a series of novel protocols to narrow the performance gap between ma-
liciously and semi-honestly secure protocols. Experimental results demonstrate
the practicality and scalability of Helix by implementing NN inference with up
to 63 parties. Future work could explore migrating our constructions to other
maliciously secure frameworks and enhancing efficiency with GPUs.
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