
Efficient Distributed Randomness Generation from Minimal

Assumptions where PArties Speak Sequentially Once

Chen-Da Liu-Zhang∗ Elisaweta Masserova† João Ribeiro‡ Pratik Soni§

Sri AravindaKrishnan Thyagarajan¶

February 25, 2025

Abstract

We study efficient public randomness generation protocols in the PASSO (PArties Speak
Sequentially Once) model for multi-party computation (MPC). PASSO is a variation of tra-
ditional MPC where n parties are executed in sequence and each party “speaks” only once,
broadcasting and sending secret messages only to parties further down the line. Prior results
in this setting include information-theoretic protocols in which the computational complexity
scales exponentially with the number of corruptions t (CRYPTO 2022), as well as more efficient
computationally-secure protocols either assuming a trusted setup phase or DDH (FC 2024).
Moreover, these works only consider security against static adversaries.

In this work, we focus on computational security against adaptive adversaries and from
minimal assumptions, and improve on the works mentioned above in several ways:

• Assuming the existence of non-interactive perfectly binding commitments, we design pro-
tocols with n = 3t + 1 or n = 4t parties that are efficient and secure whenever t is small
compared to the security parameter λ (e.g., t is constant). This improves the resiliency
of all previous protocols, even those requiring a trusted setup. It also shows that n = 4
parties are necessary and sufficient for t = 1 corruptions in the computational setting,
while n = 5 parties are required for information-theoretic security.

• Under the same assumption, we design protocols with n = 4t + 2 or n = 5t + 2 parties
(depending on the adversarial network model) which are efficient whenever t = poly(λ).
This improves on the existing DDH-based protocol both in terms of resiliency and the
underlying assumptions.

• We design efficient protocols with n = 5t + 3 or n = 6t + 3 parties (depending on the
adversarial network model) assuming the existence of one-way functions.

We complement these results by studying lower bounds for randomness generation protocols in
the computational setting.

∗Lucerne University of Applied Sciences and Arts and Web3 Foundation. chen-da.liuzhang@hslu.ch.
†Carnegie Mellon University. elisawem@andrew.cmu.edu.
‡Instituto de Telecomunicações and Instituto Superior Técnico, Universidade de Lisboa.

jribeiro@tecnico.ulisboa.pt. Work mainly done while at NOVA LINCS and NOVA School of Science and
Technology.

§University of Utah. psoni@cs.utah.edu.
¶University of Sydney. t.srikrishnan@gmail.com.

1



Figure 1: Communication model from [36, Figure 1]. Parties Pi speak one after the other, send
secrets to future parties Pj for j > i, and publish public values, which are available to all parties.

1 Introduction

A reliable source of unpredictable public randomness which cannot be manipulated by any party
is the bedrock of numerous cryptographic tasks and applications. Centralized randomness beacons
– an ideal service which emits unpredictable and unbiased random bits at regular intervals – have
been extensively studied starting from Rabin’s work in 1983 [39] to the NIST beacon [30]. With
the advent of modern decentralized applications like blockchains, the centralized approach is unde-
sirable due to its single-point-of-failure problem. An alternative approach is to design a distributed
algorithm where mutually distrusting parties together provide a randomness beacon service where
the random value generated is both unpredictable and unbiased.

Recently, Nielsen, Ribeiro, and Obremski [36] proposed a simple model for studying such pro-
tocols, inspired by the YOSO (You Only Speak Once) model studied earlier by Gentry, Halevi,
Krawczyk, Magri, Nielsen, Rabin, and Yakoubov [22]. In [36], the authors consider n parties, each
with its own local source of randomness, to execute sequentially. One after the other, each party
“speaks”, i.e., broadcasts and/or sends private messages to future parties (see Figure 1). We refer
to this model as PASSO (PArties Speak Sequentially Once). 1

Both the PASSO and YOSO models involve parties communicating once. YOSO encompasses
additional aspects of the “theoretical model to practical system” pipeline with specific blockchain
applications in mind. In more detail, YOSO differentiates between physical machines (which can
retain state long-term) and ephemeral roles, which are deployed on demand to perform a certain
task, and a role-assignment functionality selects which physical machine is performing which role.
Assuming that role-assignment is secure, i.e., the adversary cannot predict which machine will
execute which role, YOSO schemes can withstand adaptive adversaries with corruption budgets

1Nielsen, Ribeiro, and Obremski did not name their model, and Liu-Zhang, Masserova, Ribeiro, Soni, and Thya-
garajan [34] refer to it as YOSO with worst-case corruptions. We believe that PArties Speak Sequentially Once better
highlights the model’s key features.

2



that exceed the size of the committee. YOSO protocols typically crucially rely on a uniformly
random role-assignment, and allow parties to send private messages to future roles for which the
party-role correspondence may not even be known yet.

We believe that the PASSO MPC model, isolated from potential existing applications, is theo-
retically interesting on its own and beyond applications to YOSO. The usage of “PASSO” is meant
to emphasize this separation. For example, protocol design in PASSO, which features worst-case
corruptions, brings new theoretical challenges, as we need to depart from standard (committee-
based) MPC techniques. With YOSO applications in mind, security against worst-case corruptions
also means that PASSO protocols are more resilient to failures in the role-assignment mechanism.
Furthermore, in part due to its simplicity, we believe that PASSO will prove relevant beyond YOSO,
in particular in settings where the parties participating in the protocol are known beforehand, in
which case components such as the role-assignment and private messages to the future (which were
challenging to implement in the YOSO setting) are simply not needed or easy to realize.

The original work [36] on PASSO studied the feasibility of randomness generation protocols
with information-theoretic security (i.e., where the attacker is computationally unbounded). The
corresponding protocols are secure against t worst-case corruptions with n = 5t or n = 6t + 1
parties, depending on the underlying adversarial network model. Unfortunately, these protocols
have a significant drawback: their computational and communication complexities scale exponen-
tially with the corruption threshold t. Motivated by this, a recent work by Liu-Zhang, Masserova,
Ribeiro, Soni, and Thyagarajan [34] focused on the design of efficient PASSO randomness gener-
ation protocols secure against computationally-bounded adversaries, in which computational and
communication complexities scale polynomially with the corruption threshold t. More specifically,
they present two protocols that offer different tradeoffs between the tolerated threshold corrup-
tion and the required cryptographic and setup assumptions. The first protocol is proven secure
for n = 3t + 2 parties assuming a trusted setup phase given the use of a publicly-verifiable secret
sharing (PVSS) scheme (irrespective of the adversarial network model under consideration). The
second protocol requires no setup and is proven secure under the DDH assumption for n = 4t+4 or
n = 5t+ 4 parties, depending on the strength of the adversarial network model. In summary, the
only known efficient randomness generation protocols in the model above either require a trusted
setup or rely on a concrete algebraic assumption, limiting possible instantiations. For example, the
n = 4t + 4 protocol of [34] is not post-quantum secure. Given the significance of randomness for
secure computing, it is imperative to understand the weakest cryptographic assumptions necessary
to generate useful randomness in the distributed setting. In particular, we ask

What are the minimal assumptions under which poly-time computationally secure ran-
domness generation is feasible in the PASSO model?

1.1 Our Results

In this work, we make significant progress towards addressing the above question. More concretely,
we improve upon the plain model result of [34] in terms of the supported adversarial threshold,
provide protocols which offer further interesting trade-offs in terms of assumptions and/or resiliency,
and supplement our positive results by providing lower bounds on the required number of parties.
Setting. We consider two adversarial models – sending-leaks and execution-leaks – as done in [36,
34]. Intuitively, in the execution-leaks model the adversary only obtains messages addressed to
corrupted parties upon their execution. In the stronger sending-leaks model, the adversary obtains

3



Table 1: PASSO randomness generation in the plain model, sending-leaks.

Assumptions # of Parties Poly-time Source

Unconditional 6t+ 1 For t = O(log λ) [36]

DDH 5t+ 4 Any t [34]

One-way functions 6t+ 3 Any t Theorem 3

Non-interactive commitments 5t+ 2 Any t Theorem 2

Non-interactive commitments 4t For t = O(log λ) Theorem 1

Impossible < 3t+ 1 – Theorem 9

Table 2: PASSO randomness generation in the plain model, execution-leaks.

Assumptions # of Parties Poly-time Source

Unconditional 5t For t = O(log λ) [36]

DDH 4t+ 4 Any t [34]

One-way functions 5t+ 3 Any t Theorem 3

Non-interactive commitments 4t+ 2 Any t Theorem 2

Non-interactive commitments 3t+ 1 For t = O(log λ) Theorem 1

Impossible t = 1, n ≤ 3 – Theorem 8

Impossible t = 2, n ≤ 6 – Theorem 10

the messages addressed to corrupted parties immediately upon the sender sending the message.
In this context, we say that a PASSO protocol is (t, n)-computationally secure in the execution-

leaks model (resp. sending-leaks model) if it outputs a bit that is negligibly close to uniform in
statistical distance even when a PPT adversary is allowed to adaptively corrupt and control any t
parties. We say that a protocol is efficient if its computational and communication complexities
scale polynomially with the number of parties n and the security parameter λ. Our lower bounds
hold even against non-adaptive adversaries. See Tables 1 and 2 for a summary of our results and
comparison to prior work in the plain model.

Feasibility. As our first contribution, in Section 4 we design protocols with n = 3t+ 1 parties in
the execution-leaks model (and n = 4t in the sending-leaks model) which incur exponential compu-
tational and communication complexities in the corruption threshold t, assuming the existence of
non-interactive commitments.2 Therefore, the resulting protocol is only efficient and secure when
t = O(log λ), where λ is the security parameter. This is a relevant setting, as it also makes sense to
consider settings where the adversary’s running time grows much faster than the number of parties.
In particular, the protocol is efficient when the number of parties is constant.

Theorem 1. Let t = O(log λ), where λ is the security parameter. Then, assuming the existence
of non-interactive perfectly binding commitments, there are (t, n)-computationally secure PASSO
randomness generation protocols with n = 3t + 1 and n = 4t parties in the execution-leaks and
sending-leaks models, respectively, and polynomial (in λ) computational and communication.

2Non-interactive commitments can be instantiated from a variety of concrete assumptions including factoring [8,
42, 24], more recently from LWE and LPN [25], and even from the general assumption of injective one-way functions.
While black-box separations between general one-way functions and non-interactive commitments are known [35], non-
interactive commitments are fundamental and one of the weakest complexity-theoretic cryptographic assumptions.

4



We highlight the following takeaways from this result. Coupled with our lower bounds below,
this result tells us that n = 4 parties are necessary and sufficient for computationally secure PASSO
randomness generation against t = 1 corruption. It also tells us that n = 7 parties are necessary and
sufficient against t = 2 corruptions in the execution-leaks model, while n = 7 parties are necessary
and n = 8 parties are sufficient in the sending-leaks model. In contrast, information-theoretic
PASSO randomness generation secure against t = 1 corruptions requires n = 5 parties [36].

Next, we trade off the number of parties for protocol efficiency under the same assumption.
Namely, in Section 5 we obtain protocols based on non-interactive commitments which remain
efficient and secure when t = poly(λ) and require n = 4t+ 2 parties in the execution-leaks model,
or n = 5t + 2 parties in the sending-leaks model. This protocol improves upon the DDH-based
protocol of [34] in terms of the required number of parties and underlying assumptions.

Theorem 2. Assuming the existence of non-interactive perfectly binding commitments, there are
efficient (t, n)-computationally secure PASSO randomness generation protocols with n = 4t+2 and
n = 5t+ 2 parties in the execution-leaks and sending-leaks models, respectively.

Finally, in a quest for designing protocols under as minimal assumptions as possible, we obtain
an efficient protocol for n = 5t + 3 parties in the execution-leaks model based only on one-way
functions in Section 6. The protocol can be adapted to be secure in the stronger sending-leaks
model while requiring n = 6t+ 3 parties.

Theorem 3. Assuming the existence of one-way functions, there are efficient (t, n)-computationally
secure PASSO randomness generation protocols in the execution-leaks and sending-leaks models with
n = 5t+ 3 and n = 6t+ 3 parties, respectively.

Lower bounds. We complement the positive results above by studying lower bounds for com-
putationally secure PASSO protocols without setup in Section 7. First, we prove impossibility
for computationally secure PASSO randomness generation with n = 3 parties and t = 1 corrup-
tions. As we show, this result is tight and extends to t > 1 corruptions and n = 3t parties in the
sending-leaks model. Next, we investigate whether it is also possible to extend the (t = 1, n = 3)
impossibility in the computational setting to t > 1 and n = 3t in the execution-leaks model. Here,
we take the first step with a novel approach and show the impossibility of (t = 2, n = 6) PASSO
randomness generation. We leave extending this result to t > 2 as an interesting open problem.
Our results complement those of [36] that proved impossibility of information-theoretic PASSO
randomness generation with n = 4 parties and t = 1 corruptions, which is tight and extends to
t > 1 corruptions and n = 4t parties in the sending-leaks model.3

1.2 Other Related Work

Other works have considered models with parties communicating sequentially. In particular, several
prior works have considered the setting of randomly-selected committees speaking in sequence
(e.g., YOSO MPC [22, 10, 31], Fluid MPC [15, 6, 18], player-replaceability [13, 7, 14], Layered
MPC [17, 19], SCALES [1, 2]). PASSO protocols are not based on committees. In particular, these
committee-based protocols typically rely on having an honest majority in each committee and do

3The work [36] claims that the information-theoretic (t = 1, n = 4) impossibility result also extends directly to
t > 1 and n = 4t in the weaker execution-leaks model, but it is not clear whether this holds (this is acknowledged in
the updated ePrint version of [36]). We discuss this in more detail in Section 7.

5



Figure 2: Traditional protocol vs. its naively linearized version.

not directly work in PASSO, since the adversary can concentrate corruptions in a single committee
so that there is a dishonest majority.

Goyal et al. [27] designed MPC with GOD where parties speak once under a strong assumption
of conditional storage and retrieval systems (protocols of Benhamouda et al. [5] and Goyal et
al. [26] can serve as instantiations of such systems). ALBATROSS [12] (and the earlier protocol
SCRAPE [11]) are based on PVSS. Randomness generation protocols based on PVSS can be easily
translated to the PASSO model. Indeed, [34] introduced a PVSS-based protocol in PASSO already.
Our focus here is on protocols with minimal assumptions and no setup or random oracle.

2 Technical Overview

We now provide an overview of our feasibility results. We begin by briefly outlining some natural
strategies for building randomness generation protocols in the PASSO model and the problems we
face when following them.

2.1 First Attempts at PASSO Protocols

As a first attempt, one can naively build a PASSO protocol from any stateful r-round multiparty
computation protocol that tolerates t-out-of-n corruptions.

Linearizing Round-Based Protocols. We can implement the behavior of each party Pi in
the r rounds using r + 1 different parties Pi,k for k ∈ [r + 1]. Party Pi,k plays the role of Pi in
round k, and sends its private state to party Pi,k+1 (see Figure 2). Then, each Pi,r+1 receives
the messages from the last round r and publishes their output. This approach, however, leads to
very low resiliency. Naively, it requires n · (r + 1) parties, while still only t corruptions can be
tolerated. For example, consider the standard approach of letting everyone verifiably secret-share
a random value and reconstruct the sum. If we consider the most round-efficient VSS protocol for
n = 3t + 1, which takes 2 rounds for sharing and 1 to reconstruct [37]4, we end up with 12t + 4
parties. Similarly, the most round-efficient poly-time VSS for n = 2t + 1 takes 4 rounds to share
and 1 round to reconstruct [32] in our setting, and we would end up with 12t+ 6 parties.5

4The protocol in the standard setting requires 1 round for reconstruction when the adversary is non-rushing.
However, since in our model one party speaks in each round, there are no rushing attacks.

5The works [32, 3] also show an inefficient VSS for n = 2t + 1 that takes 3 rounds to share, leading to 10t + 5
parties.

6



A Strawman Protocol. As a second attempt, say we are in the execution-leaks model, and
we want to generate a single unbiased bit. Given a corruption threshold t, consider the following
simple commit-reveal protocol for n = 3t+2 parties, split into a group of t+1 dealers followed by
a group of 2t+ 1 receivers. Each dealer Pi generates a bit xi uniformly at random and publishes a
commitment to xi. Dealer Pi also sends the opening information to each receiver and never speaks
again. Once every dealer has spoken, each receiver P ′

i publishes every valid opening they received.
The final coin is set to

⊕
i∈I xi, where I is a set of secrets for which at least t+ 1 correct openings

exist. One could hope that the scheme is secure, as at least one of the xi’s in the computation of
the coin output is uniformly random and independent of xj for j ̸= i. However, the adversary can
bias the final coin value through a “conditional abort” attack. To see this, let the adversary corrupt
the parties Pt+1 and P ′

2t+1, and let Pt+1 commit to xt+1 = 1. Party Pt+1 sends valid openings to
t honest parties. After the first receiver has spoken, the adversary knows all honest values. As t
honest parties will publish Pt+1’s opening, P ′

2t+1 can choose whether the outcome should be 0 or
1 by choosing whether to publish the opening for Pt+1 or not. This “conditional abort” attack is
inherent to these types of schemes, and simply changing the threshold t does not help.

2.2 A PASSO Protocol for n = 3t+ 1 Parties

We now discuss our first construction, an execution-leaks protocol for n = 3t + 1 parties, which
yields Theorem 1. To circumvent the “conditional abort” issue above, we ensure that the coin
output is fixed prior to the reveal phase. At a very high level, we do so by ensuring that the coin
output is shared among sets of parties, where any party in each set can reconstruct the set’s share,
and simultaneously at least one party in each set is honest.

As a first step, we let a single party (dealer) distribute a random bit. For now, we only want to
ensure that assuming all parties in a set S are honest, the distributed bit is hidden before recon-
struction starts. Additionally, if there is at least one honest party among S, the sharing is either
discarded before reconstruction starts, or the value shared by the dealer is fixed and guaranteed
to be reconstructed. We use a non-interactive commitment scheme COM that is perfectly binding
and computationally hiding to achieve this. The sharing proceeds as follows:

1. The dealer D samples a random bit r ←$ {0, 1} and broadcasts a commitment com to r. D
also sends the opening of com to everyone in S and to all receivers.

2. Each party P ∈ S forwards the opening it received to all receivers. If P did not receive a
valid opening, it broadcasts (Complain, D).

If any party complained, the sharing is discarded. During the reconstruction, receivers can
broadcast any valid opening. Clearly, as long as everyone in S is honest, bit r is hidden before the
reconstruction, and as long as at least one party in S is honest, it will either complain, or forward
a valid opening to the receivers. If at least one receiver is honest, it will then broadcast this valid
opening.

We now use this sharing scheme to get secure randomness. Intuitively, we need to generate
sufficiently many bits so that at least one of them was generated by an honest dealer, is hidden
before reconstruction, and malicious parties cannot “deny” it. At the same time we need to ensure
that sets S contain at least one honest party (to prevent a conditional abort attack if a dealer is
malicious).

7



Let ℓ be the number of dealers (to be set later). Each sharing is represented by a nonzero vector
v ∈ {0, 1}ℓ, and our set S above will correspond to Supp(v), where Supp(v) denotes the support of
v. The dealer corresponds to minSupp(v), i.e., the position of the leftmost 1 in v. Overall, the m
total sharings are represented by rows of a binary “t-sharing matrix” M ∈ {0, 1}m×ℓ. Given this
matrix, the full protocol works as follows:

1. The ℓ dealers P1, . . . , Pℓ perform sharings according to the m rows of M .

2. Party Pℓ+1 outputs a random bit r⋆ ←$ {0, 1}.

3. The t + 1 receivers Pℓ+2, . . . , Pℓ+t+1 broadcast everything they receive from the dealers
P1, . . . , Pℓ.

To reconstruct the coin from the public broadcasts, we use the information published by the re-
ceivers to open the commitments published by the dealers, and then XOR the random bits rv for
all rows v of M with the special random bit r⋆. If a complaint was broadcast during the sharing of
some bit rv, then we ignore that sharing (i.e., replace it by 0 in the XOR).

We identify two properties of the t-sharing matrixM that are sufficient to yield a secure protocol
against t corruptions:

1. Every row of M has Hamming weight t (i.e., |Supp(v)| = t for all rows v);

2. For any t − 1 columns M·j1 ,M·j2 , . . . ,M·jt−1 of M , there exists an index i such that Mij1 =
Mij2 = · · · = Mijt−1 = 0. In other words, the coordinate-wise union of any t − 1 columns is
not the all-1s vector.

The second property is reminiscent of the notion of t-disjunct matrices, which are useful in the
design of non-adaptive group testing schemes (see [28, Chapter 22] for a discussion of this topic).

Intuition behind the security proof. We give some intuition on why the properties above
are sufficient to establish security. First, note that if the adversary corrupts t dealers, then they
cannot bias the coin because they do not know the random bit published by Pℓ+1 (who is honest),
and, furthermore, all the receivers are also honest. Therefore, we may assume that the adversary
corrupts at most t− 1 dealers, and possibly some other non-dealer parties.

By Property 1 above, the assumption that only at most t− 1 dealers are dishonest means that
every sharing contains at least one honest party. This forces the dishonest parties in that particular
sharing to commit to some (possibly non-random) value during the sharing procedure, as otherwise
the honest party would identify an inconsistency and complain. If Pℓ+1 is honest, then the output
of the protocol will be unbiased, because this party is only executed after the sharing phase has
concluded and so its published bit r⋆ is uniformly random and independent of the bits generated
in the sharing phase. On the other hand, if Pℓ+1 is dishonest then we invoke Property 2, which
ensures that there is a sharing in which all participating parties are honest. Intuitively, the random
bit produced in this fully honest sharing is hidden (by the security of the commitment scheme)
until the receivers are executed, at which point other shared values have already been committed
to and party Pℓ+1 has already been executed.

Constructing the t-sharing matrix. It remains to give a construction of a t-sharing matrix
M ∈ {0, 1}m×ℓ satisfying the properties laid out above. A simple option that works, and which we

8



use, is to consider ℓ = 2t−1 columns and m =
(
2t−1
t

)
rows, one per weight-t vector of length 2t−1.

Instantiating the framework above with this matrix yields a protocol with

n = ℓ+ 1 + (t+ 1) = (2t− 1) + 1 + (t+ 1) = 3t+ 1

parties. To complement this, we use a simple argument to show that any t-sharing matrix M ∈
{0, 1}m×ℓ must satisfy m ≥

(
ℓ

t−1

)
/
(
ℓ−t
t−1

)
. In particular, when ℓ = 2t − 1, which is the minimum

number of columns in a t-sharing matrix, then it is not possible to do better than our simple con-
struction. We can hope to obtain some complexity versus number of parties trade-off by increasing
the number of columns and decreasing the number of rows, but this lower bound also shows that
the number of sharings remains exponential in t unless we significantly increase the number of
dealers.

Finally, we can extend our execution-leaks protocol to work in the sending-leaks model by
adding t− 1 additional parties (see Section 4).

2.3 Lower Bounds Without Setup

As we will now see, the result from the previous section is tight in the sense that n = 4 parties
are both necessary and sufficient for t = 1 (both in the sending-leaks and execution-leaks models).
This argument can be easily extended to show that n = 3t + 1 parties are required against any
t ≥ 1 corruptions in the sending-leaks model. For the execution-leaks model the situation is more
subtle, and such an extension is not clear. Using a novel approach, we show that n = 7 parties are
required against t = 2 corruptions in the execution-leaks model, which is also tight by the result
from the previous section.

We find it enlightening to begin by discussing the impossibility result for t = 1 corruption and
n = 3 parties, where there is no distinction between the execution-leaks and sending-leaks models.
Consider a protocol with parties P1, P2, and P3. First, we consider corrupting P3. There are
two cases – either two independent honest executions of P3 lead to two different final coins with
non-negligible probability, or the final coin is determined (except with negligible probability) by the
public values of P1 and P2. If the first case holds, then the protocol is not secure. If the second case
holds, then we consider corrupting P2. Now, either two independent honest executions of P2 lead
to different coin values (and P2 can predict the final coin with high probability in each execution
because we have assumed that P3’s behavior does not matter, regardless of the content of private
messages sent to it), in which case the protocol is not secure, or P1’s public value determines the
final coin with high probability, in which case the protocol is also clearly not secure. Briefly, the
reason why this argument does not extend to t = 1 corruption and n = 4 parties P1, . . . , P4, unlike
in [36], is that in order for a corrupt P2 to predict the final coin in a given honest execution (which
it must do to be able to choose the execution that biases the coin to its preferred value) it would
have to efficiently simulate the private message from P1 to P3 conditioned on P1’s already broadcast
public value. It is not clear how this can be done.

The argument above extends to give an impossibility for any t ≥ 1 corruptions and n = 3t parties
in the sending-leaks model. Concretely, for t = 2 corruptions and a protocol Π with n = 3 · 2 = 6
parties P1, . . . , P6, we simply apply the argument above to the 3-party protocol Π′ with parties
P ′
1, P

′
2, P

′
3 where each P ′

i emulates a block of 2 parties in Π (i.e., P ′
1 emulates (P1, P2), P

′
2 emulates

(P3, P4), and P ′
3 emulates (P5, P6)). Remarkably, this emulation argument does not work in the

execution-leaks setting.

9



Intuitively, to extend this argument to the execution-leaks setting it would be sufficient to show
that every efficient execution-leaks adversary corrupting 1 party that breaks Π′ can be transformed
into an efficient execution-leaks adversary corrupting t parties that breaks protocol Π (recall that for
1 corruption the execution-leaks and sending-leaks settings are identical). The key issue precluding
this is that in the resulting 3-party protocol Π′ all private messages from P ′

1 (who emulates P1, P2

of the original protocol Π) to P ′
2 (who emulates parties P3, P4 of Π) are revealed to P ′

2 as soon as P ′
2

starts its execution. Therefore, an adversary for Π′ that corrupts P ′
2 can adversarially choose the

behavior of P3 based on messages that would only be sent to later parties in Π. On the other hand,
an execution-leaks adversary for Π that corrupts the corresponding parties P3, P4 does not know
the messages sent to P4 when executing P3, and so it is not clear how the execution-leaks adversary
for Π can efficiently emulate the adversary for Π′. This subtlety has also been acknowledged in the
updated ePrint version of [36]. While there may be a way to get around this issue, we do not know
how to generally overcome it in the computational setting.

As our main contribution on lower bounds, we give a novel argument that overcomes the barriers
above and yields an impossibility result for t = 2 corruptions and n = 6 parties in the execution-
leaks model. Our argument proceeds by analyzing corruption patterns that go beyond consecutive
blocks of 2 parties. First, similarly to the previous argument, we consider corrupting P5 and P6.
This lets us conclude that the public values of P1, . . . , P4 in an honest execution of the protocol
determine the final coin with high probability (otherwise the protocol would not be secure). If we
followed the previous approach, we would proceed by considering the corruption of P3 and P4. But
we run into trouble, since when executing P3 we do not know the private messages sent by P1 and
P2 to P4, which may affect P4’s behavior and hence the final coin. Therefore, crucially departing
from the previous approach, we consider corrupting P1 and P4. This lets us show that the private
message from P1 to P4 can be fixed to a special symbol ⊥ without loss of generality, provided
that P1, P2, P3 behave honestly, which unlocks the remainder of the argument. Indeed, consider
corrupting P2 and P3. Using that P1’s private message to P4 is fixed to ⊥ and that we control P2,
we show that either P3 can locally predict and bias the final coin, in which case the protocol is not
secure, or it is already determined by P1 and P2, in which case the protocol is also not secure since
we can simultaneously corrupt P1 and P2.

2.4 An Efficient PASSO Protocol from Non-Interactive Commitments

Continuing on our quest towards obtaining efficient PASSO protocols, we note that our previous
scheme worked only for t = O(log λ). We now show how to remove this assumption at the cost of
slightly larger number of parties, which will result in Theorem 2. Our scheme relies on verifiable
secret sharing (VSS). A (t, n)-VSS allows threshold secret sharing of a secret to n parties such
that (1) a secret shared by an honest dealer is always reconstructed correctly by any set of t + 1
parties, (2) prior to reconstruction phase, no information is leaked about the secret to any set of
t parties, and (3) receivers can verify that the dealer behaved correctly, i.e., there exists a unique
secret corresponding to the sharing phase, and it can be correctly reconstructed. Our scheme can
be seen as a variant of the protocol from [34], which is a custom version of a sequence of t + 1
instantiations of Pedersen’s VSS protocol [38], where each dealer shares a random value. More
precisely, each instantiation distinguishes the following parties:

1. Party D, who acts as the dealer distributing the secrets (publishing commitments to the coef-
ficients of the degree-t polynomial and bilaterally sending to each receiver a share evaluation),

10



and sends its state to its counterpart D′.

2. 2t + 1 receivers Ri, who receive and verify the secret shares, complain about the shares if
applicable, and otherwise send these to each party R′

i.

3. Party D′ who obtains a state from D and uses it to publish the shares of the receivers that
complained. If D′ cannot resolve a complaint, this instance is aborted.

4. t + 1 receivers R′
i who receive all the shares from each party Ri, as well as set their shares

to the ones broadcast by D′ (if the counterpart Ri complained), and publicly reveal all these
shares.

The idea is that after the first three steps, the dealer has committed to a random value, which
will be reconstructed in Step 4. Note that before Step 4, if bothD andD′ are honest, no information
about the committed random value is revealed. Therefore, to generate a random coin, one can use
a standard linearization of t+1 instances of the above protocol (where the first three steps of each
instance are executed, and subsequently all committed random values are reconstructed). The final
coin is then the sum of the t+ 1 random values. This works because since there are t+ 1 dealers,
at least one of them is honest; moreover, before the reconstruction phase starts (Step 4 of each
instance), the adversary submits secrets without knowing the honest secrets, and every instance
that succeeded, is guaranteed to be reconstructed.

While [34] uses ElGamal commitments, our goal is to generalize to allow for any non-interactive
commitments (even non-homomorphic ones). The above construction requires the commitment to
be homomorphic, since the receivers need to compute commitments to the point evaluations from
the commitments to the polynomial coefficients. We observe that one can instead let the dealer D
publish 2t + 1 commitments to the points themselves, rather than the t + 1 coefficients, and send
its state to D′. However, the difference is that now a cheating dealer could commit to a polynomial
that is not of degree t.

To solve this, one can let the dealer commit to all the points of a bivariate degree-t polynomial
F (x, y), and send to each receiver Ri the openings corresponding to the i-th projection (horizontal
and vertical), i.e. openings to the commitments of the points {F (i, j)}j∈[2t+1] and {F (j, i)}j∈[2t+1].
Each receiver can now directly check the openings against the published commitments, and also
check that the two projections are of degree t. The party D′ will publish the openings to the points
of any Ri that complained.

After resolving the complaints, observe that the projections corresponding to any two honest
receivers Ri and Rj are consistent among each other and have degree t, and therefore the committed
bivariate polynomial F has degree t. Moreover, the state of each Ri is sent to all receivers R′

i, and
therefore any honest receiver R′

i can provide enough information to reveal the whole polynomial.
At a high level, the protocol described above uses a total of n = 5t + 4 parties: a group D of

size t + 1, group R of size 2t + 1, group D′ of size t + 1, and group R′ of size t + 1. The parties
execute the following:

• Each Di ∈ D executes the protocol of the dealer D in the i-th linearization.

• Each Ri ∈ R executes the protocol of the i-th receiver Ri in each of the t+ 1 linearizations.

• Each D′
i ∈ D′ executes the protocol of the dealer D′ in the i-th linearization.

• Each R′
i ∈ R′ executes the protocol of the i-th receiver R′

i in each of the t+ 1 linearizations.

11



However, one can slightly improve the number of parties to 4t+4 with the following modification.
Instead of letting t+1 dealers, each of whom shares secrets among the same set R of 2t+1 parties,
we let each dealer share secrets among the next 2t + 1 parties. More details can be found in
Section 5.

2.5 An Efficient PASSO Protocol based on One-Way Functions

Finally, we discuss the approach behind our Theorem 3. We again turn to VSS to ensure that the
secret is fixed at the end of the commit (sharing) phase, and the adversary corrupting at most t
parties learns nothing about the secret. As before, if we ensure that the coin reconstruction starts
only after the sharing phase of all secrets is complete, the adversary can no longer bias the outcome.

Our first goal is to design an efficient PASSO VSS protocol with a good resiliency and as
minimal assumptions as possible. We will then see how to use this VSS protocol to build a full-
fledged PASSO randomness generation protocol. In fact, we show that our randomness generation
protocol can be based on a weaker version of VSS, which we call split-dealer VSS.

Unoptimized Stateful VSS. Our starting point is the elegant stateful VSS protocol by Hirt
and Zikas [29] that is based on the BGW VSS protocol [4] and the work of Cramer, Damg̊ard,
Dziembowski, Hirt, and Rabin [16]. The protocol requires n = 2t + 1 parties who hold secret
shares and rely on a standard signature scheme (which follows from one-way functions), private
communication channels, and access to a broadcast channel.6 This protocol consists of two phases
each with several rounds as described below.
Sharing Phase:

(1) Share round: Dealer D with secret s selects a uniform bi-variate polynomial f(x, y) of
degree at most t in each variable, such that f(0, 0) = s. Let si,j = f(i, j). D privately sends shares
{sk,i}k∈[n] and {si,k}k∈[n], along with signatures on these values to each party Pi. Pi denotes these

values as {s(i)k,i}k∈[n] and {s
(i)
i,k}k∈[n].

(2) Share check round: Each party Pi checks whether the values they received are t-consistent,
i.e., fit onto a polynomial of degree at most t, and contain valid signatures from D. If not, Pi

broadcasts a complaint.
(3) Dealer response round: Dealer D addresses the complaint of each party Pi by broadcasting

the correct values for Pi, along it’s signatures. If these values are not t-consistent or the signatures
are invalid, D is deemed corrupt and the execution halts. Otherwise, Pi adopts the new values as
the messages it received in the sharing round.

(4) Subshare exchange round: Party Pi sends the value s
(i)
i,j and both its own, and the dealer’s

signature on it privately to Pj .
(5) First subshare check round: Party Pi checks if they received a message along with valid

signatures from every other party. If a message from Pj is missing or does not contain valid
signatures, Pi broadcasts a complaint.

(6) Resolve complaints round: Party Pi checks if there is a complaint by any Pj about Pi. If

yes, Pi broadcasts s
(i)
i,j along with D’s and its own signature. If Pi is silent, or any of the signatures

are invalid, Pi is deemed corrupt, and everyone sets signatures of Pi to ⊥. Otherwise, Pj adopts
the message broadcast by Pi as the message it received during the subshare exchange.

6In our protocol, each party signs an a-priori bounded number of messages, and hence we can use Lamport’s
signatures [33] which are known from one-way functions.

12



(7) Second subshare check round: Party Pi checks if it received any value s
(j)
j,i during the subshare

exchange or resolve complaints round which is inconsistent with its view. If yes, Pi broadcasts s
(j)
j,i ,

s
(i)
j,i , along with D’s signature on both values. If the two values are different, and have valid
signatures, D is deemed corrupt and the execution halts.

Reconstruction Phase: In this phase each party Pi broadcasts {s(i)k,i}k∈[n], along with the signature

for each s
(i)
j,i that Pi received from Pj . Each party checks if the values broadcast by every Pi are

t-consistent, and all signatures are valid. If not, Pi is disqualified. The values of all non-disqualified
parties are interpolated to compute f(0, 0).

The protocol’s correctness relies on honest parties only sending or broadcasting consistent, cor-
rectly signed values, with their shares being sufficient to compute the secret. Privacy is maintained
as any t shares reveal no information about the secret, and the adversary learns nothing additional
from honest parties during the sharing phase. For verifiability, if the dealer is not disqualified, a
sufficient number of honest parties (n − t = t + 1) possess consistent shares that define a unique
secret. Even a malicious dealer cannot prevent the secret’s reconstruction, as no honest party would
sign inconsistent shares.

Reducing Round Complexity. The scheme above is not well-suited for a direct transformation
into the PASSO setting. In fact, a naive transformation of the above protocol to the PASSO model
(see Section 2.1) would require n = 6(2t + 1) + 2 = 12t + 8 parties. The round complexity of the
above VSS is the first clear bottleneck in our approach. Therefore, we aim to reduce the number
of rounds, and thus reduce the number of parties needed in the PASSO model.

Merging Subshare Checks. Observe that if round 5 and round 7 subshare checks could be
merged, followed by a one-shot “resolve complaints” (round 6), this would reduce the round com-
plexity by one round, resulting in a reduction of 2t+ 1 parties in the PASSO setting.

The intuition behind having the “resolve complaint” phase between the two subshare checks is
the following: If party Pi complains in (5), party Pj resolves the complaint publicly in (6) while
including its own and the dealer’s signatures. Everyone can verify whether Pj ’s response is valid.
Even if so, Pi might still be unhappy, as the dealer could have given inconsistent shares to Pi and
Pj . In this case, Pi can complain again, this time including its own and the dealer’s signature on
the corresponding value. Since all the complaints and the resolving messages are public, anyone
can conclude if the dealer is to be blamed or not. We make the following crucial observation: Pi

never changes its own share based on the resolving message from Pj in round (6). Additionally, Pi

can verify whether the value it received from Pj in the subshare exchange (4) is consistent with its
own shares received from the dealer directly after (4).

These observations allow us to change the protocol as follows, while retaining its security. If the
share that Pi was supposed to receive from Pj during the subshare exchange (4) is missing, contains
invalid signatures, or is inconsistent with its own share, Pi complains and includes its own and the
dealer’s signatures. Then, Pj is forced to publicly respond. As before, if Pj ’s response is missing
or contains invalid signatures, Pj is discarded. If Pj ’s response is inconsistent with Pi’s, but the
signatures are valid, everyone can conclude that the dealer misbehaved. This has the same effect
as before – either the parties agree on their shares, or either a malicious party Pi or the malicious
dealer is disqualified.

Merging Share Check and Subshare Exchange. Next, we seek to merge the share check (2)
and the subshare exchange (4) rounds, which would result in another reduction of 2t+ 1 parties.

Currently, the dealer ensures in (3) that either all parties are happy with their shares, or the

13



dealer can be deemed corrupt for publicly providing inconsistent shares. Thus after (3), all parties
must have complete sharings signed by the dealer, and if there are complaints in later rounds, we
can definitively assign blame to either the dealer or a party. Observe that if a party complains in
(2), everyone knows that the party is unhappy, and other happy parties can still crosscheck their
values. However, we must ensure that if the dealer resolves complaints after the subshare checks,
the new shares are still consistent with the shares of the happy ones. Subtle modifications allow
merging (2) and (4) and delaying the dealer response until the sharing phase’s end.

Happy parties proceed with the subshare exchange, while unhappy party Pi skips this phase
and broadcasts a complaint. Pi also skips the subshare checks and the resolve complaints round.

If happy party Pj complains about a missing message from Pi, Pj includes s
(j)
j,i and s

(j)
i,j , along with

its own and the dealer’s signature. After the resolve complaint phase, the dealer addresses Pi’s
complaint. Everyone verifies that the values posted by the dealer are consistent, in particular with

the non-complaining parties, like Pj . As Pj broadcasts s
(j)
j,i , s

(j)
i,j along with valid signatures from

the dealer, anyone can see if the new share distributed by the dealer is consistent, and the dealer
can be discarded if this is not the case.

Removing “Resolve Complaints”. Currently, the “resolve complaints” round is followed by the
dealer response. We might hope that the dealer can resolve the complaints on behalf of every party
Pj , eliminating the need for the resolve complaints round. However, this modification requires some
care: A malicious dealer and a malicious party Pi can provide a share inconsistent with an honest
happy party Pj . Imagine a malicious Pi complaining about an honest party Pj , while including a

valid signature on s
(j)
j,i , s

(j)
i,j from a malicious dealer. Previously, Pj would have responded publicly

by providing the dealer’s signature on its own share, thus unmasking the malicious dealer. However,
now the dealer can simply confirm Pi’s share, and thus the share held by Pj becomes inconsistent.

We rectify this issue by using 3t+1 share receivers (instead of 2t+1), and skipping the “resolve
complaints” round, without having the dealer resolve parties’ complaints about each other. Every
point on which Pi did not get a valid signature from Pj is now essentially lost for reconstruction.
Pi still checks whether the points from Pj contain valid signatures of the dealer on an inconsistent
share, and blames the dealer if so. Pi also broadcasts a complaint for a missing message from Pj ,
along with the dealer’s signature on its corresponding share to ensure that any share that the dealer
will broadcast for an unhappy Pj remains consistent with Pi’s share. In the reconstruction phase,

we consider any polynomial of Pi to be valid if it has 2t+ 1 points s
(i)
j,i , such that (1) each point is

either correctly signed by Pj , or broadcast by the dealer if Pj complained during the share check,
and (2) all these points lie on a polynomial of degree at most t. Intuitively, requiring 2t + 1 valid
points ensures that any party’s share is consistent with at least 2t + 1 − t = t + 1 honest parties.
Since any t + 1 honest shares fix the secret, any valid share is thus consistent with the secret.
Simultaneously, given 3t + 1 share receivers, any party can provide at least 2t + 1 such points, as
at most t of the points can be unavailable due to malicious parties. While this adds t receivers, we
can cut the resolve complaints round and save t + 1 parties with further optimisations discussed
below.

Obtaining PASSO VSS. In the scheme we arrived at, the sharing phase consists of the following
rounds: sharing, share check with subshare exchange, subshare checks, and dealer response. Consider
a “linearized” version of this scheme in the PASSO setting, where parties are executed one after the
other: It requires one party D1 to be the dealer in share round, and another party D2 to execute
the role of the dealer in dealer response (this will be the resolver). It further requires a set of 3t+1

14



parties P1 to execute share check with subshare exchange, another set P2 of size 3t+ 1 to execute
the subshare check, and a set P ′ of 3t+1 parties to perform the reconstruction. The scheme works
as follows: First, the dealer D1 distributes shares of secrets to parties in P1, and additionally sends
its entire state to the future dealer D2. Then, one after the other, each party P 1

i ∈ P1 performs
the share check, and either sends its subshares to the parties in P2, or complains about the dealer.
Additionally, P 1

i sends its state to its future counterpart P 2
i ∈ P2. Each P 2

i ∈ P2 performs the
subshare checks, complains if necessary, and sends its state to the future counterpart P ′

i . Finally,
parties in P ′

i output the data from which s can be computed according to the reconstruction phase.
We observe the following: during the sharing check with subshare exchange, when party P 1

j

is executed, it could have already obtained the shares of all parties P 1
i , for i < j, and perform

the subshare checks, as those parties have already executed the subshare exchange. If we were to
require the checks to be performed only by such ordered pairs of parties, in the PASSO model we
could remove the 3t + 1 parties P2 which are currently used to execute the subshare check round
of the stateful construction. Note that in the stateful version, we already do not require parties Pi

to resolve the complaints about them, as we were able to remove the resolve complaints round by
requiring 3t+ 1 share receivers and 2t+ 1 valid points in the reconstruction phase instead. Thus,
we simply must ensure that if honest parties notice an inconsistency in the prior version of the
protocol, this inconsistency still becomes public, even if the check is done only for pairs (Pi, Pj),
where i < j. Note that given two honest parties Pi, Pj , it is sufficient if only one of them checks
their shares for consistency and complains on behalf of the pair if necessary. For this, we let the
complaint include signatures on the respective values from both Pi and Pj , as well as the dealer’s
signatures on these values. This way, in the PASSO version of the construction, we can slash
additional 3t + 1 parties P2 by merging the sharing check with subshare exchange, and subshare
checks phases. In the following, we have only the set P, instead of two separate sets P1 and P2.

Optimizing Reconstruction in Sending-Leaks. Having a one-to-one correspondence between
the 3t+ 1 parties P and parties P ′ seems wasteful, as intuitively 2t+ 1 reconstructors ought to be
enough. Consider the following optimization: Instead of having each Pi ∈ P send the state only
to its counterpart P ′

i ∈ P ′, party Pi secret shares it to parties P ′, |P ′| = 2t + 1, using a standard
(t, 2t+1)-Shamir secret sharing, while including its own signature on the share. The privacy of the
honest shares is still preserved for the duration of the sharing phase by the privacy of the secret
sharing scheme. The 2t+ 1 reconstructors now broadcast the signed shares of each Pi’s state. As
only the shares correctly signed by Pi will be used for reconstruction, no adversary can modify the
reconstructed state of an honest Pi. Further, t + 1 correctly signed shares are available for any
honest Pi as there are at least t + 1 honest reconstructors. Now, we only require 2t + 1 parties
in the reconstruction phase. This finalizes our scheme in the sending-leaks model. We give a full
formal description in Protocol 7.

Optimizing Reconstruction in Execution-Leaks. In the execution-leaks model we can further
reduce the number of reconstructors compared to the sending-leaks model. Consider the following
modification: Instead of having each Pi ∈ P send the state only to its counterpart P ′

i ∈ P ′, Pi sends
it (signed) to every party in P ′. As in the execution-leaks model the adversary obtains the values
only when an adversarial party is being executed, the privacy of the honest shares is preserved for
the duration of the sharing phase. Now, we only require t+1 parties in the reconstruction phase to
ensure there is at least 1 honest reconstructor in P ′. These parties gather the information sent to
them by the parties Pi, and reveal all shares that are verified, along with all available signatures.
This finalizes our scheme in the execution-leaks model. We give the full construction in Protocol 3,

15



Figure 3: Stacking technique, where D2 is part of R1, D
′
1 is part of R2, and so on.

and provide a formal security proof in Section 6.1.

Putting It Together: Efficient PASSO Randomness Generation. We now compile several
instances of our PASSO SD-VSS protocol introduced above into the randomness generation protocol
we aimed for. Concretely, we take t + 1 instances of our PASSO SD-VSS so that we have t + 1
dealers and the final coin is computed through some deterministic function of the non-misbehaving
dealers’ secrets. This compilation step has to be done carefully to minimize the overall required
number of parties without compromising security.

As a first step, consider the following construction: t + 1 dealers in D share their secrets via
PASSO SD-VSS to the same set of share receivers P. Each Pi ∈ P verifies its shares, distributes
subshares, submits complaints and sends its state to the future as specified by PASSO SD-VSS
above. Then, for each dealer Pi ∈ D its counterpart P ′

i ∈ D′, dubbed resolver, addresses the
complaints of the receivers. The reconstructors publish data according to the PASSO SD-VSS.
Given this information, anyone can compute the value shared by each dealer, and output for
instance the XOR of each valid value that was reconstructed. This requires 6t+ 4 parties in total
in the execution-leaks model, and 7t+ 4 parties in the sending-leaks model.

Stacking. We use a stacking technique to reduce the number of parties needed. Notice that when
dealer Pi ∈ D is active, each dealer Pj for j < i has already distributed their share. Thus, Pi can
act as a dealer for its secret, a share receiver of all secrets from prior dealers Pj for j < i, and a
receiver for the sharing of its own secret. This allows us to “stack” multiple instances of SD-VSS,
so each party performs multiple “roles” during execution. Using stacking we merge (1) dealers and
share recipients, and (2) share recipients and resolvers. See Figure 3 for a pictorial representation.
Security still holds, as at most t dealers can be corrupt, ensuring at least one honest value is
used in the output. For each SD-VSS, at most t recipients are corrupt, preserving the security
properties of the stacked construction. However, care is required when using stacking in general:
For example, security immediately breaks down if we let a party perform roles both in sharing and
reconstruction phase. Using stacking in combination with PASSO SD-VSS, we obtain a PASSO
randomness generation with n = 5t+ 3 in the execution-leaks model (n = 6t+ 3 in sending-leaks)
under the assumption of the existence of one-way functions.

16



3 Our Model and Notation

We now outline our notation and model. We discuss standard basic cryptographic building blocks
in Appendix A.

The sampling of a value x according to a distribution X is denoted by x←$ X. If S is a set, we
also write x←$ S when x is sampled uniformly at random from S. The support of the distribution
X is denoted by Supp(X). We denote by λ ∈ N the security parameter and by x ← A(in; r) the
output of the algorithm A on input in using r ←$ {0, 1}∗ as its randomness. We often omit this
randomness and only mention it explicitly when required. We consider probabilistic polynomial
time (PPT) machines as efficient algorithms. For integers m,n ∈ N we write [n] = {1, 2, . . . , n}
and [m,n] = {m,m+1, . . . , n}. A function negl : N→ R is negligible if it is asymptotically smaller
than any inverse-polynomial function, namely, for every constant c > 0 there exists an integer Nc

such that negl(λ) ≤ λ−c for all λ > Nc.

3.1 The PASSO Model and Security Definitions

We formally define our network and threat models, as well as security notions.

3.1.1 Network Model

We consider n parties P1, . . . , Pn. Party P1 outputs a public value x1 and sends secret values
s1,2, . . . , s1,n to be received by parties speaking in rounds i = 2, . . . , n, respectively. In the i-th
round for 2 ≤ i ≤ n, party Pi outputs a public value xi which depends on the previously broadcast
public values (x1, . . . , xi−1), along with the secret values sent to the party speaking in the i-th
round, (s1,i, . . . , si−1,i). Party Pi then sends secret values (si,i+1, . . . , si,n) to be received by parties
Pi+1 through Pn, respectively.

The end goal of a randomness generation protocol in this network model is to generate a random
coin based on the public values x1, . . . , xn broadcast by the parties. We now discuss two different
adversarial models and our security definition, which mirror those considered in [36].

3.1.2 Adversarial Models

We consider a computationally-bounded adversary who is allowed to corrupt a subset of parties
of size at most t. We call t the corruption threshold. We study adaptive adversaries in the fully
malicious setting. An adaptive adversary has a total budget of t corruptions and behaves as follows.
After the i-th party Pi speaks, the adversary decides whether to corrupt the (i+ 1)-st party Pi+1

based on its view of the protocol so far, provided the adversary has not spent all its budget
already. Parties that have been corrupted in the past cannot be “uncorrupted”, and the adversary
cannot corrupt previous parties that have already spoken. This is reasonable since, as parties are
only executed once, honest parties can (and should) erase their private states immediately after
speaking. Corrupted parties can deviate arbitrarily from the protocol.

We consider two network models which differ based on the information made available to the
adversary when it executes each dishonest party Pi:

• In the sending-leaks model, the adversary immediately learns secret values once they are sent
to a dishonest party. In other words, when the adversary is executing the corrupted party
Pi, then it is allowed to see the previously broadcast public values x1, . . . , xi−1 along with all

17



secret values sent by parties P1 through Pi−1 to all already corrupted parties Pj , even when
j > i. We call an adversary in this model a sending-leaks adversary.

• We also consider a weaker network model – execution-leaks – where secret values sent to
some corrupted party Pi are only revealed to the adversary once Pi is executed. Thus, for
an execution-leaks adversary the behavior of an adversarial party Pi depends on the public
values x1, . . . , xi−1 and only the secret values sj,j′ for 1 ≤ j < j′ ≤ i and corrupted Pj′ . We
call an adversary in this model an execution-leaks adversary.

3.1.3 Security Definition

We now define the randomness generation security guarantee. Let λ denote a security parameter.
Consider an interaction of an adversary A with the randomness generation protocol and let OUT(A)
denote the coin output of this protocol with adversary A. Let L(λ) denote the length of this output.
Let D be a distinguisher. Consider the following experiment:

1. b
$← {0, 1}.

2. r
$← {0, 1}L(λ).

3. If b = 0, set coin← OUT(A). Otherwise, set coin← r.

4. b′ ← D(coin).

Definition 1 (Computationally secure PASSO randomness generation). A PASSO randomness
generation protocol is (t, n)-computationally secure in the sending-leaks (resp. execution-leaks)
model if for all PPT adaptive sending-leaks (resp. execution-leaks) adversaries A corrupting t out of
n parties and PPT distinguishers D we have

∣∣Pr[b = b′]− 1
2

∣∣ ≤ negl(λ) for some negligible function
negl(λ) in the experiment above. We call

∣∣Pr[b = b′]− 1
2

∣∣ the bias of the protocol with respect to
A and D.

4 Protocols for Small Number of Parties from Non-Interactive
Commitments

We now present our randomness generation protocols for n = 3t + 1 parties using non-interactive
commitments in the execution-leaks model. These protocols are efficient whenever the corruption
threshold t is small. We make use of a combinatorial object that we formally define below.

4.1 t-Sharing Matrices

Definition 2 (t-sharing matrix). We say that a matrix M ∈ {0, 1}m×ℓ is a t-sharing matrix if
every row of M has Hamming weight t and for any set S ⊆ [ℓ] of size t−1 there exists i ∈ [m] such
that Mij = 0 for all j ∈ S.

Our next lemma exhibits a lower bound on the number of rows of any t-sharing matrix M ,
which we prove in Appendix B.1.

Lemma 1. If M ∈ {0, 1}m×ℓ is a t-sharing matrix, then m ≥ ( ℓ
t−1)
(ℓ−t
t−1)

.

18



We use the following simple construction of a t-sharing matrix in our general protocol for
n = 3t+ 1, which we prove in Appendix B.2.

Lemma 2. There exists a t-sharing matrix M ∈ {0, 1}m×ℓ with ℓ = 2t−1 columns and m =
(
2t−1
t

)
rows. Moreover, this matrix can be constructed in time polynomial in ℓ and m.

By Lemma 1, we get that the number of rows in the construction of Lemma 2 cannot be
improved if the number of rows is kept as is.

4.2 Our Protocol

With the aid of a t-sharing matrix M as defined above, in Protocol 1 we present our randomness
generation protocol in the PASSO execution-leaks model.

Protocol 1 Randomness Generation with n = 3t+ 1 in Exec.-Leaks Model.

We have a t-sharing matrix M ∈ {0, 1}m×ℓ according to Lemma 2, where ℓ = 2t− 1 and
m =

(
2t−1
t

)
.

1. For i ∈ [2t− 1]:

(a) For j ∈ [m], party Pi does the following:

i. If ∀k ∈ [i− 1],Mjk = 0 and Mji = 1,

A. Choose value sj ←$ {0, 1}ℓm(λ) and generate comj ← Commit(sj ; rj) for random
coins rj ∈ {0, 1}ℓr(λ).

B. Broadcast comj and send the opening (sj , rj) to all Pk where k ∈ [i+ 1, ℓ] and
Mjk = 1, and to all Pk where k ∈ [2t+ 1, 3t+ 1].

ii. Else if Mji = 1,

A. Receive (sj , rj) from party Pk for some k ∈ [i− 1] and Mjk = 1.

B. Broadcast (Complain, j) if nothing was received or if Commit(sj ; rj) ̸= comj .
Else, send (sj , rj) to all Pk where k ∈ [2t+ 1, 3t+ 1].

2. P2t samples s∗ ←$ {0, 1}ℓm(λ) and broadcasts s∗.

3. For i ∈ [2t+ 1, 3t+ 1], Pi does the following:

(a) For any j ∈ [m], if no message (Complain, j) was seen, then receive all messages (sj , rj)
such that Commit(sj ; rj) = comj , and output (sj , rj).

Let C ⊆ [m] be the set of j’s such that no message (Complain, j) was seen and (sj , rj) was
broadcast satisfying Commit(sj ; rj) = comj . The final random string is s =

⊕
j∈C sj ⊕ s∗.

Theorem 4. If COM is a perfectly binding and computationally hiding non-interactive commitment
scheme, then Protocol 1 is a (t, n = 3t + 1)-comp. secure PASSO randomness generation in the
execution-leaks model, provided that n ≤ poly(λ) and 2t ≤ poly(λ) with λ the security parameter.
Its computation and communication are polynomial in λ, n, and 2t, and so are poly(λ).

In the interest of space, we give the formal proof in Appendix B.3.

19



4.2.1 Sending-Leaks Variant.

Our sending-leaks protocol is similar to Protocol 1, except that we have 2t+ 1 receivers instead of
t + 1. A formal description of this modified protocol is in Protocol 5. In the interest of space, we
defer this description, as well as the corresponding theorem and security proof to Appendix B.4.

5 Protocols from Non-Interactive Commitments

Our construction consists of a sequence of t+1 instantiations of a split-dealer VSS protocol, which
is a modification of the protocol presented in [34]. To recall, each instance distinguishes between
the following parties:

1. Party D, who acts as the dealer distributing the secrets (publishing commitments to the
points of a bivariate degree-t polynomial and bilaterally sending to each receiver the openings
to the horizontal and vertical projections), and sends its state to its counterpart D′.

2. 2t+1 receivers Ri, who receive and verify the projections (they are of degree-t and consistent
with the commitments); complain about the received values if applicable, and otherwise send
these to all parties R′

j .

3. Party D′ who obtains a state from D and uses it to reveal the projections of the receivers
that complained. If D′ cannot resolve a complaint, this instance is aborted (D′ is deemed
corrupt).

4. t + 1 receivers R′
i who receive all the shares from each party Rj , as well as set their shares

to the ones broadcast by D′ (if the counterpart Rj complained), and publicly reveal all these
shares.

To compose the instances, we organize the parties as follows:

• For 1 ≤ i ≤ t + 1, Pi executes the protocol of the dealer D in i-th instance. If additionally
i > 1, Pi also executes the role Ri−j in j-th instance, where j < i.

• For t+2 ≤ i ≤ 3t+2, Pi executes the role Ri−j in j-th instance, where j < i. If additionally
i > 2t+ 2, Pi also executes the role of the dealer D′ in the i− 2t− 2-th instance.

• For i = 3t+ 3, Pi executes the role D′ in the (t+ 1)-st instance.

• For 3t+ 4 ≤ i ≤ 4t+ 4, Pi executes the protocol of R′
i−3t−3 for each instance.

We formally describe the execution-leaks protocol in Protocol 2.

Theorem 5. Assuming non-interactive perfectly binding commitments, there is an efficient (t, n =
4t+4)-computationally secure PASSO randomness generation protocol in the execution-leaks model.

In the interest of space, we defer the formal proof to Appendix C.1.

20



5.0.1 Sending-Leaks Variant.

In the sending-leaks model, we similarly implement the behavior of each dealer using two parties
– one responsible for the sharing of a secret, and one responsible for addressing the complaints.
However, we not only have 2t + 1 parties Ri, but also 2t + 1 parties R′

j . Each Ri follows the
procedure of round two, and if its shares verify, but it additionally sends its shares to only R′

i.
Finally, each R′

i publishes the shares (it got from Ri) which verified correctly. Note that there are
t + 1 pairs (Ri, R

′
i) that are both honest, which will publish projections that are consistent with

the published commitments and therefore will be enough to reconstruct the bivariate polynomials.

Theorem 6. Assuming non-interactive perfectly binding commitments, there is an efficient (t, n =
5t+ 4)-computationally secure PASSO randomness generation protocol in the sending-leaks model.

We defer the formal protocol and discussion to Appendix D.3.

6 Protocols from One-Way Functions

We introduce a new building block called Split-Dealer Verifiable Secret Sharing in PASSO, which
can be constructed using any signature scheme. Later, we will formally describe how this building
block can be used to construct an efficient randomness generation protocol with n = 5t + 3 for
t ∈ O(poly(λ)).

6.1 Split-Dealer Verifiable Secret Sharing in PASSO

We now describe our split-dealer verifiable secret sharing (SD-VSS) protocol, which requires n
parties, divided into four categories: a dealer with an initial secret input s, a set of receivers, a
resolver, and a set of reconstructors. The protocol satisfies the usual security guarantees, with the
caveat that correctness and privacy only holds when both the dealer and resolver are honest. As
we will show in Section 6.2, this is sufficient to obtain randomness generation.

A formal description of our SD-VSS scheme in the execution-leaks model can be found in
Protocol 3. This scheme was already discussed informally at the beginning of Section 2.5. We defer
its analysis to Appendix D.1.

In the sending-leaks model the protocol is almost the same as Protocol 3, except that we
now require 2t + 1 reconstructors. Each receiver Pi now shares its state to the reconstructors,
while signing each share. The reconstructors output all shares along with the signature of the
corresponding Pi. The correctly signed shares are used to reconstruct the state of Pi, which in turn
is used to compute the output as in the execution-leaks case. In the interest of space, we defer the
formal description along with the security analysis to Appendix D.4.

6.2 PASSO SD-VSS-based Randomness Generation with n = 5t+ 3

To build a randomness generation protocol, we execute t+ 1 independent instances of our SD-
VSS protocol, and set the final coin to the XOR of coin output of each SD-VSS instance that did
not abort. To reduce the total number of parties, instead of naively repeating the SD-VSS protocol
one instance after the other, we pipeline the protocol execution by starting the first instance with
party P1, the second instance with party P2, and so on. This means that some parties may have to

21



simultaneously perform the role of a dealer in some i-th SD-VSS instance, that of a receiver in some
k-th SD-VSS instance, etc. We give the full scheme in the execution-leaks model in Protocol 4. Its
communication complexity is O(n4) (excluding any polynomial factors in the security parameter).

The protocol for the sending-leaks model is the same as the execution-leaks protocol except
that parties Pi for i ∈ [4t + 4, 6t + 4] act as reconstructors and we make use of the sending-leaks
SD-VSS as our building block. We defer the full description to Appendix D.5.

Further Reduction of Number of Parties. We can further reduce the number of parties from
5t+4 to 5t+3 in execution-leaks and from 6t+4 to 6t+3 in sending-leaks. To do this, we observe
that a dealer can be their own recipient similar to distributed key generation protocols [21], i.e., the
recipients of P1’s sharing includes P1 and P2, . . . , P3t+1. Intuitively, this does not give the adversary
any advantage in terms of its corruption budget as each dealer still performs a SD-VSS sharing to
3t + 1 parties. Thus, the receivers are now parties Pk for k ∈ [4t + 1], the resolver parties Pk for
k ∈ [3t+ 2, 4t+ 2], and the reconstructors are Pk for k ∈ [4t+ 3.5t+ 3]. For ease of presentation,
we present our formal protocols without including this optimization and defer the formal proof
of Theorem 7 to Appendix D.2.

Theorem 7. Assuming the existence of digital signatures, there exists a (t, n = 5t+3)-computationally
secure PASSO randomness generation protocol in the execution-leaks model.

7 Lower Bounds for PASSO Protocols without Setup

We now discuss lower bounds on the number of parties of computationally secure PASSO random-
ness generation as a function of the corruption threshold. Such lower bounds were obtained for
information-theoretic PASSO in [36]. They showed an impossibility result for t = 1 corruptions
and n = 4 parties, which generalizes directly to an impossibility result for t corruptions and n = 4t
parties in the sending-leaks model (and hence to an n ≥ 4t + 1 lower bound for protocols in this
model). However, contrary to what they claim, their impossibility result does not directly extend
to t > 1 corruptions in the execution-leaks model.

We begin by showing a computational analog of their impossibility result for t = 1 corruptions
(here the execution-leaks and sending-leaks models coincide).

Theorem 8. For every PASSO protocol with n = 3 parties there exists an efficient non-adaptive
execution-leaks adversary A corrupting t = 1 parties that achieves bias ε ≥ 0.01. In particular,
there is no (t = 1, n = 3)-computationally secure PASSO randomness generation protocol in either
the execution-leaks or sending-leaks model.

Note that the constant bias 0.01 suffices to show that sub-constant (in particular, negligible)
bias cannot be achieved, and that the impossibility result also applies to adaptive adversaries. We
defer Theorem 8’s proof to Appendix E.1.

One take-away of this theorem combined with Theorem 1 is that n = 4 parties are necessary
and sufficient for computationally secure PASSO randomness generation against t = 1 corruptions.
In the information-theoretic setting, n = 5 parties are known to be necessary and sufficient [36].

Next, we show how to extend Theorem 8 to t > 1 corruptions and n = 3t parties in the sending-
leaks model. This implies that (t, n)-computationally secure PASSO protocols in the sending-leaks
model require n ≥ 3t + 1 parties, for any t ≥ 1. We formalize this below and defer the proof
to Appendix E.2.

22



Theorem 9. For every t ≥ 1 and PASSO protocol with n = 3t parties there exists an efficient non-
adaptive sending-leaks adversary A corrupting t parties that achieves bias ε ≥ 0.01. This means
that there is no (t, n = 3t)-computationally secure PASSO randomness generation protocol in the
sending-leaks model.

As discussed in Section 2.3, it seems much harder to prove an analog of Theorem 9 in the
execution-leaks setting. In the next result we crucially exploit the ability to choose corruption
patterns other than consecutive blocks of parties to obtain a matching impossibility result in the
execution-leaks setting with t = 2 corruptions.

Theorem 10. For every PASSO protocol with n = 6 parties there exists an efficient non-adaptive
execution-leaks adversary A corrupting t = 2 parties that achieves non-negligible bias. This means
that there is no (t = 2, n = 6)-computationally secure PASSO protocol in the execution-leaks model.

We defer the proof of this theorem to Appendix E.3. Combining this result with Theorem 1
allows us to conclude that n = 7 parties are necessary and sufficient for computationally secure
PASSO randomness generation against t = 2 corruptions in the execution-leaks model. We leave
it as an interesting open problem to generalize this result to arbitrary t > 2.

Acknowledgements

This work was supported by a Protocol Labs Cryptonet Network Grant “Stateless Distributed
Randomness Generation”. C. Liu-Zhang was supported in part by the ETH Zurich Leading House
Research Partnership Grant RPG-072023-19. J. Ribeiro was also supported by NOVA LINCS (ref.
UIDB/04516/2020) and by FCT/MECI through national funds and when applicable co-funded EU
funds under UID/50008: Instituto de Telecomunicações. E. Masserova was also supported by the
Defense Advanced Research Projects Agency under contracts No.HR001120C0086 and FA8750-17-
1-0059 “Obfuscated Manufacturing for GPS (OMG)”.

References

[1] Acharya, A., Hazay, C., Kolesnikov, V., Prabhakaran, M.: Scales. In: Kiltz, E., Vaikun-
tanathan, V. (eds.) Theory of Cryptography. pp. 502–531. Springer Nature Switzerland, Cham
(2022)

[2] Acharya, A., Hazay, C., Kolesnikov, V., Prabhakaran, M.: Malicious security for SCALES -
outsourced computation with ephemeral servers. In: Reyzin, L., Stebila, D. (eds.) Advances
in Cryptology - CRYPTO 2024 - 44th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 18-22, 2024, Proceedings, Part IX. Lecture Notes in Computer
Science, vol. 14928, pp. 3–38. Springer (2024). https://doi.org/10.1007/978-3-031-68400-5 1,
https://doi.org/10.1007/978-3-031-68400-5_1

[3] Applebaum, B., Kachlon, E., Patra, A.: The round complexity of statistical MPC with optimal
resiliency. In: Proceedings of the 55th Annual ACM Symposium on Theory of Computing
(STOC 2023). pp. 1527–1536 (2023)

23

https://doi.org/10.1007/978-3-031-68400-5_1


[4] Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for noncryptographic
fault-tolerant distributed computations. In: Annual Symposium on the Theory of Computing
(1988)

[5] Benhamouda, F., Gentry, C., Gorbunov, S., Halevi, S., Krawczyk, H., Lin, C., Rabin, T.,
Reyzin, L.: Can a public blockchain keep a secret? In: Pass, R., Pietrzak, K. (eds.) Theory
of Cryptography - 18th International Conference, TCC 2020, Durham, NC, USA, November
16-19, 2020, Proceedings, Part I. Lecture Notes in Computer Science, vol. 12550, pp. 260–290.
Springer (2020). https://doi.org/10.1007/978-3-030-64375-1 10, https://doi.org/10.1007/
978-3-030-64375-1_10

[6] Bienstock, A., Escudero, D., Polychroniadou, A.: On linear communication complexity for
(maximally) fluid MPC. In: Handschuh, H., Lysyanskaya, A. (eds.) Advances in Cryptology
- CRYPTO 2023 - 43rd Annual International Cryptology Conference, CRYPTO 2023, Santa
Barbara, CA, USA, August 20-24, 2023, Proceedings, Part I. Lecture Notes in Computer
Science, vol. 14081, pp. 263–294. Springer (2023). https://doi.org/10.1007/978-3-031-38557-
5 9, https://doi.org/10.1007/978-3-031-38557-5_9

[7] Blum, E., Katz, J., Liu-Zhang, C.D., Loss, J.: Asynchronous byzantine agreement with sub-
quadratic communication. In: Theory of Cryptography: 18th International Conference, TCC.
pp. 353–380. Springer (2020)

[8] Blum, M.: Coin flipping by telephone a protocol for solving impossible problems. SIGACT
News 15(1), 23–27 (jan 1983). https://doi.org/10.1145/1008908.1008911

[9] Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In: International
conference on the theory and application of cryptology and information security. pp. 514–532.
Springer (2001)

[10] Braun, L., Damg̊ard, I., Orlandi, C.: Secure multiparty computation from threshold encryption
based on class groups. In: Handschuh, H., Lysyanskaya, A. (eds.) Advances in Cryptology -
CRYPTO 2023 - 43rd Annual International Cryptology Conference, CRYPTO 2023, Santa
Barbara, CA, USA, August 20-24, 2023, Proceedings, Part I. Lecture Notes in Computer
Science, vol. 14081, pp. 613–645. Springer (2023). https://doi.org/10.1007/978-3-031-38557-
5 20, https://doi.org/10.1007/978-3-031-38557-5_20

[11] Cascudo, I., David, B.: SCRAPE: Scalable Randomness Attested by Public Entities. In: In-
ternational Conference on Applied Cryptography and Network Security. pp. 537–556 (2017)

[12] Cascudo, I., David, B.: ALBATROSS: Publicly AttestabLe BATched Randomness based On
Secret Sharing. In: Advances in Cryptology – ASIACRYPT 2020. pp. 311–341. Springer In-
ternational Publishing, Cham (2020)

[13] Chen, J., Micali, S.: Algorand: A secure and efficient distributed ledger. Theoretical Computer
Science 777, 155–183 (2019). https://doi.org/10.1016/j.tcs.2019.02.001, in memory of Maurice
Nivat, a founding father of Theoretical Computer Science - Part I

[14] Chopard, A., Hirt, M., Liu-Zhang, C.D.: On communication-efficient asynchronous mpc with
adaptive security. In: Theory of Cryptography: 19th International Conference, TCC 2021. pp.
35–65. Springer (2021)

24

https://doi.org/10.1007/978-3-030-64375-1_10
https://doi.org/10.1007/978-3-030-64375-1_10
https://doi.org/10.1007/978-3-031-38557-5_9
https://doi.org/10.1007/978-3-031-38557-5_20


[15] Choudhuri, A.R., Goel, A., Green, M., Jain, A., Kaptchuk, G.: Fluid MPC: Secure multi-
party computation with dynamic participants. In: Malkin, T., Peikert, C. (eds.) Advances in
Cryptology – CRYPTO 2021. pp. 94–123. Springer International Publishing, Cham (2021)

[16] Cramer, R., Damg̊ard, I., Dziembowski, S., Hirt, M., Rabin, T.: Efficient multiparty compu-
tations secure against an adaptive adversary. In: Stern, J. (ed.) Advances in Cryptology —
EUROCRYPT ’99. pp. 311–326. Springer Berlin Heidelberg, Berlin, Heidelberg (1999)

[17] David, B., Deligios, G., Goel, A., Ishai, Y., Konring, A., Kushilevitz, E., Liu-Zhang, C.D.,
Narayanan, V.: Perfect MPC over layered graphs. In: Advances in Cryptology – CRYPTO
2023. pp. 360–392 (2023)

[18] Deligios, G., Goel, A., Liu-Zhang, C.: Maximally-fluid MPC with guaranteed output delivery.
IACR Cryptol. ePrint Arch. p. 415 (2023), https://eprint.iacr.org/2023/415

[19] Deligios, G., Konring, A., Liu-Zhang, C.D., Narayanan, V.: Statistical layered MPC. In:
Theory of Cryptography. pp. 362–394 (2025)

[20] ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Transactions on Information Theory 31(4), 469–472 (1985)

[21] Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Secure distributed key generation for
discrete-log based cryptosystems. In: Advances in Cryptology—EUROCRYPT’99: Interna-
tional Conference on the Theory and Application of Cryptographic Techniques Prague, Czech
Republic, May 2–6, 1999 Proceedings 18. pp. 295–310. Springer (1999)

[22] Gentry, C., Halevi, S., Krawczyk, H., Magri, B., Nielsen, J.B., Rabin, T., Yakoubov, S.:
YOSO: You Only Speak Once. In: Malkin, T., Peikert, C. (eds.) Advances in Cryptology –
CRYPTO 2021. pp. 64–93. Springer International Publishing, Cham (2021)

[23] Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new crypto-
graphic constructions. In: Proceedings of the Fortieth Annual ACM Symposium on Theory
of Computing (STOC 2008). pp. 197–206. Association for Computing Machinery, New York,
NY, USA (2008). https://doi.org/10.1145/1374376.1374407

[24] Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In: Pro-
ceedings of the Twenty-First Annual ACM Symposium on Theory of Computing. p.
25–32. STOC ’89, Association for Computing Machinery, New York, NY, USA (1989).
https://doi.org/10.1145/73007.73010

[25] Goyal, R., Hohenberger, S., Koppula, V., Waters, B.: A generic approach to constructing and
proving verifiable random functions. In: Kalai, Y., Reyzin, L. (eds.) Theory of Cryptography.
pp. 537–566. Springer International Publishing, Cham (2017)

[26] Goyal, V., Kothapalli, A., Masserova, E., Parno, B., Song, Y.: Storing and retrieving secrets
on a blockchain. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) Public-Key Cryptography -
PKC 2022 - 25th IACR International Conference on Practice and Theory of Public-Key Cryp-
tography, Virtual Event, March 8-11, 2022, Proceedings, Part I. Lecture Notes in Computer
Science, vol. 13177, pp. 252–282. Springer (2022). https://doi.org/10.1007/978-3-030-97121-
2 10, https://doi.org/10.1007/978-3-030-97121-2_10

25

https://eprint.iacr.org/2023/415
https://doi.org/10.1007/978-3-030-97121-2_10


[27] Goyal, V., Masserova, E., Parno, B., Song, Y.: Blockchains enable non-interactive MPC.
In: Nissim, K., Waters, B. (eds.) Theory of Cryptography - 19th International Conference,
TCC 2021, Raleigh, NC, USA, November 8-11, 2021, Proceedings, Part II. Lecture Notes in
Computer Science, vol. 13043, pp. 162–193. Springer (2021). https://doi.org/10.1007/978-3-
030-90453-1 6, https://doi.org/10.1007/978-3-030-90453-1_6

[28] Guruswami, V., Rudra, A., Sudan, M.: Essential Coding Theory (2023), draft available at
https://cse.buffalo.edu/faculty/atri/courses/coding-theory/book

[29] Hirt, M., Zikas, V.: Adaptively secure broadcast. In: Gilbert, H. (ed.) Advances in Cryptology
– EUROCRYPT 2010. pp. 466–485. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

[30] Kelsey, J., Brandão, L.T.A.N., Peralta, R., Booth, H.: A reference for randomness beacons:
Format and protocol version 2. Tech. rep., National Institute of Standards and Technology
(2019), https://csrc.nist.gov/pubs/ir/8213/ipd

[31] Kolby, S., Ravi, D., Yakoubov, S.: Constant-round YOSO MPC without setup. IACR Com-
mun. Cryptol. 1(3), 30 (2024). https://doi.org/10.62056/AE5W4FE-3, https://doi.org/
10.62056/ae5w4fe-3

[32] Kumaresan, R., Patra, A., Rangan, C.P.: The round complexity of verifiable secret sharing:
The statistical case. In: Advances in Cryptology – ASIACRYPT 2010. pp. 431–447. Springer
(2010)

[33] Lamport, L.: Constructing digital signatures from a one way function. Tech.
Rep. CSL-98 (October 1979), https://www.microsoft.com/en-us/research/publication/
constructing-digital-signatures-one-way-function/, this paper was published by
IEEE in the Proceedings of HICSS-43 in January, 2010.

[34] Liu-Zhang, C.D., Masserova, E., Ribeiro, J., Soni, P., Thyagarajan, S.: Improved YOSO
randomness generation with worst-case corruptions. In: Financial Cryptography and Data
Security (FC 2024) (2024), available at https://fc24.ifca.ai/preproceedings/147.pdf

[35] Mahmoody, M., Pass, R.: The curious case of non-interactive commitments – on the power of
black-box vs. non-black-box use of primitives. In: Safavi-Naini, R., Canetti, R. (eds.) Advances
in Cryptology – CRYPTO 2012. pp. 701–718. Springer Berlin Heidelberg, Berlin, Heidelberg
(2012)

[36] Nielsen, J.B., Ribeiro, J., Obremski, M.: Public randomness extraction with
ephemeral roles and worst-case corruptions. In: Dodis, Y., Shrimpton, T. (eds.) Advances
in Cryptology – CRYPTO 2022. pp. 127–147. Springer Nature Switzerland, Cham (2022),
updated version available at https://eprint.iacr.org/2022/237.

[37] Patra, A., Choudhary, A., Rabin, T., Rangan, C.P.: The round complexity of verifiable secret
sharing revisited. In: Halevi, S. (ed.) Advances in Cryptology – CRYPTO 2009. pp. 487–504.
Springer Berlin Heidelberg, Berlin, Heidelberg (2009)

[38] Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In:
Feigenbaum, J. (ed.) Advances in Cryptology — CRYPTO ’91. pp. 129–140. Springer Berlin
Heidelberg, Berlin, Heidelberg (1992)

26

https://doi.org/10.1007/978-3-030-90453-1_6
https://cse.buffalo.edu/faculty/atri/courses/coding-theory/book
https://csrc.nist.gov/pubs/ir/8213/ipd
https://doi.org/10.62056/ae5w4fe-3
https://doi.org/10.62056/ae5w4fe-3
https://www.microsoft.com/en-us/research/publication/constructing-digital-signatures-one-way-function/
https://www.microsoft.com/en-us/research/publication/constructing-digital-signatures-one-way-function/
https://fc24.ifca.ai/preproceedings/147.pdf
https://eprint.iacr.org/2022/237


[39] Rabin, M.O.: Transaction protection by beacons. Journal of Computer and System Sciences
27(2), 256–267 (1983)

[40] Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–174 (1991).
https://doi.org/10.1007/BF00196725

[41] Waters, B.: Efficient identity-based encryption without random oracles. In: Advances in
Cryptology–EUROCRYPT 2005: 24th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Aarhus, Denmark, May 22-26, 2005. Proceedings
24. pp. 114–127. Springer (2005)

[42] Yao, A.C.: Theory and application of trapdoor functions. In: 23rd Annual
Symposium on Foundations of Computer Science (sfcs 1982). pp. 80–91 (1982).
https://doi.org/10.1109/SFCS.1982.45

27



Supplementary Material

A Basic Cryptographic Building Blocks

A.1 Digital Signatures

A digital signature scheme DS is a tuple of algorithms:

• A key generation algorithm KGen(1λ) that takes the security parameter λ and outputs the
verification/signing key pair (vk, sk).

• A signing algorithm Sign(sk,m) which outputs a signature σ on input the secret key sk and
the message m.

• A verification algorithm Vf(vk,m, σ) with binary output. We say that σ is a valid signature
of m under the verification key vk if Vf(vk,m, σ) = 1, and invalid otherwise.

We require standard unforgeability of the digital signature scheme.

Definition 3 (Unforgeability). A digital signature scheme DS is unforgeable if for any PPT ad-
versary A there exists a negligible function negl(λ) such that the probability of winning the following
game is upper bounded by negl(λ), where λ is a security parameter:

1. The challenger runs KGen(1λ) and obtains a verification/secret key pair (vk, sk).

2. The adversary A can adaptively choose messages m and query the challenger to learn a
corresponding signature Sign(sk,m). Let m1, . . . ,mq be the messages queried by A, for some
integer q.

3. The adversary A chooses a fresh message m′ ̸∈ {m1, . . . ,mq} and wins the game if they output
a valid signature σ of m′ under the verification key vk.

Signature schemes have been constructed from a wide range of assumptions starting from one-
way functions [33], to more structured algebraic assumptions like the discrete logarithm problem [20,
40], pairing-based problems [9, 41], and the Shortest Integer Solution problem (SIS) [23].

A.2 Non-Interactive Commitments

A non-interactive commitment scheme COM is a tuple of algorithms:

• A commitment generation algorithm Commit(m; r) that takes as input a messagem ∈ {0, 1}ℓm(λ)

(for some message spaceM), and some randomness r ∈ {0, 1}ℓr(λ), and returns a commitment
com ∈ {0, 1}ℓc(λ). Here ℓm, ℓr, ℓc are some polynomials in λ, the security parameter.

• The opening of the commitment com. In our case, this is simply the message m and the
randomness r.

We will require two standard properties of non-interactive commitments: perfect binding and
computational hiding.

28



Definition 4 (Perfectly binding commitment). A non-interactive commitment scheme COM is
perfectly binding if for all m0,m1 ∈ {0, 1}ℓm(λ) such that m0 ̸= m1 it holds that

{Commit(m0; r0)}r0∈{0,1}ℓr(λ)
⋂
{Commit(m1; r1)}r1∈{0,1}ℓr(λ) = ∅.

Definition 5 (Computationally hiding commitment). A non-interactive commitment scheme COM
is computationally hiding if for every polynomially bounded function α(·) and every PPT adversary
A there exists a negligible function negl such that the probability of winning the following game is
upper bounded by 1/2 + negl(λ), where λ is the security parameter:

1. The adversary A(1λ) samples distinct messages m0,m1 ∈ {0, 1}α(λ) and sends them to the
challenger;

2. The challenger samples a bit b ←$ {0, 1}, computes a commitment com = Commit(mb; r) to
mb, and sends com to A.

3. The adversary A outputs a bit b′ and wins if and only if b′ = b.

As mentioned before, non-interactive commitments can be instantiated from a variety of con-
crete assumptions including factoring [8, 42, 24], more recently from LWE and LPN [25], and even
from the general assumption of injective one-way functions. While black-box separations between
general one-way functions and non-interactive commitments are known [35], non-interactive com-
mitments are fundamental and one of the weakest complexity-theoretic cryptographic assumptions.

B Missing Proofs and Protocols from Section 4

B.1 Proof of Lemma 1

We say that a vector v ∈ {0, 1}ℓ evades a set S ⊆ [ℓ] if vS = 0. Every such v of weight t evades
exactly

(
ℓ−t
t−1

)
sets S ⊆ [ℓ] of size t− 1. This means that at most m ·

(
ℓ−t
t−1

)
such sets are evaded by

at least one of the m rows of M . On the other hand, for M to be t-sharing it must be the case
that every set S ⊆ [ℓ] of size t− 1 (of which there

(
ℓ

t−1

)
choices) is evaded by some row of M , and

so we must have

m ·
(
ℓ− t

t− 1

)
≥

(
ℓ

t− 1

)
.

This yields the desired lower bound on m.

B.2 Proof of Lemma 2

Consider the matrix M ∈ {0, 1}(
2t−1

t )×(2t−1) where the rows of M correspond to all (2t − 1)-bit
vectors of weight exactly t. It suffices to check that for all subsets of t − 1 columns of M there
exists an index i on which they are all 0.

Fix any subset S ⊆ [2t − 1] of size t − 1. Since [ℓ] \ S has size t, there is a row of M whose
support lies outside S. Therefore, the columns of M indexed by S are all 0 on this row.

29



B.3 Proof of Theorem 4

Before we prove this theorem, we state and prove the following lemma that will be useful in our
analysis.

Lemma 3. If the adversary corrupts some Pi with i ∈ [2t− 1] such that for some j ∈ [m] we have
Mjk = 0 for all k ∈ [i − 1] and Mji = 1, then either the adversary’s commitment comj receives a
(Complain, j) or a valid opening is broadcast by some Ph for h ∈ [2t+ 1, 3t+ 1].

Proof of Lemma 3. Consider index i ∈ [2t−1], such that party Pi is corrupt and any index j ∈ [m]
such that Mjk = 0 for all k ∈ [i − 1] and Mji = 1. The adversary broadcasts commitment comj ,
and the openings to any party it wishes to. However, note that there exists an honest party Pk

for k ∈ [i, 2t − 1] and Mjk = 1, which if it did not receive the valid opening, it would broadcast a
message (Complain, j). On the other hand, if the adversary sends valid opening of the commitment
comj to Pk, then Pk would send the opening to all recipients {P2t+1, . . . , P3t+1}. Note that there
is at least 1 honest Ph ∈ {P2t+1, . . . , P3t+1} that receives the opening of comj from Pk and outputs
that during its execution. This ensures that the opening of the adversarial commitment will be
broadcast by an honest Ph.

Proof of Theorem 4. Let A be an arbitrary computationally-bounded adaptive adversary with a
budget of t corruptions. We begin by noting that to argue that Protocol 1 is (t, n)-computationally
secure it suffices to consider adversaries A that corrupt party P2t with probability 1. Indeed, in
any execution of Protocol 1 where party P2t behaves honestly it holds that

1. The value of the final string is fixed at the end of the execution of P2t;

2. The string broadcast by P2t is uniformly random and independent of the actions of parties
P1, . . . , P2t−1 and of the adversary’s behavior up to the execution of P2t.

Since the final string is obtained by XORing the strings correctly committed to by parties P1, . . . , P2t−1

and the string broadcast by P2t, combining these two observations shows that any execution of Pro-
tocol 1 where party P2t is honest yields a uniformly random final string.

Therefore, from here onwards we may assume that the adaptive adversary A always corrupts
party P2t. The proof follows a hybrid argument, where hybrids are simulated executions of appro-
priate variants of Protocol 1 interacting with adversary A. More precisely, the simulator simulates
the operations of the honest parties, while receiving all the broadcast messages and those that were
sent privately by the adversary, and then outputs the final string produced by this simulation. The
starting hybrid corresponds to a true execution of the protocol against adversary A, the final hybrid
corresponds to the execution of a protocol that clearly produces a uniformly random final string,
and we will show that the distributions of the final strings output by any two consecutive hybrids
are computationally indistinguishable.

More precisely, we consider the following hybrids.

Hybrid0: This hybrid corresponds to the execution of the real protocol interacting with adversary
A.

Hybrid1: This hybrid execution is the same as Hybrid0, except that the simulator exits the execution
of the protocol after executing party P2t and sets the final string appropriately. This is done by
looking at the random coins committed to by the honest parties and the openings shared by the
adversary. Importantly, the parties {P2t+1, . . . , P3t+1} need not be executed as the final string is
already determined.

30



Claim 1. The outputs of Hybrid0 and Hybrid1 are identically distributed.

Proof. This follows from the fact that the commitments are perfectly binding and from Lemma 3.
Note that apart from P2t, the adversary has a budget of t − 1 corruptions. Therefore, there is at
least one honest role that receives the opening of the adversary’s commitment and can complain
(kill the value) or forward a valid opening (thereby considering the value into the final randomness).
That is, there is at least one honest Pk for each corrupted Pi for i ∈ [2t− 1] such that Mji = 1 and
Mjk = 1 where i < k < 2t− 1. Here we let Mjk′ = 0 for k′ ∈ [i− 1]. This justifies the application
of Lemma 3 and ensures the coin is determined by the end of P2t’s execution.

Hybrid2: The hybrid execution is the same as Hybrid1, except for the following. The simulator
does not broadcast (Complain, ·) on behalf of honest parties for the commitments broadcast by
honest parties. In other words, the honest parties do not complain about other honest parties’
commitments.

Claim 2. The outputs of Hybrid1 and Hybrid2 are identically distributed.

Proof. The final string distributions in both hybrids is identical as honest parties behave according
to the protocol specification. This means that when they commit to values and open them, they
will do so correctly. Moreover, honest parties wouldn’t complain if the opening was indeed a valid
one. Therefore, honest commitments will not receive complaints from other honest parties.

Hybrid3: The hybrid repeats the following procedure a maximum of T = 2λ · 2t · 22t times, stopping
if one of these repetitions succeeds or if it reaches the maximum number T of repetitions, in which
case it outputs the special symbol ⊥ as its final string s. The procedure starts by sampling indices
i⋆ ∈ [2t− 1] and j⋆ ∈ [m] uniformly at random. Intuitively, i⋆ and j⋆ are guesses for a dealer and
a corresponding sharing such that all participants are honest. The existence of indices with these
properties is guaranteed by the definition of the t-sharing matrix M . If Mji = 0 or Mjk = 1 for
some k < i, the hybrid aborts and the restarts the procedure. Otherwise, the hybrid behaves like
Hybrid2, except that if at some point in its execution it holds that some party Pk′ with Mj⋆k′ = 1
is dishonest, then the hybrid aborts and restarts the procedure. If this procedure succeeds, then
Hybrid3 outputs the corresponding final string and stops.

Claim 3. The outputs of Hybrid2 and Hybrid3 are negl(λ)-close in statistical distance. Furthermore,
Hybrid3 runs in time poly(λ).

Proof. We begin by arguing about the running time of Hybrid3. Each execution of the procedure
runs in time poly(λ) and this is repeated at most T = λ ·2t ·22t = poly(λ) times, since 22t ≤ poly(λ)
by hypothesis.

To see that the output distributions of Hybrid2 and Hybrid3 are negl(λ)-close in statistical dis-
tance, first note that if one of the iterations of the procedure executed by Hybrid3 succeeds, then
its output is identically distributed to that of Hybrid2. Therefore, the statistical distance between
the outputs of Hybrid2 and Hybrid3 is upper bounded by the probability that all T repetitions of
the procedure in Hybrid3 fail and this hybrid outputs ⊥. The probability of a given execution of
the procedure succeeding is at least 1

2t·m ≥
1

2t·22t . This holds since each execution is independent of
the choice of i⋆ and j⋆ up until it is aborted, there are at most 2t choices for i⋆ and m ≤ 2t choices
for j⋆, and a good choice of (i⋆, j⋆) always exists by the definition of the t-sharing matrix M . Since

31



different executions of the procedure are independent and T = 2λ · 2t · 22t, a Chernoff bound yields
that the probability that Hybrid3 outputs ⊥ is negl(λ).

Hybrid4: This hybrid behaves like Hybrid3 except for the following change. In each execution of the
procedure, the hybrid sets the commitment comj⋆ of Pi⋆ to be a commitment to 0. If the procedure
does not abort, the final string is computed right after the execution of P2t as before, but choosing
a random string sj⋆ as opening for Pi⋆ ’s commitment comj⋆ . Clearly, the opening is not correct,
note that this opening is not sent to the adversary if for all k′ ∈ [i, 2t− 1] with Mjk = 1 the party
Pk′ is honest.

Claim 4. The output of Hybrid4 is uniformly random. Furthermore, the outputs of Hybrid3 and
Hybrid4 are computationally indistinguishable.

Proof. To see the first statement, note that the commitment comj∗ has no information about sj⋆ .
Additionally, the adversary has committed to its corruption pattern, values, commitments, and
choice of recipients independently of sj⋆ . Since the output of Hybrid4 is obtained via an XOR
with sj⋆ and sj⋆ is independent of values broadcast during the protocol, the output of Hybrid4 is
uniformly random.

The second statement follows from the computational hiding property of the commitment
scheme COM. More precisely, let D′ be an efficient distinguisher that distinguishes between the out-
puts of Hybrid3 and Hybrid4 with non-negligible advantage. We will use it to construct an efficient
distinguisher D that breaks the hiding property of COM with the same non-negligible advantage.
The distinguisher D chooses a random value sj⋆ and sends (sj⋆ , 0) as the two challenge messages
to the challenger in the hiding game. It then receives a commitment comj∗ . The distinguisher
proceeds as Hybrid4, except that the j⋆-th commitment broadcast by party Pi⋆ is set to be comj⋆ .
The final output s is computed as in Hybrid3 using sj⋆ as the supposed opening of the commitment
comj⋆ . The distinguisher D feeds the output s to D′ and returns whatever bit b that D′ outputs.
Notice that if the challenger sets comj⋆ to be the commitment to sj⋆ , then the random coin s is
set according to Hybrid3. On the other hand, if comj⋆ was set to be a commitment to 0, then the
output s is set according to Hybrid4. Therefore, distinguisher D is able to win the hiding game
with the same non-negligible advantage as that of D′. Given the computationally hiding property
of COM, we arrive at a contradiction and conclude that the outputs of Hybrid4 and Hybrid3 are
computationally indistinguishable.

Combining the claims above shows that the outputs of Hybrid0 (the real protocol) and Hybrid4
(which produces a uniformly random string) are computationally indistinguishable. We conclude
that Protocol 1 is (t, n)-computationally secure, as desired.

B.4 Sending-Leaks Protocol for n = 4t Parties

We formally describe our sending-leaks protocol for n = 4t parties in Protocol 5. Its security
guarantees are stated in the theorem below.

Theorem 11. If COM is a perfectly binding and computationally hiding non-interactive commit-
ment scheme, then Protocol 5 is a (t, n = 4t)-computationally secure PASSO randomness generation
protocol in the sending-leaks model, provided that n ≤ poly(λ) and 2t ≤ poly(λ) with λ the security

32



parameter. Furthermore, its computational and communication complexities are also polynomial in
λ, n, and 2t, and so are poly(λ).

The proof of Theorem 11 proceeds exactly like the proof of Theorem 4, except that we use the
following lemma in place of Lemma 3.

Lemma 4. If the adversary corrupts some party Pi where i ∈ [2t− 1], such that for some j ∈ [m],
Mjk = 0 for k ∈ [i − 1] and Mji = 1, then either the adversary’s commitment comj receives a
(Complain, j) or a valid opening is reconstructed after all parties Ph for h ∈ [2t, 4t] have completed
their execution.

Proof of Lemma 4. Consider index i ∈ [2t−1], such that party Pi is corrupt and any index j ∈ [m]
such that Mjk = 0 for all k ∈ [i − 1] and Mji = 1. The adversary broadcasts commitment comj ,
and the openings to any party it wishes to. However, note that there exists an honest party Pk for
k ∈ [i, 2t−1] andMjk = 1, which if it did not receive the valid opening, it would broadcast a message
(Complain, j). On the other hand, if the adversary sends a valid opening of the commitment comj

to party Pk, then party Pk would send t + 1-out of 2t + 1 sharing of the opening to all recipients
{P2t, . . . , P4t}. That is party Ph for h ∈ [2t, 4t] receives the (h− (2t− 1))-th share of the opening.
Note that there are at least t + 1 honest parties in the set {P2t, . . . , P4t} that receive the share of
the opening of comj from Pk and output that during their execution. This ensures that the opening
of the adversarial commitment will be reconstructed after P4t has completed its execution.

C Missing Proofs of Section 5

C.1 Proof of Theorem 5

Note that since the adversary corrupts up to t parties and there are t+1 instances, there exists an
instance where both Di and D′

i are honest.
First, observe that for this particular instance we prove that before party 3t + 4 the corre-

sponding bivariate polynomial F i is unknown. This is because at most t parties Rj are corrupt,
and therefore only up to t projections of the bivariate polynomial F i are initially known to the
adversary. Furthermore, note that honest receivers Rj do not complain about Di, since an honest
Di always commits to a degree-t bivariate polynomial F i, and the points that are sent private
are consistent with the commitments. Therefore, any point that is publicly opened by an honest
D′

i belongs to a projection that is known to the adversary. Moreover, at the end of the proto-
col, the client will reconstruct F i(0, 0). This is because there is at least one honest recipient R′

j

that holds openings corresponding to t+ 1 projections and that are consistent with the published
commitments.

Second, observe that at the start of party 3t + 4 any instance j where either Dj or D′
j were

corrupted, and where the instance did not abort (D′
j was not publicly deemed corrupt), has a

fixed bivariate polynomial F j and the client will reconstruct F j(0, 0). This is because the honest
receivers hold consistent projections of degree-t with the published commitments. Moreover, by
the first point, the value F j(0, 0) was fixed independently of the honest instance F i, due to the
hiding property of the commitments.

From the two points above, since the final coin is computed as the XOR of instances that were
successful (where the dealer was not deemed corrupt), and in at least one instance the random

33



value was chosen by an honest dealer and the adversary’s behavior is independent of this random
value, the coin has negligible bias.

D Missing Proofs and Protocols from Section 6

D.1 Security Proof of SD-VSS in the Execution-Leaks Model

We now prove the security properties of the execution-leaks version of our SD-VSS from Section 6.1.

Lemma 5 (Correctness). If the dealer and the resolver are honest, the sharing phase in Protocol 3
does not fail and the reconstructed secret after executing both the sharing and consequently the
reconstruction phase is s.

Proof. First, we show that the sharing phase does not fail. This is because all points signed by
the dealer lie on the bivariate polynomial F , and any polynomial broadcasted by the dealer or
point signed by the dealer is consistent with F . That is, any message Complain with a point and a
dealer’s signature that is broadcasted by a receiver lies on F , and any polynomial broadcasted by
the resolver as a response to a message ComplainPoly lies on F as well.

Moreover, consider each i-th honest receiver, for i ∈ [1, 3t+ 1]. The receiver correctly received
a signed degree-t projection, so he did not broadcast any ComplainPoly message. Moreover, for at
least 2t+1 points, the receiver sent this point triply signed by the dealer, the j-th receiver and his
own signature to all the reconstructors at step 3b.

Now we show that the reconstructed secret is s. In the reconstruction phase, the t + 1 re-
constructors broadcast all the received points and signatures that have been received, for each
receiver. Since there is at least one honest reconstructor, this reconstructor will broadcast points
corresponding to the t + 1 consistent valid projections (with the polynomial F ) from honest re-
ceivers, uniquely determine the secret s. Moreover, any projection broadcasted by the resolver
as a result of a ComplainPoly also lies on F . Finally, note that the adversary cannot contribute
any projection that is not consistent with F because the projection must be signed by each of the
honest receivers.

Lemma 6 (Privacy). If the dealer and the resolver are honest, no information about the secret s
is revealed before the reconstruction phase is started in Protocol 3.

Proof. The view of the adversary contains only the projections of F with indices that belong to
corrupted receivers. Since there are at most t corrupted receivers, this information is statistically
independent of the secret s.

Note that any broadcasted message of the form ComplainPoly comes from a corrupted re-
ceiver and therefore the resolver broadcasts a projection that was already known to the adversary.
Similarly, any broadcasted message Complain containing a point F (i, j) at step 3a or 3c,7 is only
broadcasted when either the i-th or the j-th receiver is corrupted (and therefore the point was
already known by the adversary).

Lemma 7 (Verifiability). At the end of the sharing phase in Protocol 3, if it succeeded, there is
only one secret s′ that will be reconstructed upon executing the reconstruction phase.

7Note that step 3b does not reveal any information, since we consider the execution-leaks model and messages in
this step are sent to the reconstructors, which are executed only in the reconstruction phase.

34



Proof. Let i, j ∈ [1, 3t + 1] with i < j. We first show that if the sharing phase succeeds, the
projections corresponding to every pair of i-th and j-th honest receivers (taken into account in the
Secret Reconstruction phase) are consistent. We divide four cases.

1. Both projections are broadcasted by the resolver as a result of corresponding ComplainPoly

messages. In this case, since the sharing succeeds, the protocol prescribes that both polyno-
mials need to be consistent.

2. Noone broadcasted a ComplainPoly message and therefore no projection is broadcasted by
the resolver. In this case, both honest receivers received correctly signed degree-t projections
from the dealer. Moreover, the i-th receiver sent the point fi(j) signed by the dealer and
his own signature to the j-th receiver. Since the sharing phase succeeds, we have that both
projections are consistent, i.e. fi(j) = fj(i), and therefore the point fj(i) and the signatures
from the dealer, the i-th receiver and the j-th receiver are sent to every reconstructor at step
3b. Moreover, at least one (honest) reconstructor will broadcast this information.

3. Only the i-th receiver broadcasts a ComplainPoly, and as a result the resolver broadcasts the
projection fi. In this case, the i-th receiver did not send any message to the j-th receiver at
step 2d, and therefore the j-th receiver broadcasts a message Complain with his own point
fj(i). Since the sharing phase succeeds, it must be case that fi(j) = fj(i). (Note that 2t+ 1
triply signed points of fj are sent to each of the reconstructors.)

4. Only the j-th receiver broadcasts a ComplainPoly, and as a result the resolver broadcasts
the projection fj . In this case, the i-th receiver sent the point fi(j) signed by the dealer
and his own signature to the j-th receiver. The j-th receiver receives this point with correct
signatures and broadcasts a message Complain with the point fi(j) signed by the dealer
and the i-th receiver. Since the sharing phase succeeds, this point is consistent with the
broadcasted polynomial fj . (Note that 2t+1 triply signed points of fi are sent to each of the
reconstructors.)

The projections corresponding to honest receivers are sufficient to uniquely define a bivariate
polynomial F ′, which in turn defines a value s′. Furthermore, note that any valid projection for
a corrupted receiver is also consistent with F ′. Either the projection was broadcasted as a result
of ComplainPoly (in which case it is consistent with the honest receiver’s projections), or it is
signed by at least 2t+1 receivers (t+1 are honest, and therefore these uniquely define a consistent
projection with F ′).

D.2 Proof of Theorem 7

Proof. The stacking mechanism executes t + 1 instances of verifiable secret sharing. In order to
see that the output coin is uniform distributed, we make the following observations. First, there
is at least one instance of verifiable secret sharing in which the respective dealer and resolver are
both honest. This is simply because there are t+1 SD-VSS instances, with at most t parties being
corrupted, and each party in the protocol can execute at most one dealer or resolver role (but not
both). Second, by the privacy of SD-VSS that has an honest dealer and resolver (see Lemma 6),
no information about his shared value is revealed before any of the reconstructors are executed.
Moreover, by the correctness of SD-VSS (see Lemma 5), the sharing phase of this SD-VSS instance
is successful (and will be publicly reconstructed by the reconstructors). Third, by the verifiability

35



property of SD-VSS (see Lemma 7), for each other instance, either the sharing phase failed, or
there is a fixed value that will be reconstructed by the reconstructors. Importantly, this value is
fixed at the end of the sharing phase, independently of any value that has been distributed in an
instance of SD-VSS that has an honest dealer and resolver (since in such an instance the adversary
obtains no information, in a statistical sense, about the shared value).

Given that the output coin is computed as the sum of the values that are publicly reconstructed,
and one of the values is distributed in an instance of SD-VSS with honest dealer and resolver, the
output is uniformly random.

D.3 Protocol from Non-Interactive Commitments in the Sending-Leaks Model

We formally describe the protocol sending-leaks protocol in Protocol 6. The proof of the corre-
sponding Theorem 6 is analogous to that of the execution-leaks variant (see Appendix C.1), except
that the secrecy of the honest dealer does not break during the reconstruction phase as the at most
t corrupt reconstructors are not sufficient to recover any information about the degree-t bivariate
polynomial. At the same time, we know that there are (t+1) honest pairs (Ri, R

′
i) which will pub-

lish projections that are consistent with the published commitments and therefore will be enough
to reconstruct the bivariate polynomials.

D.4 SD-VSS in the Sending-Leaks Model

We describe our SD-VSS protocol in the sending-leaks model in Protocol 7. Same as in the
execution-leaks model, the communication complexity is O(n3) (excluding any polynomial fac-
tors in the security parameter). The resulting protocol can be proven to achieve the same lemma
statements.

The following lemmas formally argue that our VSS protocol in the sending-leaks model satisfies
correctness, privacy, and verifiability.

Lemma 8 (Correctness). If the dealer and the resolver are honest, the sharing phase in Protocol 7
does not fail and the reconstructed secret after executing both the sharing and consequently the
reconstruction phase is s.

Proof. First, we show that the sharing phase does not fail. This is because all points signed by
the dealer lie on the bivariate polynomial F , and any polynomial broadcasted by the dealer or
point signed by the dealer is consistent with F . That is, any message Complain with a point and a
dealer’s signature that is broadcasted by a receiver lies on F , and any polynomial broadcasted by
the resolver as a response to a message ComplainPoly lies on F as well.

Moreover, consider each i-th honest receiver, for i ∈ [1, 3t+ 1]. The receiver correctly received
a signed degree-t projection, so he did not broadcast any ComplainPoly message. Moreover, the
receiver sends a signed share of at least 2t + 1 points, each point triply signed by the dealer, the
j-th receiver and himself, to each reconstructors at step 3b.

Now we show that the reconstructed secret is s. In the reconstruction phase, the t + 1 re-
constructors broadcast all the correctly signed shares they received from each receiver. For each
receiver, only the messages signed by this receiver are used to reconstruct the values it submitted.
As there are at least t+ 1 honest reconstructors, each share of each honest receiver will be recon-
structed correctly. The shares of t+ 1 honest receivers (where some of them might have broadcast

36



the ComplainPoly) uniquely determine the secret s. Finally, note that the adversary cannot con-
tribute any projection that is not consistent with F because the projection must be signed by the
dealer.

Lemma 9 (Privacy). If the dealer and the resolver are honest, no information about the secret s
is revealed before the reconstruction phase is started in Protocol 7.

Proof. The view of the adversary contains only the projections of F with indices that belong to
corrupted receivers. Since there are at most t corrupted receivers, this information is statistically
independent of the secret s.

Note that any broadcasted message of the form ComplainPoly comes from a corrupted re-
ceiver and therefore the resolver broadcasts a projection that was already known to the adversary.
Similarly, any broadcasted message Complain containing a point F (i, j) at step 3a or 3c, is only
broadcasted when either the i-th or the j-th receiver is corrupted (and therefore the point was
already known by the adversary). Finally, step 3b does not reveal any information, as we are using
a (t+ 1, 2t+ 1) secret sharing scheme, and t+ 1 reconstructors are honest.

Lemma 10 (Verifiability). At the end of the sharing phase in Protocol 7, if it succeeded, there is
only one secret s′ that will be reconstructed upon executing the reconstruction phase.

Proof. Let i < j, i, j ∈ [1, 3t+1]. We first show that if the sharing phase succeeds, the projections
corresponding to every pair of i-th and j-th honest receivers (taken into account in the Secret
Reconstruction phase) are consistent. We divide four cases.

1. Both projections are broadcasted by the resolver as a result of corresponding ComplainPoly

messages. In this case, since the sharing succeeds, the protocol prescribes that both polyno-
mials need to be consistent.

2. No one broadcasted a ComplainPoly message and therefore no projection is broadcasted by
the resolver. In this case, both honest receivers received correctly signed degree-t projections
from the dealer. Moreover, the i-th receiver sent the point fi(j) signed by the dealer and
his own signature to the j-th receiver. Since the sharing phase succeeds, we have that both
projections are consistent, i.e. fi(j) = fj(i), and therefore the point fj(i) and the signatures
from the dealer, the i-th receiver and the j-th receiver are secret-shared to the reconstructors
at step 3b, and each such share is signed. The t + 1 honest reconstructors are sufficient to
recover this information, while no adversarial reconstructor can suggest a wrong share for Pj ,
as the share must be signed.

3. Only the i-th receiver broadcasts a ComplainPoly, and as a result the resolver broadcasts the
projection fi. In this case, the i-th receiver did not send any message to the j-th receiver at
step 2d, and therefore the j-th receiver broadcasts a message Complain with his own point
fj(i). Since the sharing phase succeeds, it must be case that fi(j) = fj(i). (Note that 2t+ 1
triply signed points of fj are secret-shared to the reconstructors.)

4. Only the j-th receiver broadcasts a ComplainPoly, and as a result the resolver broadcasts
the projection fj . In this case, the i-th receiver sent the point fi(j) signed by the dealer
and his own signature to the j-th receiver. The j-th receiver receives this point with correct
signatures and broadcasts a message Complain with the point fi(j) signed by the dealer

37



and the i-th receiver. Since the sharing phase succeeds, this point is consistent with the
broadcasted polynomial fj . (Note that 2t + 1 triply signed points of fi are secret-shared to
the reconstructors.)

The projections corresponding to honest receivers are sufficient to uniquely define a bivariate
polynomial F ′, which in turn defines a value s′. Furthermore, note that any valid projection for
a corrupted receiver is also consistent with F ′. Either the projection was broadcasted as a result
of ComplainPoly (in which case it is consistent with the honest receiver’s projections), or it is
signed by at least 2t+1 receivers (t+1 are honest, and therefore these uniquely define a consistent
projection with F ′).

The sharing is considered to have failed if the polynomial output by the resolver does not have
degree-t or it is inconsistent with any point broadcasted by a receiver that is correctly signed by
the dealer at steps 3a or 3c, or other projection polynomial broadcasted by the resolver at this step.
(Protocol 7) Reconstruction phase:

• If Pi is a reconstructor and the sharing phase did not fail, do the following. Consider the
shares sj,k(i− (3t+ 3)) and signatures on these shares DS.Signskj (sj,k(i− (3t+ 3))) by the
j-th receiver. If the j-th receiver did not broadcast ComplainPoly, broadcast these shares
and signatures.

• Secret Reconstruction: The secret s can be reconstructed by any party C. First, for each
receiver j who did not broadcast ComplainPoly, each point k ∈ [3t+ 1], C reconstructs the
value sj,k using any t+ 1 shares of this value with correct signatures from Pj+1. Then, C
reconstructs the secret s using valid projections for t+ 1 receivers. A projection for the j-th
receiver is considered valid if 1) it was broadcasted by the resolver as a result of a
ComplainPoly message, or 2) a reconstructor broadcasted triply-signed points
{fj(k), σD

j,k, σ
k
j , σ

j
k}kby the j-th receiver, form a degree-t polynomial and there are at least

2t+ 1 points which are all either correctly triply signed, or were contained in one of the
ComplainPoly messages.

D.5 SD-VSS-based Randomness Generation in the Sending-Leaks Model

We describe our SD-VSS sending-leaks scheme in Protocol 8. As in the execution-leaks version, the
communication complexity of the sending-leaks construction is O(n4) (excluding any polynomial
factors in the security parameter).

Our protocol leads to the following result.

Theorem 12. Assuming the existence of digital signatures, there exists an efficient (t, n = 6t+3)-
computationally secure PASSO randomness generation protocol in the sending-leaks model.

Proof. The proof for correctness and verifiability is similar to the argument for the execution-leaks
model (see Appendix D.2). The only change is in arguing privacy. Notice that no t reconstructors
can recover the secret of an honest dealer as the information is secret shared among the parties of
P ′ using a (t + 1)-out of-(2t + 1) secret sharing. Therefore, in the worst-case, the adversary only

38



has access to t shares and therefore a honest secret is information-theoretically hidden from its
view.

E Missing Proofs from Section 7

E.1 Proof of Theorem 8

Assume for the sake of contradiction that there exists a protocol which satisfies the conditions
stated above. Let f(x1, x2, x3) denote the coin output of the protocol. Now, consider party P3.
As we are in the plain model without setup, P3 is able to efficiently compute x3 in its head using
the messages sent by the honest P1 and P2 and thus compute f(x1, x2, x3). Therefore, P3 should
not be able to change the outcome of the coin too much. More formally, consider sampling honest
x1, x2, x3. Then, it must hold that

Pr[f(x1, x2,⊥) = 1− b|f(x1, x2, x3) = b] ≤ 4ε

1 + 2ε

for b ∈ {0, 1}, where the probability is taken over the honest sampling of x1, x2, and x3. To see
this, consider b = 0 without loss of generality. If this inequality does not hold, an adversary who
corrupts P3 can efficiently sample x3 honestly, and, if the result is 0, the adversary outputs ⊥ for
P3. In this efficient attack, the final coin is 1 with probability at least(

1

2
− ε

)
+

(
1

2
+ ε

)
· Pr[f(x1, x2,⊥) = 1|f(x1, x2, x3) = 0] > 1/2 + ε, (1)

which contradicts the security of the protocol. From Equation (1), it follows that

Pr[f(x1, x2,⊥) ̸= f(x1, x2, x3)] ≤ 2 ·
(
1

2
+ ε

)
· 4ε

1 + 2ε
= 4ε. (2)

Due to Equation (2), not only does P3 have little control over changing the outcome of the
coin, but also P2. This is because P2 can now efficiently compute the output of the coin by setting
P3’s message to ⊥. Consider the following: Suppose that an honest P1 outputs a public x1 and
sends private messages s1,2, s1,3. Given the messages x1 and s1,2, sample two values x12, x

2
2, along

with the corresponding private messages s12,3 and s22,3 (each in an honest way). Sample x13 (resp.

x23) using x1, x
1
2, s1,3, s

1
2,3 (resp. x1, x

2
2, s1,3, s

2
2,3) in an honest way. Combining Equation (2) with a

union bound over the two simulated runs shows that

Pr[f(x1, x
1
2, x

1
3) = f(x1, x

1
2,⊥), f(x1, x22, x23) = f(x1, x

2
2,⊥)] ≥ 1− 8ε.

Furthermore, it must hold that

Pr[f(x1, x
1
2, x

1
3) = f(x1, x

1
2,⊥), f(x1, x12, x13) = f(x1, x

2
2,⊥), f(x1, x12,⊥) ̸= f(x1, x

2
2,⊥)] ≤ ε. (3)

Otherwise, an adversary corrupting P2 would be able to efficiently bias by sampling two messages
x12, x

2
2, each in an honest way, computing f(x1, x

1
2,⊥) and f(x1, x

2
2,⊥), and picking the one that

corresponds to final coin 1. By combining Equations (2) and (3) with a union bound, we conclude
that

Pr[f(x1, x
1
2, x

1
3) = f(x1, x

1
2,⊥), f(x1, x12, x13) = f(x1, x

2
2,⊥), f(x1, x12,⊥) = f(x1, x

2
2,⊥)] ≥ 1−9ε.

39



This means that party P1 fully determines the output of the protocol with probability at least
1− 9ε. In this case, P1 also can also efficiently compute the value of the coin. Thus, an adversary
corrupting P1 can conduct the following efficient attack: Sample two sets of messages x11, s

1
1,2, s

1
1,3

and x21, s
2
1,2, s

2
1,3, compute the coin by emulating P2 and setting P3’s message to ⊥. If either of the

coins is 1, output the corresponding set xi1, s
i
1,2, s

i
1,3, where i ∈ {1, 2}. As these are two independent

runs of the protocol and we assume (for the sake of contradiction) that the protocol has bias at
most ε, with probability at least 1

2−ε
2 we get that the two runs result in a different coin. Thus, P1’s

attack succeeds with probability at least (12 −ε2)−2 ·9ε > 0.01 ≥ ε, which leads to a contradiction.

E.2 Proof of Theorem 9

For the sake of contradiction, say that such a protocol Π exists. We will show that given such a
protocol, it is possible to obtain a PASSO protocol Π′ for n′ = 3 parties and t′ = 1 corruptions,
which would contradict Theorem 8.

We start by splitting the n parties into three groups P 1 := {P1, . . . , Pt}, P 2 := {Pt+1, . . . , P2t},
and P 3 := {P2t+1, . . . , P3t}. Now, in the protocol Π′ for n′ = 3 parties P ′

1, P
′
2, P

′
3, we have the

first party P ′
1 do the following: locally execute the protocol Π for each of the parties P1 up to Pt

one after the other, publish a concatenation of the corresponding public messages x1, . . . , xt, and
forward private messages that are to be received by parties in P 2 to the party P ′

2 (similarly, forward
private messages that are to be received by parties in P 3 to the party P ′

3). Party P ′
2 then similarly

executes the protocol Π for each of the parties Pt+1 up to P2t, while publishing the concatenation
of the messages xt+1, . . . , x2t, and forwarding private messages designated for parties in P 3 to P ′

3.
Finally, party P ′

3 executes the protocol Π for each of the parties P2t+1 up to P3t, while publishing
the concatenation of the messages x2t+1, . . . , x3t. Note that if protocol Π is secure, protocol Π′ is
secure as well: Corrupting a party in Π′ corresponds to corrupting a block of parties in Π (crucially,
the adversary obtains all private messages designated for a corrupt party in Π′ before starting to
execute this party, as in the sending-leaks model the adversary obtains the messages designated
to the corrupt parties by the time they are sent). As each block is of size t and Π is secure for
t corruptions, we get that Π′ is a secure protocol for n′ = 3 parties and t′ = 1 corruptions, thus
contradicting Theorem 8.

E.3 Proof of Theorem 10

Towards a contradiction, suppose that there exists such a protocol. Let f be the deterministic
polynomial-time function which computes the coin based on the public broadcasts from the protocol.
In other words, if X1, X2, . . . , X6 are published by parties P1, P2, . . . , P6, respectively, then the coin
value is f(X1, X2, . . . , X6). From this assumption, we know that

|Pr[f(X1, . . . , X6) = 0]− Pr[f(X1, . . . , X6) = 1]| ≤ negl(λ)

for any PPT execution-leaks adversary that corrupts at most t = 2 parties.
We begin by showing that we may assume that if the public values X1, . . . , X4 of parties

P1, . . . , P4, respectively, are sampled honestly according to the protocol, then P5 and P6 both
publish ⊥. We corrupt P5 and P6 and analyze two PPT attacks. First, consider an attack where
P5 behaves honestly (publishing X5) and P6 generates its potential public value X6 honestly. If
f(X1, . . . , X6) = 1 (which P6 can compute), then P6 outputs X6. Otherwise, P6 outputs ⊥. Since

40



the protocol is secure, the following holds except with negligible probability

f(X1, . . . , X5, X6) = f(X1, . . . , X5,⊥) . (4)

Next, consider an attack where P5 first generates its potential public value X5 honestly. From
Equation (4), we conclude that P5 can efficiently predict the value the coin will take if he de-
cides to publish X5, except with negligible probability, by computing f(X1, . . . , X5,⊥) locally. If
f(X1, . . . , X5,⊥) = 1, then P5 publishes X5 and P6 publishes ⊥. Otherwise, P5 and P6 both publish
⊥. Again by the security of the protocol against t = 2 corruptions, we must have the following,
except with negligible probability

f(X1, . . . , X4,⊥,⊥) = f(X1, . . . , X4, X5, X6) . (5)

We now corrupt P1 and P4 with the aim of arguing that the private message s1,4 from P1 to P4

can be taken to be s1,4 = ⊥, so long as P1 samples its public value and the private messages to P2

and P3 honestly. Consider the attack where P1 behaves honestly except that it sends s1,5 = s1,6 = ⊥
and P4 behaves as follows: First, P4 samples X4 honestly and X ′

4 honestly but assuming that the
private message s1,4 = ⊥. From Equation (5), if P4 publishes X4 then the value of the coin will be
f(X1, . . . , X4,⊥,⊥), which P4 can efficiently compute locally, except with negligible probability. If
f(X1, . . . , X4,⊥,⊥) = 1, then P4 publishes X4. Otherwise, P4 publishes X ′

4. By the security of the
protocol, we must have

f(X1, . . . , X4, X5, X6) = f(X1, X2, X3, X
′
4, X

′
5, X

′
6) (6)

except with negligible probability, where X ′
5 and X ′

6 are sampled honestly based on X ′
4 (and on

private messages s1,5 = s1,6 = ⊥).
Next, corrupt P2 and P3 and consider the following attack. Party P2 behaves honestly, except

that it also forwards the private messages s2,4, s2,5, s2,6, which it sent to P4, P5, P6, respectively, to
P3. By Equation (6), P3 can efficiently predict the final coin if he publishesX3 except with negligible
probability because (1) P3 can efficiently sample P4’s public value X ′

4 and private messages s4,5
and s4,6 based on X1, X2, X3 and the private messages s1,4 = ⊥ and s2,4, and (2) P3 can efficiently
sample X ′

5 and X ′
6 based on X1, X2, X3, X

′
4 and the private messages s1,5 = s1,6 = ⊥, s2,5, s2,6, and

s4,5, s4,6. Party P3 runs two independent honest samplings of X3 and the messages s3,i for i > 3

– denote them by Xj
3 , (s

j
3,i)i>3 for j ∈ {1, 2}. If P3 predicts coin value 1 when publishing X1

3 and

sending s13,i for i > 3, it publishes this value and sends these messages to the corresponding later

parties. Otherwise, P3 publishes X2
3 and sends s23,i for i > 3. The security of the protocol then

implies that
f(X1, X2, X

1
3 , X

1
4 , X

1
5 , X

1
6 ) = f(X1, X2, X

2
3 , X

2
4 , X

2
5 , X

2
6 ) (7)

except with negligible probability, where Xj
4 , X

j
5 , X

j
6 are generated honestly conditioned on Xj

3 for
j ∈ {1, 2}.

Finally, we corrupt P1 and P2. The attack proceeds as follows: Party P1 samples potential
public values Xj

1 , X
j
2 and potential private messages (sj1,i)i>1 and (sj2,i)i>2, for j ∈ {1, 2}. By

Equation (7), P1 can efficiently predict the value of the coin in the j-th run of the protocol based
solely on the samples above, assuming that P2 indeed publishes Xj

2 and sends private messages

(sj2,i)i>2. Therefore, P1 can check whether the j-th run leads to coin value 1, publish Xj
1 , send

private messages (sj1,i)i>1, and additionally tell P2 to publishXj
2 and send private messages (sj2,i)i>2.

41



Since the two protocol runs are honest and independent, the correctness of the protocol ensures
that there is a run leading to coin value 1 with probability at least 3/4−negl(λ), and, as we argued
above, P1 can predict which run has this property.

42



Protocol 2 Ex. Leaks Rand. Gen. from any Non-Interactive Commitment

Sharing phase:
Each Di, i ∈ [t+ 1] does the following:

1. Di chooses a random bivariate degree-t (on both variables) polynomial F i(x, y).

2. Di commits to each point of F i(x, y) via comx,y ← Commit(F i(x, y); rx,y) for random coins
rx,y, and publicly broadcasts comx,y for each x, y ∈ [1, 2t+ 1].

3. Di sends the opening information of the x-th horizontal and vertical projections points:
{(F i(x, y), rx,y)}y∈[2t+1] and {(F i(y, x), ry,x)}y∈[2t+1] to each Px, x ∈ [2t+ 1]; and sends all
opening information to D′

i.

Each Ri, i ∈ [2t+ 1] does the following:

1. For each dealer Dj , Ri checks whether the received openings against the published
commitments, and also that the received projections are of degree-t.

2. Ri sends its private state to every R′
j .

Each D′
i, i ∈ [t+ 1] broadcasts openings of all points corresponding to parties who complained

about Di. If an opening is inconsistent with its commitment, or openings corresponding to a
projection don’t form a degree-t polynomial, D′

i is deemed corrupt.
Reconstruction phase:
Each R′

i, i ∈ [t+ 1] does the following:

1. If Ri complained about Dj , and D′
j was not deemed corrupt, R′

i sets the points of the i-th
projections to the values broadcasted by D′

j .

2. R′
i outputs all points obtained for non-corrupt dealers.

Client C does the following to compute the coin:

1. For each D′
i who was not deemed corrupt, C uses any t+ 1 projections that pass the

verification check against the corresponding published commitments to reconstruct a
bivariate polynomial F i. Let the value si = F i(0, 0).

2. Let H denote the index set of dealers D′
i which were not deemed corrupt. C outputs⊕

i∈H si.

43



Protocol 3 Split-Dealer Verifiable Secret Sharing from Digital Signatures in the Execution-Leaks
Model.
The protocol is described from party Pi’s view, for some i ∈ [1, 4t+ 4]. We call P1 the dealer,
P2, . . . , P3t+2 the receivers, P3t+3 the resolver and P3t+4, . . . , P4t+4 the reconstructors. Let s be
the secret input of the dealer P1. Let DS = (KGen,Sign,Vf) denote a digital signatures scheme.
Sharing phase:

• If Pi is the dealer (i.e., i = 1):

1. Sample a symmetric polynomial F (x, y) such that F (0, 0) = s.

2. Sample
(
vkD, skD

)
← DS.KGen(1λ). Publicly broadcast the public key vkD. Also

privately send the polynomial F to the resolver (party P3t+3).

3. Let fj := F (j, y), j ∈ [3t+ 1], be the j-th vertical projection of F . Privately send to
the j-th receiver all points of fj signed, i.e. send to party Pj+1 the pairs
{fj(y), σD

j,y}y∈[3t+1], where σD
j,y = DS.SignskD(fj(y)).

• If Pi is the j-th receiver (i.e. i = j + 1 and j ∈ [3t+ 1]):

1. Sample
(
vkj , skj

)
← DS.KGen(1λ) and publicly broadcast the public key vkj .

2. For the messages received from the dealer (P1), {fj(y), σD
j,y}y∈[3t+1]:

(a) Check that the signatures are correct according to the broadcasted public key vkD,
i.e. DS.VfvkD(fj(y), σ

D
j,y) = 1 for each point.

(b) Check that the points {fj(y)}y∈[3t+1] lie on a degree-t polynomial.

(c) If any check fails, publicly broadcast a message ComplainPoly.

(d) Otherwise, privately send the k-th evaluation point signed by the dealer and his
own key to the k-th receiver, for each remaining future receiver. That is, for each
receiver j < k < 3t+ 2, send (fj(k), σ

D
j,k, σ

j
k) to the k-th receiver, where

σj
k = DS.Signskj (fj(k)).

3. For the message (fk(j), σ
D
k,j , σ

k
j ) received from the k-th receiver (i.e., Pk+1) with k < j:

check that the signatures are valid, i.e. DS.VfskD(fk(j)) = DS.Vfskk(fk(j)) = 1. We
now divide three cases:

(a) If the received signatures are incorrect (or no message was received) and no
message ComplainPoly is being broadcasted at step 2b, broadcast a complaint
message with the received point from the dealer and its signature:
(Complain, k, fj(k), σ

D
j,k).

(b) If the received signatures are correct, no message ComplainPoly is being
broadcasted at step 2b, do the following. If the points are not consistent
fk(j) ̸= fj(k) broadcast a complaint with both points signed by the dealer:
(Complain, k, fk(j), σ

D
k,j , fj(k), σ

D
j,k) and the sharing phase is failed. Otherwise, if

the points are consistent, send privately the point with the signatures from the
dealer, the k-th receiver and the j-th receiver (fj(k), σ

D
j,k, σ

k
j , σ

j
k) to every

reconstructor (parties P3t+4, . . . , P4t+4).

(c) If the received signatures are correct but message ComplainPoly is being
broadcasted at step 2b, broadcast a complaint message with the received point
from the Pk+1 and both signatures: (Complain, k, fk(j), σ

D
k,j , σ

k
j ).

• If Pi is the resolver: For each message ComplainPoly from the j-th receiver, publicly
broadcast the projection polynomial fj .

The sharing is considered to have failed if the polynomial output by the resolver does not have
degree-t or it is inconsistent with any point broadcasted by a receiver that is correctly signed by
the dealer at steps 3a or 3c, or other projection polynomial broadcasted by the resolver at this
step.

44



(Protocol 3) Reconstruction phase:

• If Pi is a reconstructor and the sharing phase did not fail, do the following. Consider the
triply-signed points {fj(k), σD

j,k, σ
k
j , σ

j
k}k by the j-th receiver. If the j-th receiver did not

broadcast ComplainPoly, broadcast all the received the triply-signed points.

• Secret Reconstruction: The secret s can be reconstructed by any party that takes any
valid projections for t+ 1 receivers. A projection for the j-th receiver is considered valid if
1) it was broadcasted by the resolver as a result of a ComplainPoly message, or 2) a
reconstructor broadcasted triply-signed points {fj(k), σD

j,k, σ
k
j , σ

j
k}kby the j-th receiver, form

a degree-t polynomial and there are at least 2t+ 1 points which are all either correctly
triply signed, or were contained in one of the ComplainPoly messages.

Protocol 4 Randomness Generation from PASSO SD-VSS, Execution-Leaks.

The first t+ 1 parties are dealers, parties Pi for i ∈ [2, 4t+ 2] are receivers, Pi for
i ∈ [3t+ 3, 4t+ 3] are resolvers, and Pi for i ∈ [4t+ 4, 5t+ 4] are called reconstructors.

We pipeline t+ 1 instances of SD-VSS given in Protocol 3, where i-th instance starts with party
Pi. In the i-th instance of the execution-leaks SD-VSS:

• For k = i, party Pk plays the role of the dealer D of Protocol 3.

• For k ∈ [i+ 1, 3t+ i+ 1], party Pk plays the role of the (k − i)-th receiver of Protocol 3.

• For k = 3t+ 2 + i, party Pk plays the role of the resolver of Protocol 3.

• For k ∈ [4t+ 4, 5t+ 4], party Pk plays the role of (k − 4t− 3)-th reconstructor of Protocol 3.

45



Protocol 5 Randomness Generation using n = 4t roles in the Sending-Leaks Model.

We have a t-sharing matrix M ∈ {0, 1}m×ℓ according to Lemma 2, where ℓ = 2t− 1 and
m =

(
2t−1
t

)
.

1. For i ∈ [2t− 1]:

(a) For j ∈ [m], party Pi does the following:

i. If ∀k ∈ [i− 1],Mjk = 0 and Mji = 1,

A. Choose value sj ←$ {0, 1}ℓm(λ) and generate comj ← Commit(sj ; rj) for random
coins rj ∈ {0, 1}ℓr(λ).

B. Broadcast comj and send the opening (sj , rj) to all parties Pk where
k ∈ [i+ 1, ℓ] and Mjk = 1.

C. It generates a t+ 1-out of-2t+ 1 sharing of (sj , rj) and send the k-th share
privately to party Pk where k ∈ [2t, 4t].

ii. Else if Mji = 1,

A. Receive (sj , rj) from party Pk for some k ∈ [i− 1] and Mjk = 1.

B. Broadcast (Complain, j) if nothing was received or if Commit(sj ; rj) ̸= comj .

C. Else, generate a t+ 1-out of-2t+ 1 sharing of (sj , rj) and send the k-th share
privately to party Pk where k ∈ [2t, 4t].

2. Party P2t samples s∗ ←$ {0, 1}ℓm(λ) and broadcasts s∗.

3. For i ∈ [2t, 4t], party Pi does the following:

(a) For any j ∈ [m], if no message (Complain, j) was seen, then receive shares from
different parties for the opening of comj and output the shares.

Let C ⊆ [m] be the set of indices such that for any j ∈ C, no message (Complain, j) was seen and
there are t+ 1 shares output by the parties P2t, . . . , P4t that reconstruct the opening (sj , rj) such
that Commit(sj ; rj) = comj . Let the final randomness be set as s =

⊕
j∈C sj ⊕ s∗.

46



Protocol 6 Sending Leaks Randomness Generation from any Non-Interactive Commitment

Sharing phase:
Each Di, i ∈ [t+ 1] does the following:

1. Di chooses a random bivariate degree-t (on both variables) polynomial F i(x, y).

2. Di commits to each point of F i(x, y) via comx,y ← Commit(F i(x, y); rx,y) for random coins
rx,y, and publicly broadcasts comx,y for each x, y ∈ [1, 2t+ 1].

3. Di sends the opening information of the x-th horizontal and vertical projections points:
{(F i(x, y), rx,y)}y∈[2t+1] and {(F i(y, x), ry,x)}y∈[2t+1] to each Px, x ∈ [2t+ 1]; and sends all
opening information to D′

i.

Each Ri, i ∈ [2t+ 1] does the following:

1. For each dealer Dj , Ri checks whether the received openings against the published
commitments, and also that the received projections are of degree-t.

2. Ri sends its private state to its counterpart R′
i.

Each D′
i, i ∈ [t+ 1] broadcasts openings of all points corresponding to parties who complained

about Di. If an opening is inconsistent with its commitment, or openings corresponding to a
projection don’t form a degree-t polynomial, D′

i is deemed corrupt.
Reconstruction phase:
Each R′

i, i ∈ [2t+ 1] does the following:

1. If Ri complained about Dj , and D′
j was not deemed corrupt, R′

i sets the points of the i-th
projections to the values broadcasted by D′

j .

2. R′
i outputs all points obtained for non-corrupt dealers.

Client C does the following to compute the coin:

1. For each D′
i who was not deemed corrupt, C uses any t+ 1 projections that pass the

verification check against the corresponding published commitments to reconstruct a
bivariate polynomial F i. Let the value si = F i(0, 0).

2. Let H denote the index set of dealers D′
i which were not deemed corrupt. C outputs⊕

i∈H si.

47



Protocol 7 Split-Dealer Verifiable Secret Sharing from Digital Signatures in the Sending-Leaks
Model.
The protocol is described from the point of view of Pi, for some i ∈ [1, 5t+ 4]. We call P1 the
dealer, P2, . . . , P3t+2 the receivers, P3t+3 the resolver and P3t+4, . . . , P5t+4 the reconstructors. Let
s be the secret input of the dealer P1. Let DS = (KGen,Sign,Vf) denote a digital signatures
scheme.
Sharing phase:

• If Pi is the dealer (i.e., i = 1):

1. Sample a symmetric polynomial F (x, y) such that F (0, 0) = s.

2. Sample
(
vkD, skD

)
← DS.KGen(1λ). Publicly broadcast the public key vkD. Also

privately send the polynomial F to the resolver (party P3t+3).

3. Let fj := F (j, y), j ∈ [3t+ 1], be the j-th vertical projection of F . Privately send to
the j-th receiver all points of fj signed, i.e. send to Pj+1 the pairs {fj(y), σD

j,y}y∈[3t+1],

where σD
j,y = DS.SignskD(fj(y)).

• If Pi is the j-th receiver (i.e. i = j + 1 and j ∈ [3t+ 1]):

1. Sample
(
vkj , skj

)
← DS.KGen(1λ) and publicly broadcast the public key vkj .

2. For the messages received from the dealer (party P1), {fj(y), σD
j,y}y∈[3t+1], do the

following:

(a) Check that the signatures are correct according to the broadcasted public key vkD,
i.e. DS.VfvkD(fj(y), σ

D
j,y) = 1 for each point.

(b) Check that the points {fj(y)}y∈[3t+1] lie on a degree-t polynomial.

(c) If any check fails, publicly broadcast a message ComplainPoly.

(d) Otherwise, privately send the k-th evaluation point signed by the dealer and his
own key to the k-th receiver, for each remaining future receiver. That is, for each
receiver j < k < 3t+ 2, send (fj(k), σ

D
j,k, σ

j
k) to the k-th receiver, where

σj
k = DS.Signskj (fj(k)).

3. For the message (fk(j), σ
D
k,j , σ

k
j ) received from the k-th receiver (party Pk+1) with

k < j: check that the signatures are valid, i.e. DS.VfskD(fk(j)) = DS.Vfskk(fk(j)) = 1.
We now divide three cases:

(a) If the received signatures are incorrect (or no message was received) and no
message ComplainPoly is being broadcasted at step 2b, broadcast a complaint
message with the received point from the dealer and its signature:
(Complain, k, fj(k), σ

D
j,k).

(b) If the received signatures are correct, no message ComplainPoly is being
broadcasted at step 2b, do the following. If the points are not consistent
fk(j) ̸= fj(k) broadcast a complaint with both points signed by the dealer:
(Complain, k, fk(j), σ

D
k,j , fj(k), σ

D
j,k) and the sharing phase is failed. Otherwise, if

the points are consistent, let sj,k denote the point with the signatures from the

dealer, the k-th receiver and the j-th receiver: (fj(k) = sj,k, σ
D
j,k, σ

k
j , σ

j
k). Share sj,k

using (t+ 1, 2t+ 1) Shamir’s secret sharing, let sj,k(m) denote the m-th share.
Send the share sj,k(m), along with its own signature on it DS.Signskj (sj,k(m)) to
the reconstructor P3t+3+m, for m ∈ [2t+ 1].

(c) If the received signatures are correct but message ComplainPoly is being
broadcasted at step 2b, broadcast a complaint message with the received point
from the Pk and both signatures: (Complain, k, fk(j), σ

D
k,j , σ

k
j ).

• If Pi is the resolver: For each message ComplainPoly from the j-th receiver, publicly
broadcast the projection polynomial fj .

48



Protocol 8 Randomness Generation from PASSO SD-VSS in the Sending-Leaks Model.

The first t+ 1 parties are the dealers, parties Pi for i ∈ [2, 4t+ 2] are receivers, parties Pi for
i ∈ [3t+ 3, 4t+ 3] are resolvers and parties Pi for i ∈ [4t+ 4, 6t+ 4] are called reconstructors.
We pipeline t+ 1 instances of SD-VSS given in Protocol 7, where i-th instance starts with party
Pi. In the i-th instance of the execution-leaks SD-VSS:

• For k = i, party Pk plays the role of the dealer D of Protocol 7.

• For k ∈ [i+ 1, 3t+ i+ 1], party Pk plays the role of the (k − i)-th receiver of Protocol 7.

• For k = 3t+ 2 + i, party Pk plays the role of the resolver of Protocol 7.

• For k ∈ [4t+ 4, 6t+ 4], party Pk plays the role of (k − 4t− 3)-th reconstructor of Protocol 7.

49


	Introduction
	Our Results
	Other Related Work

	Technical Overview
	First Attempts at PASSO Protocols
	A PASSO Protocol for n=3t+1 Parties
	Lower Bounds Without Setup
	An Efficient PASSO Protocol from Non-Interactive Commitments
	An Efficient PASSO Protocol based on One-Way Functions

	Our Model and Notation
	The PASSO Model and Security Definitions
	Network Model
	Adversarial Models
	Security Definition


	Protocols for Small Number of Parties from Non-Interactive Commitments
	t-Sharing Matrices
	Our Protocol
	Sending-Leaks Variant.


	Protocols from Non-Interactive Commitments
	Sending-Leaks Variant.

	Protocols from One-Way Functions
	Split-Dealer Verifiable Secret Sharing in PASSO
	PASSO SD-VSS-based Randomness Generation with n=5t+3

	Lower Bounds for PASSO Protocols without Setup
	Basic Cryptographic Building Blocks
	Digital Signatures
	Non-Interactive Commitments

	Missing Proofs and Protocols from sec:nicsmall
	Proof of lem:MatrixLB
	Proof of lem:simpleconstr
	Proof of thm:smallexecution
	Sending-Leaks Protocol for n=4t Parties

	Missing Proofs of sec:niclarge
	Proof of thm:nic-execution

	Missing Proofs and Protocols from sec:owfyoso
	Security Proof of SD-VSS in the Execution-Leaks Model
	Proof of thm:owf-execution
	Protocol from Non-Interactive Commitments in the Sending-Leaks Model
	SD-VSS in the Sending-Leaks Model
	SD-VSS-based Randomness Generation in the Sending-Leaks Model

	Missing Proofs from sec:lowerbounds
	Proof of thm:impossibilitybase
	Proof of thm:LBextension
	Proof of thm:impossibiltyexec


