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Abstract. There is a heavy preference towards instantiating BGV and
BFV homomorphic encryption schemes where the cyclotomic order m is
a power of two, as this admits highly efficient fast Fourier transforma-
tions. Field Instruction Multiple Data (FIMD) was introduced to increase
packing capacity in the case of small primes and improve amortised per-
formance, using reverse multiplication-friendly embeddings (RMFEs) to
encode more data into each SIMD slot. However, FIMD currently does
not admit bootstrapping.

In this work, we achieve bootstrapping for RMFE-packed ciphertexts
with low capacity loss. We first adapt the digit extraction algorithm to
work over RMFE-packed ciphertexts, by applying the recode map after
every evaluation of the lifting polynomial. This allows us to follow the
blueprint of thin bootstrapping, performing digit extraction on a single
ciphertext. To achieve the low capacity loss, we introduce correction maps
to the Halevi-Shoup digit extraction algorithm, to remove all but the final
recode of RMFE digit extraction.

We implement several workflows for bootstrapping RMFE-packed ci-
phertexts in HElib, and benchmark them against thin bootstrapping for
m = 32768. Our experiments show that the basic strategy of recoding
multiple times in digit extraction yield better data packing, but result
in very low remaining capacity and latencies of up to hundreds of sec-
onds. On the other hand, using correction maps gives up to 6 additional
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multiplicative depth and brings latencies often below 10 seconds, at the
cost of lower packing capacity.

Keywords: Fully Homomorphic Encryption · Bootstrapping · Galois
Rings · Reverse Multiplication Friendly Embeddings

1 Introduction

Homomorphic encryption (HE) allows computation on ciphertexts, without de-
crypting to the underlying data. In particular, fully homomorphic encryption
(FHE) enables arbitrary computation on encrypted data. Since the first instan-
tiation of FHE by Gentry [17], significant progress has been made to speed up
FHE computation but it remains costly compared to working in plaintext.

Currently, four main FHE schemes, Brakerski-Gentry-Vaikunathan (BGV)
[6], Brakerski-Fan-Vercauteren (BFV) [5,15], Cheon-Kim-Kim-Song (CKKS) [9],
and FHEW/TFHE [10,11,13] are commonly used. Of these four, the BGV and
BFV schemes support exact arithmetic over integer rings modulo a prime power
(more precisely, they enable arithmetic over Galois rings).

In the first three schemes, ciphertexts can only be applied to a finite num-
ber of multiplications, after which they must undergo bootstrapping for use in
further multiplications. Bootstrapping, broadly speaking, refers to homomor-
phically evaluating the decryption of a ciphertext using an encrypted secret key.
This effectively removes the noise that is in the input ciphertext, leaving a result
that can be used in several multiplications. The bootstrapping protocol is very
costly, and much research attention has been devoted to making it more effi-
cient. Bootstrapping broadly consists of a linear phase and a non-linear modular
reduction or rounding step, though the exact strategy used differs among the
various FHE schemes. Bootstrapping in the BGV and BFV schemes are nearly
identical, using a digit extraction procedure to evaluate the non-linear rounding
step [16]. CKKS on the other hand is an approximate homomorphic encryption
scheme, and its bootstrapping procedure approximates the modular reduction
step of the decryption formula. Most works do this by evaluating a polynomial
approximation of the modular reduction operation, usually via a periodic func-
tion such as sine or cosine. FHEW/TFHE uses a different computation paradigm
but also requires bootstrapping to achieve fully homomorphic encryption. These
schemes use a homomorphic accumulator for the linear phase and a variation of
sample extraction to achieve the non-linear rounding step, which was extended
to functional bootstrapping to simultaneously round and compute a lookup table
on the bootstrapping input.

Two fundamental parameters for instantiating the BGV/BFV schemes are
the prime modulus p and the order m of the cyclotomic polynomial modulus.
To fully exploit the available plaintext space in BGV/BFV, Single Instruction
Multiple Data (SIMD), first proposed by Smart-Vercauteren [31], can be used
to pack more data in slots that fit within a single ciphertext. Choosing m to
be a power of two is heavily favoured in BGV/BFV implementations [22,24,26,
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30] for efficient HE operations. A side effect of this choice is that using small
odd primes for p (e.g. 3, 5, 7, . . . ) yields very few SIMD slots, each of which is
an algebra of a very high degree. This results in inefficient packing, rendering
popular instantiations of BGV/BFV impractical for small-prime arithmetic.

Addressing this limitation, Aung et al. [2] introduced the technique Field In-
struction Multiple Data (FIMD) to support small-prime finite field arithmetic.
The core idea is to leverage reverse multiplication-friendly embeddings (RM-
FEs) to embed vectors of base field elements into each SIMD slot. This enables
computation on the plaintext space to carry over component-wise to each em-
bedded vector, hence exploiting the high extension degree of SIMD slots caused
by small primes to increase ciphertext packing capacity. A significant amortised
speedup was achieved, alleviating the low-capacity issue brought on by small
primes. However, this technique did not support bootstrapping.

The goal of this present work is to unlock bootstrapping for RMFE-packed
ciphertexts. While BGV/BFV can be instantiated with a plaintext modulus pr

where r ≥ 1, our work focuses on the case where r = 1, following the con-
text where FIMD is applied. Bootstrapping with the FIMD setting enables the
evaluation of deeper circuits that leverage small-prime arithmetic, such as digit
representation-based integer comparisons [23]. It may also be more useful for
evaluating quantised neural networks and transformers on encrypted data [25].

1.1 Related work

BGV/BFV Bootstrapping. The two schemes essentially follow the same
workflow for bootstrapping [16]. Halevi and Shoup [19] achieved bootstrapping
in HElib [22] for BGV with plaintext spaces Zpr , r ≥ 1, by generalising the pro-
cedure of Gentry et al. [18]. They proposed a digit extraction algorithm using a
lifting polynomial of degree p. Their bootstrapping procedure takes in a “thickly
packed” ciphertext in which each SIMD slot contains an arbitrary element of
the slot algebra E = Zpr [X]/(f(X)) for some irreducible polynomial of d, and
requires d-many runs of the digit extraction algorithm.

Chen and Han [8] developed a more efficient bootstrapping framework for
“thinly packed” ciphertexts, that is, when data in each SIMD slot is restricted
to the subring Zpr ⊆ E. Their bootstrapping procedure only requires one run
of the digit extraction algorithm and can be applied to both the BGV and
BFV schemes. EC:CheHan18 bootstrapping is called thin bootstrapping, and the
earlier framework by Halevi and Shoup is called thick bootstrapping. Chen and
Han included further optimisations for plaintext modulus pr where r ≥ 2, such as
a modified digit extraction algorithm using their lowest digit retain polynomial.

Field Instruction Multiple Data. Small values for p with the popular choice
of powers of 2 for m yield few SIMD slots of very high extension degrees, which
are not practical for computation involving small-prime arithmetic. To improve
the amortised performance of such instantiations, Aung et al. [2] introduced a
second layer of packing, on top of SIMD offered by the Chinese Remainder The-
orem. Finite field RMFEs were used to encode vectors of base field elements as
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field extension elements lying in each SIMD slot. The operations of addition and
multiplication on ciphertexts thus act component-wise on the vectors encoded
by RMFE, though a recoding map must be evaluated after some multiplications.
This packing method was called Field Instruction Multiple Data (FIMD).

For optimisation, Aung et al. [2] further leverage the high extension degree of
the SIMD slot algebra by introducing r-fold RMFEs and a three-stage recoding
method. These techniques were implemented with the BGV scheme in HElib

with significant amortised speedups observed. However, their work was confined
to the finite field case, hence FIMD could not be readily applied to bootstrapping
where the slot algebra is no longer a finite field, but a Galois ring.

Reverse Multiplication-Friendly Embeddings. RMFEs are an algebraic
tool that allows component-wise multiplication and addition of vectors over a
ring to be carried over to multiplication and addition over an extension ring.
Introduced by Cascudo et al. [7] and concurrently studied by Block et al. [3],
RMFEs were originally constructed to support multiplication between two ele-
ments over the finite field. Cramer et al. [12] then provided a Hensel-like lifting
technique that lifted RMFEs from finite fields to Galois rings.

Aung et al. [2] extended finite field RMFEs to r-fold RMFEs, which sup-
ported the multiplication of 2r-many elements. Most recently, Escudero et al. [14]
generalised RMFEs to degree-η RMFEs which support the multiplication of η-
many elements over Galois rings, where η ≥ 2 is an integer. They also found
that for any finite field RMFE supporting some number of multiplications, there
exists a lift to an equivalent RMFE over Galois rings.

1.2 Our contributions

In this work, we enable bootstrapping for RMFE-packed BGV/BFV ciphertexts,
where the plaintext modulus is p. The main contributions of this work are:

– We adapt the Halevi-Shoup digit extraction method for RMFE-packed ci-
phertexts to achieve bootstrapping for RMFE-packed ciphertexts. The digit
extraction algorithm as proposed by Halevi and Shoup does not work for gen-
eral Galois ring elements because the lifting polynomials developed in [19,
Corollary 5.4] do not apply to Galois ring extension elements (only integers).
We first overcome this by applying RMFE recoding after each evaluation of
the lifting polynomial, at the cost of increased noise growth. The bootstrap-
ping process for RMFE-packed ciphertexts differs from traditional thin and
thick bootstrapping by taking in a thick RMFE-packed ciphertext as an in-
put (unlike thin bootstrapping) and performing digit extraction on only one
ciphertext (unlike thick bootstrapping, which requires d-many runs).

– We propose a less noisy alternative to digit extraction for RMFE-packed
ciphertexts by introducing new correction maps. These maps remove the
need for RMFE recoding after every evaluation of the lifting polynomial,
requiring only a single evaluation of the RMFE recode map at the end of the
bootstrapping process. Furthermore, our technique leaves the multiplicative
degree of digit extraction unchanged. Empirically, this method performs best
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for the smallest primes p = 3, 5 where there are multiple digit extraction
steps and recovers up to 6 additional multiplicative depth.

Our work also includes the following auxiliary contribution.

– We construct high-degree RMFEs directly over Galois rings by naturally
extending a construction technique by Cascudo et al. [7, Lemma 4]. This
approach is very practical for high values of η and Galois rings of large
extension degree. The construction avoids the need to lift a finite field RMFE
unlike existing methods in the literature.

2 Preliminaries

Notation. The theory on the BGV/BFV plaintext space and RMFEs over Ga-
lois rings are presented in full generality assuming a prime power modulus de-
noted by pr. The parameter m denotes the cyclotomic order of the plaintext
ring modulus, and ℓ denotes the number of SIMD slots in a ciphertext. A gen-
eral Galois ring is denoted as GR(pr, s), where pr is the characteristic of the ring,
and s ≥ 1 is the extension degree of the ring with respect to Zpr . In bootstrap-
ping, the plaintext is temporarily raised from the regular modulus pr to a higher
modulus pe. Later in our work, we assume the regular plaintext modulus is p in
line with the FIMD setting. When combining RMFEs with bootstrapping, we
consider RMFEs with modulus pe. Modular reduction by p is denoted by [·]p. If
z is an integer, z⟨i⟩ denotes the i-th p-ary digit of z. In this notation, [z]p = z⟨0⟩
is the least significant digit of z.

2.1 Fully Homomorphic Encryption.

A fully homomorphic encryption (FHE) scheme is an encryption scheme that
supports evaluating arbitrary functions on encrypted data. Constructions of FHE
schemes are mostly based on the Ring Learning with Errors (RLWE) problem
with ciphertexts being noisy encryptions of the message. As computation is
performed on ciphertexts, the noise within will grow and eventually flood the
message, rendering the ciphertext useless. Bootstrapping [17] is a procedure that
refreshes the ciphertexts and reduces the noise in it, such that there is room again
for noise to grow in subsequent computations.

Let a ciphertext of a message m is denoted as m and P denote the message
space of the FHE scheme. An FHE scheme is defined as follows:

– (pk, sk, evk, bk)← KeyGen
(
1λ
)
: Given security parameter λ, return a public

key pk, secret key sk, evaluation key evk, and bootstrapping key bk.
– c ← Encrypt(m, pk) : Given a message m ∈ P and public key pk, return

ciphertext c = m.
– m′ ← Decrypt(c, sk) : Given a ciphertext c = m′ and secret key sk, return

message m′ ∈ P.
– c+ ← EvalAdd(c1, c2, evk): Given two ciphertexts c1 = m1, c2 = m2, and

evaluation key evk, return a ciphertext c+ = m1 +m2.
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– c× ← EvalMult(c1, c2, evk): Given two ciphertexts c1 = m1, c2 = m2, and
evaluation key evk, return a ciphertext c× = m1 ×m2.

– c′ ← Bootstrap(c, bk): Given a ciphertext c = m and bootstrapping key bk,
return a ciphertext c′ = m.

Single Instruction Multiple Data. Let Φm(X) to be the m-th cyclotomic
polynomial and define R = Z[X]/Φm(X) and Rq = R/qR. In second generation
FHE schemes [6, 15], the plaintext space is defined as P = Rpr , for some prime
power pr. An observation by Smart and Vercauteren [31] states that for coprime
m and pr, the cyclotomic polynomial can be split into ℓ irreducible polynomials
by factoring modulo p and applying Hensel lifting. Each factor Fi(X) has degree
d = ϕ(m)/ℓ. Applying the Chinese Remainder Theorem to the plaintext space
ring Rpr yields the following

P = Rpr = Zpr [X]⧸Φm(X) =

ℓ∏
i=1

Zpr [X]⧸Fi(X).

Let ζ be a residue class X in Zpr [X]/Fi(X) and define E = Zpr [ζ]. This gives
rise to the isomorphism Rpr → Eℓ, α(X) 7→

{
α
(
ζh
)}

h∈S
where S ⊂ Z is a

set of representatives for Z∗
m/⟨p⟩. By leveraging on this isomorphism, a SIMD

ciphertext can encrypt a vector (m1, . . . ,mℓ) ∈ Eℓ. Ciphertext addition and
multiplication translate to component-wise ring addition and multiplication. El-
ements of the encrypted vector can be shuffled by applying ring automorphisms
θκ : X 7→ Xκ for κ ∈ S, where θκ(α(X)) 7→

{
α
(
ζκh
)}

h∈S
. A detailed exposi-

tion of the plaintext structure and effect of ring automorphisms can be found
in [20,21]. By using suitable masking vectors and different automorphisms, it is
possible to achieve the effect of shifting or rotating the slots.

Frobenius Maps and Linear Maps Evaluation. The automorphism map
θp : X 7→ Xp is the Frobenius map on Rpr . Based on the following relation,
the Frobenius map on Rpr translates to slotwise Frobenius maps on E, fixing
elements of the subring Zpr

θp(α(X)) 7→
{
α
(
ζph
)}

h∈S
=
{
θp
(
α
(
ζh
))}

h∈S
.

Frobenius maps are useful when evaluating Zp linear transformations. Any
Zp-linear transformation M , on E can be written as a unique linearized poly-

nomial fM (X) =
∑d

i=1 ciX
pi

, with ci ∈ E [29]. Equivalently, fM (α) = M(α)
for α ∈ E. The evaluation of the linearized polynomial on α is given as f(α) =∑d

i=1 ciθ
i
p(α).

2.2 Galois rings and the plaintext slot algebra

In this subsection, we review the theory of general Galois rings, after which we
treat the structure of the plaintext slot algebra.
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Let f(X) ∈ Zpr [X] be a degree-s monic irreducible polynomial that is also
irreducible modulo p. The ring GR(pr, s) := Zpr [X]/(f(X)) is called a Galois
ring. The value pr is the characteristic of the ring, and the parameter s is called
the degree of the ring. The cardinality of GR(pr, s) is prs. In the case where
r = 1, we recover the construction of the finite field Fps . When s = 1, we get
Zpr . Two Galois rings are isomorphic if they have the same characteristic and
cardinality [32, Corollary 14.7], thus we may speak of the Galois ring GR(pr, s).

Letting ζ denote a root of f(X), we may represent GR(pr, s) as Zpr [ζ]. The
irreducibility of f(X) then implies GR(pr, s) is a free Zpr -module of rank s with
basis {1, ζ, . . . , ζs−1}.

Given an element β ∈ GR(pr, s) where r ≥ 2, we may define β mod pr
′
for

1 ≤ r′ ≤ r by sending β to its residue class in GR(pr, s)/(pr
′
) ≃ GR(pr

′
, s).

Moreover, if x = py for some y ∈ GR(pr, s), we define division by p by mapping
x to y mod pr−1. This division is well-defined, since for any y, y′ such that py =
py′ = x, we have that y = y′ + pr−1z for some z ∈ GR(pr, s), so division of x by
p yields y mod pr−1 which is equal to y′ mod pr−1 in GR(pr−1, s).

Tower structure. The following propositions describe the relationship between
a Galois ring and its subrings. We will exploit this structure later on in our work.

Proposition 1. [28, Proposition 1] Every subring of GR(pr, s) is of the form
GR(pr, s′) for some divisor s′ of s. Conversely, for every positive divisor s′ of
s, there is a unique subring of GR(pr, s) that is isomorphic to GR(pr, s′).

Proposition 2. Let G = GR(pr, s) be contained in G′ = GR(pr, sn). Then G′
is a free G-module of rank n.

Proof. By [32, Theorem 14.27(i)], G′ = G[ξ] for some ξ ∈ G′ such that ξ is a root
of a degree-n polynomial h(X) that is irreducible in G[X] modulo p. Furthermore,
h(X) is the unique polynomial of degree not more than n that has ξ as a root.
By the degree of h(X), ξn can be rewritten as a G-linear combination of lower
powers of ξ. Thus the set B = {1, ξ, . . . , ξn−1} is a generating set of G′ over G.

We now claim that B is linearly independent over G. Suppose not. Then∑n−1
i=0 aiξ

i = 0 for some a0, . . . , an−1 ∈ G, and so g(X) =
∑n−1

i=0 aiX is a poly-
nomial over G of degree less than n having ξ as a root. However, this contradicts
the minimal degree property of h(X). Hence B must be G-linearly independent,
completing the proof.

Linear Maps over Galois Rings. In BGV/BFV, the plaintext slot algebra
E is GR(pr, d), which we denote as Zpr [ζ], where ζ is a root of an irreducible
factor of Φm(X). Hence, ζ is an m-th root of unity. By Proposition 1, E contains
a unique subring isomorphic to GR(pr, s) for each divisor s > 0 of d.

The Frobenius map σ : ζ 7→ ζp of E is an automorphism on E that fixes
Zpr only, per [19]. More generally, for every positive divisor s of d, the map σs

is an automorphism on E fixing the subring GR(pr, s) ⊆ E by [32, Corollary
14.33]. When r = 1, σ is the usual Frobenius automorphism of Fpd defined as
σ : a 7→ ap for all a ∈ Fpd . We record the following results which are crucial to
leveraging linear maps over Galois rings in homomorphic encryption.
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Proposition 3. Let G = GR(pr, s) and let G′ be an extension G. Let f : V → G′
be a G-linear map where V is a free G-submodule of G′ with rank k. Then there
exist unique elements θ0, . . . , θk−1 ∈ G′ such that for all x ∈ V ,

f(x) =

k−1∑
i=0

θiσ
si(x)

where σ is the Frobenius map of G′.

Proof. Let {u0, . . . , uk−1} be a G-basis of V . Consider the Moore matrix

M =


u0 · · · uk−1

σs(u0) σs(uk−1)
...

...
σs(k−1)(u0) · · · σs(k−1)(uk−1).


We want to find θ0, . . . , θk−1 satisfying[

θ0 · · · θk−1

]
M =

[
f(u0) · · · f(uk−1)

]
,

which we may obtain by computing[
θ0 · · · θk−1

]
=
[
f(u0) · · · f(uk−1)

]
M−1.

The uniqueness of θ0, . . . , θk−1 follows.

Proposition 4. Let G′ be a degree-n extension of G = GR(pr, s) and let f :
G′ → G be a G-linear map. Then there exists θ ∈ G′ such that

f(x) =

n−1∑
i=0

σsi(θx).

Proof. By Proposition 3, there exist unique θ0, . . . , θn−1 such that for all x ∈ G′,
f(x) =

∑n−1
i=0 σ

s(x). Since im f ⊆ G, f(x) is fixed by σs. And so

f(x) = σs(f(x))

=

n−1∑
i=0

σs(θi)σ
s(i+1)(x)

= σs(θn−1)x+ σs(θ0)σ
s(x) + σs(θ1)σ

2s(x) + · · ·+ σs(θn−2)σ
(n−1)s(x).

The uniqueness of θ0, . . . , θn−1 then implies θi = σsi(θ0) for 1 ≤ i ≤ n− 1. Thus

we may write f(x) =
∑n−1

i=0 σ
si(θ0x), completing the proof.
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3 BGV Bootstrapping

Bootstrapping involves “refreshing” a noisy ciphertext into one with less noise
encrypting the same message. First proposed by Gentry in his seminal work [17],
the key idea is to evaluate the decryption circuit homomorphically. The inputs
to this process are the noisy ciphertext and a bootstrapping key, which is an
encryption of the secret key under itself (assuming circular security). It is helpful
to regard the bootstrapping key as a ciphertext input and ciphertext to be
“refreshed” as a plaintext input to the homomorphic decryption circuit

Bootstrap
(
m, sk

)
= Decrypt(m, sk) = m.

Now, we recall the process of bootstrapping for the BGV [6] scheme. Modulo
reduction by p is denoted by [·]p and z⟨i⟩ denotes the i-th digit of z ∈ Z.

3.1 An Alternative Decryption Formula

Decrypting a BGV ciphertext consists of two steps; an inner product followed
by a modulo reduction. For a ciphertext c = (c0, c1), encrypted under secret key
sk = (1, s),

Decrypt(c, sk) = [[c0 + c1s]q]p = [m+ pe]p,

for some e < q
p . Modulo reduction removes the noise (pe) that is crucial to

the security of the BGV scheme. As BGV supports linear functions, the inner
product c0+c1s can be computed easily. The non-linear modulo reduction turns
out to be the bottleneck of bootstrapping.

It was observed in [18] that modulo reduction [[·]q̃]2 for q̃ = 2e + 1 can be
achieved by computing the sum of certain bits. More precisely, for u = c0+c1s, we
have [[u]q̃]2 = u⟨e⟩⊕u⟨e−1⟩⊕u⟨0⟩. This was further generalized by [19, Lemma
5.1] to pr into

[[u]q̃]pr = u⟨r − 1, · · · , 0⟩ − u⟨e+ r − 1, · · · , e⟩.

The cost of bootstrapping increases as e grows because the algorithm to
homomorphically extract digits requires the evaluation of polynomials up to
degree 2e. An optimization by [18] reduced the depth of digit extraction. Let
e′ < e and c̃ denote the ciphertext encrypting the same message over q̃, i.e.
[[⟨c̃, sk⟩]q̃]2 = [[⟨c, sk⟩]q]2. Add multiples of q̃ to coefficients of c̃ such that each

coefficient is divisible by 2e
′
. Denote this modified ciphertext as c̃′ =

(
c̃0

′, c̃1
′).

It is easy to see that c̃′ still encrypts the same message relative to q̃. Since c̃′

divides 2e
′
, the inner product ũ′ = c̃0

′ + c̃1
′s also divides 2e

′
and ũ′⟨0⟩ = 0. In

fact, ũ′⟨e′, · · · , 0⟩ = 0. This means that dividing c̃′ by 2e
′
would yield a smaller

result with fewer bits to extract

[[ũ′/2e
′
]q̃/2e′ ]2 = ũ′⟨e− e′⟩ ⊕ ũ′⟨e− e′ − 1⟩.

The generalization for pr was proposed in [19].



10 Aung et al.

3.2 Homomorphic Digit Extraction

Digit extraction is the most expensive step in the bootstrapping procedure. Given
an integer z ∈ Zpe , the aim of digit extraction is to homomorphically remove
some lower p-ary digits. For our setting, we are interested in removing the e− 1
lowest digits and focus on the digit extraction procedure by Halevi and Shoup
[19], which we give in Algorithm 1.

Halevi-Shoup digit extraction requires a polynomial Fe(X) ∈ Z[X] called the
lifting polynomial introduced in [19, Corollary 5.5], such that for 1 ≤ e′ ≤ e, if
[z]pe′ = z⟨0⟩ then [Fe(z)]pe′+1 = z⟨0⟩. The lifting polynomial has degree p and is
of the form Xp + pG(X) for some polynomial G(X).

Algorithm 1: Halevi-Shoup Digit Extraction

Input: z ∈ Zpe

1 u0,0 ←− z;
2 for j = 0, . . . , e− 2 do
3 y ← z;
4 for i = 0, . . . , j do
5 ui,j+1 ← Fe(ui,j);
6 y ← (y − ui,j+1)/p;

7 end
8 uj+1,j+1 ← y;

9 end
10 return ue−1,e−1;

Figure 1 illustrates how the digit extraction algorithm works for a toy ex-
ample, for e = 3. For ease of exposition, denote the digits of z as [z2z1z0]. ∗ is
used as a placeholder to represent any digit. Each horizontal arrow represents
each time the lifting polynomial is evaluated. The input starts with the top left
corner z = u0,0. Finally, the least significant digit of ui,0 is the i-th bits of z.

u0,0 = z = [z2z1z0] −→ u0,1 = Fe(u0,0) = [∗0z0] −→ u0,2 = Fe(u0,1) = [00z0]

u1,1 =
u0,0−u0,1

p
= [∗z1] −→ u1,2 = Fe(u1,1) = [0z1]

u2,2 =
u0,0−u0,2

p
−u1,2

p
= [z2]

Fig. 1. Toy Example for Homomorphic Digit Extraction with z = [z2z1z0].

As the digit extraction procedure is repeated for each polynomial coefficient,
[18] proposed to pack them into ciphertexts and extract the digits in batches
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to improve efficiency. Two linear maps, CoeffToSlots and SlotsToCoeff, were
proposed to transform the polynomial coefficients into slots of a ciphertext and
back. We refer readers to [19] for more details on the linear maps.

3.3 Bootstrapping Procedure

General (thick) bootstrapping. The complete bootstrapping algorithm is
presented as follows:

1. ModSwitch. The modulus of the ciphertext is raised to pe.

2. InnerProduct. The ciphertext is homomorphically multiplied with the
bootstrapping key.

3. CoeffToSlots. The coefficients of c0+c1s are mapped into slots of d-many
ciphertexts.

4. DigitExtract. Run digit extraction on all d packed ciphertexts.

5. SlotsToCoeff. Transform the polynomial coefficients within slots back
into polynomial coefficients.

Thin bootstrapping. An optimization by [8] reduces the number of digit ex-
tractions done under certain conditions. Recall that the slots of the ciphertext
are elements of a finite extension field E. [8] observed that when the message is
packed into the constant term of each slot, applying SlotsToCoeff transforms
the plaintext polynomial with ϕ(m) many coefficients into a sparse polynomial
of ℓ coefficients. More precisely,

[m1, · · · ,mℓ]
SlotsToCoeff−−−−−−−−→ m1 +m2x

d + · · ·+mℓx
dℓ.

With such a transformation, one ciphertext is sufficient to pack all coefficients
of the resultant polynomial. Consequentially, one digit extraction needs to be
performed. The complete thin bootstrapping algorithm is presented as follows:

1. ModSwitch. The modulus of the ciphertext is raised to pe.

2. SlotsToCoeff. Transform the constant terms of the ciphertext slots into
an equivalent polynomial whose coefficients are the slots elements.

3. InnerProduct. The ciphertext is homomorphically multiplied with the
bootstrapping key.

4. CoeffToSlots. Send the coefficients of c0 + c1s into slots of a ciphertext.

5. DigitExtract. Run digit extraction on the packed ciphertext.

4 Practical RMFEs for bootstrapping

In this section, we review the theory of reverse multiplication-friendly embed-
dings (RMFEs), and then detail our approach for constructing RMFEs directly
over Galois rings, which generalises the construction in [7, Lemma 4].
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4.1 Background and terminology

In this subsection, we give a technical overview of RMFEs and present results
relevant to our work. We begin with the following general definition from the
recent study on RMFEs by Escudero et al. [14]. For lighter notation, we simply
write a Galois ring GR(pr, s) as G and its degree-w extension GR(pr, sw) as G′.

Definition 1. [14, Definition 3] A pair (ϕ, ψ) of additive maps, with ϕ : Gk →
G′ and ψ : G′ → Gk, is called a (k,w; η) RMFE over G if for any v1, . . . ,vη ∈ Gk
and denoting component-wise multiplication with ∗, we have

ψ (ϕ(v1) · · ·ϕ(vη)) = v1 ∗ · · · ∗ vη.

We refer to the parameter w as the dimension of the RMFE. Following the
convention of [14], the parameter η is called the degree of an RMFE. In this work,
the maps ϕ and ψ are referred to as the encode and decode map respectively.
Another relevant map is the recode map π = ϕ ◦ ψ, which decodes an RMFE-
packed element and re-encodes its data into an element that can be used for
subsequent multiplications.

Proposition 5. [14, Proposition 2 and Lemma 1] Let (ϕ, ψ) be an RMFE. Then
ϕ and ψ are Zpr -linear maps. Additionally, ϕ is injective and ψ is surjective.

For our work, we are primarily concerned with RMFEs over G where ϕ and
ψ are G-linear, as opposed to just being Zpr -linear. G-linearity is not implied
by Definition 1, thus we use the term G-RMFE to distinguish RMFEs over G
with the added property of being G-linear. Naturally, any G-RMFE is also a Zpr -
RMFE. We highlight the following useful technique from [14] that introduces a
slight modification to an RMFE.

Proposition 6. [14, Lemma 2] Let (ϕ, ψ) be a (k,w; η)-RMFE over a Galois
ring G, and let 1 denote the all-ones vector in Gk. There exists a (k,w, η) RMFE
(ϕ′, ψ′) such that ϕ′(1) = 1.

Proof. We claim that ϕ(1) is a unit in the extension ring G′ of G. Suppose not.
Then ϕ(1) is a multiple of p, and so ϕ(pr−11) = pr−1ϕ(1) = 0. This implies
kerϕ is nontrivial, contradicting Proposition 5. Thus the claim is true. We now
proceed with the construction of (ϕ′, ψ′).

Define ϕ′ : Gk → G′ and ψ′ : G′ → Gk such that

ϕ′ : v 7→ ϕ(v) · ϕ(1)−1,

ψ′ : α 7→ ψ(α · ϕ(1)η).

It is easy to see that ϕ′(1) = ϕ(1) · ϕ(1)−1 = 1. We show now that (ϕ′, ψ′) is
a valid degree-η RMFE. It is easily checked that ϕ′ and ψ′ are linear over Zpr .
Finally, for any v1, . . . ,vη ∈ Gk we have

ψ′(ϕ′(v1) · · ·ϕ′(vη)) = ψ(ϕ(v1) · · ·ϕ(vη) · ϕ(1)−η · ϕ(1)η) = v1 ∗ · · · ∗ vη.
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Escudero et al. [14] note that a degree-η RMFE is also a degree-η′ RMFE
where η′ ≤ η if ϕ(1) = 1 (the converse is not necessarily true). We further
observe that such RMFEs allow us to carry out polynomial evaluations. More
specifically, for any v = (x1, . . . , xk) ∈ Gk and polynomial f ∈ Zpr [X] of degree
at most η, the relation ψ (f (ϕ(v))) = (f(x1), . . . , f(xk)) holds. We call this
property evaluation-friendliness. For completeness, we record this observation
in the following proposition with proof.

Proposition 7. Let (ϕ, ψ) be a degree-η RMFE over G and let 1 denote the
all-ones vector in Gk. If ϕ(1) = 1, then (ϕ, ψ) is evaluation-friendly.

Proof. First observe that for any integer 1 ≤ η′ ≤ η and any η′ elements
v1, . . . ,vη′ ∈ Gk, we have that

ψ(ϕ(v1) · · ·ϕ(vη′)) = ψ(ϕ(v1) · · ·ϕ(vη′) · ϕ(1)η−η′︸ ︷︷ ︸
η-many encodings

) = v1 ∗ · · · ∗ vη′ .

Let f =
∑η

i=0 fiX
i be a polynomial over Zpr . Then by the Zpr -linearity of ϕ

and ψ, we have that

ψ(f(ϕ(v))) =

η∑
i=0

fiψ(ϕ(v)
i) =

η∑
i=0

fiv
i = f(v),

where vi denotes the vector obtained by raising the components of v to the i-th
power, and f(v) denotes the evaluation of f component-wise on v.

Since the technique in Proposition 6 works on arbitrary RMFEs, we can
assume that from now on that ϕ(1) = 1 without loss of generality and that any
RMFE we construct is evaluation-friendly.

We conclude this subsection by proving that an RMFE can be reduced mod
pr

′
, where r′ ≤ r. This result is relevant to our work later and a proof was not

found in the literature, hence we include it here for completeness.

Proposition 8. Let G = GR(pr, s) and G′ = GR(pr, sw), and let (ϕ, ψ) be a
(k,w; η) GR(pr, s)-RMFE. For r′ a positive integer such that r′ ≤ r, let the bar-
line denote reduction by modulo pr

′
. Consider the Galois rings G = G/(pr′) =

GR(pr
′
, s) and G′ = G′/(pr′) = GR(pr

′
, sw).

We define the mod pr
′
-reduction (ϕ, ψ) of (ϕ, ψ) as follows. For each v ∈ Gk

there is some w ∈ Gk such that v = w, and for each b ∈ G′ there is some β ∈ G′
such that b = β. Thus define

ϕ : Gk → G′ : v 7→ ϕ(w),

ψ : G′ → Gk : b 7→ ψ(β).

The following is true:

1. ϕ and ψ are well-defined.
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2. (ϕ, ψ) is a (k,w; η) G-RMFE.
3. If (ϕ, ψ) is evaluation-friendly, then (ϕ, ψ) is also evaluation-friendly.

Proof. For (i), we first show that ϕ is well-defined. Let w1,w2 ∈ Gk, and denote
wi mod pr

′
as wi for i = 1, 2. Suppose now that w1 = w2, which implies w1 −

w2 = pr
′
v for some v ∈ Gk. Then

ϕ(w1)− ϕ(w2) = ϕ(w1 −w2) = pr′ϕ(v) = 0,

implying ϕ(w1) = ϕ(w2) as required. The proof that ψ is well-defined follows a
similar argument.

For (ii), let wi ∈ Gk such that wi = vi for 1 ≤ i ≤ η. We have that

ψ

(
η∏

i=1

ϕ(vi)

)
= ψ

(
η∏

i=1

ϕ(wi)

)
= w1 ∗ · · · ∗wk = v1 ∗ · · · ∗ vk.

It is easily checked that ϕ and ψ are G-linear. Hence (ϕ, ψ) is a G-RMFE.
For (iii), evaluation-friendliness is easy to see by substituting η in the above

equation with η′ ≤ η.

For lighter notation, we will use the same notation ϕ and ψ to also denote
their reductions when the modulus is clear from the context.

4.2 Construction

In this subsection, we treat the construction of degree-η RMFEs over Galois
rings. Previously, Cramer et al. [12] gave an explicit method to lift degree-2
RMFEs from finite fields to Galois rings. Escudero et al. then explain in [14,
Lemma 6] that lifting degree-η RMFEs from finite fields to Galois rings is also
possible, though no concrete method is given.

Our approach is to take the “interpolation” construction by Cascudo et al.
in [7, Lemma 4] for degree-2 RMFEs over finite fields and explicitly generalise
it to construct degree-η G-RMFEs. Thus we obtain RMFEs directly over Galois
rings without lifting from the finite field, in contrast to the previous methods in
the literature. Constructing RMFEs in this manner is much more practical for
our parameters which are often large, and we find this approach is ultimately
sufficient for our purposes.

Theorem 1. Let G = GR(pr, s) be a Galois ring and k, w, η be positive integers.
If 1 ≤ k ≤ ps + 1 and w ≥ η(k − 1) + 1, there exists a (k,w; η) G-RMFE.

Proof. For any integer u, let G[X]≤u denote the set of polynomials over G with
degree at most u and let ∞u+1 be a formal symbol such that f(∞u+1) is the
coefficient of Xu in f ∈ G[X]≤u. Let S denote a set of representatives of all
cosets of the ideal (p) ⊂ G, and pick k pairwise distinct elements x1, . . . , xk from
S ∪ {∞k}. We have that |S| = ps, so one can pick at most ps + 1 elements.
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Now let G′ denote the degree-w extension of G, with generator ξ. Consider
the G-linear maps

E1 : G[X]≤k−1 → Gk : f 7→ (f(x1), . . . , f(xk))

E2 : G[X]≤w−1 → G′ : f 7→ f(ξ).

Before constructing the RMFE, we want to show that E1 and E2 are G-module
isomorphisms. It is clear E2 is an isomorphism. To show E1 is an isomorphism
too, we show that E1 is injective since |G[X]≤k−1| = |Gk|. There are two cases.

In the first case, assume ∞k /∈ {x1, . . . , xk}. Then {x1, . . . , xk} forms a com-
mutative subtractive subset of G. By [27, Corollary 9], the zero element 0 ∈ Gk
corresponds uniquely to the zero polynomial 0 ∈ G[X]≤k−1. Hence ker E1 is triv-
ial and so E1 is injective.

In the second case, assume xk = ∞k without loss of generality. Let f ∈
G[X]≤k−1 such that f(xi) = 0 for all 1 ≤ i ≤ k. In particular, f(∞k) = 0 and
thus f has degree at most k−2. By [27, Corollary 9], the remaining k−1 points
force f to be the zero function. Hence, ker E1 is trivial and so E1 is injective.

Now let x′1, . . . , x
′
k form a new set of points, where x′i = xi if xi ∈ S and

x′i =∞η(k−1)+1 otherwise. Define the map

E ′1 : G[X]≤w−1 → Gk : f 7→ (f(x′1), . . . , f(x
′
k)).

Now we construct ϕ = E2 ◦ E−1
1 and ψ = E ′1 ◦ E−1

2 . For any v1, . . . ,vη ∈ Gk, let
fi denote E−1

1 (vi). Since w ≥ η(k− 1)+ 1 by assumption,
∏η

i=1 fi(a) is mapped
by E−1

2 to the polynomial of degree η(k − 1) given by
∏η

i=1 fi. Hence,

ψ

(
η∏

i=1

ϕ(vi)

)
= ψ

(
η∏

i=1

fi(ξ)

)
=

((
η∏

i=1

fi(x1)

)
, . . . ,

(
η∏

i=1

fi(xk)

))
= v1 ∗ · · · ∗ vη.

Thus (ϕ, ψ) is a (k,w; η) G-RMFE.

Remark 1. A simplified version of the construction above, limited to G = Zpr

and leaving out ∞k, is given in Section 1.1 of [14], giving k ≤ p in that case. On
the other hand, when the characteristic of G is p (i.e. when G is a finite field),
η = 2, and w = η(k−1)+1 = 2k−1, we recover the construction of interpolation
RMFEs by Cascudo et al. in [7, Lemma 4].

Corollary 1. Let G = GR(pr, s). For any (k,w; η) G-RMFE constructed using
Theorem 1, k is bounded above as follows:

k ≤ min

{
ps + 1,

⌊
w − 1

η

⌋
+ 1

}
.

Furthermore, there exists a G-RMFE meeting this bound.

Proof. Recall the sufficient condition k ≤ ps + 1 and w ≥ η(k − 1) + 1 from
Theorem 1. Rearranging the second inequality, we get k + 1 ≤ (w − 1)/η. Since
k is an integer, k ≤ ⌊(w− 1)/η⌋+1 and the bound in Corollary 1 follows. Given
G, w, and η, setting the value of k to k = min {ps + 1, ⌊(w − 1)/η⌋+ 1} suffices
to construct a (k,w; η) G-RMFE by Theorem 1, completing the proof.
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4.3 Evaluating the recode map

The recode map π is crucial to ensuring an RMFE-packed elements can un-
dergo further multiplications. However, the map is costly to evaluate in the
BGV scheme. In this section we review two methods to evaluate the recode map
more efficiently, and implement both in our experiments later on.

Suppose we have a (k,w; η) G-RMFE (ϕ, ψ). By Proposition 3, π is of the

form π =
∑w−1

i=0 θiσ
si, where σs fixes G precisely.

– Method 1. Define projection maps τ1, . . . , τk where τi decodes an RMFE-
packed element α and extracts the ith component of the decoded RMFE
vector. More precisely,

τi : G′ → G : α 7→ ψ(α) = (a1, . . . , ak) 7→ ai.

We can then evaluate π by computing

π(x) =

k∑
i=1

τi(x)ϕ(ei),

where e1, . . . , ek are the canonical basis elements of (G)k. By Proposition 4,

τi(x) =
∑w−1

j=0 σ
sj(θix). It is a standard optimisation technique to compute

this sum in only logw automorphisms by

τi(x) = (id+ σs) ◦ (id+ σ2s) ◦ (id+ σ4s) ◦ · · · ◦ (id+ σ(w/2)s)(θix).

In total, this method computes π(x) with (k logw)-many automorphisms,
roughly (k + logw)-many additions, and 2k constant-ciphertext multiplica-
tions.

– Method 2. The standard Baby Step-Giant Step technique can be used to
factor the evaluation of π(x) as

π(x) =

⌈w/
√
w⌉∑

i=0

σsi

⌈
√
w⌉∑

j=0

σ−si(θi,j)σ
sj(x)

 ,

where some of the θi,j ’s might be 0. This requires roughly 2 ⌈
√
w⌉-many au-

tomorphisms, and roughly w-many additions and constant-ciphertext mul-
tiplications in total.

5 Adapting Bootstrapping for RMFE

In this section, we describe how we realise bootstrapping for RMFE-packed
ciphertexts. The main drawback of general bootstrapping is the need to perform
d-many digit extractions. On the other hand, thin bootstrapping requires one
digit extraction at the cost of packing fewer data within a single ciphertext.
By leveraging on RMFEs, we can bootstrap integer data RMFE-packed in a
thickly-packed ciphertext, using only a single digit extraction. We present our
adaptation of the thin bootstrapping algorithm for RMFE-packed ciphertext for
RMFE-packed ciphertexts in Algorithm 2.
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Algorithm 2: RMFE Bootstrap

Input: Noisy RMFE-packed ciphertext c
1 c1, · · · , ck ←− SlotsToCtxts(c);
2 foreach ci do
3 ModSwitch: Raise the modulus of ci to pe.
4 SlotsToCoeff: Send the ciphertext slots into polynomial coefficients.
5 InnerProduct: Homomorphically multiply with bootstrapping key.
6 CoeffToSlots: Send the polynomial coefficients into ciphertext slots.

7 end
8 c′ ←− CtxtsToSlots(c1, · · · , ck);
9 return DigitExtract(c′);

5.1 Splitting the Ciphertext

We introduce two new auxiliary functions SlotsToCtxts and CtxtsToSlots.
Let {x1,0, . . . , xk,0, . . . , x1,ℓ, . . . , xk,ℓ} be the message encrypted within a RMFE-
packed ciphertext. We assume that all xi,j are integers lying in Zp.

The function SlotsToCtxts splits a single RMFE-packed ciphertext into k-
many thinly-packed ciphertexts. More precisely, for 1 ≤ i ≤ k, the i-th thin
ciphertext encrypts {xi,0, . . . , xi,ℓ}. This can be achieved using either of the
following two methods, and we provide performance results of both methods in
our experiements later on.

– Method 1. Apply the projection maps τ1, . . . , τk from Subsection 4.3 on the
input. This method requires k log(w)-many automorphisms in total.

– Method 2. Apply the recode map, so that for 1 ≤ j ≤ ℓ, the jth SIMD slot
holds an RMFE-packed element of the form

∑k
i=1 xi,jϕ(ei) ∈ imϕ. Then we

use maps τ ′1, . . . , τ
′
k to extract the integer xi,j , i.e.

τ ′i : imϕ→ G :

k∑
i=1

xi,jϕ(ei) 7→ xi,j .

By Proposition 3, evaluating all projection maps τ ′1, . . . , τ
′
k only requires the

same k-many automorphisms on the input. This method requires roughly
(2
√
w + k)-many automorphisms in total.

The function CtxtsToSlots combines k-many thinly-packed ciphertexts into
one RMFE-packed ciphertext. Instead of linear maps, the simpler (and cheaper)
way to combine the various ciphertexts would be to first constant-multiply each
ciphertext with the appropriate basis element of imϕ, and then summing them
together to reconstruct an RMFE-packed ciphertext. We remark that Method 1
in Subsection 4.3 is basically calling SlotsToCtxts and then CtxtsToSlots.

As an additional functionality, it is also possible to use CtxtsToSlots to
compute other linear maps L : imϕ → G′ by similarly multiplying the split
ciphertexts with the appropriate precomputed constants from the image of the
basis of imϕ under L, and then summing them together.
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5.2 Digit extraction with RMFE

Let (ϕ, ψ) be a G-RMFE where G = GR(pe, s), where e ≥ 2 and s a proper
divisor of d. From now on, we assume that we only encode vectors (a1, . . . , ak) ∈
(Zpe)k ⊆ Gk. In normal bootstrapping, the digit extraction algorithm acts on
elements in the subring Zpe in each SIMD slot. In our case, we have RMFE-
encoded elements in each SIMD slot, and we wish to apply the digit extraction
algorithm on these RMFE-encoded elements while carrying over the operations
of digit extraction to the RMFE slots containing integers. However, there is a
technical challenge which we illustrate as follows.

The problem. Let Fe denote the Halevi-Shoup [19] lifting polynomial. A crucial
computation in digit extraction is given by the formula (x−Fe(x))/p. However,
we wish to do this same computation on RMFE-encoded elements. That is, for
β = ϕ((a1, . . . , ak)) we want to perform the following (unworkable) computation:

γ′ ← β − Fe(β),

γ ← γ′/p,

with the effect that

ψ(γ) =

(
a1 − Fe(a1)

p
, . . . ,

ak − Fe(ak)

p

)
mod pe−1.

This computation is likely to fail. While it is true that γ′ encodes multiples of p
since ψ(γ′) = (a1−Fe(a1), . . . , ak−Fe(ak)) by Proposition 7, γ′ itself is usually
not a multiple of p since β is allowed to be a ring extension element.

More generally, several steps in the digit extraction algorithm must yield a
multiple of p for the algorithm to continue, but they only do so if the input were
an integer. We first present a naive workaround, followed by our new technique.

Naive solution. For this solution we require a (k,w; η) RMFE (ϕ, ψ) where
η ≥ p. The idea is to simply apply the recode map π after every evaluation
of the lifting polynomial Fe, as shown in Algorithm 3. Let {e1, . . . , ek} be the
canonical basis of (G)k. We may assume that the element y in Algorithm 3 begins
with the form

y = ϕ((a1, . . . , ak)) =

k∑
t=1

atϕ(et)

since the input to digit extraction is a fresh RMFE encoding. Recoding the term
ui,j+1 resets it to be of the same form as y, with the RMFE data being the
coefficients. Thus we have that

y − π(Fe(ui,j+1)) =

k∑
t=1

atϕ(et)−
k∑

t=1

Fe(bt)ϕ(et) =

k∑
t=1

(at − Fe(bt))ϕ(et).

where b1, . . . , bk are the integers RMFE-packed into ui,j+1. Each (at − Fe(bt))
is divisible by p following the normal digit extraction algorithm, hence y −
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π(Fe(ui,j+1)) as a whole is divisible by p. Furthermore,

ψ(y/p) =

(
a1 − Fe(b1)

p
, . . . ,

ak − Fe(bk)

p

)
mod pe−1.

as desired, carrying over the action of digit extraction to the RMFE-packed data.

Algorithm 3: Naive Digit Extraction with RMFE

Input: z ∈ imϕ, e ∈ Z
1 u0,0 ←− z;
2 for j = 0, . . . , e− 2 do
3 y ← z;
4 for i = 0, . . . , j do
5 ui,j+1 ← Fe(ui,j);
6 y ← (y − Recode(ui,j+1))/p ; // recode after evaluating Fe

7 end
8 uj+1,j+1 ← y;

9 end
10 return ue−1,e−1;

Our solution. The naive solution requires (
∑e−1

n=1 n)-many evaluations of the
recode map, which can be costly in terms of latency and noise. We present our
new solution using novel correction maps that require only one evaluation of
the recode map at the end, no matter the value of e. This technique requires a
(k,w; η) RMFE (ϕ, ψ) where η ≥ pe−1. For 0 ≤ i ≤ e−1, define correction maps
Li : imϕ→ E such that for all x = ϕ(x1, . . . , xk),

Li(x) =

k∑
i=1

xiϕ(ei)
pi

.

Observe that L0 is simply the identity map on imϕ.
Algorithm 4 shows how these maps are introduced into digit extraction. Each

Li(x) can be computed cheaply before digit extraction using just additions and
constant multiplications in the CtxtsToSlots step. The evaluation of the re-
code map at the end does not require any ciphertext-ciphertext multiplications.
Hence, the multiplicative degree of Algorithm 4 is identical to that of conven-
tional digit extraction given in Algorithm 1.

Before showing that our technique overcomes the divisibility by p problem,
we require the following helpful lemmas.

Lemma 1. Let f(X) ∈ Zpe [X] be a monic polynomial of the form f(X) =
Xp + pg(X) for any g(X) ∈ Zpe [X]. Denote by fn the n-fold composition of f .
For any α, β ∈ GR(ps, e) and 1 ≤ n ≤ e−1, if α ≡ β mod p then fn(α) ≡ fn(β)
mod pn+1.
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Proof. Write β as α+pε for some ε ∈ GR(ps, e). We proceed by induction on n.
Consider the base case n = 1. We first have f(β) = (α+pε)p+pg(α+pε). By the
Binomial Theorem, (α+pε)p ≡ αp mod p2. Next, observe that g(α+pε) ≡ g(α)
mod p, meaning g(α+pε) = g(α)+px for some x ∈ GR(ps, e). Multiplying both
sides by p and taking modulo p2, we get pg(α + pε) ≡ pg(α) mod p2. Hence,
f(β) ≡ αp + pg(α) ≡ f(α) mod p2 as required.

Assuming fn(α) ≡ fn(β) mod pn+1 for some 1 ≤ n ≤ e − 2, we want to
show that f (n+1)(α) ≡ f (n+1)(β) mod pn+2. By the inductive hypothesis,

f (n+1)(β) = f
(
fn(α) + pn+1y

)
=
(
fn(α) + pn+1y

)p
+ pg

(
fn(α) + pn+1y

)
for some y ∈ GR(ps, e). The mod-pn+2 binomial expansion of (fn(α) + pn+1y)p

yields (fn(α))p. We have that g
(
fn(α) + pn+1y

)
≡ g(fn(α)) mod pn+1, imply-

ing g(fn(α) + pn+1y) = g(fn(α)) + pn+1z for some z. Multiplying both sides by
p and taking modulo pn+2, we get pg(fn(α) + pn+1y) ≡ pg(fn(α)) mod pn+2.
It follows that f (n+1)(β) ≡ (fn(α))p + pg(fn(α)) ≡ f (n+1)(α) mod pn+2.

Lemma 2. For any α ∈ GR(ps, e) and 1 ≤ n ≤ e, we have αpn ≡ σ(αpn−1

)
mod pn.

Proof. The proof is trivial when n = 1. For n ≥ 2, let f(X) = Xp ∈ Zpe [X].

Write αpn

as fn−1(αp) and σ(αpn−1

) as fn−1(σ(α)). Noting that αp ≡ σ(α)
mod p, Lemma 2 then follows by application of Lemma 1.

To show that Algorithm 4 resolves the problem of divisibility by p, we proceed
with an induction-style argument. We want to show that if division by p is
possible in the j-th iteration of the outer loop, then it is likewise possible in the
(j + 1)-th iteration.

Assume that the input is z =
∑k

t=1 atϕ(et) where a1, . . . , ak ∈ Zpe , and write
Fe(X) as Xp + pG(X). We begin with the base case where j = 0, y ← L1(z),
and u0,0 ← z. Then u0,1 ← Fe(z). We thus have that

y − u0,1 = L1(z)− zp − pG(z)

=

(
k∑

t=1

atϕ(et)
p

)
−

(
k∑

t=1

aptϕ(et)
p

)
− ϵ− pG(z)

=

(
k∑

t=1

(at − apt )ϕ(et)p
)
− ϵ− pG(z),

where ϵ is the component that is a multiple of p arising from the binomial
expansion of zp. Since at ∈ Zpe , we know that at− apt is divisible by p. Thus the
entire expression is also divisible by p, as required.

Assume that division by p is possible for some j-th iteration of the outer
loop, where j ≥ 0. This means that the following expression holds:

Lj+1(z)−u0,j+1
p

−u1,j+1

p −...

p − uj,j+1

p
= uj+1,j+1 mod pe−j−1, (1)
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Observe that Equation 1 can be rewritten as

Lj+1(z)− u0,j+1 − pu1,j+1 − · · · − pj+1uj+1,j+1 = 0 mod pe. (2)

Note that ui,j = F
(j−i)
e (ui,i). Substituting, we get

Lj+1(z)− F (j+1)
e (u0,0)− pF (j)

e (u1,1)− · · · − pj+1uj+1,j+1 = 0 mod pe.

We want to show that assuming Equation 2 holds, then the (j + 1)-th iteration
can be computed. More precisely, it suffices to show that the expression

Lj+2(z)− F (j+2)
e (u0,0)− pF (j+1)

e (u1,1)− · · · − pj+1Fe(uj+1,j+1) (3)

is divisible by pj+2. Indeed, by Lemma 1 we have that

F (j+2−i)
e (ui,i) ≡ F (j+1−i)

e (σ(ui,i)) mod pj+2−i,

which implies

piF (j+2−i)
e (ui,i) ≡ piF (j+1−i)

e (σ(ui,i)) mod pj+2.

Substituting this into Expression 3 and taking modulo pj+2, we get

Lj+2(z)− F (j+1)
e (σ(u0,0))− pF (j)

e (σ(u1,1))− · · · − pj+1σ(uj+1,j+1) (4)

≡ Lj+2(z)− σ
(
F (j+1)
e (u0,0) + pF (j)

e (u1,1) + · · ·+ pj+1uj+1,j+1

)
(5)

≡ Lj+2(z)− σ (Lj+1(z)) mod pj+2, (6)

where the step from Equation 5 to 6 is implied by Equation 2. To complete the
proof, we are left to show that Lj+2(z)−σ (Lj+1(z)) ≡ 0 mod pj+2. Indeed, by
Lemma 2 we have that

Lj+2(z)− σ (Lj+1(z)) ≡
k∑

i=0

ai

(
ϕ(ei)

pj+2

− σ
(
ϕ(ei)

pj+1
))
≡ 0 mod pj+2.

By enabling division by p, Algorithm 4 runs without failure. Since η is as-
sumed to be at least pe−1, the action of digit extraction is carried over correctly
to the integers RMFE-packed into the input z.

5.3 RMFE parameter selection

In the context of BGV, we fix the prime p and a cyclotomic order m, which
in turn fixes the SIMD slot degree d. The SIMD slot algebra just before digit
extraction is of the form E = GR(pe, d). We set η = p for Algorithm 3, and set
η = pe−1 for Algorithm 4. By Proposition 1, we have a tower of Galois rings

GR(pe, s) ⊆ GR(pe, sw) ⊆ E
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Algorithm 4: Digit Extraction with RMFE and correction mapping

Input: z ∈ imϕ, e ∈ Z
1 u0,0 ←− z;
2 for j = 0, . . . , e− 2 do
3 y ← Lj+1(z);
4 for i = 0, . . . , j do
5 ui,j+1 ← Fe(ui,j);
6 y ← (y − ui,j+1)/p;

7 end
8 uj+1,j+1 ← y;

9 end
10 ue−1,e−1 ← Recode(ue−1,e−1);
11 return ue−1,e−1;

where s, w ≥ 1 and sw divides d. Let G = GR(pe, s) and G′ = GR(pe, sw).
Theorem 1 allows us to build a G-RMFE given by ϕ : Gk → G′ ⊆ E and
ψ : G′ → Gk. In practice, we restrict the input space of ϕ to (Zpe)k ⊆ Gk, though
the map itself is actually G-linear by construction. The question then is which
parameter should be the independent and dependent variables for conducting
experiments. In our work, we chose w as the independent variable.

Motivation. Assuming encoding and decoding can be done in the clear, we
need only concern ourselves with the encrypted evaluation of the recode map π =
ϕ◦ψ : G′ → G′. By Proposition 3, so long as sw divides d, π is always represented
as an E-linear combination of w-many automorphisms of E no matter the value
of s. Hence the cost of recoding depends only on w.

It is observed experimentally that recoding is a major bottleneck in RMFE-
bootstrapping, hence it makes sense to take w as an independent variable, and
find the best RMFEs of dimension w that can encode into E. The following
example illustrates how RMFEs are chosen based on E and w.

Example 1. Let E = GR(113, 8192). Given w = 1024, we construct two RMFEs
of dimension w by Theorem 1. First, let s = 1. We construct an RMFE (ϕ1, ψ1)

ϕ1 : (Z113)
k1 → GR(113, 1024) ⊆ E,

ψ1 : GR(113, 1024)→ (Z113)
k1 .

By Corollary 1, maximising k1 yields k1 = min{11 + 1, ⌊1023/11⌋+ 1} = 12.
Now, let s = 2. Then the we have an RMFE (ϕ2, ψ2)

ϕ2 : (Z113)
k2 ⊆ GR(113, 2)k2 → GR(113, 2048) ⊆ E,

ψ2 : GR(113, 2048)→ GR(113, 2)k2 .

By Corollary 1 again, maximising k2 yields k2 = min{121+ 1, ⌊1023/11⌋+1} =
94. By Proposition 3, representing π2 takes the same number of E-elements as
π1. Notice that using higher values of s > 2 will still yield ks = 94. Thus we pick
(ϕ2, ψ2) as our candidate RMFE associated to w = 1024 and E.
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6 Implemenation and Performance

6.1 Implementation Details

The experiments were performed on an Intel® Xeon® Platinum 8368Q CPU
with a maximum turbo frequency of 3.7 GHz and 571 GB RAM. Multi-threading
was not used for the experiments.

Initialisation. The cyclotomic polynomial Φ32768(X) = X16384 + 1 was used
with varying primes p. The encryption scheme was initialized using HElib [22],
with bits = 400, resulting in the maximum ciphertext bit-width ranging from
538 to 541. Our implementation was estimated to have achieved at least 100-bit
security, using the lattice estimator by Albrecht et al. [1]. Magma [4] was used
to generate the RMFEs. The choice of primes and RMFE dimensions selected
for the experiments are given in Table 1.

Prime, p 3, 5, 7, 11, 13, 53, 59

RMFE Dimension, w 128, 256, 512, 1024

Table 1. Parameter choices.

Workflows tested. We implement two RMFE bootstrapping styles. The first
correction style uses our novel correction map technique in digit extraction.
Furthermore, CtxtsToSlots is used to compute the ciphertext to be passed into
digit extraction along with the images of this ciphertext under the correction
maps using constant multiplications and ciphertext additions. For this style, we
use RMFEs with η = pe−1. The second naive style uses the naive RMFE digit
extraction procedure of recoding after every evaluation of the lifting polynomial.
This style uses RMFEs with η = p.

Each bootstrapping style is further divided into two variants. The first vari-
ant, referred to as trace-and-merge, uses Method 1 for SlotsToCtxts and Method
1 for evaluating the recode map. The second variant, BSGS, uses Method 2 for
SlotsToCtxts and Method 2 for evaluating the recode map.

We thus have four bootstrapping workflows in total, which are benchmarked
against conventional thin bootstrapping. For bootstrapping parameters where
e = 2, we only test the performance of the naive style, since the correction style
does not reduce the number of recodes further in that case.

6.2 Measuring and Recording Performance

The complete experimental results are provided in Tables 4 and 5 in Appendix A.
All timings are averaged over ten runs. For each bootstrapping workflow we mea-
sure the number of rounds of squaring performed on the bootstrapped ciphertext,
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recoding where necessary, before decryption fails. The minimum among the ten
runs is reported as the number of remaining multiplications for that workflow.

To measure holistic performance, we compute the throughput metric given
by the following formula:

throughput :=
post-bootstrap capacity×#slots

latency
,

where #slots := k·ℓ, i.e. the total number of slots of an RMFE-packed ciphertext.
Latency is the average time taken (in seconds) for the bootstrapping workflow to
complete. For comparison, we compute and report the ratio of the throughput
of our workflows to that of vanilla thin bootstrapping.

For e ≥ 3, the performance of the trace-and-merge variant of the naive style
is too poor to consider, often producing ciphertexts that either cannot undergo
further multiplications or are no longer decryptable. This is likely due to the fact
that trace-and-merge recoding consumes more capacity than BSGS recoding,
and it is applied too many times when in the naive style. Hence, their results
are omitted from Table 5.

6.3 Experimental Results

Process
Corr. (TnM), Corr. (BSGS), Naive (TnM) Naive (BSGS),

k = 5, #rec = 1 k = 5, #rec = 2 k = 103, #rec = 6 k = 103, #rec = 7
Capacity Latency Capacity Latency Capacity Latency Capacity Latency

Initial 391.1 − 391.1 − 391.1 − 391.1 −
SlotsToCtxts 369.2 2.284 340.4 4.142 366.6 58.47 332.7 46.27

MultKey 346.5 4.732 346.6 4.753 346.5 102.3 346.7 99.26
CtxtsToSlots 333.8 0.078 333.7 0.075 325.3 0.418 325.3 0.410
DigitExtract 101.0 4.240 115.2 6.07 −6.61 377.7 57.63 32.61

Final 101.0 11.33 115.2 15.04 −6.61 538.9 57.63 178.5

Table 2. Breakdown of timings (in seconds) and changes in ciphertext capacity for
bootstrapping workflows for m = 32768, p = 5, w = 512. The number of recodes called
for each workflow is given by #rec.

Correction versus naive. Table 2 provides a detailed breakdown of timings
and changes in ciphertext capacity for the various RMFE bootstrapping work-
flows. The process MultKey refers to the execution of lines 3 to 6 in Algorithm 2,
that is, ModSwitch, InnerProduct, SlotsToCoeff, and CoeffToSlots.

From Table 2, the use of correction maps resulted in lower capacity loss for
RMFE digit extraction. In the trace-and-merge variant where naive RMFE digit
extraction produced an undecryptable ciphertext with −6 levels of capacity,
using correction maps yielded 101 levels. In the BSGS variant, using correction
maps raised the remaining ciphertext capacity from 57 to 115 levels.
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Additionally, we observe improvements in the latency of RMFE digit extrac-
tion. Using correction maps instead of naively recoding multiple times reduced
the execution time of RMFE digit extraction from 377.7 to 4.240 seconds for
the trace-and-merge variant. For the BSGS variant, we observe a reduction in
latency from 32.61 to 6.070 seconds. These improvements can be attributed to
the fact that the use of correction maps reduces the number of recodes required
to just one recode at the end.

Table 3 illustrates the practical impact of the RMFE bootstrapping work-
flows compared to conventional thin bootstrapping by comparing the number of
multiplications remaining, the throughput, and a total latency for various p.

The number of recodes needed for the naive style is dependent on the value
of e. Hence we expect correction style bootstrapping to yield stronger savings
in total latency and capacity consumption over the naive style for larger e (and
consequently smaller p). This trend can be observed in Table 3, where correction
maps produced an additional 2, 4, and 6 multiplicative depth for e = 3, 4, 5
respectively. This is a signifcant increase from the 2-3 multiplications allowed by
the naive BSGS workflow shown in the same table.

Prime, Workflow RMFE Capacity Remaining Latency Throughput
Ratio

p (e) Style/Variant Count, k Before/After Mults (sec) (capacity×slots/sec)

3
(5)

- 1⋆ 392/179 10 2.14 167.19 1.000
Corr./TnM 7 392/136 7 14.9 127.70 0.764
Corr./BSGS 7 392/150 8 16.7 126.00 0.754
Naive/BSGS 171 391/67 2 342 67.00 0.401

5
(4)

- 1⋆ 391/151 8 2.82 107.06 1.000
Corr./TnM 5 391/101 5 11.3 89.08 0.832
Corr./BSGS 5 391/115 6 15.0 76.48 0.714
Naive/BSGS 103 391/58 2 179 66.93 0.625

11
(3)

- 1⋆ 390/144 7 2.62 109.87 1.000
Corr./TnM 5 390/94 4 11.1 84.98 0.773
Corr./BSGS 5 390/108 5 14.7 73.22 0.666
Naive/BSGS 47 390/77 3 73.3 98.71 0.898

⋆HElib thin bootstrapping

Table 3. Comparison of bootstrapping timings, remaining multiplications, and
throughput for each workflow against HElib thin bootstrapping for m = 32768,
w = 512, and various p.

Trace-and-merge versus BSGS. Evaluating the recode map takes (k logw)-
many automorphisms in the trace-and-merge variant, and roughly (2⌈

√
w⌉) in

the BSGS variant. Thus we expect the performance of trace-and-merge variants
to benefit from small values of k, while the BSGS variants perform best when
k is large. Due to the recursive nature of the trace evaluation, trace-and-merge
usually consumes more capacity than the BSGS variant for the same style.
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This can be seen in detail in Table 2. For the correction style where k = 5,
RMFE digit extraction in the trace-and-merge variant takes almost 2 seconds
less at the cost of about 14 more levels of capacity compared to the BSGS
variant despite using the same number of recode calls. On the other hand for
the naive style where k = 103, the latency of RMFE digit extraction is more
than 10× longer in the trace-and-merge variant compared to the BSGS variant.
Furthermore the ciphertext produced by the naive trace-and-merge workflow is
undecryptable, while the BSGS variant still has 57.63 levels.

Generally the trace-and-merge technique improves the performance of the
correction style RMFE boostrapping, as illustrated in Table 3.

Holistic performance. Generally, using RMFE bootstrapping results in lower
throughput compared to conventional thin bootstrapping. This can be attributed
to increases in latency and capacity consumption in RMFE bootstrapping.

For the smallest primes p = 3, 5, we observe that using our correction map
technique in conjunction with the trace-and-merge recoding reduces the degra-
dation in throughput compared to just using the naive BSGS workflow. This is
illustrated in Table 3, where the naive BSGS workflows for p = 3, 5 have the
worst throughput ratios, and the correction trace-and-merge workflows have the
best. This is because the correction map technique significantly reduces capacity
loss and latency, and the trace-and-merge recoding further improves latency.

For p ≥ 7, naive style bootstrapping yields the best throughputs out of the
RMFE bootstrapping workflows. This is likely because naive RMFE digit extrac-
tion uses less recodes for the larger values of p compared to the smaller values.
Hence, savings in capacity and latency by the correction map and trace-and-
merge techniques are not as pronounced, and the larger value of k admitted by
RMFEs for the naive style begin to contribute more significantly to the through-
put. However, we stress that even in this case, the number of multiplications
remaining after naive BSGS workflow is often very low, and our correction map
technique is crucial in practice to raise the number multiplications and bring the
latency down to a more reasonable timing as illustrated in Table 3.

7 Conclusion and Future Work

In this work we developed bootstrapping for RMFE-packed ciphertexts, anal-
ogous to bootstrapping for thinly-packed ciphertexts for the case r = 1. Our
main contribution is the new technique of using novel correction maps to enable
Halevi-Shoup digit extraction on an RMFE-packed Galois ring element with-
out changing the multiplicative degree and requiring only a single recode at the
end. Our method distinguishes itself from conventional digit extraction that re-
quires the input to be an integer, and further distinguishes itself from the naive
workaround of recoding after every evaluation of the lifting polynomial which
incurs a large cost in latency and capacity for larger e.

We extend the thin bootstrapping procedure to take an RMFE-packed ci-
phertext as input, while still performing a single digit extraction. We proposed
two RMFE bootstrapping styles; the correction style which uses our new digit
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extraction technique, and the naive style which performs RMFE digit extraction
by recoding after every evaluation of the lifting polynomial. Each style is further
subdivided into two variants; the trace-and-merge variant which leverages the
recursive evaluation of trace maps, and the BSGS variant which does not.

All four RMFE bootstrapping workflows were implemented in HElib and
benchmarked against conventional thin bootstrapping, comparing latency, mul-
tiplications remaining, and throughput.

Our experimental results show that our correction map technique is effec-
tive at reducing capacity loss, providing up to 6 additional multiplicative depth
compared to the naive style of RMFE bootstrapping, which usually yields an
impractically low multiplicative depth of 2 to 3. Improvements in latency were
also observed. Trace-and-merge recoding was shown to further improve latency,
at the cost of some capacity. Using these two techniques together increases re-
maining multiplicative depth post-bootstrapping multiplications to a practically
useful number while bringing down the latency to a reasonable timing, at the
cost of lower RMFE packing capacity.

As future work, extending the use of correction maps to Chen-Han digit
extraction [8] can be investigated. The recode map continues to be a significant
bottleneck, making it a good target for further optimisation. It also remains to
be seen whether the MultKey portion can be done directly on RMFE-packed
ciphertext to avoid executing MultKey multiple times on the split ciphertexts.

This work represents the first non-trivial effort to unlock bootstrapping for
the FIMD technique [2], and gives an early systematic attempt at extending the
input space of digit extraction beyond the integers. It is hoped that the tech-
niques proposed in this work will inspire further research in these two directions.
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A Complete Experiment Results

Prime,
Workflow

RMFE RMFE Capacity Remaining Latency Throughput
Ratio

p (e, log2 p) Dimension, w Count, k Before/After Mults (sec) (capacity×slots/sec)

53
(2, 5.728)

Thin Bootstrap − 1 389/184 9 2.01 182.90 1.000

Naive
(trace-and-merge)

128 3 389/137 5 5.65 145.63 0.796
256 5 389/129 5 9.47 136.22 0.745
512 10 389/123 5 19.5 125.95 0.689
1024 20 389/120 5 41.4 115.80 0.633

Naive
(BSGS)

128 3 389/150 6 6.59 136.50 0.746
256 5 389/144 6 10.6 136.22 0.745
512 10 389/141 5 19.0 148.05 0.809
1024 20 389/140 5 35.6 157.22 0.860

59
(2, 5.883)

Thin Bootstrap − 1 388/182 8 2.12 171.99 1.000

Naive
(trace-and-merge)

128 3 389/131 5 5.80 135.45 0.788
256 5 389/128 5 9.61 133.25 0.775
512 9 389/123 5 17.7 124.72 0.682
1024 18 389/117 5 37.8 111.38 0.609

Naive
(BSGS)

128 3 389/146 6 6.74 129.94 0.756
256 5 389/143 6 10.7 133.42 0.776
512 9 389/140 5 18.1 139.3 0.810
1024 18 389/136 5 33.8 144.84 0.842

Table 4. Experimental results for m = 32768, e = 2, and varying p, w.

https://github.com/Microsoft/SEAL


30 Aung et al.

Prime,
Workflow

RMFE RMFE Capacity Remaining Latency Throughput
Ratio

p (e, log2 p) Dimension, w Count, k Before/After Mults (sec) (capacity×slots/sec)

3
(5, 1.585)

Thin Bootstrap − 1 392/179 10 2.14 167.19 1.000

Correction
(trace-and-merge)

128 2 392/146 7 4.36 134.03 0.802
256 4 392/140 7 8.38 133.70 0.800
512 7 392/136 7 14.9 127.70 0.764
1024 13 391/129 6 30.5 109.91 0.657

Correction
(BSGS)

128 2 392/155 8 5.67 109.28 0.654
256 4 392/152 8 10.5 115.52 0.691
512 7 392/150 8 16.7 126.00 0.754
1024 13 391/145 7 31.2 120.93 0.723

Naive
(BSGS)

128 43 392/85 2 62.1 117.64 0.704
256 86 392/76 2 142 92.19 0.551
512 171 392/67 2 342 67.00 0.401

5
(4, 2.322)

Thin Bootstrap − 1 391/151 8 2.82 107.06 1.000

Correction
(trace-and-merge)

128 2 392/110 5 4.93 89.32 0.834
256 3 392/108 5 7.05 91.91 0.858
512 5 392/101 5 11.3 89.08 0.832
1024 9 391/98 4 21.2 83.30 0.778

Correction
(BSGS)

128 2 392/120 6 6.40 75.00 0.701
256 3 392/120 6 9.53 75.60 0.706
512 5 392/115 6 15.0 76.48 0.714
1024 9 391/113 5 25.5 79.67 0.744

Naive
(BSGS)

128 26 392/68 2 41.7 84.80 0.792
256 52 392/65 2 83.0 81.38 0.760
512 103 392/58 2 179 66.93 0.625
1024 205 391/52 2 453 47.06 0.440

7
(4, 2.807)

Thin Bootstrap − 1 391/209 11 1.87 447.89 1.000

Correction
(trace-and-merge)

128 3 391/169 8 5.36 378.56 0.845
256 6 391/163 7 10.0 389.73 0.870
512 11 391/158 7 18.4 378.41 0.844
1024 21 391/153 6 36.2 355.42 0.794

Correction
(BSGS)

128 3 391/181 8 6.47 335.76 0.750
256 6 391/176 8 10.9 387.02 0.864
512 11 391/173 8 19.5 390.12 0.871
1024 21 391/171 7 33.5 428.53 0.957

Naive
(BSGS)

128 19 391/156 5 24.4 486.56 1.086
256 37 392/152 5 46.0 488.22 1.090
512 74 392/144 5 107 397.73 0.888
1024 147 391/139 5 282 289.54 0.646

11
(3, 3.459)

Thin Bootstrap − 1 390/144 7 2.62 109.87 1.000

Correction
(trace-and-merge)

128 2 390/100 5 4.76 84.00 0.765
256 3 390/96 4 6.86 83.90 0.764
512 5 390/94 4 11.1 84.98 0.773
1024 9 390/89 4 20.3 78.94 0.718

Correction
(BSGS)

128 2 390/113 5 6.22 72.66 0.661
256 3 390/109 5 9.28 70.41 0.641
512 5 390/108 5 14.7 73.22 0.666
1024 9 390/105 5 25.1 75.39 0.686

Naive
(BSGS)

128 12 390/86 3 19.2 107.76 0.981
256 24 390/81 3 37.2 104.41 0.950
512 47 390/77 3 73.3 98.71 0.898
1024 94 390/71 3 156 85.34 0.777

13
(3, 3.700)

Thin Bootstrap − 1 390/150 7 2.60 115.35 1.000

Correction
(trace-and-merge)

128 DNE − − − − −
256 2 390/98 4 5.16 76.05 0.659
512 4 390/95 4 9.29 81.89 0.710
1024 7 390/91 4 16.0 79.72 0.691

Correction
(BSGS)

128 DNE − − − − −
256 2 390/110 5 8.34 52.80 0.458
512 4 390/110 5 13.7 64.13 0.556
1024 7 390/107 5 22.3 67.30 0.583

Naive
(BSGS)

128 10 390/89 3 17.1 104.31 0.904
256 20 390/82 3 32.6 100.61 0.872
512 40 390/78 3 63.7 97.97 0.849
1024 79 390/74 3 132 88.73 0.769

Table 5. Experimental results for m = 32768, e ≥ 3, and varying p, w. RMFEs that are
impossible to construct are denoted DNE (does not exist). There are no results for the
naive style for p = 3, w = 1024 as the system ran out of memory during computation.
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