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Abstract. Falcon is one of post-quantum signature schemes selected
by NIST for standardization. With the deployment underway, its imple-
mentation security is of great importance. In this work, we focus on the
side-channel security of Falcon and our contributions are threefold.
First, by exploiting the symplecticity of NTRU and a recent decoding
technique, we dramatically improve the key recovery using power leak-
ages within Falcon Gaussian samplers. Compared to the state of the art
(Zhang, Lin, Yu and Wang, EUROCRYPT 2023), the amount of traces
required by our attack for a full key recovery is reduced by at least 85%.
Secondly, we present a complete power analysis for two exposed power
leakages within Falcon’s integer Gaussian sampler. We identify new sources
of these leakages, which have not been identified by previous works, and
conduct detailed security evaluations within the reference implementa-
tion of Falcon on Chipwhisperer.
Thirdly, we propose effective and easy-to-implement countermeasures
against both two leakages to protect the whole Falcon’s integer Gaus-
sian sampler. Configured with our countermeasures, we provide security
evaluations on Chipwhisperer and report performance of protected im-
plementation. Experimental results highlight that our countermeasures
admit a practical trade-off between efficiency and side-channel security.

Keywords: Lattice-Based Cryptography · Side-Channel Analysis ·
Falcon Signature Scheme · Gaussian Sampler · NTRU

1 Introduction

In 2022, the US NIST announced the first batch of PQC algorithms to be stan-
dardized: Kyber [SAB+22] for public-key encryption and key establishment and
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Dilithium [LDK+22], Falcon [PFH+22] and SPHINCS+ [HBD+22] for digital
signatures. Among three signature standards, Falcon has competitive overall per-
formance in particular the smallest communication cost (added sizes of a public
key and a signature). This makes Falcon an attractive option for quantum-safe
embedded systems.

For real-world deployment in embedded systems, implementation security
is of great importance. Adversaries can exploit additional information given
through side-channels, e.g. execution time, power consumption and electromag-
netic radiations of the chips, to assist cryptanalysis and to mount possibly dev-
astating attacks. Such physical attacks are nowadays the major threat to cryp-
tographic embedded devices. For this, the latest NIST status report on PQC
standardization process makes particular mention of side-channel analysis and
notes that “It is NIST’s hope and expectation that more such work will con-
tinue, especially with regard to protecting the implementations of the algorithms
announced for standardization”.

The side-channel security of Falcon is considered as a notably challenging
topic. Falcon is a lattice signature scheme based on the GPV hash-and-sign
framework [GPV08]. Its signing procedure relies on sophisticated lattice Gaus-
sian sampling and the way the secret key is used in signing is rather opaque.
This complicates identifying, exploiting and sealing side-channel leakages. In ad-
dition, Falcon signing algorithm requires extensive floating-point operations that
are notorious targets for side-channel attacks. While the reference implementa-
tion of Falcon can provably resist against timing attacks [HPRR20], the imple-
mentation does not come with protection against other types of side-channel
attacks, e.g. power analysis. Some recent works [KA21,GMRR22,ZLYW23] have
demonstrated side-channel vulnerabilities of Falcon implementations. Neverthe-
less, many operations of Falcon’s algorithms still require closer scrutiny and
systematic countermeasures are not well studied.

1.1 Related Works

Earlier side-channel attacks against lattice signatures targeted the Fiat-Shamir
type constructions [BHLY16,EFGT17,PBY17,BDE+18]. This spurred the de-
velopments of constant-time Gaussian sampling [ZSS20,KRR+18] and mask-
ing [BBE+18,BBE+19,MGTF19,GR19].

Side-channel security of hash-and-sign lattice signatures, especially Falcon,
greatly lags the Fiat-Shamir case in both attacks and protections. Fouque et al.
presented a theoretical timing attack against the round-1 implementation of Fal-
con in [FKT+20]. The identified leakage has been provably patched [HPRR20].
The signing procedure of Falcon has two operations that leak secret information:
pre-image computation and integer Gaussian sampling. Karabulut and Aysu
demonstrated an electromagnetic analysis attack targeting the multiplication
between two floating-point numbers on Falcon’s pre-image computation [KA21].
With regard to Gaussian samplers, Guerreau et al. proposed the first power
analysis attacks against Falcon [GMRR22] using the leakage in the base sam-
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pler. Later, Zhang et al. [ZLYW23] improved this attack and identified another
power leakage with respect to the sign flip in Falcon’s integer Gaussian sampler.

Regarding to side-channel protections of Falcon, very few works are in the
literature to our knowledge. Besides the isochronous implementation [HPRR20],
a very recent work [CC24] provided the first masking floating-point multiplica-
tion and addition, which protects Falcon’s pre-image computation against the
attack of [KA21]. For power analysis on Gaussian samplers, only initial counter-
measures were discussed along with corresponding attacks [GMRR22,ZLYW23]
and a thorough treatment remains largely unexplored.

1.2 Contributions
The goal of this work is to give a better understanding of the side-channel security
of Falcon from the aspects of both attack and defense. Our contributions are
mainly threefold.
1. In Section 4, we improve the key recovery in the power analysis attack

of [ZLYW23]. We make use of the symplecticity of NTRU to combine leak-
ages at multiple positions, which refines the accuracy of statistical learning.
Then a recent decoding technique [Pre23,LSZ+24] is applied to correct ap-
proximation errors. By this, we gain a substantial improvement: the number
of required traces for successful key recovery is reduced by ≥ 85%.

2. Section 5 gives a complete analysis of the half Gaussian leakage and the
sign leakage that are two crucial power leakages involved in Falcon’s integer
Gaussian samplers. We scrutinize each correlative component and identify
some new sources of power leakages in the reference implementation of Fal-
con. Furthermore, quantitative side-channel evaluations are carried out on
Chipwhisperer.

3. In Section 6, we propose practically effective and easy-to-implement coun-
termeasures against both half Gaussian leakage and sign leakage. We im-
plement the countermeasures in portable C and then perform side-channel
evaluations on Chipwhisperer. Our countermeasures lower the classification
accuracy of the template attack [CRR03] from 100% down to ≲ 58% (resp.
≲ 62%) for the half Gaussian leakage (resp. sign leakage), which makes key
recovery impractical. We evaluate the performance of the protected imple-
mentation on an Intel Core i5-1135G7 CPU. The overhead on the signing
speed of our countermeasures is around 3.5×. To the best of our knowledge,
our countermeasures are the first one protecting the whole Falcon Gaussian
sampler from both half Gaussian leakage and sign leakage.

The source code is available at https://github.com/lxhcrypto/FalconAna
lysis for sanity check and reproduction.

2 Preliminaries

Notations. We use bold lowercase letters for (row) vectors and denote by bi the
i-th entry of the vector b. Let ∥b∥ (resp. ∥b∥1 and ∥b∥∞) denote the Euclidean
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norm (resp. ℓ1-norm and ℓ∞-norm) of b ∈ Rn. We use bold uppercase letters
for matrices and denote by bi the i-th row of the matrix B. Let ⌊u⌉ be the
operation rounding the real number u to the closest integer. This is naturally
extended to u ∈ Rn by taking rounding coefficient-wisely. We write y ← D when
the random variable y is drawn from the distribution D. Let y ∼ D denote the
random variable y distributed over D and D(x) denote the probability of y = x.

Lattices. Given B = (b1, · · · ,bn) ∈ Rn×m of full rank, the lattice generated
by B is L(B) = {

∑n
i=1 xibi | xi ∈ Z} and B is called a basis.

Gaussians. Let ρσ,c(x) = exp
(
−∥x−c∥2

2σ2

)
be the Gaussian function over Rn

with standard deviation σ > 0 and center c ∈ Rn. Let DL,σ,c be the discrete
Gaussian over a lattice L defined by DL,σ,c(u) =

ρσ,c(u)∑
v∈L ρσ,c(v)

for any u ∈ L.
When L = Z, DZ,σ,c is called integer Gaussian that is of particular interest. The
half integer Gaussian is defined by D+

Z,σ,c(u) =
ρσ,c(u)∑

v∈N ρσ,c(v)
for any u ∈ N.

NTRU. Let R = Z[x]/(xn+1) with n a power of 2. In a typical NTRU scheme,
the secret is a pair of short (f, g) ∈ R2 and the public key is h = g/f mod q.
The NTRU lattice defined by h is LNTRU = {(u, v) ∈ R2 | u + vh = 0 mod q}.

One special basis of LNTRU , called NTRU trapdoor, is Bf,g =

(
g −f
G −F

)
where

F,G ∈ R such that fG− gF = q. We write Bf,g as B when the context is clear.

2.1 Falcon Signature Scheme

Falcon is an efficient instantiation of the GPV hash-and-sign framework [GPV08]
over NTRU lattices. Specifically, the key pair of Falcon consists in the NTRU
trapdoor basis Bf,g and public key h = g/f mod q. For compactness, Falcon
chooses (f, g) such that ∥(f, g)∥ ≈ 1.17

√
q as per [DLP14]. In this paper, we

mainly focus on the parameter set of Falcon-512 for the security level NIST-I,
in which n = 512 and q = 12289.

The signing procedure of Falcon is described in Algorithm 1. Its signing is
essentially to compute short (s1, s2) ∼ D(c,0)+L(B),σ such that s1+s2h = c mod q
where c = H(r∥msg) and r is the salt. Falcon samples it by the fast Fourier
sampler ffSampling [DP16]. The ffSampling sampler works on the FFT domain
and takes the so-called Falcon tree T, i.e. the Gram-Schmidt Orthogonalization
(GSO) of B, as the input. We omit the details of FFT and Falcon tree as they are
not necessary for understanding our work. The acceptance bound of signatures
is ⌊β2⌋ such that β = 1.1 · σ

√
2n where σ = 1.17

√
q · ηϵ(R2) and ηϵ(R2) is the

smoothing parameter.
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Algorithm 1: Sign

Input: Message msg, NTRU basis Bf,g and acceptance bound ⌊β2⌋
Output: A valid signature (r, s) of msg

1 r
$← {0, 1}320, c← H(r∥msg)

2 t← (FFT(c),FFT(0)) · FFT(Bf,g)
−1 ▷ pre-image computation

3 do
4 do
5 z← ffSampling(t,T) ▷ trapdoor sampling
6 s← (t− z) · FFT(Bf,g) ▷ s ∼ D(c,0)+L(B),σ

7 while ∥s∥2 > ⌊β2⌋
8 (s1, s2)← invFFT(s)
9 s← Compress(s2)

10 while s =⊥
11 return (r, s)

Floating-point representation. In the generation of Falcon signature and
Falcon tree, involved polynomials are represented in the FFT domain, whose co-
efficients are complex numbers. The real and imaginary part of complex numbers
are floating-point values in “double precision” (also called “binary64” format).
As per the reference implementation of Falcon, it follows the IEEE-754 standard
and uses unsigned 64-bit integer type to encode floating-point values with 53-bit
precision. The full 64-bit is divided into three parts: the sign s is specified by
the first most significant bit, the following 11 most significant bits represent the
exponent e and the remaining 52 least significant bits denote the mantissa m.
However, the mantissa m in effect takes 53-bit where 53rd bit remains 1 omitted
in the storage. These three parts (s, e,m) assemble into the floating-point value
which is given as follows:

x = (−1)s · 2e−1023 · (1 +m · 2−52).

In the 64-bit floating-point number, the exponent e contains 2046 values from
1 to 2046. More precisely, when e = 2047, the value x is either infinity or the
erroneous value (also known as NaN). Similarly, when e = 0, the value x is either
a zero or subnormal. In this format, the mantissa m is an integer such that
m ∈ [252, 253). In latter discussion, we write the floating-point representation as
FPR and Hamming weight as HW for simplicity.

3 Falcon’s Integer Gaussian Samplers and Their Leakages

This work focuses on the side-channel security with respect to Falcon’s integer
Gaussian samplers. Let us first briefly introduce the Gaussian samplers and
existing power leakages.
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3.1 Algorithmic Descriptions

Falcon uses the ring-efficient Klein-GPV algorithm [DP16] converting lattice
Gaussian sampling into a series of integer Gaussian samplings. To deal with
variable Gaussian parameters, Falcon implements the integer Gaussian sampler
based on rejection sampling and a fixed base sampler. To recap, there are three
levels of samplers in Falcon as illustrated in Figure 1. Our work targets the
integer sampler SamplerZ and the base sampler BaseSampler.

ffSampling:
s← DL(B),σ,c

SamplerZ:
z ← DZ,σ′,c

BaseSampler:
z+ ← D+

Z,σmax,0

Fig. 1: Flowchart of Falcon’s Gaussian samplers.

SamplerZ To sample from DZ,σ′,c with different (σ′, c), SamplerZ first draws
z+ ∼ D+

Z,σmax,0
using the base sampler, then computes a bimodal Gaussian

z ← b + (2b − 1)z+ via a random bit b, and finally applies rejection sampling
to guarantee the correct output distribution. The full algorithmic description is
presented in Algorithm 2. In Falcon-512, σmin = 1.2778 and σmax = 1.8205. In
addition, the reference implementation of SamplerZ is provably resistant against
timing attacks [HPRR20].

Algorithm 2: SamplerZ

Input: Center c and standard deviation σ′ ∈ [σmin, σmax] that are in FPR
Output: An integer z ∈ Z such that z ∼ DZ,σ′,c

1 r ← c− ⌊c⌋ ▷ r ∈ [0, 1)
2 ccs← σmin/σ

′

3 while (1) do
4 z+ ← BaseSampler()

5 b
$← {0, 1}

6 z ← b+ (2b− 1)z+

7 x← (z−r)2

2σ′2 − (z+)2

2σ2
max

▷ With the arithmetics of FPR

8 if BerExp(x, ccs) = 1 then ▷ reject sampling
9 return z + ⌊c⌋

10 end if
11 end while

6



Algorithm 3: BerExp

Input: x and ccs ≥ 0 that are in FPR
Output: 1 with probability ≈ ccs · exp(−x)

1 s′ ← ⌊x/ ln(2)⌋ ▷ s′ ∈ Z+

2 r′ ← x− s′ · ln(2) ▷ r′ ∈ [0, ln(2))
3 s′ ← min(s′, 63)

4 z′ ← ((ApproxExp(r′, ccs)≪ 1)− 1)≫ s′ ▷ z′ ≈ 264−s′ · ccs · exp(−r′)
5 i← 64
6 do ▷ This loop is not constant-time
7 i← i− 8, y $← {0, 1}8
8 w ← y − ((z′ ≫ i) & 0xFF)
9 while ((w = 0) and (i > 0))

10 return [[w < 0]]

In Algorithm 3, given inputs x = s′ · ln(2) + r′ and ccs ≥ 0, BerExp first
decomposes x into s′ and r′, then computes z′ ≈ 264 · ccs · exp(−x) and performs
lazy Bernoulli sampling to accept z with probability 2−64 · z′ ≈ ccs · exp(−x).
The subroutine ApproxExp computes approximate exp(−x) by polynomial ap-
proximation [ZSS20].

BaseSampler The base sampler BaseSampler is implemented with table-based
approach. More concretely, it uses the reverse cumulative distribution table
(RCDT) that consists of 18 items computed in 72-bit precision. To sample from
D+

Z,σmax,0
, BaseSampler draws a 72-bit random value u and determines the output

via successively comparing u and each table item RCDT[i]. Algorithm 4 shows
the algorithmic description.

Algorithm 4: BaseSampler

Input: -
Output: An integer z+ ∼ D+

Z,σmax,0

1 u
$← {0, 1}72

2 z+ ← 0
3 for i = 0, · · · , 17 do
4 z+ ← z+ + [[u < RCDT[i]]]
5 end for
6 return z+ ▷ z+ ∈ {0, · · · , 18}

3.2 Power Leakages

In context of power analysis, Falcon’s integer Gaussian samplers currently exist
two kind of leakages, known as half Gaussian leakage and sign leakage. Two
leakages can be exploited to mount key recovery attacks [GMRR22,ZLYW23].
Next, we briefly recall these two leakages.
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Half Gaussian Leakage Within the Falcon reference implementation, Guer-
reau et. al [GMRR22] first observed the visible differences in power consumption
by practical simple power analysis in BaseSampler. More concretely, the different
Hamming weight of the comparison [[u < RCDT[i]]] (line 4, Algorithm 4) leads to
significant power consumption, which involves at least 8-bit power leakage. This
allows to accurately distinguish z+ = 0 or not. The leakage of z+, thus called
half Gaussian leakage, can be combined with statistical learning techniques to
recover the signing key as shown in [GMRR22,ZLYW23]. Besides BaseSampler,
the half Gaussian leakage spreads to sign flip of z, calculation of x, BerExp and
operation “return” in SamplerZ. A complete analysis of this leakage is given in
Section 5.1.

Sign Leakage The sign leakage was first identified and exploited in [ZLYW23]
within Falcon implementation. To be specific, the sign leakage has been shown
to exist in the generation of sign b, sign flip [[z ← b + (2b − 1)z+]] (line 6,
Algorithm 2) and computation [[x← (z−r)2

2σ′2 − (z+)2

2σ2
max

]] (line 7, Algorithm 2). In this
work, we further identify this leakage within the rejection sampling BerExp and
the operation “return” in SamplerZ. Detailed analysis is provided in Section 5.2.

4 Improvements on the Key Recovery of [ZLYW23]

In [ZLYW23], Zhang et al. presented a side-channel assisted key recovery attack
on Falcon. They exploited the half Gaussian leakage and sign leakage to filter
signatures in specific domains, and then extract an approximate signing key via
statistical learning. For a full key recovery, they resorted to exhaustive enumer-
ation to correct approximate errors. This is only applicable to very small errors,
thus requires a large number of power traces.

In this section, we further make use of the symplecticity of NTRU to re-
fine the statistical learning accuracy and combine some recent decoding tech-
nique [Pre23,LSZ+24] to refine the key recovery. We dramatically reduced the
number of required traces by at least 85%. Detailed results are shown in Table 1,
which compares the required traces with success rate at least 25%.

Table 1: Number of required traces by [ZLYW23] and our attack for key recovery
against Falcon-512.

Half Gaussian leakage Sign leakage Both two leakages

[ZLYW23] 220,000 170,000 45,000
This work 27,500 25,000 6,500

Vs. ↓ 88% ↓ 85% ↓ 86%
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4.1 Refining the Learning Accuracy with NTRU Symplecticity

In [ZLYW23], the attack starts with using power leakages of the (2n − 1)-th
integer sample z2n−1 to filter the signature s =

∑2n
i=1 yi · b∗

i with y1 in the
specific range, where b∗

i is i-th row of the GSO of the Falcon trapdoor B. Then
the attack computes an approximate b1 by statistical learning. We observe that
the signatures filtered by the samples z2n, z1 and z2 can be directly used to refine
the approximation of b1 due to the algebraic properties of the Falcon basis.

Falcon uses a Gaussian sampler based on fast Fourier orthogonalization [DP16],
which is a ring-efficient Klein-GPV sampler performed on the NTRU trapdoor
basis in the FFT order. Hence, the samples z2n−1, z2n, z1 and z2 respectively cor-
respond to b∗

1, b∗
n/2+1, b∗

3n/2 and b∗
2n. According to the symplecticity of NTRU

bases [GHN06], we have

b∗
1

∥b∗
1∥

=
b∗
n/2+1

∥b∗
n/2+1∥

·P = −
b∗
3n/2

∥b∗
3n/2∥

·P · J ·Q =
b∗
2n

∥b∗
2n∥
· J ·Q

where P =


−In/2

In/2
−In/2

In/2

, J is a 2n × 2n reversed identity matrix

and Q =

(
−In

In

)
. The power leakage analysis of z2n, z1 and z2 is essentially

the same with that of z2n−1. Therefore, the signatures filtered by z2n−1, z2n, z1
and z2 can be used to learn a more accurate direction of b1, while other zi’s
cannot refine the learning straightforwardly.

Basically, compared with [ZLYW23], one trace can contribute three addi-
tional leakages carrying the information of b1. As a consequence, nearly 4 times
samples yields a better learning accuracy. Then we present how to transform
the signatures with filtered z2n, z1 and z2 into equivalent ones with filtered
z2n−1. Let S = ∅ be the initialized filtered signature set. We assume that every
signature s = (s1, s2) is determined by the exploitable power leakage, i.e. half
Gaussian leakage, sign leakage or both. The transformation proceeds as follows:

– For z2n−1, S = S ∪ {s},
– For z2n, S = S ∪ {s ·P},
– For z1, S = S ∪ {−s ·P ·Q · J},
– For z2, S = S ∪ {s ·Q · J}.

4.2 Correcting Errors with Decoding Technique

By refined learning, one can obtain a noisy vector b′ = ((b′)(1), (b′)(2)) of the
secret basis vector b = (b(1), b(2)) i.e. b1 = (g,−f) ∈ R2. Let b′ = b + e. As
per experimental results, ∥e∥∞ < 1 when a moderate number of traces are used.
For this case, v = ⌊b′⌉ − b = (v(1), v(2)) ∈ {−1, 0, 1}2n. The error v can be
eliminated by exhaustive search or lattice reduction, however these methods are
costly unless v is well-bounded, say ∥v∥1 < 10.
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To improve the practicality of attacks, we make use of the decoding technique
introduced by Prest [Pre23]. This method turns out to be applicable to v of
much larger size, say ∥v∥1 > 50, thus leads to a great reduction on the number
of required traces. Specifically, Prest’s decoding technique is based on a simple
observation that if the half coefficients of b′ are exactly determined, then one
can recover the entire NTRU secret by solving linear equations. To this end, it
suffices to recover n secret coefficients of b.

Slightly different from Prest’s technique [Pre23], we employ the probability-
based method of [LSZ+24] to select the half coefficients of b′. In this setting,
we simply model e = b′ − b as a 2n-dimensional spherical Gaussian vector of
standard deviation σ and center 0. For simplistic hypothesis, it’s a simple model
that is sufficient to further improve our above refined results. With regard to σ,
it is inversely proportional to the number of signatures S used in the recovering
of v. In our setting, we can approximate σ ≈ K/

√
S with some fixed constants

K, which can be experimentally obtained by curve fitting (see Figure 2).
As illustrated above, we can guess the best half coefficients of b′ according to

the fractional part of b′i. It can be verified that the probability of vi = ⌊b′i⌉−bi = 0

is φσ(xi) =
ρσ(xi)

ρσ(xi+Z) (see Lemma 4 of [LSZ+24]) where known value xi = b′i−⌊b′i⌉.
By exploiting such probability-based strategy, for noisy vector b′, we can in effect
select n coefficients with the smallest fractional part of b′i, i.e. correctly rounded
with the highest probability. Thus, we have the probability pi that is computed
by φσ(xi) for i-th coefficient of the vector x = (x1, · · · , x2n) = b′ − ⌊b′⌉. We
further sort the probability pi in decreasing order as follows:

0 ≤ p1 ≤ p2 ≤ · · · ≤ p2n−1 ≤ p2n ≤ 1.

As shown above, the best half of coefficients with highest probability can be
effectively guessed. Then, we have the equation b(1)+b(2) ·h = 0 mod q and then
⌊(b′)(1)⌉+ ⌊(b′)(2)⌉ · h = v(1) + v(2) · h mod q. It means that we can obtain v by
solving the linear system and recover b entirely.

4.3 Experimental Results

Then, we experimentally verify the effectiveness of aforementioned approach on
Falcon-512 instances. We use the same power leakages as in [ZLYW23], refine
the statistical learning with the algebraic properties of Falcon trapdoor and fi-
nally mount a key recovery using the decoding technique. We greatly reduce
the measurement cost compared to [ZLYW23]. For the attack using solely half
Gaussian leakage, one can fully recover the signing key with 27, 500 traces on
14 out of 40 instances. For the attack using solely sign leakage, one can com-
pletely recover the secret with 25, 000 on 24 out of 40 instances. When the attack
simultaneously uses both two leakages, one can launch a full key recovery by de-
coding with 6, 500 traces on 15 out of 40 instances. Figure 2 shows more detailed
experimental results.
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Fig. 2: Experimental results of refined key recovery attacks against Falcon-512
respectively using half Gaussian leakage (left), sign leakage (middle) and both
two leakages (right). Figures (a),(b),(c) are for the measures of some constants
K through curve fitting and (d),(e),(f) are for the number of successes by refined
attacks. Experimental measures are over 40 instances.

5 Complete Analysis of Half Gaussian and Sign Leakages

In [GMRR22,ZLYW23], they identified some sources of half Gaussian leakage
and sign leakage and gave empirical countermeasures. Unfortunately, even with
their countermeasures, one can still learn the sensitive values with high proba-
bility (see Section 6.1 for more details). In this section, we further discover some
new sources of two leakages by a complete power analysis on the Falcon integer
Gaussian sampler SamplerZ. With our new identified leakage sources, one can
also learn the sensitive values with high accuracy.

5.1 Power Analysis on Half Gaussian Leakage

The half Gaussian leakage is used to classify whether the output of BaseSampler
z+ = 0 or not. Besides BaseSampler, this leakage also exists in the following
operations of SamplerZ including the sign flip of z, the computation of x, the

11



rejection sampling BerExp and the operation “return”. We next analyze the half
Gaussian leakage throughout SamplerZ.
Half Gaussian leakage in BaseSampler. In BaseSampler, the comparison
[[u < RCDT[i]]] (line 4, Algorithm 4) is the significant source of half Gaussian
leakage first identified in [GMRR22]. More specifically, [[u < RCDT[i]]] is com-
pleted by three successive subtractions with a carry bit. The entries of RCDT
and u are split into three 24-bit limbs stored in 32-bit registers. For 32-bit two’s
complement, the first 8 most significant bits are regarded as “sign bits” which
enhances power leakages. When [[u < RCDT[i]]] returns true, 8 most significant
bits of 32-bit register are all set 1. Otherwise, 8 most significant bits remain 0.
The Hamming distance is 8 for the “sign bits”. In addition, the increments of
z+ also produce half Gaussian leakage, but this part is minor compared to the
leakage from [[u < RCDT[i]]].
Half Gaussian leakage in the sign flip of z. The sign flip [[z ← b+(2b−1)z+]]
(line 6, Algorithm 2) also leaks the information of z+. When z+ = 0, the sign
flip returns z ∈ {0, 1}. The dominating power leakage of the sign flip stems from
[[(2b − 1)z+]]. Regardless of the random bit b, the Hamming weight differences
exist between z+ = 0 and z+ ∈ {1, · · · , 18}. Thus, the largest Hamming weight
gap is between z+ = 0 and z+ = 15, which happens rarely. In addition, (2b−1) =
−1 further enlarges the Hamming weight difference by 32-bit two’s complement,
since z and z+ are both stored in the 32-bit registers.
Half Gaussian leakage in the computation of x. Concretely, [[x← (z−r)2

2σ′2 −
(z+)2

2σ2
max

]] (line 7, Algorithm 2) is first derived by using a series of FPR arithmetics.
It is split into three parts: [[x1 ← (z−r)2

2σ′2 ]], [[x2 ← (z+)2

2σ2
max

]] and [[x ← x1 − x2]].
We mainly focus on the analysis of [[x2 ← (z+)2

2σ2
max

]] which is the most relevant
to the half Gaussian leakage. To compute x2, z+ is first transformed into a
floating-point number with FPR for compatibility. The maximal difference in
Hamming weight is 10 when z+ = 0 and z+ ̸= 0 for [[(z+)2]]. Then x2 is fulfilled
and further enlarges the gap of Hamming weight. As shown in Table 2, the
difference in Hamming weight of x2 is up to 39, which makes power consumption
more significant. The computation of x1 is indirectly related to half Gaussian
leakage and takes the information of z+ yet. It’s noted that [[x← x1 − x2]] also
amplifies the half Gaussian leakage. On the whole, the computation of x involves
many FPR arithmetics, including subtraction, multiplication and square, which
extensively increases the Hamming weight gap and power consumption for half
Gaussian leakage.
Half Gaussian leakage in BerExp. The subroutine BerExp takes x as one
of inputs and its computations are also relevant to half Gaussian leakage. More
precisely, the decompositions [[s′ ← ⌊x/ ln(2)⌋]] and [[r′ ← x − s′ · ln(2)]], and
the computation of z′, can also cause the half Gaussian leakage. However, this
leakage is relatively weak in BerExp.
Half Gaussian leakage in “return”. At the end of SamplerZ, it returns
[[z+⌊c⌋]]. It’s clear that the “return” operation also exposes half Gaussian leakage,
since z carries the information of z+. For each sampling, the center c can be seen
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Table 2: The FPR and HW of [[(z+)2]] and [[x2 ← (z+)2

2σ2
max

]] from z+ = 0 to z+ = 6

z+ FPR of [[(z+)2]] HW of [[(z+)2]] FPR of x2 HW of x2

0 0X0000000000000000 0 0X0000000000000000 0
1 0X3FF0000000000000 10 0X3FC34F8BC183BBC2 34
2 0X4010000000000000 2 0X3FE34F8BC183BBC2 35
3 0X4022000000000000 3 0X3FF5B97D39B4333A 39
4 0X4030000000000000 3 0X40034F8BC183BBC2 27
5 0X4039000000000000 5 0X400E2C4A5E5DD55F 31
6 0X4042000000000000 3 0X4015B97D39B4333A 31

as random and thus masks partial information of z+. Interestingly, one can still
detect the half Gaussian leakage within the operation “return” on more precise
devices.

5.2 Power Analysis on Sign Leakage

The sign leakage is used to distinguish z ≤ 0 or z ≥ 1, first exploited in [ZLYW23].
For this leakage, [ZLYW23] only gave detailed side-channel analysis towards the
generation of b, the sign flip of z and the calculation of x. However, in SamplerZ,
the rejection sampling BerExp and the operation “return” also reveal the sign
information.
Sign leakage in the generation of b. In SamplerZ, the sign of z is determined
by the random bit b. The step [[b

$← {0, 1}]] (line 5, Algorithm 2) is original source
of the sign leakage (discussed in [ZLYW23]). The Hamming distance is only 1
between b = 0 and b = 1. Even considering transfer on the bus or storage in the
register, the magnitude of power consumption is approximately 1-bit during the
generation of b.
Sign leakage in the sign flip of z. For [[z ← b + (2b − 1)z+]] (line 6, Algo-
rithm 2), when b = 0, the sign is flipped and it outputs [[z ← −z+]]. Otherwise,
it returns [[z ← 1+ z+]]. The significant power consumption and large Hamming
distance exist in these two cases, which are shown in the Table 3. For 32-bit
two’s complement, the negative values take large Hamming weight. On the con-
trary, the positive ones have small Hamming weight. In particular, the maximal
Hamming distance is 31 for the case z = 1 and the case z = −1. As shown
in [ZLYW23], the sign leakage can be easily identified in the sign flip of z.
Sign leakage in the computation of x. The sign leakage also involves in
the computation of [[x ← (z−r)2

2σ′2 − (z+)2

2σ2
max

]] (line 7, Algorithm 2). The computa-
tion of [[x2 ← (z+)2

2σ2
max

]] is irrelevant to the sign leakage, thus we mainly analyze
[[x1 ← (z−r)2

2σ′2 ]]. Specifically, the 32-bit integer z is first converted into FPR, then
minus center r, and finally the following square and multiplication are performed.
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Table 3: The two’s complement numbers and HW of z from z = −3 to z = 4

z 32-bit two’s complement HW

-3 b'11111111 11111111 11111111 11111101' 31
-2 b'11111111 11111111 11111111 11111110' 31
-1 b'11111111 11111111 11111111 11111111' 32
0 b'00000000 00000000 00000000 00000000' 0
1 b'00000000 00000000 00000000 00000001' 1
2 b'00000000 00000000 00000000 00000010' 1
3 b'00000000 00000000 00000000 00000011' 2
4 b'00000000 00000000 00000000 00000100' 1

Table 4 exhibits the Hamming weights of some example cases. From z = −3 to
z = 4, the maximal difference in Hamming weight of [[(z − r)2]] is 25 for z = 0
and z = 1, and the minimal one is 0 for z = −1 and z = 3. With respect to the
results of x1, the corresponding maximal difference in Hamming weight is 29 for
z = −1 and z = 3, and the minimal one is 0 for z = −2 and z = 4. In practice,
the average difference in Hamming weight is not very large between the cases
z ≤ 0 and z ≥ 1.

Table 4: The FPR and HW of [[(z− r)2]] and [[x1 ← (z−r)2

2σ′2 ]] from z = −3 to z = 4

(z, r) FPR of [[(z − r)2]] HW of [[(z − r)2]] FPR of x1 HW of x1

(-3, 0.9) 0X402E6B851EB851EB 30 0X40050D4985C1FE3B 27
(-2, 0.8) 0X401F5C28F5C28F5B 31 0X3FF5B3D1F00E2C4A 34
(-1, 0.7) 0X40071EB851EB851E 28 0X3FE0000000000000 9
(0, 0.6) 0X3FD70A3D70A3D70A 34 0X3FAFE3A76B2EF2B7 42
(1, 0.5) 0X3FD0000000000000 9 0X3FA6253443526171 29
(2, 0.4) 0X40047AE147AE147C 27 0X3FDC5894D10D4988 29
(3, 0.3) 0X401D28F5C28F5C2A 28 0X3FF42E0FF1D3B599 38
(4, 0.2) 0X402CE147AE147AE1 28 0X4003FC74ED65DE57 34

Sign leakage in BerExp. As discussed above, the input x of BerExp carries the
sign leakage. Similar to the half Gaussian leakage, the sign leakage also spreads
to the decomposition of x, including [[s′ ← ⌊x/ ln(2)⌋]] and [[r′ ← x− s′ · ln(2)]],
the polynomial approximation ApproxExp and the right shift operation. However,
BerExp exposes less information of the sign b, as the sign leakage might be weaken
in the computation of x.
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Sign leakage in “return”. For [[z + ⌊c⌋]], the randomly generated center c
cannot entirely conceal the information of the sign b. Therefore, the operation
“return” in SamplerZ can also identify the sign leakage as expected.

5.3 Practical Evaluations

Experimental setup. We perform power analysis and run the reference im-
plementation of Falcon (with the irrelevant delay operation used to separate
different parts of leakages) on a Chipwhisperer-Lite, along with STM32F415
UFO target board (ARM Cortex-M4). The power traces of SamplerZ (see Al-
gorithm 2) are collected by Picoscope 3206D at a real-time sampling rate of
1GSa/s, attached with a Mini-Circuits 1.9 MHz low-pass filter. In order to align
the power traces, we ignore the traces in which a restart occurs, i.e. we collect the
traces of SamplerZ with the acceptance rate ≈ σmin

σmax+0.4 for all following power
analysis experiments.

To roughly predict the existence of both two leakages, we severally collect
10, 000 traces with random centers c, standard deviation σ′ = 1.7 and random
seeds, then compute the Signal-to-Noise Ratio (SNR) for SamplerZ using the
binary information of b and z+, which are shown in Figure 3 and Figure 4.

Furthermore, we exploit different parts of power leakages to perform the
Gaussian template attack [CRR03], which displays the magnitude of power leak-
age. During the profiling phase, we select the training sets where the number of
traces is from 70 to 110, 000, to obtain different multivariate probability mod-
els. In the next attack phase, we collect 5659 traces (filtered in 10, 000 traces,
evaluation set) and respectively perform the single-trace attack to calculate the
classification accuracy for half Gaussian leakage (see Figure 5) and sign leakage
(see Figure 6). In order to economize computational resources and measures, for
every part of power leakages, we first choose the points (with the SNR values
≥ 0.001) of traces, then perform principal components analysis (PCA) before the
first profiling and following attack phase, and then empirically select the first 65
principal components as points of interest (POIs) to launch Gaussian template
attack.
Evaluation for half Gaussian leakage. Figure 3 illustrates the full SNR curve
of SamplerZ and it is roughly divided into five sub-graphs for clarity. Clearly,
the SNR values from x are much larger than that of other four parts, which
is due to the FPR arithmetics. The zoomed-in graphs show that z and BerExp
own comparably close SNR values for half Gaussian leakage. Similar cases hold
for BaseSampler and “return”. Figure 5 exhibits the classification accuracy with
respect to the half Gaussian leakage. By consuming few traces for profiling, the
leakages in x allow a perfect classification, i.e. 100% accuracy. Using the leakages
in BaseSampler, the classification accuracy can achieve ≈ 98% (≈ 94% accuracy
in [GMRR22] with Chipwhisperer-Lite capture board). Moreover, solely using
the leakages in z, the percentage of traces, which are correctly classified, is up
to ≈ 83%. The leakages of BerExp result in the accuracy ≈ 86%. We finally
evaluate the operation “return” and the corresponding classification accuracy is
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≈ 72%. To summarize, for the single-trace attack phase, the leakages in x are
more significant than that of other four parts.

(a) The total SNR curve of SamplerZ for half Gaussian leakage.
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Fig. 3: SNR values of SamplerZ (see Algorithm 2) for half Gaussian leakage. The
first graph (a) is the full curve and roughly split into the following five sub-
graphs (b), (c), (d), (e), (f), which are respectively for BaseSampler, the sign flip
of z, the computation of x, the rejection sampling BerExp, the operation “return”
(line 4, 6, 7, 8, 9 of Algorithm 2).
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(a) The total SNR curve of SamplerZ for sign leakage.
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Fig. 4: SNR values of SamplerZ (see Algorithm 2) for sign leakage. The first graph
(a) is the full curve and roughly split into the following sub-five graphs (b), (c),
(d), (e), (f), which are respectively for the generation of b, the sign flip of z, the
computation of x, the rejection sampling BerExp, the operation “return” (line 5,
6, 7, 8, 9 of Algorithm 2).
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Fig. 5: The classification accuracy for SamplerZ’s half Gaussian leakage.
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Fig. 6: The classification accuracy for SamplerZ’s sign leakage.

Evaluation for sign leakage. The sign leakage was first identified and eval-
uated on an ARM Cortex-M4 STM32F407IGT6 microprocessor in [ZLYW23].
They also used Picoscope 3206D, equipped with 1.9 MHz filter, to collect traces.
For similar template attacks, the accuracies are around 52%, 90% and 100% by
respectively using these leakages in the generation of b, the sign flip of z and the
computation of x. In our work, we choose a more precise and universal platform
which is Chipwhisperer-Lite attached with STM32F415 UFO target board, to
evaluate the sign leakage. We also compute the full SNR curve of SamplerZ with
respect to the random bit b and then split it into five sub-graphs (see Figure 4).
For the sign leakage, the SNR values of x are significantly smaller than that for
half Gaussian leakage (see Figure 3). The sign flip of z and the computation of x
have roughly close SNR values. Similar cases hold for BerExp and operation “re-
turn”. By contrast, the generation of b admits the smallest SNR values by peak
clusters, due to the only 1-bit Hamming weight difference. We also evaluate the
classification accuracy for sign leakage by performing template attack. As shown
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in Figure 6, spending few traces in profiling phase, the leakages in z or x can
contribute to perfect classification (100% accuracy). Solely using the leakages
in BerExp, the corresponding accuracy is around 78% for correctly determining
b. Similarly, the leakages in operation “return” give almost 77% classification
accuracy. By contrast, for the generation of b, the classification accuracy is at
most ≈ 75%.

6 Countermeasures against Two Leakages

In this section, we propose effective and easy-to-implement countermeasures
against both half Gaussian leakage and sign leakage on SamplerZ. Side-channel
evaluations on Chipwhisperer show that our countermeasures reduce the clas-
sification accuracy of template attacks down to ≲ 58% for the half Gaussian
leakage and ≲ 62% for the sign leakage (see comparison in Table 5). For such
low accuracy, even 10 million traces is still far insufficient for practical key re-
covery as illustrated in [ZLYW23]. In addition, we evaluate the performance of
our countermeasures on an Intel Core i5-1135G7 CPU. For the protected imple-
mentation, the overhead on signing is around 3.5× compared to the reference
implementation of Falcon-512 (see more details in Table 6 and 7).

6.1 Countermeasures

Countermeasures against Half Gaussian Leakage As shown in Section 5.3,
the half Gaussian leakage is more prominent than the sign leakage and is too in-
delible to mitigate by merely adding random noise. In [GMRR22], Guerreau et al.
only proposed a countermeasure to reduce half Gaussian leakage in BaseSampler
and validated the effectiveness on their experimental environment. However, to
systematically mitigate the half Gaussian leakage, all sources of the leakage in
SamplerZ should be taken into account, which complicates the protection.
Countermeasure for BaseSampler. While the countermeasure of [GMRR22]
is claimed to have at most 1-bit leakage, advanced acquisitions and classification
methods can still achieve a relatively high accuracy. We evaluate their counter-
measure on Chipwhisperer-Lite along with STM32F415 UFO target board, use
template attacks for classification, and finally achieve ≈ 97% accuracy. Note that
the leakage concentrates on the last subtraction of [[u < RCDT[i]]]. To this end,
we propose a new countermeasure for this (see Algorithm 5) by using a simple
trick to nearly eliminate the difference in Hamming weight. More specifically,
u⟨2⟩ and RCDT[i]⟨2⟩ are the 24 most significant bits of 72-bit random value u
and entry RCDT[i], which are stored in 32-bit registers. In addition, the carry
bit cc is related to the first two subtractions of [[u < RCDT[i]]].

Similar to the countermeasure of [GMRR22], Algorithm 5 uses a different
and well-selected constant value 0X1FFFFFF to let “overflow” happen when
the last subtraction is negative. Thanks to this setting, the 8 most significant
bits of 32-bit register are merely set to 2 when u⟨2⟩ < RCDT[i]⟨2⟩+cc and 1 when
u⟨2⟩ ≥ RCDT[i]⟨2⟩+cc. Namely, our countermeasure encodes the “sign bits” with
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{1, 2} instead of {0, 255} (for Falcon’s reference implementation) or {0, 1} (for
the countermeasure in [GMRR22]). This simple trick removes the difference in
Hamming weight and thus makes the classification of z+ more difficult.

Algorithm 5: Protected BaseSampler at the last subtraction of [[u < RCDT[i]]]

Input: Two 24-bit integers u⟨2⟩ and RCDT[i]⟨2⟩, carry bit cc
Output: 2 if u⟨2⟩ < RCDT[i]⟨2⟩ + cc and 1 if u⟨2⟩ ≥ RCDT[i]⟨2⟩ + cc

1 bb← 0X1FFFFFF
2 z̃+j [i]← ((bb− u⟨2⟩ + RCDT[i]⟨2⟩ + cc)≫ 24) & 0X3
3 return z̃+j [i] ▷ Table z̃+j with j ∈ {0, 1, 2, 3}

Algorithm 6: Protected SamplerZ

Input: Center c and standard deviation σ′ ∈ [σmin, σmax] that are in FPR
Output: An integer z ∈ Z such that z ∼ DZ,σ′,c

1 (t̃[0], · · · , t̃[15])← (2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2)
2 c′ ← c− ⌊c⌋, ccs← σmin/σ

′

3 (r̃[0], r̃[1], r̃[2])← (0, c′, 1− c′)
4 while (1) do
5 t(4)

$← {0, 1}4, b′ ← t̃[t(4)]

6 z̃+0 ← BaseSampler(), z̃+1 ← BaseSampler()

7 z̃+2 ← BaseSampler(), z̃+3 ← BaseSampler()
▷ New BaseSampler with countermeasure of Algorithm 5

8 for i = 0, · · · , 3 do
9 z̃+[i]← ⌊c⌋+ ((z̃+i [17] & 1) + · · ·+ (z̃+i [0] & 1))

10 z̃+[i]← 18 + 2 ∗ ⌊c⌋ − z̃+[i]

11 end for
12 t(2)

$← {0, 1}2
13 for i = 0, · · · , 18 do
14 (z̃[0][i], z̃[1][i], z̃[2][i])← (0, ⌊c⌋ − i, 1 + ⌊c⌋+ i)
15 end for
16 for i = 0, · · · , 18 do
17 x̃[0][i]← 0, x̃[1][i]← (z̃+t [i]+r̃[1])2

2σ′2 − x̃2[i]

18 x̃[2][i]← (z̃+t [i]+r̃[2])2

2σ′2 − x̃2[i]

▷ Precomputed entries z̃+t [i] = i and x̃2[i] =
i2

2σ2
max

19 end for
20 if BerExp(x̃, ccs, z̃+, t(2), ⌊c⌋, b′) = 1 then

▷ Protected BerExp in Algorithm 7
21 return z̃[b′][z̃+[t(2)]− ⌊c⌋]
22 end if
23 end while

Countermeasure for SamplerZ. We present a practical countermeasure for
SamplerZ in Algorithm 6 that greatly mitigates the half Gaussian leakage. In
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Algorithm 6, we continuously sample 4 half Gaussian tables (z̃+0 , z̃+1 , z̃+2 , z̃+3 )
by calling protected BaseSampler. This roughly averages the leakage in this
BaseSampler and thus lowers the classification accuracy. Less calls of this new
BaseSampler with the countermeasure of Algorithm 5 could lead to higher SNR
values and classification accuracy. As per Algorithm 5, the entries of z̃+i are
all encoded into {1, 2}, then we compute the increments of z+, add the integer
center ⌊c⌋ and store them in z̃+. For each sampling, we use different random
integers ⌊c⌋ to mask partial information of z+, instead of generating new ran-
domness. Similarly, we randomly generate 2-bit t(2) as the index for choosing
one out of four values in table z̃+.

During the sign flip of z and computation of x, we traverse all possible
(z+, b′) ∈ {0, 1, · · · , 18} × {1, 2} and store the intermediate results in z̃[b′] and
x̃[b′]. In the computation of x̃, both z̃+t and x̃2 involve the transformation from
integer to FPR, and can be precomputed to improve performance. As for the
rejection sampling BerExp, we apply similar tricks to avoid the half Gaussian
leakage. More concretely, we compute all 19 possible values of z+ in the pro-
tected BerExp (see Algorithm 7), including the decomposition of x and compu-
tation of z′, and severally store them to table s̃′[b′], r̃′[b′] and z̃′[b′]. We retrieve
the proper item in table z̃′ as per b′ and the value [[z+ ← z̃+[t(2)] − ⌊c⌋]], and
perform lazy Bernoulli sampling. At the end of Algorithm 6, we use the same
method to obtain the value z + ⌊c⌋ in table z̃. Similarly, adding the random
integer ⌊c⌋ also reduces the half Gaussian leakage in operation “return”. To sum
up, we transfer the dominating half Gaussian leakage to the end of Algorithm 6
and Algorithm 7, which carries less information of z+.

Algorithm 7: Protected BerExp

Input: Table x̃ and value ccs ≥ 0 in FPR, table z̃+, index t(2), integer
⌊c⌋ and b′

Output: 1 with probability ≈ ccs · exp(−x̃[b′][z̃+[t(2)]− ⌊c⌋])
1 for i = 1, · · · , 2 do ▷ The traversal for sign b′ ∈ {1, 2}
2 for j = 0, · · · , 18 do ▷ For z+ ∈ {0, · · · , 18}
3 s̃′[i][j]← ⌊x̃[i][j]/ ln(2)⌋
4 r̃′[i][j]← x̃[i][j]− s̃′[i][j] · ln(2)
5 s̃′[i][j]← min(s̃′[i][j], 63)
6 z̃′[i− 1][j]← ((ApproxExp(r̃′[i][j], ccs)≪ 1)− 1)≫ s̃′[i][j]

7 end for
8 end for
9 i← 64, z′′ ← z̃′[b′ ≫ 1][z̃+[t(2)]− ⌊c⌋]

10 do
11 i← i− 8, y $← {0, 1}8
12 w ← y − ((z′′ ≫ i) & 0xFF)
13 while ((w = 0) and (i > 0))
14 return [[w < 0]]
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Countermeasures against Sign Leakage In [ZLYW23], Zhang et al. pre-
sented a countermeasure to mitigate the sign leakage from the generation of
b, the sign flip of z and the computation of x in SamplerZ. Their countermea-
sure achieves the classification accuracy ≈ 52% (evaluated on ARM Cortex-M4
STM32F407IGT6 board). We present a more complete countermeasure taking
the leakage sources of BerExp and “return” operation into account.
Countermeasure for SamplerZ. Our protected SamplerZ is described in
Algorithm 6. It adopts the similar idea of the sign leakage countermeasure
in [ZLYW23], i.e. encoding b ∈ {0, 1} into b′ ∈ {1, 2} to eliminate the Ham-
ming weight gap. Furthermore, our countermeasure can simultaneously mitigate
both sign leakage and half Gaussian leakage. More precisely, for the generation
of b′, we use 4-bit random value t(4), as an index, to read the empirically selected
look-up table t̃ with 24 = 16 entries in {1, 2} and then uniformly map the sign
from b ∈ {0, 1} to b′ ∈ {1, 2}. With regard to the sign flip of z, we apply a
similar trick to sample the value of z. Specifically, the table z̃[b′] is computed by
[[−z+ + ⌊c⌋]] when b′ = 1 or [[1+ z+ + ⌊c⌋]] when b′ = 2, and the entry is selected
as per b′ ∈ {1, 2}. Moreover, the sign information of z can also be reduced by
adding integer ⌊c⌋.

In the computation of x, the main source of the sign leakage is [[(z − r)2]].
As shown in [ZLYW23], the leakage in this part can be reduced by computing
[[(z − c′)2 = (z+ + r̃[b′])2]] for all two cases of b′ = 1 and b′ = 2. However, we
observe that [[x̃[i]← (i+r̃[b])2

2σ′2 − i2

2σ2
max

]] with i ∈ {0, · · · , 18} still exists significant
sign leakage accumulated by the traversal of z+. The classification accuracy
using these leakages (evaluated on Chipwhisperer) can be up to ≈ 75%. To this
end, we also traverse all possible b′ ∈ {1, 2} to compute x̃[b′] and strip the sign
leakage in computing x. Similarly, for BerExp, we perform the decomposition of
x and the computation of z′ by using all possible values of b′ and store in table
s̃′[b′], r̃′[b′] and z̃′[b′] (see Algorithm 7). As a result, we confine the major sign
leakage to the mapping based on b′, lazy Bernoulli sampling in Algorithm 7, and
operation “return” of Algorithm 6, which yields a low classification accuracy.

6.2 Practical Evaluations

Based on the reference implementation of Falcon, we implement our counter-
measures in portable C. This section reports on the practical evaluations on our
countermeasures, including side-channel security (Table 5 for accuracy compar-
ison) performance evaluations (Table 6 and 7 for performance comparison).

Security Evaluations Experimental setup. Our side-channel security eval-
uations are also performed on Chipwhisperer-Lite with STM32F415 UFO target
board (ARM Cortex-M4) and experimental configuration is almost the same
with that in Section 5.3. We collect 10, 000 traces to compute SNR values of
protected SamplerZ (see Algorithm 6), which are shown in Figure 7 (for half
Gaussian leakage) and Figure 8 (for sign leakage). Furthermore, we also demon-
strate the Gaussian template attack [CRR03] against the protected SamplerZ, by
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Table 5: Accuracy comparison with protected SamplerZ. The item “A/B” notes
the accuracy for unprotected / protected operation

Operation Half Gaussian leakage

BaseSampler / protected BaseSampler 98% / 57%
sign flip of z / z̃ 83% / 50%

computation x / x̃ 100% / 51%
BerExp / protected BerExp 86% / 54%

operation “return” 72% / 58%

Operation Sign leakage

sign b / b′ 75% / 62%
sign flip of z / z̃ 100% / 51%

computation x / x̃ 100% / 57%
BerExp / protected BerExp 78% / 57%

operation “return” 77% / 54%

empirically choosing the first 65 principal components. More precisely, we collect
traces (from 70 to 110, 000) for profiling and then use 5767 traces (filtered in
10, 000 traces) to repeat single-trace attack to obtain the classification accuracy
of protected SamplerZ for half Gaussian leakage (see Figure 9) and sign leakage
(see Figure 10).

Evaluations for half Gaussian leakage. As shown in Figure 7, it still exists
significant peak clusters at the begin and end of the SNR values curve. Namely,
the protected BaseSampler (line 6-12, Algorithm 6) and operation “return” (line
21, Algorithm 6) can be slightly detected by half Gaussian leakage on Chipwhis-
perer. In addition, the rest of components in protected BaseSampler are hardly
identified in the context of our experimental setup. However, the SNR value of
Algorithm 6 for half Gaussian leakage is much lower than that of SamplerZ (see
Figure 3). Since the true value of z should be returned, this part of leakages are
difficult to experimentally remove. Therefore, by using the growing number of
profiling traces, the classification accuracy for half Gaussian leakage is at most
≈ 58% with different sources of leakages, as depicted by Figure 9. As per the ex-
perimental results of [ZLYW23], such imperfect accuracy for classifying z+ = 0
or not leads to the dramatically increasing number of required traces. A practical
key recovery can still be performed with 10 million signatures when the accuracy
is 65% (see Figure 5 of [ZLYW23]). Therefore, equipped with our countermea-
sures, the required traces leading to full key recovery with half Gaussian leakage
are much more than 10 million, which can be considered as infeasible for many
real-world applications. As mentioned in [ZLYW23], one can set a counter for
the maximum time of signing.
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(a) The total SNR curve of protected SamplerZ for half Gaussian leakage.
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Fig. 7: SNR values of protected SamplerZ (see Algorithm 6) for half Gaussian
leakage. The first graph (a) is the full curve and roughly split into the following
five sub-graphs (b), (c), (d), (e), (f), which are respectively for SNR values include
protected BaseSampler, the sign flip of z̃, the computation of x̃, the rejection
sampling protected BerExp, the operation “return” (line 6-12, 13-15, 16-19, 20,
21 of Algorithm 6).
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(a) The total SNR curve of protected SamplerZ for sign leakage.
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Fig. 8: SNR values of protected SamplerZ (see Algorithm 6) for sign leakage. The
first graph (a) is the full curve and roughly split into the following five sub-graphs
(b), (c), (d), (e), (f), which are respectively for SNR values include the sampling
of b′, the sign flip of z̃, the computation of x̃, the rejection sampling protected
BerExp, the operation “return” (line 5, 13-15, 16-19, 20, 21 of Algorithm 6).
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Fig. 9: The classification accuracy of protected SamplerZ for half Gaussian leak-
age.
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Fig. 10: The classification accuracy of protected SamplerZ for sign leakage.

Evaluations for sign leakage. For the SNR values curve in Figure 8, it still
exists one single distinct peak clusters in the beginning and implies the sign
leakage still persists in the generation of b′ in the protected SamplerZ (line 5,
Algorithm 6) even if there is no difference in Hamming weight. Based on our
setup, the sign leakage in the computation of x̃ (line 16-19, Algorithm 6) and
the rejection sampling protected BerExp (line 20, Algorithm 6) can be weakly
detected as shown in the Figure 8. For operation “return” (line 21, Algorithm 6),
this leakage still exists in spite of smaller SNR values. In addition, the rest of
parts in Algorithm 6 are not strongly related to the sign leakage. By contrast, the
SNR values of Algorithm 6 are much lower than that of SamplerZ (see Figure 4).
Furthermore, we calculate the classification accuracy of the sign leakage as illus-
trated in Figure 10. More specifically, we can control the accuracy is increasing
up to ≈ 62% by using different sources of sign leakages and number of required
traces for profiling. As evaluated in [ZLYW23], the inaccurate classification for
the sign leakage also results in sharply increasing the number of required traces
when the accuracy is < 65% (see Figure 12 of [ZLYW23]). Therefore, configured

26



with our countermeasures, the number of required signatures to fully recover
the secret with sign leakage is much more than 10 million, which is infeasible for
many real-world usecases.

Performance Evaluations The performance comparison is evaluated on an
Intel Core i5-1135G7 CPU clocked at 2.4 GHz with hyper-threading disable.
Compilation is executed by Clang-10.0.0 with optimization cflags -O0. We
employ the Falcon’s benchmarking tool to measure clock time and access system
counter to provide cycle counts.

We first test the performance of protected SamplerZ (Algorithm 6) and com-
pare with the reference implementation of Falcon. As shown in Table 6, the
bottlenecks stem from the calculations of x̃ and the protected BerExp. Our pro-
tected SamplerZ comes with about 6.0× overhead measured by clock time and
19.0× overhead for cycle counts.

Table 6: Performance comparison between SamplerZ and protected SamplerZ

Algorithm Clock Time (ns) Cycles

SamplerZ

Total 2400 1299
BaseSampler in the line 4 292 287

generation of b in the line 5 142 18
sign flip of z in the line 6 138 25

calculation of x in the line 7 494 306
BerExp in the line 8 573 428

“return” in the line 9 138 21

Protected SamplerZ

Total 14428 24744
sampling of b′ in the line 5 146 25

new BaseSampler in the line 6-12 745 1186
sign flip of z̃ in the line 13-15 167 76

computation of x̃ in the line 16-19 4132 7376
protected BerExp in the line 20 8228 15731

“return” in the line 21 142 26

Furthermore, in Table 7, we provide benchmarks for signing in the dynamic
mode and the tree mode. We apply our countermeasures on Gaussian samplers
to apportion the overheads on the whole signing process of Falcon. For Falcon-
512 (Falcon-1024), dynamic signing has about 3.7× (3.3×) overhead measured
by clock time and 3.5× (3.4×) overhead measured by cycle counts.
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Table 7: Performance comparison with the signing dynamic (SD) and signing
tree (ST) of Falcon’s reference implementation

Claimed Security Falcon-512 Falcon-1024

SD ST SD ST

Unprotected (ms) 6.7 3.1 14.8 6.5
Protected (ms) 24.5 20.5 49.4 41.0

Vs. 3.7× 6.6× 3.3× 6.3×

Unprotected (Mcycles) 16.6 7.3 35.6 15.7
Protected (Mcycles) 58.7 49.9 119.6 99.4

Vs. 3.5× 6.8× 3.4× 6.3×
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