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Abstract. Non-interactive zero-knowledge (NIZK) arguments allow a prover to convince a verifier
about the truthfulness of an NP-statement by sending just one message, without disclosing any ad-
ditional information. In several practical scenarios, the Fiat-Shamir transform is used to convert an
efficient constant-round public-coin honest-verifier zero-knowledge proof system into an efficient NIZK
argument system. This approach is provably secure in the random oracle model, crucially requires the
programmability of the random oracle and extraction works through rewinds. The works of Lindell
[TCC 2015] and Ciampi et al. [TCC 2016] proposed efficient NIZK arguments with non-programmable
random oracles along with a programmable common reference string.
In this work we show an efficient NIZK argument with straight-line simulation and extraction that
relies on features that alone are insufficient to construct NIZK arguments (regardless of efficiency).
More specifically we consider the notion of quasi-polynomial time simulation proposed by Pass in
[EUROCRYPT 2003] and combine it with simulation and extraction with non-programmable random
oracles thus obtaining a NIZK argument of knowledge where neither the zero-knowledge simulator, nor
the argument of knowledge extractor needs to program the random oracle. Still, both the simulator
and the extractor are straight-line. Our construction uses as a building block a modification of the
Fischlin’s transform [CRYPTO 2005] and combines it with the concept of dense puzzles introduced
by Baldimtsi et al. [ASIACRYPT 2016]. We also argue that our NIZK argument system inherits the
efficiency features of Fischlin’s transform, which represents the main advantage of Fischlin’s protocol
over existing schemes.

1 Introduction

A proof system allows an entity, called prover, to convince another entity, called verifier, about the truthful-
ness of a claim. Informally, a proof3 system is zero-knowledge (ZK) [GMR89] if the prover holds a secret that
is required to successfully convince the verifier and moreover the proof does not disclose any information
about the secret. In the non-interactive scenario only the prover can speak and sends just one message. This
kind of proofs, introduced in [BFM88], are called Non-Interactive Zero-Knowledge (NIZK) proofs. Since
it is impossible to construct a NIZK proof for non-trivial languages without setup assumptions, Blum et
al. [BFM88] proposed the Common Reference String (CRS) model. In the CRS model there exists a trusted
string (the exact shape of the CRS depends on the specific NIZK proof instantiation) that is given as input
to both the prover and the verifier.

In [FLS90] the authors show NIZK proofs in the CRS model for any NP-language in a setting where
the same CRS can be reused to generate multiple proofs. Even though NIZK proofs exist for all NP, the
candidate constructions are rather inefficient due to the NP-reduction that needs to be performed before
computing the actual NIZK proof. One of the most used approaches to obtain efficient NIZK proofs consists
in starting with an efficient interactive constant-round public-coin honest-verifier zero-knowledge (HVZK)
proof system and making it non-interactive by replacing the role of the verifier with a hash function modelled
as a random oracle [BR93] (RO). In particular, the hash function takes as input the transcript computed
so far and returns the message on the behalf of a verifier. This approach is the so-called Fiat-Shamir (FS)
⋆ Research partly supported by H2020 project PRIVILEDGE #780477.
3 When discussing informally we will use the word proof to refer to both unconditionally and computationally sound

proofs. Only in the more formal part of the paper we will make a distinction between arguments and proofs.



transform [FS86]. To prove the security of such a transform, the ZK simulator needs to program the RO
(i.e., the simulator decides how the RO answers the queries). Similarly, the argument of knowledge property
requires an extractor that programs the random oracle. Exploiting the programmability of the random
oracle makes it difficult to prove the composability of the argument system in a setting where multiple
instantiations of it are run in concurrency. The work of Canetti et al. [CJS14], for example, considers the
natural scenario where multiple instantiations of different cryptographic protocols use the same random
oracle without programming it. In general, in order to avoid such issues it is preferrable to avoid simulators
that need to program the random oracle.

Lindell in [Lin15] provides a NIZK argument that can be proven secure assuming the existence of a
non-programmable random-oracle (NPRO) and a programmable CRS. In more detail, the ZK of Lindell’s
protocol is proved without relying on the RO at all (though, the CRS needs to be programmed), and the
soundness is proved without programming the RO. In a follow-up work [CPSV16], the authors improve the
construction of Lindell in terms of efficiency and generality under the same setup considered in [Lin15]. A
different approach towards round-efficient ZK arguments consists in allowing the simulator to run in quasi-
polynomial time instead of expected polynomial time [Pas03b]. This notion implies that a malicious verifier
can learn from the prover anything that can be learned by a quasi-polynomial time algorithm. As observed
in [BP04], the simulator is usually not run by parties running the NIZK argument, and thus quasi-polynomial
simulation can still be useful in various applications. In [Pas04b] it is shown that two rounds are necessary
and sufficient for quasi-polynomial time simulatable arguments. Therefore, even though the notion of ZK
with quasi-polynomial time simulation allows to overcome some of the impossibility results of standard ZK,
the impossibility of constructing NIZK arguments holds also in this less demanding model.

Given the impossibility shown in [Pas04b] of obtaining NIZK arguments with quasi-polynomial simula-
tion, and the obvious impossibility of obtaining NIZK arguments without setup assumptions in the non-
programmable RO (NPRO) model, we focus on the following relevant question:

Is it possible to construct an efficient NIZK argument of knowledge with quasi-polynomial time sim-
ulation where neither the zero-knowledge simulator nor the argument of knowledge extractor needs to
program the random oracle?

In this work we answer affirmatively to this question assuming that dense cryptographic puzzles exist.
In more detail, our protocol is proved to enjoy perfect concurrent zero knowledge (ZK) via quasi-polynomial
simulation and is moreover an argument of knowledge (AoK) with online extraction (i.e., the extraction
process does not rewind the prover). Interestingly, even though we prove the ZK property using quasi-
polynomial simulation, the security of our NIZK argument does not rely on any complexity-leveraging-type
assumptions (i.e., we do not require hardness assumptions to hold against superpolynomial-time adversaries).

Our techniques. We start with the work of Fischlin [Fis05] that presents a NIZK AoK with an online
extractor starting with a Σ-protocol (i.e., a 3-round public-coin proof system enjoying a special notion of
soundness and a special notion of HVZK). In more detail, Fischlin’s protocol is proved ZK by exploiting
the programmability of the random oracle (RO), whereas the soundness is proved by relying just on the
observability of the RO (i.e., the online extractor has only access to the queries made by the adversary to
the RO). The aim of our work is to circumvent the need to program the RO by using quasi-polynomial time
simulation (i.e., we allow the ZK simulator to run in quasi-polynomial time).

We present our construction in an incremental way. We first show that the modified version of Fischlin’s
protocol proposed in [Kas22] is witness indistinguishable (WI) with an on-line extractor that does not need to
program the RO, therefore relying on a non-programmable RO (NPRO). Then we use it as the main building
block together with dense cryptographic puzzles. Roughly speaking, a cryptographic puzzle is defined together
with a hardness parameter g. So, if a randomly sampled puzzle is given to an adversary then she should not
be able to find a solution with non-negligible probability in less than a number of steps that is function of g.
We consider the notion of puzzle system proposed in [BKZZ16], where the hardness of a puzzle holds as long
as the puzzle is sampled from a uniformly random distribution. Baldimtsi et al. [BKZZ16] also show how
to instantiate such a puzzle from standard number-theoretic assumptions (e.g., the discrete logarithm (DL)
problem) and from NPROs. In a nutshell, our NIZK argument combines a dense puzzle system PuzSys with
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a non-interactive WI argument of knowledge ΠWI as follows. The prover queries the random oracle with the
statement x that he wants to prove, thus obtaining a puzzle puz. Then the prover computes a non-interactive
WI (NIWI) proof where he proves knowledge of either the witness corresponding to the instance x or the
solution of the puzzle. We observe that a malicious prover could fool the verifier by finding a solution to
the puzzle and using it as a witness for the WI proof. To avoid this we just need to carefully choose the
hardness factor of the puzzle in such a way that a malicious probabilistic polynomial-time prover cannot
solve it, but a quasi-polynomial time simulator can. As discussed above, one of the main building blocks
of our construction is ΠWI . More precisely, ΠWI is an argument of knowledge with an online extractor
in which the WI property holds against all-powerful adversaries. Equipped with this tool we can prove the
security of our NIZK argument of knowledge without using complexity leveraging arguments. We show how
to obtain ΠWI starting from any Σ-protocol Π, this yields to the following theorem.

Theorem (informal). Let Π be a Σ-protocol for the NP relation Rel. Assuming the hardness of the discrete
logarithm problem then there exists an efficient NIZK AoK with online extraction and straight-line (perfect)
quasi-polynomial time simulation for Rel where neither the simulator nor the AoK extractor needs to program
the RO.

We stress that our construction has a ZK straight-line simulator and an online AoK simulator. This yields
a protocol that can be more easily composed concurrently with other cryptographic protocols. Indeed, in
follow-up work [BCC+24] the authors show how to extend our approach to the UC setting, thus obtaining
composable security in the non-programmable (global) random oracle, assuming no additional setup. More-
over, the construction that we propose is almost as efficient as Fischlin’s construction and can be instantiated
from a large class of Σ-protocols (even larger than the class considered in [Fis05]) and cryptographic puzzles.
Indeed, in [Fis05], in order to prove the zero-knowledge property it is required that the first round of the
underlying Σ-protocol has min-entropy that is superlogarithmic in the security parameter. In our approach,
we do not need to rely on this additional requirement.

Related work. As observed by Fischlin in [Fis05], in the prior work of Pass [Pas03a] the author showed
a NIZK AoK where the argument of knowledge extractor does not need to rewind the adversary. These are
exactly the same security properties offered by the protocol of [Fis05]. Moreover, in [Pas03a] the author shows
that the WI property can be obtained without the RO simulator programming RO. The main improvement
of Fischlin’s construction (and ours) over Pass’ protocol is in the size of the proof. Indeed, in [Fis05] the
author argues that even considering a modified4 version Pass’ protocol, for reasonable parameters the size of
a single proof, requires between 10000 and 25000 bits. Therefore, with the goal of obtaining shorter proofs,
in our work we study a variant of Fischlin’s construction, instead of simply taking out from the box the
NIWI protocol of [Pas03a]. For more details on the efficiency of our protocol, we refer the reader to Sec. 5.1.

We have already mentioned the work of Kondi et al. [Kas22] and Badertscher et al. [BCC+24]. In [Kas22],
the authors propose a modified version of Fischlin’s construction (that we rely on). We extend the results
of [Kas22] showing that this modified version preserves WI and online extraction with a NPRO. The work of
Kondi et al. [Kas22] proposes also other results, based on Fischlin’s paradigm, that improve the efficiency of
Schnorr/EdDSA signature aggregation schemes. In [CL24] the authors propose an alternative approach to
improve the efficiency of the Fischlin’s transform. Investigating whether it is possible to adapt the efficiency
improvements of [CL24,Kas22] to our scheme it is an interesting future direction. In [BCC+24] the authors
show how a relaxation of the zero-knowledge functionality, allows the design of UC secure non-interactive
zero-knowledge assuming as the only form of setup the non-programmable (global) random-oracle. The
approach of [BCC+24], despite being significantly different, follow a similar blueprint where the prover needs
to show that either an certain NP statement is true or that he knows the solution of a puzzle generated via
the random oracle.

4 The original Pass’ protocol is particularly inefficient due to the number of parallel repetitions required to amplify
the soundness. In [Fis05] the author considers an improved version, that uses Merkle trees to reduce the size of the
proof. We refer to the introductory section of [Fis05] for more details.
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2 Definitions and Tools

Preliminaries. We denote the security parameter by λ and for a finite set Q, x ← Q the sampling of
x from Q with uniform distribution. We use the abbreviation ppt that stays for probabilistic polynomial
time. We use N to denote the set of natural numbers and poly(·) to indicate a generic polynomial function.
A polynomial-time NP-relation Rel (or NP-relation, in short) is a subset of {0, 1}∗ × {0, 1}∗ such that
membership of (x,w) in Rel can be decided in time polynomial in |x|. For (x,w) ∈ Rel, we call x the
instance and w a witness for x. For a polynomial-time relation Rel, we define the NP-language LRel as
LRel = {x|∃ w : (x,w) ∈ Rel}. Analogously, unless otherwise specified, for an NP-language L we denote
by RelL the corresponding polynomial-time relation (that is, RelL is such that L = LRelL). We define L̂ to
be the input language that includes both the NP-language L and all well-formed instances that do not
have a witness. Let A and B be two interactive probabilistic algorithms. We denote by ⟨A(α), B(β)⟩(γ) the
distribution of B’s output after running on private input β with A using private input α, both running on
common input γ. A transcript of ⟨A(α), B(β)⟩(γ) consists of the messages exchanged during an execution
where A receives a private input α, B receives a private input β and both A and B receive a common input
γ. Moreover, we will refer to the view of A (resp. B) as the messages it received during the execution of
⟨A(α), B(β)⟩(γ), along with its randomness and its input. A function ν(·) from non-negative integers to reals
is called negligible, if for every constant c > 0 and all sufficiently large λ ∈ N we have ν(λ) < λ−c.

2.1 Argument Systems

Here we recall the notions of completeness and online extraction provided in [Fis05]. A pair Π = (P,V)
of probabilistic polynomial-time algorithms is called a non-interactive argument of knowledge for the NP-
relation RelL with an online extractor (in the non-programmable random oracle model) if the following
holds.
Completeness. For any non-programmable random oracle O, any (x,w) ∈ RelL and any π ← PO(x,w) we
have Prob

[
VO(x, π) = 1

]
= 1− ν(|x|), for some negligible function ν.

Argument of Knowledge with Online Extractor. There exist a probabilistic polynomial-time algorithm
Ext called AoK online extractor such that for any PPT adversary AO there exists a negligible function ν such
that the following holds: Prob

[
(x,w) /∈ Rel and VO(x, π) = 1

]
≤ ν(λ), where (x, π) ← AO(λ) (where x is

the theorem and π is the proof generated by the adversary), w ← Ext(x, π,QO(A)) and QO(A) represents the
sequence of queries/answers for the oracle O. Not to overburden the descriptions of protocols and simulators,
we omit to specify that the parties have access to the NPRO O whenever it is clear from the context.

Quasi-polynomial time simulation. Since the verifier in an interactive argument is often modeled as a ppt
machine, the classical zero-knowledge definition requires that the simulator runs also in (expected) polynomial
time. In [Pas03b], the simulator is allowed to run in time λpoly(log(λ)). Loosely speaking, we say that an
interactive argument is λpoly(log(λ))-perfectly simulatable if for any adversarial verifier there exists a simulator
running in time λpoly(log(λ)), where λ is the size of the statement being proved, whose output is identically
distributed to the output of the adversarial verifier.

Definition 1 (straight-line T (λ) simulatability, Def. 31 of [Pas04a]). Let T (λ) be a class of functions
that is closed under composition with any polynomial. We say that an interactive argument (P,V) for the
language L ∈ NP, with the witness relation RelL, is straight-line T (λ)-simulatable if for every ppt machine
V⋆ there exists a probabilistic simulator S with running time bounded by T (λ) such that the following two
ensembles are computationally indistinguishable

– {(⟨P(w),V⋆(z)⟩(x))}z∈{0,1}∗,x∈L for arbitrary w s.t. (x,w) ∈ RelL
– {(⟨S,V⋆(z)⟩(x))}z∈{0,1}∗,x∈L

The following theorem shows the power of straight-line λpoly(log(λ))-perfect simulatability by connecting
it to concurrent composition of arguments.
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Theorem 1 ([Pas04a]). If an argument system Π = (P,V) is straight-line λpoly(log(λ))-simulatable then it
is also straight-line concurrent λpoly(log(λ))-simulatable.

We also consider the notion of perfect straight-line simulation. This is equal to the Definition 1 with the
difference that the malicious distinguisher can be unbounded instead of being ppt and that the two ensembles
(the simulated execution and the real execution) are identically distributed (See Def. 30 of [Pas04a]).

2.2 Cryptographic Puzzles

In [BKZZ16] the authors introduce a new class of protocols with prover and verifier called Proof of Work or
Knowledge (PoWorK). To formalize PoWorK, the authors give the notion of puzzle system. A puzzle system
PuzSys is a tuple of algorithms PuzSys = (Sample,Solve,Verify) that are defined in the following way. Sample
on input the security parameter 1λ and the hardness factor h outputs a puzzle puz; Solve on input the
security parameter 1λ, a hardness factor h and a puzzle instance puz outputs a potential solution sol; Verify
on input the security parameter 1λ, a hardness factor h, a puzzle instance puz, and a potential solution sol

outputs 0 or 1. Moreover, while the algorithms Sample and Verify are efficient, it is difficult to compute a
solution for a sampled puzzle. More precisely, a puzzle system is g-hard if no adversary can solve the puzzle
in less than g(·) steps with more than negligible probability. The authors of [BKZZ16] propose also a stronger
notion of puzzles that enjoys the property of dense samplability. That is, the puzzles can be sampled by just
generating random strings (i.e., the puzzle instances should be dense over {0, 1}ℓ(h,λ)) for a polynomial ℓ. We
consider the same notion of puzzle system with dense samplability of [BKZZ16]. We remark that the notion
of dense samplable puzzles considered in [BKZZ16] is equipped with an additional efficient algorithm that
generates a puzzle together with its solution, but we do not need this additional requirement in our work.
We denote the puzzle space as PSλ, the solution space as SSλ, and the hardness space as HSλ.

Definition 2. A Dense Samplable Puzzle (DSP) system PuzSys = (Sample,Solve,Verify) enjoys the following
properties, denoting with ν a negligible function.
Completeness. A puzzle system PuzSys is complete, if for every h in the hardness space HSλ:

Prob
[
puz← Sample(1λ, h), sol← Solve(1λ, h, puz) : Verify(1λ, h, puz, sol) = 0

]
≤ ν(λ).

The number of steps that Solve takes to run is monotonically increasing in the hardness factor h and may
exponentially depend on λ, while Verify and Sample run in time polynomial in λ.
g-Hardness. Let StepsB(·) be the number of steps (i.e., machine/operation cycles) executed by algorithm
B. We say that a puzzle system PuzSys is g-hard for some function g, if for every adversary A there exists
a negligible function ν such that for every auxiliary tape z ∈ {0, 1}⋆ and for every h ∈ HSλ the following
holds:

Prob[puz← Sample(1λ, h), sol← A(1λ, z, puz) : Verify(1λ, h, puz, sol) = 1 ∧
StepsA(1

λ, z, h, puz) ≤ g(StepsSolve(1
λ, h, puz))] ≤ ν(λ).

Dense Puzzles. Given λ, h ∈ Z+ and a polynomial function ℓ, there exists a negligible function ν such that
∆[Sample(1λ, h),Uℓ(λ,h))] ≤ ν(λ) where Uℓ(λ,h) stands for the uniform distribution over {0, 1}ℓ(λ,h).

We observe that the properties of density and g-hardness imply that for every adversary A, there exists
a negligible function ν such that for every auxiliary tape z ∈ {0, 1}⋆ and for every h ∈ HSλ the following
holds:

Prob[sol← A(1λ, z, η) : η ← {0, 1}ℓ(λ,h) ∧ Verify(1λ, h, η, sol) = 1 ∧
StepsA(1

λ, z, h, η) ≤ g(StepsSolve(1
λ, h, η))] ≤ ν(λ).

Puzzles from the DL assumption In [BKZZ16,BKZZ15] the authors show how to construct puzzles
assuming the hardness of the discrete logarithm (DL) problem. In particular, at the end of [BKZZ15, pag.
37] the authors argue that it is possible to obtain a puzzle by randomly sampling an instance of the DL
problem. The solution to this puzzle is simply the DL of the instance. This puzzle moreover has the following
properties. For every hardness factor h ∈ HSλ there exists a negligible function ν such:
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1. Prob
[
puz← Sample(1λ, h) : g(StepsSolve(1

λ, h, puz)) ≤ λlog λ
]
≤ ν(λ);

2. the worst-case running time of Solve(1λ, h, ·) is λpoly(log λ).

For our NIZK argument of knowledge we need a puzzle that has exactly these hardness parameters. The
nice feature of the construction based on DL proposed in [BKZZ15, pag. 37] is that it admits an efficient
Σ-protocol. That is, a prover can prove the knowledge of the solution of a puzzle y by simply running the
Schnorr protocol. When providing an efficiency analysis of our protocol we will use this puzzle instantiation.

Witness indistinguishability. To formalize the notion of WI we consider a game ExpAWIbΠ,A between a
challenger C and an adversary A in which the instance x and two witnesses w0 and w1 for x are chosen by
A. The challenger, upon receiving (x,w0, w1) starts interacting with A accordingly to the prover procedure
of Π using wb as a witness. The adversary wins the game if she can guess which of the two witnesses was
used by the challenger. We now formally define the WI experiment ExpAWIbΠ,A(λ, ζ) that is parameterized
by a protocol Π = (P,V) for an NP-relation Rel and by a ppt adversary A. We denote with Ab

ExpAWI the
view of A in the experiment ExpAWIbΠ,A(λ, ζ). The experiment has as input the security parameter λ and
auxiliary information ζ for A.

ExpAWIbΠ,A(λ, ζ):
1. A picks an instance x, witnesses w0 and w1 such that (x,w0), (x,w1) ∈ Rel,

and sends (x,w0, w1) to a challenger C.
2. C interacts with A as P would do using the witness wb.

Definition 3 (Witness Indistinguishability). An argument system Π is WI if for every distinguisher
D, there exists a negligible function ν such that for any ζ ∈ {0, 1}∗ it holds that∣∣∣Prob

[
D(λ, ζ,A0

ExpAWI) = 1
]
− Prob

[
D(λ, ζ,A1

ExpAWI) = 1
]∣∣∣ ≤ ν(λ).

We also consider the notion of perfect WI where A it is not restricted to be ppt and ν(λ) = 0.

Σ-Protocols A Σ-protocol Π = (P,V) is a 3-round public-coin protocol. An execution of Π proceeds with
the following 3 moves:

1. P computes the first message using as input the instance to be proved x with the corresponding witness w,
and outputs the first message a with an auxiliary information aux (we denote this action with (a, aux)←
P(x,w)).

2. V upon receiving a, computes and sends a random c← {0, 1}l with l ∈ N.
3. P on input c and aux computes and sends z to V (we denote this action with z ← P(aux, c)).
4. V, on input (x, a, c, z) outputs 1 to accept, 0 to reject (we denote this action with V(x, a, c, z) = b where

b ∈ {0, 1} denotes whether V accepts or not).

Definition 4 (Σ-protocols [CDS94]). A 3-move protocol Π with challenge length l ∈ N is a Σ-protocol
for a relation Rel if it enjoys the following properties:

1. Completeness. If (x,w) ∈ Rel then all honest 3-move transcripts for (x,w) are accepting.
2. Special Soundness. There exists an efficient algorithm Extract that, on input two accepting transcripts

for x (a, c, z) and (a, c′, z′) with c′ ̸= c outputs a witness w such that (x,w) ∈ Rel.
3. Special Honest-Verifier Zero Knowledge (SHVZK). There exists a ppt simulator algorithm Sim

that takes as input x ∈ LRel, security parameter 1λ and c ∈ {0, 1}l and outputs an accepting transcript
for x where c is the challenge (we denote this action with (a, z) ← Sim(x, c)). Moreover, for all l-bit
strings c, the distribution of the output of the simulator on input (x, c) is identical to the distribution of
the 3-move honest transcript obtained when V sends c as challenge and P runs on common input x and
any private input w such that (x,w) ∈ Rel.
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Following [Fis05] we also define the notion of Σ-protocols with quasi-unique third round. This notion
requires that it should be infeasible to find another valid third round to an accepting proof (a, c, z), even if
one knows the witness. As noted in [Fis05], this property holds for example if the third round z is uniquely
determined by x, a, and c as for the protocols by Guillou-Quisquater [GQ88] and Schnorr [Sch89]. More in
general, this property holds for the class of Σ-protocol for proving the knowledge of a preimage of a group
homomorphism defined in [CD98,Mau15]. The following is a formalization of this property.

Definition 5. A Σ-protocol Π = (P,V) has quasi-unique third round if there exists a negligible function ν
such that for any (x, a, c, z, z′)

Prob [ V(x, a, c, z) = V(x, a, c, z′) = 1 and z ̸= z′ ] ≤ ν(λ).

Remark 1. Our protocol follows the requirements of [Fis05], hence, we will assume that the input sigma-
protocols to our compiler have a quasi-unique third round. However, our result can be made more general
using sigma-protocols that enjoy Strong two-special soundness as discussed in [Kas22]. Informally the notion
of strong-two-special soundness requires the special soundness extractor to extract a witness even in the case
where the input transcripts differ only in the last round. We refer to [Kas22] for more details.

2.3 Or-Composition of Σ-Protocols

In this section we recall the or-composition of Σ-protocols proposed in [CDS94]. Let Π0 = (P0,V0) be a
Σ-protocol for the NP-relation Rel0 and Π1 = (P1,V1) be a Σ-protocol for the NP-relation Rel1. Moreover,
let Sim0 be the Special HVZK simulator for Π0 and Sim1 be the Special HVZK simulator for Π1. We consider
the following 3-round public coin protocol ΠOR = (POR,VOR) where POR and VOR has a common input (x0, x1)
where x0 ∈ L̂0 and x1 ∈ L̂1. POR has a private input wb with b ∈ {0, 1} and (xb, wb) ∈ Relb.

1. POR picks c1−b ← {0, 1}l, computes (a1−b, z1−b)← Sim1−b(x1−b, c1−b) with l ∈ N, computes (aux, ab)←
Pb(xb, wb) and sends (a0, a1) to VOR.

2. VOR upon receiving (a0, a1), computes and sends a random string c← {0, 1}l.
3. POR, upon receiving c computes cb = c⊕ c1−b and zb ← Pb(aux, cb) and sends (c0, z0, c1, z1) to VOR.
4. VOR, upon receiving (z0, z1) checks if V0(x0, a0, c0, z0) = 1 and V1(x1, a1, c1, z1) = 1 and c = c0 ⊕ c1. If it

is, then VOR outputs 1, 0 otherwise.

Theorem 2 ([CDS94,GMY06]). Let Π0 be a Σ-protocol for the NP-relation Rel0 and Π1 be a Σ-protocol
for the NP-relation Rel1 then ΠOR is a Σ-protocol that is perfect WI for relation RelOR = {((x0, x1), w) :
((x0, w) ∈ RelL0

) ∨ ((x1, w) ∈ RelL1

)
}.

We recall the above theorem just for completeness even though in this work we use ΠOR in a non-blackbox
way and we do not rely on its WI property directly. We just find convenient to use the prover and the verifier
of ΠOR to shorten and make more clear the description of the protocols proposed in this work. Only in the
security proof we make non-black box use of ΠOR in order to rely on the security of the underling Σ-protocols
Π0 and Π1.

3 Fischlin’s NIZK Argument and its Randomized Version

In [Fis05] the author provides a NIZK AoK, where the AoK extractor relies only on the observability of the
RO5. The main advantage of Fischlin’s construction, other than its efficiency, is that the AoK extractor does
not need to rewind the malicious prover in order to extract the witness. Following [Fis05], we refer to such
an extractor as online extractor. As remarked in [Fis05], the arguments of knowledge with online extractors
5 We observe that even though the author of [Fis05] talks about Proof of Knowledge, they still need to polynomially

bound the number of queries that an adversary can make to the random oracle. To avoid any ambiguity, in this
work we consider only the notion of AoK since the malicious prover is implicitly bounded by the number of queries
that can be made to the RO.
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are especially suitable for settings with concurrent executions. Indeed, Fischlin shows an example in which
a NIZK argument with standard knowledge extractors cannot be used due to the rewinds made by the
extractor. As we mentioned, Fischlin’s construction works only if the input Σ-protocol has a quasi-unique
third round. As recently observed in [Kas22] this excludes some interesting Σ-protocols, like for example
the output protocols of the OR-transform of [CDS94]. Indeed, in [Kas22] the authors prove that Fischlin’s
NIZK argument is not even witness indistinguishable if compiled with a protocol obtained from the OR
composition of [CDS94]. Interestingly, [Kas22] shows how to solve this problem by proposing a modification
of Fischlin’s protocol that works for a more general class of Σ-protocols that, in particular, includes the
Σ-protocols output of the transform of [CDS94]. Our starting point is the modified version of Fischlin’s
protocol, which following [Kas22] we refer to as the randomized version of Fischlin’s protocol. In this section
we denote this randomized version of Fischlin’s protocol with ΠRand−F, and then we show how to bootstrap
ΠRand−F to a NIZK AoK with quasi-polynomial time straight-line simulation and online extraction where
simulator and extractor do not program the RO. We refer the reader to Fig. 1 for the formal description of
ΠRand−F.

Let Π = (P,V) be a Σ-protocol with challenge length t (for t defined below) for
the NP-relation RelL. The security parameter defines the parameters ℓ, r, t. The
integers are related as follows: rℓ = λ, t = ⌈log λ⌉ℓ. Define the following non-
interactive argument system ΠRand−F = (PFischlin,VFischlin) for relation RelL. The RO
O maps to ℓ bits.
Common input: security parameter λ, NP-statement x ∈ L, the parameters b, r,
t as defined above.
Input to PFischlin: w s.t. (x,w) ∈ RelL.
Proof. The prover PFischlin executes the following steps.
1. Run r times P (each time using fresh randomness) on input (x,w) thus obtain-

ing ((aux1, a1), (aux2, a2), . . . , (auxr, ar)). Let A = (a1, a2, . . . , ar).
2. For i = 1, . . . , r

(a) Set Ei = ∅.
(b) Sample ci ← {0, 1}t\Ei, compute z ← P(auxi, ci).
(c) If O(x,A, i, ci, zi) ̸= 0b, update Ei = Ei ∪ {ci} and go to Step 2.b.

3. Output π = ({ai, ci, zi}i=1,...,r).
Verification. The verifier VFischlin on input x and π = ({ai, ci, zi}i=1,...,r) accepts if
and only if for i = 1, . . . , r, V(x, ai, ci, zi) = 1 and O(x,A, i, ci, zi) = 0ℓ.

Fig. 1: ΠRand−F: Randomized version of Fischlin’s protocol proposed in [Kas22].

In [Kas22] the authors argue that this protocol has a small completeness error. As remarked in [Fis05],
for deterministic verifiers this error can be removed by standard techniques, namely, by letting the prover
check on behalf of the verifier that the proof is valid before outputting it; if not, the prover simply sends the
witness to the verifier.

4 On the WI of Protocol in Fig. 1

In this section we show how to use the randomized Fischlin protocol to obtain an efficient NIWI argument
of knowledge with a straight-line extractor that does not program the RO. To do that, we construct a
Σ-protocol ΠOR for a relation Rel0 OR Rel1 using the compiler of Sec. 2.3 by combining a Σ-protocol Π0

for Rel0 with a Σ-protocol Π1 for Rel1. For completeness, we formally prove that the randomized Fischlin
protocol is an AoK with online extraction even though ΠOR does not have a quasi-unique third round. A
similar proof can be also found in [Kas22]. Then we prove that if ΠOR is perfect HVZK, then the randomized
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Fischlin protocol applied on ΠOR is perfect WI in the non-programmable random-oracle. For more details
on our proof approach, we refer the reader to the proof of Theorem 3. We denote the instantiation of the
randomized Fischlin protocol that uses ΠOR as input with ΠWI = (PWI ,VWI) and propose it in Fig. 2.
ΠWI is similar to the protocol proposed in Fig. 1, with the exception that it takes as input two Σ-protocols
Π0 and Π1 and combines them using the compiler of [CDS94].

Let Π0 = (P0,V0) and Π1 = (P1,V1) be the Σ-protocols described above with chal-
lenge length t (for t defined below) for the NP-relation RelL. The security parameter
defines the parameters ℓ, r, t. The integers are related as follows: rℓ = λ, t = ⌈log λ⌉ℓ.
Define the following non-interactive argument system ΠWI = (PWI ,VWI) for re-
lation RelOR. The RO O maps to ℓ bits.
Common input: security parameter λ, NP-statement x0 ∈ L0 ∨ x1 ∈ L1, the
parameters b, r, S, t as defined above.
Input to PWI: wb s.t. (xb, wb) ∈ Relb.
Proof. The prover PWI executes the following steps.
1. On input (xb, wb) run r times Pb (each time using fresh randomness) on input

(xb, wb) thus obtaining ((auxb1, a
b
1), (aux

b
2, a

b
2), . . . , (aux

b
r, . . . , a

b
r)).

2. For i = 1, . . . , r, pick c1−b
i ← {0, 1}t and compute (a1−b

i , z1−b
i ) ←

Sim(x1−b, c
1−b
i ).

Let A = ((a0
1, a

1
1), (a

0
2, a

1
2), . . . , (a

0
r, a

1
r).

3. For i = 1, . . . , r:
(a) Set Ei = ∅.
(b) Sample ci ← {0, 1}t\Ei, compute zbi ← Pb(auxi, c

b
i ).

(c) If O(x0, x1, A, i, ci, c
0
i , c

1
i , z

0
i , z

1
i ) ̸= 0b where ci = c0i ⊕ c1i , update Ei =

Ei ∪ {ci} and go to Step 3.b
4. Output π = ({a0

i , a
1
i , c

0
i , c

1
i , z

0
i , z

1
i }i=1,...,r).

Verification. The verifier VWI accepts if and only if for i = 1, . . . , r:
V0(x0, a

0
i , c

0
i , z

0
i ) = 1, V1(x1, a

1
i , c

1
i , z

1
i ) = 1, ci = c0i ⊕ c1i and

O(x0, x1, A, i, ci, c
0
i , c

1
i , z

0
i , z

1
i ) = 0ℓ.

Fig. 2: ΠWI : Our NIWI AoK with an on-line extractor that does not program the RO.

Theorem 3. Let Π0 be a Σ-protocol for the NP-relation Rel0 and Π1 be a Σ-protocol for the NP-relation
Rel1 such that both Π0 and Π1 have a quasi-unique third round, then ΠWI is perfect WI for the NP-relation
RelOR and is an AoK with an online extractor that does not program the RO.

Proof. Completeness. It follows exactly the completeness of Theorem 6.2 of [Kas22].
Witness Indistinguishability. We prove that if the transform of [CDS94] showed in Sec. 2.3 on input Π0

and Π1 outputs a new Σ-protocol that is perfect WI for the NP-relation RelOR then ΠWI is WI for RelOR as
well.

We assume by contradiction that ΠWI is not WI and then we construct an adversary ASHVZK that
breaks the Special HVZK of either Π0 or Π1. More formally, let Ab

ExpAWI be the view of the adversary in
the experiment ExpAWIbΠWI ,A(λ, ζ). By contradiction, we have that there exists a distinguisher D, and a
non-negligible function δ such that∣∣∣Prob

[
D(λ, ζ,A0

ExpAWI) = 1
]
− Prob

[
D(λ, ζ,A1

ExpAWI) = 1
]∣∣∣ = δ(λ).

Let b, r, S, t be the parameters defined in the description of ΠWI in Fig. 2, we now define the hybrid
experiment Hi and we denote with AHi

the view of the adversary in the experiment Hi with i ∈ {1, . . . , r}.
The hybrid experiment Hi is formally described in Fig. 3 and takes as input the security parameter λ,

the auxiliary information ζ for A and contains b, r, S and t.
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Upon receiving (x,w0, w1) from A execute the following steps.
1. Run i times POR (each time using fresh randomness) on input (x0, x1, w1) thus

obtaining ((aux11, a
1
1), . . . , (aux

1
i , a

1
i )) and ((a0

1, z
0
1), . . . , (a

0
i , z

0
i )).

2. Run r − i times POR (each time using fresh randomness) on input (x0, x1, w0)
thus obtaining ((aux0i+1, a

0
i+1), . . . , (aux

0
r, a

0
r)) and ((a1

i+1, z
1
i+1), . . . , (a

1
r, z

1
r)).

Let A = ((a0
1, a

1
1), . . . , (a

0
r, a

1
r).

3. For j = 1, . . . , i;
Pick a random cj ∈ {0, 1}t such that O(x0, x1, A, j, cj , c

0
j , c

1
j , z

0
j , z

1
j ) = 0ℓ

where cj = c0j ⊕ c1j and z1j ← P1(aux
1
j , c

1
j ).

If such a cj does not exist, abort the computation.
4. For j = i+ 1, . . . , r:

Pick a random cj ∈ {0, 1}t such that O(x0, x1, A, j, cj , c
0
j , c

1
j , z

0
j , z

1
j ) = 0ℓ

where cj = c0j ⊕ c1j and z0j ← P0(aux
0
j , c

0
j ).

5. Send π = ({a0
i , a

1
i , c

0
i , c

1
i , z

0
i , z

1
i }i=1,...,r) to A.

Fig. 3: Hybrid experiment Hi, with i ∈ {1, . . . , r}.

We observe that ExpAWI0ΠWI ,A(λ, ζ) = H0(λ, ζ) and that ExpAWI1ΠWI ,A(λ, ζ) = Hr(λ, ζ). Therefore, by
contradiction, there must be a value i ∈ {1, . . . r} such that

∣∣Prob
[
D(λ, ζ,AHi−1

) = 1
]
− Prob [ D(λ, ζ,AHi

) = 1 ]
∣∣ =

δ(λ). To reach a contradiction we consider the additional intermediate hybrid experiment Hint of Fig. 4. In-
formally, the difference between Hi−1 and Hint is that the honest prover procedure P1 is used in Hint to
compute (a1i , z

1
i ) instead of the simulated one. Instead, the difference between Hint and Hi is that in Hi

the messages (a0i , z
0
i ) are computed using the Special HVZK simulator of Π0 instead of the honest prover

procedure. The following lemma completes the proof of the theorem.

Upon receiving (x,w0, w1) from A execute the following steps.
1. Run i− 1 times P1 (each time using fresh randomness) on input (x1, w1) thus

obtaining ((aux11, a
1
1), . . . , (aux

1
i−1, a

1
i−1)).

2. For j = 1, . . . , i− 1 pick c0j ← {0, 1}t and compute (a0
j , z

0
j )← Sim0(x0, c

0
j ).

3. Run P1 in input (x1, w1) thus obtaining (a1
i , aux

1
i ) and run P0 in input (x0, w0)

thus obtaining (a0
i , aux

0
i ).

4. Run r − i times P0 (each time using fresh randomness) on input (x0, w0) thus
obtaining ((aux0i+1, a

0
i+1), . . . , (aux

0
r, a

0
r)).

5. For j = i+ 1, . . . , r pick c1j ← {0, 1}t and compute (a1
j , z

1
j )← Sim1(x1, c

1
j ).

Let A = ((a0
1, a

1
1), (a

0
2, a

1
2), . . . , (a

0
r, a

1
r).

6. For j = 1, . . . , i − 1: pick a random cj ∈ {0, 1}t such that
O(x0, x1, A, j, cj , c

0
j , c

1
j , z

0
j , z

1
j ) = 0ℓ where cj = c0j ⊕ c1j and z1j ← P1(aux

1
j , c

1
j );

if such a cj does not exist, then abort the computation.
7. Pick a random ci ∈ {0, 1}t such that O(x0, x1, A, i, ci, c

0
i , c

1
i , z

0
i , z

1
i ) = 0ℓ where

c0i ← {0, 1}t, ci = c0i ⊕ c1i , z1i ← P1(aux
1
i , c

1
i ) and z0i ← P0(aux

0
i , c

0
i )

If such a ci does not exist abort the computation.
8. For j = i + 1, . . . , r: pick a random cj ∈ {0, 1}t such that
O(x0, x1, A, j, cj , c

0
j , c

1
j , z

0
j , z

1
j ) = 0ℓ where cj = c0j ⊕ c1j and z0j ← P0(aux

0
j , c

0
j ).

9. Send π = ({a0
i , a

1
i , c

0
i , c

1
i , z

0
i , z

1
i }i=1,...,r) to A.

Fig. 4: Hybrid experiment Hint.

Lemma 1. There exists a negligible function ν such that for every distinguisher D
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|Prob
[
D(λ, ζ,AHi−1) = 1

]
− Prob [ D(λ, ζ,AHint) = 1 ] | ≤ ν(λ) and

|Prob [ D(λ, ζ,AHint = 1 ]− Prob [ D(λ, ζ,AHi
) = 1 ] | ≤ ν(λ)

Proof. Assume by contradiction that one of the above two conditions does not hold. Therefore there exists
a non-negligible function δ such that6
|Prob

[
D(λ, ζ,AHi−1) = 1

]
− Prob [ D(λ, ζ,AHint) = 1 ] | = δ(λ) In this case, we can construct an ad-

versary ASHVZK that breaks the Special HVZK of Π1. Let CSHVZK be the challenger of the Special HVZK
security game, ASHVZK internally runs A and executes the following steps.

1. Upon receiving (x0, x1, w0, w1) from A, pick c← {0, 1}t and send (x1, w1, c) to CSHVZK.
2. Upon receiving (a, z) from CSHVZK, run i − 1 times P1 (each time using fresh randomness) on input

(x1, w1) thus obtaining ((aux11, a
1
1), . . . , (aux

1
i−1, a

1
i−1)). For j = 1, . . . , i−1 pick c0j ← {0, 1}t and compute

(a0j , z
0
j )← Sim0(x0, c

0
j ).

3. Run P0 in input (x0, w0) thus obtaining (a0i , aux
0
i ), set a1i = a.

4. Run r−i times P0 (each time using fresh randomness) on input (x0, w0) thus obtaining ((aux0i+1, a
0
i+1), . . . , (aux

0
r, a

0
r)).

5. For j = i+ 1, . . . , r pick c1j ← {0, 1}t and compute (a1j , z
1
j )← Sim1(x1, c

1
j ).

6. Define A = ((a01, a
1
1), (a

0
2, a

1
2), . . . , (a

0
r, a

1
r)).

7. For j = 1, . . . , i− 1:
Pick a random cj ∈ {0, 1}t such that O(x0, x1, A, j, cj , c

0
j , c

1
j , z

0
j , z

1
j ) = 0ℓ where cj = c0j ⊕ c1j and

z1j ← P1(aux
1
j , c

1
j ).

If such a cj does not exist, abort the computation.
8. Pick a random ci ∈ {0, 1}t such that O(x0, x1, A, i, ci, c

0
i , c

1
i , z

0
i , z

1
i ) = 0ℓ where ci = c ⊕ c0i , z0i ←

P0(aux
0
i , c

0
i ) and z1i = z.

If such a ci does not exist, abort the computation.
9. For j = i+ 1, . . . , r:

Pick a random cj ∈ {0, 1}t such that O(x0, x1, A, j, cj , c
0
j , c

1
j , z

0
j , z

1
j ) = 0ℓ where cj = c0j ⊕ c1j and

z0j ← P0(aux
0
j , c

0
j ).

If such a cj does not exist, abort the computation.
10. Send π = ({a0i , a1i , c0i , c1i , z0i , z1i }i=1,...,r) to A.
11. Output what A outputs.

We now observe that if the reduction does not abort, then we have the following. If the messages (a, z) have
been computed by CSHVZK using the Special HVZK simulator Sim1 then the output of ASHVZK corresponds
to the output of A in Hi−1. If instead (a, z) are computed using P1 on input the witness w1 for x1, then the
output of the reduction corresponds to the output of A in Hint. The proof ends with the observation that the
reduction aborts only with negligible probability (the same arguments used to prove the correctness of the
scheme can be used here). Therefore ASHVZK breaks the security of the Special HVZK of Π1 thus reaching
a contradiction. ⊓⊔

Argument of knowledge. Here we follow in large part the proof of Theorem 2 of [Fis05]. We show
a knowledge extractor Ext(x, π,QO(A)) that except with negligible probability over the choice of O, out-
puts a witness wb such that (xb, wb) ∈ Relb for an accepted proof π = ({a0i , a1i , c0i , c1i , z0i , z1i }i=1,...,r) with
respect to (x0, x1). Since ΠOR is special-sound, then the algorithm Ext just needs to look into QO(A)
for a query O(x0, x1, A, i, ci, c

0
i , c

1
i , z

0
i , z

1
i ) and for another query O(x0, x1, A, i, c̃i, c̃

0
i , c̃

1
i , z̃

0
i , z̃

1
i ) such that

VOR(x0, x1, a
0
i , a

1
i , c̃

0
i , c̃

1
i , z̃

0
i , z̃

1
i ) = 1 and ci ̸= c̃i. Indeed, from the special soundness of ΠOR, this yields

an efficient extraction procedure of either the witness for x0 or x1. If there are no such queries then Ext
simply outputs ⊥. We now need to bound the probability that such two queries do not exist, but still, VWI

accepts π with non-negligible probability. Consider the set of tuples (x0, x1, A) such that A queries O about
(x0, x1, A, i, c

0
i , c

1
i , z

0
i , z

1
i ) for some i, c0i , c

1
i , z

0
i , z

1
i and such that VOR(x0, x1, a

0
i , a

1
i , c

0
i , c

1
i , z

0
i , z

1
i ) = 1 (we can

neglect tuples with invalid proofs since they are not useful to the prover to compute an accepting proof for
6 The proof for the other case follows using the same arguments but in that case, we break the Special HVZK of Π0

instead of Π1.
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the protocol). Let Q = |QO(A)|, then there are at most Q + 1 of these tuples (x0, x1, A). Fix one of the
tuples for the moment, say, (x0, x1, A). By contradiction, for this tuple and any i, A never queries O about
two values (x0, x1, A, i, ci, c

0
i , c

1
i , z

0
i , z

1
i ), (x0, x1, a

0
i , a

1
i , c̃

0
i , c̃

1
i , z̃

0
i , z̃

1
i ) with ci ̸= c̃i which VOR would accept (we

note that if ci ̸= c̃i then either c0i ̸= c̃1i or c1i ̸= c̃1i ). Similarly, we can assume that A never queries about
(x0, x1, A, i, ci, c

0
i , c

1
i , z

0
i , z

1
i ), (x0, x1, a

0
i , a

1
i , c̃

0
i , c̃

1
i , z̃

0
i , z̃

1
i ) with either z0i ̸= z̃0i or z1i ̸= z̃1i , otherwise this would

contradict the property of unique responses of either Π0 or Π1. This allows us to assign a set of unique
values s1, . . . , sr to (x0, x1, A) such that si equals O(x0, x1, A, i, ci, c

0
i , c

1
i , z

0
i , z

1
i ) if A queries about any such

tuple. Conclusively, the values s1, . . . , sr assigned to (x0, x1, A) are all random and independent. Given such
an assignment we calculate the probability that the values s1, . . . , sr are all equal to 0ℓ. This is equivalent to
the probability that r, ℓ-bit strings uniformly random sampled, are all equal to 0ℓ. Such probability is 2−rℓ.
Hence, having set λ = rℓ, we have that the probability that the extractor fails it at most QO(A)/2λ.

5 Our Efficient NIZK Argument of Knowledge

In order to construct our NIZK argument of knowledge with quasi-polynomial simulation and online ex-
traction (still without requiring simulator and extractor to program the RO) for the NP relation RelL
ΠNIZK = (PNIZK,VNIZK), we make use of the following tools.

- A dense samplable puzzle system PuzSys = (Sample,Solve,Verify) such that for every hardness factor
h ∈ HSλ there exists a negligible function ν such that the following holds:
1. Prob

[
puz← Sample(1λ, h) : g(StepsSolve(1

λ, h, puz)) ≤ λlog λ
]
≤ ν(λ);

2. the worst-case running time of Solve(1λ, h, ·) is λpoly(log λ).7

- ΠWI = (PWI ,VWI): a perfect NIWI AoK with online extractor for theNP-relation RelWI = {((x, puz), w) :
(x,w) ∈ RelL or Verify(1λ, h, puz, w) = 1}.

PNIZK and VNIZK have also access to a RO (that will not be programmed by the simulator and by the
extractor) O : {0, 1}∗ → {0, 1}ℓ(λ,h) where ℓ(λ, h) is a function of the security and the hardness parameters
of PuzSys. We need to relate the output length of the random oracle to the parameters of PuzSys because O
is used to generate a puzzle in our construction. More details are given in the security proof.

Common input: security parameter λ, NP-statement x ∈ L.
Input to PNIZK: w s.t. (x,w) ∈ RelL.

Proof. PNIZK computes the puzzle puz for PuzSys by querying the random oracle
O on input x: puz← O(x). PNIZK defines xWI = (x, puz), wWI = w and runs PWI

on input (xWI , wWI) thus obtaining πWI which is sent to VNIZK.
Verification. VNIZK queries O with x thus obtaining puz and defines xWI =
(x, puz). VNIZK now outputs what VWI outputs on input (xWI , πWI).

Fig. 5: Our NIZK AoK with straight-line simulator and online extractor.

Theorem 4. If ΠWI = (PWI ,VWI) is a non-interactive perfect WI AoK with online extractor for the NP-
relation RelWI that does not program the RO and PuzSys is a dense samplable puzzle system according to
Definition 2, then ΠNIZK is a straight-line concurrent perfectly λpoly(log λ)-simulatable argument of knowledge
with online extraction where neither the zero-knowledge simulator nor the AoK extractor needs to program
the RO.
7 This is the same puzzle used in Theorem 7 of [BKZZ16].
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Proof. Completeness. It follows from the completeness of ΠWI and PuzSys.
Quasi-polynomial time perfect simulation. Let VNIZK be an arbitrary verifier. We construct a simulator
Sim that runs in λpoly(log λ) time, such that the distributions

{
(⟨PNIZK(w),VNIZK⋆

(z)⟩(x))
}
z∈{0,1}∗,x∈L

for

arbitrary w s.t. (x,w) ∈ RelL and
{
(⟨Sim,VNIZK⋆

(z)⟩(x))
}
z∈{0,1}∗,x∈L

are perfectly indistinguishable. The

simulator Sim is described in Fig. 6. Note that Sim can compute the solution of the puzzle puz in time
λpoly(log λ) and ΠWI is perfect WI.

Sim(1λ, x)
- Compute the puzzle puz for PuzSys by querying the random oracle O on input
x: puz← O(x) and compute sol← Solve(1λ, h, puz).

- Define xWI = (x, puz), wWI = sol and run PWI on input (xWI , wWI) thus
obtaining πWI .

- Send πWI to VNIZK⋆ and output what VNIZK⋆ outputs.

Fig. 6: Quasi-polynomial time simulator Sim.

Argument of knowledge. By assumption there exist a ppt AoK online extractor Ext for ΠWI such
that the following holds for any ppt algorithm PWI⋆. Let O be a random oracle, (xWI , πWI) ← PWI⋆

(λ)
and QO(PWI⋆

) be the sequence of queries of PWI⋆ to O and O’s answers. Let wWI ← Ext(x, π,QO(PWI⋆
)).

Then there exists a negligible function ν such that
Prob

[
(xWI , wWI) /∈ RelWI and VWI(xWI , πWI) = 1

]
≤ ν(λ).

The AoK ppt extractor ENIZK for ΠNIZK simply internally runs Ext and outputs what Ext would output.
We now observe that ENIZK could fail only because the output of the internal extractor Ext is a solution
sol for puz = O(x). Let us assume by contradiction that this happens. That is, let O be a random oracle,
(x, πNIZK) ← PNIZK⋆

(λ), QO(PNIZK⋆
) be the sequence of queries of PNIZK⋆ to O and O’s answers and let

η ← Ext(x, π,QO(PNIZK⋆
)), then

Prob
[
Verify(1λ, h,O(x), η) = 1 and VNIZK(x, πNIZK) = 1

]
= δ(λ).

But this would contradict the fact that PuzSys cannot be solved in less than λlog λ steps. Indeed the
extractor ENIZK outputs in ppt a solution to a puzzle sampled from an uniform distribution (since O is
modelled as a random oracle). We observe that even though in the above proof the ZK simulator needs
to run in quasi-polynomial time we can still rely on the WI property of ΠWI since the WI of ΠWI holds
against all-powerful adversary.

5.1 Complexity Analysis

To give a concrete idea of the efficiency of our protocol we need to define the two Σ-protocols used as
input of ΠWI (see Fig 2). Thus, we need a Σ-protocol Πpuz for the NP-relation Relpuz = {(puz, sol) :
Verify(1λ, h, puz, w) = 1)} and a Σ-protocol ΠL for the NP-relation RelL. We need to use a dense samplable
puzzle system that admits a Σ-protocol. As discussed in Sec. 2.2, in [BKZZ15] the authors propose a dense
samplable puzzle system where the puzzle is an instance of the DL problem. So we can instantiate Πpuz with
the well known protocol of Schnorr [Sch89].

If we parametrize Fig. 2 with parameters ℓ = 9, t = 9, r = 13 then we obtain Following the analysis of
we obtain an online-extractor that fails with probability at most Q2−117 where the total number of hash
function evaluations is at most 29r and the number of executions of ΠOR is r = 13, where ΠOR denotes the
output of the or-composition proposed in Sec. 2.3 using Πpuz and ΠL as input. To give a practical example,
let us consider the complexity of ΠNIZK when RelL is the discrete log NP relation {((G, q, g, Y ), y) : gy = Y }
where G is a group of prime-order q. We construct ΠWI using two instantiations of the Schnorr protocol
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thus obtaining a Σ-protocol that requires 3 exponentiations to be executed (cf. [CPS+16]). So our protocol
ΠNIZK requires 39 exponentiations and 29r ≈ 6000 hash evaluations.
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