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Abstract. Blind signatures allow a user to obtain a signature from an
issuer in a privacy-preserving way: the issuer neither learns the signed
message, nor can link the signature to its issuance. The threshold ver-
sion of blind signatures further splits the secret key among n issuers,
and requires the user to obtain at least t ≤ n of signature shares in or-
der to derive the final signature. Security should then hold as long as
at most t − 1 issuers are corrupt. Security for blind signatures is ex-
pressed through the notion of one-more unforgeability and demands that
an adversary must not be able to produce more signatures than what is
considered trivial after its interactions with the honest issuer(s). While
one-more unforgeability is well understood for the single-issuer setting,
the situation is much less clear in the threshold case: due to the blind
issuance, counting which interactions can yield a trivial signature is a
challenging task. Existing works bypass that challenge by using simpli-
fied models that do not fully capture the expectations of the threshold
setting. In this work, we study the security of threshold blind signatures,
and propose a framework of one-more unforgeability notions where the
adversary can corrupt c < t issuers. Our model is generic enough to cap-
ture both interactive and non-interactive protocols, and it provides a set
of natural properties with increasingly stronger guarantees, giving the is-
suers gradually more control over how their shares can be combined. As
a point of comparison, we reconsider the existing threshold blind signa-
ture models and show that their security guarantees are weaker and less
clearly comprehensible than they seem. We then re-assess the security of
existing threshold blind signature schemes – BLS-based and Snowblind –
in our framework, and show how to lift them to provide stronger security.

1 Introduction

Blind signatures enable a user to obtain a signature from an issuing author-
ity, without the issuer learning the signed message or even being able to link
the produced signature to its issuance. Initially, Chaum proposed blind sig-
natures for building e-cash [Cha83], and they have since become a key com-
ponent of various privacy-preserving protocols such as anonymous credentials
[FHS22], anonymous attestation [BFG+13], and anonymous tokens [Han23].
They also enjoy increased real-world attention with recent standardization ef-
forts [DJW23, CDVW24, AHWY24] and implementations by Apple [iCl21] and
Cloudflare [clo].
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Because blind signatures require highly available online access to the issuer’s
secret signing key, the compromise of that key is a significant risk. Threshold
cryptography is a natural approach to remedy the risk of key exposure. The
threshold version of blind signatures distributes the secret signing key among n
issuers, and allows a user to obtain a blind signature after interacting with at
least t of them. The distribution of secret keys ensures security even if up to
t− 1 parties have been compromised.

Application-specific threshold variants of some privacy-preserving protocols
have already been considered such as e-cash [RP23] or anonymous credentials
[SABBD18, DKL+23] with threshold issuance. However, there are surprisingly
few protocols for threshold blind signatures as a standalone primitive, e.g., the
non-interactive BLS-based scheme [VZK03] (which essentially combines Boldyreva’s
threshold and blind variants of BLS signatures [Bol03] into a single protocol) and
the recent interactive Snowblind scheme from Crites et al. [CKM+23]. Their se-
curity has been shown in security models that extend the one-more unforgeability
notion of blind signatures to the threshold setting.

(Threshold) One-More Unforgeability. One-more unforgeability adjusts the clas-
sic unforgeability idea to the fact that signatures are now created blindly. As
issuers in a blind signing protocol are not aware of the message they sign, asking
for a forgery on a fresh message is meaningless. Instead, security is defined as
the impossibility that an adversary produces more signatures than what it can
trivially derive through its interactions with the issuers.

In the single-issuer setting, counting the number of trivial signatures is easy:
the count increases with every completed interaction the user has with the hon-
est issuer. In the threshold setting, capturing what is trivial becomes much more
challenging, since we do not know which issuer has signed which message. The
existing security models by Vo et al. [VZK03], Kuchta and Manulis [KM15], and
Crites et al. [CKM+23] work around this challenge by (implicitly or explicitly)
assuming that t−1 issuers are corrupt. In that restricted case, the triviality con-
dition is no more complex than the single-issuer setting: every blinded signature
share the user receives should increment the count of allowed signatures by 1.
It is tempting to assume that these models are sufficient because maximal cor-
ruptions offer the “best case scenario” for an attacker. In fact, the implications
of these models in the general case of c < t corruptions is not so clear.

1.1 Our Contributions

In this work we study the security of threshold blind signatures, and intro-
duce a framework of stronger and more natural security notions for one-more
unforgeability in that setting. We then re-assess the security of the BLS and
Snowblind protocols in our framework and propose new protocol variants that
provide stronger security. An overview of all constructions studied in our work
is given in Table 1. In more detail, our work comprises of the following results.
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OMUF Security Framework. To be useful for a broad class of threshold blind sig-
nature instantiations, we propose a generic syntax that can capture both inter-
active and non-interactive signing protocols (Section 3). Non-interactive means
that only a single round between the user and each issuer is needed, as e.g.,
in BLS. Threshold blind signatures are considered secure when they are blind
and unforgeable, and we give definitions for both. The core of our model is the
framework of four variants of the threshold one-more unforegability (OMUF) def-
inition with increasing security guarantees. They mainly differ in how we count
the number of trivial signatures that the adversary is considered to have learned
through its interaction with n− c honest issuers.

OMUF-0 is the simplest but also weakest possible definition. It increases the
count for every signature share provided by an honest issuer.

OMUF-1 requires at least t−c honest shares to increase the count. The challenge
thereby is how to compute this count – remember that we are in the blind
signature setting, i.e., we do not know which issuer has signed which message.
We apply a counting mechanism introduced for threshold OPRFs [JKKX17],
to determine the optimal combination of the blindly obtained shares, which
then yields the maximal number of signatures the adversary could possibly
derive. We also give an efficient algorithm for this count function, which had
an exponential running time in its existing specification.

OMUF-2 additionally requires some form of agreement among the issuers, and
we only increase the count when t− c issuers produced shares for the same
session ssid. We use the postfix-style session identifier approach recently pro-
posed by Barbosa at al. [BGHJ24], to not impose any pre-agreed session
identifiers. In concrete protocols, this ssid typically will be (part of) the is-
suer’s view, e.g., the blinded message received from the user. OMUF-2 then
ensures that a signature can only be derived when the quorum of issuers has
signed the same blinded input.

OMUF-3 builds upon OMUF-2 and requires that all honest issuers have also
agreed to the same set of issuers they intended to co-sign ssid. This is partic-
ularly desirable for interactive protocols, where t issuers run a multi-round
protocol in the belief of communicating with a particular set of co-signers.

We prove that these four notions form a clear hierarchy of strictly increasing se-
curity (Section 4). While we believe that OMUF-1−3 are the desirable properties
for threshold blind signatures, stronger security is not necessarily better for every
setting. The “right” security notion depends on the concrete application: while
OMUF-2 and OMUF-3 are strictly stronger than OMUF-1 by enforcing some form
of agreement among all issuers, this agreement also takes away the flexibility on
the user side to freely combine signature shares from various interactions.

Inadequacy of Existing Models. To capture existing results in our hierarchy,
we also restate the two existing models of threshold one-more unforgeability
in our syntax (Section 3). The model of Vo et al. [VZK03] and Kuchta and
Manulis [KM15] explicitly assumes that the adversary always corrupts t − 1
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issuers; we denote this model OMUF-FC (standing for “full corruption”). The
security model introduced along with the Snowblind construction [CKM+23] is
restated as OMUF-SB. That model allows for any number c < t of corruptions,
but its security guarantee seems unduly weak in the case of c < t−1 corruptions.
In particular, OMUF-SB increases the count of trivial signatures after only a
single share is provided by an honest issuer.

We carefully study the relations between our four notions and these exist-
ing two (Section 4). By proving that the seemingly intuitive OMUF-FC and the
clearly weak OMUF-0 imply each other, we definitively establish that OMUF-FC
is an insufficient notion. For OMUF-SB, the situation is more complex. We show
that it is in a mysterious position between OMUF-0 and OMUF-3, yet incom-
parable to OMUF-1 and OMUF-2. Ultimately, we do not believe that OMUF-SB
offers a clearly comprehensible security statement, and we therefore favor our
hierarchy’s definitions over it.

BLS-based Schemes. We then re-assess the security of the simple BLS-based sig-
nature scheme (Section 5), which was shown to be OMUF-FC secure [VZK03]. We
restate this construction as tBlindBLS-1, and show that it also satisfies OMUF-1
under the threshold version of the BOMDH assumption. tBlindBLS-1 cannot
achieve stronger security though, as the user can freely combine signature shares
from various “sessions” and there is no binding to a particular signing set. We
therefore propose two extensions tBlindBLS-2 and tBlindBLS-3 that provably
satisfy OMUF-2 and OMUF-3, respectively. In both protocols, issuers blind their
shares with a carefully crafted value. When combining such shares, the blind-
ing values only cancel out when the user has obtained t contributions for the
same session, or even for the same session and from a consistent set of issuers.
Both constructions rely on the BOMDH assumption, which is weaker and more
natural than the assumption needed by tBlindBLS-1. tBlindBLS-2 additionally
requires a hash function modeled as random oracle, whereas tBlindBLS-3 uses a
secure PRF and needs to establish pairwise keys among all issuers.

Pairing-free Schemes: SB and SB+. While BLS-based schemes are highly at-
tractive due to their simple and non-interactive nature, their reliance on pairing-
friendly curves can be a burden for practical deployment. We therefore also study
and improve the pairing-free threshold blind signature scheme Snowblind (SB)
recently introduced by Crites et al. [CKM+23] (Section 6). Their interactive
protocol supports concurrent signing sessions, and was proven to be OMUF-SB
secure. OMUF-SB directly only implies OMUF-0 security, which is too weak. This
raises the question of whether SB can satisfy a stronger notion in our hierarchy.

Given that the Snowblind scheme is an interactive protocol that a dedicated
set of t issuers runs for each signing request, the intuitive security goal would be
OMUF-3 – reflecting this signature creation with a well-defined set of co-signers
in the unforgeability guarantee. We first show that this is not the case, i.e. the
original SB scheme does not satisfy OMUF-3 security, and then propose a simple
variant SB+ that lifts the Snowblind protocol to achieve this strongest security
in our hierarchy. Our construction essentially uses the same blinding technique
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as tBlindBLS-3, and is given in a semi-generic manner showing how OMUF-SB
can be boosted to OMUF-3.

tBlindBLS-1 tBlindBLS-2 tBlindBLS-3 SB SB+

OMUF-0 ✓ [VZK03] ✓ ✓ ✓ [CKM+23] ✓

OMUF-1 ✓ ✓ ✓ ? ✓

OMUF-2 ✗ ✓ ✓ ? ✓

OMUF-3 ✗ ✗ ✓ ✗ ✓

Table 1. Overview of security levels of existing and newly proposed constructions.

1.2 Related Work

Our model and constructions are building upon related concepts for threshold
but non-blind signatures, as well as recent works on threshold OPRFs and multi-
signatures. We summarize these works here and give a more detailed comparison
in the respective parts of our work.

Stronger Security for Threshold Signatures. Interestingly, a similar discrepancy
between the formally modelled vs. the desirable security was already present in
threshold, but non-blind, signatures. This was was recently discovered by Bel-
lare et al. [BTZ22, BCK+22] who show that the traditional security model is not
satisfactory, as it does not capture the expected higher security properties based
on the secret’s distribution. They propose several stronger unforgeability notions
for the threshold setting, with increasingly stricter definitions of what counts as
a trivial signature in the unforgeability game. Directly applying this framework
of stronger definitions to threshold and blind signatures is not straightforward,
due to the significantly different security notions in both settings. Furthermore,
their framework only considers non-interactive threshold signatures whereas our
framework does not have such a restriction. We point out similarities and differ-
ences when presenting our definitions and relations in Sections 3 and 4.

Cremers et al. [CPZ24] very recently extended the threshold signature se-
curity hierarchy of [BTZ22, BCK+22] to include consideration of adaptive cor-
ruptions. To date there is no threshold blind signature scheme that has been
proven secure under adaptive corruptions. Therefore, our work focuses on the
static corruption model.

Blind Multi-Signatures. Karantaidou et al. [KRB+24] recently proposed blind
multi-signatures that allow issuers to generate their individual key, aggregate
n of them them into group public keys in an ad-hoc manner, and blindly cre-
ate signatures that verify under these aggregated keys. They also provide two
constructions of blind multi-signatures: one based on BLS, and one build upon
Snowblind. Their work also introduces the notion of one-more unforgeability
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for blind multi-signatures, which assumes that there is only a single honest is-
suer. In Appendix E we study our definitions for the “edge” case of t = n, and
show that OMUF-0, -1 and OMUF-SB become equivalent in this setting. Thus,
considering multi-signatures as n-out-of-n threshold signatures, we can conjec-
ture that their unforgeability notion provides a comparable level of security to
these models. Our BLS and Snowblind based constructions aim at the stronger
security of OMUF-2 and OMUF-3. These notions prevent signature share ag-
gregation across sessions and signing sets, which contradicts the flexible nature
typically desired from multi-signatures with ad-hoc generated aggregate keys.
For multi-signatures where issuers should be given more control over the ses-
sions and co-signers they interact with, constructions with ad-hoc group keys on
levels similar to OMUF-2 and 3 are an interesting open problem.

Threshold OPRFs. Oblivious pseudorandom functions (OPRFs) allow a user on
input x and server holding a key k to engage in a blind evaluation protocol, that
returns y = PRF (k, x) to the user. While similar in spirit, OPRFs and blind
signatures demand significantly different security properties that are not directly
related [CHL22]. Further, security of OPRFs is typically defined through ideal
functionalities, which abstract the complexity of counting through bookkeeping
within the functionality. Nevertheless, despite the differences in security models,
OPRF and blind signatures are often similar in their constructions and our work
takes inspiration from a number of threshold and distributed OPRF works: The
blinding technique to lift BLS to OMUF-2 security has been used by Gu et
al. [GJK+25] for stronger security of threshold OPRFs. The idea for the pairwise
blinding in tBlindBLS-3 and SB+, where the blinding values only cancel out
when shares from the desired set of issuers are combined, was previously used to
obtain adaptive and proactive security for distributed OPRFs [CLN15, BFH+20].
Finally, the T-(B)OMDH assumptions used for the analysis of tBlindBLS-1 dates
back to the first threshold OPRF by Jarecki et al. [JKKX17].

2 Preliminaries

Here we define building blocks and assumptions we use throughout the paper.
This section also contains the definition of the count function that will be crucial
for our OMUF-1 security notion and a novel way to efficiently compute it.

Building Blocks. We use prime-order group generator (G, g, q)← GGen(λ), and
pairing group generator (e,G1,G2,GT , g, ĝ, q)← BGGen(λ) in our concrete con-
structions. We also use Shamir’s secret sharing as a generic building block, ab-
stracted as Share(x, n, t) → (x1, . . . , xn) that outputs t-out-of-n shares of input
x. The detailed descriptions of all these algorithms, and the definition of pseu-
dorandom functions are presented in Appendix A for completeness.

Assumptions. Our work uses various Diffie-Hellman type assumptions. The clas-
sic DDH assumption is deferred to Appendix A.
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The One-More Diffie-Hellman (OMDH) assumption in group G states that,
given gp ∈ G for random p, it is difficult to raise Q+1 given (random) G elements
to p without making more than Q calls to an exponentiation oracle for p. The
Bilinear OMDH assumption (BOMDH) (previously used in [KMMM23, CLN15])
extends that game to the pairing group setting (G1,G2) by providing both gp ∈
G1 and ĝp ∈G2 as inputs. We present the BOMDH Assumption in Appendix A.

In the Threshold OMDH (T-OMDH) assumption, the secret exponent p is
distributed via Shamir secret sharing with threshold t into n shares assigned to
n separate exponentiation oracles. When [JKKX17] introduced this assumption,
they defined a function countt that computes the expected number Q of group
element exponentiations that should be possible given (q1, . . . , qn) calls to the
oracles numbered (1, . . . , n). The T-OMDH assumption states it is difficult to
raise Q+1 group elements to p. The Bilinear T-OMDH assumption (previously
used in [KMMM23]) extends T-OMDH to the setting of a bilinear pairing setup
in the same manner that BOMDH extends OMDH.

Definition 1 (Threshold Bilinear One-More Diffie-Hellman). Let BG :=
(e,G1,G2,GT , g, ĝ, q) ← BGGen(λ). In the (t, n,N)-Threshold Bilinear One-
More Diffie-Hellman (T-BOMDH) game where t ≤ n, A is given (BG, gp(0),
ĝp(0), ĝ1, . . . , ĝN ) for (ĝ1, . . . , ĝN ) ← GN

2 and access to oracle TBOMDHp(·, ·) :
[n] × G2 → G2 for a random (t − 1)-degree polynomial p(·) over Zq, where
TBOMDHp(i, x) → xp(i). A wins if it outputs Q + 1 pairs (j, ĝ

p(0)
j ) for distinct

j ∈ [N ], where Q = countt(q1, . . . , qn) and qi is the number of queries made
to TBOMDHp(i, ·). The T-BOMDH assumption holds if, for all efficient A, the
probability that A wins the T-BOMDH game is negligible.

Clearly, the definition of countt is central to the T-(B)OMDH assumption.
This function captures the expectation that a set of t queries to t different oracles
is required for each group element the adversary successfully exponentiates to
p. However, there is no trivial way to group oracle queries into such sets. The
count function therefore maximizes the number of possible exponentiations by
assuming the optimal grouping.

For example, let’s consider count3(2, 2, 2, 2, 1) which denotes the status after a
game where the adversary has access to n = 5 oracles initialized with threshold
t = 3. The input (2, 2, 2, 2, 1) indicates the number of queries that have been
made to each oracle. Then, count3(2, 2, 2, 2, 1) = 3 because the optimal grouping
of queries is (1, 1, 1, 0, 0), (1, 0, 0, 1, 1), and (0, 1, 1, 1, 0). The same total number
of queries distributed less evenly between the oracles yields a lesser value, e.g.,
count3(4, 2, 1, 1, 1) = 2.

We now define function countt : Nn → N formally. Let W (v) be the Ham-
ming weight of vector v. Define Vn,t to be the set of n-bit binary vectors with
Hamming weight t, i.e. Vn,t := {v ∈ {0, 1}n : W (v) = t}. Further, let
q = (q1, , . . . qn) ∈ Nn. Previous works [JKKX17, AMMM18, KMMM23] have de-
fined countt(q) as the maximum integer c for which there exist v1, . . . ,vc ∈ Vn,t
(not necessarily distinct) such that v1 + · · ·+ vc ≤ q. We provide an equivalent
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recursive definition, using notation Vn,t(q) := {v ∈ Vn,t : v ≤ q}:

countt(q) =

{
0 Vn,t(q) = ∅
1 + maxv∈Vn,t(q) countt(q − v) Vn,t(q) ̸= ∅

(1)

Computing this function naively requires recursively searching through an expo-
nential number of possible vectors v ∈ Vn,t(q). Prior works have not offered an
efficient way of computing countt, without which the T-(B)OMDH assumption
would not be falsifiable. Therefore we provide an efficient alternative algorithm:
repeatedly “use up” vector v with 1s in the positions of the t greatest elements
of q. Appendix B contains a proof of this algorithm’s correctness.

3 Threshold Blind Signatures

In this section, we present our definitional framework for threshold blind signa-
tures. The main contribution of this section is our hierarchy of definitions for
the one-more unforgeability (OMUF) property of such signatures.

3.1 Definition of Threshold Blind Signatures

We start by defining the syntax for threshold blind signatures in a way that
is generic enough to capture both interactive and non-interactive signing proto-
cols. Non-interactive refers to round-optimal protocols, where no communication
beyond the minimally required interaction, i.e., the user sending the blinded mes-
sage to the issuers, is needed. Our detailed syntax for threshold blind signatures
is presented in Definition 2, and consists of algorithms for the public parame-
ter generation (Pg), the key generation of all n signers (Kg), a signing protocol
between a user and t of the signers, as well as a verification algorithm Vf.

Setup, KGen & Verification. The Pg algorithm outputs the public parameters pp
that can be potentially used as an implicit input to all other algorithms. The key
generation algorithm Kg, on input number of issuers n and the threshold t, out-
puts the public key pk and the secret key shares {ski}i∈n. Kg also outputs some
auxiliary information aux, which could e.g., consist of some additional public
values used by the signing protocol to validate individual signing contribution.
Although pk and aux are both public values, they are represented separately as
aux is only needed during signing and not during signature verification. Crites
et al. [CKM+23] made a similar distinction and we keep this in our model too.
We note that [CKM+23] defined an additional output to Kg, the issuer public
key shares, that we omit as it was not explicitly used in any security definition.
The verification algorithm Vf works just like the regular signature verification
that checks the validity of a signature σ on a message msg for a public key pk.
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Signing Protocol. Our signing protocol is defined as a potentially interactive
protocol where a user interacts with a set of t issuers S. The protocol is initiated
by the user via the algorithm USign0, which takes the public key pk, auxiliary
information aux, message msg, and a set of t issuers S as input. The algorithm
outputs local user state ust0 and a protocol message (typically a blinded form
of msg) ups0. The first round of an issuer i is triggered through ISign1 on input
secret key share ski, auxiliary information aux, some additional context data
ctx, and the user’s input ups0. The context ctx becomes useful in our stronger
security notions, and allows the issuers to control that only signature shares
generated for the same ctx can be combined into the final signature. The issuer
i’s output is its local state ist1,i and protocol message ips1,i.

For interactive protocols, the user and signers may engage in further rounds
USignj and ISignj , getting local state and protocol message from round j − 1 as
input, and outputting new tuples (ustj , upsj) and (istj,i, ipsj,i) respectively.

We make the final round r explicit, with USignr on the user side outputting
a signature σ or ⊥. On the issuer side, ISignr outputs a set of signers S ′ and
a subsession identifier ssid. Looking ahead to Section 3.2, our different notions
of one-more unforgeability enforce different properties conditioned on these two
values. In all cases, though, we require protocols to output sensible S ′ values. In
particular, S ′ ⊆ [n], |S ′| = t, and i ∈ S ′ where i is the issuer who outputs S ′.

Definition 2 (Threshold Blind Signature). A threshold blind signature sch-
eme TB is a tuple of algorithms such that:

Pg(1λ)→ pp: Outputs public parameters pp for security parameter 1λ, which
we assume to be an implicit input to all other algorithms.

Kg(n, t)→ (pk, {sk1, . . . , skn}, aux): Probabilistic algorithm that outputs the
public key pk, secret key shares ski, and auxiliary information aux.

Signing Protocol: It is an (possibly) interactive algorithm between the user
and a set of issuers S ⊆ [n], t ≤ |S| ≤ n, to sign a message msg. The
interaction between the user and issuers are denoted as follows.

(ust0, ups0)← USign0(pk, aux,msg,S)
(ist1,i, ips1,i)← ISign1(i, ski, aux, ctx, ups0)

(ust1, ups1)← USign1(ust0, {ips1,i}i∈S)
(istj,i, ipsj,i)← ISignj(i, istj-1,i, upsj-1)

(ustj , upsj)← USignj(ustj-1, {ipsj,i}i∈S)
(ssid,S ′, ipsr,i)← ISignr(i, istr-1,i, upsr-1)

σ/⊥ ← USignr(ustr-1, {ipsr,i}i∈S)

Vf(pk, σ,msg)→ b ∈ {true, false}: Verifies if σ is valid on msg for pk.

In non-interactive protocols, i.e., when r = 1, the issuer’s algorithms ISign1 and
ISignr collapse, in the sense that (ssid,S ′, ipsr,i)← ISignr=1(i, ski, aux, ctx, ups0)
combines the input behaviour from the first, with the output behaviour of the
last round.
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Comparison to [CKM+23]. Our notation for the signing protocol is similar to
the definition of Crites et al. [CKM+23]. Our version, however, is initiated by
the user while theirs is initiated by the issuers. In the context of threshold blind
signatures, we believe that having the user as the first party to send a message
is more natural as the issuers do not know the message to be signed and maybe
even the co-signers in the session. Furthermore, any protocol that has the first
interaction from the issuers to the user can be represented in our notation by
setting the first user message to ⊥. Further, although [CKM+23]’s definition
starts with a move from the issuers to the users, their construction, Snowblind,
actually has the user as the first message sender.

Correctness & Blindness. Threshold blind signature schemes must satisfy cor-
rectness, blindness – and of course one-more unforgeability, which we define in
several variants afterwards. We present the formal definitions of the correctness
and blindness properties in Appendix C.

Our blindness definition mainly follows Crites et al. [CKM+23] and is given
in Appendix C, Figure 7. To recap, like their definition, our blindness notion
allows the adversary to control all issuers and also to trigger honest users to
perform signing protocols with different issuer sets. It demands that an adver-
sary, when given two signatures a user has obtained through the threshold blind
signing protocol, cannot link a signature to its issuance session. We note that
this blindness definition enforce a synchronized behavior where the user always
outputs its partial signatures for msgb and msg1−b together, not allowing the
adversary to choose its partial signatures adaptively for different messages. This
limitation is not exploited in the proofs of our constructions and we keep the ex-
isting definition for simplicity. A stronger definition can be achieved by adapting
the blindness definition of [KRB+24] for multi-signatures. Finally, we underline
that our definition does not make any assumption or limitation regarding ctx,
and thus even using a different context in each signing session must not interfere
with the blindness guarantees of such signatures.

3.2 One-More Unforgeability

This section presents six different notions of one-more unforgeability. We intro-
duce four new notions (OMUF-0 to OMUF-3) that form a clear hierarchy, and
that we consider the most useful measure of a threshold blind signature scheme’s
security. In all these notions, the adversary can corrupt up to c < t issuers and
freely interact with the remaining honest ones. The adversary wins, if it manages
to produce more valid signatures than what is trivially achievable based on the
adversary’s knowledge. Our notions differ in what is considered trivial. Roughly,
the number of trivial signatures is increased based on the following events:

OMUF-0: 1 honest issuer outputs a partial signature
OMUF-1: t− c issuers output a partial signature
OMUF-2: t− c issuers output a partial signature for the same ssid
OMUF-3: t− c issuers output a partial signature for the same ssid and S ′
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We also present two notions (OMUF-FC and OMUF-SB) that originate from
prior works, and we include them to analyze existing notions and schemes in
our hierarchy too. The six security notions differ from each other mainly in
their winning conditions (and the bookkeeping necessary to define their winning
conditions). The basic game structure of one-more unforgeability is the same in
all six cases. Thus, we first explain this general game structure.

Security Game. The one-more unforgeability security game OMUF-x is defined
in Figure 1 for x ∈ {0, 1, 2, 3,FC,SB}. This game follows the general behavior
of traditional one-more unforgeability. The experiment starts with generating
the public parameters and initializing the bookkeeping structure for the games.
EC0, EI2, EI3, ES3, and ESSB are variables used to define the winning conditions
of specific properties; we defer their explanations to the individual descriptions
of each property. The experiment also initializes the sets S1, . . . , Sr which are
used to keep track of in-progress signing sessions. The adversary must tag each
signing session with a unique session identifier sid, and Sj is the set of (i, sid)
pairs such that issuer i has executed session sid through (at least) round j.

Our game models static corruption and trusted key generation following
[CKM+23]. The adversary chooses the threshold parameters and the corrupted
parties (n, t, C). If these values are not well-formed, the threshold t is not satis-
fiable (n < t), or the corrupted set leads to trivial insecurity (|C| ≥ t), the game
directly returns false. Otherwise, the adversary gains access to signing oracles.
The signing oracle OISign simply mimics the behavior of honest issuers. Under
all six security definitions, only execution of the signing oracle for last signing
round j = r causes an update to the adversary’s winning condition. That is,
we consider a partial signature complete when an issuer has engaged in the final
round of the protocol. After its interaction with the signing oracles, the adversary
ultimately outputs ℓ message/signature pairs.

The winning condition checks that two requirements are met. First, the num-
ber of signatures, ℓ, must exceed the number that is allowed by the adversary’s
actions in the OMUF-x game. This number is determined by the function allowx

in Figure 1 which takes the game state as input and returns an integer that is the
maximum number of signatures the adversary can output without violating the
OMUF-x property. This allowx function is where our security models differ, and
we explain how we count the number of admissible signatures in the description
of each game. We drop the input of the allowx function for simplicity and just
note that it has access to the game state. The second requirement of the winning
condition is simply that all ℓ message/signature pairs are valid and distinct.

Definition 3 (TB-OMUF-x). A threshold blind signature scheme TB is x-one-
more unforgeable for x ∈ {0, 1, 2, 3,FC,SB} if, for all PPT adversaries A, and
n, t ∈ N+ such that t ≤ n, Pr

[
ExpOMUF-x

TB,A,n,t(λ) = true
]

is negligible for the experi-
ment from Figure 1.

Next we describe how each OMUF-x game defines its winning condition and
explain the corresponding intuitive security guarantees it gives.
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ExpOMUF-x
TB,A,n,t(λ)

pp← Pg(1λ); S1, . . . , Sr, := ∅; ES3,ESSB := ∅
∀i, ssid,S3 : EC0[i] := 0,EI2[ssid],EI3[ssid,S3] := ∅; (C)← A(pp, n, t)

if |C| ≥ t : return false if |C| ≠ t− 1 : return false

(pk, {ski}i∈[n], aux)← Kg(n, t)

(ℓ, {(msg∗k, σ
∗
k)}k∈[ℓ])← AOISign

(pk, {ski}i∈C , aux)

return

(
ℓ > allowx

)
∧ ∀k ∈ [ℓ] :

(
Vf(pk, σ∗

k,msg∗k)
∧ ∀j ∈ [ℓ] \ {k} : (msg∗k, σ

∗
k) ̸= (msg∗j , σ

∗
j )

)

allow0:
∑

i∈[n] EC0[i] allow1: countt−|C|

(
EC0[1], . . . ,EC0[n]

)
allowFC:

∑
i∈[n] EC0[i] allow2:

∣∣∣∣{ssid : |EI2[ssid] ∪ C| ≥ t

}∣∣∣∣
allowSB: |ESSB| allow3: |ES3|

OISign(j, sid, i, ctxsidi , upssidj−1) // issuance in round j ∈ {1, . . . , r} of issuer i ∈ [n]

return ⊥ if (i, sid) ∈ Sj // ensure this round has not been queried

return ⊥ if j > 1 : (i, sid) ̸∈ S1, . . . Sj−1 // ensure previous rounds have been queried

Sj := Sj ∪ {(i, sid)}
if j = 1 : (istsid1,i , ips

sid
1,i )← ISign1(i, ski, aux, ctx

sid
i , upssid0 )

else : (istsidj,i , ips
sid
j,i )← ISignj(i, ist

sid
j−1,i, ups

sid
j−1)

if j = r : // final round updates the state used to determine allowx

Parse istsidr,i := (ssidsidi ,S ′sid
i )

EC0[i] := EC0[i] + 1 // bookkeeping for OMUF-0, 1, FC

EI2[ssid
sid
i ] := EI2[ssid

sid
i ] ∪ {i} // bookkeeping for OMUF-2

S3 := S ′sid
i \ C // bookkeeping for OMUF-3

EI3[ssid
sid
i ,S3] := EI3[ssid

sid
i ,S3] ∪ {i}

if S3 ⊆ EI3[ssid
sid
i ,S3] : ES3 := ES3 ∪ {ssidsidi }

ESSB := ESSB ∪ {(sid,S ′sid
i )} // bookkeeping for OMUF-SB

return (ipssidr,i , ssid
sid
i ,S ′sid

i ) // response for round j = r

return ipssidj,i // response for rounds j < r

Fig. 1. One-More Unforgeability Definition OMUF-x for x ∈ {0, 1, 2, 3,FC,SB}. The
shadowed text is only for x = FC.
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OMUF-FC. With OMUF-FC (standing for “full corruption”), we express the first
security definition that was considered for threshold blind signatures in [VZK03].
It was later used again in [KM15]. This notion differs from our other five in
that it imposes a restriction on the adversary’s behavior: the adversary must
corrupt exactly t−1 issuers. Under this condition, it is straightforward to define
allowFC. Clearly, the adversary should earn one signature for every signing oracle
interaction. For all i ∈ [n], the security game maintains EC0[i] as a counter of
the signing queries answered by issuer i. allowFC is simply the sum of all EC0[i].

OMUF-0. Though easy to understand, OMUF-FC does, at first glance, not pro-
vide any intuition about security in the case that less than t − 1 issuers are
corrupted. We therefore generalize OMUF-FC to OMUF-0, the weakest of the
four notions in our hierarchy. OMUF-0 eliminates the restriction that |C| = t− 1
but is otherwise identical to OMUF-FC, i.e. every single signing query adds one
allowed signature to allow0. When there are few (or no) corruptions, this secu-
rity definition is obviously far weaker than the level of security one would expect
from a threshold blind signature scheme. Seemingly, it allows the adversary to
flaunt the scheme’s threshold entirely!

In Section 4 we prove the surprising result that OMUF-FC and OMUF-0 are
equivalent (Lemma 4). For the purpose of our hierarchy, we prefer OMUF-0 over
OMUF-FC for two reasons. First, OMUF-0 imposes no restriction on the adver-
sary’s behavior, so it matches the game structure used by all our other definitions.
Second, OMUF-0 better exposes the concerning weakness of this security notion.
No matter how high the threshold t is set, OMUF-0 allows outputting a signature
after interacting with just a single issuer in the game.

Related Concepts. Bellare et al. [BTZ22] define the unforgeability notion TS-
UF-0 for non-blind threshold signatures which requires as the non-triviality con-
dition that no signature share was requested on a message regardless of what the
threshold is. They also observe that many existing threshold signature schemes
relied on this relatively weak notion.

OMUF-1. Clearly, the security guarantees of OMUF-0 are not satisfactory, so
we strengthen it into OMUF-1, which formalizes a much more natural security
expectation. In particular, OMUF-1 allows one signature per each set of t interac-
tions with distinct issuers. If the adversary has corrupted some issuers, then less
honest issuer interactions (specifically, t′ := t−|C|) are needed for each signature.

We believe that OMUF-1 captures the most obvious and intuitive understand-
ing of threshold blind signature security. This notion has not, however, appeared
before in this form. The challenge of this model is how to count the number of
admissible signatures allow1. Due to the blindness and threshold setting, we are
not aware which issuers have signed the same blinded input. Thus, we need to
find a way to extrapolate the upper bound of signatures that can be derived
using the issued partial signatures. This is done via the function count, which
we defined in Section 2 as part of the T-BOMDH assumption.
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We make the top-up threshold t′ := t − |C| explicit and use allow1 :=
countt′(EC0[1], . . . ,EC0[n]) as the number of allowed signatures. Intuitively, this
use of count is very similar to its use in T-BOMDH: count assumes the optimal
grouping of partial signatures into sets of size t′ in order to establish the greatest
number of signatures that should be possible after the adversary’s interactions
with issuers in the OMUF-1 game.

Related Concepts. For non-blind threshold signatures, our OMUF-1 notion is
similar to TS-UF-1 by Bellare et al. [BTZ22] which defines a signature to be
trivial when a partial signature was generated by at least t − c honest issuers.
As their framework is in the non-blind setting, the definition does not require
any complex counting arguments.

Similar security properties have been described for other threshold and blind
primitives in the Universal Composability (UC) framework, e.g. the threshold
oblivious PRF functionality of [JKKX17] and the threshold anonymous creden-
tials functionalities of [RP22] and [DKL+23]. As these notions are in the UC
framework, they did not require any explicit counting of the number of trivial
evaluations. The threshold OPRF security definition of [AMMM18] has utilized
the function count in the game-based setting. That definition, however, describes
a game where the adversary must evaluate the PRF on an input that is unknown
to it; our notion of one-more unforgeability does not compare to that setting.

OMUF-2. Though OMUF-1 ensures a reasonable signature count, it does not
provide for any coordination or agreement mechanism between issuers. We there-
fore continue our hierarchy with OMUF-2, which requires that the issuers’ final
signing round outputs a postfix-style subsession identifier ssid. This is already
part of our syntax as defined in Def. 2. Our OMUF-2 game then uses this ssid
to model some form of consensus among the issuers. In a concrete protocol, ssid
can, e.g., be the view the individual issuer’s had, and/or some pre-agreed con-
text information ctx. In fact, this approach is inspired by the recent Bare PAKE
model of Barbosa et al. [BGHJ24], in which parties output unique and consistent
ssids instead of taking them as input (which requires an agreement pre-phase).

In the OMUF-2 game, EI2[ssid] is the set of issuers that have outputted ssid.
The allowed number of signatures allow2 is the number of ssid values that have
been outputted by at least t issuers (the participation of all corrupted issuers
is assumed). Our definition does not specify exactly how each protocol should
define ssid, but two basic conditions must be met. First, it must be impossible
to compute a signature without having t issuers output the same ssid. Second, it
must be impossible to compute two different signatures using issuer interactions
that produce the same ssid (i.e. ssids must be unique). We believe that reasonable
protocols satisfying OMUF-2 will choose ctx and/or some or all of the transcript
of user messages ups1, . . . , upsr as their ssid. For instance, in our BLS protocols
we use ups1, which is the blinded message from the user, as part of ssid. Our
OMUF-2 notion then guarantees that the user can only obtain a valid signature
on a message after sending the same ups1 to t issuers.
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Session Agreement. OMUF-2’s ssid agreement guarantee is valuable for two main
reasons. First, issuers who keep logs of their ssid outputs can later determine
which of their blind signing sessions go together. Tracking of this type could be
useful for system administration and abuse prevention, and it does not violate
blindness. Issuers still cannot learn which signatures were created by which ses-
sions; they can simply “link” their individual sessions together. Second, if ssid
includes ctx, then issuers can use the ctx field to enforce agreement on arbitrary
side data. If ctx contains a timestamp or counter, this behavior would enforce
a form of freshness and implicit coordination between issuers, without requiring
an interactive consensus round. If ctx contains a username, this behavior would
enforce that the same user authenticates to all issuers. Once again, blindness is
not violated. This side data is not a part of the final signature, yet issuers must
agree upon it during the signing process.

Considering the possible applications of threshold blind signatures, e.g., dis-
tributed e-cash of anonymous tokens for rate-limiting, such an added control for
the issuers will be essential for the desired upper-level functionality.

Related Concepts. Though this security property has not previously been consid-
ered for threshold blind signatures, there have been similar notions considered
in related works. For threshold (non-blind) signatures, Bellare et al. [BTZ22]
proposed an unforgeability property (TS-UF-2) that requires t signers to not
just sign the same message, but to record the same “leader request” (which may
contain some other data in addition to the message). For threshold OPRFs, Gu
et al. [GJK+25] proposed a UC functionality that requires t servers to run on
the same side input (comparable to our notation’s ctx).

OMUF-3. The security guarantee of OMUF-2 enables different paradigms of
coordination between issuers, but it does not accommodate issuers that wish to
coordinate each other’s identities during the blind signing process. Even if issuers
believed they knew the signing set S and included it in ssid, OMUF-2 would offer
no assurance of that signing set’s correctness. At the extreme, consider the case
that t−1 issuers are corrupted. An honest issuer might wish to sign alongside a set
S of other honest issuers, but in reality just that one honest issuer’s participation
is sufficient for the adversary to complete a signature. To fill this gap, we propose
OMUF-3, the strongest one-more unforgeability definition of our hierarchy.

In OMUF-3, we require that each issuer’s final signing round outputs a sup-
posed signing set S ′ in addition to ssid. Again, this is already part of our syntax
defined in Def. 2, but wasn’t needed so far. It is not meaningful to differen-
tiate between corrupted issuers, so the OMUF-3 game first pares down S ′ to
S3 := S ′ \ C, the honest subset of S ′. Intuitively, OMUF-3 enforces that the is-
suer’s interaction only counts toward producing a signature if every other issuer
in S3 also executes and agrees upon S3 and ssid. EI3[ssid,S3] is the set of issuers
that have outputted ssid and S3 (or, to be specific, any S ′ whose honest subset
is S3). Once every issuer in S3 is in EI3[ssid,S3], ssid is added to the set ES3,
thereby incrementing allow3. In order to keep OMUF-3 strictly stronger than
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OMUF-2, we maintain the semantic that a single ssid can only correspond to a
single signature, i.e. two different signing sets that output the same ssid cannot
produce two different signatures.

Signer Set Agreement. OMUF-3 allows for the highest level of coordination be-
tween issuers. Not only can they enforce agreement on arbitrary side data as
in OMUF-2, they can choose whether or not to participate in signing along-
side certain other issuers. For example, suppose it is discovered that a certain
issuer is acting suspiciously. The other issuers might refuse to participate in sig-
ning sessions that include that suspicious issuer in their signing set. In this way,
corruptions (below the threshold t) can be handled without losing security or
needing to repeat key generation.

Related Concepts. This notion is similar in spirit to TS-UF-3 and TS-UF-4 in
the definitional framework by Bellare et al. [BTZ22]. Therein, the security game
also demands that a signature can only be created when all honest issuers in the
signing set have contributed their shares. The reason why their framework for
non-interactive and non-blind schemes has two notions, is that they differentiate
whether some preprocessing information can be maliciously generated or not.
This is not relevant in our blind setting, as signers always operate on possibly
maliciously generated input from the user.

OMUF-SB. Finally we recap the one-more unforgeability definition proposed
by Crites et al. [CKM+23] for their Snowblind protocol, which we denote as
OMUF-SB. This game maintains ESSB to be the set of (sid,S ′) pairs such that
at least one issuer completed a signing session with identifier sid that outputted
supposed signing set S ′. Recall that sid is purely used for bookkeeping within
the security game, it is not an explicit input to any of the protocols. The allowed
number of signatures allowSB is the cardinality of the set ESSB.

It is difficult to intuitively express the security property implied by OMUF-SB.
On the one hand, it seems strong in that it enforces some semantic on the signing
set S ′. In our hierarchy, only the strongest notion OMUF-3 involves S ′. On the
other hand, it seems weak in that it allows for a signature to be computed after
interacting with just a single honest issuer. In our hierarchy, only the weakest
notion OMUF-0 exhibits this behavior. If the adversary uses a different sid for
every issuer interaction, then every single one will increment allowSB, allowing
for one more signature. However, an adversary trying to violate the property
would want to keep allowSB low and would therefore want to reuse the same sid
for as many sessions as possible. Since S ′ must be of size t, the same (sid,S ′) can
only result from at most t individual issuer interactions, which seems to enforce
some version of a natural threshold counting property. In the case of one or more
corruptions, though, the consequences of this property are not very clear.
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OMUF-0

OMUF-FC

OMUF-1 OMUF-2 OMUF-3

OMUF-SB

Fig. 2. Relations between one-more unforgeability notions. An arrow A → B indicates
that notion A implies notion B. The diagram is exhaustive, i.e. if there is no path from
A to B, then notion A does not imply notion B.

4 Relations Between Unforgeability Definitions

We now prove relations between all introduced OMUF notions. Figure 2 depicts
the implication relations between the six one-more unforgeability notions that
we consider. In this section we prove that the diagram is correct and exhaustive.

Results in a Nutshell. We first prove that our newly introduced notions OMUF-0
to OMUF-3 form a clear hierarchy with strictly increasing security guarantees.
We also show that the existing notion OMUF-FC and OMUF-0 imply each other,
demonstrating that the seemingly intuitive notion OMUF-FC is not sufficient in
a threshold setting.

For OMUF-SB, the situation is more complex. We prove that OMUF-SB is
strictly stronger than OMUF-0, strictly weaker than OMUF-3, and yet incompa-
rable to (i.e. neither weaker nor stronger than) OMUF-1 and OMUF-2 . It is left,
then, in a mysterious position relative to our hierarchy.

OMUF-0 to OMUF-3 Hierarchy. We start with showing that our four security
models form a clear hierarchy. Most relations are pretty straightforward, with
the exception of the seperation between OMUF-0 and OMUF-1 security.

Lemma 1. OMUF-3 security implies OMUF-2 security. OMUF-2 security im-
plies OMUF-1 security. OMUF-1 security implies OMUF-0 security.

Proof. These most basic implications in our OMUF hierarchy are immediate
from the security game definitions (Figure 1). In particular, allow3 ≤ allow2 ≤
allow1 ≤ allow0. Thus, any winning adversary against a lower-numbered security
game is also a winning adversary against a higher-numbered security game.

It remains to show that these implications are strict, i.e. none of the 4 notions
in our hierarchy are actually equivalent to one another. Lemma 2 states that
OMUF-1 security is strictly stronger than OMUF-0 security. This is an interesting
result because Bellare et al. [BTZ22] show that their TS-UF-0 notion implies
their TS-UF-1 notion for small n, t parameters. Their argument relies on guessing
the subset of honest servers that will sign the eventual forgery target of a TS-
UF-1 attacker. In contrast, we show that OMUF-0 does not imply OMUF-1 in
any case. On a high level, this difference arises because, in the OMUF games,
individual server interactions are not associated with particular messages, and
the subset-guessing strategy is therefore inapplicable.
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Lemma 2. OMUF-0 security does not imply OMUF-1 security.

Proof (Sketch). Starting from any OMUF-1 secure protocol Π1, we construct a
scheme Π0 that is OMUF-0 but not OMUF-1 secure. Π0 key generation runs
Π1 key generation twice, once with the correct threshold parameters (n, t) and
a second time with (n, t + 1). Both sets of secret keys are distributed to the
issuers, and Π0 verification accepts a Π1 signature under either public key.

The Π0 issuers’ signing procedure runs in one of two modes based on a bit
provided by the user in ups0. Honest users always use mode 0, and in this mode
issuers perform standard Π1 signing under their (n, t) keys. If a dishonest user
invokes mode 1, then issuers perform a double Π1 signing under their (n, t+ 1)
keys. In other words, a single Π0 mode 1 issuer interaction is equivalent to two
Π1 issuer interactions.

Clearly, Π0 is not OMUF-1 secure. Adversary A can generate 2 signatures
after interacting with t + 1 issuers in mode 1. As long as t ≥ 2, allow1 = 1 in
this case and A wins OMUF-1. Π0 is, however, OMUF-0 secure. A corrupts at
most t − 1 servers. To take advantage of mode 1’s double-signing behavior, A
must interact with t+ 1 servers, but doing so requires interacting with at least
2 honest servers. A gets 2 signatures this way, but allow0 also increments by (at
least) 2. A complete proof of Lemma 2 is provided in Appendix D.

The separations between OMUF-1, OMUF-2, and OMUF-3 are more easily
apparent. Here we can exploit that their security crucially depends on ssid and
S ′, respectively, that are output by the final signing round. Thus, simply omitting
or manipulating such outputs will have no impact for the security notion where
this is not needed, but trivially break security of the higher level.

Lemma 3. OMUF-1 security does not imply OMUF-2 security, and OMUF-2
security does not imply OMUF-3 security.

Proof. For showing that OMUF-2 is strictly stronger than OMUF-1, we modify
an OMUF-2 secure scheme, such that issuers always output ssid := ⊥. This
preserves OMUF-1 security, but loses OMUF-2 security. For OMUF-3 vs. OMUF-2
we modfiy a OMUF-3 secure scheme so that issuers receive the supposed signing
set S from the user and simply output it. Clearly, the resulting scheme is still
OMUF-2 secure, but it is not OMUF-3 secure. ⊓⊔

OMUF-FC in our Hierarchy. Next we prove that OMUF-FC is equivalent to
OMUF-0, which proves that OMUF-FC is not a desirable notion for signatures
with t < n, as it does not take any advantage of the threshold setting.

Lemma 4. OMUF-0 security and OMUF-FC security imply one another.

Proof. It is immediate that OMUF-0 security implies OMUF-FC security. The
OMUF-FC game is just a restricted version of the OMUF-0 game, so any winning
OMUF-FC adversary is also a winning OMUF-0 adversary.

To show that OMUF-FC security implies OMUF-0 security, suppose there ex-
ists a winning OMUF-0 adversary A0 who corrupts t∗≤t−1 issuers C0. Construct
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reduction RFC which picks any additional t− 1− t∗ issuers to create corrupt set
CFC of size t−1, C0 ⊆ CFC. A0 makes allow0 queries to issuers in [n]\C0 and then
outputs ℓ> allow0 signatures. Upon queries to issuers in CFC \ C0, RFC responds
directly; upon queries to issuers in [n] \ CFC, RFC queries the OMUF-FC game
(denote the number of such queries as q). Clearly, q ≤ allow0. In the end, RFC

outputs ℓ> allow0≥ q signatures and thereby wins the OMUF-FC game. ⊓⊔

OMUF-SB in our Hierarchy. We now analyze the recently proposed OMUF-SB
notion [CKM+23], and show that it lies somewhere between OMUF-0 and OMUF-3
security in our hierarchy. We start with the positive results, and prove that
OMUF-SB→ OMUF-0 and OMUF-3→ OMUF-SB. Then we show that OMUF-SB
does not imply OMUF-1, and OMUF-SB is not implied by OMUF-2.

Lemma 5. OMUF-SB security implies OMUF-0 security.

Proof. This implication is immediate from the security game definitions. In par-
ticular, allowSB ≤ allow0. Therefore, any winning adversary against the OMUF-0
game is also a winning adversary against the OMUF-SB game. ⊓⊔

Lemma 6. OMUF-3 security implies OMUF-SB security.

The proof of Lemma 6 uses a simple combinatoric argument to show that
allow3 ≤ allowSB. We defer this proof to Appendix D.

Lemmas 7 and 8 offer negative results that complete the comparison of
OMUF-SB to our hierarchy. The key observation behind the proof of Lemma
7 is that OMUF-SB and -2 winning conditions concern on independent outputs
of the signing protocol, the signer set S ′ and the signing postfix ssid, respec-
tively. Thus, they do not necessarily imply each other. Below we manipulate the
S ′ outputs of a OMUF-SB and -2 secure scheme and it loses OMUF-SB property,
but it still reserves OMUF-2 property.

Lemma 7. OMUF-2 security does not imply OMUF-SB security.

Proof. Consider any OMUF-2 secure scheme. Modify it so that issuers receive the
supposed signing set S from the user and simply output it. Clearly, the resulting
scheme is still OMUF-2 secure. It is not, however, OMUF-SB secure. Consider the
OMUF-SB game for any parameters (n, t) which satisfies t < n. An adversary
A who corrupts t − 1 issuers (i.e. the maximum) can interact with 2 different
uncorrupted issuers using the same (sid,S), but signing 2 different messages.
allowSB = 1, but A outputs 2 signatures. ⊓⊔

While OMUF-SB security implies OMUF-0 security, we show below that we
cannot hope for any better from OMUF-SB. In fact, in the proof of Lemma 8, we
rely on a generic transformation that starts from a scheme Π0 that is OMUF-0
but not OMUF-1 secure, and turns it into a scheme that also is OMUF-SB secure.
We do this by changing Π0 to always output distinct signing sets S ′ for each
issuer. OMUF-SB counts the fresh (sid,S ′) values and this scheme creates a fresh
(sid,S ′) for each output signature share, so allow0 = allowSB. Thus, OMUF-0
security of this scheme implies its OMUF-SB security.
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Lemma 8. OMUF-SB security does not imply OMUF-1 security.

Proof. Suppose there exists an OMUF-SB secure scheme ΠSB (if not, we are
done). By Lemma 5, ΠSB is OMUF-0 secure. Therefore, by Lemma 2, there
exists a scheme Π0 that is OMUF-0 secure but not OMUF-1 secure.

Construct scheme Π∗. If t = n, then Π∗ runs ΠSB. If t < n, then Π∗

runs Π0, but modified so that issuer i always outputs supposed signing set
S = {i, i + 1, . . . , i + t − 1} (any indexes j ∈ S such that j > n should be
“wrapped around” to j − n).

Clearly, Π∗ is not OMUF-1 secure (per the proof of Lemma 2, there is a
successful adversary against the OMUF-1 security of Π0 with parameters t < n).
Π∗ is, however, OMUF-SB secure. When t = n, this is immediate from the
OMUF-SB security of ΠSB. When t < n, every issuer interaction is guaranteed
to output a unique (sid,S); therefore, allowSB = allow0. The OMUF-0 security
of Π0 implies that the scheme is OMUF-SB secure. ⊓⊔

Special Cases: t = 1 or t = n. Our OMUF definition requires a threshold blind
signature scheme to satisfy the property for all parameters (n, t) such that 1 ≤
t ≤ n. Nonetheless, it is also interesting to consider the relations between the
different OMUF definitions in the edge cases where t = 1 or t = n. In Appendix
E, we show the following results, which simplify our OMUF relations when the
parameters are restricted to t ∈ {1, n}:

Lemma 9. When t ∈ {1, n}, OMUF-0, OMUF-1, and OMUF-SB are equivalent
to each other; also, OMUF-2 and OMUF-3 are equivalent to each other.

5 Threshold Blind BLS Signatures

We now analyze and improve the security of BLS-based threshold blind signa-
tures. Standard BLS signatures rely on a bilinear group (e,G1,G2,GT , g, ĝ, q)
and let an issuer with secret key k ∈ Zq and public key pk = gk sign a mes-
sage msg as σ := H(msg)k. Verification checks that e(g, σ) = e(pk,H(msg)).
Threshold BLS signatures can be realized through secret-sharing of k, and either
multiplicative or exponential blinding of H(msg) yields a blind signature [Bol03].

We start by analyzing the construction tBlindBLS-1 that combines the (ex-
ponential) blind and threshold signature techniques in a straightforward man-
ner and was made explicit by Vo et al. [VZK03]. This construction was proven
OMUF-FC secure, and we show that it also satisfies OMUF-1 security. tBlindBLS-1
cannot achieve OMUF-2 or OMUF-3 security as the signature shares are neither
bound to the signing session nor to the signing set. We therefore propose a new
scheme tBlindBLS-2 that uses the blinding factor idea from [GJK+25, DR24] and
prove that it is OMUF-2 secure. tBlindBLS-2 does not achieve OMUF-3 security
though, as it does not tightly bind the signature shares to a particular issuer set.
This can also be seen as an advantage, as the user can freely combine any t shares
on the same blinded message a. However, for settings where a clear agreement
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Pg(1λ): Run BG := (e,G1,G2,GT , g, ĝ, q)← BGGen(λ). Select hash functions H, H̃ : {0, 1}∗→ G2.

Set pseudorandom function F : K× {0, 1}∗ → G2. Return pp := (BG, H, H̃ , F ).

Vf(pk, σ,msg): Return e(g, σ) = e(pk,H(msg)) // Regular BLS Verification

Kg(n, t)

κ←$ Zq, (k1, . . . , kn)← Share(κ, n, t)

ζ ←$ Zq, (z1, . . . , zn)← Share(ζ, n, t)

{wi,j}i,j∈[n],i<j ←$ K
n(n−1)/2

∀i,j∈[n],i>j wi,j := wj,i

∀i∈[n] ski := (ki, zi , {wi,j}j∈[n]\{i} )

pk := g
κ

return (pk, {sk1, . . . , skn}, aux :=⊥)

USign0(pk, aux,msg,S)
r ←$ Zq, a := H(msg)

r

return (ust0 := (pk,msg, r), ups0 := (a,S))

USign1(ust0 = (pk,msg, r), {ips1,i = bi}i∈S)

b :=
∏
i∈S

b
ΛS
i

i b :=
∏
i∈S

b
ΛS
i

i b :=
∏
i∈S

bi

σ := b
1/r

, return ⊥ if Vf(pk, σ,msg) = false

return σ

ISign1(i, ski = (ki, zi , {wi,j}j∈[n]\{i} ), aux, ctx, ups0 = (a,S))

bi := aki bi := a
ki · H̃(ctx, a)zi bi := (a

ki )
ΛS
i ·

∏
j∈S,j<i

Fwi,j
(ctx, a,S) ·

∏
j∈S,j>i

Fwi,j
(ctx, a,S)−1

return (ssid,S′
, ips1,i) := ((ctx, a, S ),S, bi)

Fig. 3. Threshold Blind BLS signature scheme with three variants: tBlindBLS-1 (dashed
text), tBlindBLS-2 (boxed text), and tBlindBLS-3 (shadowed text). ΛS

i denotes the
Lagrange coefficient for the index i over the set S. Note that the input S to USign0
can be set to ⊥ for tBlindBLS-1 and tBlindBLS-2 as it does not serve any role there.

on the signing set is desired, we propose our third variant tBlindBLS-3, which
uses pairwise blinding factors. We prove that it is OMUF-3 secure.

All three constructions are presented in Figure 3. The main difference be-
tween the schemes lies in how issuers create partial signatures. We note that
tBlindBLS-2 requires the DDH assumption to be hard in the pairing group G2,
so this construction requires asymmetric pairings (i.e. type-2 or type-3). The
other two constructions can be instantiated with all pairing types.

Correctness and Blindness It is easy to see that all three tBlindBLS variants
satisfy threshold blind signature correctness. In fact, all three produce standard
BLS signatures. They also all satisfy threshold blind signature blindness: blinded
messages a := H(msg)r are uniformly random in G2 unless H(msg) = 1G2 ,
which only occurs with probability qH/q in ROM for qH hash queries. We defer
the proof of blindness to Appendix F.

One-More Unforgeability We now prove the OMUF-1, 2, and 3 security of
tBlindBLS-1, 2, and 3 from Figure 3, respectively. While we present proof sketches
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and explain the main strategies of proofs here, the full proofs are presented in
Appendix F.

OMUF-1 Security of tBlindBLS-1. The existing BLS-based threshold blind sig-
nature scheme tBlindBLS-1 was previously shown to be OMUF-FC secure un-
der the chosen-target CDH assumption [VZK03]. We show that it also satisfies
OMUF-1 under the T-BOMDH assumption, which uses a counting-based win-
ning condition similar to the OMUF-1 game. T-BOMDH and its pairing-free vari-
ant were used previously to show the security of (verifiable) threshold OPRFs
[KMMM23, JKKX17], and our proof strategy is similar to these works.

Theorem 1 (tBlindBLS-1 OMUF-1). If the (t′, n,N)-T-BOMDH assumption
holds on G for all 1 ≤ t′ ≤ t, then tBlindBLS-1 is OMUF-1 secure, where (n, t)
are the initialization parameters, N is the number of H(·) queries, and H is
modeled as a random oracle.

Proof (Sketch). In the proof, we simulate the public key pk as the challenge gp(0)

and the secret shares of corrupted issuers are sampled as random values. Such
a simulation of keys requires making a TBOMDH(i, a)p query for each signing
query (ups0 := (a,S)) and an honest issuer i. We further simulate random oracle
queries by using the T-BOMDH challenge values ĝj and setting H(msgj) := ĝj .
This ensures that for each valid forgery σ∗k, we have σ∗k = H(msg∗k) = ĝ

p(0)
j for

some j. Finally, the winning condition of OMUF-1 ensures we have the enough
σ∗k values to win the T-BOMDH game. ⊓⊔

OMUF-2 Security of tBlindBLS-2. In tBlindBLS-2, the issuer secret keys are ex-
tended with secret shares of 0 labeled {zi}. The signature share of the issuer i
is computed as bi := (aki · H̃(ctx, a)zi) where a = H(msg)r is the user’s blinded
message. Thus, the signing postfix of this scheme is set to ssid := (ctx, a). Intu-
itively, the signature shares on the blinded message a are bound to each other
with additional terms H̃(ctx, a)zi , so a user needs t shares on the same H̃(ctx, a)
to get a valid signature. To prove that this scheme achieves OMUF-2 security,
we rely on the Decisional Diffie-Hellman (DDH) and Bilinear One-More Diffie-
Hellman (BOMDH) assumptions. We note that our proof closely follows the
proof of Gu et al. [GJK+25], as our tBlindBLS-2 construction is similar to their
threshold OPRF construction.

Role of ctx. Including ctx in H̃(ctx, a) gives the issuers more control over their
signing. For instance, by setting ctx to the current date, OMUF-2 security guaran-
tees that the user cannot combine signature shares received on different days. Or
even more strictly, ctx could be the verified user name, ensuring that a signature
on a blinded message a can only be derived when the user properly authenticated
to at least t issuers. If this control is not desired, and the user should be flexible
in combining her shares, ctx is simply set to ⊥.

Theorem 2 (tBlindBLS-2 OMUF-2). If the DDH on G2 and (N)-BOMDH as-
sumptions hold, then tBlindBLS-2 is OMUF-2 secure, where N is the number of
H(·) queries, and H and H̃ are modeled as random oracles.
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Proof (Sketch). Our proof relies on the BOMDH assumption by setting the group
public key pk := gp and H(msgj) := ĝj so that for each forgery we have σj = ĝpj
for some j ∈ [N ]. As the public key is set to gp our reduction cannot know
the individual ki values of honest issuers i. Therefore, we must leverage the fact
that the first t − 1 − |C| signature shares requested for any blinded message a
do not reveal any information about aki because the factor H̃(ctx, a)zi acts as a
pseudorandom value. Our proof follows a hybrid argument that systematically
replaces H̃(ctx, a)zi values with random values, using the DDH assumption at
each step. After this change, we can simply use random values for the first
t− 1− |C| signature shares on any blinded message a. For the (t− |C|)th query,
we finally use the BOMDHp oracle to learn ap and then compute the response
that will aggregate with the previously chosen random signature shares into the
correct final signature. Our reduction makes a BOMDHp query per each ssid := a
only when there are at least t−|C| signing queries that output ssid, so the number
of BOMDHp queries is equal to allow2; our reduction wins BOMDH if A wins
the OMUF-2 game. ⊓⊔

OMUF-3 Security of tBlindBLS-3. Compared to tBlindBLS-2, tBlindBLS-3 relies
on stricter binding factors, which make use of pairwise key material held by all
issuers. These pairwise binding factors are computed via a pseudorandom func-
tion F , that is invoked on all pairwise keys of the involved issuers in the desired
signer set S. These values only cancel out when the user receives t signature
shares from exactly the intended issuers. The same blinding technique was used
by [CLN15, BFH+20] to obtain adaptive security of distributed OPRFs.

Theorem 3 (tBlindBLS−3 OMUF). If F is a pseudorandom function and the
(N)-BOMDH assumption holds on G, then tBlindBLS-3 on G is OMUF-3 secure,
where N is the number of H(·) queries, and H is modeled as a random oracle.

Proof (Sketch). Our proof strategy is similar to the proof of OMUF-2 security
of tBlindBLS-2. As in the proof of Theorem 2, our proof aims to build an (N)-
BOMDH adversary, so it sets the group public key pk := gp and H(msgj) := ĝj .
To simulate the signature shares of honest parties, we proceed as follows: For
any pair of honest issuers i, j ∈ [n] \ C, their pairwise key wi,j is unknown to the
adversary. Thus, we can replace Fwi,j

with a truly random function fi,j(·) by
relying on the pseudorandomness of F . This means that for each ups = (a,S),
signature shares of honest issuers except the last honest issuer in S can be re-
placed by a random value. The signature share of the last honest issuer in the set
is computed by first receiving ap = BOMDHp(a) from the BOMDH challenger
and multiplying ap with the inverse of the previously output honest issuer sig-
nature shares to ensure the indistinguishable simulation. It is straightforward
to observe that we make a BOMDHp query only when ES3 gets updated and
the number of BOMDHp queries is equal to allow3. Thus, if A wins the OMUF-3
game, then we break the BOMDH assumption. ⊓⊔
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SB.Pg(λ)
Sample (G, g, q)← GGen(λ), h← G, and ppsig ← DS.Pg(λ).

Select hash functions Hcm,Hsig : {0, 1}∗ → Zq. Return pp := ((G, q, g, h),Hcm,Hsig, ppsig).

SB.Kg(n, t)

for j ∈ [n] : (ŝkj , p̂kj)← DS.Kg()

sk←Zq, pk := g
sk
, (sk

′
1, ..., sk

′
n)← Share(sk,n,t), aux := {p̂kj}j∈[n]

return (pk, {pkj}j∈[n], {(sk
′
j , ŝkj)}j∈[n], aux)

SB.Vf(pk,msg, σ)
Parse σ := (R̄, z̄, ȳ)

c̄ := Hsig(pk,msg, R̄)

return ȳ ̸= 0

∧ R̄ · pkc̄·ȳ
= g

z̄
h
ȳ

SB.ISign(i, ski, aux) SB.USign(pk, aux,msg,S)
Parse aux := {p̂kj}j∈[n]

ups0 := S
if i ̸∈ S : abort

ai, bi ← Zq, yi ← Zq
∗

Ai := g
ai , Bi := g

bih
yi

cmi := Hcm(sid, i, yi)

ips1,i := (Ai, Bi, cmi) A :=
∏

j∈S Aj , B :=
∏

j∈S Bj

α, β ← Zq
∗
, r ← Zq, R̄ := g

r
A

α/β
B

α

c̄ := Hsig(pk,msg, R̄), c := c̄ · βups1 := (c, {cmj}j∈S)

sesst := (sid,S, c, {cmj}j∈S)

dsi ← DS.Sign(ŝki, sesst) ips2,i := (bi, yi, dsi)

ups2 := {(dsj , yj)}j∈S

abort if ∃j ∈ S :

cmj ̸= Hcm(sid, j, yj)

∨ ¬DS.Vf(p̂kj , sesst, dsj)

Υ :=
∑

j∈S yj

zi := ai + c · Υ · ΛS
i · sk

′
i

return (ssid :=⊥,S)

ips3,i := zi

Υ :=
∑

j∈S yj , z :=
∑

j∈S zj , b :=
∑

j∈S bj

if B ̸= g
b
h
y ∨ g

z ̸= Apk
c·y

: return ⊥
z̄ := r + α · z/β + α · b, ȳ := α · y

σ := (R̄, z̄, ȳ)

if Vf(pk,msg, σ) : return σ

return ⊥

Fig. 4. Threshold blind signature scheme of [CKM+23]. ΛS
i denotes the Lagrange co-

efficients. DS := (Pg,Kg,Sign,Vf) is an unforgeable signature scheme and GGen is a
secure prime-order group generator.

6 Pairing-Free Threshold Blind Signatures: SB and SB+

Crites et al. [CKM+23] recently introduced the pairing-free threshold blind sig-
nature scheme Snowblind (SB) and proved it secure in the model we restated as
unforgeability notion OMUF-SB. Per our analysis in Section 4, OMUF-SB only
immediately implies OMUF-0 security, so the position of Snowblind in relation
to our security hierarchy is left in question. The construction SB and security
model OMUF-SB clearly evince a desire for issuers to coordinate each other’s
identities, so OMUF-3 is the natural security goal to consider.

We first show that SB does not satisfy OMUF-3 security, but we then show
how to lift it into a stronger version that does. We do this in a partly generic
manner, by proposing a construction that builds on any OMUF-SB secure scheme
and applies a similar pairwise binding technique as our tBlindBLS-3 construc-
tion. To prove OMUF-3 security, we require the underlying scheme to satisfy an
additional property, issuer set consistency, which we define and show to be met
by [CKM+23]’s SB.
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Snowblind SB Scheme [CKM+23]. The threshold blind signature scheme of
[CKM+23] is presented in Figure 4. The non-threshold version of their blind
signature follows the design idea of Tessaro-Zhu blind signatures [TZ22], but
[CKM+23] provides shorter signatures. The scheme can be seen as an extension
to Schnorr blind signatures and verifies as R̄ · pkc̄·ȳ ?

= gz̄ · hȳ for a non-zero ȳ.
It follows a novel approach by having the issuer contribute to sampling ȳ uni-
formly with a uniformly random Υ , and answer Fiat-Shamir response z over c ·Υ
instead of a maliciously chosen challenge c. This allows them to avoid relying on
the broken ROS assumption [BLL+21]. Crites et al. [CKM+23] thresholdize it
by collaboratively sampling Υ with t issuers. For simplicity, we state the protocol
in the original form, i.e., without fully mapping to our syntax, but Appendix G
contains the scheme as written in our syntax for completeness.

Crites et al. [CKM+23] actually propose two variants of their signature sch-
eme. In a nutshell, while the first variant checks if R̄ · pkc̄·ȳ = gz̄hȳ during the
signature verification, the second variant checks if R̄ · pkc̄+ȳ5

= gz̄hȳ. The two
variants also differ in how the blinding on the user side, and the partial sig-
nature in the last signing round ISign3 are computed. We only study the first
variant, but note that our attack against OMUF-3 security can be easily applied
to the second variant as well. Further, as our boost is built generically from any
OMUF-SB secure scheme, it can be applied on both variants. Finally, note that
we omit the public key shares pk′j := gsk

′
j that were computed in the original Kg

algorithm as they were not used in the protocol.

6.1 SB Is Not OMUF-3 Secure

We show that the SB construction in Figure 4 is not OMUF-3 secure. This might
be surprising, as SB seems to perform some agreement on the set of co-issuers S
in the second issuer signing round. However, the final signature shares are not
bound to the co-issuer set. Due to this behavior, SB cannot guarantee that a
signature is created by the exact co-issuers that was intended by an individual
issuer – which violates our OMUF-3 notion.

Lemma 10. The SB construction [CKM+23] (Figure 4) is not OMUF-3 secure.

We provide a sketch of the attack here and refer to Appendix H for the detailed
description. We build a simple adversary against the OMUF-3 security of SB that
uses (n := 3, t := 2, C := {3}). A pretends to start a signing session between
issuers 1 and 2, but gets a signature share only from issuer 2, and creates a
valid signature using it. As there will only be a single final round signing query,
allow3 = 0, no matter what ssid value we use for SB.

This is done as follows. A makes first round queries via OISign to issuers 1
and 2 for ups1 := (S := {1, 2}), and gets ips1,1 := (A1, B1, cm1) and ips1,2 :=

(A2, B2, cm2), respectively. Then A sets R̄ := A
ΛS′

2 /ΛS
2

2 · B1 · B2 where S ′ :=
{2, 3} and sets c := Hsig(pk, R̄,msg∗) for an arbitrary message msg∗. Here A2 is
omitted while computing R̄ as A cannot compute a valid Fiat-Shamir response
z̄ for such a R̄ without making a final round signing query to issuer 1.
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A then makes a second round signing query to both issuers with ups1 :=
(c, {cm1, cm2}). As a result, both issuers respond with valid ips2,i := (bi, yi, dsi)
values, and A makes a third round signing query via to the issuer 2 to get z2

such that A2 · pk
ΛS

2 ·c·Υ
j = gz2 for Υ := y1 + y2. Finally, A sets σ∗ := (R̄, ȳ, z̄)

for ȳ := Υ , z3 := c · ΛS′

3 · sk3 · Υ , and z̄ := z2 · ΛS
′

2 /ΛS2 + z3 + b1 + b2 which is a
valid signature on message msg∗. As there is no third round query for issuer 1,
allowSB = 0 and the adversary wins by outputting msg∗, σ∗.

6.2 SB+: OMUF-3 Variant of Snowblind

We now show how the original Snowblind construction can be lifted to obtain
OMUF-3 security. Instead of directly extending the concrete SB construction, we
do this in a somewhat generic way be describing how OMUF-SB security can
be boosted to OMUF-3 security. This has the advantage that we do not have to
repeat the security proof of the core SB construction and that our boost directly
applies to both protocol variants proposed by Crites et al. [CKM+23].

Our boost Π3 is presented in Figure 5 and closely follows the idea behind
the OMUF-3 secure tBlindBLS-3 scheme from Section 5. It is constructed from a
PRF F and a OMUF-SB secure threshold blind signature scheme ΠSB. We note
that Π3 assumes that the underlying ΠSB has r ≥ 2 rounds. This is satisfied by
SB and makes the transform simpler. If this condition is not met for a future
construction that is shown to be OMUF-SB secure, it can be “padded” to r = 2
by adding a dummy first round in which the user and issuers simply exchange
acknowledgments.

The challenge in upgrading OMUF-SB security to OMUF-3 security lies in
how each notion counts the required number of forgeries. In OMUF-SB, a sig-
nature query with a fresh (sid,S) immediately increments allowSB, whereas in
OMUF-3, additional conditions must be met before allow3 is incremented. Our
construction employs PRF-based maskings as in tBlindBLS-3 to align the count-
ing mechanisms of allowSB and allow3.

Our construction first sets pairwise keys wi,j ’s for all issuers to be used as
PRF keys. In the signing protocol, the postfix ssid3 for a signing session is created
with an additional round. This value is simply set by collecting fresh nonces from
each issuer. Then the remaining rounds mainly follow the underlying OMUF-SB
secure scheme ΠSB until the final round. In the final round, similar to tBlindBLS,
issuers set a pairwise blinding value for the signature shares using PRF masks
with Fwi,j

evaluations. Thus, in order to get the signature shares of the underly-
ing scheme ΠSB, the user has to contact each issuer from the issuer set that was
initially intended for the signing session. The freshness of the signing postfix
ssid3 ensures that the blinding values from F evaluations of different sessions
cannot cancel out, and thus the attack described above no longer applies.

One More Ingredient: Issuer Set Consistency. While the blueprint above may
seem to be enough to show the OMUF-3 security of Π3 by relying on a OMUF-SB
secure scheme and a secure PRF, this is not the case. In OMUF-SB, the count of
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Π
3
.Pg(1λ)

Set PRF F : K× {0, 1}∗ → {0, 1}l, where l is the bitlength of the ipsr output by Π
SB
.ISignr.

Run pp
SB ← Π

SB
.Pg(1λ). Return (pp

SB
, F ).

Π
3
.Kg(n, t)

(pk, {skSB
i }i∈[n], aux)← Π

SB
.Kg(n, t)

{wi,j}i,j∈[n],i<j ←$ K
n(n−1)/2

∀i,j∈[n],i>j wi,j := wj,i∀i∈[n]

sk
3
i := (sk

SB
i , {wi,j}j∈[n]\{i})

return (pk, {skSB
i }i∈[n], aux)

Π
3
.ISign1(i, sk

3
i = (sk

SB
i , {wi,j}j∈[n]\{i}),

aux, ctx, ups0 = (ups
′
0,S))

noncei ←$ {0, 1}
λ

ist
3
1,i := (ups

′
0,S, sk

SB
i , {wi,j}j∈[n]\{i},

aux, ctx, noncei)

return (ist
3
1,i, ips

3
1,i := noncei)

Π
3
.ISign2(i, ist

3
1,i = (ups

′
0,S, sk

SB
i ,

{wi,j}j∈[n]\{i}, aux, ctx,

nonce′i), ups1 = {noncej}j∈S)

ssid3 := {noncej}j∈S

if nonce′i ̸= noncei : abort

(ist
SB
1,i, ips

SB
1,i)← Π

SB
.ISign1(i, sk

SB
i ,

aux, ctx, (ups′0,S))

ist
3
2,i := (ist

SB
1,i, ssid

3
, {wi,j}j∈[n]\{i})

return (ist
3
2,i, ips

3
2,i := ips

SB
1,i)

Π
3
.USignj(ust

3
j−1, {ips

3
j,i}i∈S) // j ∈ {2, . . . , r}

if j = 1 :

return (ust
3
1 := ust

3
0, ups

3
1 := {ips31,j}j∈S)

if j ∈ {2, ..., r} :

Parse ips
3
j,i = ips

SB
j−1,i and ust

3
j−1 := ust

SB
j−2

return Π
SB
.USignj−1(ust

SB
j−2, {ips

SB
j−1,i}i∈S)

if j = r + 1 :

Parse ips
3
r+1,i := {ipsSBr,j,i}j∈S

∀i∈S ips
SB
r,i :=

⊕
j∈S

ips
SB
r,i,j

return Π
1
.USignr(ustr−1, {ipsSBr,i}i∈S)

Π
3
.ISignj(i, ist

3
j−1,i = (ist

SB
j−2,i, ssid

3
, {wi,j}j∈[n]\{i}),

ups
3
j−1 = ups

SB
j−2)//j∈{3, ..., r + 1}

if j ≤ r :

(ist
SB
j−1,i, ips

SB
j−1,i)←Π

SB
.ISignj−1(i, ist

SB
j−2,i, ups

SB
j−2)

ist
3
j,i := (ist

SB
j−1,i, ssid

3
, {wi,j}j∈[n]\{i})

return (ist
3
j,i, ips

3
j,i := ips

SB
j−1,i)

else :

(ips
SB
r,i, ssid

SB
,SSB

)← Π
SB
.ISignr(i, ist

SB
r−1,i, ups

SB
r−1)

∀j∈S ips
SB
r,j,i :=

⊕
k∈S\{i}

Fwi,k
(ssid3, j, upsSBr−1,S)

ips
SB
r,i,i := ips

SB
r,i,i ⊕ ips

SB
r,i, ips

3
r+1,i := {ipsSBr,j,i}j∈S

return (ips
3
r+1,i, ssid

3
,S)

Fig. 5. A generic construction of an OMUF-3 secure threshold blind signature sch-
eme Π3 from any OMUF-SB secure scheme ΠSB and PRF F . Π3.USign0 and Π3.Vf
algorithms are identical to ΠSB.

trivial forgeries allowSB counts the fresh (sidSB,S) values, so we must ensure that
the number of fresh (sidSB,S) values cannot exceed allow3. The intuitive way
to ensure this is making OMUF-SB signing queries that will have the identical
(sidSB,S) for a signing session of Π3. We can ensure such queries to have identical
session identifiers by setting sidSB := ssid3. However, we cannot control which
issuer set S will be output by ΠSB. As OMUF-SB security does not guarantee
any particular property for this, the issuers can always output distinct issuer
sets – even in the same signing session. This behavior would cause allowSB to
increase much faster than allow3, and we do not have any way to argue that the
S outputs of a generic OMUF-SB secure scheme. Thus, we define an additional
property: issuer set consistency.
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Issuer set consistency requires that the first user message in a signing session
contains the intended issuer set S and the signing algorithm outputs this value
as it is in the last signing round. We formally define this property below.

Definition 4 (Issuer Set Consistency). A threshold blind signature scheme
Π is issuer set consistent if

– For all (pk, aux,msg,S) and for (ups0, ·) ← Π.USign0(pk, aux,msg,S),
ups0 can be parsed as ups0 := (ups ′0,S).

– ISignr outputs S as the issuer gets it through ups0.

Equipped with this additional property, we are now able to prove the OMUF-3
security of Construction Π3 from Figure 5. Our proof strategy is similar to the
proof of Theorem 3, OMUF-3 security of tBlindBLS-3, and we refer to Appendix
I for the full proof.

Theorem 4 (OMUF-SB to OMUF-3 Boost). If F is a pseudorandom function
and ΠSB is OMUF-SB secure and issuer-set consistent, then Π3 in Figure 5 is
OMUF-3 secure.

Correctness and Blindness. The correctness and blindness of Π3 follow directly
from the corresponding properties of the underlying ΠSB scheme. Blindness of
Π3 can be proven through a straightforward reduction to the blindness of ΠSB

that echoes all the oracle queries in the blindness game until the final round. In
the final round, the reduction performs the XOR operations to unwrap the ΠSB

signature shares and then forwards the resulting signature shares to the ΠSB

blindness challenger. The correctness of Π3 can be shown in a similar way.

Boosting Snowblind: SB+. It is easy to see that the Snowblind scheme of Crites
et al.[CKM+23] (Figure 4) achieves that additional property of issuer set consis-
tency. Note that this behaviour is only needed from honest issuers – and trivially
achieved by simply channeling the initial user input to the issuer’s final output.

Lemma 11. The SB construction [CKM+23] (Figure 4) is issuer set consistent.

Thus, based on this observation and using the original SB construction in
our Π3 boost, which we denote as SB+, we can finally conjecture the following:

Corollary 1. If SB is OMUF-SB secure, then SB+ is OMUF-3 secure.

Note that our generic construction Π3 does not make any assumptions on
the structure of the final round signature shares ipsSBr,i and how they are used
to build the final signature. Thus, we model our final round signature shares to
simply have the size t · l bits and divide this size into l bit slots. Each issuer i
performs the XOR of the corresponding slot to it’s own share ipsSBr,i . This allows
the user to recover t ΠSB signature shares, and run ΠSB.USignr in a black-box
manner. More efficient, yet non-generic, variants can be built by exploiting the
structure of ipsSBr,i and how ΠSB.USignr uses them. For example, SB’s ipsSBr,i values
are Zq elements and SB.USignr just uses the sum of elements. Thus, by simply
applying the same trick as used in tBlindBLS-3, adapted to Zq, we get rid of the
t · l increase and have the same signature share size as SB.
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A Further Preliminaries

For completeness, we formally define all needed building blocks and assumptions
here, that were omitted for space reasons from Section 2.

Definition 5 (Pseudorandom Function). Consider function F : K×X → Y.
Denote by F[X ,Y] the set of all functions with domain X and codomain Y.
In the pseudorandomness game, A is given oracle access to either F or to a
truly random function. F is pseudorandom if, for all efficient A, the advan-
tage |Prk←$K[AF (k,·)(1λ)] − Prf←$F[X ,Y][Af(·)(1λ)]| with which A distinguishes
F from a random function is negligible.

Secret Sharing. We use Shamir’s secret sharing several times during the paper
and we present the algorithm Share below as a shortcut notation for it.

Share(x, n, t)→ (x1, ..., xn): For a1, ..., at−1 ← Zq, define the polynomial p(X) :=
x+

∑
j∈[t−1] aj ·Xj . Output (p(1), ..., p(n)).

Cyclic and Bilinear Groups. While the Snowblind schemes require only a prime-
order group, the BLS schemes need a bilinear pairing as defined below. We first
define their generation and then state the ommitted assumptions (DDH and
BOMDH) needed in our work.

Definition 6 (Cyclic Group Generator). A group generator GGen(λ) on
input the security parameter λ outputs (G, g, q) such that ⟨g⟩ = G is a cyclic
group of prime order q and ⌈log2 p⌉ = λ.

Definition 7 (Bilinear Pairing). For ⟨g⟩ = G1, ⟨ĝ⟩ = G2 and GT which
are groups of prime order q, e : G1 × G2 → GT is a bilinear pairing if it is
efficiently computable and bilinear: e(ga, ĝb) = e(g, ĝ)ab = e(gb, ĝa) ∀a, b ∈ Zq,
and non-degenerate: ⟨e(g, ĝ)⟩ = GT , so e(g, ĝ) ̸= 1GT

. A bilinear group generator
BGGen is a p.p.t. algorithm which outputs a bilinear pairing description BG =
(e,G1,G2,GT , g, ĝ, q) such that ⌈log2 q⌉ = λ the requirements above hold.

Definition 8 (Decisional Diffie-Hellman). Let G be a cyclic group of prime
order q with generator g. In the Decisional Diffie-Hellman (DDH) game on G, A
is given either a random tuple or a Diffie-Hellman tuple. The DDH assumption
holds on G if, for all efficient A, the advantage |Pra,b,c←$Zq

[A(g, ga, gb, gc) =
1]−Pra,b←$Zq

[A(g, ga, gb, gab) = 1]| with which A distinguishes the distributions
is negligible.
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count′t(q)

C := ∅ // C is a multiset

while Vn,t(q) ̸= ∅ :

Find S ⊆ [n] s.t. |S| = t and ∀i ∈ S, j ∈ [n] \ S : q[i] ≥ q[j] ∧ (q[i] > q[j] ∨ i < j)

Set v ∈ {0, 1}n s.t. v[i] = 1 iff i ∈ S

C := C ∪ {v}
q := q − v

return |C|

Fig. 6. An efficient algorithm count′ to compute count.

Definition 9 (Bilinear One-More Diffie-Hellman). Let BG := (e,G1,G2,
GT , g, ĝ, q)← BGGen(λ). In the (N)-Bilinear One-More Diffie-Hellman (BOMDH)
game, A is given (BG, gp, ĝp, ĝ1, . . . , ĝN ) for (ĝ1, . . . , ĝN ) ← GN

2 and access to
oracle BOMDHp(·) : G2 → G2 for a random p← Zq, where BOMDHp(x)→ xp.
A wins if it outputs Q + 1 pairs (j, ĝpj ) for distinct j ∈ [N ], where Q is the
number of queries made to BOMDHp(·). The BOMDH assumption holds if, for
all efficient A, the probability that A wins the BOMDH game is negligible.

B Efficient Computation of T-(B)OMDH’s count
Function

The definition of the T-(B)OMDH assumption makes use of the function count,
which is defined by Equation 1. Computing that function naively is not efficient,
so in Figure 6 we provide an efficient algorithm count′. This algorithm works by
greedily picking the t greatest elements of the input vector q (with ties broken in
favor of lesser indices). We prove that this algorithm is optimal, i.e. countt(q) =
count′t(q) for all inputs t, q.

Theorem 5. Let count′t be defined as in Figure 6. count′t is an efficient algo-
rithm to compute countt.

Proof. For some inputs n, t, and q, suppose there exists an optimal multiset of
vectors C = {v1, . . . ,vc} that doesn’t include any vector matching our criterion
(if no such C exists, we’re done). In particular, the following three conditions
state, respectively, that C is valid, is optimal, and does not include the vector
chosen in the first iteration of the count′ algorithm:

v1, . . . ,vc ∈ Vn,t v1 + · · ·+ vc ≤ q

|C| = c = countt(q)

∀v∈C ∃i,j∈[n] v[i] = 1 ∧ v[j] = 0 ∧ (q[i] < q[j] ∨ (q[i] = q[j] ∧ i > j))

Pick any v ∈ C. We will repeatedly alter C into a new solution C∗ (that is still
valid and optimal) until v matches our criterion in C∗, i.e. v is the vector chosen
in the first iteration of the count′ algorithm.
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– Case: ∃v′∈C v′[i] = 0 ∧ v′[j] = 1. Construct C∗ by switching the choice of
i in v with the choice of j in v′. In other words, set v[i] := 0, v[j] := 1,
v′[i] := 1, and v′[j] := 0. Clearly, C∗ is still valid and optimal.

– Case: ∀v′∈C v′[i] = 1∨v′[j] = 0. Define C(i) to be the number of vectors in C
that choose i, i.e. C(i) := |{v′ ∈ C : v′[i] = 1}|. This case’s condition implies
that C(j) ≤ C(i). Since C is valid and our condition for choosing i and j
requires that q[i] ≤ q[j], we know overall that C(j) ≤ C(i) ≤ q[i] ≤ q[j].
Construct C∗ by switching all choices of i with choices of j. In other words,
for each v′ ∈ C (including v), set v′[i] := v′[j] and v′[j] := v′[i]. Now,
C∗(i) = C(j) and C∗(j) = C(i), so the inequality chain above shows that
C∗ is still valid. Clearly, it is still optimal.

In either case, we eliminate from v one pair (i, j) such that v[i] = 1 ∧ v[j] =
0∧ (q[i] < q[j]∨ (q[i] = q[j]∧ i > j)). Any other violating pairs (i, k) involving i
are replaced by at most the same number of new violating pairs (j, k) involving
j instead; any other violating pairs (k, j) involving j are replaced by at most
the same number of new violating pairs (k, i) involving i instead. Therefore, the
total number of violating pairs is reduced. After repeating this process enough
times, there are no more such (i, j) pairs for v. In other words, v is now a vector
matching our criterion, and C∗ is an optimal solution that includes a vector
matching our criterion. Thus, there exists a valid and optimal solution that
follows the first iteration of the count′ algorithm. By induction over equation 1,
the count′ algorithm is optimal. ⊓⊔

C Definition of Correctness and Blindness

We formally define correctness and blindness properties of threshold blind sig-
natures below.

Definition 10 (TB Correctness). A threshold blind signature scheme TB is
correct if, for all (pk, {sk1, . . . , skn}, aux)← TB.Kg(n, t), all messages msg, and
all signer sets S ⊆ [n] such that |S| = t, the above protocol always produces a
signature σ such that TB.Vf(pk, σ,msg) = true.

Definition 11 (TB Blindnesss). A threshold blind signature scheme TB is
blind if, for all PPT adversaries A,

∣∣∣Pr[ExpblindTB,A(λ) = true
]
− 1/2

∣∣∣ is negligible
for the experiment from Figure 7.

D Additional Proofs of Relations Between OMUF Notions

In this section we include proofs deferred from Section 4.
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ExpblindTB,A(λ)

pp← Pg(1λ)

b←$ {0, 1}
S1, . . . , Sr := ∅

b′ ← AOUSign0,...,USignr
(pp)

return (b = b′)

OUSign0(sid, pksid, auxsid,msgsid0 ,msgsid1 ,Ssid
0 ,Ssid

1 )

if sid ∈ S1 : return ⊥
S1 := S1 ∪ {sid}

(ustsid0,0 , ups
sid
0,0)← USign0(pk

sid, auxsid,msgsidb ,Ssid
b )

(ustsid1,0 , ups
sid
1,0)← USign0(pk

sid, auxsid,msgsid1−b,Ssid
1−b)

return (upssid0,0 , ups
sid
1,0)

OUSignj (sid, {ips0,j,i}i∈Ssid
0

, {ips1,j,i}i∈Ssid
1

) // j ∈ {1, . . . , r}

if sid ∈ Sj ∨ sid /∈ Sj−1 : return ⊥
Sj := Sj ∪ {sid}

σsid
b (ustsid0,j , ups

sid
0,j ) ← USignj(ust

sid
0,j−1, {ips0,j,i}i∈Ssid

0
)

σsid
1−b (ustsid1,j , ups

sid
1,j ) ← USignj(ust

sid
1,j−1, {ips1,j,i}i∈Ssid

1
)

if σsid
0 =⊥ ∨σsid

1 =⊥ : return (⊥,⊥)

return (σsid
0 , σsid

1 ) (upssid0,j , ups
sid
1,j )

Fig. 7. Blindness for TB. Dashed boxes only appear for the signing round j < r and
black boxes only appear when j = r.

D.1 Proof of Lemma 2 – OMUF-0 Does Not Imply OMUF-1

In this section we formally prove Lemma 2, which states that OMUF-0 security
does not imply OMUF-1 security.

Proof. Suppose there exists an OMUF-1 secure scheme Π1. We then construct
a scheme Π0 from Π1 that is OMUF-0 but not OMUF-1 secure as follows

– Π0.Pg(1λ): Run Π1.Pg(1λ) and return the result pp.
– Π0.Kg(n, t): Run Π1.Kg(n, t) and Π1.Kg(n, t + 1). Concatenate the keys

of these two Π1 instances and return the result ((pk, p̂k), {(ski, ŝki)}i∈[n],
(aux, ˆaux)). (In the special case that t = n, omit the second Π1 instance:
p̂k, ŝk1, . . . , ŝkn, ˆaux := ⊥.)

– Π0.USign0((pk, p̂k), (aux, ˆaux),msg,S): Run the first Π1 instance as nor-
mal: (ust10, ups10)← Π1.USign0(pk, aux,msg,S). Return (ust0, ups

0
0) := (ust10,

(ups10,⊥)).
– Π0.USignj(ustj−1, {ipsj,i}i∈S) for j ∈ {2, . . . , r}: Continue to run as nor-

mal using the first Π1 instance. On the final round, the output of USign is
structured differently. (ust1j , ups1j ) or σ ← Π1.USignj(i, ustj−1, {upsj,i}i∈S).
Return (ustj , ups

0
j ) := (ust1j , (ups

1
j ,⊥)) or return σ.

– Π0.ISign1(i, (ski, ŝki), (aux, ˆaux), ctx, ups00):
• Parse ups00 as (ups0, ups

′
0).
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• If ups ′0 = ⊥ (or t = n), then run the first Π1 instance on ups0: (ist1,i,
ips1,i)← Π1.ISign1(i, ski, aux, ctx, ups0) and (ist′1,i, ips

′
1,i) := (⊥,⊥).

• If ups ′0 ̸= ⊥ (and t < n), then run a “double execution” of the second Π1

instance on both ups0 and ups ′0: (ist1,i, ips1,i) ← Π1.ISign1(i, ŝki, ˆaux,

ctx, ups0) and (ist′1,i, ips
′
1,i)← Π1.ISign1(i, ŝki, ˆaux, ctx, ups ′0).

• Return (ist01, ips
0
1,i) := ((ist1,i, ist

′
1,i), (ips1,i, ips

′
1,i)).

– Π0.ISignj(i, ist
0
j−1,i, ups

0
j−1) for j ∈ {2, . . . , r}: Continue to run either a

single execution of the first Π1 instance or a double execution of the second
Π1 instance. On the final round, the output of ISign is structured differently.
• Parse ist0j−1,i as (istj−1,i, ist

′
j−1,i) and ups0j−1 as (upsj−1, ups

′
j−1).

• (istj,i, ipsj,i) or (ipsr,i, ssid,S)← Π1.ISignj(i, istj−1,i, upsj−1).
• If ist′j−1,i = ⊥ (or t = n), then (ist′j,i, ips

′
j,i) := (⊥,⊥) or (ips ′r,i, ssid

′,S ′)
:= (⊥,⊥,⊥).

• If ist′j−1,i ̸= ⊥ (and t < n), then (ist′j,i, ips
′
j,i) or (ips ′r,i, ssid

′,S ′) ←
Π1.ISignj(i, ist

′
j−1,i, ups

′
j−1).

• Return (ist0j , ips
0
j,i) := ((istj,i, ist

′
j,i), (ipsj,i, ips

′
j,i)) or (ips0r,i, ssid

0,S0)
:= ((ipsr,i, ips

′
r,i),⊥,⊥).

– Π0.Vf((pk, p̂k), σ,msg): Signatures from either Π1 instance are valid. Return
Π1.Vf(pk, σ,msg) ∨ (t < n ∧Π1.Vf(p̂k, σ,msg)).

Per the construction of the Π0.USign algorithms, honest user execution never
takes advantage of the double execution behavior; it simply runs on the first Π1

instance completely as normal. Therefore, the correctness and blindness of Π0

are immediately implied from Π1.
Π0 is not OMUF-1 secure. Consider the OMUF-1 game with the parameters

(n, t) such that 2 ≤ t < n and an adversary A who corrupts no issuers. A can
perform a double execution by interacting with t + 1 issuers. A obtains 2 valid
signatures, but allow1 = 1.

Π0 is OMUF-0 secure. Consider any adversary A. Partition all of A’s ISign
interactions into the set of those which run a single execution under pk and
the set of those which run a double exeuction under p̂k. Similarly partition the
signatures output by A. If A wins OMUF-0, then one (or both) of these sets of
signatures must be larger than the corresponding set of issuer interactions. In
either case, there is a reduction from the security of Π1:

– Suppose A performs q pk-mode Π0.ISign interactions and then outputs more
than q pk-mode signatures. Our reduction performs q Π1.ISign interactions
and then outputs more than q signatures. This reduction clearly breaks the
OMUF-1 (and even OMUF-0) security of Π1.

– Suppose A performs q p̂k-mode Π0.ISign interactions and then outputs more
than q p̂k-mode signatures. Our reduction performs 2q Π1.ISign interactions
and then outputs more than q signatures. Because A corrupts at most t −
1 issuers but the Π1 threshold is set to t + 1, our OMUF-1 reduction is
allowed at most 1 signature per every 2 interactions with uncorrputed issuers:
allow1 ≤ q. Therefore, this reduction breaks the OMUF-1 security of Π1. ⊓⊔
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D.2 Proof of Lemma 6 – OMUF-3 Implies OMUF-SB

In this section we formally prove Lemma 6, which states that OMUF-3 security
implies OMUF-SB security.

Proof. Any winning adversary against the OMUF-SB game is also a winning
adversary against the OMUF-3 game. To prove this, we show that allow3 ≤
allowSB:

allow3 =

∣∣∣∣{ssid :

(
∃S3 ∈ P([n] \ C) : S3 ̸= ∅,S3 ⊆ EI3[ssid,S3]

)}∣∣∣∣ (1)

≤
∑

S3∈P([n]\C)
S3 ̸=∅

∣∣∣∣{ssid : S3 ⊆ EI3[ssid,S3]
}∣∣∣∣ (2)

≤
∑

S3∈P([n]\C)
S3 ̸=∅

∑
S∈P([n])

S⊇S3,S\S3⊆C

∣∣∣∣{sid : (sid,S) ∈ ESSB

}∣∣∣∣ (3)

=
∑

S∈P([n])

∣∣∣∣{sid : (sid,S) ∈ ESSB

}∣∣∣∣ (4)

= allowSB (5)

On line 1, we rewrite the definition of allow3 into a single expression. Between
lines 1 and 2, observe that every ssid counted in the former expression will be
counted in the latter one or more times. Between lines 2 and 3, consider any one
issuer i ∈ S3. For each different ssid such that i ∈ EI3[ssid,S3], issuer i must run
on a different sid and output some supposed signer set S such that S ⊇ S3 and
S \ S3 ⊆ C. Between lines 3 and 4, observe that every valid S corresponds to
exactly one S3. ⊓⊔

E Unforgeability Relations in the Special Cases t = 1 and
t = n

In Section 4, we describe the implication relations between the six one-more
unforgeability relations defined in Section 3.2. Our security definitions allow for
any parameters t, n such that 1 ≤ t ≤ n. Nonetheless, it is also interesting to
consider the restricted edge cases where t = 1 or t = n.

If we restrict the parameters to the cases t ∈ {1, n}, several of the results
in Section 4 are affected. In particular, the proofs of Lemmas 2, 3, 7, and 8 are
inapplicable, and those relations must be reconsidered.

Lemma 12. If t ∈ {1, n}, OMUF-0 security implies OMUF-1 security.

Proof. For t = 1, this implication is immediate from the security game defini-
tions. In particular, allow0 = allow1. Therefore, any winning adversary against
the OMUF-1 game is also a winning adversary against the OMUF-0 game.
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For t = n, suppose there exists a winning OMUF-1 adversary A1. Construct
reductionR0 which picks a single issuer i←$ [n] at random and corrupts [n]\{i}.
If i is the issuer queried by A1 the least, then allow0 = allow1 and R0 wins the
OMUF-0 game. If not, then allow0 > allow1 and the reduction fails. Therefore,
this reduction is tight up to a factor of n. ⊓⊔

Lemma 13. If t ∈ {1, n}, OMUF-2 security implies OMUF-3 security.

Proof. This implication is immediate from the security game definitions. If t = 1,
there is only one supposed signing set S = {i} that any issuer i can output. If
t = n, there is only one supposed signing set S = [n] that any issuer can output.
In either case, allow2 = allow3. Therefore, any winning adversary against the
OMUF-3 game is also a winning adversary against the OMUF-2 game. ⊓⊔

Lemma 14. If t = 1, OMUF-0 security and OMUF-SB security imply one an-
other.

Proof. These implications are immediate from the security game definitions. In
particular, when t = 1, there is only one supposed signing set S = {i} that any
issuer i can output. Issuer i must use a different sid for each of its interactions.
Therefore, allow0 = allowSB. Any winning adversary against the OMUF-0 or
OMUF-SB game is also a winning adversary against the other. ⊓⊔

Lemma 15. If t = n, OMUF-1 security and OMUF-SB security imply one an-
other.

Proof. To show that OMUF-1 security implies OMUF-SB security, observe that
when t = n allow1 is the minimum of all uncorrupted issuers’ interaction counts.
That minimal server must use a different sid for each of its interactions, so
allowSB must be at least as large. allow1 ≤ allowSB. Thus, any winning OMUF-SB
adversary is also a winning OMUF-1 adversary.

To show that OMUF-SB security implies OMUF-1 security, suppose there
exists a winning OMUF-1 adversary A1. Construct reduction RSB which picks a
single issuer i←$ [n] at random and corrupts [n] \ {i}. If i is the issuer queried
by A1 the least, then allowSB = allow1 and RSB wins the OMUF-SB game. If not,
then allowSB > allow1 and the reduction fails. Therefore, this reduction is tight
up to a factor of n. ⊓⊔

To summarize the cases t ∈ {1, n}: OMUF-0, OMUF-FC, OMUF-1, and OMUF-SB
all imply one another, and OMUF-2 and OMUF-3 imply one another. By Lemma
1 the latter imply the former, and by Lemma 3 the former do not imply the
latter.

Intuitively, it is not surpising that the one-more unforgeability relations sim-
plify in this way. When t = 1 or t = n, signing set consistency is essentially a
vacuous property. Therefore, in these cases the notions are separated only by
whether or not they require ssid consistency. (The equivalence of OMUF-0 and
OMUF-1 when t = n is not as obvious.)
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F Proofs of Threshold Blind BLS Signatures

We present the proofs that were deferred in Section 5 here. Throughout the
one-more unforgeaiblity proofs, we denote the Lagrange basis polynomials for a
set S and i ∈ S as ΛS

i (X) :=
∏

j∈S,j ̸=i
X−j
i−j . For simplicity, we denote ΛS

i (0) by
dropping the input, ΛS

i .

F.1 Proof of tBlindBLS Blindness

Observe that the three tBlindBLS variants differ only in their Kg and ISign1
algorithms, which do not appear in the blindness game at all (Definition 11).
Therefore, the blindness of all three variants can be analyzed at once (USign1
also differs in its use of interpolation coefficients, but this is not relevant to the
proof of blindness).

Theorem 6 (tBlindBLS Blindness). For all ppt adversaries A and i ∈ {1, 2, 3},∣∣∣Pr[ExpblindtBlindBLS-i,A(λ) = true
]
− 1/2

∣∣∣ = qH/q for the experiment from Figure 7.

Proof. The blindness game ExpblindtBlindBLS,A can be perfectly simulated without
knowledge of the secret bit b unless the adversary finds a message msg such that
H(msg) = 1G2 . We take b to be 0 and run the code of tBlindBLS earnestly.

Regardless of its inputs (and of b), the first oracle OUSign0 returns two uni-
formly random group elements unless H(msgb) = 1G2

for one of the challenge
messages. We abort if the adversary finds such a message msg which only occurs
with probability qH/q in ROM for qH being the number of H queries made by
the adversary. When this case does not occur, H(msgb)

rb is uniformly random
for b ∈ {0, 1}, so OUSign0 oracle does not leak information about b. The second or-
acle OUSign1 is nearly as simple: it either returns two properly verified signatures
(σ0, σ1) for messages (msg0,msg1), or it returns (⊥,⊥). Since BLS signatures
are deterministic, there is only one possible (σ0, σ1) for any given (msg0,msg1)
and pk. Thus, the view of A in this simulated game is exactly identical to that
in the real game unless we abort. A can either provide honest inputs to OUSign1

and receive (σ0, σ1) or provide dishonest inputs and receive (⊥,⊥).
Since the view of A can be perfectly simulated when the game does not abort,

it follows that
∣∣∣Pr[ExpblindtBlindBLS-i,A(λ) = true

]
− 1/2

∣∣∣ = qH/q. ⊓⊔

F.2 Proof of Theorem 1 – OMUF-1 Security of tBlindBLS-1

Proof. Suppose there exists an efficient adversaryA such that the adversary’s ad-
vantage Pr[ExpOMUF-1

tBlindBLS-1,A,n,t(λ) = true] is non-negligible. We construct the fol-
lowing reduction R(A), which wins (t− |C|, n,N)-T-OMDH with non-negligible
probability:

Parameter Generation: Choose a random c← {0, . . . , t−1} and receive (BG,
gp(0), ĝp(0), ĝ1, . . . , ĝN ) from T-BOMDH challenger for the parameters (t −
c, n,N). Set pp := BG and send (pp) to the adversary.
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Key Generation: Receive C from A. If |C| ≠ c which was chosen during the
parameter generation, then abort. Otherwise, pick a random (t − 1)-degree
polynomial r over Zq. Define s, a (t − 1)-degree polynomial over Zq, as
s(i) := r(i)+ p(i) ·

∏
i′∈C(i− i′). At indexes in C, s(i) = r(i), which is known

to R(A); at other indexes, s(i) is unknown to R(A). Send (gp(0), {s(i)}i∈C)
to A as (pk, {ski}i∈C).

Queries to OH(msgj): For the j’th fresh random oracle query msgj , set H(msgj)
:= ĝj . Return H(msgj) accordingly.

Signing Queries (OISign(j = 1, sid, i, ctx, (a,S))): Upon an oracle query for an
uncorrupted issuer i, use the a′i := TBOMDHp(i, a) to compute as(i) = ar(i) ·
(a′i)

∏
i′∈C(i−i

′). For corrupted issuers, as(i) can be computed directly. Return
response bi := as(i).

Ultimately, if R(A) does not abort during the key generation, it receives ℓ
message-signature pairs {(msg∗k, σ

∗
k)}k∈[ℓ] from A. If they all verify and ℓ >

countt−|C|(q1, . . . , qn), then R(A) can win T-BOMDH. Assume (without loss
of generality) that every msg∗ was queried to H, and (for all k ∈ [ℓ]) define
j(k) ∈ [N ] to be the index such that msgj(k) = msg∗k. For all k ∈ [ℓ], compute
(ĝj(k))

p(0) = (σ∗k · (ĝj(k))r(0))1/
∏

i′∈C(−i
′). Output pairs {(j(k), (ĝj(k))p(0))}k∈[ℓ].

R(A) does not abort with the probability 1/t. Thus, we finally conclude that

Pr
[
ExpOMUF-1

tBlindBLS-1,A,n,t(λ) = true
]
≤ t · ϵT-BOMDH

⊓⊔

F.3 Proof of Theorem 2 – OMUF-2 Security of tBlindBLS-2

Proof. As our proof sketch pointed out, we first aim to change binding factors
Zi(ctx, a) := H̃(ctx, a)zi to the truly random values. We do this by a hybrid
argument as follows. We define a series of variations G0A, . . . ,G

t−1
A . G0A has the

identical output to the ExpOMUF-2
tBlindBLS-2,A,n,t(λ), but changes how binding factors

are computed. In particular, the binding factors of all issuers are computed by
interpolating them from a specific set of issuers D so that the later games can
directly aim changing the binding factors of the issuers in D. The following
games change the binding factors of the issuers in D one by one by relying on
the DDH assumption.

Replacing Binding Factors with Random Values. We denote the binding factor
of the issuer i on ctx and a as Zi(ctx, a) := H̃(ctx, a). We define G0A as a game
that differs from ExpOMUF-2

tBlindBLS-2,A,n,t in the following ways:

– After receiving C from A, select an arbitrary set of issuers D ⊆ [n] such that
C ⊆ D and |D| = t− 1.

– For all i /∈ D, compute Zi(ctx, a) by interpolation from the binding factors
of the issuers in set D. Specifically, Zi(ctx, a) :=

∏
i′∈D(Zi′(ctx, a))

ΛD′
i′ (i),

where D′ := D ∪ {0}.
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The views of A in ExpOMUF-2
tBlindBLS-2,A,n,t and G0A are identical. Therefore,

Pr
[
G0A(λ) = true

]
= Pr

[
ExpOMUF-2

tBlindBLS-2,A,n,t(λ) = true
]

Next, for all t′ ∈ {1, . . . , t− 1}, we define Gt′A as a game that differs from G0A
in the following way:

– For the first (min{t′, t−1−|C|}) issuers i in set D \C, set all binding factors
at random. Specifically, Zi(ctx, a)←$ G2.

If t′ > t − 1 − |C|, then Gt
′−1
A and Gt′A are identical. If t′ ≤ t − 1 − |C|, then a

DDH reduction proves that A’s probabilities of winning in Gt
′−1
A and Gt′A can

only differ negligibly (for all t′ ∈ {1, . . . , t − 1}). Using such a distinguisher we
build a DDH reduction as a variant of Gt

′−1
A that differs in the following ways:

– Receive DDH challenge tuple (g1, g
′
1, g2, g

′
2) ∈ G4

2.
– Label the random oracle queries to H̃ as (ctx1, a1), (ctx2, a2), . . . . For all j,

pick δ1,j , δ2,j ←$ Zq and program H̃(ctxj , aj) := (g1)
δ1,j · (g2)δ2,j .

– Denote by i′ the t′-th issuer in set D \C. Set Zi′(ctxj , aj) := (g′1)
δ1,j · (g′2)δ2,j .

(Without loss of generality, we assume that A queries H̃ on every (ctx, a)
sent to OISign.)

This reduction uses the well-known “DDH randomized self-reduction” technique
[Sta96, NR04] to generate many pairs of correlated group elements from the
original challenge tuple. If that original tuple is a Diffie-Hellman tuple, then all
pairs (H̃(ctx, a), Zi′(ctx, a)) are related by the same secret exponent (effectively,
zi′). In that case, the game is identical to Gt

′−1
A . If the original tuple is a random

tuple, then all the blinding factors Zi′(ctx, a) used by issuer i′ are independently
random. In that case, the game is identical to Gt′A. Therefore, the advantage ϵDDH

of this distinguisher must be negligible. For all t′ ∈ {1, . . . , t− 1},

Pr
[
Gt

′−1
A (λ) = true

]
≤ Pr

[
Gt

′

A(λ) = true
]
+ ϵDDH

Overall,

Pr
[
G0A(λ) = true

]
≤ Pr

[
Gt−1A (λ) = true

]
+ (t− 1) · ϵDDH

Reduction from BOMDH Assumption. Finally, we construct reduction R(A),
which wins (N)-BOMDH with non-negligible probability. We begin by introduc-
ing some key notations that will be used throughout this proof to improve the
readability. We introduce the following notation for the readability: Si(ctx, a) de-
notes the signature share of the issuer i on ctx and a. In other words, Si(ctx, a) =
OISign(j = 1, sid, i, ctx, (a,S)).

Parameter Generation: Receive (BG, gp(0), ĝp(0), ĝ1, . . . , ĝN ) from BOMDH
challenger and set pp := BG.
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Key Generation: Receive C from A. For all i ∈ C, pick ki, zi ←$ Zq. Send
(gp, {(ki, zi)}i∈C) to A as (pk, {ski}i∈C).

Random Oracle Queries (OH(msgj)): For the j’th fresh random oracle query
msgj , set H(msgj) := ĝj . Return H(msgj) accordingly.

Random Oracle Queries (OH̃(x)): Respond honestly.
Signing Queries (OISign(j = 1, sid, i, ctx, (a,S))): Answer signing queries as fol-

lows.
– For corrupted issuers i ∈ C, Si(ctx, a) can be computed directly. Specifi-

cally, Si(ctx, a) := aki · H̃(ctx, a)zi .
– For the first (t − 1 − |C|) uncorrupted issuers i /∈ C queried with some

(ctx, a), respond randomly. Specifically, Si(ctx, a)← G2.
– For the (t−|C|)-th and later uncorrupted issuers i /∈ C queried with some

(ctx, a), use the BOMDH oracle to learn ap = BOMDHp(a). Interpolate
response Si(ctx, a) := (ap)Λ

E′
0 ·

∏
i′∈C∪E(Si′(ctx, a))

ΛE′
i′ (i), where E is the

set of indices of the first (t− 1− |C|) uncorrupted issuers to be queried
with (ctx, a) and E′ := C ∪ E ∪ {0}.

The view of A in R(A) is identical to its view in Gt−1A . Ultimately, R(A) receives
ℓ message-signature pairs {(msg∗k, σ

∗
k)}k∈[ℓ] from A. If they all verify and ℓ is

greater than or equal to the number of (ctx, a) inputs that were queried on t−|C|
or more uncorrupted issuers, then R(A) can win BOMDH. Assume (without
loss of generality) that every msg∗ was queried to H, and (for all k ∈ [ℓ]) define
j(k) ∈ [N ] to be the index such that msgj(k) = msg∗k. Then R(A) outputs pairs
{(j(k), σ∗k)}k∈[ℓ].

We conclude that

Pr
[
ExpOMUF-2

tBlindBLS-2,A,n,t(λ) = true
]
≤ ϵBOMDH + (t− 1) · ϵDDH

⊓⊔

F.4 Proof of Theorem 3 – OMUF-3 Security of tBlindBLS-3

Proof. Similar to the proof of Theorem 2, this proof will contain two steps: re-
placing binding factors with random values and then having a reduction from
BOMDH assumption. For this scheme, we rely on the pseudorandomness prop-
erty of F while replacing the binding factors.

Replacing Binding Factors with Random Values. We define GA as a game that
differs from ExpOMUF-3

tBlindBLS-3,A,n,t in the following way:

– For each pair of uncorrupted servers i, j ∈ [n] \ C, do not pick a pairwise key
wi,j = wj,i. Instead, sample a random function fi,j : {0, 1}∗ → G. In OISign

queries to issuers i and j, use fi,j(·) in place of Fwi,j
(·).

Game GA is related to ExpOMUF-3
tBlindBLS-3,A,n,t by a series of intermediate hybrids, each

of which successively replaces one more PRF instance with a random function.
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There are (n − |C|)(n − |C| − 1)/2 < n2/2 PRFs to be replaced. Each hybrid
can be used to construct a distinguisher for the pseudorandomness game by
using the provided oracle in the place of the function in question. Therefore, A’s
probabilities of winning in the ExpOMUF-3

tBlindBLS-3,A,n,t and GA games can only differ
negligibly. In particular,

Pr
[
ExpOMUF-3

tBlindBLS-3,A,n,t(λ) = true
]
≤ Pr[GA(λ) = true] + (n2/2) · ϵPRF

where ϵPRF is the maximum advantage of the PRF distinguishers.

Reduction from BOMDH Assumption. Next, we construct reductionR(A), which
wins (N)-OMDH with non-negligible probability.

We introduce the following notation for the readability: Si(ctx, a,S) denotes
the signature share of the issuer i on ctx, a, and S. In other words, Si(ctx, a,S) =
OISign(j = 1, sid, i, ctx, (a,S)).

Parameter Generation: Receive (BG, gp(0), ĝp(0), ĝ1, . . . , ĝN ) from BOMDH
challenger and set pp := BG.

Key Generation: Receive C from A. For all i ∈ C, pick ki ←$ Zq. For all
i, j ∈ [n] such that i < j and i ∈ C or j ∈ C, pick wi,j ←$ K and define
wj,i := wi,j . Send (gp, {(ki, {wi,j}j∈[n]\{i})}i∈C) to A as (pk, {ski}i∈C).

Random Oracle Queries (OH(msgj)): For the j’th fresh random oracle query
msgj , set H(msgj) := ĝj . Return H(msgj) accordingly.

Signing Queries (OISign(j = 1, sid, i, ctx, (a,S))): Answer signing queries as fol-
lows.
– For corrupted issuers i ∈ C, Si(ctx, a,S) can be computed directly.
– For an uncorrupted issuer i /∈ C, if at least one other uncorrupted issuer

in S has not yet been queried with (ctx, a,S), then respond randomly.
Specifically, Si(ctx, a,S)←$ G2.

– For an uncorrupted issuer i /∈ C, if all other uncorrupted issuers in S
have already been queried with (ctx, a,S), then use the BOMDH ora-
cle to learn ap = BOMDHp(a). Compute response Si(ctx, a,S) := ap ·∏

i′∈S\{i} Si′(ctx, a,S)−1.

The view ofA inR(A) is identical to its view in GA. Ultimately,R(A) receives
ℓ message-signature pairs {(msg∗k, σ

∗
k)}k∈[ℓ] from A. If they all verify and ℓ is

greater than the number of (ctx, a,S) inputs that were queried on all uncorrupted
issuers in S, then R(A) can win BOMDH. Assume (without loss of generality)
that every msg∗ was queried to H, and (for all k ∈ [ℓ]) define j(k) ∈ [N ] to be
the index such that msgj(k) = msg∗k. Output pairs {(j(k), σ∗k)}k∈[ℓ]. Reduction
R(A) wins the BOMDH game with probability equal to that of A winning the
G game. Thus, we conclude that,

Pr
[
ExpOMUF-3

tBlindBLS-3,A,n,t(λ) = true
]
≤ ϵBOMDH + (n2/2) · ϵPRF

⊓⊔
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G Snowblind Construction

For simplicity, we presented the Snowblind construction in Section 6 in its orig-
inal form, not fully adapted to our syntax. As our SB+ construction relies on a
ΠSB scheme according to our definition, we also restate SB in our notation:

Construction 1 (Snowblind Threshold Blind Signature (SB)) Let DS :=
(Pg,Kg,Sign,Vf) be a signature scheme. SB is defined as follows.

Pg(1λ): Sample a group description (G, g, q) ← GGen(λ), a generator h ← G,
and and public parameters for the signature ppsig ← DS.Pg(λ). Select hash
functions Hcm,Hsig : {0, 1}∗ → Zq. Return pp := ((G, q, g, h),Hcm,Hsig, ppsig).

Kg(n, t): Sample the secret key sk ← Zq and generate secret key shares (sk′1, ...,
sk′n) ← Share(sk, n, t). Sample signature key pairs (ŝkj , p̂kj) ← DS.Kg()

for j ∈ [n]. Set the public key pk := gsk and aux := {p̂kj}j∈[n]. Return
(pk, {(sk′j , ŝkj)}j∈[n], aux).

USign0(pk, aux,msg,S): Return (ust0 := (pk,msg), ups0 := S).
ISign1(i, ski, aux, ctx, ups0): Parse ups0 := S. If i ̸∈ S, then abort. Other-

wise, Sample ai, bi ← Zq and yi ← Zq
∗. Set Ai := gai , Bi := gbihyi ,

and cmi := Hcm(sid, i, yi). Return (ist1,i := (ski, aux,S, ai, bi, yi), ips1,i :=
(Ai, Bi, cmi)).

USign1(ust0, {ips1,j}j∈S): Parse ust0 := (pk,msg) and ips1,j := (Aj , Bj , cmj)
for j ∈ S. Sample α, β ← Zq

∗ and r ← Zq. Set A :=
∏

j∈S Aj , B :=∏
j∈S Bj , R̄ := grAα/βBα, c̄ := Hsig(pk,msg, R̄), and c := c̄ · β. Return

(ust1 := (pk,msg, r, c, α, β), ups1 := (c, {cmj}j∈S)).
ISign2(i, ist1,i, ups1): Parse ist1,i := (ski, aux,S, ai, bi, yi), ski := (sk′i, ŝki) and

ups1 := (c, {cmj}j∈S). Set sesst := (sid,S, c, {cmj}j∈S) and compute dsi ←
DS.Sign(ŝki, sesst). Return (ist2,i := (sk′i, aux,S, ai, sesst, {cmj}j∈S), ips2,i
:= (bi, yi, dsi)).

USign2(ust1, {ips2,j}j∈S): Parse ust1 := (pk,msg, r, c, α, β) and ips2,j := (bj , yj ,
dsj) for j ∈ S. Return (ust2 := (pk,msg, r, c, α, β, {(bj , yj)}j∈S), ups2 :=
{(dsj , yj)}j∈S).

ISign3(i, ist2,i, ups2): Parse ist2,i := (sk′i, aux,S, ai, sesst, {cmj}j∈S), aux := {
p̂kj}j∈[n] and ups2 := {(dsj , yj)}j∈S for j ∈ S. Check if there is a j ∈ S such
that cmj ̸= Hcm(sid, j, yj) or DS.Vf(p̂kj , sesst, dsj) = false. Abort if there is
such j. Otherwise, set Υ :=

∑
j∈S yj and zi := ai + c · Υ · ΛSi · sk′i. Return

(S, ssid :=⊥, ips3,i := zi).
USign3(ust2, {ips3,j}j∈S): Parse ust2 := (pk,msg, r, c, α, β, {(bj , yj)}j∈S) and

ips3,j := zj for j ∈ S. Set Υ :=
∑

j∈S yj , z :=
∑

j∈S zj , and b :=
∑

j∈S bj . If
B ̸= gbhy or gz ̸= Apkc·y, then return ⊥. Otherwise, set z̄ := r+α·z/β+α·b,
ȳ := α · y, and σ := (R̄, z̄, ȳ). If Vf(pk,msg, σ) holds, then return σ. Other-
wise, return ⊥.

Vf(pk,msg, σ): Parse σ := (R̄, z̄, ȳ) and set c̄ := Hsig(pk,msg, R̄). Return

ȳ ̸= 0 ∧ R̄ · pkc̄·ȳ = gz̄hȳ
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H Attack Against OMUF-3 Security of SB

We build an efficient adversary A against the OMUF-3 security of ΠSB for the
parameters (n := 3, t := 2) as follows. A gets pp and calls OMUF-3 game for
C := {3}. The main strategy of A is as follows. A runs a signing session between
the issuers 1 and 2. A aims to use the issuer 1’s outputs for the first two signing
round to create a valid third round signing request ups for the issuer 3 for this
session. Then A uses the issuer 3’s final signature share and sk3 to forge a
signature. As there is only one 3rd round signing query in this scenario, which
corresponds to the set of issuers {1, 2}, allow3 = 0, so A can win by outputting
1 valid signature.

Now we describe A’s behavior in detail.

– A makes a signing query to both issuer 1 and 2 for an arbitrary sid with the
oracle calls:

(A1, B1, cm1)← OISign1(sid, 1, ups0 := (S := {1, 2}))
(A2, B2, cm2)← OISign1(sid, 2, ups0 := (S := {1, 2}))

– A chooses and arbitrary message msg∗ and sets ups1 := (c, {cm1, cm2}) for

c := Hsig(pk, R̄,msg∗), R̄ := A
ΛS′

2 /ΛS
2

2 ·B1 ·B2, and S ′ := {2, 3}. A does not
include A1 in R̄ so that it does not need the 3rd round signature share of the
issuer 1. A includes both B1 and B2 in R̄ because the issuer 2 will output
its 3rd round signature share for Υ = y1 + y2. Finally, we arrange A2 with
the exponents to be able to forge a 3rd round signature share of the issuer 2
for the issuer set S ′. A makes the second round queries,

(b1, y1, ds1)← OISign2(sid, 1, ups1) (b2, y2, ds2)← OISign2(sid, 2, ups1)

– A simply makes the final round signing query for the issuer 3 as

z2 ← OISign3(sid, 2, ups2 := {(dsj , yj)}j∈{1,2})

– Observe that A2 · pk
ΛS

2 ·f(c,Υ )
j = gz2 , so A

ΛS′
2 /ΛS

2
2 · pkΛ

S′
2 ·f(c,Υ )

j = gz
′
2 for

z′2 := z2 · ΛS
′

2 /ΛS2 .
– A computes the signature share for sk3 as z3 := c · ΛS′

3 · sk3Υ and sets the
final forgery σ∗ := (R̄, ȳ, z̄) for

ȳ := Υ z̄ := z′2 + z3 + b1 + b2

and A outputs ℓ := 1, {(σ∗,msg∗)}.
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It is easy to observe thatA computes valid signing queries to get a valid signature
share of the issuer 2. Furthremore, A forgery verifies since

gz̄ · hȳ = gz̄ · hΥ

= gz̄ · hΥ

= A
ΛS′

2 /ΛS
2

2 · pkΛ
S′
2 ·f(c,Υ )

j · gz3+b1+b2 · hΥ

= A
ΛS′

2 /ΛS
2

2 ·B1 ·B2 · pk
ΛS′

2 ·f(c,Υ )
j · gz3

= R̄ · pkΛ
S′
2 ·f(c,Υ )

j · gz3

= R̄ · pkΛ
S′
2 ·f(c,Υ )

j · pkΛ
S′
3 ·f(c,Υ )

3

= R̄ · pkf(c,Υ )

I Proof of Theorem 4 – OMUF-3 Security of Π3

Proof. Following the proof strategy of Theorem 3, we first have a step to replace
binding factors with random values. We rely on the pseudorandomness of F for
this step. Next we have a reduction from the properties of ΠSB.

Replacing Binding Factors with Random Values. We define GA as a game that
differs from ExpOMUF-3

Π3,A,n,t in the following way:

– For each pair of uncorrupted servers i, j ∈ [n] \ C, do not pick a pairwise key
wi,j = wj,i. Instead, sample a random function fi,j : {0, 1}∗ → {0, 1}l. In
OISign3r+1 queries to issuers i and j, use fi,j(·) in place of Fwi,j (·).

Game GA is related to ExpOMUF-3
Π3,A,n,t by a series of intermediate hybrids, each of

which successively replaces one more PRF instance with a random function.
There are (n − |C|)(n − |C| − 1)/2 < n2/2 PRFs to be replaced. Each hybrid
can be used to construct a distinguisher for the pseudorandomness game by
using the provided oracle in the place of the function in question. Therefore,
A’s probabilities of winning in the ExpOMUF-3

Π3,A,n,t and GA games can only differ
negligibly. In particular,

Pr
[
ExpOMUF-3

Π3,A,n,t(λ) = true
]
≤ Pr[GA(λ) = true] + (n2/2) · ϵPRF

where ϵPRF is the maximum advantage of the PRF distinguishers.

Reduction From ΠSB. Next, we construct reduction R(A), which wins the
OMUF-SB game against ΠSB with non-negligible probability:

Key Generation: Receive C from A and forward it to ExpOMUF-SB
ΠSB,n,t . Receive

(pk, {skSBi }i∈C , aux) from ExpOMUF-SB
ΠSB,n,t . For all i, j ∈ [n] such that i < j and
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i ∈ C or j ∈ C, pick wi,j ←$ K and define wj,i := wi,j . For all i ∈ C, define
sk3i := (skSBi , {wi,j}j∈[n]\{i}). Send (pk, {sk3i }i∈C , aux) to A. Set a table T
which initially is assigned to ∅ in all positions.

1st Round Signing Queries: Sample noncei ← {0, 1}λ. If the issuer i used
noncei in any previous OISign1

3 queries, set BadNonce and abort.
2nd Round Signing Queries: Check if nonce′i = noncei as the original al-

gorithm and abort if not. If there is no abort, set ssid := {noncej}j∈S ,
and instead of running the ΠSB.ISign1 algorithm, make a OISign1

SB query for
sidSB := ssid3 and by using the (ups ′0,S) from the issuer state ist31,i.

j’th Round Signing Queries (j ∈ {3, . . . , r}): For each round, parse the in-
puts as the original algorithm and make the corresponding OISignj−1

SB query
for sidSB := ssid3 that was fixed in the second round. Set the outpus as the
orginal algorithm and output.

r + 1’st Round Signing Queries OISign
3 (j = r + 1, sid, i, ist3r,i, ups

3
r): Parse ups3r

:= upsSBr−1 and ist3r,i := (istSBr−1,i, ssid
3, {wi,j}j∈[n]\{i}).

– For corrupted issuers i ∈ C, the response can be computed directly.
– For an uncorrupted issuer i /∈ C, lookup Q := T [ssid3,S, ups3r].

– If |Q| < |S \ C| − 1, then respond randomly by sampling tj,i ← {0, 1}l
and setting

ips
SB
r,j,i := tj,i

⊕
k∈S∩C

Fwi,k
(ssid3, j, upsSBr−1,S)

for j ∈ S and ips3r+1,i := {ips
SB
r,j,i}j∈S . Also update T [ssid3,S, ups3r] :=

Q ∪ {ips3r+1,i}.
– If |Q| = |S \ C| − 1, then make a

(ipsSBr,j , ssid
SB,SSB)← OISignr

SB (sidSB := ssid3, j, upsSBr−1)

query for j ∈ S \C. Parse ipsr+1,k ∈ Q as ipsr+1,k := {ipsSBr,j,k}j∈S . Then
for j ∈ S \ C, set

ips
SB
r,j,i := ipsSBr,j

⊕
k∈S\(C∪{i})

ips
SB
r,j,k

⊕
k∈S∩C

Fwi,k
(ssid3, j, upsSBr−1,S)

Finally, set ips3r+1,i := {ips
SB
r,j,i}j∈S , and output (ips3r+1, ssid

3,S).

Ultimately, receive ℓ+1 message-signature pairs {(msg∗k, σ
∗
k)}k∈[ℓ+1] from A and

output them identically to ExpOMUF-SB
ΠSB,n,t .

We first argue that the simulation of R(A) is indistinguishable from GA. It
is straightforward to observe that they are indistinguishable for key generation,
and signing queries OISignj

3 for j ∈ {2, ..., r}. For the first signing round, R(A)’s
simulation is indistinguishable from GA as long as R(A) does not abort due to
a BadNonce event which could only occur by the probability q2S1

/2λ where qS1

is the number of first round signing queries.
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For the last signing round, we argue that they are indistinguiashable as well.
GA sets the functions Fwi,j

for i, j /∈ C as truly random functions. R(A) simu-
lates this behavior by simply setting a random value ti,j which corresponds to
the contributions of Fwi,j functions and ipsSBr,i when |Q| < |S \ C| − 1. The con-
tribution of Fwi,j

’s for a corrupted j is simulated truly. Given that BadNonce
does not occur, this behavior sets the truly random functions of GA by lazy
sampling which is perfectly indistinguishable. Finally, when |Q| = |S \ C|−1, we
simply set the contribution of Fwi,j for i, j /∈ C consistently to the previously set
random ti,j values. Thus, the simulation of R(A) is indistinguishable from GA.

Next we argue that if A wins ExpOMUF-3
Π3 , then R(A) wins ExpOMUF-SB

ΠSB . For
that, we need to show that allow3 >= allowSB. Observe that allow3 only gets
increased when all honest issuers in an issuer set outputs the same ssid. Following
that, R(A) does not make any final round signing query to ExpOMUF-SB

ΠSB until A
queries the R(A) for all honest issuers in the issuer set. When R(A) gets queries
for all honest issuers in the issuer set, it makes |S \ C| queries to ExpOMUF-SB

ΠSB at
once. As R(A) sets the session identifier of all these queries to sidSB := ssid3

they all run in the same session of ExpOMUF-SB
ΠSB . Furthermore, by the issuer-set

consistency property of ΠSB, they all output the identical issuer set SSB. Thus,
these |S \ C| queries to ExpOMUF-SB

ΠSB increases allowSB exactly by 1. This shows
that allow3 = allowSB and R(A) wins when A wins and BadNonce event does
not occur. Thus, we conclude that

Pr[GA(λ) = true] ≤ Pr
[
ExpOMUF-SB

ΠSB,R(A),n,t(λ) = true
]
+ Pr[BadNonce]

and

Pr
[
ExpOMUF-3

Π3,A,n,t(λ) = true
]
≤ Pr

[
ExpOMUF-SB

ΠSB,R(A),n,t(λ) = true
]
+(n2/2)·ϵPRF+q2S1

/2λ

⊓⊔
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