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Abstract. In this work, we consider the setting where the process of securely evaluating a multi-
party functionality is divided into two phases: offline (or preprocessing) and online. The offline phase
is independent of the parties’ inputs, whereas the online phase does require the knowledge of the
inputs. We consider the problem of minimizing the round of communication required in the online
phase and propose a round preserving compiler that can turn a big class of multi-party computation
(MPC) protocols into protocols in which only the last two rounds are input-dependent. Our compiler
can be applied to a big class of MPC protocols, and in particular to all existing round-optimal MPC
protocols. All our results assume no setup and are proven in the dishonest majority setting with
black-box simulation. As part of our contribution, we propose a new definition we call Multi-Party
Computation with Adaptive-Input Selection, which allows the distinguisher to craft the inputs the
honest parties should use during the online phase, adaptively on the offline phase. This new definition
is needed to argue that not only are the messages of the offline phase input-independent but also that
security holds even in the stronger (and realistic) adversarial setting where the inputs may depend
on some of the offline-phase protocol messages. We argue that this is the definition that any protocol
should satisfy to be securely used while preprocessing part of the rounds. We are the first to study this
definition in a setting where there is no setup, and the majority of the parties can be corrupted. Prior
definitions have been presented in the Universal Composable framework, which is unfortunately not
well suited for our setting (i.e., no setup and dishonest majority). As a corollary, we obtain the first
four-round (which is optimal) MPC protocol, where the first two rounds can be preprocessed, and its
security holds against adaptive-input selection.
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1 Introduction

Secure multiparty computation (MPC) [Yao86, GMW87] provides a solution to the problem of performing
computation on private data by allowing a group of parties to jointly evaluate any function over their inputs
in such a manner that no one learns anything beyond the output of the function. Since its conception,
MPC has been extensively studied from different angles, in particular concerning: necessary assumptions
[GMW87, Kil88, IPS08], and round complexity [GMW87, BMR90, KOS03, KO04, PW10, Pas04, Goy11,
GMPP16, ACJ17, BHP17, COSV17a, COSV17b]. Even in a setting where all but one party are corrupted,
both of these topics are by now pretty well understood. In the plain model, where no setup is available,
parties need at least four rounds of communication4 to realize the coin-tossing functionality with black-box
simulation [GMPP16, KO04]. A sequence of recent works showed that four rounds are also sufficient, relying
on a variety of standard cryptographic assumptions [ACJ17, BHP17, BGJ+18, HHPV18]. In particular,
in [CCG+20], the authors show a protocol that relies on the almost minimal assumption of malicious secure
four-round Oblivious Transfer (OT), and recently, in [IKSS23] the authors show a protocol that relies on
the underlying OT protocol in a black-box way (in this case the authors require the security of the OT
protocol to hold against sub-exponential time adversaries). Another prolific line of research that aims to
understand the concrete efficiency of MPC rather than focusing strictly on the round complexity is related
to the area of secure computation with preprocessing [BMR90, Bea95, Bea96, HOSS18, DILO22, HSS17,

3The main part of the work was done when this author was a student at the University of Edinburgh.
4Unless otherwise specified, the communication model we consider is simultaneous (i.e., all the parties can speak

in the same round). In the multi-party setting, messages are sent over broadcast channels (one round corresponds to
one message sent over broadcast).
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KRRW18, NNOB12, NST17, BGI19, BGIN22]. In this, the MPC protocols are seen as composed of two
phases: offline (or preprocessing) and online. In the offline phase, the parties do not know their inputs but
exchange messages to generate some correlated randomness. In the online phase, the parties get access to
their inputs and conclude the execution of the protocol by properly combining the inputs and the correlated
randomness obtained during the offline phase. The idea behind this paradigm is to delegate most of the
expensive operations to the offline phase (which can be run overnight or when there are no other critical
activities that need computational resources). In this way, whenever the parties get access to their inputs,
they can engage in the online phase and evaluate the output quickly.

In this work, we investigate whether it is possible to have the best of both worlds: a protocol that has
optimal round complexity but where the majority of the messages can be exchanged during the offline phase
and only a few messages (the last two) are exchanged during the online phase. We note that any generic
ℓ-round MPC protocol must use the inputs of the parties at least in the (ℓ− 1)-th round5. Building on top
of this fact, we consider the following natural question.

Is it possible to construct a round-optimal protocol for securely evaluating generic multiparty func-
tionalities where all but the last two rounds of the protocol are preprocessed in the offline phase?

A natural first step to answer this question is to look at existing round-optimal protocols and check in
what round the inputs become needed. To the best of our knowledge, in the protocols proposed in [HHPV18,
IKSS23], the parties do need their inputs already in the first two rounds. In [CCG+20, BGJ+18] instead,
only the last two rounds are input-dependent. Hence, it seems that the protocols of [CCG+20, BGJ+18]
already give a positive answer to the above question.

Unfortunately, this is not the case. These protocols are proven secure with respect to the standalone
security definition of MPC. At a very high level, this notion guarantees that no adversary can distinguish
real-world executions, where honest parties simply use their inputs and follow the protocol as prescribed,
from an ideal-world execution, where honest parties are replaced with a simulator, which only has access
to the output of the computation, and has no additional information on the honest parties’ inputs. In this
definition, it is crucial that the adversary engages exactly in one execution of the protocol, and moreover,
the inputs the honest parties use are fixed at the beginning of the experiment (in both the real-world and
the ideal-world experiment). This, in particular, means that the distinguisher is not supposed to decide the
inputs that the honest parties should use adaptively on, for example, the first two rounds of the protocol.
The consequence of this is that even if a protocol is input-independent in the first two rounds, its security
holds only if the honest parties’ inputs are fixed before the protocol starts. This clearly defeats the entire
purpose of the offline/online paradigm. It is indeed easy to design a protocol that is secure under the standard
definition of MPC, but it becomes insecure if the distinguisher can decide the inputs adaptively on some of
the protocol messages.

To see this more explicitly, consider a protocol Π, secure under the standard MPC security definition,
and let us assume that the first two rounds of the protocol are input-independent. We now construct a
new protocol Π ′, that works exactly as Π, but with the following modification. In the first round, each
party samples and sends a random string. Upon receiving the input, each party compares the input with the
random string, and if they are equal, then the party sends the input in the clear; otherwise, they simply follow
the specification of Π. This protocol is secure under the standard MPC definition, due to the security offered
by Π, and because the probability that the input of the party is equal to the random string is negligible. On
the other hand, the protocol Π ′ is clearly not secure if the distinguisher is allowed to pick the input of the
honest parties adaptively on the first round of the protocol.

This is, of course, an ad-hoc example, but it should be clear that one should not trust to execute a
protocol in the offline/online setting, in which the inputs of the online phase are decided after the offline
phase is concluded. Hence, it is natural to introduce a new definition that provides security in the very
natural adversarial setting we are considering.

5Assume by contradiction that this is not the case, then an adversary, upon receiving the last round of the protocol,
can always locally compute the residual function with respect to multiple inputs.
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Our Contributions. Building on top of the above observation, we first devise a new security definition,
which captures the ability of the distinguisher to pick the input adaptively on the first ℓ− R rounds of the
protocol (assuming the protocol has ℓ rounds in total, with only the last R rounds requiring inputs from
the parties, where 1 ≤ R ≤ ℓ− 1). We call this new security definition MPC with Adaptive-Input Selection.
We provide our notion in four different flavours, extending the standard notions of security with selective,
selective identifiable, unanimous, and identifiable aborts to our adaptive-input paradigm. We recall that the
notion of security with unanimous abort guarantees that if an honest party gets the output, then all the
honest parties get the output. The notion of identifiable abort is stronger as it guarantees that if honest
parties do not get the output, then all the parties agree on the identity of a corrupted party. Another notion
is selective identifiable abort, which means that every honest party can either get the output or identify a
corrupted party (without having agreement among all honest parties). We also consider the less common
selective variants of these notions, where no unanimity is guaranteed (i.e., some honest parties may abort
and some others may not).

As our main contribution, we show how to turn a big class of MPC protocols that may require the inputs
already to compute the first round into a new protocol that needs the inputs only in the last two rounds.

We require the input protocol to admit a simulator that can extract the inputs of the parties before the
ℓ-th round and that after the extraction phase, it behaves in a straight-line (i.e., non-rewinding) manner.
To the best of our knowledge, this is a property held by most MPC protocols that allow the evaluation
of generic functionality. This, in particular, holds true for the protocols proposed in [HHPV18, IKSS23,
CCG+20, BGJ+18].

Moreover, the security of the output protocols satisfies our new definition of security with adaptive-input
selection. Notably, our compiler is round-preserving. Hence, it can be applied to all the existing round-optimal
protocols. Informally, we prove the following theorem.

Theorem (informal). Assuming the existence of an ℓ-round protocol Π that is secure with selective/selective-
identifiable/identifiable/unanimous abort, there exists an ℓ-round protocol Π ′ where the first ℓ−2 rounds are
input independent. Moreover, Π ′ is secure with adaptive-input selection with selective/selective-identifiable/
identifiable/unanimous abort.

All the results presented in this paper are with respect to black-box simulation, dishonest majority, static
corruption, and in the plain model. Hence, we will not specify this in the remainder of the paper.

1.1 Technical Overview

We design a compiler that takes as input an ℓ-round MPC protocol Π and returns a new ℓ-round protocol Π̂
where the first ℓ− 2 rounds are independent of parties’ inputs. Our compiler follows the paradigm proposed
in [BMR90], but it will require to significantly depart from [BMR90] due to our requirement on the round
complexity (we elaborate more on this later). Let f be the function that the parties wish to compute, and
for simplicity, let us assume that each party has a one-bit input. The parties will execute Π (the non-delayed
input protocol) to compute an n-bit-input functionality g.

The functionality g computes a garbled circuit for the function f (the function the parties want to actually
compute, and we denote the corresponding circuit as C), performs an n-out-of-n secret sharing of each input
label6 and delivers the shares to the n parties as part of the output, together with the garbled circuit. More
precisely, the shares are returned in a permuted order to hide which shares are related to the label for the
bit b (with b ∈ {0, 1}). The permutation is decided by the permutation bit di that each party Pi uses as a
part of the input to g.

Upon receiving the output of g, each party Pi broadcasts zi ← di⊕xi (where xi corresponds to the input
of Pi), and the share of the label related to its input. The bit zi indicates which one, among the two shares
related to the labels of the party Pi, each party Pj should broadcast in the next round. Once the selected

6In the literature, the labels are sometimes called keys. We recall that each wire of a garbled circuit has a label/key
corresponding to the input 0 and one corresponding to the input 1. In this case, the garbled circuit contains n wires,
one per each party.
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Party Pi

- di $← {0, 1}
- For k ∈ [n], b ∈ {0, 1}:

ki→k
b

$← Genenc(1λ)

Function g:
- Garbling: (G, K) $← garble(1λ, C), where

K = {Kk
b }k∈[n],b∈{0,1}

- Secret sharing: For k ∈ [n], b ∈ {0, 1} :
(K1→k

b , . . . , Kn→k
b ) $← share(Kk

b )
- Encryption: For i ∈ [n], k ∈ [n], b ∈ {0, 1} :

ci→k
dk⊕b

$← enc(ki→k
dk⊕b, Ki→k

b )

(di, ((ki→1
0 , ki→1

1 ), . . . , (ki→n
0 , ki→n

1 )))

(G, {ci→k
b }i,k∈[n],b∈{0,1})

Fig. 1: Genenc denotes the key generation algorithm of a symmetric key encryption scheme, and enc denotes its
encryption algorithm. The garbling of the function f is done through the garble algorithm that takes as input the
Boolean circuit C representing f and outputs the garbled circuit G along with the set of labels K. A label Kk

b is secret
shared by running an n-out-of-n additive secret sharing algorithm share that takes as input the label and outputs n
secret shares K1→k

b , . . . , Kn→k
b .

shares have been broadcasted, each party can reconstruct exactly one label per input wire and evaluate the
garbled circuit.

Unfortunately, there is a subtlety with the above approach. Indeed, the parties need to wait to receive
the shares returned from the evaluation of g by the protocol Π (which requires ℓ rounds) and then exchange
two additional rounds, one for sending the permutation bits and the other for sending the share-tag pairs.
To make the compiler round-preserving, we need to depart significantly from prior BMR-like approaches
considered in the literature so far and apply the following changes. The function g does not return the shares
in the clear, but it returns an encryption of the shares. In more detail, for each i ∈ [n], Pi receives encryptions
of all the shares related to the input labels for 0 and 1 of all the parties. In addition, the party Pi receives a
set of keys that allow it to decrypt all the ciphertexts containing the i-th share corresponding to its and all
the other parties’ labels.

After the execution of g, each party possesses the encrypted shares of all the garbled circuit labels. To
allow each party to decrypt the correct shares and to finally evaluate the garbled circuit, we let the parties
broadcast zi ← xi ⊕ di. Similarly to what happened in the original protocol, in the last round, the parties
send the keys corresponding to the permutation bits received in the previous round. This will enable the
decryption of the labels and the evaluation of the garbled circuit.

At first glance, it looks like this modification did not help reduce the round complexity to ℓ. However, we
observe that the encryption keys do not need to be decided by the functionality g and can instead be part
of the input of g. Hence, the keys have been known to the parties since the beginning of the protocol, and
upon receiving the permutation bit in the (ℓ− 1)-th round, the parties can send the keys right away without
needing to wait to receive the output of g. We refer the reader to Figure 1 for a pictorial overview of the
function g and how the input to the function is computed by each party and refer to Figure 2 for a pictorial
overview of the entire protocol.

We have overlooked yet another problem in the above discussion, which is related to the fact that parties
may send incorrect keys, which may still reconstruct to labels that yield the garbled circuit evaluation to an
incorrect (but different from ⊥) output.7 We solve this problem by letting g authenticate the labels. More
details on this are provided in the technical section of the paper.

On The Need For A New Definition. As mentioned, the concept of MPC with pre-processing has been
extensively studied. So, using the security definitions proposed in prior works would have been natural.

7Note that in the standard definition of the garbled circuit, nothing prevents an adversary from generating
tampered labels that yield to an incorrect output (but different from ⊥). This does not contradict the security of the
garbled circuit, as the output obtained via this process may leak exactly the same (or less) information compared to
the correct output.
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Party Pi(xi) (xi is available only in the
(ℓ− 1)-th round):

- di $← {0, 1}
- For k ∈ [n], b ∈ {0, 1}:

ki→k
b

$← Genenc(1λ)
- Run protocol Π to compute the function g
with above inputs (see Figure 1).

Compute Π.msg1,i

. . .
Compute Π.msg(ℓ−1),i

ϕi ← di ⊕ xi

Compute Π.msgℓ,i

- Obtain the output of g:
G, {ci→k

b }i∈[n],k∈[n],b∈{0,1}
- For i ∈ [n], k ∈ [n]:

Ki→k
xk ← dec(ki→k

ϕk , ci→k
ϕk )

- For k ∈ [n]:
Kk

xk ← reconstruct(K1→k
xk , . . . , Kn→k

xk )
- Output y ← eval(G, K1

x1 , . . . , Kn
xn )

Π.msg1,i

Π.msg2,i

...
Π.msg(ℓ−1),i ϕi

Π.msgℓ,i {ki→k
ϕk }k∈[n]

Fig. 2: Genenc denotes the key generation algorithm of a symmetric key encryption scheme, and dec denotes its
decryption algorithm. Each label Kk

xk is reconstructed by running the reconstruction algorithm reconstruct of the
n-out-of-n secret sharing scheme. eval represents the evaluation algorithm of the garbling scheme that takes as input
the garbled circuit G along with n garbled labels K1

x1 , . . . , Kn
xn and outputs the evaluation of the circuit y. The

protocol Π evaluates the function g on inputs di and {ki→k
b }k∈[n],b∈{0,1} for each party Pi. We denote the message

generated from the party Pi in the k-th round of the protocol Π by Π.msgk,i. For simplicity, only the outgoing
messages from the i-th party are shown. The protocol is symmetric, so all incoming messages are of the same form.

To the best of our knowledge, most of these works are proven secure in the Universal Composable (UC)
setting [Can01]. At a high level, in this setting, there is an adversary and an environment. The role of the
environment (among others) is to decide when a protocol starts and what input the parties (both the honest
and the corrupted parties) should use. As such, the UC framework captures very well the setting where the
inputs of the honest parties are decided adaptively on the messages exchanged during the offline phase or
on the messages of other protocols that are running concurrently. However, the UC framework and most
of its relaxed versions [CCL15] do not allow the simulator to rewind the environment. In particular, the
simulator must be able to simulate in a straight-line fashion. Unfortunately, when no setup is available, and
the majority of the parties are corrupted, it is impossible to construct such a straight-line simulator [CKL03].
This is the reason why we could not adopt any of the existing definitions from the UC area, and we needed
to modify the standard, standalone MPC security definition to capture the stronger adversarial setting we
consider, which has been so far overlooked.

Overview Of Multi-Party Computation With Adaptive-Input Selection. In our new MPC definition, the real-
world experiment is nearly the same as the one in the standard definition. The only difference is that after
ℓ − R rounds, the adversary can decide the input of honest parties (denoted as x′) in the experiment.
The ideal-world experiment is, instead, quite different. Instead of giving the simulator oracle access to the
adversary A, we provide oracle access to P(A), and call P a proxy machine.
P acts as a proxy between the adversary and the simulator with respect to all the protocol messages and

never provides any information about the honest-parties inputs decided by the adversary. In more detail, we
know that at some point, the adversary needs to decide what the inputs of honest parties x′ are, and we do
not want the simulator to know what x′ is (as this would trivialize the definition). Whenever the adversary
outputs x′, P will send x′ to the ideal functionality f without letting S know.
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We also note that S might rewind, and A might change x′ during rewinding. Therefore, we require S to
signal that it has finished rewinding by sending a confirmation message ok to P, and only at that point P
will then send x′ to the ideal functionality.

We show the ideal-world experiment in the Figure 3. The straight lines represent the flow of protocol
messages between S and A, while P acts as an intermediary, simply relaying these messages between the
two entities. When S sends ok to P (indicated by dashed lines), P forwards x′ to f (marked with dotted
lines). Upon receiving x′, f waits for S to obtain the inputs of corrupted parties, and then the ideal-world
experiment continues in the same way as the ideal-world experiment of the standard MPC definition.

Simulator S
randomness of A

· · ·

Ideal functionality f

Proxy machine P

Adversary A

ok

x′
1

x′
2

x′y

Fig. 3: The randomness that A should use and all messages from the simulator S to P are forwarded to A. Similarly,
all protocol messages of A are forwarded by P to S (denoted by straight lines), except the messages in which A
attempts to send the input for honest parties x′ (denoted by dotted lines). P blocks these messages unless it receives
an ok command from S. If ok is received, P forwards x′ to the ideal functionality, which then waits for the inputs
from the corrupted parties (likely extracted by S) and returns the output y to S.

Supported MPC Protocols. We mentioned that our compiler supports a big class of protocols. More formally,
these protocols are all those that admit a simulator that 1) never generates the last-round message of the
protocol before extracting the input of the corrupted parties and 2) after the simulator has queried the
ideal functionality, it completes the simulation in a straight line (i.e., it does not perform any additional
rewinding). We refer to these types of MPC protocol as a Special-Extractable protocol. We find it useful
to assume that the non-delayed input protocol satisfies this property because the simulator we design will
need to send simulated encryption keys in the last round of the protocol. Without knowing the corrupted
parties’ inputs, it is not clear how to generate these keys properly. This is why we require the first property.
We require the second property to make sure that once the input is extracted, the simulator does not, for
example, fully rewind the entire session. This would make our simulation more involved.

2 Preliminaries

We denote the security parameter with λ ∈ N. We use “←” as the assigning operator (e.g. if we assign the
value of b to a, we write a ← b). For the randomized assignment, we use “ $←” where the randomness is
not explicit. A randomized algorithm A is running in probabilistic polynomial time (PPT) if there exists a
polynomial poly(·) such that for every input x the running time of A(x) is bounded by poly(|x|). A function
f(·) is negligible in λ, or just negligible, if for every positive polynomial poly(·) and all sufficiently large λ it
holds that f(λ) < 1

poly(λ) [HL10]. In this paper, we use ϵ(·) to denote a negligible function.
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A probability ensemble X = {X(a, λ)}a∈{0,1}∗,λ∈N is an infinite sequence of random variables indexed
by a and λ ∈ N. Two probability ensembles X = {X(a, λ)}a∈{0,1}∗,λ∈N and Y = {Y (a, λ)}a∈{0,1}∗,λ∈N are
said to be computationally indistinguishable, denoted by X

c≡ Y , if for every non-uniform polynomial-time
algorithm D there exists a negligible function ϵ(·) such that for every a ∈ {0, 1}∗ and every λ ∈ N,∣∣∣∣ Pr[D(X(a, λ)) = 1]− Pr[D(Y (a, λ)) = 1]

∣∣∣∣ ≤ ϵ(λ)[HL10].

2.1 Symmetric Encryption Scheme

Definition 1. [GB08] A symmetric encryption scheme for the message space M is a tuple of three algorithms
SE = (Genenc, enc, dec):

– k
$← Genenc(1λ): Takes as input a unary representation of the security parameter λ, and outputs a key k.

– c
$← enc(k, m): Takes as input the symmetric key k and a message m ∈ M to encrypt, and outputs a

ciphertext c.
– m ← dec(k, c): Takes as input the symmetric key k and a ciphertext c, and outputs a message or ⊥ if

decryption fails.

A scheme SE is correct if, for all λ ∈ N, k
$← Genenc(1λ), m ∈M , we have

Pr[dec(k, enc(k, m)) = m] = 1.

Definition 2. [KL14] Let Π = (Genenc, enc, dec) be a symmetric encryption scheme with message space M .
Let A be an adversary, which is formally just a (stateful) algorithm. We define an experiment PrivKeav

A,Π in
the Figure 2.1 as follows:

Figure 2.1: The adversarial indistinguishability experiment PrivKeav
A,Π .

1. The adversary A outputs a pair of messages m0, m1 ∈M .
2. A key k is generated using Genenc, and a uniform bit b ∈ {0, 1} is chosen. Ciphertext c

$←
enc(k, mb) is computed and given to A. We refer to c as the challenge ciphertext.

3. A outputs a bit b′.
4. The output of the experiment is defined to be 1 if b′ = b, and 0 otherwise. We write PrivKeav

A,Π = 1
if the experiment’s output is 1, and say that A succeeds.

Definition 3. [KL14] Symmetric encryption scheme Π = (Genenc, enc, dec) with message space M is com-
putationally indistinguishable if for every PPT A it holds that

Pr[PrivKeav
A,Π = 1] = 1

2 + ϵ(λ)

2.2 Message Authentication Code Scheme

Definition 4. [KL14] A message authentication code scheme consists of three PPT algorithms MAC =
(Genmac, Mac, Vrfy) such that:

1. The key generation algorithm k
$← Genmac(1λ) takes as input a unary representation of the security

parameter λ and outputs a key k with |k| ≥ λ.
2. The tag generation algorithm Mac takes as input a key k and a message m ∈ {0, 1}∗, and outputs a tag

t. Since this algorithm may be randomized, we write this as t
$← Mack(m).

3. The deterministic verification algorithm Vrfy takes as input a key k, a message m, and a tag t. It outputs
a bit b, with b = 1 meaning valid and b = 0 meaning invalid. We write this as b← Vrfyk(m, t).
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It is required that for every λ, every key k output by Genmac(1λ), and every m ∈ {0, 1}∗, it holds that
Vrfyk(m, Mack(m)) = 1.

Definition 5. [KL14] Π = (Genmac, Mac, Vrfy) is an computationally secure one-time MAC if for all PPT
adversaries A it holds that:

Pr[Mac− forge1−time
A,Π = 1] ≤ ϵ(n)

in the Mac− forge1−time
A,Π experiment, as defined in Figure 2.2:

Figure 2.2: Mac− forge1−time
A,Π

1. A key k is generated by running Genmac.
2. The adversary A outputs a message m′, and m′ is given to the challenger. Challenger returns a

tag t′ $← Mack(m′).
3. A outputs (m, t).
4. The output of the experiment is defined to be 1 if and only if (1) Vrfyk(m, t) = 1 and (2) m ̸= m′.

2.3 Garbling Scheme

Definition 6. [DRSY23] A garbling scheme GC is a pair of algorithms (garble, eval) defined as follows.

– (G, K) $← garble(1λ, C): The algorithm garble takes as input a unary representation of the security
parameter λ and a Boolean circuit C : {0, 1}L → {0, 1}m, and outputs a garbled circuit G and L pairs of
garbled labels K = (K1

0 , K1
1 , . . . , KL

0 , KL
1 ). For simplicity, we assume that for every i ∈ [L] and b ∈ {0, 1},

it holds that Ki
b ∈ {0, 1}λ.

– y ← eval(G, K1, . . . , KL): The algorithm eval takes as input the garbled circuit G and L garbled labels
K1, . . . , KL, and outputs a value y ∈ {0, 1}m.

We require the following properties of a garbling scheme:

– Perfect Correctness. We say GC satisfies perfect correctness if for any Boolean circuit C : {0, 1}L →
{0, 1}m and x = (x1, . . . , xL) it holds that

Pr[eval(G, K[x]) = C(x)] = 1,

where (G, K) $← garble(1λ, C) with K = (K1
0 , K1

1 , . . . , KL
0 , KL

1 ) and K[x] = (K1
x1

, . . . , KL
xL

).
– Privacy. We say that GC satisfies privacy if there exists a simulator simGC such that for every PPT

adversary A, it holds that
Pr[GCpriv = 1] ≤ 1

2 + ϵ(λ),

where GCpriv experiment is defined in Figure 2.3:

Figure 2.3: The garbling scheme privacy experiment GCpriv.

1. A constructs a circuit C : {0, 1}L → {0, 1}m, outputs an input x = (x1, . . . , xL) ∈ {0, 1}L and
sends them to the challenger.

2. Challenger chooses a random bit b ∈ {0, 1} and does the following:
(a) if b = 0: (G, (K1

0 , K1
1 , . . . , KL

0 , KL
1 )) $← garble(1λ, C). Set Ki = Ki

xi
for i ∈ [L].

(b) if b = 1: (G, K1
sim, . . . , KL

sim) $← simGC(1λ, C, C(x)). Set Ki = Ki
sim for i ∈ [L].

3. Challenger sends G, K1, . . . , KL to A.
4. A outputs a bit b′.
5. A wins if b = b′, and we say that the experiment evaluates to 1 in this case.
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2.4 Additive secret sharing scheme

In our work, we will use n-out-of-n secret sharing scheme, which is also referred to as additive secret sharing
scheme. We give the definition here:

Definition 7 (n-out-of-n secret sharing scheme). A n-out-of-n secret sharing scheme is a pair of algo-
rithms (share, reconstruct), such that:

– (s1, . . . , sn) $← share(m) is a randomized algorithm that on input a secret m, outputs a set of n shares
(s1, . . . , sn).

– m ← reconstruct(s1, . . . , sn) is a deterministic algorithm that on input n shares (s1, . . . , sn), outputs
the secret m.

The scheme needs to satisfy the correctness property if : ∀m, we have:

Pr
share(m)→(s1,...,sn)

[reconstruct(s1, . . . , sn) = m] = 1

In addition, the scheme satisfies perfect security property if: ∀m, m′, ∀S ⊆ {1, . . . , n}, where |S| < n, the
following distributions are indistinguishable:

{(si : i ∈ S) | (s1, . . . , sn)← share(m)}
{(s′

i : i ∈ S) | (s′
1, . . . , s′

n)← share(m′)}

3 Secure Multiparty Computation (MPC)

We follow the real-world/ideal-world simulation paradigm and we adopt the security model of Cohen, Garay
and Zikas [CGZ20].

Real world. An n-party protocol Π = (P1, . . . , Pn) is an n-tuple of probabilistic polynomial-time (PPT)
interactive Turing machines (ITMs), where each party Pi is initialized with input xi ∈ {0, 1}∗ and random
coins ri ∈ {0, 1}∗. We let A denote a special PPT ITM that represents the adversary and that is initialized
with input that contains the identities of the corrupt parties, their respective private inputs and an auxiliary
input.

The protocol is executed in rounds (i.e., the protocol is synchronous). Each round consists of a send phase
and a receive phase, where parties can respectively send and receive messages. The communication in each
round happens via a broadcast channel. During the execution of the protocol, the corrupt parties receive
arbitrary instructions from the adversary A, while the honest parties faithfully follow the instructions of the
protocol. We consider the adversary A to be rushing, i.e., during every round, the adversary can see the
messages the honest parties sent before producing messages for corrupt parties.

At the end of the protocol execution, the honest parties produce their outputs, and the adversary returns
an arbitrary function of the corrupt parties’ view. The view of a party during the execution consists of its
input, random coins and the messages it sees during the execution.

Definition 8 (Real-world execution). Let Π = (P1, . . . , Pn) be an n-party protocol and let J ⊆ [n],
of size at most t, denote the set of indices of the parties corrupted by A. The joint execution of Π under
(A,J ) in the real world, on input vector x = (x1, . . . , xn), auxiliary input aux and the unary representation
of the security parameter 1λ, denoted REALΠ,J ,A(aux)(x, 1λ), is defined as the output vector of P1, . . . , Pn and
A(aux) resulting from the protocol interaction.
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Ideal world. We describe ideal-world executions with selective abort (sa-abort), selective identifiable abort
(si-abort) (recently introduced in [DRSY23]), unanimous abort (un-abort), identifiable abort (id-abort).

Definition 9 (Ideal-world Computation). Consider type ∈ {sa-abort, un-abort, si-abort, id-abort}. Let
f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party function and let J ⊆ [n], of size at most t, be the set of indices of the
corrupt parties. Then, the joint ideal execution of f under (S,J ) on input vector x = (x1, . . . , xn), auxiliary
input aux to S and the unary representation of the security parameter 1λ, denoted IDEALtype

f,J ,S(aux)(x, 1λ), is
defined as the output vector of P1, . . . , Pn and S resulting from the following ideal process.

1. Parties send inputs to trusted party: An honest party Pi sends its input xi to the trusted party. The
simulator S may send to the trusted party arbitrary inputs for the corrupt parties. Let x′

i be the value
actually sent as the input of party Pi.

2. Trusted party speaks to simulator: The trusted party computes (y1, . . . , yn) = f(x′
1, . . . , x′

n). If there are
no corrupt parties proceed to step 3. Otherwise, the trusted party sends {yi}i∈J to S.

3. Simulator S responds to the trusted party:
(a) If type = sa-abort: The simulator S can select a set of parties that will not get the output as K ⊆ [n]\J .

(Note that K can be empty, allowing all parties to obtain the output.) It sends (abort,K) to the trusted
party.

(b) If type = un-abort: The simulator can send abort to the trusted party. If it does, we take K = [n]\J .
(c) If type = si-abort: The simulator S can select a set of parties that will not get the output as K ⊆ [n]\J .

(Note that K can be empty, allowing all parties to obtain the output.) For each party j in K, the
adversary selects a corrupt party i∗

j ∈ J who will be blamed by party j. It sends (abort,K, {j, i∗
j}j∈K)

to the trusted party.
(d) If type = id-abort: If it chooses to abort, the simulator S can select a corrupt party i∗ ∈ J who will

be blamed, and send (abort, i∗) to the trusted party. If it does, we take K = [n] \ J .
Trusted party answers parties:
(a) If the trusted party got abort from the simulator S,

i. It sets the abort message abortmsg, as follows:
– if type ∈ {sa-abort, un-abort}, we let abortmsg = ⊥.
– if type = si-abort, we let abortmsg = {abortmsgj}j∈K = {(⊥, i∗

j )}j∈K.
– if type = id-abort, we let abortmsg = (⊥, i∗).

ii. The trusted party sends yj to every party Pj, j ∈ [n]\K. If type = si-abort, the trusted party then
sends abortmsgj to each party Pj, j ∈ K; Otherwise, the trusted party sends abortmsg to every
party Pj, j ∈ K.

(b) Otherwise, it sends y to every Pj, j ∈ [n].
4. Outputs: Honest parties always output the message received from the trusted party, while the corrupt

parties output nothing. The simulator S outputs an arbitrary function of the initial inputs {xi}i∈J , the
messages received by the corrupt parties from the trusted party and its auxiliary input.

Security Definitions. Now that we have described the real-world and the ideal-world experiment, we are
ready to state the formal definition.

Definition 10. Consider type ∈ {sa-abort, un-abort, si-abort, id-abort}. Let f : ({0, 1}∗)n → ({0, 1}∗)n be
an n-party function. A protocol Π t-securely computes the function f with type security if for every PPT
real-world adversary A with auxiliary input aux, there exists a PPT simulator S such that for every J ⊆ [n]
of size at most t, for all x ∈ ({0, 1}∗)n, for all λ ∈ N, it holds that

REALΠ,J ,A(aux)(x, 1λ) c≡ IDEALtype
f,J ,S(aux)(x, 1λ)
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3.1 Additional notation

Let Π be an ℓ-round MPC protocol. Rather than viewing a protocol Π as an n-tuple of ITMs, it is convenient
to view each ITM as a sequence of multiple algorithms: frst-msgi, to compute Pi’s first-round messages to
its peers; nxt-msgk

i , to compute Pi’s k-th round messages for (2 ≤ k ≤ ℓ); and outputi, to compute Pi’s
output. Thus, a protocol Π can be defined as {(frst-msgi, nxt-msgk

i , outputi)}i∈[n],k∈[ℓ]\{1}.
The syntax of the algorithms is as follows:

– frst-msgi(xi; ri)→ msgi,1 produces the first-round messages of party Pi to all parties.
– nxt-msgk

i (xi, {msgj,l}j∈[n],l∈{1,...,k−1}; ri) → msgi,k produces the k-th round messages of party Pi to all
parties.

– outputi(xi, msg1,1, . . . , msgn,1, . . . , msg1,ℓ, . . . , msgn,ℓ; ri)→ yi produces the output returned to party Pi.

We note that, unless needed, to not overburden the notation, we do not pass the random coin r as an
explicit input of the cryptographic algorithms.

We have repeatedly mentioned that our compiler works for a big class of multi-party computation pro-
tocols (We denote this class of protocol as Special-Extractable MPC protocol, as per Definition 11). This
property requires the MPC simulator to be able to extract the inputs of the party before generating the last
round of the protocol, and after the extraction, it behaves in a straight-line manner. All existing four-round
protocols satisfy this property, and it is a property enjoyed by most of the MPC protocols.

Definition 11 (Special-Extractable MPC). A secure multi-party protocol is Special-Extractable, if the
simulator S (which exists by Definition 10) works in the following way. S queries the ideal-functionality (i.e.,
it returns the input of the corrupted parties) without ever sending the last protocol message to the adversary.
Moreover, upon receiving the answer from the ideal functionality, S sends only one message to the adversary
(on behalf of all the honest parties) and stops.

4 Secure Computation with Adaptive-Input Selection

We now introduce the property of delayed-inputness for MPC protocols. To make it more general, for any
ℓ-round MPC protocol, the inputs of parties are needed only in the last R rounds, where 1 ≤ R ≤ ℓ− 1.

Definition 12 (Delayed-input multi-party computation). Let Π = {(frst-msgi, nxt-msgk
i , outputi)

}i∈[n],k∈[l]\{1} be an ℓ-round MPC protocol (satisfying Definition 10). Then, Π is delayed-input if the next-
message functions {(frst-msgi, nxt-msgk

i )}i∈[n],k∈[ℓ−R]\{1} take as their first input a default value (e.g., 0λ)
in the place of the actual inputs of the parties. We note that 1 ≤ R ≤ ℓ− 1.

The above definition just describes a syntactic property that the next-message function algorithms may
satisfy. For delayed-input MPC protocols, we consider a security definition that allows the adversary to craft
the inputs the honest parties should use in the real-world experiment adaptively on the first ℓ − R rounds.
To capture this, we modify the standard definition of MPC (that we recall in Definition 10) as follows.

– The real-world experiment proceeds exactly like the real-world experiment of the standard MPC defini-
tion, with the difference that the adversary, upon generating the (ℓ−R)-th round, also returns a special
message (input, x = {xi}i∈I), where I represents the indices of the honest parties. From that point on,
the honest party Pi (for each i ∈ I) will use the input xi to evaluate the next message functions and
complete the execution of the protocol.

– In the simulated experiment, we give the simulator black-box access to the adversary, but we prevent
the simulator from getting the message (input, x = {xi}i∈I) (clearly, a simulator having access to these
messages would trivialize the security definition).
To formalize this aspect, we give the simulator oracle access to a proxy-machine P(·) and modify the
ideal-world experiment as follows. The proxy machine has black-box access to A (denoted with P(A)) and
acts as a proxy between the adversary and the calling party (the simulator in our case) with respect to all
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the messages of the protocol Π. However, upon receiving the message (input, x = {xi}i∈I) from A, P(A)
instructs the ideal functionality to use the inputs {xi}i∈I for the honest parties. The ideal functionality
then waits for the simulator to receive the input of the corrupted parties, and upon receiving them, it
returns the output to the simulator (that we recall, is the ideal-world adversary). From that point on, the
ideal-world experiment behaves exactly like the ideal-world experiment of the standard MPC definition.
There is still another minor modification we need to do. The proxy delivers the inputs of the honest
parties to the ideal functionality only after receiving an ok message from the simulator. This is needed
as the simulator may want to rewind the adversary (rewinding the proxy machine), and this could cause
A to send multiple input commands to the proxy machine. This, in turn, could make the proxy machine
communicate to the ideal functionality with some honest parties’ inputs, which are not consistent with
the inputs that appear in the final simulated thread. To avoid this, we let the simulator decide when is
the right moment for P(·) to send the inputs to the ideal functionality. Looking ahead, this ok command
will be sent only after the simulator has decided that no more rewinds will be performed in the first
ℓ−R + 1 rounds.

We now propose a more formal definition of a real-world and ideal-world and finally state the formal
definition of adaptive-input selection secure MPC.

Real world. Let {P1, . . . , Pn} be a set of n parties. Let I = [n] \ J be the set of honest parties’ indexes. In
the real world, the adversary A engages in the execution of an ℓ-round delayed-input MPC protocol. The
execution proceeds accordingly to the real world of the standard MPC definition (Definition 8), with the
difference that in the (ℓ − R)-th round, the adversary sends an additional message (input, x = {xi}i∈I).
For this point on, for each i ∈ I, the party Pi uses the input xi to complete the execution of the protocol
against A. We denote with REALDI

Π,J ,A(aux)(1λ) the output vector of P1, . . . , Pn and A(aux) resulting from
the protocol interaction.

Ideal world. The ideal world also follows the one described in the standard MPC definition (Definition 9),
with the following difference. The ideal world is parametrized by a proxy machine P(·). The proxy machine
is initialized with an empty variable HInputs, takes as input a PPT algorithm A , and interacts with an
additional algorithm called caller as follows.

– Upon receiving any message from the caller, forward this to A .
– Upon receiving any message from A , different from the command (input, ·), forward this message to

the caller.
– Upon receiving the message (input, x) from A , set HInputs← x.
– Upon receiving the message ok from the caller, parse HInputs as {xi}i∈I , and send xi to the ideal

functionality on the behalf of the honest party Pi, for each i ∈ I.

In summary, the honest parties’ inputs are decided by P(A ) (in particular, they are decided by A ).
The inputs of the corrupted parties instead are decided by the ideal-world adversary S. When the ideal
functionality receives the inputs from the honest and the corrupted parties, it acts exactly like the ideal-
world functionality described in Definition 10. We denote with IDEALDI,type

f,J ,P(A ),S(aux)(1
λ), the output vector

of P1, . . . , Pn and S resulting from the following ideal process.
We are now ready to state the formal definition of adaptive-input selection secure MPC.

Definition 13 (MPC with Adaptive-Input Selection). Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-party
function. A delayed-input protocol Π t-securely computes the function f with type security if for every PPT
real-world adversary A with auxiliary input aux, there exists a PPT simulator S that has black-box access to
P(A), such that for every J ⊆ [n] of size at most t, for all λ ∈ N, it holds that

REALDI
Π,J ,A(aux)(1λ) c≡ IDEALDI,type

f,J ,P(A),S(aux)(1
λ).

We stress that the simulator does not directly query A, but it has black-box access to P(A). This makes
the definition non-trivial, preventing the simulator from obtaining the input that A would send via the
command (input, x).
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5 Our Compiler

In this section, we show how our compiler that turns an ℓ-round MPC protocol into an adaptive-input
selection secure MPC protocol works. For simplicity, we describe our compiler for the case where ℓ = 4
(which represents the minimal number of rounds) and R = 2, but extending the protocol to any ℓ and R = 2
is trivial. We also assume that each party has only one-bit input and argue that it is trivial to extend to inputs
of arbitrary size by letting one party control multiple sub-parties of the one-input protocol. Before describing
our compiler, we emphasize that our scheme works for a generic g. As such, we require the input of parties
in the second last round (R = 2). We note that this is optimal, as for non-trivial functionality a protocol
that requires the input only to compute the last round would trivially be susceptible to residual attacks.
It is still an interesting open question describing a compiler that depending on the computed function, can
adaptively decide whether R = 1 or R = 2, but we do not consider this adaptive setting in our paper.

Our construction makes use of the following tools:

– A four-round special-extractable malicious type secure MPC (Definition 10 and Definition 11) protocol
Π = {(frst-msgi, nxt-msgk

i , outputi)}i∈[n],k∈{2,3,4} against t < n corruptions, which realizes the func-
tionality g, formally specified in the Figure 5.1 with type ∈ {sa-abort, si-abort, un-abort, id-abort}. The
j-th round message of the protocol Π sent by party Pi is denoted as msgj,i. The additional message
introduced in the compiled protocol is denoted as m̂sgj,i.

– A garbling scheme GC = (garble, eval) (Definition 6).
– A symmetric encryption scheme SE = (Genenc, enc, dec) (Definition 1), that is computationally indistin-

guishable as per Definition 3.
– A message authentication code scheme MAC = (Genmac, Mac, Vrfy) (Definition 4) that is a one-time

computationally-secure as per Definition 5.
– An additive secret sharing scheme SS = (share, reconstruct) that satisfies Definition 7. Note that in

Figure 5.1 and Figure 5.2, we directly use XOR operation
⊕

i∈[n] to achieve share and reconstruct.

We propose the formal description of the protocol in Figure 5.2 and refer the reader to the introductory
section for its informal description.

Figure 5.1: The functionality g

Input: Each party Pi for i ∈ [n] provides the following input:

– di ∈ {0, 1}
– ki→k,b

enc ∈ {0, 1}λ for k ∈ [n], b ∈ {0, 1}

Output: Each party Pi for i ∈ [n] gets the output G, {ci→k}i∈[n],k∈[n], {ki→k
mac }i∈[n],k∈[n].

1: (G, K) $← garble(1λ, C), where K = {Ki
b}i∈[n],b∈{0,1} and C is the Boolean circuit for the function

f
2: Sample uniformly random Ki→k

b for i ∈ [n], k ∈ [n], b ∈ {0, 1} such that
⊕

i∈[n] Ki→k
b = Kk

b

3: for i ∈ [n], k ∈ [n], b ∈ {0, 1} do
4: Generate ki→k,dk⊕b

mac
$← Genmac(1λ)

5: γi→k
dk⊕b ← Mac

ki→k,dk⊕b
mac

(Ki→k
b )

6: ci→k
dk⊕b ← enc(ki→k,dk⊕b

enc , (γi→k
dk⊕b||K

i→k
b ))

7: end for
8: for i ∈ [n], k ∈ [n] do
9: ki→k

mac ← (ki→k,0
mac , ki→k,1

mac )
10: ci→k ← (ci→k

0 , ci→k
1 )

11: end for
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Figure 5.2: The protocol Π̂ that computes f through four rounds of communication, where the first
two rounds are independent of the parties’ inputs

Private input: Each party Pi for i ∈ [n] has private input xi ∈ {0, 1}.
Output: y = f(x1, . . . , xn) or ⊥.

First round: Each party Pi does the following:
1. Sample uniformly random di $← {0, 1} and {ki→k,b

enc }k∈[n]
$← Genenc(1λ) for b ∈ {0, 1}.

2. Set xi
g ← (di, {ki→k,b

enc }k∈[n],b∈{0,1}) and compute msg1,i ← frst-msgi(xi
g).

3. Send msg1,i over broadcast channel.
Second Round: Each party Pi computes msg2,i ← nxt-msg2

i (xi
g, τ1) and sends it over broadcast

channel, where τ1 is the transcript of the protocol Π up to the first round.
Third Round: Each party Pi does the following:
1. Let τ2 denote the transcript of the protocol Π up to the second round.
2. Compute msg3,i ← nxt-msg3

i (xi
g, τ2).

3. Compute m̂sg3,i ← (ϕi ← di ⊕ xi).
4. Send (msg3,i, m̂sg3,i).

Fourth Round: Each party Pi does the following:
1. Upon receiving m̂sg3,k for k ∈ [n] \ {i}, compute m̂sg4,i ← ({ki→k,ϕk

enc }k∈[n]).
2. Let τ3 denote the transcript of the protocol Π up to the third round.
3. Compute msg4,i ← nxt-msg4

i (xi
g, τ3).

4. Send (msg4,i, m̂sg4,i).
Output Computation: Each party Pi does the following:
1. Let τ4 denote the transcript of the protocol Π up to the fourth round.
2. Compute the output of Π as (G, {ci→k}i∈[n],k∈[n], {ki→k

mac }i∈[n],k∈[n])← outputi(xi
g, τ4).

3. Obtain the shares of the labels, along with the tags by computing (γi→k
ϕk ||Ki→k

xk ) ←
dec(ki→k,ϕk

enc , ci→k
ϕk ) for i ∈ [n], k ∈ [n].

4. Verify the correctness of the shares of the labels by checking that Vrfy
ki→k,ϕk

mac
(γi→k

ϕk , Ki→k
xk ) = 1

for i ∈ [n], k ∈ [n]. For each invalid pair (γk→j
ϕj , Kk→j

xj ) output (abort, k).
5. Reconstruct the labels as Kk

xk =
⊕

i∈[n] Ki→k
xk for k ∈ [n].

6. Output y ← eval(G, K1
x1 , . . . , Kn

xn).

5.1 The Security Proofs

We first provide an informal description of the proof and later discuss the proof in detail. The simulator S
of the compiled protocol Π̂ internally executes the simulator of input protocol Π, which we denote by SΠ .
To execute this simulator, we need to create a valid adversary for Π (i.e., an adversary that receives and
sends only messages related to Π). We simulate such an adversary by means of an augmented machine M.
M internally runs the proxy machine P(A), and it filters out only the messages related to Π, forwarding
these to SΠ . Upon receiving a message from SΠ , M enriches this message with all the other information
that honest parties send in Π̂ (this messages will be properly simulated as we will soon discuss), and forward
everything to P(A). In summary, P(A) still receives messages of a format that is consistent with Π̂, while
SΠ believes that it is interacting with a valid adversary of Π (please see Figure 5.3 to get a better idea of
how this interaction works).

Given that M is a valid adversary for SΠ , at some point SΠ extracts the input that the adversary is
using to execute Π. Let us denote this input by xj

g, where j denotes the input of the corrupted party (for
simplicity, here we assume that there is only one corrupted party). Note that xj

g encodes the random bit
dj the adversary used to evaluate g. Our main simulator S can now infer the input of the adversary (the
input for the functionality f) by computing xj ← ϕj ⊕ dj (recall that ϕj is sent in the third round by the
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adversary). Having obtained xj , S can query the ideal functionality f and simulate the garbled circuit (and
the ciphertexts) accordingly. This simulated garbled circuit (and ciphertexts) will be used as input to SΠ (S
is simulating the behaviour of g, which corresponds to the ideal functionality of SΠ).

Figure 5.3: The simulator S. For simplicity, we only consider one index i for the honest party and one
index j for the corrupted party. We recall that ϕj is from m̂sg3,j , and dj is from xj

g

- Generate the rando-
mness R of P(A)

Simulator SΠ

R

msg1,i

msg1,j

msg2,i

msg2,j

msg3,i ϕi $← {0, 1}

(msg3,i, ϕi)

(msg3,j , m̂sg3,j)msg3,j

msg4,i ki→k,b
enc

$← Genenc

(msg4,i, ki→j,ϕj

enc )

(msg4,j , m̂sg4,j)msg4,j

· · · · · ·

Simulated function g
- (G, K)← simGC(1λ, C, y) with K = {Kk

sim}k∈[n].
- Sample uniformly random Ki→k

sim such that
⊕

i∈[n] Ki→k
sim = Kk

sim.
- γi→k

ϕk ← Mac
ki→k,ϕk

mac
(Ki→k

sim ).

- (ci→k
ϕk , ci→k

1−ϕk )← (enc(ki→k,ϕk

enc , (γi→k
ϕk ||Ki→k

sim )), enc(ki→k,1−ϕk

enc , 0)).

- Sample uniformly random Kj→k
1−ϕk

$← {0, 1}λ.
- (γj→k

ϕk , γj→k
1−ϕk )← (Mac

kj→k,ϕk
mac

(Kj→k
sim ), Mac

kj→k,1−ϕk
mac

(Kj→k
1−ϕk )).

- (cj→k
ϕk , cj→k

1−ϕk )← (enc(kj→k,ϕk

enc , (γj→k
ϕk ||Kj→k

sim )), enc(kj→k,1−ϕk

enc , (γj→k
1−ϕk ||Kj→k

1−ϕk ))), and then
follow the step 8, 9, 10 in Figure 5.1.

- yg ← (G, ci→k, cj→k, ki→k
mac , kj→k

mac ).

yg

- xj ← ϕj ⊕ dj

- Query f using xj and obtain y

xj
g

ok

y, xj
g

Augmented machine M

P(A)
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Theorem 1. Assume Π is a four-round special-extractable malicious type secure multi-party computation
protocol that adheres to Definition 10 and Definition 11, which realizes the functionality g, formally specified
in the Figure 5.1 (type ∈ {sa-abort, si-abort, un-abort, id-abort}). Let GC be a garbling scheme in line with
Definition 6. Let SE be a symmetric encryption scheme (Definition 1) that is computationally indistinguish-
able as per Definition 3. Let MAC be a message authentication code scheme (Definition 4) that is a one-time
computationally-secure as per Definition 5. Let SS be an additive secret sharing scheme satisfying Defini-
tion 7. Then the protocol Π̂ (in Figure 5.2) is malicious type delayed-input and adaptive-input selection
secure.

Proof. The core of our proof revolves around demonstrating that for every non-uniform PPT adversary A
in the real world, a corresponding non-uniform probabilistic expected polynomial-time simulator S that has
black-box access to P(A) exists in the ideal world:

REALDI
Π̂,J ,A(aux)(1

λ) c≡ IDEALDI,type
f,J ,P(A),S(aux)(1

λ).

As just mentioned, when the protocol Π is employed alongside Π̂, there is a necessity for an intermediary
or bridge between these protocols. We refer to this intermediary as the augmented machineM8. This machine
can simulate the majority of the simulator messages autonomously. For the few messages it cannot simulate,
they are directly inputted intoM by the simulator S. A more profound reason for introducing the augmented
machineM is to address potential rewinds that the simulator of Π might undertake. It is crucial to emphasize
that whenever the inner protocol initiates a rewind of the augmented machine, these rewind messages will
be forwarded to the proxy machine P(A), and correspondingly rewinds the adversary A and continues its
execution. M operates two interfaces:

– The left interface: It acts as a proxy between P(A) and its external interface - the ideal-world simulator
SΠ (which exists by the security assumption of the protocol Π) w.r.t. the messages of Π; or in the case
of the hybrid experiment H0, its external interface is the execution of the protocol Π (simulated by S).

– The right interface: It interacts with the proxy machine P(A). P(A) will forward the messages to and
from adversary A (the real-world adversary of the protocol Π̂).

It is important to note that Π is secure under standard MPC definition, but P(A) needs to receive the
command ok to decide the actual input of honest parties. We also need to describe how the simulator S
generates this message. We specify the generation of ok in S, and we let M forward this message to P(A)
in the extraction phase.

WhileM interacts with the real-world adversary A for Π̂ through P(A), it also acts as the adversary of
the protocol Π for SΠ . The details of M can be found in Figure 5.4, and the simulator S is elaborated in
Figure 5.5.

Figure 5.4: The augmented machine M

First round: Upon receiving the message msg1,i (for i ∈ I) in the left interface, forward msg1,i to
the right interface.
Upon receiving the message msg1,j (for j ∈ J ) as the reply from the right interface, send the message
msg1,j to the left interface.
Second round: Upon receiving the message msg2,i (for i ∈ I) in the left interface, forward msg2,i

to the right interface.
Upon receiving the message msg2,j (for j ∈ J ) as the reply from the right interface, send the message
msg2,j to the left interface.
Third round: Upon receiving the message msg3,i (for i ∈ I) in the left interface, compute uniformly
random ϕi $← {0, 1}, set m̂sg3,i ← (ϕi) as in the protocol Π̂, and output the messages (msg3,i, m̂sg3,i)

8This is a standard technique used when proving the security of a protocol executed alongside another protocol.
More examples of such techniques can be found in [CRSW22, GJO+13, COSW23].

16



to the right interface.
Upon receiving the messages msg3,j and m̂sg3,j (for j ∈ J ) from the right interface, send the message
msg3,j in the left interface.
Fourth round: Upon receiving the message msg4,i (for i ∈ I) in the left interface, compute
ki→k,b

enc
$← Genenc(1λ) for i ∈ I, b ∈ {0, 1}, set m̂sg4,i ← ({ki→k,ϕk

enc }k∈[n]) for i ∈ I as in the protocol Π̂,
and output the messages (msg4,i, m̂sg4,i) to the right interface.
Upon receiving the messages msg4,j and m̂sg4,j (for j ∈ J ) from the right interface, send the message
msg4,j in the left interface.
Extraction: Upon receiving the message ok in the left interface, forward it to the right interface.
Randomness passing: Upon receiving the randomness R of adversary P(A) in the left interface,
forward it to the right interface.

Figure 5.5: The Simulator S

S firstly runs SΠ against the adversaryM. According to Definition 13, this interaction is through the
proxy machine P(A), where P(A) interacts with ideal functionality f and adversary A of protocol Π̂.
During this interaction, SΠ would be able to extract inputs from the corrupted parties. We assume the
input from corrupted parties is {xj

g}j∈J = {(dj , kj→k,b
enc )}k∈[n],j∈J ,b∈{0,1}. SΠ will extract the input

and send it to S. Then S proceeds to perform the following steps:

– Upon receiving {xj
g}j∈J issued by SΠ , send ok to M, and do the following:

1. Retrieve ϕj from m̂sg3,j and set xj ← dj ⊕ ϕj for j ∈ J .
2. Query the ideal functionality f using xj for j ∈ J , and set y ← f(x1, . . . , xn).
3. Generate (G, K)← simGC(1λ, C, y), where K = {K1

sim, . . . , Kn
sim}.

4. Sample uniformly random Ki→k
sim for i ∈ [n], k ∈ [n] such that

⊕
i∈[n] Ki→k

sim = Kk
sim.

5. Sample ki→k,ϕk

mac , ki→k,1−ϕk

mac
$← Genmac(1λ) for i ∈ [n], k ∈ [n].

6. For each i ∈ I, k ∈ [n]:
(a) γi→k

ϕk ← Mac
ki→k,ϕk

mac
(Ki→k

sim ).

(b) ci→k
ϕk ← enc(ki→k,ϕk

enc , (γi→k
ϕk ||Ki→k

sim )).
(c) ci→k

1−ϕk ← enc(ki→k,1−ϕk

enc , 0).
(d) ki→k

mac ← (ki→k,0
mac , ki→k,1

mac ).
(e) ci→k ← (ci→k

0 , ci→k
1 ).

7. For each j ∈ J , k ∈ [n]:
(a) Sample uniformly random Kj→k

1−ϕk

$← {0, 1}λ.
(b) (γj→k

ϕk , γj→k
1−ϕk )← (Mac

kj→k,ϕk
mac

(Kj→k
sim ), Mac

kj→k,1−ϕk
mac

(Kj→k
1−ϕk )).

(c) (cj→k
ϕk , cj→k

1−ϕk )← (enc(kj→k,ϕk

enc , (γj→k
ϕk ||Kj→k

sim )), enc(kj→k,1−ϕk

enc , (γj→k
1−ϕk ||Kj→k

1−ϕk ))).
(d) kj→k

mac ← (kj→k,0
mac , kj→k,1

mac ).
(e) cj→k ← (cj→k

0 , cj→k
1 ).

8. Send G, {ci→k}i∈[n],k∈[n], {ki→k
mac }i∈[n],k∈[n] to SΠ .

– Continue running SΠ against the adversary M, and outputs what SΠ outputs.

We now informally describe the following hybrid experiments and refer the reader to the Figure 5.7 for
the formal specification.

H0: Hybrid H0 is identical to the real world.
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H1: Hybrid H1 is the same as hybrid H0 but the messages {msgi,k}k∈[4] are computed by the simulator SΠ .
The transition between H0 and H1 is justified by the malicious type security of Π - if an adversary could
distinguish between the two hybrid experiments, it could break the security of the protocol Π.

H2: Hybrid H2 is the same as hybrid H1, but the ciphertexts ci→j
1−ϕj that Pj does not decrypt at the output

computation phase (since it does not have the necessary keys) are encryption of 0. The transition between
H1 and H2 is justified by the indistinguishability of the encryption scheme SE.

H3: HybridH3 is the same as hybridH2, but the ciphertexts cj→i
1−ϕi that Pj can decrypt but are not used at the

output computation phase (since they do not correspond to Pi’s input) are encryption of the uniformly
random sampled bit strings that have the same length as the real garbled labels. The transition between
H2 andH3 is justified by the perfect security of the additive secret sharing scheme SS - since the adversary
can control at most n− 1 parties, it can not collect enough shares to reconstruct the labels.

H4: Hybrid H4 is identical to the ideal world. In contrast to H3, the labels {Kk
xk}k∈[n] are generated by S

through the simGC function. The transition between H3 and H4 is justified by the privacy of the garbling
scheme GC.

In hybridsH0,H1,H2,H3, we use the augmented machineM0(·), and in hybridH4, we use the augmented
machine M4(·). The above augmented machines have the same left interface as M in Figure 5.4. The right
interface is against different adversaries according to different hybrid experiments. The description of the
augmented machines is in Figure 5.6.

Figure 5.6: The augmented machines M0(A), M4(A)

First round: Upon receiving the message msg1,i (for i ∈ I) in the left interface, forward msg1,i to
P(A).
Upon receiving the message msg1,j (for j ∈ J ) as the reply from P(A), send the message msg1,j to
the left interface.
Second round: Upon receiving the message msg2,i (for i ∈ I) in the left interface, forward msg2,i to
P(A).
Upon receiving the message msg2,j (for j ∈ J ) as the reply from P(A), send the message msg2,j to
the left interface.
Third round: Upon receiving the message msg3,i (for i ∈ I) in the left interface, for i ∈ I:

– Sample uniformly random di $← {0, 1} and set ϕi ← di ⊕ xi.

– Sample uniformly random ϕi $← {0, 1}.

Then set m̂sg3,i ← (ϕi) as in the protocol Π̂, and output the messages (msg3,i, m̂sg3,i) to P(A).
Upon receiving the messages msg3,j and m̂sg3,j (for j ∈ J ) from P(A), send the message msg3,j in
the left interface.
Fourth round: Upon receiving the message msg4,i (for i ∈ I) in the left interface, compute
ki→k,b

enc
$← Genenc(1λ) for i ∈ I, b ∈ {0, 1}, set m̂sg4,i ← ({ki→k,ϕk

enc }k∈[n]) for i ∈ I as in the protocol Π̂,
and output the messages (msg4,i, m̂sg4,i) to P(A).
Upon receiving the messages msg4,j and m̂sg4,j (for j ∈ J ) from P(A), send the message msg4,j in
the left interface.
Extraction: Upon receiving the message ok in the left interface, forward it to P(A).
Randomness passing: Upon receiving the randomness R of adversary P(A) in the left interface,
forward it to P(A).

We formally describe the hybrid experiments in Figure 5.7. Before delving into the details, we provide
brief instructions on how to interpret the figure. The primary guideline is to prioritize the most restrictive
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option for each step when multiple choices are available for a specific hybrid. For instance, in H2, we select
the second option from the three available for step 2(c), as it is more constrained compared to the others.
Additionally, we cannot choose the third option since it falls within a rectangle box, which exceeds the scope
of H2. Consequently, H2 incorporates steps 1, 2.(a), 2.(b), 2.(d), 2.(e).i, 2.(e).ii from the rounded box, and
2.(c), 2.(e).iii from the dashed box. Thus, the points of divergence between H2 and H1 are steps 2.(c) and
2.(e).iii. Similarly, we can discern the discrepancies between each hybrid experiment using this approach.

Figure 5.7: The hybrid experiments H0,H1,H2,H3,H4

H0, H1, H2, H3, H4

1. Run Π as honest party would against the adversary M0(A).

1. Run SΠ against the adversary M0(A) , M4(A)

2. Upon receiving a set of queries {xj
g}j∈J issued by SΠ , send ok to M and do the following:

(a) Retrieve ϕj from m̂sg3,j and set xj ← dj ⊕ ϕj (for j ∈ J ).
(b) Compute (G, K) $← garble(1λ, C) where K = {K1

b , . . . , Kn
b }, where b ∈ {0, 1}.

(c) Sample uniformly random Ki→k
b

$← {0, 1}λ for b ∈ {0, 1}, i ∈ [n], k ∈ [n] s.t.
⊕

i∈[n] Ki→k
b =

Kk
b .

(c) Sample uniformly random Ki→k
ϕk for i ∈ [n], k ∈ [n] such that

⊕
i∈[n] Ki→k

ϕk = Kk
ϕk . Sample

uniformly random Ki→k
1−ϕk for i ∈ [n], k ∈ [n] such that

⊕
i∈[n] Ki→k

1−ϕk = Kk
1−ϕk . Set Ki→k

1−ϕk ←
0 for i ∈ I, k ∈ [n].

(c) Sample uniformly random Ki→k
ϕk for i ∈ [n], k ∈ [n] such that

⊕
i∈[n] Ki→k

ϕk = Kk
ϕk .

Sample uniformly random Kj→k
1−ϕk for j ∈ J , k ∈ [n] without conditions. Set Ki→k

1−ϕk ← 0
for i ∈ I, k ∈ [n].

(b) Query the ideal functionality f using xj for j ∈ J , and set y ← f(x1, . . . , xn). Generate
(G, K)← simGC(1λ, C, y), where K = {K1

sim, . . . , Kn
sim}.

(c) Sample uniformly random Ki→k
sim for i ∈ [n], k ∈ [n] s.t.

⊕
i∈[n] Ki→k

sim = Kk
sim. Sample

uniformly random Kj→k
1−ϕk for j ∈ J , k ∈ [n] without conditions. Set Ki→k

1−ϕk ← 0 for
i ∈ I, k ∈ [n].

(d) Sample (ki→k,ϕk

mac , ki→k,1−ϕk

mac ) $← Genmac(1λ) for i ∈ [n], k ∈ [n].
(e) For each i ∈ I, k ∈ [n]:

i. (γi→k
ϕk , γi→k

1−ϕk )← (Mac
ki→k,ϕk

mac
(Ki→k

xk ), Mac
ki→k,1−ϕk

mac
(Ki→k

1−xk )).

ii. ci→k
ϕk ← enc(ki→k,ϕk

enc , (γi→k
ϕk ||Ki→k

xk )).
iii. ci→k

1−ϕk ← enc(ki→k,1−ϕk

enc , (γi→k
1−ϕk ||Ki→k

1−xk )).

i. γi→k
ϕk ← Mac

ki→k,ϕk
mac

(Ki→k
sim ).

ii. ci→k
ϕk ← enc(ki→k,ϕk

enc , (γi→k
ϕk ||Ki→k

sim )).
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iii. ci→k
1−ϕk ← enc(ki→k,1−ϕk

enc , 0).

(f) For each j ∈ J , k ∈ [n]:
i. (γj→k

ϕk , γj→k
1−ϕk )← (Mac

kj→k,ϕk
mac

(Kj→k
xk ), Mac

kj→k,1−ϕk
mac

(Kj→k
1−xk )).

ii. (cj→k
ϕk , cj→k

1−ϕk )← (enc(kj→k,ϕk

enc , (γj→k
ϕk ||Kj→k

ϕk )), enc(kj→k,1−ϕk

enc , (γj→k
1−ϕk ||Kj→k

1−ϕk ))).

i. (γj→k
ϕk , γj→k

1−ϕk )← (Mac
kj→k,ϕk

mac
(Kj→k

sim ), Mac
kj→k,1−ϕk

mac
(Kj→k

1−ϕk )).

ii. (cj→k
ϕk , cj→k

1−ϕk )← (enc(kj→k,ϕk

enc , (γj→k
ϕk ||Kj→k

sim )), enc(kj→k,1−ϕk

enc , (γj→k
1−ϕk ||Kj→k

1−ϕk ))).

(g) Set ki→k
mac ← (ki→k,0

mac , ki→k,1
mac ), ci→k ← (ci→k

0 , ci→k
1 ) for i ∈ [n], k ∈ [n].

(h) Send G, {ci→k}i∈[n],k∈[n], {ki→k
mac }i∈[n],k∈[n] to SΠ .

(i) Continue running SΠ .

Lemma 1 (Transition from H0 to H1). Let Π be a malicious type secure multi-party computation protocol
satisfying Definition 10, against t < n, which realizes the functionality g, formally specified in the Figure 5.1
(type ∈ {sa-abort, si-abort, un-abort, id-abort}). Then the output distribution of the hybrid experiments H0
and H1 are computationally indistinguishable.

Proof. Since we assume that Π is malicious type secure, we know that for every non-uniform PPT adversary
A for the real world, with auxiliary input aux, there exists a non-uniform expected PPT simulator S, it holds
that

REALΠ,J ,A(aux)(x, 1λ) c≡ IDEALtype
f,J ,S(aux)(x, 1λ).

Let us assume that such an adversary A0 exists that can distinguish between hybrid experiments H0 and
H1 with non-negligible probability. Then, we can construct the following adversary A′

0 =M0(A0) that, by
the assumption, breaks the security of the protocol Π. According to the description of M0(A0), formally
described in Figure 5.6, the adversary A′

0 =M0(A0) is a valid adversary for Π.
We define the following reduction with a challenger with the black-box access to A′

0. This challenger
interacts with A′

0 either using the messages of the simulator SΠ - meaning that the output of A′
0 corresponds

to the output H1, or using the messages of the protocol Π generated accordingly to the honest procedure -
meaning that the output of A′

0 corresponds to the output H0.
However, if there would be such an adversary A0 that would be able to distinguish between the two

hybrid experiments, then A′
0 would be able to break the security of the protocol Π, which contradicts the

assumption that Π is a malicious type secure multi-party computation protocol.

Lemma 2 (Transition from H1 to H2). Let SE be a symmetric encryption scheme (Definition 1), that is
computationally indistinguishable as per Definition 3. Then the output distribution of the hybrid experiments
H1 and H2 are computationally indistinguishable.

Proof. For each t ∈ [n] we construct a hybrid experiment Ht
1 in the following way:

– For each t′ < t, ciphertexts {ci→t′

1−ϕt′}i∈I are computed as in the hybrid H2.
– For each t′ > t, ciphertexts {ci→t′

1−ϕt′}i∈I are computed as in the hybrid H1.
– For t′ = t, ciphertexts {ci→t′

1−ϕt′}i∈I are computed either as in the hybrid H1 or as in the hybrid H2,
depending on the bit chosen by the challenger of the PrivKeav experiment.

This means that H0
1 is equivalent to H1 and Hn

1 is equivalent to H2. Now, for each 1 ≤ t ≤ n we show
that Ht−1

1 is computationally indistinguishable from Ht
1 and thereby prove that H1 is computationally

indistinguishable from H2.
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Because of the nature of our protocol, we will use a modified PrivKeav
A,SE experiment where the ad-

versary is tasked with supplying n distinct pairs of messages, denoted as ((m1
0, m1

1), . . . (mn
0 , mn

1 )). Then,
the challenger samples ki $← Genenc(1λ) for i ∈ [n], selects a random bit b and outputs (c1, . . . , cn) =
(enc(k1, m1

b), . . . , enc(kn, mn
b )) (here, we rely that the computationally indistinguishable encryption scheme

is sequentially composable). Let us assume that there exists such an PPT adversary At
1 who can distinguish

between the hybrid experiments Ht−1
1 and Ht

1. We show an adversary A′,t
1 for the modified PrivKeav

A′,t
1 ,SE

experiment which works as follows:

– Simulate the following experiment for the adversary A′,t
1 :

• Run SΠ against the adversary M0(At
1).

• Upon receiving a set of queries {xj
g}j∈J = {(dj , kj→k,b

enc )}k∈[n],j∈J ,b∈{0,1} issued by SΠ , send ok to
M0 and do the following:
1. Retrieve ϕj from m̂sg3,j and set xj ← dj ⊕ ϕj (for j ∈ J ).
2. Generate (G, K) $← garble(1λ, C) where K = {K1

b , . . . , Kn
b } and b ∈ {0, 1}.

3. Sample uniformly random Ki→k
b for i ∈ [n], k ∈ [n], b ∈ {0, 1} such that

⊕
i∈[n] Ki→k

b = Kk
b .

4. Sample ki→k,ϕk

mac , ki→k,1−ϕk

mac
$← Genmac(1λ) for i ∈ [n], k ∈ [n].

5. For each i ∈ I, k ∈ [t− 1]:
(a) γi→k

ϕk ← Mac
ki→k,ϕk

mac
(Ki→k

xk ).

(b) ci→k
ϕk ← enc(ki→k,ϕk

enc , (γi→k
ϕk ||Ki→k

xk )).
(c) ci→k

1−ϕk ← enc(ki→k,1−ϕk

enc , 0).
6. For each i ∈ I, k ∈ [n] \ [t]:

(a) (γi→k
ϕk , γi→k

1−ϕk )← (Mac
ki→k,ϕk

mac
(Ki→k

xk ), Mac
ki→k,1−ϕk

mac
(Ki→k

1−xk )).

(b) ci→k
ϕk ← enc(ki→k,ϕk

enc , (γi→k
ϕk ||Ki→k

xk )).
(c) ci→k

1−ϕk ← enc(ki→k,1−ϕk

enc , (γi→k
1−ϕk ||Ki→k

1−xk )).
7. For each i ∈ I:

(a) (γi→t
ϕt , γi→t

1−ϕt)← (Macki→t,ϕt
mac

(Ki→t
xt ), Macki→t,1−ϕt

mac
(Ki→t

1−xt)).
(b) Set mi

0 = {(γi→t
1−ϕt ||Ki→t

1−xt)}i∈[n] and mi
1 = 0.

(c) Send (mi
0, mi

1) to the challenger of the PrivKeav
A′,SE experiment and receive challenge ciphertext

ci as a reply.
(d) ci→t

ϕt ← enc(ki→t,ϕt

enc , (γi→t
ϕt ||Ki→t

xt )).
(e) ci→t

1−ϕt ← ci.
8. For each j ∈ J , k ∈ [n]:

(a) (γj→k
ϕk , γj→k

1−ϕk )← (Mac
kj→k,ϕk

mac
(Kj→k

ϕk ), Mac
kj→k,1−ϕk

mac
(Kj→k

1−ϕk )).

(b) (cj→k
ϕk , cj→k

1−ϕk )← (enc(kj→k,ϕk

enc , (γj→k
ϕk ||Kj→k

ϕk )), enc(kj→k,1−ϕk

enc , (γj→k
1−ϕk ||Kj→k

1−ϕk ))).
9. For i ∈ [n], k ∈ [n]:

(a) ki→k
mac ← (ki→k,0

mac , ki→k,1
mac ).

(b) ci→k ← (ci→k
0 , ci→k

1 ).
10. Send G, {ci→k}i∈[n],k∈[n], {ki→k

mac }i∈[n],k∈[n] to SΠ .
– Continue running SΠ against the adversary M0(At

1) and output whatever M0(At
1) outputs.

Notice that random bit b of the PrivKeav
A′,t

1 ,SE
which the challenger samples, decides which of the Ht−1

1 or
Ht

1 the adversary A′,t
1 simulates from the adversary M0(At

1). That is, if b = 0, A′,t
1 simulates the experiment

identical to the hybrid Ht−1
1 ; if b = 1, then the simulated experiment is identical to the hybrid Ht

1. We can
see that if At

1 can distinguish between the hybrid experiments Ht−1
1 and Ht

1, then A′,t
1 can break the security

of the encryption scheme SE. However, since SE is a computationally indistinguishable encryption scheme,
such a PPT adversary cannot exist.

We note that in order for the reduction to remain polynomial time, we need to bound the running time
of the simulator SΠ . Since the simulator SΠ is expected to run in polynomial time, we limit its execution
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to l steps, where l represents the expected polynomial running time of SΠ . Therefore, with non-negligible
probability, the simulator will stop.

Lemma 3 (Transition from H2 to H3). Let SS be an additive secret sharing scheme satisfying the Def-
inition 7. Then the output distribution of the hybrid experiments H2 and H3 are computationally indistin-
guishable.

Proof. We note that the difference between H2 and H3 is that, the ciphertext cj→i
ϕi for i ∈ I, j ∈ J

is an encryption of the uniformly random λ-bit long string, and these bit strings have no relation with
the garbled labels Ki

1−xi . The corrupted party Pj has the ability to open both cj→i
ϕi and cj→i

1−ϕi . However,
because the adversary can control at most n − 1 parties, it can not collect enough shares to reconstruct
the original labels. Therefore, due to the perfect security of additive secret sharing scheme, H2 and H3 are
computationally indistinguishable.

Lemma 4 (Transition from H3 to H4). Let the GC be a garbling scheme satisfying the Definition 6. Then
the output distribution of the hybrid experiments H3 and H4 are computationally indistinguishable.

Proof. Notice that the only difference between H3 and H4 are the values encrypted in ciphertexts ci
ϕi for

i ∈ I which are replaced by the labels that the simGC outputs in the H4.
Let us assume that there exists such an adversary A who can distinguish between the hybrid experiments

H3 and H4. We show an adversary A′ for the GCpriv
A′ which works as follows:

– Simulate the following experiment for the adversary A′:
• Run SΠ against the adversary M4(A).
• Upon receiving a set of queries {xj

g}j∈J = {(dj , kj→k,b
enc )}k∈[n],j∈J ,b∈{0,1} issued by SΠ , send ok to

M4 and do the following:
1. Retrieve ϕj from m̂sg3,j and set xj ← dj ⊕ ϕj (for j ∈ J ).
2. Construct the circuit C of the function f and send it along with the input x = (x1, . . . , xn) to

the challenger.
3. Receive G, (K1

sim, . . . , Kn
sim) as a reply from the challenger.

4. Sample uniformly random Ki→k
sim for i ∈ [n], k ∈ [n] such that

⊕
i∈[n] Ki→k

sim = Kk
sim.

5. Sample ki→k,ϕk

mac , ki→k,1−ϕk

mac
$← Genmac(1λ) for i ∈ [n], k ∈ [n].

6. For each i ∈ I, k ∈ [n]:
(a) γi→k

ϕk ← Mac
ki→k,ϕk

mac
(Ki→k

sim ).

(b) ci→k
ϕk ← enc(ki→k,ϕk

enc , (γi→k
ϕk ||Ki→k

sim )).
(c) ci→k

1−ϕk ← enc(ki→k,1−ϕk

enc , 0).
(d) ki→k

mac ← (ki→k,0
mac , ki→k,1

mac ).
(e) ci→k ← (ci→k

0 , ci→k
1 ).

7. For each j ∈ J , k ∈ [n]:
(a) Sample uniformly random Kj→k

1−ϕk

$← {0, 1}λ.
(b) (γj→k

ϕk , γj→k
1−ϕk )← (Mac

kj→k,ϕk
mac

(Kj→k
sim ), Mac

kj→k,1−ϕk
mac

(Kj→k
1−ϕk )).

(c) (cj→k
ϕk , cj→k

1−ϕk )← (enc(kj→k,ϕk

enc , (γj→k
ϕk ||Kj→k

sim )), enc(kj→k,1−ϕk

enc , (γj→k
1−ϕk ||Kj→k

1−ϕk ))).
(d) kj→k

mac ← (kj→k,0
mac , kj→k,1

mac ).
(e) cj→k ← (cj→k

0 , cj→k
1 ).

– Send G, {ci→k}i∈[n],k∈[n], {ki→k
mac }i∈[n],k∈[n] to SΠ .

– Continue running SΠ against the adversary M4(A) and output whatever M4(A) outputs.

Notice that the random bit b of the GCpriv
A′ experiment, which the challenger samples, decides which of the

H3 or H4 the adversary A′ simulates for the adversaryM4(A). That is, if b = 0, A′ simulates the experiment
identical to the hybrid H3; if b = 1, then the simulated experiment is identical to the hybrid H4. We can
see that if A can distinguish between the hybrid experiments H3 and H4, then A′ can break the privacy
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of the garbling scheme GC. However, since we assume that GC satisfies the Definition 6, we come toward a
contradiction.

Again, in order for the reduction to remain polynomial time, we need to bound the running time of the
simulator SΠ . Since the simulator SΠ is expected to run in polynomial time, we limit its execution to p steps,
where p represents the expected polynomial running time of SΠ . Therefore, with non-negligible probability,
the simulator will stop.

Before completing this proof, we must show that no party can cheat and cause the other party to compute
a wrong output. In the protocol, this is solved by each party verifying the labels and seeing whether they
correspond to the key and permutation bit that the other party sent. We prove this in the following claim
by showing that the probability that a different output is computed in the real world and ideal world is
negligible.

Lemma 5. Let MAC be a message authentication code scheme (Definition 4) that is a one-time computationally-
secure as per Definition 5. Then the probability that S queries the ideal functionality f and obtains the output
y and that the real-world execution of the protocol Π̂ outputs f(·, . . . , ·) ̸= y is negligible in the security pa-
rameter.

Proof. Let us assume that the lemma does not hold. By the construction of our compiler, the honest parties
obtain incorrect outputs means that the adversary sends incorrect shares of garbled labels s.t. when the
honest parties reconstruct and evaluate the garble circuits, they obtain some values that are not computed
from the input of the adversary. Note that in our compiler, the shares of labels is computed by decrypting the
cipher texts from the functionality g. In the functionality g, every possible share of labels are authenticated.
By the security of underlying MPC protocol Π, g is correctly realized.

Then if there exists an adversary A that can make the honest parties obtain incorrect output of function
f . We show an adversary AMAC for the Mac− forge1−time

A,Π experiment which works as in the following. Notice
that although the simulation is exactly as the one in the H4, in order to obtain the ciphertexts that the
honest parties would receive at the end of the computation, we need to simulate the honest parties as well.
This means that in the simulation, the adversary AMAC is controlling the whole set of parties {Pi}i∈I .

– Sample uniformly random di $← {0, 1} for i ∈ I and ki→k,b
enc for b ∈ {0, 1}, i ∈ I, k ∈ [n].

– Upon receiving {xj
g}j∈J issued by SΠ , send ok to M4 and do the following:

1. Retrieve ϕj from m̂sg3,j and compute xj = dj ⊕ ϕj (for j ∈ J ).
2. Query the ideal functionality f using xj for j ∈ J , and get y ← f(x1, . . . , xn).
3. Generate (G, K) $← simGC(1λ, C, y), where K = {K1

sim, . . . , Kn
sim}.

4. Sample uniformly random Ki→k
sim for i ∈ [n], k ∈ [n] such that

⊕
i∈[n] Ki→k

sim = Kk
sim.

5. Send Kj′→i′

sim to the challenger of the Mac− forge1−time
A,Π experiment and receive γj′→i′ as a reply.

6. Sample uniformly random Ki→k
sim for i ∈ [n], k ∈ [n] such that

⊕
i∈[n] Ki→k

sim = Kk
sim.

7. For each i ∈ I, k ∈ [n]:
(a) γi→k

ϕk ← Mac
ki→k,ϕk

mac
(Ki→k

sim ).

(b) ci→k
ϕk ← enc(ki→k,ϕk

enc , (γi→k
ϕk ||Ki→k

sim )).
(c) ci→k

1−ϕk ← enc(ki→k,1−ϕk

enc , 0).
(d) ki→k

mac ← (ki→k,0
mac , ki→k,1

mac ).
(e) ci→k ← (ci→k

0 , ci→k
1 ).

8. For each j ∈ J , k ∈ [n]:
(a) Sample Kj→k

1−ϕk

$← {0, 1}λ.
(b) (γj→k

ϕk , γj→k
1−ϕk )← (Mac

kj→k,ϕk
mac

(Kj→k
sim ), Mac

kj→k,1−ϕk
mac

(Kj→k
1−ϕk )).

(c) (cj→k
ϕk , cj→k

1−ϕk )← (enc(kj→k,ϕk

enc , (γj→k
ϕk ||Kj→k

sim )), enc(kj→k,1−ϕk

enc , (γj→k
1−ϕk ||Kj→k

1−ϕk ))).
(d) kj→k

mac ← (kj→k,0
mac , kj→k,1

mac ).
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(e) cj→k ← (cj→k
0 , cj→k

1 ).
9. Send G, {ci→k}i∈[n],k∈[n], {ki→k

mac }i∈[n],k∈[n] to SΠ .
– Continue running SΠ against the adversary M4(A).
– Upon receiving the message m̂sg4,j′ from Pj′ , retrieve kj′→i′,ϕi′

enc and decrypt (K∗||γ∗) ← dec(kj′→i′,ϕi′

enc ,

cj′→i′

ϕi′ ).
– Output (K∗, γ∗)

We can see that the pair (K∗, γ∗) that the adversary AMAC computes is exactly the same as the one that the
honest party Pi′ would decrypt. Since we assume that the honest party would not abort, that means that
(K∗, γ∗) is a valid pair of the share of the label and the tag - meaning that the adversary AMAC would win in
the Mac− forge1−time

A,Π experiment with non-negligible probability.
As before, in order for the reduction to remain polynomial time, we need to bound the running time

of the simulator SΠ . Since the simulator SΠ is expected to run in polynomial time, we limit its execution
to t steps, where t represents the expected polynomial running time of SΠ . Therefore, with non-negligible
probability, the simulator will stop.

The final part of the proof is to show why the protocol Π̂ preserves the same type security as Π. We note
that it is straightforward to see why a corrupt party cannot deviate from the protocol in a way that would
break the type security of the input protocol (do more “damage”).

More formally, the final step is to argue that Π̂ held the same type security as Π. In Π̂, the adversary
(assume it controls Pj) can deviate from protocol description by using several approaches:

1. Deviate from the protocol Π. However, by security of Π, this type of deviation behavior will be detected,
and type security is guaranteed in this case.

2. Send inconsistent m̂sg3,j or m̂sg4,j to different parties. We note that Π̂ has broadcast channel access for
all four rounds, Pj can not send inconsistent messages to different honest parties.

3. Do not send any third-round or fourth-round messages. Due to the broadcast channel access, all the
honest parties can see it and identify Pj as corrupted. In other words, if the adversary only have this
adversarial behavior, we can achieve id-abort security in this case. However, because of the type security
of Π, the best security we can achieve is type security.

4. Send inconsistent third round from fourth round, and it contradicts to Lemma 5. We emphasize that
change both m̂sg3,j and m̂sg4,j that use 1−ϕj is a valid behavior, and it is the same as that the adversary
use the input 1− xj .

5. Send invalid third-round or fourth-round messages. In this circumstance, by the correctness of MAC, the
honest party can detect this misbehavior and identify Pj correctly. Also, because every party does the
same thing in the output computation phase if one honest party can identify it correctly, all the honest
parties must be able to do it, which means we achieve id-abort security if the adversary only has this
adversarial behavior. However, because of the type security of Π, the best security we can achieve is type
security.
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supported by the Input Output Research Hub (IORH) of the University of Edinburgh.

References

ACJ17. Prabhanjan Ananth, Arka Rai Choudhuri, and Abhishek Jain. A new approach to round-optimal secure
multiparty computation. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology –
CRYPTO 2017, Part I, volume 10401 of Lecture Notes in Computer Science, pages 468–499, Santa
Barbara, CA, USA, August 20–24, 2017. Springer, Cham, Switzerland.

24



Bea95. Donald Beaver. Precomputing oblivious transfer. In Don Coppersmith, editor, Advances in Cryptology
– CRYPTO’95, volume 963 of Lecture Notes in Computer Science, pages 97–109, Santa Barbara, CA,
USA, August 27–31, 1995. Springer Berlin Heidelberg, Germany.

Bea96. Donald Beaver. Correlated pseudorandomness and the complexity of private computations. In 28th
Annual ACM Symposium on Theory of Computing, pages 479–488, Philadephia, PA, USA, May 22–24,
1996. ACM Press.

BGI19. Elette Boyle, Niv Gilboa, and Yuval Ishai. Secure computation with preprocessing via function secret
sharing. In Dennis Hofheinz and Alon Rosen, editors, TCC 2019: 17th Theory of Cryptography Confer-
ence, Part I, volume 11891 of Lecture Notes in Computer Science, pages 341–371, Nuremberg, Germany,
December 1–5, 2019. Springer, Cham, Switzerland.

BGIN22. Elette Boyle, Niv Gilboa, Yuval Ishai, and Ariel Nof. Secure multiparty computation with sublinear
preprocessing. In Orr Dunkelman and Stefan Dziembowski, editors, Advances in Cryptology – EURO-
CRYPT 2022, Part I, volume 13275 of Lecture Notes in Computer Science, pages 427–457, Trondheim,
Norway, May 30 – June 3, 2022. Springer, Cham, Switzerland.

BGJ+18. Saikrishna Badrinarayanan, Vipul Goyal, Abhishek Jain, Yael Tauman Kalai, Dakshita Khurana, and
Amit Sahai. Promise zero knowledge and its applications to round optimal MPC. In Hovav Shacham
and Alexandra Boldyreva, editors, Advances in Cryptology – CRYPTO 2018, Part II, volume 10992
of Lecture Notes in Computer Science, pages 459–487, Santa Barbara, CA, USA, August 19–23, 2018.
Springer, Cham, Switzerland.

BHP17. Zvika Brakerski, Shai Halevi, and Antigoni Polychroniadou. Four round secure computation without
setup. In Yael Kalai and Leonid Reyzin, editors, TCC 2017: 15th Theory of Cryptography Conference,
Part I, volume 10677 of Lecture Notes in Computer Science, pages 645–677, Baltimore, MD, USA, Novem-
ber 12–15, 2017. Springer, Cham, Switzerland.

BMR90. Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure protocols (extended
abstract). In 22nd Annual ACM Symposium on Theory of Computing, pages 503–513, Baltimore, MD,
USA, May 14–16, 1990. ACM Press.

Can01. Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd
Annual Symposium on Foundations of Computer Science, pages 136–145, Las Vegas, NV, USA, Octo-
ber 14–17, 2001. IEEE Computer Society Press.

CCG+20. Arka Rai Choudhuri, Michele Ciampi, Vipul Goyal, Abhishek Jain, and Rafail Ostrovsky. Round optimal
secure multiparty computation from minimal assumptions. In Rafael Pass and Krzysztof Pietrzak, editors,
TCC 2020: 18th Theory of Cryptography Conference, Part II, volume 12551 of Lecture Notes in Computer
Science, pages 291–319, Durham, NC, USA, November 16–19, 2020. Springer, Cham, Switzerland.

CCL15. Ran Canetti, Asaf Cohen, and Yehuda Lindell. A simpler variant of universally composable security for
standard multiparty computation. In Rosario Gennaro and Matthew J. B. Robshaw, editors, Advances
in Cryptology – CRYPTO 2015, Part II, volume 9216 of Lecture Notes in Computer Science, pages 3–22,
Santa Barbara, CA, USA, August 16–20, 2015. Springer Berlin Heidelberg, Germany.

CGZ20. Ran Cohen, Juan A. Garay, and Vassilis Zikas. Broadcast-optimal two-round MPC. In Anne Canteaut and
Yuval Ishai, editors, Advances in Cryptology – EUROCRYPT 2020, Part II, volume 12106 of Lecture Notes
in Computer Science, pages 828–858, Zagreb, Croatia, May 10–14, 2020. Springer, Cham, Switzerland.

CKL03. Ran Canetti, Eyal Kushilevitz, and Yehuda Lindell. On the limitations of universally composable two-
party computation without set-up assumptions. In Eli Biham, editor, Advances in Cryptology – EU-
ROCRYPT 2003, volume 2656 of Lecture Notes in Computer Science, pages 68–86, Warsaw, Poland,
May 4–8, 2003. Springer Berlin Heidelberg, Germany.

COSV17a. Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti. Delayed-input non-malleable
zero knowledge and multi-party coin tossing in four rounds. In Yael Kalai and Leonid Reyzin, editors,
TCC 2017: 15th Theory of Cryptography Conference, Part I, volume 10677 of Lecture Notes in Computer
Science, pages 711–742, Baltimore, MD, USA, November 12–15, 2017. Springer, Cham, Switzerland.

COSV17b. Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Ivan Visconti. Round-optimal secure two-party
computation from trapdoor permutations. In Yael Kalai and Leonid Reyzin, editors, TCC 2017: 15th
Theory of Cryptography Conference, Part I, volume 10677 of Lecture Notes in Computer Science, pages
678–710, Baltimore, MD, USA, November 12–15, 2017. Springer, Cham, Switzerland.

COSW23. Michele Ciampi, Rafail Ostrovsky, Luisa Siniscalchi, and Hendrik Waldner. Round-optimal black-box mul-
tiparty computation from polynomial-time assumptions. Cryptology ePrint Archive, Report 2023/1742,
2023.

CRSW22. Michele Ciampi, Divya Ravi, Luisa Siniscalchi, and Hendrik Waldner. Round-optimal multi-party com-
putation with identifiable abort. In Orr Dunkelman and Stefan Dziembowski, editors, Advances in Cryp-

25



tology – EUROCRYPT 2022, Part I, volume 13275 of Lecture Notes in Computer Science, pages 335–364,
Trondheim, Norway, May 30 – June 3, 2022. Springer, Cham, Switzerland.

DILO22. Samuel Dittmer, Yuval Ishai, Steve Lu, and Rafail Ostrovsky. Authenticated garbling from simple cor-
relations. In Yevgeniy Dodis and Thomas Shrimpton, editors, Advances in Cryptology – CRYPTO 2022,
Part IV, volume 13510 of Lecture Notes in Computer Science, pages 57–87, Santa Barbara, CA, USA,
August 15–18, 2022. Springer, Cham, Switzerland.

DRSY23. Ivan Damgård, Divya Ravi, Luisa Siniscalchi, and Sophia Yakoubov. Minimizing setup in broadcast-
optimal two round MPC. In Carmit Hazay and Martijn Stam, editors, Advances in Cryptology – EU-
ROCRYPT 2023, Part II, volume 14005 of Lecture Notes in Computer Science, pages 129–158, Lyon,
France, April 23–27, 2023. Springer, Cham, Switzerland.

GB08. S. Goldwasser and M. Bellare. Lecture notes on cryptography. Summer Course “Cryptography and
Computer Security” at MIT. 2008.

GJO+13. Vipul Goyal, Abhishek Jain, Rafail Ostrovsky, Silas Richelson, and Ivan Visconti. Concurrent zero knowl-
edge in the bounded player model. In Amit Sahai, editor, TCC 2013: 10th Theory of Cryptography Con-
ference, volume 7785 of Lecture Notes in Computer Science, pages 60–79, Tokyo, Japan, March 3–6, 2013.
Springer Berlin Heidelberg, Germany.

GMPP16. Sanjam Garg, Pratyay Mukherjee, Omkant Pandey, and Antigoni Polychroniadou. The exact round
complexity of secure computation. In Marc Fischlin and Jean-Sébastien Coron, editors, Advances in
Cryptology – EUROCRYPT 2016, Part II, volume 9666 of Lecture Notes in Computer Science, pages
448–476, Vienna, Austria, May 8–12, 2016. Springer Berlin Heidelberg, Germany.

GMW87. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness
theorem for protocols with honest majority. In Alfred Aho, editor, 19th Annual ACM Symposium on
Theory of Computing, pages 218–229, New York City, NY, USA, May 25–27, 1987. ACM Press.

Goy11. Vipul Goyal. Constant round non-malleable protocols using one way functions. In Lance Fortnow and
Salil P. Vadhan, editors, 43rd Annual ACM Symposium on Theory of Computing, pages 695–704, San
Jose, CA, USA, June 6–8, 2011. ACM Press.

HHPV18. Shai Halevi, Carmit Hazay, Antigoni Polychroniadou, and Muthuramakrishnan Venkitasubramaniam.
Round-optimal secure multi-party computation. In Hovav Shacham and Alexandra Boldyreva, editors,
Advances in Cryptology – CRYPTO 2018, Part II, volume 10992 of Lecture Notes in Computer Science,
pages 488–520, Santa Barbara, CA, USA, August 19–23, 2018. Springer, Cham, Switzerland.

HL10. Carmit Hazay and Yehuda Lindell. Efficient Secure Two-Party Protocols. Springer Berlin Heidelberg,
2010.

HOSS18. Carmit Hazay, Emmanuela Orsini, Peter Scholl, and Eduardo Soria-Vazquez. Concretely efficient large-
scale MPC with active security (or, TinyKeys for TinyOT). In Thomas Peyrin and Steven Galbraith,
editors, Advances in Cryptology – ASIACRYPT 2018, Part III, volume 11274 of Lecture Notes in Com-
puter Science, pages 86–117, Brisbane, Queensland, Australia, December 2–6, 2018. Springer, Cham,
Switzerland.

HSS17. Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. Low cost constant round MPC combining
BMR and oblivious transfer. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology –
ASIACRYPT 2017, Part I, volume 10624 of Lecture Notes in Computer Science, pages 598–628, Hong
Kong, China, December 3–7, 2017. Springer, Cham, Switzerland.

IKSS23. Yuval Ishai, Dakshita Khurana, Amit Sahai, and Akshayaram Srinivasan. Round-optimal black-box
MPC in the plain model. In Helena Handschuh and Anna Lysyanskaya, editors, Advances in Cryptology
– CRYPTO 2023, Part I, volume 14081 of Lecture Notes in Computer Science, pages 393–426, Santa
Barbara, CA, USA, August 20–24, 2023. Springer, Cham, Switzerland.

IPS08. Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious transfer - effi-
ciently. In David Wagner, editor, Advances in Cryptology – CRYPTO 2008, volume 5157 of Lecture Notes
in Computer Science, pages 572–591, Santa Barbara, CA, USA, August 17–21, 2008. Springer Berlin
Heidelberg, Germany.

Kil88. Joe Kilian. Founding cryptography on oblivious transfer. In 20th Annual ACM Symposium on Theory of
Computing, pages 20–31, Chicago, IL, USA, May 2–4, 1988. ACM Press.

KL14. J. Katz and Y. Lindell. Introduction to Modern Cryptography, Second Edition. Chapman & Hall/CRC
Cryptography and Network Security Series. Taylor & Francis, 2014.

KO04. Jonathan Katz and Rafail Ostrovsky. Round-optimal secure two-party computation. In Advances in
Cryptology - CRYPTO 2004, 24th Annual International CryptologyConference, Santa Barbara, California,
USA, August 15-19, 2004, Proceedings, volume 3152 of Lecture Notes in Computer Science, pages 335–354.
Springer, 2004.

26



KOS03. Jonathan Katz, Rafail Ostrovsky, and Adam Smith. Round efficiency of multi-party computation with
a dishonest majority. In Eli Biham, editor, Advances in Cryptology – EUROCRYPT 2003, volume 2656
of Lecture Notes in Computer Science, pages 578–595, Warsaw, Poland, May 4–8, 2003. Springer Berlin
Heidelberg, Germany.

KRRW18. Jonathan Katz, Samuel Ranellucci, Mike Rosulek, and Xiao Wang. Optimizing authenticated garbling
for faster secure two-party computation. In Hovav Shacham and Alexandra Boldyreva, editors, Advances
in Cryptology – CRYPTO 2018, Part III, volume 10993 of Lecture Notes in Computer Science, pages
365–391, Santa Barbara, CA, USA, August 19–23, 2018. Springer, Cham, Switzerland.

NNOB12. Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra. A new approach
to practical active-secure two-party computation. In Reihaneh Safavi-Naini and Ran Canetti, editors,
Advances in Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science, pages
681–700, Santa Barbara, CA, USA, August 19–23, 2012. Springer Berlin Heidelberg, Germany.

NST17. Jesper Buus Nielsen, Thomas Schneider, and Roberto Trifiletti. Constant round maliciously secure 2PC
with function-independent preprocessing using LEGO. In ISOC Network and Distributed System Security
Symposium – NDSS 2017, San Diego, CA, USA, February 26 – March 1, 2017. The Internet Society.

Pas04. Rafael Pass. Bounded-concurrent secure multi-party computation with a dishonest majority. In László
Babai, editor, 36th Annual ACM Symposium on Theory of Computing, pages 232–241, Chicago, IL, USA,
June 13–16, 2004. ACM Press.

PW10. Rafael Pass and Hoeteck Wee. Constant-round non-malleable commitments from sub-exponential one-
way functions. In Henri Gilbert, editor, Advances in Cryptology – EUROCRYPT 2010, volume 6110 of
Lecture Notes in Computer Science, pages 638–655, French Riviera, May 30 – June 3, 2010. Springer
Berlin Heidelberg, Germany.

Yao86. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th Annual
Symposium on Foundations of Computer Science, pages 162–167, Toronto, Ontario, Canada, October 27–
29, 1986. IEEE Computer Society Press.

27


	Delayed-Input Multi-Party Computation
	Introduction
	Our Contributions.
	Technical Overview
	On The Need For A New Definition.
	Overview Of Multi-Party Computation With Adaptive-Input Selection.
	Supported MPC Protocols.



	Preliminaries
	Symmetric Encryption Scheme
	Message Authentication Code Scheme
	Garbling Scheme
	Additive secret sharing scheme

	Secure Multiparty Computation (MPC)
	Real world.
	Ideal world.
	Security Definitions.


	Additional notation

	Secure Computation with Adaptive-Input Selection
	Real world.
	Ideal world.


	Our Compiler
	The Security Proofs



