Commit-and-Prove System for Vectors and
Applications to Threshold Signing

Anja Lehmann ® and Cavit Ozbay

Hasso Plattner Institute, University of Potsdam, Germany
{anja.lehmann,cavit.oezbay}@hpi.de

Abstract. Multi-signatures allow to combine several individual signa-
tures into a compact one and verify it against a short aggregated key.
Compared to threshold signatures, multi-signatures enjoy non-interactive
key generation but give up on the threshold-setting. Recent works by Das
et al. (CCS’23) and Garg et al. (S&P’24) show how multi-signatures can
be turned into schemes that enable efficient verification when an ad hoc
threshold — determined only at verification — is satisfied. This allows to
keep the simple key generation of multi-signatures and support flexible
threshold settings in the signing process later on. Both works use the
same idea of combining BLS multi-signatures with inner-product proofs
over committed keys. Das et al. give a somewhat generic proof from both
building blocks, which we show to be flawed, whereas Garg et al. give a
direct proof for the combined construction in the algebraic group model.
In this work, we identify the common blueprint used in both works
and abstract the proof-based approach through the building block of
a commit-and-prove system for vectors (CP). We formally define a flexi-
ble set of security properties for the CP system and show how it can be
securely combined with a multi-signature to yield a signature with ad hoc
thresholds. Our scheme also lifts the threshold signatures into the multi-
verse setting recently introduced by Baird et al. (S&P’23), which allows
signers to re-use their long-term keys across several groups. The challenge
in the generic construction is to express — and realize — the combination of
homomorphic proofs and commitments (needed to realize flexible thresh-
olds over fixed group keys) and their simulation-extractability (needed
in the threshold signature security proof). We finally show that a CP in-
stantiation closely following the ideas of Das et al. can be proven secure,
but requires a new flexible-base DL-assumption to do so.

1 Introduction

Threshold signatures enable a set of distributed signers to jointly create a signa-
ture that can be verified using a compact verification key. Traditional threshold
schemes support a structure where t-out-of-n individual signature contributions
are enough, and necessary, to compute a valid signature for their joint veri-
fication key. The main disadvantage of traditional threshold signatures is the
distributed key generation and key management, which strictly determines the

https://orcid.org/0000-0002-2872-7899
https://orcid.org/0000-0001-5000-7655

threshold structure. Supporting flexible threshold structures or signing groups
requires dedicated secret keys for each setting.

In both aspects, multi-signatures with key aggregation offer more flexibility
as signers can generate their keys independently and combine their individual sig-
natures for arbitrary and ad hoc generated groups. The aggregated key thereby
serves as their joint and compact verification key. However, multi-signatures fall
short in providing threshold structure and only support n-out-of-n structure.

Building Threshold from Multi-Signatures. In the last year, several new schemes
emerged that combine the best of both worlds and propose threshold-signatures
that are built from multi-signatures. Baird et al. [4] introduced multiverse thresh-
old signatures (MTS), where signers only have a single long-term (multi-signa-
ture) secret key, and can create aggregated public keys and signatures for ar-
bitrary groups and threshold structures. Follow-up works [30, 17, 29] propose
threshold signature schemes that support arbitrary thresholds within a fixed
signing group. That is, keys are generated for a fixed group but are indepen-
dent of a concrete threshold. Any set of individual signatures can get combined,
and the amount of contributions becomes verifiable information. Only when the
signature gets verified, the threshold get chosen explicitly and provided to the
verification algorithm — and only combined signatures that meet the threshold
will be deemed valid. In fact, both works even go beyond ad hoc thresholds, and
provide weighted thresholds as well. That is, each signer can have a different
weight and the threshold must be met through their weighted contributions.
These schemes are denoted as ad hoc threshold signatures (ATS).

CommitédProve Blueprint. The works of Das et al. [17] and Garg et al.[30]
have a very similar approach to building their ATS schemes. Both constructions
rely on BLS multi-signatures and let all signers provide additional secret-key
dependent information during the (joint) key generation. These values are a
short verification key vk that is a vector commitment to all secret keys, and an
aggregation key ak which are n inner-product proofs m; of the secret keys w.r.t
to some base vector. The aggregation key later allows the combiner algorithm to
compute a proof 7, that the combined multi-signature is indeed a combination of
a subset of thr’ signers whose keys are in vk. Verification of a combined signature
for a given threshold thr then simply checks the multi-signature, the proof
and that thr’ > thr. The main purpose of 7, is not hiding any information,
but making the combined signature compact and independent of the number of
contained signers — which is why SNARKSs are used here. How these compact
proofs can be generated based on publicly available information only, is the core
technical contribution of both works. The work [29] follows the main ideas of
[30, 17], but they rely on a commitment scheme that runs on public instead of
secret keys. This has the impact, that the signature size depends on the number
of signers. Thus, for the rest of the discussion, we will focus on [17, 30].

The overall generic(-ish) structure of the recent line of threshold constructions
— combining a proof system with BLS multi-signatures — also facilitates further
extension. Both [17, 30] mentioned extensions such as ad hoc groups (as in [4])

privacy (along the lines of accountable and privacy threshold signatures [8]), or
more advanced access structures that can be easily realized with their approach:
intuitively, mainly the proof statement for 7, needs to be adapted.

Challenges of Generic Construction. Since these schemes already enjoy a com-
posed structure, ideally their construction and security analysis can rely on
abstract building blocks with well-defined properties. Such a generic approach
makes the analysis and constructions more versatile, as not the entire proof has
to be re-done for every modification. As we will see, this is far from trivial here.

Das et al. [17] give their construction in a somewhat generic way by combin-
ing an inner-proof argument (IPA) with BLS signatures, and proving security
from the knowledge soundness of the IPA and the (co)-CDH-assumption un-
derlying the unforgeability of BLS signatures. We show that the security proof
in [17] is flawed with no immediate way to be fixed. The challenge is that the
ATS key generation requires generating commitments and proofs that depend
on the secret keys of the multi-signature scheme. This entanglement makes it
difficult to prove security via two fully separate security properties of the com-
mitments/proofs and multi-signature.

Garg et al. [30] have a different proof strategy from [17]. They seem aware
of the issue of not being able to run independent reductions from the knowledge
soundness of the proof system and the unforgeability of the underlying signature
scheme. Their work analyzes the construction as a whole instead of using a
generic proof system. Thus, while not suffering from the problem in the security
proof, their construction and analysis give up on the generic approach.

MPC-based Signing: more generic — but less efficient. Our target construc-
tions [17, 30| involve creating a commitment to a set of secret keys during key
generation. When signing a message, the signers then prove that an aggregated
public key is correctly computed from a subset of the committed secret keys.
Essentially, this can be viewed as a multi-party computation where signers col-
laboratively prove the correct key aggregation in the signing protocol.

Capturing this through generic multi-party computation, would simplify our
definitions for the proof scheme, as it avoids making advanced properties such as
homomorphism and simulation extractability explicit. However, what makes the
previous works [17, 30] so interesting is their efficiency in terms of communication
cost, which is achieved by using the homomorphic proofs. This approach effec-
tively converts the communication overhead of generic multi-party computation
into the storage overhead of handling the aggregation keys. This is particularly
attractive in scenarios that have a large number of signers, and [17, 30] show the
suitability of their approach for real-world applications, such as Byzantine-fault-
tolerant protocols and decision making in decentralized autonomous organiza-
tions. Therefore, our work follows the homomorphic proof approach and aims to
make it more accessible.

1.1 Owur Contributions

Our work strongly builds upon [17, 30] and makes the internal blueprint avail-
able in a more generic and provably secure manner. To this end, we propose
succinet commit-and-prove systems (CP) for vectors as the core building block.
We formally define their properties, show how to build a provably secure thresh-
old signature scheme from them, and give a concrete instantiation for the CP
system. In more detail, we make the following contributions:

Security Flaw in Generic Approach (Section 2): We start by analyzing
the common structure of [17, 30] and present the high-level blueprint used
in both works. We then show that [17]’s security proof is flawed due to the
conflicting requirements in terms of simulatability vs. knowledge-soundness
vs. unforgeability and required homomorphic properties.

Commit-and-Prove System (Section 4): Building upon Section 2, we ide-
ntify commit-and-prove systems (CP) for vectors as the common building
block. The CP system allows to commit on vectors first, and then provide
proofs of statements over committed vectors later on. To be useful in the
desired protocol design, the commitments and proofs must provide suffi-
cient homomorphisms. We then formally define the properties of f-zero-
knowledge, policy-based simulation-extractability, and policy-based stmula-
tion-soundness, where the f-relaxation is needed when deterministically de-
rived values from the witness must be simulated, and the policy-limitations
enable to reason about simulation-extractability despite having homomor-
phic proofs.

Generic Multiverse Ad Hoc Threshold Signatures (Section 5): By us-
ing our CP system, we build a generic and provably secure threshold signa-
ture from multi-signatures. This construction closely follows [17, 30] but is
built and proven in a modular way, relying on the unforgeability of the multi-
signature scheme and assuming that the CP scheme satisfies our introduced
properties for well-defined leakage f and policies. We state our construction
for the class of DL-based multi-signature schemes, which makes it easier to
express the key structures that our CP can rely on. Apart from the generic
approach, our construction also extends the ATS schemes to the multiverse
setting. That is, not only are the thresholds set dynamically during veri-
fication only, but the signers can join many signing groups with the same
long-term key. We call this new type of signatures multiverse ad-hoc thresh-
old signatures (MATS), combining the ad hoc thresholds from [17, 30| with
the multiverse concept of [4], and propose the first provably secure scheme
of that type.

CP Instantiation (Section 6): We realize the CP system using essentially the
construction from [17], extended with a few additional pairing checks. The
main contribution here is that we show that this CP instantiation achieves
the necessary policy-based simulation-extractability, finally closing the gap
from the original analysis. To prove this property, we need to rely on a new
assumption: the flexible-base (n1,n2)-DLOG problem which we show that it
holds in the algebraic group model if (ny,ns)-DLOG problem is hard.

Potential of our Abstraction. The abstraction and the CP system defined
in our work originate from the desire to improve the understanding of complex
recent threshold constructions, and have helped to discover and fix a flaw in [17].
We believe that our abstraction is useful in several other ways too:

Generic Protocol Design. Both previous works [17, 30] propose extensions to
their schemes by relying on the functionalities of underlying SNARKSs such as
hiding the signers and hiding the threshold; accountability through the binding
of commitments; or “multiverse” threshold signatures, allowing different ad hoc
groups from the same long-term keys.

The construction and security analysis of these extensions would require re-
evaluating their complex security proofs. With our generic construction, design-
ing and proving different flavors of such schemes becomes much simpler, as it
abstracts the complexity of SNARK schemes. In fact, in Section 5, our generic
construction for MATS formally examines ideas proposed by previous works.

Flexibility in Instantiations. The previous works rely on vector commitments
on Lagrange-basis polynomials to realize ATS. However, there are different vec-
tor commitment instantiations in the literature that could offer the proofs for
the required relation, inner-product proofs and bit vector proofs. Using differ-
ent instantiations may result in instantiations of the signature schemes that
have different efficiency metrics, or are easier to compose with other protocols.
The vector commitments with monomial basis [12, 42], or Libert-Yung vector
commitments [36, 35| are examples to such vector commitments and proofs. If
these constructions are shown to securely instantiate our CP-SNARK, they can
immediately be used in our framework to yield threshold signatures.

Applicability Beyond Signatures. The common property of [17, 30] that got ab-
stracted in our framework is the implicit use of CP-SNARKSs to generate and
aggregate keys. This approach is not limited to threshold signatures, and has
indeed been applied for encryption too: the recent work of [31] on threshold
encryption uses a similar design for their key generation technique. Using our
abstraction as a blueprint for this type of encryption scheme could enable a ge-
neric design that is easily amenable to extensions too. For instance, the current
CPA security is claimed to be upgradable to CCA2 security by adding a straight-
line simulation-extractable proof to the ciphertexts, which could be more easily
expressed (and analyzed) through a generic construction that determines the
necessary simulation/extraction policies.

Related Work. The definitional framework for the CP system, as well as the
ATS and CP constructions, build upon a large body of existing works. We discuss
them in the dedicated sections to give a more clear comparison to our contribu-
tions. There are several other works that build threshold signatures with ad hoc
thresholds or groups [38, 13, 3, 39]. However, these constructions often result in
verification keys or signature sizes that grow dependent on the number of signers

in the group or the threshold value. Appendix A contains a wider discussion of
these signature schemes and other related contexts.

2 Analysis and Challenges of Generic ATS Approach

To better understand both the need for, and the design choices of our generic
Commit-and-Prove system, we first analyze the recent ATS schemes by Das et
al. [17] and Garg et. al [30]. We sketch the common blueprint we have identified
in both constructions and discuss the unforgeability proof of the ATS scheme in
[17] and its shortcomings.

2.1 ATS Construction Blueprint

We first recap the intuition behind the ATS constructions of [17] and [30], which
rely on BLS multi-signatures and a clever combination of non-interactive inner-
product proofs over committed secret keys.

BLS multi-signatures with key aggregation [7] work on individual key pairs
pk; = g°F. BLS signatures can simply be multiplied together and be verified
against a short aggregated key apk := [] icn] pk;. The key aggregation internally
sets an aggregated secret key, ask := Zie[n] sk; in the exponent. [17, 30] inde-
pendently propose the same strategy to lift the n-out-of-n setting to a threshold
structure. Therein a single and short verification key vk can be used to verify
whether a signature was created by a certain — yet ad hoc — threshold of the
signers. Both schemes support weighted thresholds, but for the sake of simplicity,
we omit this feature in the description here.

Idea in a Nutshell. The high-level idea is as follows: for generating a verification
key vk for n signers, each signer is assigned to a position in an n-dimensional
secret key vector sk and first generates its own BLS key pair (sk;, pk;). Then,
they jointly compute vk as a vector commitment to the (implicitly defined) sk.
Later on, when a signer subset S C [n] wants to sign a message, the multi-
signature and the aggregated public key apk for the set S are computed from
the individual contributions as usual. Additionally, the combiner creates a proof
that shows that apk is computed correctly. To do so, it creates a commitment
to the bit vector b where b; = 1 if and only if i € S. The proof then shows that
this commitment is indeed a bit vector, the sum of b; values satisfies a threshold
thr’, and the inner-product of b with sk is equal to the aggregated secret key
ask such that apk = g*°*. To create these proofs, the key generation must also
produce some auxiliary information denoted as the aggregation key ak.

An In-Depth Look. We will now take a closer look at how these keys and
proofs are generated. We use the following abstract relation IPg to denote an
inner-product proof that verifies the result in the exponent of g. The algorithm
VfCom is used to represent the commitment verification informally.

IPg := {(u,v) : VfCom(cy,u) A VfCom(cy,v) A gV =Y}

Key Generation. After standard BLS key generation with individual keys (sk;,
pk;), we need to commit to the vector of all secret keys sk to set a verification
key vk := Com(sk). This is done by letting each signer create a homomorphic
commitment U; := Com(sk; - ;) for the base vector e; of the i’th dimension in
Z,, . By combining all homomorphic commitments, we get a commitment to sk.

When signatures get combined for a concrete aggregated key apk later on,
we need to compute an inner-product proof to show that ¢%%"® = apk. This proof
must be computable without the secret keys sk. To this end, key generation
also outputs an aggregation key ak. Although the prior works do not state it
explicitly, we observe that what they do to is just computing homomorphic
proofs: the aggregation key ak consists of n proofs m; for j € [n] which show
g°¥® =pk;, i.e., 7; is an IPg proof between sk and e;. Looking ahead, the bit
vector b used in the signature combination can be represented with respect to
the base vectors {e;}’s. Thus, using the homomorphic properties of the 7; proofs
in ak, the combiner can compute the proof mage that shows g = apk.

The proofs in the aggregation key ak are computed collaboratively by the
signers as follows: The signer i, together with the commitment U; creates n IPg
proofs 7; ; between sk; := sk;-e; and e, for j € [n]. Each signer sends the proofs
m;,;'s to the other signers. Using the homomorphic properties of the proofs ; ;’s,
each signer can compute the IPg proofs 7;’s between sk and e; for j € [n] which
constitutes the aggregation key ak := (71, ..., ™).

Signature Combination. The signature combination aggregates individual BLS
signatures of a subset of thr’ signers S, and later allows verification w.r.t. to an
ad hoc threshold thr’ > thr. This is done in two main steps. First, the BLS multi-
signature ¢’ is computed and the corresponding bit vector b is set for S. Then,
an IPg proof magg is generated that o’ verifies for an apk such that apk = gkPb.

This is done using the homomorphic proofs m; in ak. The combiner also
computes a proof my, to show that b -1 = thr’, which is done by using the IPz,
relation below to create an inner-product proof between b and 1.

IPz, := {(u,v) : VfCom(cy,u) A VfCom(cy,v) A u-v =y}

That the vector b is only inside a commitment ¢, creates another challenge:
the verifier must be able to check that the committed b is indeed a bit vector.
Otherwise, a malicious combiner could use other values than bits, and fool a
verifier that the signature satisfies a higher threshold than it actually does. Thus,
the combiner must compute another proof mg;t that shows ¢, indeed commits
to a bit vector b € Z%. We notate the relation of this additional proof as follows.

BIT := {(u) : VfCom(cy,u) A u € Zy}

Using the three proofs magg, mthr, and mgiT, the combiner forms a proof 7, for the
relation in Eq. 1. The proof 7, the used apk, the implicit threshold thr’, and the
combined multi-signature ¢’ form the threshold signature o = (apk, o', 7, thr’).

Rys :={(sk,b) : VfCom(vk,sk) A VfCom(c1,1) A VfCom(cp,b)
A g*P =apk A beZ) A b-1=thr}

(1)

Verification. To verify a threshold signature o = (apk, o', 7., thr’) for an ad hoc
threshold thr against the key vk, the verifier checks that BLS.Vf(apk,o’,m) =
true, the proof for the above relation holds for apk and that thr’ > thr.

Proofs for Succinctness. A crucial observation here is that none of the values
in m, need to be hidden for secrecy. In particular, revealing b as part of the
signature would not have an impact on unforgeability — but yield signatures of
size O(n). Proving the statement instead of revealing all (public) inputs with
succinct proofs (SNARKSs) is the reason we get compact signatures.

This observation is helpful when designing, and understanding, the security
properties for the commit-and-prove system: In Section 4 we define a parameter-
ized zero-knowledge property that in our MATS construction is allowed to leak
most of the witnesses or deterministic computations thereof. This is sufficient, as
the MATS construction never demands any secrecy from the computed proofs.
The main purpose of the zero-knowledge property will be to simulate the addi-
tional key material in vk and ak, within the security reduction from a MATS
forgery to a multi-signature forgery.

2.2 Flawed Proof in [17]

[17] claim that their ATS construction is unforgeable, if the (co-)CDH assump-
tion holds and the non-interactive proof scheme for Rts is knowledge-sound.
Although no formal definition of knowledge-soundness is given, they informally
describe that a partial extractor to extract the bit vector b* from Rrys is required.

Proof Strategy in [17]. The main proof strategy is to build a CDH adversary
Acpn using an ATS forger Aats. Acpn takes a CDH challenge (X = ¢%,Y = ¢¥),
and simulates the ATS unforgeability game against Aats by using X as an honest
signer’s public key pk; := X. The (co-)CDH-related part of Acpn’s reduction,
following Boneh et al. [7]’s security proof of the PoP-based BLS multi-signature,
is given in detail. However, the simulation of Aats view related to the non-
interactive proof scheme is not clearly argued. At the end of the game, Acpn
runs the knowledge-soundness extractor on the non-interactive proof that was a
part of the forged signature o*, and extracts a bit vector b* which it then uses to
solve the CDH challenge. The knowledge-soundness of the non-interactive proof
for b* is proven independently to hold based on the ¢-SDH assumption.

Missing Simulation of Long-Term Values. A subtle but crucial part of the proof
is missing in [17] — namely how the view towards Aars is simulated. The challenge
hereby is that the ATS scheme not only contains the individual BLS public keys
(for which the reduction simply sets pk;:=X), but also generates further values
that contain the same secret exponent. These are the verification key vk — which
we abstracted away above as the commitment to the individual secret keys — as
well as the aggregation key ak that contains IPg proofs 7; that show gk = pk;.
All values are part of the overall public key of the threshold scheme, i.e., output
with key generation and are static throughout the construction and game.

Simulation vs. Soundness. The commitment vk and the IPg proofs in ak contain
group elements in the form of KZG commitments, g©'(7)% and hP(7)% with ¢
and h both being generators of G, P denoting a polynomial and 7 being the
¢-SDH trapdoor. In the reduction to CDH, the secret key s; is not known, and
thus the only way to simulate these values directly is if 7 can be chosen by the
simulator. However, 7 is the secret trapdoor on which the soundness of the proof
system (related to b*) relies. Thus, we cannot let Acpy choose 7, and at the same
time rely on the soundness, which requires secrecy of this value. Extractability
of KZG commitments in the existence of a proof simulator was also discussed
in other works [22, 26, 27| and simulating KZG commitments without using the
trapdoor 7 is a general challenge beyond [17].

Simulation-soundness does not help (out of the box). A natural idea might be to
rely on some form of simulation-soundness, which requires that the soundness
of zero-knowledge proofs holds in the presence of simulated proofs, that can be
retrieved through a simulation oracle, too. There is no way to directly apply
this here — both on a definitional and constructional level. First, simulation-
soundness typically only covers the direct proof statement, whereas here also
the secret key commitments in vk and ak need to be simulated. The fact that
both values are in fact deterministic derivations from the keys further makes
achieving a standard zero-knowledge definition infeasible.

Second, vk and ak are re-used in every signature proof, and a secure realiza-
tion of simulation-sound proof systems crucially relies on the non-malleability
of simulated values. This is necessary to guarantee that the extractor never
gets run on a simulated input. However, the ATS construction relies on homo-
morphic properties of the |IPg proofs m; which allows the combiner to compute
inner-product proofs on unknown keys. Thus, even if we’d have an extended
simulation-soundness definition that could produce these additional vk, ak val-
ues, their needed properties for the ATS construction will make it impossible to
argue with simulation-soundness in the security proof.

In summary, there is no immediate way to fix the proof in [17] in the generic
manner they intended, as we are missing the definitional and constructional tools
to do so. Which is exactly what we aim to solve with our work.

3 Preliminaries

We present the building blocks and the notation we use. For space reasons,
some parts are referred to Appendix B: There we define type-3 pairings, give the
(n1,n2)-DLOG Assumption [6]in Definition 10, and recap polynomial encodings
of vectors and show the Hadamard/inner-product relations on these encodings
in Lemmas 1 and 2 from [40].

Type-Based Commitments. We recap the type-based commitments below which
were first defined by [20] and were also used by Campanelli et al. [10] and Escala
and Groth [20] to design CP systems. The only change to the original definition

is inputs of the Setup algorithm: Setup takes a public parameter description pp
to define different schemes on the same public parameters and a size bound n
to paremeterize the message space of the commitments for vectors of messages.
The correctness property is given in Appendix B.

Definition 1 (Type-based Commitment). A type-based commitment sch-
eme CS := (Setup, Com, VfCom) is a tuple of algorithms such that:

Setup(pp,n) — ck : On input public parameters pp < ParGen(1*) and a size
bound n€N, it generates a commitment key ck. ck is an implicit input to
the other algorithms and specifies a type space T, and for all ¢t € T, message,
opening, and commitment spaces, Mg+, Ock.+, and Cey ¢

Com(t,m;0) — ¢: Given a type t € T, a message m € Mgy, and an opening
0 € O+ returns a commitment ¢ such that ¢ € Cep, ¢.

VfCom(t, ¢, m,0) — b € {true,false}: Verifies the commitment ¢ € Cc for the
message me M.y ¢, and the opening 0€ O, ;. Returns the result true/false.

Multi-Signatures with Proof-of-Possession (PoP). Following [16], we define the
multi-signatures in the PoP model. We employ a single-round signing algorithm
for simplicity, and it can easily be generalized to multiple signing rounds. The
full descriptions of multi-signatures and their properties are in Appendix B. A
multi-signature contains the following algorithms. Pg(1*)— ppus sets public pa-
rameters. Kg(pp) — (sk, pk, pop) generates a key pair and a proof-of-possession
for the secret key and KeyVf(pk, pop) — b verifies PoP. KAg(PK) — apk com-
putes an aggregated group public key. MulSign(sk;, PK, m)— ps, and Combine
(PK,{ps;}pk;epx)— 0 algorithms compute partial and final signatures. Finally,
Vf(apk, o, m)—b verifies final signatures with respect to an aggregated key apk.

Notation. We denote the vector of zeros and ones by 0 and 1. e; corresponds
to the base vector of i’th dimension in Z} (n is clear from the context all the
time). Inner-product and Hadamard-Product of two vectors u, v €Z; are denoted
as u-v and uov. Similarly, for Ue G", UV:=[];_, U/. The scalar multiplica-
tion/exponentiation of vectors with scalars are defined as u-v := [u-vy, ..., u-v,],
Uv .=[U",.., U], and UY := [U7,...,U"].

A relation R is a set of tuples (z,w)€ D, xD,,. A universal relation R over
a set of relations @ is defined as (R,z,w) € R if R€® and (r,w)€R. If a
relation R is contained in a universal relation, we denote this by, R € R. We
denote a parameterized relation IR, for a parameter pt and the definition of R,
potentially depends on pt. For example, a relation that defines the statement
space as a group can be parameterized for the underlying group.

4 Commit-And-Prove System
This section introduces our core building block for the flexible and provably

secure design of advanced threshold signatures: the commit-and-prove (CP) sys-
tem. This is an established approach [20, 10, 15, 11] for a modular protocol

10

design, and we closely follow the syntactical definition of [10] for commit-and-
prove SNARKs (CP-SNARKSs). Our new contributions are the security defini-
tions that we define here and are necessary to realize the required features in
the proof-based threshold signature schemes.

Type-based Commitments. The high-level idea for building threshold signatures
from commit-and-prove systems is to commit to the secret keys as part of the
overall public key, and later prove various statements on the keys. Thus, we want
to create commitments in different commitment spaces, e.g., committing the se-
cret key in both source groups of a pairing group or committing to different parts
of a witness separately. We use Type-based commitments which were introduced
by Escala and Groth [20] to support this feature in our construction.

Requirements for the Proof Systems. We need a CP system that allows proving
different relations on the same commitment in a modular way. As motivated
in Section 2, the security proof requires a careful combination of extractability
and simulatability properties from such a proof system, that are also compatible
with the static (and non-zero-knowledge) values that are revealed as public keys
and still provide the necessary (homomorphic) operations needed in the protocol
design. We provide a definitional framework that captures these seemingly con-
tradictory requirements. In short, we define four properties for our commit-and-
prove system that will allow us to securely build a threshold scheme (Section 5)
and that can be efficiently instantiated as shown in Section 6:

f-zero-knowledge: As threshold signatures typically reveal some determin-
istic and long-term values to re-use across proofs, we need a relaxed zero-
knowledge notion that allows leaking some information about the witness.

Policy-based simulation extractability: This property captures the desired
simulation-extractability but restricts the simulation queries that an adver-
sary can make in order to guarantee the existence of an extractor; as well as
captures flexible extraction scenarios such as partial extractors.

Policy-based simulation-sound binding: Our third security notion can be
seen as the classical binding property expressed in the context of simulation-
extractable commit-and-prove systems. It guarantees that the commitments
are binding even in the presence of simulators.

Homomorphic properties: In addition to the security properties we also re-
quire the commitment and proof system to allow for homomorphic opera-
tions, which we make explicit in our definition.

Most of these properties have been defined in some way before, but either still
needed extensions/variations or had only been defined for either commitments
or proofs, but not the combined system. For each property, we briefly explain
the existing concepts and how and why we extend them. First, we define the
adapted syntax of the commit-and-prove SNARKs we rely on.

11

4.1 Commit-and-Prove SNARKs (CP-SNARK) [10]

We closely follow the definition of [10] for commit-and-prove SNARKSs. The main
idea is as follows: They define a relation R over some (D, D,,) where D, is the
statement space and D,, is the witness space. It is required that D,, := D,,, x D,,
can be split into two parts. The first part, D,, corresponds to the part of the
witness that we will create commitments for, and the second part is the part
where we don’t need commitments. They further require that D,, can be split
over (Dy X --- x Dy) where each slot corresponds to a commitment. Lastly, the
CP-SNARK is defined over a relation that contains the commitments within the
statements and openings to the commitments within the witness.

The changes we make over the [10]’s definition are as follows: First, we define
the CP-SNARKSs over parameterized relations R, , where public parameters
that can be generated using a parameter generator pp € ParGen(1%), and a size
bound n € N. While defining R, over the vector of secret and public keys,
the public parameters pp and the size bound n help us to parameterize the key
spaces and the vector size. Note that we drop the parameter indexes from the
relations for readability in the rest of the paper whenever the parameters are
clear from the context. Second, we make type-based commitments explicit in the
definition. This change is not technical but rather aims to improve readability.
[10] defines CP-SNARKS on a regular commitment scheme and then fits type-
based commitment schemes into this scheme by assuming that the types of a
commitment and a message can be inferred from itself. The third change we make
is removing the specializable crs feature. The main motivation of specializable
crs is performance optimization, and we omit this feature for simplicity. The
forth change is that we rely on commitment-only crs, i.e., the crs value can be
derived from the commitment key deterministically. This assumption has already
been used in [10] and allows removing the Kg for simplicity. The definitions of
completeness and succinctness are in Appendix C.

Definition 2 (CP-SNARKS). Let {Rpp.n }ppeparGen(1*),nen be a family of uni-
versal relations over relations Ry, , on the space Dy X Dy, x D,, such that D,
splits over £ arbitrary domains (D1 X --- X Dy) for some arity parameter £ > 1.
Let CS := (Setup, Com, VfCom) be a type-based commitment scheme as in Def-
inition 1 such that for i € [¢], CS has a type t; where D; C Mgy, A commit
and prove 2kSNARK for {Rpp n}ppeparGen(1*),nen 8 @ zkSNARK for a family of

universal relations {Rglf}ckeSetup(pp,n) such that:

— every RS € RS, is represented by a pair (ck, R,p.n) where ck € Setup(pp, n),
pp € ParGen(1*), n € N, and Rypn € Rppn;

— RS is over pairs (&,1) where the statement is & := (z, (t;, cj)jele) € Dz X
C, the witness is W := ((t;, m;) i (L, 05) e, w) € Dix---xDy x O¢x D,
and the relation Rf,f holds if and only if

/\ VfCom(tj,cj,mj, Oj) A\ (I, (mj)je[g],w) € Rpp,n
jeld

12

Prove(RSY, #,1) — m: Takes relation RS € RS, a statement & and a witness
 such that (Z,%) € RS and outputs a proof 7.

Vf(RE,f’, Z,m) — b € {true,false}: Takes relation, a statement, the corresponding
proof, checks if the proof holds for the statement and outputs the result.

4.2 Properties of CP-SNARKSs

We present the required properties of CP-SNARKSs for our MATS scheme.

Homomorphic CP Systems. We further require the CP to be homomorphic
in the commitments and proofs, which will be necessary in the protocol design.
That is, we require a commitment homomorphism EvalCom that outputs a com-
mitment on a message m which is a function F' of n messages, and corresponding
openings, using only the commitments to the n messages. Similarly, a proof ho-
momorphism EvalProof computes a proof for a function X of n statements, using
only their corresponding individual proofs. We give the straightforward defini-
tions of these homomorphic properties of CP in Appendix C.1.

f-Zero-Knowledge. When using CP systems as building blocks for signature
protocols, requiring a full zero-knowledge property is neither necessary nor pos-
sible — when relying on building blocks with deterministic commitments. Thus,
we define the flexible notion of f-zero-knowledge which allows to leak certain
knowledge about the witness and is given directly for the combined CP system.

Leaky Zero-Knowledge. The additional information that can be leaked is ex-
pressed through a function fpyove and providing fprove (W) as an input to the simu-
lator. The regular zero-knowledge property is the special case that fprove(W) :=L
for all ’s. A similar zero-knowledge variant was used by [22], too where the ad-
ditional input to the simulator is called leakage. Note that the leakage has a
different role than the statement even if both are public values. The statement
is necessary to verify a proof, whereas the leakage is not.

An immediate application of this approach for a CP-SNARK is providing the
openings of some commitments from the statement as leakage to the simulator.
For example, our threshold signature application commits to the signer subset
in a signer group as a bit vector b only for succinctness. While there is no harm
of extending the statement with b to the security of the signatures, we would
lose the efficiency by doing that. Thus, we leak this vector to the proof simulator
when simulating the proofs on this commitment.

The main difference between our zero-knowledge definition and [22]’s is that
we define the zero-knowledge property explicitly on CP-SNARKSs and provide a
commitment simulator additional to the proof’s simulator. Our zero-knowledge
definition allows for simulating commitments in addition to the proofs. Also,
similar to the proof simulator, we employ a flexible commitment simulator that
can get some information about the message to simulate a commitment on it as
input. This information is modeled as an output of some function fcom on the

13

message m. We note that Campanelli et al. [10] defined somewhat-hiding polyno-
mial commitments which has a similar simulator specifically for the polynomial
commitments where fcom also takes a trapdoor as input.

CP-SNARK Simulator. More precisely, we define the following sub-algorithms
of our zero-knowledge simulator on CP-SNARKSs:

SSetup(pp,n) — (ck, sts): Outputs the simulated commitment key ck and the
internal simulator state sts.

SCom(sts,t, fcom(t,m))— (c, 0, sts): Outputs a simulated commitment and ope-
ning (¢, 0) of type t using state sts and additional information fcom(t,m).
SProve(sts, R, %, fprove()) — (7, sts): It outputs a simulated proof 7 for the

statement Z, using state sts and additional information fpove(10).

We can now define f-zero-knowledge as the indistinguishability of the real
and simulated commitments and proofs as follows.

Definition 3 (f-Zero-Knowledge). A CP-SNARK CP is f-zero-knowledge
for f:(fcom, frrove) if there exists a simulator (SSetup, SCom, SProve) s.t. for all
p.p.t. adversaries A, for all A and n € poly(\):

pp<—ParGen(1?) pp < ParGen(1%)
Pr | ck<+Setup(pp,n) : b =true|~Pr| (ck,sts) + SSetup(pp,n) : b = true
b%AOCom,OProve(Ck) b(_AOSCom,OSProve(ck)

OCom(t,m): Form € My, samples a random o <— Ocp ¢, Tuns ¢ := Comeg(t,
m,o0), and outputs (c, o).

OProve(R®S, #,1): It outputs ™ < Prove.(%,%) if R® € R and (2,%) €
RCS. Otherwise, outputs L.

OSCom(t,m): If m € Mg, it runs (c,o0,sts) < SCom(sts,t, fcom(m)) and
outputs (c,0). Otherwise, it outputs L.

OSProve(R®S, #,1): If R®> € R and (2,%) € RS, then it runs (,sts)
SProve(R®, sts, 2, frrove(W)) and outputs 7. Otherwise, outputs L.

Shared Simulator State. An obvious difference between our simulator and a
regular zero-knowledge-proof simulator is the shared simulator state, which also
contains the zero-knowledge trapdoor keys. Thus, the zero-knowledge property
we define explicitly considers CP-SNARKSs. Such zero-knowledge simulators with
a shared state for the commitment and proof simulators on CP-SNARKSs were
also used by previous schemes [10, 11]. However, [11] does not model any “leaky"
property, whereas [10] does but in a more specific way, as it models the extra
leakage through a bounded number of evaluations of polynomials. Our notion
is more generic, through the abstraction as an arbitrary function f which only
becomes concrete when the construction is made.

14

Capturing Security for Deterministic Commitments. The motivation behind
our simulation is to allow deterministic “commitments", such as ¢g*, and non-
interactive proofs on them. These have been used in the current ATS construc-
tions [17, 30], where the public key and further group elements derived from the
same secret key serve as commitment values to the signers’ keys.

In terms of simulation, we do not have to simulate an opening in determinis-
tic schemes, but simulating the commitment itself would not be feasible. Unlike
standard randomized commitment schemes, where any commitment can usually
be validly opened to any message via the simulator, deterministic schemes re-
quire a unique commitment for each message that the simulator has to output
right. Providing fcom(m) to the simulator solves that problem. This feature is
particularly useful when fcom is a one-way function, e.g. the message m is a secret
key and fcom(m) is the corresponding public key. For example, in the proof of
our generic construction, the additional commitment to the individual secret key
sk; will be simulated using this feature, despite only knowing the corresponding
multi-signature public key pk;.

Restrictions on Leakage? The choice of f determines how strong the f-zero-
knowledge property is. The two extremes are either to set fcom :=1L and fprove
:=_1, giving the common zero-knowledge notion, or to set fcom and fprove to the
identity function which allows simulators running the original Com and Prove
algorithms internally. In our MATS construction, will use a mix of leaking parts
of the witnesses and only a one-way function thereof. This gives the needed
strength (but also not more) in the security proof, yet is weak enough to be
efficiently realizable via deterministic commitments.

Simulation Extractability. Soundness of a proof system that yields a proof-
of-knowledge is expressed through an extractor that can efficiently compute the
witness from an adversarially provided proof. As argued in Section 2, we will
need some sort of extractability in the presence of simulated proofs to securely
construct threshold signatures along the blueprint from [17, 30]. Relying on the
stronger notion of simulation extractability [32], that guarantees such an extrac-
tor even when the malicious prover is given access to simulated proofs, is not
an option though: Simulation extractability the non-malleability of the created
proofs, but we need homomorphic proofs for the signature construction. Our def-
inition is inspired by other simulation extractability notions [14, 34] which allow
specific malleabilities, and we refer to Appendix A for a detailed comparison.

Policy-based Simulation Queries. Luckily, we do not need full-fledged simulation
extractability, but a weaker version along the lines of Faonio et al.’s policy-based
simulation extractability notion [22] will be sufficient. [22] defines policies that
can put restrictions on the type of simulation queries or the proof forgeries
that the adversary is allowed to make. For example, our policy for the generic
threshold construction will exploit the fact that we only need to simulate IPg
proofs 7; ; for an honest signer i and be set accordingly.

15

We modify the definition of [22] in several ways. The first change is on how
we formulate a policy. Faonio et al. require that a policy contains two functions
@ = (g, P1). Do is run before any simulation queries, and it is used to set
certain parameters in the policy by sampling from a distribution. We simplify our
definition by removing &g since we do not need to sample values for our policies.
[22] defines @4 as a predicate that contains the main controls over the game’s view
and checks whether the adversary followed the policy. We define two dedicated
predicates @, and P.,; that check the rules of the policy related to simulators
and extraction, respectively. [22] already does such separation in their concrete
policies, but we lift this distinction to the definition level. This will be useful to
define simulation-extractable proofs and simulation-sound commitments on the
same simulation policies.

Partial Extractors. We further generalize the definition to allow for partial extra-
ction, i.e., relaxing the extractor to output not the full witness itself, but only
some function of the witness. This is mainly for convenience in our security proof,
as part of the witnesses will be publicly known anyway (recall that the commit-
ments ¢, and ¢; in Equation 1 are used for compactness, not for any secrecy
requirements). We extend the policy-based simulation extractability definition by
first allowing the adversary to output some additional information auz, which
is also given to the extractor. When compliance with the extraction policy is
checked in the winning condition, this aux is given in addition to the extracted
value w. In our application, we are going to use this generalization to only de-
mand for extraction of the bit vector b from the proofs magg, mehr, and 7giT. The
witnesses of these proofs also contain the opening for the commitments of the
public keys pk, and the weight vector w — but these openings are public anyway,
so there is no need to extract them again in the security proof.

Our formal definition of policy-based simulation extractability is presented
below. Note that the leakage function f is explicitly parameterized just to be
compatible with the simulator definitions.

Definition 4 (Policy-Based Simulation Extractability). A CP-SNARK
CP is f-®-simulation extractable (f-P-SE) if there exists an efficient extractor

such that for all efficient adversaries A, Pr {Exp{;izE(lA) = true] < neglgg(A).

Simulation-Sound Binding. Let us recall where we would need the binding
property in the first place. CP-SNARKSs allow proving various relations on the
same commitment. The most common use case is proving the conjunctions of
relations, which can be trivially done by the concatenation of the two individual
proofs [11]. The corresponding knowledge-extractor can be built by using the
individual extractors and relying on the binding property of the commitment,
ensuring that both extracted values are identical.

The same argument cannot be made when simulation extractability is needed:
the binding property assumes that the Setup algorithm is run honestly, not via
a simulator, and it also does not capture that the adversary can see simulated

16

OSCom(t;, feom(tj, m;)) OSProve(RS®, 2, forove (1))
(Cj » O3y Sts) (_Scom(Stsv tjfoOm (tjv mJ)) (71']‘7 sts)<—SProve(sts, R]Cs, f]‘ ,fprove(’lfjj))
QC = QC U {(tJ7 Cj, fCOm(t]" mj)7 Oj)} Qﬂ_ = Qﬂ. U {(R]CS, .i'j, Ty, fProve(wj))}
return (c;,05) return 7;

Bl (1) BN (1Y)

Qr,Qc =0, pp ParGen(l)‘) Qr,Qc =0, pp ParGen(l)‘)

(ck, sts)<+—SSetup(pp, n) (ck,sts)<+—SSetup(pp, n)

(RCS7 #, 7, auz) < A° (ck) (t,¢,m0,00,m1,01) < A(ck)

w+E&(ck,sts, R &, aux) view « (ck, sts, Qr, Qc)

view < (ck, sts,Qr, Q) return VfCom(t,c,mo,00) A VfCom(t,c,mz,01)

return Vf(Z,) A Pgim (view) A Psim (view) A Ppna(view,t,c,mo, 00, m1,01)

A @ezt(Rcs,.@,w,aum,w,view)

Fig. 1. Definitions of ®-Simulation Extractability and &-Simulation-Sound Binding
games which use the OSCom and OSProve oracles.

commitments or proofs. Thus, the binding property does not necessarily hold in
the existence of commitment and proof simulators, and we cannot use it to argue
that several extracted values in the presence of such a simulator are equivalent.

f-D-Simulation-Sound Binding. We introduce the notion of simulation-sound
binding which requires that the binding property holds even when the adversary
has access to commitment/proof simulators. We define the property on policy-
based simulations for a policy @ := (Pgim,Ppna). The adversary gets access to
simulation oracles that can only be queried in accordance with ®g;,,, and even-
tually outputs two messages mg, m1 and openings oy, 01 that lead to the same
commitment c¢. The binding and the simulation-extractability properties can be
used in combination by setting a common @g;,,. The binding policy @p,q speci-
fies when the adversary’s output is valid. It must enforce that mg#my, and can
impose further limits, e.g., that the commitment ¢ must be of a specific type.
A similar simulation-sound binding property was defined on trapdoor com-
mitment schemes by first [28], but in a commitment-only setting, explored more
extensively in Appendix A. We are not aware of any works that define this prop-
erty on commit-and-prove systems by also considering the simulated proofs.

Definition 5 (f-®-Simulation-Sound Binding). A CP-SNARK CP is f-®-
simulation-sound binding (f-®-SBND) if for all efficient adversaries A,

Pr [Exp{;i{SBND(lA) = true] < neglgpnp(A)-

5 Multiverse Ad Hoc Threshold Signatures (MATS)

We present our construction of a MATS scheme. A MATS extends the concept of
ad hoc (weighted) threshold signatures — where each signer is assigned a weight
and the threshold is defined ad hoc during verification over the sum of the signer

17

weights — by ad hoc groups (the multiverse). In the multiverse, signers can re-use
their long-term secret keys across several signing groups.

Das et al. [17] and Garg et al. [30] only support fixed group of signers, but
also sketch how their ATS constructions can be extended to the MATS setting.
However, there was neither a formal definition of such a scheme nor a security
proof of the sketched construction. We present a definition to cover both ad
hoc groups and ad hoc thresholds, and a generic construction that provably
satisfies that notion. It is worth to note that the use cases for ATS schemes which
were proposed by [17, 30] — such as proof-of-stake consensus algorithms [41],
decentralized autonomous organizations [21], and decentralized oracle networks
[19] — allow their users to join and leave the system dynamically, necessitating ad
hoc signing groups. Our construction uses a multi-signature scheme and a CP-
SNARK for proving the correct key aggregation. It closely follows and extends
the core ideas of the prior works [17, 30], but provides the construction in a more
generic manner, and addressing the issues discussed in Section 2.

5.1 MATS Definition

Our MATS definition is mainly based on the definition from the original multi-
verse threshold scheme (MTS) by Baird et al. [4]. We adapt their model to our
notation and extend it to cover ad hoc thresholds — incorporating the necessary
parts of the models from [17, 30]. We also make the model more flexible to allow
for generic constructions from any multi-signature as defined in Def. 11, instead
of tailoring it to BLS-signatures. Our first change to the syntax by [4] is that
we define a Setup algorithm that takes a maximum size for a signer group n, as
an input. This aligns with vector commitment setup algorithms from [17, 30],
where specifying vector size is necessary. Just as in [4], we provide an individual
key generation algorithm Kg that outputs a key pair (sk(“), pk(“)) for a signer wu.
Note that we use indexing by sk(*) as a way to index a signer in the system and
sk; as a way to index a signer in a vector of signers.

Universe Generation. In [4], generation of group public keys, called universe
generation, involves two steps. UGen; is run by each signer to create a partial
key to finalize the group public keys. Our UGen; algorithm takes the vector of
signer public keys pk and the secret key corresponding to the index 4 in the
vector, sk; and outputs partial key prk; for the signer. In the construction level,
as also noted by [30], the UGen;’s output will not depend on pk, but knowing
only the index ¢ is enough. However, requiring the vector pk as an input is
the most straightforward way in the real world to determine the index i for
a signer, so we keep pk as an input. Unlike [4], our UGen; algorithm doesn’t
require the weight vector and threshold as inputs. Instead, multiple thresholds
are supported, and the weight vector is only needed in the second step, UGens,
so signers can adjust weights without using their secret key.

UGens is the final step to form group verification and aggregation keys. As in
[4]’s definition, it takes the partial key vector prk, the public key vector pk, and
the weight vector w as input to output the verification and aggregation keys.

18

Again, the threshold thr is not an input to this algorithm since we aim for ad
hoc tresholds, that are only determined during verification.

Generic Syntax. Another minor change is that our definition is made more ge-
neric to allow instantiations from any suitable multi-signature, while [17] and
[30] included some behaviour that is typical for BLS-based approaches in their
syntax. More precisely, we give PSign the signer subset PK as optional input in
our definition, which in turn allows to consider PSign as an interactive protocol.
Finally, we have the threshold thr as an additional input to [4]’s signature ve-
rification algorithm so that we can use the same group public key to verify the
signatures with different thresholds.

Definition 6 (Multiverse Ad Hoc Threshold Signature (MATS)). A mul-
tiverse ad hoc threshold signature scheme is a tuple of algorithms such that:

Setup(1*,n) — ppmats: Outputs the public parameters ppuars for security pa-
rameter 1* and the maximum group size n. We only make ppuats an explicit
input to Kg and assume that it is an input to all algorithms, implicitly.

Kg(pp) — (sk),pk(®): Outputs a secret and public key pair (sk(*), pk(*).

UGen; (sk;, pk) — prk;: For an index i of a vector of public keys pk and cor-
responding secret key sk;, outputs a partial key prk; that can be used to
compute group verification and aggregation keys.

UGensy(prk, pk,w) — (vk, ak): Given partial keys, individual public keys, and
the corresponding weight vectors, outputs a signature verification key vk and
a signature aggregation key ak.

PSign(sk), PK,m) — ps): Given a secret key sk(*), a message m and op-
tionally a subset of signers PK C|[n], outputs the partial signature ps(®).
Combine({ps, }ics,ak) — o: It takes the partial signatures of signers that cor-
responds to the set of indexes S on pk and the aggregation key ak as an

input. It outputs the combined signature o.

Vf(vk,o,m,thr) — b € {true,false}: Checks if o is a valid signature on the mes-

sage m for the verification key vk that satisfies the threshold thr.

The correctness is defined in Appendix D.1 and follows the definition of [4].

MATS Unforgeability. Our unforgeability definition for MATS is based on [4],
but is adapted to the changes we made in the syntax. One additional dif-
ference is that the adversary in our setting starts by choosing the maximum
group size n which is necessary to perform the setup accordingly. Then, just
as in [4]’s definition, the adversary gets access to the oracles for creating hon-
est signers, requesting an honest signer’s partial key on a universe and partial
signatures on message of its choice, as well as corrupting an initially honest
signer. Similar to [4], the adversary can create malicious parties by itself, with-
out needing to invoke any oracle. Finally, the adversary must output a non-trivial
and valid forgery (m*,o*, thr*, pk, {prk;}pk,cpi\#, W). The second part of the
forgery ({prk;}pr,epk\a, W) is used to derive the group verification and aggrega-
tion keys via UGens. Note that we abuse the notation by using the intersection

19

0" (pk;, pk) 0*%(O (u, PK, m)
i pki ¢ Hireturn L (550, pk™) + Kg() Q= Qu{(m™,m}
return UGen; (ski, Pk) g .— gy {pk(“)}, return pk(“> return PSign(sk(u), PK,m)

Expl/ e N (1Y) 0% (pk™))
Q,H:=0, n+ A1), ppuars + Setup(1*, n) if pkg H -
(m*, 0", thr*, pk, {prk; } 1, cpk\ s W) A (pp) return L

for pk; € pkN H : prk, < UGen; (sk;, pk) H:=H\ {pk(u)}
Sw = {i: pki €pk A (pki € H V (pki,m*)€Q)}, thr:= Zieswwi return sk(™
(vk, ak) < UGenz([prky, ..., prk ok], Pk, W)

return Vf(vk, o™, m™, thr*) A thr < thr*

Fig. 2. MATS Unforgeability Game. u is a system-wide index for sk and i is the
index for sk; in a vector of signers.

of a vector and set, pk \ H by treating the vector pk as a set without an order,
for simplicity. The adversary outputs the partial keys of the malicious signers in
the vector only and the partial keys of honest parties are computed by the chal-
lenger. A non-trivial forgery means that (m*,o*, thr*) from the forgery must be
valid against the computed group verification key and the adversary must not
control signers that reach the threshold or is a trivial combination of honest
signature contributions. The detailed game is given in Figure 2.

Definition 7 (MATS Unforgeability). A MATS scheme is unforgeable if for

all efficient adversaries A, Pr [Exp%ﬁs'UNF(l)‘) = true} < neglyats. unr(1Y)-

5.2 Construction of MATS for DL-based Key Pairs

We now provide a MATS construction relying on a CP-SNARK as defined in
Section 4 and a multi-signature scheme. Since we need to prove relations and
statements over keys of the multi-signature scheme, we need to be able to express
them properly. For this, we rely on a DL-based setting and assume that the multi-
signature has keys sk € Z,, and pk := g%k,

Restriction to DL (and how to avoid it). Our “generic” construction only sup-
ports DL-based key pairs, thus limiting its general applicability to multi-sig-
natures with such keys. We opted for this limitation, to make the definitions
of the needed homomorphic properties over the key spaces of the signatures
simpler. As our DL-based blueprint still captures the most prominent multi-
signature schemes, BLS and Schnorr-based, [7] we consider this as a reasonable
trade-off. Our construction can be generalized over more abstract mathematical
structures, along the following ideas: The underlying multi-signature scheme 1)
must have a vector space F™ as the secret key space over some field F, 2), there
should be a deterministic mapping map(sk) = pk between the corresponding
secret and public keys, and 3) there should be a homomorphism * such that
map(sky + sko) = pky x pke. Then, the inner-product proof IPg we have for the

20

DL-based key pairs can be replaced with a matrix-vector product proof showing
that the product of the m by n matrix of secret keys [sk1]| ... |sk,] and the vector
[b1,...,b,)T € F™ maps to apk: map([sk1| ... |skn]-[b1,...,bn]T) = apk. The BIT
proof must show that all b; values are equal to zero or identity element of F.

Comparison to Previous Schemes. We build our MATS scheme from the ATS
schemes [17, 30], following their common blueprint we informally described in
Section 2. We first give a brief overview of how our work differs from theirs on
the ATS level, i.e., ignoring the changes for the multiverse, and then sketch the
extensions that turn the ATS scheme into a multiverse version.

In the existing works, the verification and aggregation keys were expressed
through auxiliary and BLS-specific values. This missing separation between the
BLS multi-signature and additional parts hindered a generic security analysis [30]
or lead to an incorrect argumentation in the proof [17].

Our generic construction clearly separates both, and for each makes the func-
tional and security properties explicit. During the group key generation (and
setup), generic commitments to the secret keys and weight vector are gener-
ated. Computing the verification and aggregation keys is performed using the
homomorphic properties of the underlying commitments and proofs, instead of
relying on construction-specific structures. Likewise, in signature combination,
we create a generic commitment for the bit vector, compute proofs on these
commitments, and make the required homomorphisms and proven statements
explicit. Ultimately, our construction makes a security proof that treats the un-
derlying multi-signature as a black-box possible. In [17]’s flawed proof, the main
problem was a missing argumentation on how to simulate the verification key
vk and the aggregation key ak. Our construction describes vk as a commitment
and ak as a tuple of non-interactive proofs, both are values that we can simulate
via our CP system.

Finally, to turn their ATS schemes into a MATS scheme, we follow the ob-
servation that was already made by both works [17, 30]: repeating the group
public key /universe generation multiple times with different signer groups does
not harm the security of the construction.

Compatability Requirements. We require some basic compatibility from both bu-
ilding blocks, mainly requiring that their group structure and types are compat-
ible, which is needed for the correctness of the generic construction. We summa-
rize these requirements here and refer to Appendix D.2 for the formal definitions
of compiling multi-signatures and compiling CP-SNARKs. The multi-signature
must have key spaces as a DL-key pair on the pairing group G and the aggrega-
tion method must be the group multiplication, MS.KAg(PK) := HpkePK pk for
the signer public key set PK (Definition 20).

IPg = {(v, (w,v)) : (v,(w,v)) €G x (Zy,Zy) A v=g""}
Pz, :={(v,(w,v)) : (v,(w,v)) €Zy x (Z},Z3) A vy=u-v} (2)
BIT:={(L,u) : ueZ; AN uecZy}

21

Definition 21 gives the five requirements for the underlying CP-SNARK which
needs to cover the relations IPg, IPz,, and BIT from Eq. 2. The definitions are
parameterized with a size bound n € N that defines the vector size and public
parameters pp := ppms € MS.Pg(1}) which is assumed to describe a group
(9) := G with prime order p. Note that the relation BIT is trivial to prove as it
is, but the CP-SNARK relation we define on it is a non-trivial relation to prove
as it requires proving that a committed vector is a bit vector.

The five requirements in Definition 21 can be summarized as follows. First,
the CP-SNARK must contain commitments with appropriate message spaces
to commit to the vectors sk, w, and b, denoted by tg, t1, t2, such that it can
compute the necessary proofs on these commitments.

The second and third requirements define the homomorphic properties to
compute vk and ak. During the universe generation, each signer will create a
commitment to its own secret key under the correct position in the vector. Then,
relying on the commitment homomorphism Fj; ,,, we can compute a commitment
to the secret key vector sk. Similarly, the proof homomorphism X, will be
used to combine the individual signers’ proofs on their individual keys, to get
the proofs on the vector sk we homomorphically computed. These proofs will
become a part of the aggregation key ak.

The fourth and fifth requirements define the necessary homomorphic proper-
ties that we will rely on to create the final IPg proof in the Combine algorithm. In
more detail, the fourth requirement gives the commitment homomorphism F, ,
on type to commitments for the vector addition. The third requirement provides
the proof homomorphism Xy, ,, for proofs that contain the same tg commitment,
but different o commitments to compute the proof corresponding to the inner
product of the same tg commitment and the sum of {5 commitments.

CP-based MATS Construction. Our generic construction is formally de-
scribed in Figure 3. We start by describing how the intuitive blueprint from
Section 2 is expressed via our CP-SNARK abstraction.

Setup. The Setup algorithm creates the commitment key ck and the public
parameters for the multi-signature scheme. It further sets some default openings
for the base vectors e;’s and the weight vector w. All signers need to commit
to these vectors using the same opening during the key generation, and we do
not need these commitments to be hiding. Thus, we simply set some openings
as global parameters. Another opening is set for the vector of zero’s which will
become clear together with the key generation part. We note that these openings
could simply be set to 0 bits. (The CP instantiation presented in Section 4 uses
deterministic commitments, so there are no openings anyway.)

Universe Generation. Each signer creates their individual key pairs as a multi-
signature key pair (sk;, pk;) together with the corresponding proof-of-possession
pop,. Universe generation contains two algorithms and we implicitly assume in
these algorithms that the input vector has size n, the maximum group size, for

22

notational simplicity. The potential empty slots in the weight or secret key vector
for smaller size groups can be filled using zero. In UGen;, a signer commits to
its secret in the vector form as sk; - ; and computes inner product proofs for all
base vectors e}s. These proofs will be used to set the aggregation key. Finally,
the signer outputs the public key, the commitment, and the corresponding proofs
as part of the prk, to be used in UGens.

In UGeny, a signer checks if prk,’s of other signers are well-formed and sets
the verification key and the aggregation key. The first check is verifying the pop
for the pky to prevent maliciously chosen pky’s as regular. The second check is
verifying all inner-product proofs, IPg, for the commitment Uy, that corresponds
to pky. If any of these checks do not hold, pk;r must be excluded from the
group key. This is done by setting a dummy key (sky := 0, pky := 1g), creating
the dummy commitment Uy, := Com(tg, 0,00) and the weight wy := 0. As the
opening of Uy, is known, the signer can also compute the dummy inner-products
for the new pkj, and form a dummy prk,. After checking all prk;’s and making
the necessary changes, the signer evaluates the commitment to the vector of all
secret keys sk, U. Similarly, the signer evaluates the individual proofs that came
from all other signers and forms the inner-product proofs of sk with all base
vectors e;’s. While U forms the verification key together with the commitment
to the weight vector W, the evaluated proofs form the aggregation key ak. Note
that the elimination of ill-formed keys as above was also applied in [30].

Signature Generation & Verification. The algorithm PSign simply runs the
MS.MulSign algorithm and outputs the partial signature. The Combine algo-
rithm combines the multi-signature o’ using the partial signatures, evaluates
the homomorphic proof 7age using 7;’s in ak, and also computes the proofs 7gt
and 7. The final signature o := (0, apk, B, Tagg, TBIT, Tthr, thr’) contains the
multi-signature, aggregated key apk, commitment to the bit vector B, the proofs,
and the satisfied threshold thr’. We note that if the key and signature size of the
underlying multi-signature is independent of the group size and the underlying
commit-and-prove system is succinct, we get compact MTS signatures.

A signature verifier checks the validity of the proofs, verifies the multi-
signature o’ for the aggregated key apk, and checks if thr > thr’.

Correctness. The correctness easily follows from Definitions 20 and 21.

Theorem 1. IfMS is a compiling multi-signature scheme and CP is a compiling
CP-SNARK, then the construction in Figure 3 is a correct MATS.

Leakage & Policy. As motivated in Section 2 it will be impossible to assume
full zero-knowledge properties from the CP system, due to several determinis-
tically derived values as part of key generation; or to rely on unrestricted sim-
ulation-extractability properties due to the homomorphisms required from the
commitments and proofs. Thus, we must define the leakage function f := (fcom,
frrove) used to express the relaxed simulation guarantees, as well as the policies
Dy = (Psim, Pewt, Pona) for the simulation extractability /binding properties.

23

Setup(1*,n) UGen (ski, pk)

ppws < MS Setup(1) for i € [n] : parse pk; := (pki, pop,)

ck < CP.Setup(ppwms, n) sk; := sk; - e;, U; := CP.Com(tg, sks, 0;)

Pick ow € Ock iy, 00 € Ockte for 0; + Ocpi.for Y := (pkj)® and j € [n] :

Pick 0e, € Ocp¢, for j € [n] 7i,;4-CP.Prove(IPg, (Y}, (te, Ui), (t2, ce;)).

return pp := (ck, ppms, Ow, 0o, ((te,ski, 0:), (t2,€5,00;)))
Ocys- -5 0e,) return prk; := (Us, (7i,5)je[n))

UGen; (prk, pk, w)
for k € [n] : parse prk, := (Ug, (T,j)jen)), Pkr = (pkk, pop,)for k € [n]
Y = (pki)*
for k€ [n] and j € [n] :
if ~MS.KeyVf(pki, popy) V CP.VF(IPg, (Y, (te, Ur), (t2, ce;)), Tk j)

pki = 1g, Uy := CP.Com(tG7O, Oo)7 wi =0

for j € [n] : 7r;w-eCP.Prove(IF’@7 (1, (te, Uk), (zfz,ce]))7 ((tq;,O,oo), (tg,ej,oej)))
W := CP.Comci(t1,w,0ow), U := CP.EvalComcy(Fi; n,tc,Ul,...,Un)
return (vk := (U,W),ak := ((m1,...,m), Pk, w))

Combine({ps; }ies, ak) Kg(ppmars)

parse ak := ((7r1, ..y Tn), PK, W) return (sk, (pk, pop)) < MS.Kg(ppwms)
b,op) := F,, i 0c.)jes), thf :==w-b

(b, 0b) ta,151((€5,0e;)jes), thr' :==w PSign(sk:, PK. m)

B := CP.Comer(t2, b 0n), apk :=[licsphi L oriim ps. « MS.MulSign(sks, PK,m)
o’ := MS.Combine({pk: }ics, {ps; }ics)

Tagg := CP.EvalProof (IPg, Xy, |/, (i)ics) Vf(vk, o, m, thr)

parse o := (U'/, apk, B, Tagg, TBIT, ﬂth,,thr')
return thr < thr' A MS.Vf(apk,o’,m)
A CP.Vf(IPg,, (thr', (t1, W), (t2, B)), mtnr)
A CP.VE(BIT,(L, (t2, B)), mair)
A CP.VF(IPg, (apk, (tg,U), (tz, B)), Tagg)

Fig. 3. Generic MATS construction.

meir < CP.Prove(BIT, (L, (t2, B)), (t2, b, 0p))
Tthr <— CP.PrOVG(lPZp, (thr', (t1, W), (t2, B))7
((t17 w, OW)7 (t27 b, Ob)))

/ /
return o := (o', apk, B, Tagg, TBIT, Tthr, thr')

Zero-knowledge Leakage f. The witness of the proven relations contain sk, b, and
w. Proving statements over the vectors b, and w is done to achieve succinctness
rather than to hide them. Thus, the leakage function leaks all the information
about the openings of ¢; and ¢y commitments while for the tg commitments
(which contain the secret keys), it only leaks the vector of G elements with the
tg vector in the exponent and corresponds to pk for the committed sk.

Policy Definition. Finally, in Figure 4 we define the policy @, := (Psim, Pext,
®y,,4) which specifies the allowed simulation queries, the part that requires extra-
ction, and the condition for the binding definition. Writing @;, denotes that the
policy is parameterized with h € G. In the unforgeability proof, we will need
to simulate an honest signer and only know the public key of the honest signer.
The group element h serves as a parameter that we will replace with the honest
signer’s public key in the unforgeability proof.

24

Qemt(RCS7 Z = (77 (tlh Cu)7 (tV7 Cv))7 ¢sim(6k7 sts, Q'm Qc)

7, auz, W’ = (V',0y/), view) for (R§S7ij,Wj7aua:j) €Qnr :
if R =IPg : parse &; := (7, (tu,cu))
parse auz := (U, (ce;, Oc;, Te;) je(n]) parse auz; := ((U,0u), (v,0v))
require —VfComcy(t2,cv, V', 047) V u #+5 require RJC-S =1Pg A tu=tg
for j € [n] : Aty =ta A (tu,cu, U,0u) € Qe
require VfCom(tz, ce;, €;, 0c;) A VfComck(t2, cv, Vv, 0v)
A VE(IPg, (U, (te, cu), (2, e;), Te;) AUY=~ A ve{er,...,en}
if R =1Py, : for (t,m,c,0) € Q. :
parse auz := (U, 0u) require t =tg A3j € [n] : m = h®

require VfComeg (1, cu, u, 0u) return true

require —VfCom.(tz2,cyv,v,0y/) V u-v' #5 feom(t, u)
it RSS — BIT - if t =tg :return g"

require =VfCom.(t2,cv, v’ 0y/) V Vv €73 else :return u

return true Jerove((1, 0u), (v, 0v))
if R® =IPg :return (g%, 0u), (v,0v))

else :return ((u,0u), (v,0v))

Ppna(view, t, ¢, mo, 00, M1, 01)

return t =t2 A mo # ma

Fig. 4. Leakage functions and policies for generic MATS scheme.

In our simulation policy @, we restrict simulation queries to only the essen-
tial ones for the unforgeability proof to keep our definition weak. For readability,
we define @, := @. A D, which are sub-policies related to the commitment sim-
ulator and the proof simulator, respectively. The commitment simulator will only
be used to simulate a commitment on sk; - €; in Kg; where we do not know sk;.
Thus, @, allows commitment simulator queries only with the {g commitments
and for the verifying messages that are vectors in the form of h% for some j.

For the proof simulator, we only need to simulate IPg proofs m; ;’s in Equation
2 which are between sk; and e;. Hence, we only permit simulation queries for
R® = IPg on relevant vectors. We check that the queried vectors satisfy the
restricted form by using the bookkeeping from the commitment simulator, Q.,
and verifying the commitment opening of ¢, (v, 0y).

The extractability policy must ensure that we can extract the bit vector b
from the forged signature for the unforgeability proof. In the unforgeability proof,
we will run the extractor on proofs that we already have some information about
the openings of g and ¢; commitments which correspond to the vector of public
keys and weights. Thus, the extracted b value must match to pk and w.

One way to ensure this match could be asking the extractor to output can-
didate vectors of public keys and weights together with the bit vector for the
corresponding proofs and argue that they must be identical to the original pk
and w. We could easily argue that the weight vectors must be identical by the
binding property of £; commitments. However, for tg commitments, we cannot
rely on a binding property using the public key vectors as the message space
of {g commitments is Z;. The only remaining option would be relying on the

25

soundness of IPg proofs 7;’s in ak which creates some sort of circular argument
that we rely on the proof scheme’s soundness to show the extractability property.

Instead of dealing with all these details, we supply all available information
about tg and ¢; commitments as auxiliary information to the extractor using the
extractor policies and require extracting a valid b vector based on these values.

Lastly, the binding policy @44 only checks whether the commitment collision
is found for a type-to commitment. This is sufficient, as we only require binding
for the bit-commitments in our proof.

5.3 Security Analysis of the MATS Scheme
Finally, we can show the unforgeability of the MATS construction in Figure 3.

Theorem 2 (Unforgeability). If MS is an unforgeable multi-signature, CP is
f-zero-knowledge, f-®y-simulation extractable, and f-®p,-simulation-sound bind-
ing for the function f and the policy @p = (Psim, Pewt, Pona) in Fig. 4 for all
h € G, then the MATS construction in Fig. 8 is unforgeable according to Def. 7.

An adversary breaking the unforgeability of the MATS scheme must come up
with a non-trivial forgery o := (0’, apk, B, Tagg, Tthr, TBIT, thr'). Soundness en-
sures that the proofs magg, Tihr, TeiT in the forgery guarantee that w - b* =
thr' A b* € Z% A pkb* = apk holds, which in turn allows to use ¢’ for
the multi-signature forgery. The proof is rather simple, as we can rely on the
convenient properties defined for the CP system.

Proof (Sketch). Given an adversary Amats against our MATS scheme, we con-
struct an adversary Ams against the underlying multi-signature. Apms receives
pk*, pop* and uses these values for a randomly chosen signer in the MATS con-
text. Ams has oracle access to sk* and must output a forgery (o/, m*, PK*). ¢’
is already part of our MATS signatures, which will also contain the message m*.
Thus, we only need to compute an appropriate set of public keys PK™ out of
the MATS forgery that will create a MS forgery. We achieve that by extracting
the bit vector b* that represents the signers from the forged MATS signature.

The first challenge for this proof strategy is to simulate the UGen; queries
without knowing the MS secret key. The UGen; algorithm of MTS explicitly
uses the individual secret keys to commit to them and provide the inner-product
proofs m; ;. Here we rely on the f-zero-knowledge property to simulate both the
commitments (U;, 0;) and m; ;. The commitment simulator SCom gets the public
key pk* as additional input, where SProve gets pk* and the openings to the base
vector commitments. Note that we comply with our policy @g;,, here, which
allows us to use the extractability feature next.

The second step is extracting the multi-signature forgery from the cumulative
signature. We rely on the policy-based f-®-SE property that we can extract the
necessary part of the witness — the signer vector b* — even in the presence of
f-zero-knowledge simulators. Here we also need the &-simulation-sound binding
property, to argue that the extracted values from the three individual proofs are
identical. Now, knowing b* we can carve out the signer set PK* which completes
Awms’s forgery. The full proof is given in Appendix E.

26

6 CP-SNARK Instantiation for BLS-based MATS

We now present a concrete instantiation of the CP-SNARK for a BLS-based
MATS scheme as needed in Figure 3. We note that this scheme could be combined
with any other pairing-based multi-signature scheme with a DL-based key pair
as well. The CP construction is a minor modification of the one from [17] that we
express in terms of our commit-and-prove system. The main contribution here is
that we prove that this CP construction achieves the desired properties needed
for the MATS scheme. The biggest insight thereby is that we require a new
assumption to do so. The challenging property is the simulation-extractability,
where we need to balance the needed co-existence of a simulator and a (partial)
knowledge extractor. To this end, we introduce the flexible-base (n1, ns)-discrete
logarithm problem. We show that this assumption holds under the (nq,ns)-
DLOG problem (Def. 10) in the algebraic group model. Finally, we prove the
security of CP construction under our new assumption.

6.1 Adapted CP Instantiation from [17]

Our CP-SNARK CP-Pair is given in Figure 5. We rely on the CP instantiation
from [17]. Note that this construction requires pairings, and we must now switch
to an appropriate (type-3) pairing group. We assume that the pairing group
definition can be parsed from the input multi-signature public parameters ppus.
Thus, by exploiting the notation, we just present the pairing group description
ppc as input to the Setup algorithm. One of the differences is that we give the
construction directly for type-3 pairings, whereas [17] used symmetric ones. This
requires to add further pairing checks in the construction which is highlighted
via the dashed boxes in Figure 5. Our policy requires that the extractor can
output a valid type to commitment for each relation so that we can rely on the
binding property of the type to commitments to get a conjunction proof. The
extra checks ensure that type to commitments are degree < n — 1 polynomial
commitments, so there will be a valid vector commitment opening to these com-
mitments. Other differences between our adaption and [17] are mostly different
efficiency optimizations, and we refer to Appendix F.1 for a detailed comparison
[17] and to Appendix F.2 for an efficiency analysis. The main insight of this
section is the security proof we give for the CP construction.

Realizing Commitments. As we only use deterministic commitments, we drop the
openings from the notation for readability. The commitment key ck is nothing
but a (n — 1,n)-DLOG tuple. A possible optimization is to add frequently used
values as part of the commitment key or CRS [17, 12]. The commitments to the
vectors are polynomial commitments. We use the following notation in the con-
struction. Let H := {hy,...,h,} be a subgroup of Z;. The vanishing polynomial
and Lagrange basis polynomials of H are defined as zu(X) := [];¢,) (X — h;)

and £;(X) =] jem\{i} % The commitment verification algorithm simply
i—hny
re-runs the committing algorithm for the corresponding type and checks whether

27

Setup(ppg, n)
Parse ppg := (e,G,G,Gr, g, §,p). Select subgroup H := {h1,...,h,}. Choose T < Zj.

return ck := ((g; = 9" Jiefn-11, (G = §" Jie[n), H)

Com(t, u) VfCom(t, ¢, u)
if t € {tg,t1} : return c:=TJ][]" g5 if t e {tg,t1} : return c = I, gti Fi(m)

wi L4 (T) wi L4 (T)

ift=t2 : returnc:=J]", g ift=t2 : returnc=1J[[_, 3

Prove (RC% ('y, (tus Custo, cv)), (u,v))

Set u(X)::(Zyzlu,;Ei(X))

if R=BIT : Find Q(X) s.t. u(X)- (1 —u(X)) = Q(X) - zu(X). return = := (g9, ¢*(")
if R € {IPg,IPz,} : Set v(X) = (1, vi - £i(X)), pi=u-v

Find Q(X), R(X) st. u(X)-v(X) = Q(X) - za(X) + X - R(X) + u/n

if R® = Pz, : return m := (gQ(T),gR(T),gT'R(T),gv(f))

if RCS =1Pg : return 7 := (gQ(T),gR(T)’gT'R(T),gizil,gv(T))
VAR, (1. (t1: cu). (t2, 1)))

if R :lPZF : Parse m:= (90, 9r: Ir* > Gu*)

return e(cu, cv) = e(9q, 9°) - e(gr, 91) - e(9,87™)
~ ~ | |
A elgr,g1) = e(gr+,9) N (e(g,cv) = e(gv*,9),

if R =IPg : Parse 7 := (90, 9R> 9R* >0, Gu*)

_ Sz () " n1
return e(cy, cy) = e(g9q, §)-e(gr, 1) -e(v,g")

Fig. 5. CP-SNARK scheme CP-Pair for BLS-based MATS scheme.

the resulting value is equal to the commitment. We use the following notation
in the construction.

Realizing Proofs. The proofs follow the prior constructions [17, 30, 12, 40] for the
inner-product proofs and the hadamard-product proofs. To recap, while IPg and
IPz, proofs are computed and verified by relying on the inner-product polynomial
relation from Lemma 2, the BIT proofs rely on the hadamard-product polynomial
relation from Lemma 1.

Omitted Properties. We already described CP-Pair explicitly with the relations
and commitment types that match the completeness requirements of a compil-
ing CP-SNARK. We omit the completeness proofs as they easily follow from
the previous work. Similarly, succinctness proof CP-Pair is straightforward. The
homomorphism proofs mainly follow [12]’s results on homomorphic linear-map
vector commitments and are in Appendix F.3. The perfect f-Zero-Knowledge
property CP-Pair can be shown easily by using the trapdoor 7 as it has been
done for the proofs relying on KZG polynomial commitments before and is in
Appendix F 4.

28

6.2 Flexible-Base Discrete Logarithm Problem

We need a new assumption to prove the f-@-SE property of the CP-Pair. Recall
that not realizing that such a property is needed was the main gap in [17]. In
the simulation extractability game, we must be able to answer commitment and
proof simulators without using the trapdoor 7. CP-Pair creates a peculiar case
that we need to simulate g7, §7 , and h™ for a given h. To satisfy this need, we
define an adaptive variant of the (nq,n2)-DLOG assumption(Def. 10) [6] where
the adversary is allowed to choose vectors of generators from both source groups
to get 7 powers of them.

New Flexible-base n-DLOG Assumption. We define flexible-base-(ni,ns)-DLOG
(FB-(n1,n2)-DLOG) assumption according to the observations we made above.
In the FB-(n1,n2)-DLOG problem, the adversary first provides the vector of
generators H := [Hy,..., He] € (G*)¢ and H := [ﬁl,...,ﬁé] € (G*)¢. Then the
adversary gets (H; := [H] , ...,Hgl])ie[m] and (H, := [H], ...,f]g])ie[nz] back.
The adversary’s task will be finding a polynomial that has 7 as a root, but we
need to introduce further notation to define it formally.

Let £ := [f1(X),..., fe(X)]. Then we define Hf™) .= []5_, HI' | Further-
more, fi(X) := > i, 0; - fi(X) for H; := g%. If we do not know the 6; values,
we cannot compute fi(X) in the clear. However, we can easily compute the
coefficients of fyz(X) in the exponent. In more detail, f(X) := Y7 a; - X7 =

dito (Zle 0;-a;;)- X7 for some m and a;;’s. Thus, the j’th coefficient of fiz(X),

a; can be computed in the exponent of the generator g as g% = Hle H;". This
observation plays a crucial role in defining FB-(n1,n2)-DLOG problem. Using
this equation, we can compare the equivalence of the coefficients for a term of
two polynomials one by one as g% = g“;' if and only if a; = a}. We can perform
a polynomial identity check on two polynomials by checking the equality of the
coefficients for all terms in those polynomials. Similarly, we can compute the
degree of a polynomial fgg(X) using the vector of polynomials f and the vector
of group elements H. By finding the g% # 1g for the maximum j, we learn
the degree of fi1(X). The degree check on these polynomials is written down as
deg(H,). The degree check over fiy becomes useful in the security proofs.

The formal definition of the flexible-base-(n1, n2)-DLOG assumption is pre-
sented below. In the winning condition, we check that Hf(") = 15, which means
fru(7) =0, and fg(X) # 0, so 7 must be a root of the polynomial fir(X). A dis-
cussion of the relation between the FB-(ni,ns)-DLOG assumption and similar
assumptions in the literature is given in Appendix F.5.

Definition 8 (Flexible-Base (n1,n3)-DLOG Assumption). For all A € N,

p.p.t. adversaries A,

Pr i oprt . Hf(‘r) =1
T(izpa fHA((H)ie[n1]7 (H)ie[ng]) A =G

Below, we show that our FB-(n1,n2)-DLOG assumption holds in AGM [24] if

(n1,n2)-DLOG holds. The full proof of Theorem 3 is in Appendix F.5.

< neglpg proc(N)

29

Theorem 3. FB-(ny,ns)-DLOG assumption in Definition 8 holds in AGM un-
der the (n1,n2)-DLOG assumption.

Necessity of New Assumption. We claim that (nq,n2)-DLOG was not suitable
to show the f-@;,-SE property of CP-Pair and introduce a new assumption. One
may think that if we can show that this assumption can be reduced from (n1, ny)-
DLOG assumption in AGM, then we could show that CP-Pair is f-®;,-SE under
(n1,n2)-DLOG assumption in AGM easily. This is not the case. AGM allows
assuming adversaries are algebraic, but in the f-&,-SE game, h is a hard-coded
value in the game and not obtained from the adversary. Thus, we do not neces-
sarily know an algebraic representation of h on other group elements. This means
that we still have the problem of computing A7 for given ¢” and h. Thus, we
still need the extra power of FB-(n1,n2)-DLOG assumption.

6.3 f-#-Simulation Extractability and Binding

Finally, we can show that CP-Pair is simulation-extractable and simulation-sound
binding under the policy @5. The full proofs are in Appendix G and sketched
below.

Theorem 4. CP-Pair in Figure 5 is f-®,,-SE and f-®@,-SBND for the function
f and the policy @y, := (Psim, Pewt, Pona) in Figure 4 for all h € G in AGM if
FB-(n —1,n)-DLOG assumption holds.

The first part of the proof shows how we can simulate the commitments and
proofs that are allowed in the policy, without knowing the n-DLOG trapdoor 7.
Simulation is fairly simple due to the adaptive step in the FB-(nj,ns)-DLOG
problem instance, which we use to set H := [g, h] and H = [g]. The resulting
challenge values are then used to derive the necessary values.

Then, we show that we can extract the required witnesses from the proofs
of the different relations. This part uses a similar strategy to the existing works
that implicitly or explicitly uses the Lemmas 1 and 2 to build inner-product or
Hadamard-product proofs [12, 30, 40, 10]. The main argument in these proofs
is that either a certain polynomial identity holds, so the required values can be
extracted or the challenger knows a polynomial that has the trapdoor 7 as a root.
By finding the roots of the polynomial, 7 can be computed. We follow a similar
reasoning, but, we must make these arguments on fgg(X), which we do not know
all the coefficients in the clear. Using the FB-(n, ns)-DLOG assumption, though,
we do not need to compute such polynomial in the clear but even computing
such polynomial vector, f is assumed to be hard.

Note that our proof requires the AGM to extract a witness with size n from
a succinct prof that has a size independent of n as was done in many previ-
ous SNARK constructions [12, 40, 10]. By extending FB-(n1,n2)-DLOG to a
knowledge assumption [5], one could try to give a proof in the standard model.

30

Acknowledgments. This research was partially funded by the HPI Research School

on Systems Design. It was also supported by the German Federal Ministry of Education
and Research (BMBF) through funding of the ATLAS project under reference number
16KISA037.

References

10.

11.

12.

13.

Acar, T., Nguyen, L.: Revocation for Delegatable Anonymous Credentials. In: Pub-
lic Key Cryptography — PKC 2011. pp. 423-440 (2011)

Ananth, P., Deshpande, A., Kalai, Y.T., Lysyanskaya, A.: Fully homomorphic
NIZK and NIWI proofs. In: Theory of Cryptography - (TCC) 2019. pp. 356-385
(2019)

Attema, T., Cramer, R., Rambaud, M.: Compressed o-protocols for bilinear group
arithmetic circuits and application to logarithmic transparent threshold signa-
tures. In: Advances in Cryptology — ASTACRYPT 2021: 27th International Con-
ference on the Theory and Application of Cryptology and Information Security,
Singapore, December 6-10, 2021, Proceedings, Part IV. p. 526-556. Springer-
Verlag, Berlin, Heidelberg (2021). https://doi.org/10.1007/978-3-030-92068-5 18,
https://doi.org/10.1007/978-3-030-92068-5 18

Baird, L., Garg, S., Jain, A., Mukherjee, P., Sinha, R., Wang, M., Zhang, Y.:
Threshold signatures in the multiverse. In: 2023 IEEE Symposium on Security and
Privacy (SP). pp. 1454-1470 (2023)

Bauer, B., Farshim, P., Harasser, P., Kohlweiss, M.: The uber-knowledge assump-
tion: A bridge to the AGM. IACR Communications in Cryptology 1(3) (2024).
https://doi.org/10.62056 /anr-zojab

Bauer, B., Fuchsbauer, G., Loss, J.: A Classification of Computational Assumptions
in the Algebraic Group Model. In: Advances in Cryptology — CRYPTO 2020. pp.
121-151 (2020)

Boneh, D., Drijvers, M., Neven, G.: Compact multi-signatures for smaller
blockchains. In: Asiacrypt 2018. pp. 435-464. Springer (2018)

Boneh, D., Komlo, C.: Threshold signatures with private accountability. In:
CRYPTO 2022 -Annual International Cryptology Conference. pp. 551-581 (2022)
Boyen, X.: The Uber-Assumption Family. In: Pairing-Based Cryptography — Pair-
ing 2008, vol. 5209, pp. 39-56 (2008). https://doi.org/10.1007/978-3-540-85538-5
3, http://link.springer.com/10.1007/978-3-540-85538-5 3, iSSN: 0302-9743, 1611-
3349 Series Title: Lecture Notes in Computer Science

Campanelli, M., Faonio, A., Fiore, D., Querol, A., Rodriguez, H.: Lunar: a tool-
box for more efficient universal and updatable zksnarks and commit-and-prove
extensions. In: Advances in Cryptology—ASIACRYPT 2021. pp. 3-33 (2021)
Campanelli, M., Fiore, D., Querol, A.: LegoSNARK: Modular Design and Com-
position of Succinct Zero-Knowledge Proofs. In: ACM CCS 2019. pp. 2075-2092
(Nov 2019). https://doi.org/10.1145/3319535.3339820, https://dl.acm.org/doi/10.
1145/3319535.3339820

Campanelli, M., Nitulescu, A., Rafols, C., Zacharakis, A., Zapico, A.: Linear-map
vector commitments and their practical applications. In: Asiacrypt 2022. pp. 189-
219 (2022)

Chaidos, P., Kiayias, A., Reyzin, L., Zinovyev, A.: Approximate lower bound argu-
ments. In: Joye, M., Leander, G. (eds.) Advances in Cryptology — EUROCRYPT
2024. pp. 55-84. Springer Nature Switzerland, Cham (2024)

31

https://doi.org/10.1007/978-3-030-92068-5_18
https://doi.org/10.1007/978-3-030-92068-5_18
https://doi.org/10.1007/978-3-030-92068-5_18
https://doi.org/10.62056/anr-zoja5
https://doi.org/10.62056/anr-zoja5
https://doi.org/10.1007/978-3-540-85538-5_3
https://doi.org/10.1007/978-3-540-85538-5_3
https://doi.org/10.1007/978-3-540-85538-5_3
https://doi.org/10.1007/978-3-540-85538-5_3
http://link.springer.com/10.1007/978-3-540-85538-5_3
https://doi.org/10.1145/3319535.3339820
https://doi.org/10.1145/3319535.3339820
https://dl.acm.org/doi/10.1145/3319535.3339820
https://dl.acm.org/doi/10.1145/3319535.3339820

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable proof systems
and applications. In: Advances in Cryptology-EUROCRYPT 2012. pp. 281-300
2012

éoste%lo, C., Fournet, C., Howell, J., Kohlweiss, M., Kreuter, B., Naehrig, M.,
Parno, B., Zahur, S.: Geppetto: Versatile Verifiable Computation. In: 2015 IEEE
Symposium on Security and Privacy. pp. 2563-270. IEEE (May 2015). https://doi.
org/10.1109/SP.2015.23, https://ieeexplore.ieee.org/document /7163030 /

Crites, E., Komlo, C., Maller, M.: How to prove schnorr assuming schnorr: Security
of multi- and threshold signatures. Cryptology ePrint Archive, Paper 2021/1375
(2021), https://eprint.iacr.org/2021,/1375, https://eprint.iacr.org/2021/1375

Das, S., Camacho, P., Xiang, Z., Nieto, J., Biinz, B., Ren, L.: Threshold Sig-
natures from Inner Product Argument: Succinct, Weighted, and Multi-threshold.
In: Proceedings of the 2023 ACM SIGSAC Conference on Computer and Com-
munications Security. pp. 356-370. CCS ’23, Association for Computing Machin-
ery, New York, NY, USA (Nov 2023). https://doi.org/10.1145/3576915.3623096,
https://dl.acm.org/doi/10.1145/3576915.3623096

Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous Identification in Ad
Hoc Groups. In: Advances in Cryptology - EUROCRYPT 2004, vol. 3027, pp.
609-626. Berlin, Heidelberg (2004)

Ellis, S.: A decentralized oracle network steve ellis, ari juels, and sergey nazarov
(2017), https://research.chain.link /whitepaper-v1.pdf

Escala, A., Groth, J.: Fine-Tuning Groth-Sahai Proofs. In: Public-Key Cryptogra-
phy — PKC 2014. pp. 630-649 (2014)

ethereum.org: What are daos? (2025), https://ethereum.org/en/developers/docs/
consensus-mechanisms/pos/

Faonio, A., Fiore, D., Kohlweiss, M., Russo, L., Zajac, M.: From polynomial iop
and commitments to non-malleable zksnarks. In: Rothblum, G., Wee, H. (eds.)
Theory of Cryptography - TCC 2023 (2023)

Fuchsbauer, G., Hanser, C., Slamanig, D.: Practical round-optimal blind signatures
in the standard model. In: Annual Cryptology Conference - Crypto 2015. pp. 233—
253. Springer (2015)

Fuchsbauer, G., Kiltz, E., Loss, J.: The algebraic group model and its applications.
In: Advances in Cryptology—CRYPTO 2018. pp. 33-62. Springer (2018)

Fujisaki, E.: New Constructions of Efficient Simulation-Sound Commitments Using
Encryption and Their Applications. In: Topics in Cryptology — CT-RSA 2012. pp.
136-155. Springer (2012). https://doi.org/10.1007/978-3-642-27954-6 9

Ganesh, C., Khoshakhlagh, H., Kohlweiss, M., Nitulescu, A., Zajac, M.: What
makes flat—shamir zksnarks (updatable srs) simulation extractable? In: Interna-
tional Conference on Security and Cryptography for Networks - SCN 2022. pp.
735-760 (2022)

Ganesh, C., Kondi, Y., Orlandi, C., Pancholi, M., Takahashi, A., Tschudi, D.:
Witness-succinct universally-composable snarks. In: Eurocrypt 2023. pp. 315-346
2023

(Gara}z, J.A., MacKenzie, P., Yang, K.: Strengthening Zero-Knowledge Protocols
Using Signatures. In: Advances in Cryptology — EUROCRYPT 2003. pp. 177-194
(2003). https://doi.org/10.1007/3-540-39200-9 11

Garg, S., Goel, A., Wang, M.: How to prove statements obliviously? In: Ad-
vances in Cryptology — CRYPTO 2024: 44th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 18-22, 2024, Proceedings, Part X.
p. 449-487. Springer-Verlag, Berlin, Heidelberg (2024). https://doi.org/10.1007/
978-3-031-68403-6 14, https://doi.org/10.1007/978-3-031-68403-6 14

32

https://doi.org/10.1109/SP.2015.23
https://doi.org/10.1109/SP.2015.23
https://doi.org/10.1109/SP.2015.23
https://doi.org/10.1109/SP.2015.23
https://ieeexplore.ieee.org/document/7163030/
https://eprint.iacr.org/2021/1375
https://eprint.iacr.org/2021/1375
https://doi.org/10.1145/3576915.3623096
https://doi.org/10.1145/3576915.3623096
https://dl.acm.org/doi/10.1145/3576915.3623096
https://research.chain.link/whitepaper-v1.pdf
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://doi.org/10.1007/978-3-642-27954-6_9
https://doi.org/10.1007/978-3-642-27954-6_9
https://doi.org/10.1007/3-540-39200-9_11
https://doi.org/10.1007/3-540-39200-9_11
https://doi.org/10.1007/978-3-031-68403-6_14
https://doi.org/10.1007/978-3-031-68403-6_14
https://doi.org/10.1007/978-3-031-68403-6_14
https://doi.org/10.1007/978-3-031-68403-6_14
https://doi.org/10.1007/978-3-031-68403-6_14

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Garg, S., Jain, A., Mukherjee, P., Sinha, R., Wang, M., Zhang, Y.: hints: Threshold
signatures with silent setup. In: 2024 IEEE Symposium on Security and Privacy
(SP). pp. 3034-3052 (2024). https://doi.org/10.1109/SP54263.2024.00057

Garg, S., Kolonelos, D., Policharla, G.V., Wang, M.: Threshold encryption
with silent setup. In: Reyzin, L., Stebila, D. (eds.) Advances in Cryptology —
CRYPTO 2024. pp. 352-386. Springer Nature Switzerland, Cham (2024)

Groth, J.: Simulation-sound nizk proofs for a practical language and constant size
group signatures. In: Advances in Cryptology—ASTACRYPT 2006: 12th Interna-
tional Conference on the Theory and Application of Cryptology and Informa-
tion Security, Shanghai, China, December 3-7, 2006. Proceedings 12. pp. 444—459.
Springer (2006)

Herold, G., Hoffmann, M., Kloof, M., Rafols, C., Rupp, A.: New Techniques for
Structural Batch Verification in Bilinear Groups with Applications to Groth-Sahai
Proofs. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. pp. 1547-1564. CCS ’17, Association for Computing
Machinery (Oct 2017). https://doi.org/10.1145/3133956.3134068, https://dl.acm.
org/doi/10.1145/3133956.3134068

Kosba, A., Zhao, Z., Miller, A., Qian, Y., Chan, H., Papamanthou, C., Pass, R.,
abhi shelat, Shi, E.: Cflcp: A framework for building composable zero-knowledge
proofs. Cryptology ePrint Archive, Paper 2015/1093 (2015), https://eprint.iacr.
org/2015/1093, https://eprint.iacr.org/2015/1093

Libert, B.: Vector Commitments with Proofs of Smallness: Short Range
Proofs and More. In: Tang, Q., Teague, V. (eds.) Public-Key Cryptogra-
phy — PKC 2024, vol. 14602, pp. 36—67. Springer Nature Switzerland, Cham
(2024). https://doi.org/10.1007/978-3-031-57722-2 2, https://link.springer.com/
10.1007/978-3-031-57722-2 2, series Title: Lecture Notes in Computer Science
Libert, B., Yung, M.: Concise Mercurial Vector Commitments and Independent
Zero-Knowledge Sets with Short Proofs. In: Theory of Cryptography — TCC 2010.
pp. 499-517 (2010)

MacKenzie, P., Yang, K.: On Simulation-Sound Trapdoor Commitments. In: Ad-
vances in Cryptology - EUROCRYPT 2004. pp. 382—400. Springer (2004)

Micali, S., Reyzin, L., Vlachos, G., Wahby, R.S., Zeldovich, N.: Compact certificates
of collective knowledge. In: 2021 IEEE Symposium on Security and Privacy (SP).
pp. 626-641 (2021). https://doi.org/10.1109/SP40001.2021.00096

Qiu, T., Tang, Q.: Predicate aggregate signatures and applications. In: Asiacrypt
- 2023. pp. 279-312. Springer (2023)

Rafols, C., Zapico, A.: An algebraic framework for universal and updatable snarks.
In: Crypto 2021. pp. 774-804. Springer (2021)

Smith, C.: Proof-of-stake (pos) (Sep 2024), https://ethereum.org/en/developers/
docs/consensus-mechanisms,/pos/

Szepieniec, A., Zhang, Y.: Polynomial iops for linear algebra relations. In: Confer-
ence on Public-Key Cryptography - PKC 2022. pp. 523-552. Springer (2022)

A Further Related Work

In the following, we discuss further related concepts. Throughout the paper, we
discuss closely related works to our definitions and constructions. In this section,
to provide a perspective, we present some prior works that are not crucial, but
still indirectly related to our work.

33

https://doi.org/10.1109/SP54263.2024.00057
https://doi.org/10.1109/SP54263.2024.00057
https://doi.org/10.1145/3133956.3134068
https://doi.org/10.1145/3133956.3134068
https://dl.acm.org/doi/10.1145/3133956.3134068
https://dl.acm.org/doi/10.1145/3133956.3134068
https://eprint.iacr.org/2015/1093
https://eprint.iacr.org/2015/1093
https://eprint.iacr.org/2015/1093
https://doi.org/10.1007/978-3-031-57722-2_2
https://doi.org/10.1007/978-3-031-57722-2_2
https://link.springer.com/10.1007/978-3-031-57722-2_2
https://link.springer.com/10.1007/978-3-031-57722-2_2
https://doi.org/10.1109/SP40001.2021.00096
https://doi.org/10.1109/SP40001.2021.00096
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/

Ad Hoc Key Management. Ad hoc threshold signatures aim to get rid of costly
interactive key generation protocols by supporting flexible threshold values per
single verification key. We refer to other works with similar aims that support
ad hoc signing groups per a single individual secret key here.

Multi-signatures with key aggregation and other threshold signatures with
long-term secret keys that we mentioned are fairly new concepts. However, there
is an old concept that supports ad hoc groups and group key aggregation, ad
hoc group identification (AGI) which was proposed by Dodis et al. [18]. AGI
provides a key aggregation method for an identification scheme such that the
group members can prove their membership to the group using the group public
key. Note that, AGI construction of [18] can easily be turned into an ad hoc group
signature (AGS). This signature scheme only supports I-out-of-n structure.

Micali et al. [38] proposes compact certificates in which a prover tries to
convince a verifier that a group of signers with a sufficient weight have certifi-
cated certain data. They set a Merkle tree of signer public keys and weights
as a verification key which is a specific form of vector commitment and gives
compact verification keys. Then, the prover tries to show that she knows valid
signatures for a set of public keys such that she can show Merkle tree openings
with sufficient cumulative weight. While this approach can be applied on top of
any signature scheme and supports ad hoc thresholds and groups, the signature
size is dependent on the group size.

Chaidos et al. [13] designs an efficient approzimate lower bound argument
(ALBA) which can be used to show that the size of a set exceeds a certain
threshold. One of the applications they propose is threshold signatures with long-
term keys. They also provide a generic construction of such a signature scheme
using ALBA and any unique signature scheme. Similar to [29], the resulting
signature scheme creates longer signatures. [13| shows the black box nature of
their construction as a reason for the longer signatures.

Attema et al. [3] construct threshold signatures with long-term secret keys
which is a similar concept to the multiverse ad hoc threshold signatures. They
define an environment that signers generate their individual key pairs for a digital
signature and share their public keys in a public bulletin board. While this
process gets rid of an interactive key generation setup, it results in a group
verification key with size O(n) for n signers. Their signing protocol involves a
combiner to generate a proof that shows she owns thr valid digital signature out
of n public keys in the verification key. They use a compressed X'-protocol for
this proof and the resulting signature has O(logn) size.

Qiu et al. [39] proposes predicate aggregate signatures that extends the aggre-
gate signatures to a scheme that shows the signers of messages satisfy a certain
policy, e.g. a threshold. Thus, their scheme can be used to build an ad hoc thresh-
old signature scheme. The rely on aggregate BLS signatures and SNARK proof
which is computed by a combiner to show that aggregate signature satisfies the
policy. Their verification key and signatures for an ad hoc threshold signature
application have sizes O(logn).

34

Soundness Notions in Proof Systems. Simulation-sound extractability was first
defined by Groth [32] which requires a knowledge extractor even when the ad-
versary has access to a zero-knowledge simulator. One immediate result of such
a strong notion is that it is not achievable by any malleable proof system. Thus,
it is not a good choice for the use cases which exploit the malleability features of
proofs, but also need a stronger extractability notion than the regular knowledge
soundness.

[34] defines weak simulation extractability notion that tolerates randomizable
proofs. The main point to achieve such a notion is changing the freshness re-
quirement in the simulation extractability game so that the game will ask for a
fresh statement x ¢ @ instead of a fresh statement and proof tuple (z,7) € Q.
By doing so, we get a relaxed notion of simulation extractability that allows
randomizable proof. Weak simulation extractability still does not allow homo-
morphic proofs, so it is not enough for our use case.

Randomizability is only a type of malleability and there are still other types
of malleable proofs that do not satisfy [34]’s weak simulation extractability prop-
erty. In particular, [34]’s definition only allows to randomize a proof. When we
have a proof homomorphism, such as a malleability that allows forging proofs
on a statement z’ := T, (z) using a proof of the statement x, there is no hope
to satisfy [34] property. Chase et al. define controlled malleable NIZK [14] that
allows unary transformations on the proofs of the corresponding statements like
T, above. They also define Controlled-malleable simulation sound extractability
where the extractor either outputs the witness of the statement that the adver-
sary outputs, or a transformation that shows the proof was transformed from the
simulated proofs. Their definition only considers unary homomorphic operations
and generalizing it to arbitrary f-ary homomorphic operations seems non-trivial.

Another way to weaken the simulation extractability property is by limiting
the allowed simulation queries. True-simulation extractability only guarantees
the extractor of a valid witness if all proof simulation queries are made for valid
statements.

Faonino et al.’s policy-based simulation extractability definition can cover
prior notions such as weak simulation extractability and true-simulation ex-
tractability. However, it cannot cover the [14]’s simulation extractability notion
as [22]’s definition strictly asks the extractor to output a valid witness, but [14]’s
definition allows the extractor to output a transformation which shows that the
chosen proof by the adversary was mauled from a simulated proof. Regardless of
the simulation extractability, [22]’s winning condition also does not allow partial
extractors either.

Homomorphic Proofs. As described in Section 4.2, a homomorphic zero-knowl-
edge proof scheme for a relation R allows obtaining a proof 7 for a valid statement
x:= X(x1,...,xy) from the proofs 7y, ..., 7, where 1, ..., z,, are valid statements
and X is a binary relation over D — D,. We provide further examples of how
prior works defined these mappings for their specific aims.

[2] aims for fully homomorphic proofs and defines X as any possible circuit;
[14] defines X as an n-ary transformation from an allowed set of transformations;

35

[1] only considers a specific type of R by requiring that R must be a relation over
a group and defines X as the group operation. Linear-map vector commitment
scheme [12] computes proofs of the evaluation of linear functions on vectors.
They define X as the linear combinations of these linear functions.

Simulation-Sound Binding Commitments. Trapdoor commitments allow to equiv-
ocate/simulate an opening to a commitment for any message using a trapdoor
key. Simulation-sound binding trapdoor commitments which were first proposed
by [28] are trapdoor commitment schemes that the adversary cannot win the tra-
ditional binding game even after seeing the equivocated/simulated commitment
openings. While there are several works on simulation-sound trapdoor commit-
ments [37, 25|, none of them considers the binding property of the commitment
where the commitment scheme shares a simulation trapdoor with a proof simu-
lator and the adversary can see both simulated commitments and the proofs.

B Further Preliminaries
We present the rest of the preliminary information for our paper.

Bilinear Pairings. The formal definition we use for the pairings is presented
below. We note that we use type-3 pairings throughout the paper.

Definition 9 (Bilinear Pairing). For (g) = Gy, (§) = Gy and Gr which
are groups of prime order p, e : G X G — Gy is a bilinear pairing if it is
efficiently computable and bilinear: e(g?, §°) = e(g,§)** = e(g®, §%) Va,b € Z,,
and non-degenerate: {e(g, §)) = Gr, so e(g,§) # lg,. A bilinear group generator
BGGen is a p.p.t. algorithm which outputs a bilinear pairing description BG =
(e,G,G,Gr,g,§,p) such that [logy p] = X and the requirements above hold.

(n1,n2)-DLOG Assumption. As we mention (n1,n2)-DLOG throughout the pa-
per, we present the formal definition of the assumption below.

Definition 10 ((n1,n2)-DLOG Assumption [6]). For all A € N, p.p.t. ad-
versaries A, and for a bilinear group BG = (e,G,G,Gr, g, §,p) < BGGen()\),

o ~ ~ A
pp| PG = (e;G,G,GT,g,g,ng) “ BGGf:?ﬂ Tl | negl o)
(7%) < A(ppe, (97)icni): (07 iena)

Deferred Definitions of Multi-Signatures. We provide the full description of
multi-signatures and their properties.

Definition 11 (MS with PoP). A multi-signature scheme MS is a tuple of
algorithms (Pg, Kg, KeyVf, KAg, MulSign, Combine, Vf) such that:

Pg(1*) — ppms: Outputs public parameters ppus for security parameter 1*. We
only make ppms explicit in key generation and assume it to be an implicit
input to all other algorithms.

36

MS-UNF
Expms, 4

pp < Pg(1Y), (sk™, pk*, pop™) <+ Kg(), Q =0, V := {pk™}

MulSigns e
(o0,m, PK) + A0 0" g(PZth*: pop”)
return pk* € PK N PK CV, A Vf(KAg(PK),o,m) A m & Q

OREg(pk)7 pop) (Qlll\ﬂsign(lg}-(i7 mz)
if —KeyVf(pk, pop) : return false if pk* ¢ PK; : return L
V .=V U{pk}, return true Q:=QU{m;}

return ps; «+ MulSign(sk’ PK;,m;)

Fig. 6. Unforgeability for MS schemes with key aggregation.

Kg(pp) — (sk, pk, pop): Probabilistic key generation, outputs key pair (sk, pk)
along with a proof pop.

KeyVf(pk, pop) — b € {true, false}: Verifies the proof of possession pop for the
public key pk.

KAg(PK) — apk: Deterministic key aggregation, that on input a set of public
keys PK = {pk;}, outputs an aggregated public key apk.

MulSign(sk;, PK, m) — ps,;: (Possibly interactive) algorithm, that on input the
secret key sk;, message m, and optionally a set of public keys PK = {pk;},
outputs a partial signature s.

Combine(PK, {ps;}pk,cpx) — o: On input a set of public keys PK = {pk;} and
set of shares {ps; }pr,epx outputs a combined signature o for PK.

Vf(apk,o,m) — b € {true,false}: Verifies if o is a valid signature on m for apk.

The correctness of a MS scheme is defined as follows.

Definition 12 (MS-Correctness). A multi-signature scheme MS is correct if
for all \, for all pp + Pg(1%), for all messages m, for all n, for all (sk;,pk;) <
Kg() fOT"Z: € [TL], fOT all ps; < MUISIgn(Skm {pki}ie[n]am);

Vf(KAg({pkl}le[n])v Combine({pki}ie[n]a {pSi}ie[rb])a m) = true
The unforgeability definition is presented below.

Definition 13 (MS Unforgeability). A multi-signature scheme II is unforge-
able if for all PPT adversaries A Pr[Exp%iUNF(l’\) = true] < neglys. ynr(A)
for the experiment from Figure 6.

Correctness of Type-based Commitments. The deferred correctness definition of
type-based commitments is given below.

Definition 14 (Correctness of CS). A type-based commitment scheme CS 1is
correct if for all A\ € N, for n € poly()\), for all ck <+ Setup(ParGen(1*),n),
teT,me Mcey, and o € Ocr, VEComy(t, Comey (¢, m; 0), 0) = true.

37

Polynomial Relations. We recap two polynomial relations to encode hadamard-
product and inner-product relations of vectors which were presented in [40].

Lemma 1 (Hadamard-Product Polynomial Relation). Let n € N, and H
is a multiplicative subgroup of Z; with order n. Let further u(X) := (>or g i -
Li(X)), v(X) = (X v - Li(X)), and y(X) = (X, ¥i - Li(X)) for given
vectors u,v € Zy. Then, uov =y if and only if there exists Q(X) € Z,[X]
satisfying Equation 3,

u(X) - v(X) —y(X) = zu(X) - Q(X) (3)

Lemma 2 (Inner-Product Polynomial Relation). Let n € N, and H is
a multiplicative subgroup of Zy with order n. Then, given vectors u,v € Zjy,
u-v =y if and only if there exists Q(X), R(X) € Z,[X] satisfying Equation 4,

u(X) - v(X) = p/n =X R(X) + zu(X) - Q(X) (4)

where u(X) = (30w - L£i(X)), v(X) = (X1, v - Li(X)), and R(X) has
degree at most n — 2. Note that for y(X) := (31, u; - v; - £(X)), R(X) and
Q(X) can be computed using the equations

u-v —1

RX) = (y(X) = ——=)- X7 QX) = (u(X) - v(X) —y(X)) - 75" (X) (5)

Lemma 3. For a multiplicative subgroup H with order n, for all i € [n] and all
j € [n] such that j # 1,

Li(X) £;(X)=0 mod zu(X) (6)
L3(X) = Li(X) mod zx(X) (7)
Li(0) =1/n (8)

C Deferred Definitions of CP-SNARK

For space reasons, we present the definitions of some properties of CP-SNARKSs
here. These definitions mainly follow the existing works.

Succintness. We present the regular definition succinctness for a CP-SNARK
for completeness.

Definition 15 (Succintness). Let CP be a CP-SNARK on the family of re-
lations RS for ck < Setup(ParGen(1*),n) and n € poly(\). CP is succinct if
for all R € RS, (&,%) € RS, and m < Prove(RS?, %) the running time of
VF(R®S, 2, 7) is poly(\ + |&| + log|w|) and the proof size is poly(\ + log|]).

38

Completeness. Our completeness notion is similar to the type-based completeness
notion of [10]. Definition 2 assigns commitment types to the commitment slots in
the simple relation R arbitrarily in the sense that any commitment type with the
appropriate message domain could be used to commit to the witness part in the
commitment slot. However, the commitment scheme can have multiple commit-
ment types with the same message space. In this case, we have to show that the
scheme is complete for all possible commitment type-commitment slot matches
when we want to show the completeness of a proof scheme for such a relation.
This process would be impractical and unnecessary. Campanelli et al. overcome
this issue by defining type-restricted completeness, where the completeness is
shown for a specific commitment type-commitment slot match. We further relax
this notion by also allowing to match a commitment type to a commitment slot
for a relation R € Rpp . Showing that a CP-SNARK is type-relation-restricted
complete for the same type tuple 7" and for all relations R € R, means the
CP-SNARK is type-restricted complete for [10]’s definition.

Definition 16 (Type-Relation-Restricted Completeness). Let {Rpp 1} ppeparGen(1*),nen
be a family of universal relations over relations Ry, on the space Dy X Dy, X D,

such that Dy, splits over £ arbitrary domains (D1 x- - -xDy) for some arity param-

eter £ > 1. Let CS := (Setup, Com, VfCom) be a type-based commitment scheme

as in Definition 1 such that for T € T* and T := (t1,...,ts), CS has a type

t; where D; C Mcgyt,. A CP-SNARK CP is T-Ryy, ,,-restricted complete if for

Rypn € {Rpp,n}ppeparGen(12),nen: ck € Setup(pp, n), and ((z, (c;);elq), @) € RS

such that c;’s type is t; for j € [¢], it holds:

Pr[m < Prove(R$}, &, %) : Vf(RG,&,0)] =1

C.1 Homomorphic Commit-and-Prove Systems

Finally, we define homomorphic properties which will be necessary when con-
structing our signature scheme. We first define the commitment homomorphism
which allows to create a commitment on a message m which is a function of n
messages using only the commitments to the n messages. Similarly, we define
a proof homomorphism that computes a proof for a function of n statements,
using only their corresponding individual proofs.

Commitment Homomorphism. We define commitment homomorphism through
an algorithm ¢ < EvalCom(t, F, ¢y, ...,c,) where F is the function to evaluate
on the messages and/or openings of the commitments ¢y, ..., ¢, with the com-
mitment type ¢. Formally, F(mq, 01, ...my, 0,) takes both messages and random-
ness part and output some (m,o0) such that VfCom.x (¢, ¢, m,0). For simplicity,
we will sometimes exploit the notation and write m < F(mq,01,...my,0,) or
0+ F(my,01,..mp,0n).

Definition 17 (Type-Commitment Homomorphism). IT is type-commit-
ment homomorphic for the commitment type t and family of functions Fey 1 if

39

there exists an algorithm EvalCom such that for any F' € Fer ¢, and commitments
¢ := Com(t,m;;0;) fori:=1,...,n, and for (m,0) := F(my,01,...,My,04),

VfCom,(t, EvalCom x(F,t, c1, ..., cpn), m,0) = true

Proof Homomorphism. A homomorphic zero-knowledge proof scheme for a rela-
tion R allows obtaining a proof 7 for a valid statement x := X (21, ..., 2,) from
the proofs 71, ..., T, where 1, ..., z, are valid statements and X is a binary rela-
tion over D} — D,. In terms of allowed homomorphism relations X’s, we define
it using an allowed set of m-ary partial operations. An m-ary partial operation
does not have to be defined for all (x1, ..., z,) € DZ. This flexibility will also be
used in our generic construction, where we need to define homomorphic proofs
on the statements for IPg proofs on the commitment tuples (U, V;) and (U, V2),
but not for the ones with distinct U commitments. A detailed comparison of this
definition to the prior works is in Appendix A.

Definition 18 (Relation-Proof Homomorphism). Let CP be a CP-SNARK
on the family of relations R<> and R®> € R is a relation over pairs (&,w) as
in Definition 2. Let X be the set of n-ary operations X : D} — D;. CP is
homomorphic on the relation RS with respect to X if there exists an algorithm
EvalProof such that, for all X € X, &1,71,...,%n, Ty such that V(R 2;, ;)
and X is defined for (Z1,...,2n),

VF(R®, X (21, ..., @), EvalProof (R, X, my, ..., m,)) = true

D Deferred Definitions of Generic MATS Construction -
Section 5

We present the additional definitions that are related to Section 5.

D.1 Correctness of MATS

We first evaluate the correctness definitions of previous works. Although they
follow a general pattern, they differ on whether they cover the correctness of the
scheme under certain malicious behavior. [4, 30] specifically relies on BLS multi-
signatures in their construction, which allows them to define a partial signature
verification algorithm PVf and define PSign without defining the signer set PK
as an input. They can define and guarantee the correctness with the malicious
parties in the following way. They allow the adversary to interact with oracles as
in the unforgeability game and the adversary must output a target signing group,
corresponding partial keys, just as in the unforgeability game. The difference
from the unforgeability game is that the adversary must output partial signatures
for some signer subset S instead of a final signature. The challenger can verify the
partial signatures one by one using PVf and compute the threshold that the valid
partial signatures must satisfy. Then the challenger runs the signature combining
algorithm and verifies the resulting signature against the threshold it computed

40

before. The signature scheme is said to be correct if the verification fails only
with a negligible probability. Obviously, this definition requires supporting the
PVf algorithm.

At the construction level, if the partial signatures of the underlying multi-
signature scheme do not depend on the signer group PK, such as BLS multi-
signatures, then the combiner can run the partial verification on the input multi-
signatures and exclude the invalid ones from combining process. This is not
possible when the partial signatures of the multi-signature scheme depend on the
signer group PK, such as Schnorr, as it is not possible to change the intended
signing group for the message in the combining process. All in all, by sacrificing
some generic properties of the syntax and the construction, we could achieve
malicious correctness. We choose to keep the syntax and the construction generic
and define the basic correctness notion of the MATS scheme as follows.

Definition 19 (Correctness of MATS). A multiverse ad hoc threshold sig-
nature scheme is correct if for all X and n, for ppuars < Setup(1*,n), for all
£ < n, weight vectors with size £ w, ((sk;, pk;) + Kg())iee, for

(vk,ak) < UGeny({UGen (sk;, Pk)}z'e[z] , Pk, w)

for allthr and S C [{] s.t. thr < . g w;, and for allm, let ps; < PSign(sk;, S,m)
forie S. Then,

Vf(vk, Combine({ps,}ics, ak), m,thr) = true

D.2 MATS Compatibility

To make the generic construction more readable, we define the requirements
on the underlying multi-signature and CP-SNARK separately. We note that
we only cover requirements that are necessary for the correctness of the generic
construction. Below we define the requirements for the multi-signature. It mainly
restricts the key spaces and the type of multi-signature key aggregation methods
we support.

Definition 20 (Compiling Multi-Signature). A multi-signature scheme MS
is a compiling multi-signature if for ppms < Pg(1) it has the secret key space Ly
and public key space G, where pk = g°* for a key pair (sk, pk) and MS.KAg(PK) :
HpkepK pk where (g) = G is a group with prime order p.

We list the required properties from the CP-SNARK scheme for the generic
construction. For the CP-SNARK, we define the relations Ry, »’s as follows.

Po = {((wv)) © (3 (wv)) €6 x (ZLZD) A 7= g")
Pz, :={(v,(w,v)) : (v,(0,v)) €Zy x (Z},Z3) A y=u-v}
BIT := {(L,u) : ucz, A uezy}

(u
(u,

where a prime order group (g) := G is defined in ppums.

41

Definition 21 (Compiling CP-SNARK). A CP-SNARK CP is a compiling
CP-SNARK if for a given size bound n and public parameters ppus that defines
the group (g,G,p) and ParGen := MS.Pg :

1. CP has the commitment types tg, ¢1, and t2 with the message space Z; such
that CP is (tg,t2)-complete for the relation IPg, (t1,%2)-complete for the
relation IPz,, and (¢;)-complete for the relation BIT.

2. Type tg commitments are homomorphic on Zj for the family of functions
Fig where Fy € Fy if Fyg gp(ug, . ug) ==) Wi for k <n.

3. Proofs for the relation IPg are homomorphic with respect to the set of op-
erations Xy, where X, € Xy, if Xy, k(21,...,8,) := & is defined over
Z; = (i, cuy, cv) for i € [k] and

T = (H iy (tGy th,k(cu,la ceey Cu,k))a (tZa Cv))
i€[k]
4. Type ty commitments are homomorphic on Zj for the family of functions J,
where Fy, j € Fy, if Fy, k(ug,...,uy) = Zie[k] u; for k < n.
5. Proofs for the relation |IPg are homomorphic with respect to the set of op-
erations X, where X, € X, if Xy, x(Z1,...,3%) = & is defined over
& = (v, (te, cu), (t2,¢vyi)) for i € [k] and

T = (H Yis (t@, Cu), (tg, th,k(cv,la veey Cv,k)))
i€[k]

The first item simply requires that the CP-SNARK contains commitments
with appropriate message spaces to commit to the vectors sk, b, and w such
that it can compute the necessary proofs on these commitments. The second and
third requirements define the necessary homomorphic properties that we will
rely on to create the final IPg proof in the Combine algorithm. In more detail,
the second requirement provides the commitment homomorphism on type tg
commitments for the vector addition. The third requirement provides the proof
homomorphism for proofs that contain the same tg commitment, but different
to commitments so that we can compute the proof corresponding to the inner
product of the same tg commitment and the sum of ¢2 commitments. Similarly,
the fourth and fifth requirements define the homomorphic properties to compute
vk and ak. In the key generation protocol, each signer will create a commitment
to its own secret key under the correct position in the vector. Then, relying on
the homomorphic properties required by item 4, we can compute a commitment
to the secret key vector of all signers sk. The proof homomorphism in item 5
will be used to combine the proofs of the individual signers on their individual
commitment keys, and we will get the proofs on the vector we homomorphically
computed. These will become a part of the aggregation key ak.

E Security Proof of MATS Unforgeability - Theorem 2

Here we give detailed proof that our MATS construction from Figure 3 is an
unforgeable multiverse ad hoc threshold signature scheme according to Defini-
tion 7, if MS is an unforgeable multi-signature scheme, CP is f-zero-knowledge,

42

f-Pp-simulation extractable, and f-@p-simulation-sound binding for for the func-
tion f and the policy @y, := (Psim, Pewt, Pona) from Figure 4 for all h € G.

Proof. Recall that an adversary breaking the unforgeability of the MATS scheme
must come up with a non-trivial forgery (m*,o*, thr", pk, {prk;} i, cpr\m, W)
where o* := (o', apk, B, Tagg, Tehr, TBIT, thr'). Soundness ensures that the proofs
TAgg> Tthr, TBIT il the forgery guarantee that w-b* = thr’ A b* € Zy N pkb* =
apk holds, which in turn allows to use ¢’ for the multi-signature scheme.

Given an adversary Amarts against our MATS scheme, we construct an ad-
versary Ams against the underlying multi-signature as follows.

A MS forger Ays receives pk*, pop* and uses these values for a randomly
chosen honest signer in the MATS context. Aps has oracle access to sk* and
must output a forgery (o/,m*, PK*). o' is already part of our MATS signatures,
which will also contain the message m*. Thus, we only need to compute an ap-
propriate set of public keys PK* out of the MATS forgery that will create a
MS forgery. We achieve that by extracting the bit vector b* that represents the
signers from the forged MATS signature.

Game; (Simulating Honest Signer): We need to simulate an honest signer in
MATS view by only knowing the public key of an honest MS signer. An honest
MATS signer’s secret key is used for creating commitment and proofs during
the key generation and answering the signing oracle queries. We first change the
universe generation process for a randomly chosen honest signer by simulating
the commitment and proofs in UGen;. In the final step of the proof, we are going
to simulate the signing queries using MS unforgeability signing oracle, too.

This game aims to simulate the key generation process without using one
of the secret keys. We are going to achieve this using the f-zero-knowledge
property. We first change how we set public parameters. We run CP.SSetup
instead of CP.Setup and store the resulting internal state sts. Due to the f-zero-
knowledge property, this change is indistinguishable. We also change how we set
the challenge public key and the aggregation key. In particular, let qugen, be
number of QY™ queries that the adversary makes. For a random signer index
U € [qUGen,), during the partial key generation processes, instead of running,
U; := Comk(tg, sk;, 0;) we run (U, 0, sts) < SCom(sts, tg, pk;). Furthermore,
instead of running the Prove algorithm during UGen; for Y := pk{’ and j € [n],
we run

(1.4, sts) < SProve (sts, IPg, (V5. (e, Us), (t2, ce,)). (PK;» 00), (€5 06,)))

Note that the index i of our honest signer differs according to the signing group
and all simulation queries conform to the policy @;. Furthermore, by f-zero-
knowledge this change is indistinguishable. [Pr[W;] — Pr[Wo]| < negl, . ().

Gamey (Extracting the Bit Vector): Now we rely on the simulation extractabil-

ity to extract b* so that we can set a valid public key set PK against the MS
unforgeability challenger.

43

We extract the signer vector b* from magg, menr, and mgiT for the forged
signature. If the extractor fails for either of the proofs or the extracted values
are not identical, we abort. By relying on the f-@-SE property, we can extract
b* values. Note that we can rely on f-@-SE property as all simulation queries
we made in Game; conform to the @y, for h = pk;. Furthermore, when we
set up a verification key successfully, we know the valid auxiliary information
to be provided to the extractor that ®.;; requires. For 1Pz, proof, the weight
vector w is the valid opening for t; commitment. For |IPg proof, the proofs in the
aggregation key ak are the valid auxiliary information that the extractor needs.

The extracted values must be identical by @-special-sound binding property
of the commitment scheme as all Tagg, Tthr, and 7gT use the same commitment
value for their b* values and our simulation queries conform to the policy. Thus,
the abort case only occurs with the negligible probability, |Pr[Ws] — Pr[W;]| <

3 - neglgp (M) + neglspnp (A)-

Games (Reduction From Multi-Signature Unforgeability): Now we are ready
to make our final argument against the MS unforgeability. We can simulate the
MATS adversary’s using the MS challenger as an honest signer, and we can
extract the set of signers PK™ that MATS forgery is performed on. The last
argument we must make is about a trivial check to build a successful MS forger:
the MS challenge public key must be a member of PK*. Gameg satisfies this
requirement with a polynomial loss and we conclude our proof.

In this game, we add an abort condition to guarantee that the signer index
we guessed in Game; can be used to embed the multi-signature challenge public
key. We require that

1. pk™) must be in pk* for the honest signer (u) that we choose in Game;.

2. There must be no signing query for this signer on message m*, (pk(“), m*) &
Q.

3. Let i be the index of pk(*) in pk. Then the i’th bit of b*, b} = 1.

If any of these conditions do not hold, we abort. By winning condition, we
know that there has to be an honest signer who did not sign the message, but
the corresponding position in b* is equal to 1. As (u) was sampled randomly,
Pr[Ws] = Pr[W2]/qucen -

Finally, we build a MS forger. We get a challenge MS public key pk* and
set pk(® := pk*. In Games, we use the secret key sk(*) only for answering
signing oracle queries and we overcome this issue by simulating 058" queries
using the O"*15i8" oracle of the MS unforgeability game. This change is per-
fectly indistinguishable from Games. Finally, the adversary outputs the forgery
o* := (o', apk, B, Tagg, Tenr, TBiT). By Gamey we know b* and we can build the
signer set PK™* using b*. We already know valid proof-of-possesion for all sign-
ers in pk™ by UGens, so we know pop, for all indexes in PK*. We register all
public keys in PK™ to the MS forgery game using these proof-of-possesion val-
ues and we output (o', m*, PK*) as a MS forgery. By Games, we know that MS
unforgeability challenge public key pk* € PK* and we do not make a signing

44

query for m* to the MS challenger. Also, by the winning condition of MTS un-
forgeability game, we know that MS.Vf(apk, o', m*), so (¢/,m*, PK*) is a valid
multi-signature forgery. Thus, Pr[Ws] < neglys.uynp(A). In the end, we have

Pr [EXP%{AXS'UNF()Q} < negly_x(A)+3-neglgp (M) +neglspnp (A) +qucen, Neglvs unr(A)

F Deferred Content of CP-SNARK Instantiation

We present the deferred content from Section 6 here.

F.1 Comparison of CP-Pair to the Das et al.’s Construction [17].

We compare CP-Pair scheme in Figure 5 to the proof-scheme of [17].

The first change is that we explicitly define the scheme on type-3 pairings
while [17] defined their scheme on symmetric pairings. The second difference is
on the crs. [17] adds additional parameters to the crs which are basically powers-
of-7 in different bases. In addition to the powers on the generator g, they also
create powers-of-tau on a generator h. Furthermore, they add another generator
v to the crs. They use powers on h to perform the degree check by computing
hTE(T) instead of g7 (") for the relations IPg and IPz,. Similarly, they use the
generator v to perform the degree check on « value for the relation IPg. We
perform all degree checks using powers-of-tau on g and ¢ which gets rid of the
extra values in the crs.

An additional check we perform is the degree checks on the type to commit-
ments for all relations. This check simply assures that the type to commitments
have a degree < n — 1, so that we can extract valid openings to these commit-
ments in the extractability proof. Note that we perform this degree check in a
different way than we do for ggr’s or . This is mainly because efficiency. The
current degree check on type t2 commitments also serves as a proof of equal-
ity between the commitments in groups G and G which becomes useful in the
BIT relation proof. As we are in type-3 pairings, this check is necessary to build
a commitment to the vector 1 — u in group G. In a concrete instantiation of
ATS/MATS with CP-Pair, the pairing equations in the dashed boxes become the
identical equation which means performing it once is enough. We also note that
this check would become necessary for an implementation of [17] on a type-3
pairing.

The last difference is that [17] performs an optimization on proof verification
for their ATS by batching the verification of IPg and IPz, proofs. Such a batching
technique could be added to our construction by relying on the homomorphic
properties of the proofs as [12] did for the vector commitments or by using the
generic techniques for the batched verification of pairing product equations [33].

F.2 Efficiency of the Instantiation

We present an efficiency comparison of the instantiation of our generic construc-
tion in Figure 3 with the CP-SNARK instantiation from Section 5 and BLS

45

multi-signatures with PoP [7]. We choose BLS multi-signatures as that is also
used by the previous works [17, 30, 4]. Note that the signature schemes support
different functionalities, in particular, [4] does not support flexible thresholds.
The additional burden in the performance metrics of all other works, including
ours, is the result of SNARKSs in the signature to support ad hoc thresholds.

Our concrete instantiation has comparable efficiency to the previous works.
Below we present two main efficiency metrics in Figure F.2, the signature size and
verification cost. Both [17, 30| employ several optimizations on the underlying
proofs which can also be applied to our scheme (inner-product proof aggregation
[12] and batched pairing equation verification [33]). Note that [17]’s construc-
tion uses symmetric pairings, but their implementation uses type-3 pairings. We
provide the numbers for both versions.

Signature Size Verification ad hoc|ad hoc

thresh. | groups
[17] Asymmetric 7G + 2G + 1%, 15P + 18G v X
[17] Symmetric 8G + 17, 13P +2G v X
[30] 9G + 57, 10P + 1G v X
[4] 26 +1G 4P X v
Our Plain 7G + 5G + 17, 20P + 2G v v
Our Optimized 6G + 3G + 1Z, 13P 4 4G v v

Fig. 7. The efficiency comparison. For the computational performance of the verifica-
tion, G, and P correspond to the number of exponentiations in group G, exponenti-

ations in group G and pairing operations, respectively. For ||sig.||, G, G, G, and Z,
correspond to the number of G, G, and Z, elements, respectively.

F.3 Proofs of Homomorphism Properties

For commitment homomorphism, we give a single theorem as all types of com-
mitments are homomorphic. The commitments are homomorphic for all linear
functions on the vectors.

Theorem 5 (Type-Commitment Homomorphism.). Let F. ; be the fam-

ily of binary functions for t € {t1,t2,tc} such that Fy o 5 € Fer is defined as

Fiop(w,v):=a-u+p-v fora,p €Z, Let further EvalCom be defined as:
EvalCom(Fi o g, U, V) :=U*- VP

Then, for all Fyop € Fert, t € {t1,t2,tc} u,v € Zy, U s.t. VfCom(t,U,u) =
true, and V' s.t. VfCom(t,V,v) = true,

VfCom(t, EvalCom(F} 8, U, V), Fy a,5(u,v)) = true

46

Proof. For the commitment types ¢; and tg, we know by the definition that
U = gXiziwLi(m) and V = g2iza v£i(7) | Then,

c=U*.- VP8 = (92?:1 ui'ﬁi(‘r))a . (gZ?:l vi-ﬁi(T))ﬁ _ gZ?:l(a-uHrﬂ-vi)-ﬁi(‘r)

where the last equation corresponds to a valid commitment to a.-u+ 5 - v. Got
the commitment type t3, the same reasoning holds in the exponent of § instead
of g. ad

The homomorphisms of commitments can be transposed to the IPg and IPz,
proofs, but we only provide the theorems for the homomorphisms on IPg proofs
as we do not need the 1Pz proofs for the generic construction. We note that the
homomorphic properties shown below cover more than our generic construction
requires. First we describe the EvalProof algorithm for the IPg homomorphism
related to the commitment homomorphism of ¢, commitments and show its
homomorphic properties.

Theorem 6 (IPg-Proof Homomorphism on ¢3.). Let X' be the set of binary
partial operations on valid |Pg statements with the same tg commitments such
that for &1 := (Y1, (tg,U), (t2, V1)) and &5 = (Y2, (tg,U), (t2, V2)) which are
valid statements with the corresponding proofs w1 and wo, Xy, o p € X is defined
a8 Xy 05(81,82) = (VY5 (te, U), (ta, Vi*-Vy))) for o, B € Zy. Let further the
EvalProof algorithm on Xy, o3 be defined as below. Then, for all X;, o5 € X,
1, T1, ™1, and 7o as defined above,

VI(IPg, Xt, 0,8(%1, Z2), EvalProof (IPg, Xt, o g, ™1, m2)) = true
EvalProof (IPg, X4, a.8, ™1, m2): For m = (90.1,9R,1,9R*,1,01,Gv=,1) and my :=
(gQ,2agR,2agR*,23 527§U*,2)’ Output
— 8 8 O
= (93),1 'QQ,QO%,l '92,279%*,1 'QR*,275? '55793*,1 'gv*,Z)

Proof. We only show why the first equation of the proof verification holds for
the proof 7 that EvalProof and the other equations follow. As m; and 7o are
valid proofs, we know by the proof verification algorithm that

e(U, V1) = e(9g.1, 5 7) - e(gr,1, 1) - e(71, 9") (9)

e(U, V) = e(9qQ,2, 5 7) - e(gr2. 91) - €(72, 9") (10)

The first equation in the proof verification checks for the proof w that

1

e(U,V) = elgq, 7)) - e(gr,, 1) - e(.9")

€(U7 Vla ’ ‘/2/8) = e(g%,l ’ gg’%gzu.n(‘r)) ’ e(glail ’ 953’27.@1) ’ 6(7? * Y2 7.@

—1

e(U. V) - e(U,Vy) = e(98 1,57 7) - e(gf 1, 01) - e(r§. 4")

e(ghy 5,57 - e(g 5 91) - e(y

)

47

—1

[e(U V)] - [e(U, V2)]? = [e(g0.1, 57 7) - e(gra, §1) - e(y, ")]*
le(90,2, 7)) - e(gr2, 1) - e(72, "

-1

)7

which holds by Equations 9 and 10. We can show that other equalities hold for
the proof 7 by arranging the corresponding equalities of 71 and . a

Similarly, we describe the EvalProof algorithm for the IPg homomorphism
related to the commitment homomorphism of ¢t commitments and show its ho-
momorphic properties. The only difference between the behavior of two EvalProof
algorithms is their behavior to set g,«. As Xy, o g keeps the to commitment the
same, the corresponding degree check g,« does not change.

Theorem 7 (IPg-Proof Homomorphism on tg.). Let X be the set of binary
partial operations on valid |IPg statements with the same ty commitments such
that for &1 = (Y1, (tg,Uh), (t2,V)) and &3 := (Y, (tg,Us), (t2, V) which are
valid statements with the corresponding proofs m1 and ma, Xi. 0,8 € X is defined
as X op(81,22) = (Y- Y9, (t, U - UY), (t2,V)) for a, B € Z,. Let further
the algorithm EvalProof be defined as below. Then for all Xy o5 € X, 21, 21,
w1, and mo as defined above,

VI(IPg, Xtg,a,8(Z1, &2), EvalProof (IPg, X, a8, ™1, m2)) = true

EvalProof (IPg, X a8, 1, m2): For m1 = (90,1,9R,1,9Rr*,1,01,v=,1) and mp =
(gQ,2ng,2ng*,27 527,@71*,2)7 Output

= (981 000 051 I Oiee 1 " Te 2005+ 05, Goe 1)

F.4 Proof of CP-Pair’s f-Zero-Knowledge Property

Theorem 8. CP-Pair scheme in Figure 5 is perfectly f-zero-knowledge for the
leakage function f in Figure 4.

The leakage function fcom leaks the message as it is for the commitment
types t1 and to, and similarly, the leakage function fp,ove leaks the witness as it
is for the relations IPz, and BIT to the simulator. Thus, for these commitments
and proofs, the simulator simply runs the Com and Prove algorithms.

For the commitment type tg and the relation IPg, this is not the case. Our
proof will show that if keep 7 in the sts as a trapdoor key, we can compute
these proofs. In a nutshell, for both of the commitment type g and the relation
IPg, the respective simulators will get G elements U; := g% and they need to
compute g% Fi(7) for some polynomials P;(X). We can compute them simply
Pi(T) — Ulpi(T)

using 7 as g"“ . The full proof of Theorem 8 is in Appendix F.4.

Proof. We set a SSetup that runs the Setup algorithm of f-zero-knowledge, but
also outputs the trapdoor 7 as part of the simulation state sts. The function
[leaks the witness as it is to the simulator for the relations IPz, and BIT.
Thus, the simulator can run the original Prove algorithm for these relations. For

48

the relation IPg, we can simulate proofs using the trapdoor 7 as follows. Given
U :=[¢g*,...,¢"] and v := [v1, ..., 0], an IPg proof 7 := (9¢, gr, gr-,d) can be
simulated as

u (r)—vi/n\r— 1 - " r
= ([Jupemimy 9r+ = gk G- = g¥")

i=1
ﬁ L yvm) pgyy=) (ﬁ vy
i=1 i=1

Note that the computations only require U, v, and 7 and the simulated proofs
are identical to the honestly computed proofs as

- Li(T)\v(r 7—2717' u(7)v(t)—y(r ~1(r T
((HUl ()) ()/QY()) H ():(g((r)-v(r)=y()))ZH ():gQ() (11)

i=1

~ v Li(T)—vi/n\r L T vy, 1 T
(H U Li(t)=vi/) = gO(= gR(™ (12)

which can be verified using Equation 5 and simple group manipulations.

The commitment simulator can run the original Com algorithms for the com-
mitment types ¢; and t5. For the type t(;,, a valid commitment for a verifying
message U := [Uy,...,U,] is ¢, := g2i=1ui Li(7) for U; = g%. The commitment

UL i(T)

simulator answers the query as]_[Z 1 which is identical to c,. a

F.5 FB-DLOG Assumption

We first present the extra discussion on FB-DLOG assumption. Then we present
the deferred proof of Theorem 3.

More Discussion on FB-DLOG Assumption. Uber Assumption Family [9]
allows an adversary to ask the evaluation of any polynomials on a secret vec-
tor of Z, element and return the evaluated values in the exponent of the group
generator. In the end, the adversary needs to compute a group member and a
polynomial such that the group member has the evaluation of the polynomial
on the secret vector and the polynomial is linearly independent from the queried
polynomials by the adversary. (n1,n2)-DLOG assumption only contains evalua-
tions of univariate polynomials. However, Uber Assumption allows multivariate
polynomials. Thus, one may question whether we could define an assumption
from the Uber Assumption Family with bivariate polynomials such that [r, 0]
will be the secret vector to evaluate the polynomials for h := ¢?. Unfortunately,
this is not possible since the Uber Assumption Family samples the secret value
itself, but it’s not an input.

Another candidate is GeGenUber Assumption which is an extension of Uber
Assumption that was defined by Bauer et al. [6]. In a nutshell, GeGenUber As-
sumption extends the Uber Assumption such that the adversary can provide the

49

polynomial evaluation on the exponent of a generator of his choice instead of
computing it strictly to the exponent of the generator g. For the Uber Assump-
tion, we argued that h value can only be provided as an input to the challenger,
but it cannot be output by the challenger. GeGenUber Assumption allows the
adversary to input the h value as a generator, but it does not return polynomial
evaluations on this generator h which we need for h; values.

Such an interactive definition that asks the adversary to choose the bases
to build the problem instance on was also used by Fuchsbauer et al. [23]. They
define an interactive variant of DDH where the adversary is asked to choose
(Q,Q) such that e(Q,§) = e(g,Q) and distinguish Q™ from a random value
when ¢",Q", g° are given. Their assumption puts an extra requirement on the
base vectors H := [Q] and H := [Q] to represent the same Z, vector in the
exponent by the pairing check. Our assumption does not require it. In fact,
it allows even choosing the H := [Q] and H := [Q] with the different sizes.
Another difference between our work and [23] on the allowed base vectors that
an adversary can choose is that our work does not allow 1g or 1¢ to be chosen
as a base. This additional restriction is mainly due to defining a computational
problem while [23] defines a decisional problem. In a decisional problem, using
identity element as a base value instead of a generator does not give an extra
advantage to the adversary. However, in a DLOG-like computational problem,
using identity element as a base value usually makes the problem trivial to solve.
[23] problem can be used as an example in the sense that the computational
variant of their assumption would as for computing @™ and computing this
value would be trivial if the adversary is allowed to choose @@ = 1g. We leave
the analysis of potential flexible-base assumption families and investigating the
relation of decisional and computational flexible-base assumptions to each other
as an open question.

Proof of Theorem 3. The proof relies on the fact that an algebraic adver-
sary provides the algebraic representations of H and H. We embed a (ny,n2)-
DLOG challenge into the FB-(n1,n2)-DLOG challenge using these representa-
tions. When the adversary comes up with a winning polynomial vector f, we
know that 7 is a root of fir(X). The polynomial fiz(X) can be computed in the
clear using the algebraic representations of H and H and we can easily find 7
by computing fi(X)’s roots.

Proof. The proof relies on the fact that an algebraic adversary provides the
algebraic representations of H and H. As the adversary only knows the genera-
tors g and g from these groups, the representations of elements are in the form
of H; := ¢% and H, := gfi. We can take a (n1,n2)-DLOG problem instance
((94)iena]» (9i)iens)), and compute the values to be returned to the adversary
as,

- i 1 0
(H)iE[nl] = ([H17 7Hd)’iE[TLl] = ([gf 7"'791‘&])1'6[%1]

(H)icng) = ([Hi, .o, He]”

~0 N
A Vietna) = (87, 2 8; Diefna]

50

which can be performed without the knowledge of 7. When the adversary returns
a vector of polynomials f such that, fiz(X) # 0 and Hf(") = 1¢, we know that
T is a root of the polynomial fi7(X). We can compute the polynomial fgg(X) in
the clear as we already know the 6; values. It means that we can compute 7 in
polynomial time by finding fr1(X)’s roots and we win (n,n2)-DLOG game. O

G Proof of Theorem 4

We present the proof of Theorem 4 separately for f-@,-SE and f-&,-SBND
properties. The proofs of both properties apply the same game-hop change to
answer the simulator queries. Then, they are specialized to have reductions from
FB-(n1,n2)-DLOG assumption according to their own winning conditions.

G.1 Simulation Extractability

We start by showing that CP-Pair scheme is f-®j,-simulation-extractable.

Theorem 9. CP-Pair scheme in Figure 5 is f-®@,-SE for for the function f
and the policy p := (Psim, Pewt, Pond) in Figure 4 for all h € G in AGM if
FB-(n—1,n)-DLOG assumption in Definition 8 holds.

Proof. Our proof strategy will contain two main parts for handling the queries to
be simulated via zero-knowledge simulator and extracting the requested values
related to the witnesses in the policy.

The policy @, requires to simulate the inner-product proof queries for a
vector of G elements U and vector of Z, elements v. It further allows U to
contain h. The challenge to simulate the queries related to h is that the Prove
algorithm needs u such that U = g" and we do not know the discrete logarithm
6 of h, h = g’. We are going to rely on multi-base (n — 1,n)-DLOG assumption
to simulate these queries. When we choose H := (g, h) and H := (§), we get all
elements in the commitment key ck in the form of g™ and §" and we also get
extra elements A7 = ¢%7". We need to compute ¢? (") for various P(X) and
all such values can be perfectly simulated as h7(7).

In the extraction part of the proof, we must show that the requested values in
the policy @y, for each statement type in IPg, IPz,, and BIT. Our first observation

will be that as we are in AGM, each G value output by the adversary will have
an algebraic representation on top of ¢ values. Similarly, each G value output
by the adversary will have an algebraic representation on top of g7 , A" , and
proofs that the simulator outputs. As we computed the simulated proofs only
using ¢” and h™" values, we can compute an algebraic representation of all G
values that the adversary outputs. Relying on these representations which are
on a multi-base (n — 1,7)-DLOG challenge, we will provide a sequence of games
with the reductions from multi-base (n —1,7n)-DLOG assumption and show that
our extractor only fails with a negligible probability at the end.

o1

It is obvious that all of gg, gr, and gg+ can be computed using h; values.
Thus, SProve does not need the trapdoor 7 anymore. As Game; outputs identical
values to Gameg, Pr[W;] = Pr[W].

Game; (Trapdoorless Simulation): In this game, we change how the proof
simulator SProve simulates proofs. The main aim of this change is to simulate
the proofs without using the trapdoor 7 in SProve so that we can change how we
set the commitment key ck later on. There is a trivial case that we can simulate
proofs easily, which is the case that h = 1g, so 8 = 0. According to the policy, 8
is the only member of the vector u that we do not know. Hence, once we learn
it, we can run the original Prove algorithm to simulate the proofs. In the rest of
this game hop, we consider the non-trivial case where h # 0.

First, while running SSetup, we compute additional values h; := h™ for
i € [n — 1] for the internal use. Then, while computing the simulated proofs, we
need to compute gg = g®") . gg = g g := g7) for the following Q(X)
and R(X) polynomials. Note that we only need to simulate the queries that are
allowed by the policy as an adversary making any other query would lose the
game anyway. According to the policy @, the simulation queries can only be
made for IPg statements. Furthermore, the leakage (U, v) that was defined in
the leakage function f must be in the form of U = h® and v = e; for some %
and j.

According to the limitations above, a simulated proof must compute (g¢g :=
g9 gr == g gp. == g7) § .= g2 g, == GV (7)) for the polynomials
defined in Figure 8. Note that the polynomials in Figure 8 can be reproduced
easily by placing (U, v) values into the Equation 5 accordingly. Here, we show
that these polynomials can be computed in the exponent by using only ¢; and
h; values. For the polynomials to be computed on G, we need to show that they
have degree < n — 1 and they contain 6 with at most power 1. Q(X) polynomial
is computed using a polynomial division, so these division operations must have
the remainder 0. For the cases that ¢ # j and i = j, we can show that the
polynomial divisions with zy have remainder 0 by relying on the Equations 6
and 7 of Lemma 3, respectively. Furthermore, Q(X) polynomials have degree at
most n — 2, so gg values can be computed by only using h; values. Similarly,
the computation of R(X) polynomial contains a polynomial division by X, and
we can show that this division has remainder 0 by Equation 8 of Lemma 3. As
R(X) has degree n — 2 at most, gr values can be computed using h; values. It
is easy to observe that gr«, d, g,~ values can be computed, too.

It means that SProve does not need the trapdoor 7 anymore, but it uses g;
and h; values to simulate proofs. As Game; outputs identical values to Gamey,
PI‘[Wl] = PI‘[W()]

Now, we define the different events that the adversary can win Game;. We
name the event Ep as the event that the adversary returns a statement & and
a proof m from a relation RS for RS € {IPg,IPz,,BIT} to extract its witness.
Then,

Pr[Wi] < Pr(Eip] + Pr| Eip,, | + Pr{Eipy,]

52

Indexes/Polynomials| e ‘ i=j
QX) 0 Li(X) L;(X) 25" (X)]0- (L3(X) = Li(X)) 25 (X)
R(X) 0 (0-Li(X)—0/n) - X!
R*(X) 0 (0-Li(X)—0/n)
A(X) 0 6-x"t
v (X) L;(X) Li(X)

Fig. 8. Polynomials to simulate IPg proofs.

We show one by one that all Pr[Er|’s are negligible. In this part of the
proof we always have a reduction from FB-(n — 1,n)-DLOG assumption. For all
cases, we set H := (g, h) and H := (j) and send it to the FB-(n — 1,n)-DLOG
challenger. When we get the g;, h;, and g; values, we use them to set the c¢rs and
set the h; values in the simulator state sts. Note that if h = 1, we do not need
the h; values and also FB-(n —1,n)-DLOG problem does not allow us to choose
h = 1g. We could have a reduction from (n —1,n)-DLOG when h = 1. Or, we
can repeat all the argumentations below by simply arranging the equations for
0 = 0 and sending H := (g) and H := (§) to the FB-(n—1,n)-DLOG challenger.
Below, we consider the non-trivial case that h # 1g.

Extractor in the Event Ejp, . Our aim in this part of the proof is to show that
if 7 is a verifying proof for Z, then we can either extract a vector v according to
the policy’s requirements or we can build an adversary that breaks FB-(n—1,n)-
DLOG Assumption. Extractability of 1Pz, proofs rely on Lemma 2. Let & :=
((t1,¢u), (t2,¢y)). Commitments ¢, and ¢, encode the polynomials u(X) and
v(X) of Equation 4 in the exponent. While the first pairing product equation
in the proof verification checks that Equation 4 holds for some Q(X) and R(X)
which were encoded in the exponents of gg and gg, respectively, the second
pairing product equation performs a degree check on the R(X) value encoded
in ggr’s exponent. Namely, it checks that the degree of the encoded R(z) is at
most n — 2. Below we show that these pairing product equations hold if either
the encoded polynomials satisfy the aforementioned checks, or we can break the
FB-(n — 1,n)-DLOG Assumption.

Degree Check on gr. As we are in AGM, the adversary outputs the algebraic
representations of gr and gr+ in the form of

n—1

n—1
Ri R — Ri g Ri
9r ::Hgi < h; 9R> '_Hgi “h;
i=0 i=0

We define the polynomials R(X) := .7 (R; - X" and R(X) := S0, R; - X'
The polynomials R*(X) and R*(X) are defined similarly. Note that the main
polynomials we want to use for degree checks are R(X) := R(X) + 0 - R(X)
and R*(X) := R*(X) 4 0 - R*(X). Finally, we define the vector of polynomials
f:=[X R(X)-R*X), X R(X)— R*(X)]. As 7 is a valid proof for &, we

53

know that e(gr, §2) = e(gr~, §) holds, so Hf(") = 1g. Thus, either fiz(X) is zero
polynomial, or f is a valid answer to the FB-(n — 1,n)-DLOG challenge. The
former implies that R(X)- X = R*(X), so the degree of R(X) is at most n — 2.
The latter is negligible by FB-(n — 1,n)-DLOG Assumption.

Degree Check on c¢,. The second degree check is performed on ¢, using the
pairing product equation with g,~. We define the polynomials from the alge-
braic representations vor g, as v*(X) := v*(X) + 6 - v*(X). We note that
deg(v*,H) < n — 1 due to the algebraic representation of g,~. We also define
polynomial v(X) from c¢,’s algebraic representation which has degree < n. Now
we build the vector of polynomials f := [v*(X) — v(X),v*(X)]. As 7 is a valid
proof for &, we know that e(g,+,) = e(g, c,) holds, so Hf(") = 15.Thus, either
fr(X) is zero polynomial, or f is a valid answer to the FB-(n — 1,n)-DLOG
challenge. The former implies that v*(X) = v(X), so the degree of v(X) is at
most n — 1. The latter is negligible by FB-(n — 1,n)-DLOG Assumption.

Inner-Product Polynomial Relation Check. Now we can check that the main
equation of inner-product relation, Equation 4, holds if the proof verification is
successful and we can extract the vector v from the proof. According to the extra-
ction policy, the adversary provides us a valid opening u for the commitment
¢, as auxiliary information. Let u(X) Y. ; u; - £;(X) be the polynomial repre-
sentation of the vector u. Let further v(X) := Y7 | v; - £;(X) be the algebraic
representation of the commitment ¢,. Note that, we can compute v(X) according
to the Lagrange basis polynomials as it has degree < n—1. Now we set the vector
of polynomials f := [u(X)-v(X)—~/n—X-R(X) —zu(X)-Q(X),—X - R(X) —
2i(X) - Q(X)]. We know by the proof verification equation that Hf(") = 1¢. If
fa(X) # 0, then f is a valid answer to the FB-(n — 1,7n)-DLOG challenge which
occurs only with a negligible probability. Otherwise, fig(X) = 0 and we have

n

(Zui'ﬁi(X)) (D v Li(X) =/n+ X - R(X) + Q(X) - z1(X)

=1

By Lemma 2, we conclude that u-v =+ where v := [vy, ..., v,,] which is also a
valid opening for ¢, and we output W' :=v.
As a result, we conclude that

Pr {EIP%} <3 neglpp pLoc (M)

Extractor in the Event Ejp,. We will rely on a similar argumentation to the
E'IPZP ’s to show that Ejp, is negligible. IPg proof relies on the Lemma 2 just like
the IPz, proofs. The first difference is that we need to check the validity of the
inner-product result in the exponent. 11/n is a constant term in the inner-product
polynomial relation of Lemma 2. In IPz, proof, this is checked trivially as we
run the pairing product equation by performing the exponentiation g explicitly.
However, this check can not be performed in IPg proof verification as the verifier

54

does not know the exponent value. We solve this issue by adding another pairing
product equation to perform a degree check on 7.

Another change compared to the IPZP proof extraction is because of the
different auxiliary information that the extractor gets. For IPz, proofs, the ex-
tractor directly gets an opening of the commitment c¢,,. However, for IPg proofs,
the extractor gets n other proofs on the same commitment c,.

Before starting the proof, we parse some values that the extractor gets to
express our notation clearly. The extractor gets the valid proofs m;’s for the
statements Z;’s.

Tj = (9Q.js IR.j+ IR* j+ 0js Gu=,5) = (Uj, (tr, cu), (t2, Ce;)

where co; = ¢%(7). Furthermore, we build the polynomials Q(X), R(X), Q;(X),
and R;(X) are algebraic representations of ¢gg, gr, 9¢,;, and gg,j, respectively
to use them in the rest of the proof.

Degree Checks. We write down all degree checks that can be done on the values
we have here. All R;(X) polynomials and R(X) polynomial has degree < n — 2.
v(X) has degree at most n — 1. Finally, the algebraic representations of all U;

values and « are in the form U; := gﬂ3' - A% and v := g - h*, respectively.

Inner-Product Polynomial Relation Check for . Using degree checks, Lemma 2,
and FB-(n — 1,n)-DLOG Assumption, we are going to show that the extractor
fails for IPg proofs only with a negligible probability.

By AGM, we have a polynomial representation of ¢, u(X) := a(X)+6-u(X).

As these polynomials have degree n— 1, we can write them as u(X) := > | @;-

L;(X) and u(X) := Y7 | @ - £;(X). Let further v(X) := D1, v; - £;(X) be
the algebraic representation of the commitment c,. Note that, we can compute
v(X) according to the Lagrange basis polynomials as it has a degree < n — 1.
Now we set the vector of polynomials

= [6(X) - v(X) — ji/n — X - R(X) — 2(X) - Q(X),
(X) - v(X) = i/n = X - R(X) = z(X) - Q(X)]

[]]

We know by the proof verification equation that Hf(") = 1¢. If fi(X) # 0, then
f is a valid answer to the FB-(n — 1,n)-DLOG challenge which occurs only with
a negligible probability. Otherwise, fig(X) = 0, and we have

n

O +0-1) - £:X)) - (3 v £(X) = i+ 0)/n + X - R(X) +Q(X) - 2u(X)

i=1

By Lemma 2, we get Y . (@ + 0 - 4;) - v; = i + 0ji.

Inner-Product Polynomial Relation Check for U;’s. Similar to v, we show that
the inner-product polynomial relation holds for all U;’s.

95

As IPg proofs on Uj’s are performed for the commitments ¢, and ce;’s, we
know polynomial representations of ce;’s, €;(X) := £;(X). We set the vector of
polynomials

£0) .= [

=1}

(X) - £;(X) = @/n— X - Rj(X) — zu(X) - Q(X),
(X) EJ(X) —ﬂ;/n—XR](X) —ZH(X) Q

[=]]

We know by the proof verification equation that HY (D) = 1g. If fg)(X) £ 0,
then fU) is a valid answer to the FB-(n — 1,n)-DLOG challenge which occurs

only with a negligible probability. Otherwise, fI({j) (X) =0, and we have

n

O (s +0-1;) - Li(X)) - L3(X) = (@ + 0 - @) /n+ X - Rj(X) + Q;(X) - z(X)

=1

By Lemma 2, we get @; + 0 - u; = 4} + 0 - u).

Finally, we are able to argue that the vector v := [v1,...,v,] is a valid
opening to the extractability policy. First, v is a valid opening to the commitment
¢y Secondly, By the inner-product polynomial relation check on 7y, we know that
7y = gi= Vil g2 vl = T (g% - h%)%. By the inner-product polynomial
relation checks on U; values, we get [[/, (g% - h%)¥ = [[7_ (g% - h%)% =
T, (U:)¥, so UY = 1.

Pr[Ep.] < (2n +5) - neglpg proc(A)

Extractor in the Event Eg . The extractor for the relation BIT will rely on
the Hadamard-product polynomial relation from Lemma 1.

Equality Check on g,. The pairing product equation e(g,c,) = e(gu, §) checks
whether ¢, and g, encodes the same polynomial or not. As we are in AGM, we
have the following representations

n—1 n

- R Ri - ALi

Gu» = H g; ' hy Cy = Hgi
=0 =0

Let &(X) = Y00 f - X7, R(X) = S0 R - X7, and o(X) o= Y00 - X
Finally, let the vector of polynomials f := [&(X) — ¢«(X),R(X)]. As e(g,¢,) =
e(gu=,g), HI = 1¢. If fi(X) = 0, then we get #(X) + 0&(X) = ¢(X). Oth-
erwise, f is a valid answer to the FB-(n — 1,n)-DLOG problem. Note that this
equality also serves as a degree check as the algebraic representations in G have
degree < n — 1.

Hadamard-Product Polynomial Relation Check. Finally, we are going to how to
extract the opening u by relying on Lemma 1 and FB-(n, n)—PLOG Assumption.
Let the vector of polynomials f := [o(X)-(1-&(X))—2zm(X)-Q(X), —(X)-R(X)—

56

21(X) - Q(X)]. By the proof verification algorithm, HE(") = 1¢. If fi(X) # 0,
then f is a valid answer to the FB-(n—1,n)-DLOG problem. Otherwise, we have

(1= (R(X) +0-K(X))) - «(X) = zu(X) - Q(X)

By the degree check on ¢,, ¢«(X) has degree at most n — 1, so we can compute
n

a vector encoded in «(X) := Y 1 ; u; - £;(X). Furthermore, by relying on the
equality check and 1 =37 | £;(X), we get

n

O (1 —u) - Li(X)) - (Z ui - £i(X)) = zu(X) - Q(X)

i=1

which shows uo (1 —u) = 0 by Lemma 1. This Hadamard-product equality
shows that u is a bit vector which is a valid opening to ¢, and the extractor
outputs u.

Pr[Egit] <2 - neglpg prog(A)

Finally, we conclude our proof by

Pr [Exp{iﬁ?] (A) = true| < (2n + 10) - neglpg_proc(A)

G.2 Simulation-Sound Binding

Now we show that Construction 5 is f-@p-simulation-sound-binding. An impor-
tant difference is that the f-®,-SBND property can be proven without relying
on AGM.

Theorem 10. Construction 5 is f-@p-SBND for for the function f and the
policy Pp = (Psim, Pewt, Pona) tn Figure 4 for all h € G if FB-(n —1,n)-DLOG
assumption in Definition 8 holds.

Proof. As the simulation-extractability and the simulation-sound-binding games
are identical in the query phase, we can answer the simulator queries identically
to Game; of the simulation extractability proof. thus, we omit to explain the
simulation part and show that if an adversary can break the binding property
according to the policy @, we can break the FB-(n1,n2)-DLOG Assumption.
We set H := (g, h) and H := (j) and send it to the FB-(n—1,n)-DLOG chal-
lenger. When we get the g;, h;, and g; values, we use them to set the crs and set
the h; values in the simulator state sts as in the proof of simulation-extractability.
Now let u and v be two distinct vectors and C be a type t commitment such
that VfCom . (t2, C,u) and VfCom(t2, C,v). By the verification equation,

C = QZ?:1 wi-Li(T) C = QZ?ZI v L4 (T)

o7

We set polynomial f(X) :=>""" (u;—v;)-£;(X). As u and v are distinct vectors,
we know that there is a non-zero w; — v;, so f(X) is a non-zero polynomial.
However, by the verification equations above, we know that ¢/(7) = C/C = 1¢,
so f(7) = 0. Thus, 7 is a root of the polynomial f(X) which can be computed
in a polynomial time. a

o8

	Commit-and-Prove System for Vectors and Applications to Threshold Signing

