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Abstract. Efficient anonymous credentials are typically constructed by combining proof-friendly
signature schemes with compatible zero-knowledge proof systems. Inspired by pairing-based proof-
friendly signatures such as Boneh- Boyen (BB) and Boneh-Boyen-Shacham (BBS), we propose
a wide family of lattice-based proof-friendly signatures based on variants of the vanishing short
integer solution (vSIS) assumption [Cini-Lai-Malavolta, Crypto’23]. In particular, we obtain natural
lattice-based adaptions of BB and BBS which, similar to their pairing-based counterparts, admit
nice algebraic properties.
[Bootle-Lyubashevsky-Nguyen-Sorniotti, Crypto’23] (BLNS) recently proposed a framework for
constructing lattice-based proof-friendly signatures and anonymous credentials, based on another
new lattice assumption called ISISf parametrised by a fixed function f , with focus on f being the
binary decomposition. We introduce a generalised ISISf framework, called GenISISf , with a keyed
and probabilistic function f . For example, picking fb(µ) = 1/(b − µ) with key b for short ring
element µ leads to algebraic and thus proof-friendly signatures. To better gauge the robustness
and proof-friendliness of (Gen)ISISf , we consider what happens when the inputs to f are chosen
selectively (or even adaptively) by the adversary, and the behaviour under relaxed norm checks.
While bit decomposition quickly becomes insecure, our proposed function families seem robust.
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1 Introduction

Constructing secure and concretely efficient lattice-based signature schemes is by now a well solved
problem. Indeed, schemes following both of the main construction paradigms, Hash-and-Sign [GPV08]
and Fiat-Shamir-with-abort (FSwA) [Lyu12], have been standardised [PFH+22, LDK+22] with signature
size in single-digit kilobytes and with security connected to the hardness of worst-case lattice problems4 in
the random oracle model. However, the verification relations of most efficient schemes in either paradigm,
including standardised ones, inherently require evaluating a hash function on the signed message and
additionally on part of the signature in the case of FSwA. Since this hash function needs to be modelled as
a random oracle for security proofs to go through, it is typically instantiated with a non-algebraic (hence
not proof-friendly) hash function. While signatures based on non-algebraic hashes suffice for standalone
uses, they may not be well suited as building blocks for efficient constructions of privacy-preserving
authentication primitives, such as anonymous credentials, blind signatures and group signatures.

Constructing efficient privacy-preserving authentication primitives is of high practical interest, e.g.
in the context of the European Digital Identity framework. Concretely efficient constructions typically
require a user to prove knowledge of a message-signature pair which satisfies the verification relation
of a signature scheme, in zero-knowledge. For example, the message could be the secret attributes of
the user, and the signature could be issued by an authority who asserts that the attributes are genuine.
For such a proof to be computed efficiently, a common approach is to instantiate the constructions with
“proof-friendly” signatures and zero-knowledge proofs (ZKP), such that the verification relations of the
signatures are “natively” supported by the proof system.5

4 We say connected because parameters chosen for the schemes differ from those which admit worst-case to
average-case reductions.

5 Such a combination of signatures and ZKPs is sometimes called “signatures with efficient protocols” [CL03]. In
the pairing-based setting, a typical choice is to combine the BBS signatures [BBS04] with the Groth-Sahai
proof system [GS08].
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Lattice-based Proof-Friendly Signatures. In the context of lattice-based signatures, we regard a signature
scheme as proof-friendly if 1) it natively supports signing committed messages (via a hiding and binding
commitment), and 2) its verification relation can be expressed as the bounded-norm satisfiability of
a system of low-degree polynomial equations. Combined with efficient lattice-based ZKPs for proving
well-formedness of commitments and bounded-norm relations (e.g. [LNP22b]), a signature scheme with
the above properties can be efficiently turned into constructions of privacy-preserving authentication
primitives, as demonstrated in [BLNS23b]. In this area, two competing approaches represent the state of
the art:

1. Jeudy, Roux-Langlois and Sanders [JRS23], building upon [LLM+16], considered signature schemes
of the following form: A signature of a short message vector m is a tuple (x, s, r), where x is an
invertible element, and s, r are short vectors satisfying

[A|B+ xG] · s = v +C[mr ] mod q,

where A,B,C are public random matrices, v is a public random vector, and G is the so-called gadget
matrix [MP12]. This type of signatures relies on the gadget lattice trapdoor machinery [MP12], which
tends to be concretely less efficient than GPV trapdoors [GPV08]. Indeed, [JRS23] reported signature
sizes in the hundreds of kilobytes.

2. Bootle, Lyubashevsky, Nguyen and Sorniotti [BLNS23b] considered signature schemes of the following
form: A signature of a short message vector m is a tuple (x, s, r), where x is chosen uniformly at
random from an appropriate domain, and s, r are short vectors satisfying

A · s = f(x) +C[mr ] mod q,

where A,C are public random matrices and f is a function. This signature scheme can be instantiated
efficiently, with [BLNS23b] reporting signature sizes as low as dozens of kilobytes. However, the
security of such scheme is based on a new lattice assumption, called ISISf , introduced in the same work,
whose hardness crucially depends on the choice of f . Indeed, it is very easy to come up with (linear)
functions f for which the assumption and the scheme are completely broken. The authors advocated
picking f to be the binary decomposition function, but were light on the evidence supporting the
hardness of ISISf for this f . In Section 5.4, we illustrate that this choice of f is not very robust.
Security breaks down under the (relatively benign) relaxation to one selective f -query and norm
relaxation by a factor of

√
2.

Translating BB(S) Signatures. In view of the scarcity of lattice-based proof-friendly signatures, a natural
strategy is to translate proof-friendly pairing-based signatures to the lattice setting, for example, using
the general translation strategy proposed in [ACL+22]. Signature schemes which utilise only generic
pairing group operations are abundant. Of particular importance are the related signature schemes of
Boneh and Boyen (BB) [BB08], whose signature consists of a single group element, and Boneh, Boyen
and Shacham (BBS) [BBS04, ASM06, TZ23], which allows to sign messages committed via Pedersen’s
commitment. (More discussion in Section 1.2.) Below, we outline a translation attempt of the simpler BB
signatures and highlight the difficulty behind.

To recall, using implicit notation for group elements, a public key in the BB signature scheme is
a tuple of group elements ([1], [b]) ∈ G2, the secret key is b ∈ Zq, and a signature of µ ∈ Zq \ {b} is

[u] = [1/(b−µ)]. Signature verification simply checks if ([b]− [1] ·µ) · [u] ?
= [1], where · denotes the pairing

operation.

Adopting the translation strategy of [ACL+22], a natural lattice-analogue of BB signatures would be
as follows: The public key consists of a random matrix A and a random vector b, the secret key is a
trapdoor tdA, and a signature of µ is a short vector s satisfying As = 1n ⊘ (b− 1n · µ) mod q, where ⊘
denotes component-wise division. Equivalently, the verification equation is (As)⊙ (b−1n ·µ)

?
= 1n mod q,

where ⊙ denotes the component-wise product, which apparently shares structural similarities with that
of the BB signatures.

Despite the above natural translation of the BB signature scheme, its original security proof, based on
the Q-strong Diffie-Hellman assumption (Q-SDH), unfortunately fails to translate to the lattice setting.
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In brief, a core argument in the security proof of BB signatures relies on constructing a polynomial

f(b̃) :=

Q∏
i=1

(b̃− µi)

where µ1, . . . , µQ are selective signing oracle queries, and using properties of the quotients f(b̃)/(b̃− µ)
for µ ∈ {µ1, . . . , µQ, µ

∗}, where µ∗ is the target message of a forgery, to answer signing oracle queries and
extract a Q-SDH solution. A major difficulty in carrying this argument over to the lattice setting, among
others, lies in the inability to control the norm of the coefficients of both the quotient and remainder of
f(b̃)/(b̃− µ). This suggests that, rather than proving security of the lattice-BB signatures based on a
lattice-analogue of Q-SDH, an alternative strategy is needed.

1.1 Our Contributions

In this work, we present a wide family of lattice-based proof-friendly signatures, including those obtained
by translating the pairing-based BB and BBS signatures. We prove security of these signature schemes
under new but natural extensions of existing lattice-based assumption, specifically, the (strong) hinted
variants of the vanishing short integer solution (vSIS) assumption [CLM23] family, which can also be seen
as variants of the kRISIS assumption [ACL+22] family with slightly more flexible adversaries. Our results
are summarised in Figure 1.

(Strong) Hinted vSIS Assumptions, Plausibility Criteria, Reduction. We propose the hinted vSIS as-
sumption and its strong variant in Section 3. The original vSIS assumption, introduced by [CLM23] and
parametrised by a set of rational functions F , asserts hardness of the following task:

Given a random matrix A, find a short linear combination of (f(A))f∈F vanishing to 0 modulo q.

The hinted vSIS assumption, further parametrised by two (possibly intersecting) sets of rational functions
G,H, asserts hardness of the following task:

Pick a Q-subset Q = (h1, . . . , hQ) of H and some g∗ in G \ Q, receive a random matrix A and
short linear combinations of (f(A))f∈F which evaluate to hi(A) modulo q for each i ∈ [Q], and
find a short linear combination of (f(A))f∈F which evaluates to g∗(A) modulo q.

The strong variant, which is strong in the same sense as in Q-SDH, asks to perform the above task with
the flexibility that g∗ can be picked after seeing A.

We suggest general criteria for the hinted vSIS assumptions6 to be plausible. Further, under the
Evasive SIS assumption envisioned by [Wee22] (but which was not formalised nor used), we show that
the (non-strong) hinted vSIS assumption is implied by the (plain) vSIS assumption for certain parameter
choices (Thm. 2). Similar to the gaps between strong and non-strong assumptions in the group setting,
e.g. (strong) Diffie-Hellman and (strong) RSA, formal reductions from non-strong to strong hinted vSIS
are out of reach except in trivial cases.

Lattice-based Adaption of the BB(S) Signatures. We construct a family of lattice-based signatures
in Section 4, capturing the lattice-BB signatures sketched above as a special case. In brief, suppose
H = {hµ,χ}µ,χ is a set of rational functions indexed by messages µ and signing randomness χ. For a public

key (A,b), a signature is simply a tuple (χ, s), where s is a short vector satisfying As = hµ,χ(b
T) mod q.

Assuming strong hinted vSIS holds for G, then the signature scheme has strong selective-query security
(Thm. 5). By instantiating G appropriately, we obtain natural lattice-analogues of the BB and the BBS
signature schemes, elaborated in Section 4.2.

Generalised ISISf . We generalise the ISISf assumption of [BLNS23b] to allow the function f inputting
additional randomness, which we call the GenISISf assumption, presented in Section 5. Analogous to ISISf
of [BLNS23b], the GenISISf assumption can be generically lifted to an interactive GenISISf assumption
without additional overhead (Thm. 6). Applying the transformation to our strongly selective-query-secure
signature scheme yields a fully strongly secure one. Moreover, we show that the GenISISf assumption
implies a weakened version of the strong hinted vSIS assumption, where the set of hints Q is sampled
uniformly randomly.

6 Apply also to the (plain) vSIS and kRISIS assumptions upon appropriate adaption.
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Fig. 1: Overview of results. An arrow from A to B means “Assumption/Security A implies Assumption/Se-
curity B”. Dashed arrows denote trivial reductions.

1.2 Related Work

The BBS signature scheme was implicit in their group signature construction [BBS04] and can be seen as
an extension of another signature scheme by Boneh and Boyen (BB) [BB08]. The BBS scheme was later
explicitly cast as a standalone signature scheme [CL04]. The BBS+ signature scheme [ASM06] is a slightly
modified and provably secure version of BBS, under the q-strong Diffie Hellman (q-SDH) assumption. For
almost two decades since its introduction, the BBS+ signature scheme is a de facto standard building
block for pairing-based anonymous credentials. Only until recently [TZ23] it is shown that the original
BBS signature scheme is also provably secure under the same assumption.

The combination of (lattice-based) proof-friendly signatures with a tailored zero-knowledge proof
system is a general template for privacy-preserving authentication primitives (see e.g. [CGT23]). Anony-
mous credentials tend to be the hardest to construct, as typically both the signature and parts of the
signed message should remain hidden when the credential is shown. Thus, efficient proof-friendly signa-
tures [ABB10, MP12, DM14, BLNS23b] along with suitable proof systems [BLS19, YAZ+19, LNP22b] had
to be devised first, and still much optimisation was (and is) required [LLM+16, BLNS23b, JRS23, BBP23].

For group and blind signatures, using a random oracle to hash the message provides some lever-
age. Indeed, in the lattice setting, we have seen earlier and steady development with group signa-
tures [GKV10, LLLS13, LLNW16, BCN18, dPLS18, BDK+22, LNPS21]. The situation with blind signa-
tures is less fortunate, where all prior works based on the blind Schnorr-type template [Rüc10, AEB20a,
AEB20b, AHJ21] have been found gaps in their proofs [HKLN20], and later broken by the so-called ROS
attacks [BLL+21, BLL+22, KLR24]. Schemes that remain standing [LNP22a, AKSY22, dPK22, BLNS23a]
follow Fischlin’s two-move template [Fis06]. From the efficiency perspective, the most competitive blind
signatures to-date are based on either the ISISf assumption [BLNS23b] which our work extends, the
one-more-ISIS assumption [AKSY22], or heuristic assumptions [BLNS23a], namely succinct arguments
proving about random oracles, which is concretely expensive but achieves small signature size.

2 Preliminaries

Let λ ∈ N denote the security parameter. For two (ensembles of) distributions D0,D1, we write D0 ≈c D1

if they are computationally indistinguishable. We write poly(λ) and negl(λ) for the sets of functions
polynomial and negligible in λ, respectively. We write matrices and vectors in bold upper and lower case
letters, e.g. A and x, respectively. For matrices and vectors of compatible dimensions, we write ⊙ and
⊘ for the Hadamard (i.e. component-wise) product and division, respectively. We write 1n for the all-1
vector of dimension n over whichever ring within context. For real vectors x ∈ Rn, we write ∥x∥ := ∥x∥2
for its Euclidean norm. If S is a finite set, we write U(S) for the uniform distribution over S and x←$ S
for the sampling of a uniformly random element x from S.

For a sequence of k formal variables x̃ and a ring X , we write X [x̃T] and X (x̃T) = {f/g : f, g ∈ X [x̃T]}
for the set of k-variate polynomial and rational functions over X respectively.7 We use ·̃ to denote formal
variables using the same letter as the intended input. For example, we write f(x̃) for a function f with
variable x̃, which is intended to be evaluated at a point x. We will use the following shorthand for vectors

7 The transposes in X [x̃T] and X (x̃T) matter due to the notation of evaluating functions at matrices defined
below.
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consisting of evaluations of one or multiple functions at multiple points. For f : X k → X a k-variate
function, F = (fj : X k → X )mj=1 a sequence of k-variate functions, and A ∈ Xn×k a X -matrix with the

i-th row given by aTi ∈ X k, we write

f(A) :=
(
f(aT1) . . . f(a

T
n)
)T ∈ Xn,

F(A) :=
(
f1(A) . . . fm(A)

)
=

f1(a
T
1) . . . fm(aT1)

...
. . .

...
f1(a

T
n) . . . fm(aTn)

 ∈ Xn×m.

2.1 Algebraic Number Theory

We state our results over the cyclotomic field Q(ζ), where ζ = ζf, with conductor f and degree φ := φ(f),
and its ring of integers R = Z[ζ]. All results can be specialised to the integer setting, i.e. R = Z. For q ∈ N,
we write Rq := R/qR. Let σ = (σi)i∈Z×

f
: Q(ζ)→ Cφ denote the canonical embedding of Q(ζ), with its

definition naturally extended to Q(ζ)-vectors by concatenation. We norm a Q(ζ)-vector x geometrically
by the ℓp-norm of its canonical embedding, i.e. ∥x∥p := ∥σ(x)∥p. For any a, b ∈ Q(ζ), it holds that
∥a · b∥p ≤ ∥a∥p · ∥b∥∞. We omit the subscript p when p = 2.

Any R-module M ⊆ Rm can be viewed as a lattice via σ(M). In particular, for A ∈ Rn×m
q and

v ∈ Rn
q , we consider the following lattice (cosets):

Λ⊥
q (A) := {x ∈ Rm : Ax = 0 mod q}, Λv

q (A) := {x ∈ Rm : Ax = v mod q}.

2.2 Discrete Gaussians, Lattice Trapdoors

The Gaussian function with parameter s > 0 is ρs(x) := exp(−π∥x∥2/s2) for all x ∈ Rn. For a discrete
set A ⊆ Rn, the discrete Gaussian distribution with parameter s is DA,s(x) := ρs(x)/ρs(A) for any x ∈ A,
where ρs(A) :=

∑
x∈A ρs(x).

Lemma 1 ([Ban93, Lemma 1.5]). For any lattice Λ ⊆ Rn and s > 0, it holds Pr[∥DΛ,s∥ > s
√
n] ≤ 2−n.

We summarise the properties of lattice trapdoors as a “lattice trapdoor scheme”.

Definition 1 (Lattice Trapdoors [GPV08]). Let R be parametrised by λ. A lattice trapdoor scheme
over R consists of PPT algorithms (TrapGen,SampPre):

(A, tdA)← TrapGen(1λ, 1n, 1m, q): Sample a matrix A ∈ Rn×m
q together with a trapdoor tdA.

u← SampPre(tdA,v, s): Given the trapdoor tdA, a target image vector v ∈ Rn
q and a Gaussian parameter

s, sample a preimage vector u ∈ Rm.

A tuple of parameters paramstd = (R, n,m, q, s) is said to be admissible if they satisfy the following
properties:

1. It holds that
{
A : (A, tdA)← TrapGen(1λ, 1n, 1m, q)

}
≈c U(Rn×m

q ).

2. For any s′ ≥ s and for all but a negl(λ)-fraction of (A, tdA) in the support of TrapGen(1λ, 1n, 1m, q),
the following hold:

– For any v ∈ Rn
q , it holds that SampPre(tdA,v, s′) ≈c DΛv

q (A),s′ .

– It holds that

{
(u,v)

∣∣∣∣∣ v←$Rn
q

u← DΛv
q (A),s′

}
≈c

{
(u,v)

∣∣∣∣∣ u←$ DRm,s′

v := Au mod q

}
.

We refer, for example, to [GPV08, MP12] for how to instantiate a lattice trapdoor scheme with
admissible parameters.
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PreA(1λ)

(P̃, Ã, aux)← Samp(1λ)

B←$Rn×m
q

u∗ ← A(B, P̃, Ã, aux)

b0 := ((B|P̃|Ã)u∗ = 0 mod q)

b1 := (0 < ∥u∗∥ ≤ β1)

return b0 ∧ b1

PostB(1
λ)

(P̃, Ã, aux)← Samp(1λ)

B←$Rn×m
q

U←$ Dm×mP
R,s conditioned on BU = P̃ mod q

u∗ ← B(B, P̃, Ã,U, aux)

b0 := ((B|Ã)u∗ = 0 mod q)

b1 := (0 < ∥u∗∥ ≤ β0)

return b0 ∧ b1

Fig. 2: Experiments Pre and Post for evasive SIS assumption.

2.3 Lattice Assumptions

The vanishing SIS (vSIS) assumption [CLM23] is parametrised by, among others, a set of rational functions
F . It states that, given a random matrix A, it is hard to find a short linear combination of {f(A)}f∈F
which vanishes modulo q.

Definition 2 (Vanishing-SIS ([CLM23])). Let params = (R, n, k, q, β,F) be parametrised by λ,
where n, k, q are positive integers, β ∈ R+ and F is a set of k-variate functions over R. The vSISparams

assumption states that, for any PPT adversary A, it holds that

Pr

[
F(A) · u∗ = 0 mod q

∧ 0 < ∥u∥∗ ≤ β

∣∣∣∣∣A←$Rn×k
q

u∗ ← A(A)

]
≤ negl(λ).

In this work, we consider also settings where |F| could be super-polynomial in λ, as long as F and
the answer u∗ by the adversary admits a succinct description.

The evasive SIS assumption was informally introduced by Wee [Wee22] (in conjunction with the
public-coin evasive LWE assumption) and envisioned as a tool for analysing the plausibility of SIS-based
hinted lattice assumptions.

Definition 3 (EvasiveSIS). Let params = (R, q, n,m,mP ,mA, s, β0, β1) be parametrised by λ, where R
is a ring admitting an embedding as a lattice in Rφ for some φ ∈ N, and s, β0, β1 > 0. Let Samp be a
PPT algorithm which, on input 1λ, outputs(

P̃ ∈ Rn×mP
q , Ã ∈ Rn×mA

q , aux ∈ {0, 1}∗
)

where aux contains all coin tosses used by Samp. The EvasiveSISparams assumption states that, for any
PPT Samp and B there exists a PPT A such that

Pr
[
PreA(1

λ) = 1
]
≥ Pr

[
PostB(1

λ) = 1
]
/poly(λ)− negl(λ),

where the experiments Pre and Post are defined in Figure 2.

Analogous to the evasive LWE assumption [Wee22], the evasive SIS assumption says that “if SIS is
hard for the matrix (B, P̃, Ã), then SIS is also hard for (B, Ã) even when given short preimages U of P̃
w.r.t. B”. This stems from the intuition that, there seems no alternative meaningful use of U, other than
multiplying which to B to obtain P̃ and solve (the potentially easier) SIS problem for (B, P̃, Ã) jointly.
Following [Wee22], Definition 3 is “public-coin” in that we insist Samp to output all its random coins,
which avoids obfuscation-based counterexamples.

We note that Definition 3 is heuristically no stronger than the evasive LWE assumption of [Wee22],
in the following sense: Suppose there exists a PPT solver B for Post in Figure 2, then immediately B is
also a successful distinguisher for the analgous LWE problem – distinguish sT(B, Ã) + eT mod q from
random given U. Assuming evasive LWE, there exists a PPT A distinguishing sT(B, P̃, Ã) + eT mod q
from random. At this point, under the common heuristic that solving decision-LWE is no easier than
solving SIS (which is quantumly true at least for uniformly random matrices [SSTX09]), we arrive at a
solver for Pre in Figure 2.
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sEUF-CMAΣ,A(1λ)

S := ∅; pp← Setup(1λ)

(pk, sk)← KGen(pp)

(msg∗, sig∗)← ASignO(·)(pp, pk)

b0 := Verify(pp, pk,msg∗, sig∗)

b1 := ((msg∗, sig∗) /∈ S)

return b0 ∧ b1

SignO(msg)

sig← Sign(pp, sk,msg)

S := S ∪ {(msg, sig)}
return sig

sEUF-SMAΣ,A,Q(1
λ) sSUF-SMAΣ,A,Q(1

λ)

(msg1, . . . ,msgQ,msg∗)← A(1λ)

pp← Setup(1λ)

(pk, sk)← KGen(pp)

sigi := Sign(pp, sk,msgi) ∀i ∈ [Q]

( msg∗ , sig∗)← A(pp, pk, sig1, . . . , sigQ)

b0 := Verify(pp, pk,msg∗, sig∗)

b1 := ((msg∗, sig∗) /∈
{
(msgi, sigi)

Q
i=1

}
)

return b0 ∧ b1

Fig. 3: Security experiments for sEUF-CMA, sEUF-SMA and sSUF-SMA. For sEUF-RMA, modify the
sEUF-SMA experiment to have msg1, . . . ,msgQ ←$M.

2.4 Signatures

Definition 4 (Signature Scheme). A signature scheme for a message space M is a tuple of PPT
algorithms Σ = (Setup,KGen,Sign,Verify):

pp← Setup(1λ): Generate the public parameters pp.

(pk, sk)← KGen(pp): Generate a public key pk and a secret key sk.

sig← Sign(sk,msg): Sign a message msg ∈M with a signature sig.

b← Verify(pk,msg, sig): Decide if sig is a valid signature of msg under pk.

A signature scheme Σ is said to be correct if, for any message msg ∈M,

Pr

Verify(pp, pk,msg, sig) = 1

∣∣∣∣∣∣∣
pp← Setup(1λ)

(pk, sk)← KGen(pp)

sig← Sign(sk,msg)

 ≥ 1− negl(λ).

A signature scheme Σ is said to have strong existential unforgeability under chosen message attack
(sEUF-CMA) if, for any PPT A, it holds

Advseuf-cma
Σ,A (λ) := Pr

[
sEUF-CMAΣ,A(1

λ) = 1
]
≤ negl(λ),

where sEUF-CMAΣ,A is defined in Figure 3. It is said to have strong existential unforgeability under
selective message attack (sEUF-SMA) and strong selective unforgeability under selective message attack
(sSUF-SMA) respectively, if for any Q ≤ poly(λ), the above holds for sEUF-SMAΣ,A,Q and sSUF-SMAΣ,A,Q

defined in Figure 3 respectively. Strong existential unforgeability under random message attack (sEUF-
RMA) is similarly defined in Figure 3.

Remark 1 (Key-dependent message space.). We also consider a relaxed definition of signature schemes
where the public parameters specify a subspace of the message space. In this case, we say that the
signature scheme is correct if for all but a negl(λ)-fraction of pp ∈ Setup(1λ) and for any message msg in
the message subspace defined by pp, it holds that Verify(pp, pk,msg,Sign(pp, sk,msg)) = 1 except with
negl(λ) probability. Corresponding, we modify the security experiments so that the Sign algorithm aborts
whenever it is called on messages outside the message subspace defined by pp.
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3 (Strong) Hinted vSIS Assumptions

Aiming to construct algebraic lattice signatures akin to pairing-based ones based on assumptions such as
strong Diffie Hellman (SDH) , we introduce hinted variants of the vanishing short integer solution (vSIS)
assumption.

We define in Section 3.1 general families of two vSIS assumption variants – hinted, and strong hinted –
which extend the existing vSIS assumption. The strong hinted variant is strong in the same sense as in
the SDH (and others such as strong RSA) assumption – the adversary is allowed to choose its “target”
freely. More discussions on the relations to existing assumptions follow.

Since the hinted vSIS assumptions have numerous parameters, we discuss in Section 3.2 what we
believe to be plausible choices of them. To install confidence in the new assumptions, we show in Section 3.3
that some of them admit reductions from the plain vSIS assumption of [CLM23].

3.1 Assumptions Statements

We define extended variants of the vSIS assumption. These variants aim to capture natural lattice-analogues
of group-based assumptions such as the strong Diffie-Hellman (SDH) assumption.

Definition 5 ((Strong) Hinted vSIS Assumptions). Let

params = (R, n, k, q,Q, β, s,F ,G,H,P)

be parametrised by λ, where n, k, q are positive integers, Q is a non-negative integer, β, s ∈ R+, F ,G,H
are k-variate rational functions over Rq such that Q ≤ |H|, and P is a predicate over sets of k-variate
rational functions. We define the following hinted variants of the vSIS assumption.

Hinted. The Hint-vSISparams assumption states that, for any PPT stateful adversary A, it holds that

Pr



F(A) · u∗ = g∗(A) mod q

∧ 0 < ∥u∗∥ ≤ β

∧ Q ⊆Q H
∧ g∗ ∈ G \ Q
∧ P(F ∪Q ∪ ({g∗} \ {0})) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

(Q, g∗)← A(1λ)
A←$Rn×k

q

V := Q(A) mod q

ui ←$ DΛ
vi
q (F(A)),s ∀i ∈ [Q]

u∗ ← A(A,u1, . . . ,uQ)


≤ negl(λ).

Strong Hinted. The s-Hint-vSISparams assumption states that, for any PPT stateful adversary A,

Pr



F(A) · u∗ = g∗(A) mod q

∧ 0 < ∥u∗∥ ≤ β

∧ Q ⊆Q H
∧ g∗ ∈ G \ Q
∧ P(F ∪Q ∪ ({g∗} \ {0})) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

Q ← A(1λ)
A←$Rn×k

q

V := Q(A) mod q

ui ←$ DΛ
vi
q (F(A)),s ∀i ∈ [Q]

(g∗,u∗)← A(A,u1, . . . ,uQ)


≤ negl(λ).

Strong Random-Hinted. The s-$Hint-vSISparams assumption is almost identical to the s-Hint-vSISparams

assumption, except that Q is sampled as a uniformly random Q-subset of H, not chosen by A.

Compared to the plain vSIS assumption (Definition 5, [CLM23]), the (strong) hinted vSIS assumption
is further parametrised by an integer Q, two sets of rational functions G,H, and a predicate P. The
sets G and H are where the adversary could choose the target g∗ and the Q queries Q respectively. The
adversary is considered successful if g∗ /∈ Q i.e. not queried and F ∪Q ∪ {g∗} (or F ∪Q if g∗ is the all
zero function) satisfies the predicate P . The non-strong and strong variants differ by whether g∗ is chosen
before or after seeing A.

Analogous to the discussion below Definition 2, we allow the sets F , G, H of rational functions to
have cardinalities super-polynomial in λ, as long as they and the answer u∗ output by A admit succinct
representations. We note, however, that the number Q of queries Q output by A must be polynomial in
λ, for otherwise A could not input all preimages u1, . . . ,uQ while still being PPT.
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Remark 2 (Hint-vSIS ⇒ s-Hint-vSIS). If |G| ≤ poly(λ), then the Hint-vSISparams assumption implies the
s-Hint-vSISparams assumption (for the same params), where a trivial reduction simply guesses g∗ upfront.

Beyond obvious connections to the vSIS assumption, we discuss further connections of Definition 5 to
other existing assumptions.

Relation to SDH. The vSIS assumption variants are defined in a way intended to translate certain group-
based assumptions such as SDH. Recall that the (Q−1)-SDH problem asks to find, given [1], [b], . . . , [bQ−1],
a tuple (µ, [1/(b + µ)]). To translate this to a strong hinted vSIS problem, let x̃T = (ãT, b̃) denote a
sequence of formal variables, γ > 0 and Bγ = {µ ∈ R : ∥µ∥ ≤ γ}. For suitably selected parameters, in
particular

F(x̃T) = ãT, H =
{
1, b̃, . . . , b̃Q−1

}
, G =

{
1/(b̃+ µ) : µ ∈ Bγ

}
,

the s-Hint-vSIS assumption can be seen as a natural lattice-analogue of the (Q− 1)-SDH assumption.

Relation to kRISIS. The kRISIS assumption family is introduced in [ACL+22], stronger than the
(plain) vSIS assumption family, but weaker than the BASIS assumption family introduced by [WW23].8

We observe that certain members of the (strong) hinted vSIS family are in between (plain) vSIS (obviously)
and kRISIS. More precisely, for suitably selected parameters, in particular H ∩ G = ∅, |H| = Q (so
Q = H) and |G| = 1 (so there is only one choice for g∗), the s-Hint-vSIS assumption is essentially a kRISIS
assumption.9 Note also that, since |G| = 1, the strong and non-strong variants are equivalent.

3.2 Criteria for Plausible vSIS Assumptions

In Definition 5, the vSIS assumption variants are parametrised by a predicate P which dictates which
combinations of functions are admissible. We discuss criteria for P for the vSIS assumption variants to
plausibly hold.

One uninteresting way to violate a vSIS assumption is to consider ill-formed sets of functions
F ,G. For example, if F contains the all-zero function, then it is trivial to find short u∗ satisfying
F(A) ·u∗ = 0 mod q. Similarly, if F ∩G is not empty and contains some g∗, then it is trivial to find short
u∗ satisfying F(A) · u∗ = g∗(A) mod q. A more sophisticated example is where F ⊇ {1, x̃q} and Rq fully
splits into a product of fields. In this case, we have 1− xq = 0 mod q for any x ∈ Rq. To rule out this
type of counterexamples which exploits linear dependency between the chosen functions, we suggest to
restrict P so that it only accepts tuples satisfying a “strong linear independence” property defined below.

Definition 6 (Strong Linear Independence). Let F ⊆ Rq(x̃
T) be a set of k-variate rational functions

where 1 ∈ Rq-span(F). For ϵ > 0, we say that F is ϵ-strong linear independent if, for any not-all-zero
coefficients (cf )f∈F over Rq,

Pr
[∑

f∈F cf · f(aT) = 0 mod q
∣∣∣ a←$Rk

q

]
≤ ϵ.

If 1 /∈ Rq-span(F), then we say F is ϵ-strong linear independent if F ∪ {1} is.

Remark 3. In case the denominator of f vanishes at a, we let f(a) = undef. We take “a × undef =
a+ undef = undef” for any value a, meaning that if one of the terms is undefined then the whole sum is
(which does not equal zero).

8 By an assumption family A being stronger than another family B, we mean that for any member in family B
there exists a member in family A which implies the former.

9 In the kRISIS assumption definition stated in [ACL+22], the images for which preimages are given to an
adversary take the form t · hi(v

T). We believe this is an oversight, since it would mean that solving kRISIS by
solving the vSIS instance (hi(v

T))Qi=1 is significantly easier (due to lower lattice dimension) than solving SIS
w.r.t. A.
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Remark 4 (Implicit guaranteed min-entropy). In Definition 6, we distinguish between 1 ∈ Rq-span(F) or
1 /∈ Rq-span(F) for technical reasons: We actually want that for any fixed d ∈ Rq and (cf )f∈F , we have
Pr

[∑
f∈F cf · f(aT) = d mod q

]
≤ ϵ. That is, we want that the min-entropy (over a) is at least log2(ϵ).

However, if 1 ∈ Rq-span(F), this is trivially false (for ϵ < 1), e.g. if 1 ∈ F then simply set c1 = d and
all other cf = 0. In fact, if 1 ∈ Rq-span(F), then the min-entropy guarantee is already implied (by an
analogous reasoning). Hence, if 1 /∈ Rq-span(F), we consider F ∪ {1} (instead of introducing d explicitly).

The strong linear independence property could be unwieldy to work with. We show that for certain
sets of rational functions, strong linear independence is equivalent to linear independence.

Theorem 1. Let q ∈ N prime and Rq
∼= Fe split into e fields.10 Let F ⊆ Rq(x̃

T) be a set of k-variate
rational functions. Suppose m ∈ Rq[x̃] is such that, for each rational function in F represented as
f/g ∈ F where f, g ∈ Rq[x̃], it holds that m ∈ ⟨g⟩Rq [x̃], i.e. m is a common multiple of (g)f/g∈F . Let
d := deg(m) + maxf/g∈F deg(f) and ϵ := d/|F|. If F is linearly independent, then it is ϵ-strong linearly
independent.

The proof is deferred to Appendix A.1.
Next, we show that the property of being strongly linearly independent is closed under “proper” set

union.

Lemma 2. Suppose F ,G ⊆ Rq(x̃
T) are ϵF - and ϵG-strong linearly independent respectively, and spanRq

(F)∩
spanRq

(G) = {0}. Then F ∪ G is max(ϵF , ϵG)-strong linearly independent.

The proof is deferred to Appendix A.2.
Finally, we highlight a counterexample against the strong-hinted-vSIS assumption, which exploits the

denominators of rational functions and the adaptivity to specify g∗ after seeing a←$Rq. Specifically, let

1 ∈ F and G = H = {1/(ã− b) : b ∈ Rq}.

Consider this choice of F ,G,H, and an adversary A whose set of queries Q contains 1/(ã− b) for some
b ∈ Rq. Upon receiving a ←$ Rq, A specifies g∗(ã) := 1/(ã − a + 1). Note that 1 − g∗(a) = 0 mod q,
where the coefficients 1 and −1 for the functions 1 and g∗ respectively are both short. One way to avoid
this kind of counterexamples is to let P accept only rational functions represented as f/g where the
denominator g has short coefficients.

To summarise, for a norm bound γ and probability ϵ, we propose the following “natural” predicate
Pγ,ϵ.

Definition 7 (Natural vSIS Predicates). For a ring R, a modulus q ∈ N, a norm bound γ > 0, and
a probability ϵ ∈ [0, 1], the predicate Pγ,ϵ inputs a set F of rational functions over Rq and outputs 1 if
and only if the following hold:

– F is ϵ-strongly linearly independent.
– For any rational function represented as f/g ∈ F , where f, g are polynomials over Rq written in
expanded form, each coefficient of g is of norm at most γ.

Heuristically, we think of γ to be as small as the norm bound for the plain SIS assumption to hold
and ϵ ≤ negl(λ).

We remark that although the plain vSIS assumption (Definition 2, [CLM23]) is not parametrised by a
predicate, it is advisable to only rely on a vSIS assumption for F satisfying Pγ,ϵ(F) = 1. Similar could be
recommended for the kRISIS assumption [ACL+22].

3.3 Reductions from vSIS

To gain confidence in the hinted vSIS assumptions, we give two hardness reductions. Theorem 2 says that
under certain parameters, the (non-strong) hinted vSIS assumption is implied by the vSIS and evasive
SIS assumptions together.

10 This happens when q has multiplicative order φ/e modulo f.
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Theorem 2 (EvasiveSIS+ vSIS⇒ Hint-vSIS). Let kf , kg ∈ N and k = kf + kg. Let F ,G,H be sequences

of k-variate functions, such that for any A = [Af ,Ag] ∈ R
n×(kf+kg)
q , it holds F(A) = Af , G(A) = Ĝ(Ag)

and H(A) = Ĥ(Ag) for some Ĝ, Ĥ independent of Af .

Let β, β1 > 0, β0 =
√
β2 + 1. Let params0 = (R, q, n, kf , Q, 1, s, β0, β1), params1 = (R, n, k, q, β1,F ∪

Ĝ ∪Ĥ), and params2 = (R, n, k, q,Q, β, s,F ,G,H,P). If the EvasiveSISparams0 and vSISparams1 assumptions
hold, then the Hint-vSISparams2 assumption holds.

Proof. Suppose there exists a PPT solver against Hint-vSISparams2 . Below we show that under EvasiveSISparams0 ,
there exists a PPT solver against vSISparams1 , hence a contradiction and the theorem follows.

To begin, we observe that a successful PPT solver against Hint-vSISparams2 implies a PPT A = (A1,A2)
such that

Pr


(Af |ĝ∗(Ag))u

∗ = 0 mod q

∧ 0 < ∥u∗∥ ≤ β0

∧ Q ∪ {ĝ∗} ⊆Q+1 Ĝ ∪ Ĥ
∧ P(F ∪Q ∪ ({g∗} \ {0})) = 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

(Q, ĝ∗, st)← A1(1
λ)

[Af ,Ag]←$Rn×kf
q ×Rn×kg

q

V := Q(Ag) mod q

ui ←$ DΛ
vi
q (Af ),s

∀i ∈ [Q]

u∗ ← A2(Af ,Ag,u1, . . . ,uQ, st)


> negl(λ),

where for all i ∈ [Q], ĥi ∈ Q ⊂ Ĥ is independent of Af , similarly for ĝ∗, and st is arbitrary internal state
of A which we assume w.l.o.g. to contain (Q, ĝ∗). Indeed, given a valid solution u′ to Hint-vSISparams2 , we
have

F(A) · u′ = g∗(A) mod q ⇐⇒ (Af |ĝ∗(Ag)) ·
(
u′

−1

)
= 0 mod q,

where we make use of that F(A) = Af and g∗(A) = ĝ∗(Ag). Similarly, the distribution of each preimage

ui in the above is identical to that in a Hint-vSISparams2 instance, as hi(A) = ĥi(Ag). Therefore A succeeds

by outputting u∗ =

(
u′

−1

)
, whose norm satisfies ∥u∗∥2 ≤ ∥u′∥2 + 1 ≤ β2 + 1 = β0.

Next, consider a PPT Samp which runs (Q, ĝ∗, st)← A1(1
λ) and outputs

P̃ := Q(Ag) mod q, Ã := ĝ∗(Ag) mod q

where Ag ←$Rn×kg
q is sampled uniformly randomly, together with aux containing Ag, Q, ĝ∗, st, and all

random coins used. From above, we have that A2 is a successful solver for the Post experiment in Figure 2
w.r.t. Samp. Invoking the EvasiveSISparams0 assumption, there exists a PPT solver B2 such that

Pr


(Af |Q(Ag)|ĝ∗(Ag))u

∗ = 0 mod q

∧ 0 < ∥u∗∥ ≤ β1

∧ Q ∪ {ĝ∗} ⊆Q+1 Ĝ ∪ Ĥ
∧ P(F ∪Q ∪ ({g∗} \ {0})) = 1

∣∣∣∣∣∣∣∣∣∣
(Q(Ag), ĝ

∗(Ag), aux)← Samp(1λ)

Af ←$Rn×kf
q

u∗ ← B2(Af ,Q(Ag), ĝ
∗(Ag), aux)


is > negl(λ). We note that to invoke EvasiveSISparams, we rely on that Af is uniformly random over Rn×kf

q ,

and that P̃, Ã in above are independent of Af .
Expressing the code of Samp inline and rewriting, the above is equivalent to

Pr


(Af |Q′(Ag))u

∗ = 0 mod q

∧ 0 < ∥u∗∥ ≤ β1

∧ Q′ ⊆Q+1 Ĝ ∪ Ĥ
∧ P(F ∪Q ∪ ({g∗} \ {0})) = 1

∣∣∣∣∣∣∣∣∣∣
(Q′ = Q∪ {g∗}, st)← A1(1

λ)

[Af ,Ag]←$Rn×kf
q ×Rn×kg

q

u∗ ← B2(Af ,Ag, st)

 ≥ negl(λ).

Finally, given the above (A1,B2), we construct a PPT solver B∗ against vSISparams1 :

– Obtain A ∈ Rn×k
q from the vSISparams1 challenger.
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– Run A1 to obtain (Q′, st), pass [Af ,Ag] = A and st to B2 to obtain u∗. Write u∗ =

(
uF
uQ′

)
, where

uF ∈ R|F| and uQ′ ∈ RQ+1.
– Let π be the permutation mapping (Q′, (Ĝ ∪ Ĥ) \ Q′) 7→ Ĝ ∪ Ĥ, where the order of (Ĝ ∪ Ĥ) \ Q′ is

arbitrary. Return ũ∗ = (uT
F , π(u

T
Q′ ,0T))T.11

Whenever (A1,B2) succeeds, we have 0 < ∥u∗∥ = ∥ũ∗∥ ≤ β1 and

(F ∪ Ĝ ∪ Ĥ)(A) · ũ∗ = (F ∪Q′)(A) ·
(
uF
uQ′

)
+ ((Ĝ ∪ Ĥ) \ Q′)(A) · 0 = 0 mod q

so that B∗ has the same advantage against vSISparams1 , non-negligible.

The second reduction, summarised by Theorem 3 below, says that the (plain) vSIS assumption family
over sets of rational functions is implied by its much smaller subclass which restricts to monomials, up to
an exponential blow up in norm bound in the worst case.

Theorem 3 (Monomial-vSIS ⇒ vSIS). Let d, β, βf > 0. Let F ⊆ Rq(x̃
T) be a set of k-variate rational

functions, such that for each rational function in F represented as f/g ∈ F where f, g ∈ Rq[x̃], it holds
deg(f),deg(g) ≤ d and ∥f∥ ≤ βf . Define the following:

– Fmonomial :=
{
b̃i : i ∈ Nk

0 , 0 ≤ ∥i∥1 ≤ 2d
}
, the set of all k-variate monomials of degree at most 2d

(independent of F),
– h an arbitrary common multiple of the denominators {g : f/g ∈ F} of F ,
– β′ =

√
n · ∥h∥ · βf · β ·min(|F|, poly(λ)).

Let params0 = (R, n, k, q, β′,Fmonomial) and params1 = (R, n, k, q, β,F). If the vSISparams0 assumption
holds, then the vSISparams1 assumption holds.

Proof. The idea is to clear the denominators of F by multiplying with their common multiple. Concretely,
assume that A is a PPT solver against vSISparams1 , we construct a PPT solver against vSISparams0 as
follows:

– Receive A from the vSISparams1 challenger, pass which to A, and receive u∗ = (u∗
1, . . . , u

∗
|F|)

T.
– Let I ⊆ F be the index set of the non-zero entries of u∗, i.e. u∗

i ̸= 0 if and only if i ∈ I. Note that
|I| = min(|F|, poly(λ)) since A is PPT.

– For each f ∈ I, write h · f as Fmonomial · cf for some cf ∈ R|Fmonomial|, i.e. a linear combination of
monomials in Fmonomial with coefficient vector cf .

– For each f ∈ F \ I, let cf = 0 be all-zero. Let C := (cf )f∈F ∈ R|Fmonomial|×|F| (whose description size
≤ poly(λ)). Return (1n ⊗C) · u∗.

First we note that Step 3 in the above is possible, since for any f ∈ I ⊆ F , it holds h · f is a k-variate
polynomial of degree at most 2d, so that h · f can always be written as a linear combination of the
monomials in Fmonomial. Further, ∥cf .∥ = ∥h · f∥ ≤ ∥h∥ · βf . Suppose A is successful, then

F(A) · u∗ = 0 mod q,

(h · F)(A) · u∗ = (Fmonomial)(A) · (1n ⊗C) · u∗ = 0 mod q,

where 1n is the all-one vector. Also, we have ∥(1n ⊗C)u∗∥ ≤
√
n∥C∥∥u∗∥ ≤

√
n · ∥h∥ · βf · β ·

min(|F|, poly(λ)) = β′.

Remark 5 (Norm of common multiple.). For Theorem 3, suppose for any f/g ∈ F it holds ∥g∥ ≤ βg and
there are at most ℓ ≤ |F| distinct denominators, then ∥h∥ ≤ βℓ

g. For specially chosen F a tighter bound
is possible.

11 ũ∗ has ≤ min(|F|, poly(λ)) +Q+ 1 non-zero entries, although of dimension |F ∪ Ĝ ∪ Ĥ|. Both π and ũ∗ admit
representation of size ≤ poly(λ) since F , Ĝ, Ĥ do.
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Setup(1λ)

B←$Rn×ℓ
q

pp := B

Sign(pp, sk,msg)

χ←$ X
t := hµ,χ(B) mod q

s← SampPre(tdA, t, s)

return sig := (χ, s)

KGen(pp)

(A, tdA)← TrapGen(R, 1n, 1m, q)

return (pk, sk) := (A, tdA)

Verify(pp, pk,msg, sig)

t := hµ,χ(B) mod q

b0 := (µ ∈MX ,G,B) ∧ (χ ∈ X )
b1 := (As = t mod q) ∧ (0 < ∥s∥ ≤ β)

return b0 ∧ b1

Fig. 4: vSIS-based Signatures ΣvSIS.

4 Proof-Friendly Signatures from Strong Hinted vSIS

We present a general family of algebraic lattice-based signature schemes inspired by the ISISf framework
and pairing-based signatures such as that of Boneh and Boyen (BB) [BB08] and of Boneh, Boyen and
Shacham (BBS) [BBS04, ASM06, TZ23]. The sEUF-SMA security of the construction is tightly connected
to the s-Hint-vSIS assumption, which we defined and analysed in Section 3. We then suggest concrete
instantiations of the general construction, which can be seen as translations of BB and BBS to the lattice
setting.

4.1 General Construction

Our general construction is parametrised by a ring R, dimensions n,m, ℓ ∈ N, a modulus q ∈ N, a
Gaussian parameter s > 0, a norm bound β > 0, a failure probability δ ≥ 0, a message space M, a
randomness space12 X , and a set H = {hµ,χ : µ ∈M, χ ∈ X} ⊆ R(b̃T) of ℓ-variate rational functions over
R indexed by the setM×X . The public parameter space is Rn×ℓ

q . For any public parameter B ∈ Rn×ℓ
q ,

define the message subspace

MX ,H,B := {µ ∈M : Pr[hµ,χ(B) = ⊥ |χ←$ X ] ≤ δ}.

That is, a valid message µ ∈M w.r.t. the sets X and H and public parameter B is such that, over the
randomness of χ←$ X , the probability of hµ,χ(B) being undefined is at most δ. The full construction
ΣvSIS is presented in Figure 4.

To explain, the public parameters consists of a random matrix B←$Rn×ℓ
q . A public key is a trapdoored

matrix A ∈ Rn×m
q and the corresponding secret key is the trapdoor tdA. To sign a message µ, sample

randomness χ, and evaluate the function hµ,χ at B to obtain an image t. The signature of µ then consists
of the randomness χ and a short preimage s of t with respect to A, sampled using tdA. To verify a
signature, check that µ belongs to the message subspaceMX ,H,B and χ belongs to the randomness space
X . Also check that s is of norm bounded by β and satisfies As = hµ,χ(B) mod q.

Theorem 4 (Correctness). If (R, n,m, q, s) are admissible parameters for (TrapGen,SampPre), β ≥
s
√
φm and δ ≤ negl(λ), then the signature scheme in Figure 4 is correct in the sense of Remark 1.

Proof. By Definition 1, for all but a negligible fraction of (A, tdA), it holds that SampPre(tdA, t, s) ≈c

DΛt
q(A),s. Combining with Lemma 1, for any t ∈ Rn

q , (A, tdA) ← TrapGen(R, 1n, 1m, q) and s ←
SampPre(tdA, t, s), it holds that As = t mod q and ∥SampPre(tdA, t, s)∥ ≤ s

√
φm ≤ β with overwhelming

probability in λ.

Theorem 5 (Security). Let params = (R, n, k, q, β,F ,G,H,P, Q), m, ℓ, s, δ, δ′,M,X be parametrised
by λ and satisfy the following constraints:

12 We assume for simplicity that the randomness space is a finite set and randomness are drawn from the uniform
distribution over this set. In general, X could be a distribution over a possibly infinite set.
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– (R, n,m, q, s) are admissible parameters for (TrapGen,SampPre), β > 0, 0 ≤ δ, δ′ ≤ negl(λ), and
k = m+ ℓ.

– For formal variables (ãT, b̃T) of dimension m+ ℓ, F(ãT, b̃T) = ãT.
– H = {hµ,χ : µ ∈M, χ ∈ X} ⊆ R(b̃T) is a set of ℓ-variate rational functions over R, as defined above.
– G = H ∪ {0} extends the set H with the all zero function.
– For random χ1, . . . , χQ ←$ X and arbitrarily chosen µ1, . . . , µQ, µ

′ ∈ M where µ′ /∈ {µ1, . . . , µQ},
and χ′ ∈ X possibly dependent on (χ1, . . . , χQ), it holds except with probability δ′ that

P(F ∪ {hµi,χi
}Qi=1 ∪ {hµ′,χ′}) = 1.

1. If the s-Hint-vSISparams (resp. s-$Hint-vSISparams) assumption holds for every polynomial Q(λ), then
ΣvSIS is sEUF-SMA (resp. sEUF-RMA) secure.

2. If X is a singleton set (so that an image t is deterministic in µ), and the Hint-vSISparams assumption
holds for every polynomial Q(λ), then ΣvSIS satisfies a relaxed sSUF-SMA security with the restriction
that all signing queries are distinct.13

Proof. We prove the implication from s-Hint-vSISparams to sEUF-SMA security, and then highlight differ-
ences of the proofs for the other implications. Define the following hybrid security experiments:

Hyb0: Identical to sEUF-SMAΣvSIS,A,Q, the sEUF-SMA security experiment.
Hyb1: Recall that, in Hyb0, the step Sign(sk,msgi) for msgi = µi is computed as follows: Sample χi ←$ X ,

compute ti := hµi,χi
(B), compute si ← SampPre(tdA, ti, s) and return (χi, si). In Hyb1, we change

to sample si ←$ D
Λ

ti
q (A),s

directly from the Gaussian distribution (inefficiently).

Hyb2: We change how the public key A is sampled. In Hyb2, we sample A ←$ Rn×m
q uniformly at

random.

By the properties of lattice trapdoors (Definition 1), the above hybrids are clearly computationally
indistinguishable.

Next, we show that if A is such that Hyb2 outputs 1 with a non-negligible probability ϵ > negl(λ), then
there exists a PPT algorithm B for s-Hint-vSISparams. Our reduction B simulates Hyb2 for A as follows:

– Run A to obtain Q messages µ1, . . . , µQ.
– Sample χi ←$ X for i ∈ [Q].
– Return the subset Q := {hµi,χi

: i ∈ [Q]} ⊆ G. Except with probability at most Qδ, for a random
B←$Rn×ℓ

q , it holds that hµi,χi
(B) ̸= ⊥ for all i ∈ [Q]. In the following, we assume that this is the

case.
– Receive in return ([A,B], s1, . . . , sQ) where [A,B] ←$ Rn×m

q × Rn×ℓ
q , si ←$ D

Λ
ti
q (A),s

and ti =

hµi,χi
(B) for all i ∈ [Q].

– Set pp = B, pk = A and sigi = (χi, si) for all i ∈ [Q], and run (µ∗, sig∗) ← A(pp, pk, sig1, . . . sigQ)
where sig∗ = (χ∗, s∗). Assuming that A is successful, we have µ∗ ∈ MX ,G,B, χ

∗ ∈ X , (µ∗, χ∗, s∗) /∈
{(µ1, χ1, s1), . . . , (µQ, χQ, sQ)}, As∗ = hµ∗,χ∗(B) mod q, and 0 < ∥s∗∥ ≤ β.

– If (µ∗, χ∗) /∈ {(µ1, χ1), . . . , (µQ, χQ)}, set g∗ := hµ∗,χ∗ and return (g∗, s∗).
– Otherwise, let i∗ be such that (µ∗, χ∗) = (µi∗ , χi∗). Set g∗ to be the zero function and return
(g∗, s∗ − si∗).

Clearly, the reduction B runs in PPT and the failure event of hµi,χi
(B) = ⊥ for some i ∈ [Q] happens

with probability at most Qδ. Moreover, by the constraint on P, we have P(F ∪ Q ∪ ({g∗} \ {0})) = 1
except with probability δ′. If (µ∗, χ∗) /∈ {(µ1, χ1), . . . , (µQ, χQ)}, then clearly g∗ ∈ G \ Q. Otherwise, we
have (µ∗, χ∗) = (µi∗ , χi∗) and thus

A · s = hµ∗,χ∗(B) = hµi∗ ,χi∗ (B) = A · si∗ mod q,

A · (s− si∗) = 0 = g∗(B) mod q,

where s∗ − si∗ ̸= 0 since s∗ is a valid forgery. In either case, B solves the s-Hint-vSISparams instance with
probability at least ϵ−Qδ − δ′ > negl(λ).

13 The restriction can be lifted by derandomising the signing algorithm with a pseudorandom function.
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Message µ Randomness χ Function hµ,χ(b̃
T)

BB-lite u - 1/(b̃− u)

BB-full u x 1/((1,uT,xT) · b̃)

BB-tran u (x0, x1) (uT,xT
0) · b̃0 + 1/(b̃1 − x1)

BBS u (x0, x1) ((1,uT,xT
0) · b̃0)/(b̃1 − x1)

Table 1: Instantiations to obtain lattice-analogues of BB and BBS signatures.

For the implication from s-$Hint-vSISparams to sSUF-RMA security, the argument is identical except that
B samples Q as a uniformly random Q-subset of H. For the implication from Hint-vSISparams to sSUF-SMA
security, we make the following modifications. First, we define Hyb0 to be identical to sSUF-SMAΣvSIS,A,Q,
and propagate this change to Hyb1 and Hyb2. Then, the reduction B changes as follows. At the beginning,
B receives from A in addition to µ1, . . . , µQ the target message µ∗. Since X = ∅, B no longer needs to
sample χ1, . . . , χQ. If µ

∗ /∈ {µ1, . . . , µQ}, it sets g∗ := hµ∗ . Otherwise, say µ∗ = µi∗ , it sets g
∗ to be the

all zero function. It outputs the set Q = {hµi
: i ∈ [Q]} and g∗. Towards the end, upon receiving s∗ from

A, B simply returns s∗ if µ∗ /∈ {µ1, . . . , µQ}, and s − si∗ if µ∗ = µi∗ . Clearly, the reduction B runs in
PPT and solves the Hint-vSISparams instance with probability at least ϵ−Qδ − δ′ > negl(λ).

Remark 6 (Constraint on P). In Theorem 5, we require that P(F ∪{hµi,χi
}Qi=1 ∪{hµ′,χ′}) = 1 with high

probability. We remark that this indeed captures both cases – whether the adversary chooses to forge
a signature on µ∗ belonging to {µ1, . . . , µQ} or not. If µ∗ /∈ {µ1, . . . , µQ}, by setting (µ′, χ′) = (µ∗, χ∗)

we directly recover the constraint P(F ∪ {hµi,χi}
Q
i=1 ∪ ({g∗} \ {0})) = 1 where g∗ = hµ∗,χ∗ . If µ∗ ∈

{µ1, . . . , µQ}, then for any µ′ /∈ {µ1, . . . , µQ}, the condition P(F ∪ {hµi,χi
}Qi=1 ∪ {hµ′,χ′}) = 1 implies

that P(F ∪ {hµi,χi
}Qi=1) = 1, equivalent to P(F ∪ {hµi,χi

}Qi=1 ∪ ({g∗} \ {0})) = 1 with g∗ = 0 the all-zero
function.

4.2 Candidate Instantiations

In Table 1, we suggest a few natural candidate instantiations of the parameters, as inspired by the
BB [BB08] and BBS [BBS04, ASM06, TZ23] signatures. The first two rows are attempts to translate
the selective-query secure (BB-lite) and fully secure versions of the BB signatures. The third row is
obtained by interpreting the BB-lite instantiation as a (generalised) ISISf instance, and then applying the
transformation from ISISf to interactive ISISf presented in [BLNS23b] and generalised in Section 5.2. The
last row is an attempt to translate the BBS signatures which, after adapting notation, take the following
form:

[((1,uT) · b0)/(b1 − x)]

where ([1], [b0], [b1]) is the public key, u a message, and x the signing randomness.

We remark that, for all instantiated signature schemes suggested in Table 1, we are not aware of any
efficient attacks against the sEUF-CMA (i.e. adaptive query) security of the schemes, although Theorem 5
only guarantees their sEUF-SMA (i.e. selective-query) security. Furthermore, in Section 5.2, we show that
the BB-tran scheme indeed provably achieves sEUF-CMA security under the same strong hinted vSIS
assumption along with other mild parameter constraints.

Satisfiability of Natural vSIS Predicates. Recall that, for Theorem 5 to apply, we require the
following constraint:

For random χ1, . . . , χQ ←$ X and arbitrarily chosen µ1, . . . , µQ, µ
′ ∈M, with µ′ /∈ {µ1, . . . , µQ},

and χ′ ∈ X possibly dependent on (χ1, . . . , χQ), it holds except with negligible probability that

P(F ∪ {hµi,χi
}Qi=1 ∪ {hµ′,χ′}) = 1.
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As discussed in Remark 6, such a constraint on P captures both cases – where the adversary chooses to
forge a signature of a previously queried message or a new message. Let P = Pγ,ϵ for some 0 < γ ≪ q
and ϵ ≤ negl(λ) as defined in Definition 7, and let X contain vectors of norm at most γ. We sketch below
an argument for why the predicate would be satisfied for all candidates listed in Table 1. We observe the
following:

– The denominators of all choices of hµ,χ(b̃
T) mentioned in Table 1 clearly satisfy the norm bound

constraint of Pγ,ϵ.
– For χ with sufficient entropy and for Rq

∼= Fe splitting into large enough copies of F, it is clear that
{hµi,χi

}Qi=1 for all choices in Table 1 is linearly independent with overwhelming probability, and thus
ϵ-strongly linearly independent by Theorem 1.

– The intersection between the span of F and that of {hµi,χi}
Q
i=1 (or {hµ′,χ′}) is clearly zero, since F

depends only on ã but not on b̃.

To show that F ∪ {hµi,χi}
Q
i=1 ∪ {hµ′,χ′} is ϵ-strongly linearly independent with overwhelming probability,

by Lemma 2, it suffices to show that the intersection of the spans of {hµi,χi
}Qi=1 and hµ′,χ′ is trivial with

overwhelming probability.
By assumption, we have that µ′ /∈ {µ1, . . . , µQ}, but (µ′, χ′) may arbitrarily depend on (µi, χi)

Q
i=1.

From the constraint µ′ /∈ {µ1, . . . , µQ}, the (strong) linear independence between {hµi,χi}
Q
i=1 and hµ′,χ′

is clear for the BB-lite and BB-full cases, since they consist of distinct denominator polynomials. For
the BB-tran and BBS cases, write χ = (χ0, χ1) = (x0, x1). If x

′
1 /∈ {x1,i}Qi=1, then again the denominator

polynomials are distinct and therefore the claim holds. Now, suppose x′
1 = x1,i′ for some i′ ∈ [Q]. Then

clearly the sets {hµi,χi
}i̸=i′ and

{
hµi′ ,χ

′ , hµ′,χ′
}
are (strong) linearly independent because denominator

polynomials are distinct.
To finish the claim, we must show that

{
hµi′ ,χ

′ , hµ′,χ′
}
is (strongly) linearly independent. We first

handle the BB-tran case which is clearer. We have

hµi′ ,χ
′ = (uT

i′ ,x
T
0,i′) · b̃0 + 1/(b̃1 − x′

1) and

hµi′ ,χ
′ = ((u′)T, (x′

0)
T) · b̃0 + 1/(b̃1 − x′

1),

to cancel out the second term, the only way is to take the difference. However, since µi′ = ui′ and µ′ = u′

are distinct, taking difference does not make the first term vanish, thus proving the claim. For the BBS
case, any linear combination of

((1,uT
i′ ,x

T
0,i′) · b̃0)/(b̃1 − x′

1) and ((1, (u′)T, (x′
0)

T) · b̃0)/(b̃1 − x′
1)

to zero would also be a linear combination of

(1,uT
i′ ,x

T
0,i′) · b̃0 and (1, (u′)T, (x′

0)
T) · b̃0

to zero. However, since µi′ = ui′ and µ′ = u′ are distinct, the two coefficients of such a linear combination
must either be zero or have different magnitudes. In the latter case, the coefficient of the first variable in b̃0

in the linear combination would not be zero. We thus conclude that the only possible linear combination
to make zero is the one with zero coefficients.

Proof-Friendliness of Suggested Candidates. We briefly comment on the proof-friendliness on the
BB-tran and BBS instantiations suggested in Table 1, since we believe they are of the most practical
relevance. Essentially, the verification relation of both schemes are simple bounded-norm satisfiability
relations of quadratic equations, which can be handled concretely efficiently by state-of-the-art lattice-based
proof systems such as [LNP22b].

For simplicity, for signature verification we collect all supposedly bounded-norm components as a
vector and check the norm of such a vector.14 The verification relation of the BB-tran instantiation then
takes the form:

A · s = B0 ·
(
u
x0

)
+ 1n ⊘ (b1 − 1n · x1) mod q and

∥∥(sT,uT,xT
0, x1)

∥∥ ≤ β

14 We note that, depending on the application, the norm bounds for the signature vector s and the message u, for
example, could differ.
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which can be rearranged to the form

(
b1 ⊡

(
A −B

))
·

 s
u
x0

− (
A −B

)
·

 s
u
x0

 · x1 = 1n mod q,

∥∥(sT,uT,xT
0, x1)

∥∥ ≤ β

where b1⊡
(
A −B

)
denotes the matrix obtained by taking the Hadamard products between b1 and every

column of
(
A −B

)
. To produce a zero-knowledge proof of such a relation, one strategy is to commit to

the expanded witnesses

w1 =

 s
u
x0

 , w2 = x1, w3 =

 s
u
x0

 · x1,

prove that w1 and w2 are of bounded norm and satisfy the linear relation, and prove that w3 = w1 · w2.
Similarly, the verification relation of the BBS instantiation takes the form:

A · s =

B0

 1
u
x0

⊘ (b1 − 1n · x1) mod q and
∥∥(sT,uT,xT

0, x1)
∥∥ ≤ β

which can be rearranged to the proof-friendly form

(b1 ⊡A) · s−A · s · x1 −B0 ·

 1
u
x0

 = 0n mod q,
∥∥(sT,uT,xT

0, x1)
∥∥ ≤ β.

We expect proving knowledge of a signature for the BBS instantiation is slightly more efficient, since the

quadratic part s · x1 is of lower dimension (independent of the message u) than
(

s
u
x0

)
· x1 in the BB-tran

instantiation.
We further note that proving knowledge of a signature for either instantiation suggested above

only requires proving that the witness is norm-bounded. In contrast, the concrete scheme suggested
in [BLNS23b] requires proving that the witness has a binary component, on top of the witness being
norm-bounded.

Concrete Parameters. To estimate performance, we heuristically assume that breaking the sEUF-CMA
security of the BB-tran and BBS instantiations are both as hard as solving SIS with dimension φn. As in
[BLNS23b], we consider instantiations based on NTRU trapdoors [DLP14] for power-of-2 cyclotomic rings,
meaning that n = 1, m = 2, and φ is a power of 2. NTRU trapdoors [DLP14] allow sampling preimages
statistically close to Gaussian with parameter s ≥ 1.17 ·√q ·ηϵ(Z2φ) where ηϵ(Z2φ) ≤

√
log(4φ(1 + 2λ))/π.

Recall that a message-signature tuple is (sT,uT,xT
0, x1) ∈ R2+ℓm+ℓr+1. We hence set the norm bound β

to be such that s
√
(3 + ℓm + ℓr) · φ ≤ β < q. We adopt the standard optimisation of omitting one ring

element from the signature (which can be derived from the verification equation), and thus a signature is
of size (2 + ℓr) · φ · log β bits. Since the signature schemes’ security anyway rely on the hardness of vSIS,
we also adopt the optimisation of deriving the entire public key from a single Rq element (given by the
NTRU trapdoor algorithm), hence the public key size is φ · log q bits. Following [BLNS23b], we set ℓr = 2
and ℓm = 1, and additionally consider ℓm = 128. We run the Lattice Estimator [APS15]15 with these
parameter constraints and obtain the parameters and sizes presented in Table 2. The script is .

5 Generalised ISISf

We define a generalised version of the ISISf assumption [BLNS23b] and relate it to the security of the
signature scheme ΣvSIS in Section 4, therefore also the hinted vSIS assumptions. We provide cryptanalytic
discussions around these assumptions.

15 Commit 162c5053 of https://github.com/malb/lattice-estimator/.
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In [5]:



from dataclasses import dataclass
from estimator import SIS, ND
from sage.all import log, ceil, floor, sqrt, RR
import sys
import os

class HiddenPrints:
    def __enter__(self):
        self._original_stdout = sys.stdout
        sys.stdout = open(os.devnull, "w")

    def __exit__(self, exc_type, exc_val, exc_tb):
        sys.stdout.close()
        sys.stdout = self._original_stdout


def _kb(v):
    """
    Convert bits to kilobytes.
    """
    return round(float(v / 8.0 / 1024.0), 1)



















In [6]:



@dataclass
class vSISSigParams:
    """
    All solvers return an instance of this class.
    """

    secpar: int
    n: int
    log_q: int
    log_beta: float
    log_s: float
    ell_m: int
    ell_r: int
    

    def __repr__(self):
        return f"vSISSig(secpar: {self.secpar}, n: {self.n:4d}, q: 2^{self.log_q:2d}, beta: 2^{self.log_beta:.2f}, s: 2^{ceil(self.log_s):.2f}, ell_m: {self.ell_m:3d}, ell_r: {self.ell_r:1d})"

    def pk(self):
        return _kb(self.n * self.log_q)

    def sig(self):
        return _kb((self.ell_r + 2) * self.n * self.log_beta)

    def display(self):
        print(f"{self}: |pk| = {self.pk()}, |sig| = {self.sig()}")



















In [7]:



def vsis_sig_params(secpar=128, ell_m=1, ell_r=2, sis_kwds=None):    
    for log_n in range(9,13):
        n = 2**log_n
        m = n * (ell_m + ell_r + 3)
        for log_q in range(5, 40):
            eta_Z2n = sqrt( log(4*n * (1 + 2**secpar))/pi )
            log_s = log(1.17 * 2**(log_q/2) * eta_Z2n, 2).n()
            log_beta = (log_s + log(sqrt(m),2)).n()
            if log_beta >= log_q:
                continue
            sis = SIS.Parameters(
                n = n, 
                m = m,
                q = 2**log_q,
                length_bound = 2**log_beta,
            )
        
            with HiddenPrints():
                if sis_kwds is None:
                    sis_kwds = {}
                costs = SIS.estimate(sis, **sis_kwds)

            if len(costs) > 0:    
                min_cost = min(cost["rop"] for cost in costs.values())
                if min_cost > 2**secpar:
                    vsis_sig = vSISSigParams(floor(log(min_cost,2)), n, log_q, log_beta, log_s, ell_m, ell_r)
                    return vsis_sig



















In [8]:



rows = [
    {"secpar": 128, "ell_m": 1},
    # {"secpar": 128, "ell_m": 16},
    {"secpar": 128, "ell_m": 128},
    {"secpar": 192, "ell_m": 1},
    # {"secpar": 192, "ell_m": 16},
    {"secpar": 192, "ell_m": 128},
    {"secpar": 256, "ell_m": 1},
    # {"secpar": 256, "ell_m": 16},
    {"secpar": 256, "ell_m": 128},
]
for row in rows:
    vsis_sig = vsis_sig_params(secpar=row["secpar"], ell_m=row["ell_m"])
    vsis_sig.display()





















vSISSig(secpar: 193, n: 1024, q: 2^20, beta: 2^18.99, s: 2^13.00, ell_m:   1, ell_r: 2): |pk| = 2.5, |sig| = 9.5
vSISSig(secpar: 150, n: 1024, q: 2^25, beta: 2^23.73, s: 2^16.00, ell_m: 128, ell_r: 2): |pk| = 3.1, |sig| = 11.9
vSISSig(secpar: 399, n: 2048, q: 2^22, beta: 2^20.77, s: 2^14.00, ell_m:   1, ell_r: 2): |pk| = 5.5, |sig| = 20.8
vSISSig(secpar: 312, n: 2048, q: 2^27, beta: 2^25.50, s: 2^17.00, ell_m: 128, ell_r: 2): |pk| = 6.8, |sig| = 25.5
vSISSig(secpar: 390, n: 2048, q: 2^22, beta: 2^20.96, s: 2^15.00, ell_m:   1, ell_r: 2): |pk| = 5.5, |sig| = 21.0
vSISSig(secpar: 307, n: 2048, q: 2^27, beta: 2^25.70, s: 2^17.00, ell_m: 128, ell_r: 2): |pk| = 6.8, |sig| = 25.7


















In [ ]:



 















https://github.com/malb/lattice-estimator/


Security Level φ q β s ℓm ℓr |pk| |sig|

193 1024 220 218.99 213 1 2 2.5 9.5
150 1024 225 223.73 216 128 2 3.1 11.9
399 2048 222 220.77 214 1 2 5.5 20.8
312 2048 227 225.50 217 128 2 6.8 25.5

Table 2: Estimated parameters for BB-tran and BBS. Sizes are in KB.

5.1 ISISf and Interactive ISISf

We first recall the ISISf assumption and its interactive variant IntISISf defined in [BLNS23b], both
parametrised by some fixed public function f : [N ]→ Rn

q .
In the ISISf experiment, the adversary receives a random matrix A over Rq and polynomially many

tuples (si, µi), where µi ←$ [N ] and si is a short preimage A · si = f(µi) mod q. Its goal is to find a new
tuple (s∗, µ∗) which satisfies As∗ = f(µ∗) mod q, where s∗ is short and µ∗ ∈ [N ].

Note that an ISISf instance immediately yields a signature scheme which is sEUF-RMA secure.
However, instead of building cryptographic primitives directly from the ISISf assumption, [BLNS23b]
introduced an intermediate assumption which they call interactive ISISf .

In the interactive ISISf experiment, the adversary receives random matrices A,C over Rq and is given
access to an oracle which, on the i-th (adaptive) query short vectors (mi, ri), returns a short preimage si

and a value µi satisfying A · si = f(µi) +C

[
mi

ri

]
mod q, where µi ←$ [N ]. Its goal is to find new tuple

(s∗, µ∗,m∗, r∗) which satisfies As∗ = f(µ∗) +C

[
m∗

r∗

]
mod q, where s∗,m∗, r∗ are short, µ∗ ∈ [N ], and

m∗ /∈ {m1, . . . ,mQ}.
An important step in [BLNS23b] is to show that the interactive ISISf assumption is implied by the

(non-interactive) ISISf assumption, hence providing a convenient interface for yielding simple constructions
of ordinary, group and blind signatures. Furthermore, [BLNS23b] showed how it can be turned into an
efficient anonymous credential system when combined with compatible zero-knowledge proof systems.

5.2 Generalised Assumptions

Recall that the ISISf assumption is parametrised by a fixed (deterministic) function f . Below, we
generalise the ISISf assumption and its interactive variant by extending the input space of f as follows:
1) It additionally inputs a function key κ ∈ K which is sampled from a distribution at the beginning of
the security experiment. 2) It additionally inputs a randomness χ chosen from X . We denote the non-
interactive and interactive variants of the generalised assumptions GenISISf and IntGenISISf respectively.
Unlike [BLNS23b], we consider a “strong unforgeability” flavour for IntGenISIS (i.e, the set S contains
full “signatures”, not just m). Further, in contrast to [BLNS23b] where the input µ to f in the ISISf
experiment is always random, we additionally consider an adaptive variant GenISIS+f , where the adversary
can freely choose µ.

Definition 8 (Generalised ISISf Assumptions (GenISISf)). Let R, n,m, ℓmsg, ℓtag, q,Q, β, γ, s, f be
parametrised by λ, where n,m, ℓmsg, ℓtag, q are positive integers, Q is a non-negative integer, β, γ, s ∈ R+,
and f : K ×M × X → Rn

q is a function where the domain is efficiently sampleable16. Let params =

(R, n,m, q,Q, β, s, f). The GenISISparams (resp. GenISIS
+
params) assumption states that, for any PPT adver-

sary A,
AdvGenISISfparams′

A′ (λ) := Pr
[
ExpGenISISparams,A(λ) = 1

]
≤ negl(λ),

(resp. AdvGenISISf+,params′

A′ (λ) := Pr
[
ExpGenISIS+params,A(λ) = 1

]
≤ negl(λ))

where the experiments are defined in Figure 5. Similarly, for params = (R, n,m, ℓmsg, ℓtag, q,Q, β, γ, s, f),
the IntGenISISparams assumption states that, for any PPT adversary A,

AdvIntGenISISfparams′

A′ (λ) := Pr
[
ExpIntGenISISparams,A(λ) = 1

]
≤ negl(λ).

16 I.e. there are efficient algorithms for uniformly sampling from K,M, X , respectively.
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ExpGenISIS+params,A(1λ)

S := ∅

κ←$ K; A←$Rn×m
q

(s∗, µ∗, χ∗)← AOPre(κ,A)

t∗ := f(κ, µ∗, χ∗)

b0 := (A · s∗ = t∗ mod q)

b1 := (0 < ∥s∗∥ ≤ β)

b2 := ((s∗, µ∗, χ∗) /∈ S)

return b0 ∧ b1 ∧ b2

OPre(µ′)

assert |S| < Q

µ←$M; χ←$ X
µ := µ′ // Overwrite with input

t = f(κ, µ, χ)

s←$ DΛt
q(A),s

S := S ∪ {(s, µ, χ)}
return (s, µ, χ)

ExpIntGenISISparams,A(1λ)

S := ∅

κ←$ K; A←$Rn×m
q ; C←$Rn×(ℓmsg+ℓtag)

(s∗, µ∗, χ∗,m∗, r∗)← AOSign(κ,A,C)

t∗ = f(κ, µ∗, χ∗) +C
[
m∗

r∗
]

b0 := (A · s∗ = t∗ mod q)

b1 := (0 < ∥s∗∥ ≤ β)

b2 := ((s∗, µ∗, χ∗,m∗, r∗) /∈ S)

b3 := (∥(m∗, r∗)∥ ≤ γ)

return b0 ∧ b1 ∧ b2 ∧ b3

OSign(m, r)

assert (∥(m, r)∥ ≤ γ) ∧ (|S| < Q)

µ←$M; χ←$ X
t = f(κ, µ, χ) +C[mr ]

s←$ DΛt
q(A),s

S := S ∪ {(s, µ, χ,m, r)}
return (s, µ, χ)

Fig. 5: The GenISIS, GenISIS+ and IntGenISIS experiments.

When the parameters are clear from the context, we drop most of them and simply write GenISISf , GenISIS
+
f

and IntGenISISf .

The GenISISf and IntGenISISf experiments (and hence assumptions) essentially coincide with the ISISf
and IntISISf assumptions from [BLNS23b] respectively if f is a trivial family of deterministic functions,
i.e. if K = X = {0} are sets with a single element.17 A minor change is the “strong unforgeability” flavour
in our definition of IntGenISISf where, compared to [BLNS23b], S contains (s, µ, χ,m, r) instead of just
m.

Theorem 6 (Adapted from [BLNS23b, Theorem 3.3]). Let the parameters params = (R, q, n,m, ℓmsg,
ℓtag, s, β, γ, f) be such that R is a power-of-two cyclotomic ring, q/2 > γ ≥ 1, m = n log q + ω(log λ).

Let ϵ ≤ negl(λ). Suppose that s ≥ max
(
ηmin(ϵ),

√
λγφ

√
(ℓmsg + ℓtag)m

)
, where ηmin(ϵ) is such that

ηϵ(Λ
⊥
q (A)) ≥ ηmin(ϵ) with probability at most 2−φ over the randomness of A ←$ Rn×m

q , and that
φ ∈ ω(log λ). Then for every PPT adversary A in ExpIntGenISISparams,A, there is a PPT adversary A′ in
ExpGenISISparams′,A′ such that

AdvGenISISfparams′

A′ (λ) ≥ AdvIntGenISISfparams
A (λ)/poly(λ)− negl(λ)

where params′ =
(
R, q, n,m, poly(λ) ·Q, s, β′ = β + γ, φ

√
(ℓmsg + ℓtag)m

)
.

The proof of Theorem 6 is almost identical to that of [BLNS23b, Theorem 3.3] (despite the “strong
unforgeability” of IntGenISISf ). We make the following translations:

– (From probabilistic to deterministic f .) The function f in [BLNS23b] is deterministic, i.e. there
is no randomness space X . However, since we sample both µ ∈ M and χ ∈ X uniformly (in the
non-adaptive setting), we could as well consider f ′ : K ×M′ → Rn

q whereM′ =M×X . Thus, for
the sake of proving Theorem 6, we can w.l.o.g. assume f is deterministic.

17 The mostly syntactical difference is that we give A access to a sampling oracle, whereas [BLNS23b] chose to
produce Q samples up front and give them to A.
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– (Function families.) The (deterministic) function f in [BLNS23b, Theorem 3.3] is used in a completely
black-box way. Thus, as long as f is specified and fixed at the beginning of the experiment (so that
it can be used in the proof), the proof applies verbatim to any choice (of distributions) of f , in
particular any function sampled from a function a function family over K.

For the “strong unforgeability” of IntGenISISf , first suppose (as above) w.l.o.g. that X = {0}, so that
GenISISf coincides with ISISf (up to being a function family). Given a forgery (s∗, µ∗, 0,m∗, r∗), the proof
of [BLNS23b, Theorem 3.3] proceeds through indistinguishable game hops to prepare for the reduction to
ISISf that is explained after [BLNS23b, Lemma 3.12]. There, it is asserted that (s∗, µ∗) must be fresh
for the adversary to win, which means the reduction wins its ISISf instance. This assertion holds even if
(m∗, r∗) were reused.

Remark 7. We expect that Theorem 6 generalises to any ring R for which there is a suitable regularity
lemma.

5.3 Generalised ISIS and Strong Hinted vSIS

We establish connection between GenISISf and the sEUF-RMA security of the vSIS-based signature scheme
ΣvSIS (Figure 4). In essence, we show that these two are equivalent experiments by simple renaming
of variables. Chaining with Theorem 5 yields a reduction from s-$Hint-vSIS to GenISISf . The reverse
reduction, provided by Theorem 8, establish the equivalence of s-$Hint-vSIS and GenISISf for given
parameters. Note that it is the parameters of GenISISf that are restricted, as it corresponds to a more
general assumption. In particular, the equivalence holds only when the set of functions f consists of
ℓ-variate rational functions.

Theorem 7 (GenISISf ⇔ sEUF-RMAΣvSIS
). Let R, n,m, ℓ, q, s, β, δ,M,X ,H be parameters of the sig-

nature scheme ΣvSIS in Figure 4, in particular H := {hµ,χ | µ ∈M, χ ∈ X} is a set of ℓ-variate ra-
tional functions. Let params1 := (R, n,m, q,Q, β, s, f) with f : Rn×ℓ

q × M × X → Rn
q such that

f(B, µ, χ) = hµ,χ(B) for any B ∈ Rn×ℓ
q , and Q ≤ poly(λ). Suppose (R, n,m, q, s) are admissible param-

eters for (TrapGen,SampPre). There is a PPT adversary B winning the ExpGenISISparams1,B experiment
with non-negligible probability if and only if there is a PPT adversary A winning the sEUF-RMAΣvSIS,A,Q

experiment with non-negligible probability.

Theorem 8 (GenISISf ⇒ s-$Hint-vSIS). Let params1 := (R, n,m, q,Q, β, s, f), H := {hµ,χ | µ ∈M, χ ∈ X}
a set of ℓ-variate rational function, G := H ∪ {0}, and P a predicate on sets of rational functions with
f : Rn×ℓ

q ×M×X → Rn
q such that f(B, µ, χ) = hµ,χ(B). Let params0 := (R, n, k, q,Q, β, s,F ,G,H,P),

where k = m+ ℓ and F is such that for formal variables (ãT, b̃T) of dimension k, F(ãT, b̃T) = ãT. Suppose
also that for all Q ⊆ H, all g∗ ∈ G \ Q, it holds P(F ∪ Q ∪ ({g∗} \ {0})) = 1. If the GenISISparams1
assumption holds, then the s-$Hint-vSISparams0 assumption holds.

The proofs of Theorems 7 and 8 are deferred to Appendices A.3 and A.4. Applying Theorems 5 and 7, we
have the following immediate corollary.

Corollary 1 (s-$Hint-vSIS ⇒ GenISISf). Let params0 = (R, n, k, q, β,F ,G,H,P, Q) and m, ℓ, s, δ, δ′,
M,X be such that the constraints in Theorem 5 are satisfied. Let params1 := (R, n,m,Q, q, β, s, f) with
f : Rn×ℓ

q ×M× X → Rn
q such that f(B, µ, χ) = hµ,χ(B) for any B ∈ Rn×ℓ

q . If the s-$Hint-vSISparams0
assumption holds for every polynomial Q(λ), then so does the GenISISparams1 assumption.

5.4 Robustness and Linear Combination Attacks against (Gen)ISISf

We study the robustness of (generalised) ISISf assumptions, in particular in relation to a natural attack that
was also discussed in [BLNS23b] for the special case where the function f was binary decomposition.18 We
extend this discussion to our setting, and connect it to the (strong) hinted vSIS assumption (Definition 5).
For simplicity, we omit the function key κ for f and the randomness X in the first discussion, and consider
a fixed f :M→Rn

q as in the original ISISf assumption.

18 More precisely, in [BLNS23b], f is a function which first binary decomposes the input, linear-maps it to the
domain of the coefficient embedding, then outputs the corresponding ring vector.
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Preimage resistance. A necessary requirement on f :M→ Rn
q is that it is hard to invert on random

elements in the codomain. Otherwise, the hash-then-sign paradigm is clearly broken, and µ∗ = f−1(As∗)
for a random short s∗ breaks the assumption. Note here that “hard-to-invert” can be statistically satisfied,
if |M|/|Rq|n is negligible. For example, this is the case in [BLNS23b] and our BB-lite instantiation.
Examples for computational hardness include the non-BB-lite instantiations in Table 1, and f being a
collision-resistant hash or random oracle.

Linear combination attacks (LCA). The attack idea of an LCA is quite simple: Given tuples (si, µi) with
Asi = f(µi), somehow compute short coefficients ci together with µ∗ such that∑

i cif(µi) = f(µ∗) (1)

holds. Then, for s∗ =
∑

i cisi, we get

As∗ =
∑

i ciAsi =
∑

i cif(µi) = f(µ∗). (2)

Intuitively, the attack exploits (approximate) linearity of f , or rather, within the image im(f). For
example, in [BLNS23b], the binary decomposition function f : [N ]→ Rn

q appears to be highly non-linear
at first glance. However, the required linearity for the attack is present in the image im(f) = Rn

2 ⊆ Rn
q .

Indeed, since f is far from one-way over its image, for the purpose of analysing LCA against f , we can
equivalently replace f by g : Rn

2 → Rn
q , where g is simply the identity embedding.

LCAs against binary decomposition. We first discuss how and why linear combination attacks do
(not) break the ISISf assumption, when instantiated with f(x) = bindecomp(x) ∈ Rn

2 as in [BLNS23b].
As noted earlier, we consider g : Rn

2 → Rn
q where g(m) = m andM = Rn

2 , instead of the function f .

The presumed security of g : Rn
2 → Rn

q against linear combination attacks crucially relies on two
properties. On the one hand, the domain Rn

2 ⊆ Rn
q should be high dimensional. This makes it unlikely

that for two random m1,m2 ∈ Rn
2 , their sum or difference ±m1±m2 is again in Rn

2 , i.e. again a bitstring;
indeed, the probability is precisely 2 · (3/4)φn − 2−φn as is easily checked.19 Hence, we can hope that
finding a sufficiently short linear combination of mi = f(µi) with∑

i cimi = m∗ ∈ Rn
2

for any choice of m∗ remains difficult, given sufficiently high dimensions (at the very least φn ≥
λ/ log2(4/3) ≈ 2.41λ). Moreover, one should account for attacks which use integer linear programming
(ILP) to tackle similar problems [BDE+18, HM17], see [BLNS23b, Section 3.1.2]. On the other hand, the
dimension φm of preimages should be high and the norm bound β very strict, so that even if we have
two ISISf pairs (s1,m1), (s2,m2) where m1 ±m2 is again binary, we get ∥s1 ± s2∥ > β almost certainly.
To thwart the attacks, [BLNS23b] exploits the high dimension φm and sets the bound β close to

√
φms.

Limited robustness of binary decomposition. To investigate the security-efficiency tradeoff, we strengthen
the GenISISf assumption slightly: (1) we consider selective GenISIS+f where the adversary chooses
(µ′

1, . . . , µ
′
Q), receives OPre(µ′

i) for i ∈ [1, . . . , Q], and has no further access to OPre; (2) we allow a

relaxed norm bound, namely
√
2β instead of β, for forgeries. While this seems like a mild strengthening,

security completely breaks down for f = bindecomp, even with a single selective query: By selectively
querying a standard unit vector e (in coefficient embedding), say e1 = (1, 0, . . .) ∈ {0, 1}φn (or even 0),
and one (random) query m1, the naive linear combination e1+m1 breaks with probability 1/2. Of course,
this attack generalises: Any e of low Hamming weight is beneficial for linear combination attacks, and
success can be amplified by trying many mi’s. The above total break with just a single selective query
suggests, that one should consider other (presumably) more robust functions f , which perhaps allows a
better security-efficiency tradeoff and gives higher confidence in the hardness of the problem.

19 We just need to count strings which are pointwise ≤ or ≥. Perhaps surprisingly, for φn = 256, this happens
with probability roughly 2−105.25 ≫ 2−128.
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LCA against Candidate Rational Functions. We elaborate on why we believe our candidate
instantiations of GenISISf (cf. Section 4.2) offer better security than the binary decomposition function.
First, by Theorem 8, to break GenISISf it suffices to break the corresponding s-$Hint-vSIS assumption.

For concreteness, we focus on the function hµ,χ(b̃0, b̃1) =
b̃0−µ

b̃1−χ
which captures all important structures of

the examples in Table 1. For simplicity, we consider module rank n = 1.

To begin, we observe that, for βµ ≥
√
q, the distribution 1/µ (mod q) of inverses of short elements

µ ← M = {|µ| ≤ βµ | µ ∈ Z} is “close to uniformly” [Shp12] for some non-cryptographic measure
of closeness. Nevertheless, let us adopt the heuristic that (b0 − µ)/(b1 − χ) mod q for short (µ, χ) is
“uniformly random enough” for the purpose of attaining SIS hardness. Given many short samples (si, µi, χi)
satisfying ⟨a, si⟩ = (b0 − µi)/(b1 −χi) mod q, there are two natural strategies to find a new short solution
(s∗, µ∗, χ∗).

The first is to ignore the hints and attempt to solve the problem directly. Towards this, an idea is to
sample a random short s∗, compute t∗ := ⟨a, s∗⟩ mod q, and try to find (µ∗, χ∗) such that hµ∗,χ∗(b0, b1) =
t∗ mod q. In our example, this means solving t∗χ∗ − µ∗ = t∗b1 − b0 mod q for a short solution (µ∗, χ∗).
However, if we sampled s∗ from a sufficiently entropic distribution, then t∗ would be close to uniformly
random, and thus we essentially need to solve a random ISIS instance.

Another strategy is to somehow make use of the hints. The idea is essentially that of the LCA – to
find a short linear combination of hµi,χi(b0, b1) which yields hµ∗,χ∗(b0, b1) for some (µ∗, χ∗). As before,
if we pick the linear combination blindly and then attempt to solve the equation for (µ∗, χ∗), then we
will face an ISIS instance. Since hµ1,χ1

, . . . , hµQ,χQ
, hµ∗,χ∗ are strongly linearly independent, choosing the

linear combination without taking (b0, b1) into account is unlikely to succeed. We are thus left with the
option of picking the short linear combination by somehow exploiting our knowledge on (b0, b1), which
appears difficult.

We remark that the difficulty of the above attacks crucially rely on the restriction that µ, χ are short.
Indeed, if the shortness condition is dropped, then there are simple attacks by simple arithmetic. Also
note that all attack strategies discussed are non-adaptive. At present, we are unaware of meaningful ways
to exploit adaptivity. This holds true even when additionally considering a relaxed norm bound β′ ≫ β
on forgeries. As long as the related problems (such as SIS, inverting f) remain hard, we do not know how
to exploit a norm check for β′ ≫ β, even if β′ is much larger than the expected norm

√
φms of preimages

s which are obtained by an (adaptive) OPre. Intuitively, the non-linearity of f obstructs the LCA attack,
which is the only way we know how to take advantage of the short preimages s to obtain a slightly longer
preimage (e.g. as for f = bindecomp).

To summarise: The GenISIS(+)
f assumption(s) for our families f seems quite robust, but better

cryptanalysis is crucial to gauge its hardness and robustness.

GenISISf vs. one-more ISIS. The one-more ISIS (OM-ISIS) assumption was introduced in [AKSY22]
for building lattice-based blind signatures. There, an adversary is given a preimage oracle OPre which
produces preimages of images freely chosen by the adversary. It also has oracle access to (an arbitrary
number of) random challenge vectors (that is, ISIS syndromes). To win the game, the adversary must
produce preimages of ℓ+ 1 challenge vectors, if it has made ℓ queries to OPre.

OM-ISIS does not seem directly comparable to any variant (generalised, adaptive, interactive, etc.)
of (Gen)ISISf . We focus our discussion on GenISISf . For OM-ISIS, the images for which OPre provides
preimages are chosen freely, but the challenge images are truly random. For GenISISf , the preimages are
for random images y = f(κ, µ, χ) and there is no specified challenge, i.e. the adversary chooses freely
(µ∗, χ∗). Interestingly, the selective and adaptive variants of GenISIS+f are closer to OM-ISIS because OPre

now works on adversarial inputs, but the choice is still not free as the inputs are “hashed” by f .

As a qualitative difference, we note that in OM-ISIS it is possible to learn a trapdoor of A, e.g. by
requesting sufficiently many preimages of 0. Under a relaxed norm check β′ > β, the above implies that β′

cannot be too large, e.g. OM-ISIS with β′ >
√
m · √φms is broken, cf. [AKSY22]. Thus, similar to ISISf ,

there is a close tie between admissible β′ > β and the expected norm
√
φms of the sampled preimages. In

contrast, for (adaptive) GenISISf , we are not aware of how to obtain a short basis, or even take advantage
of relaxed norm checks.

Overall, we can hope that our GenISIS assumptions are as secure (or more so) than OM-ISIS, while
leading to smaller round-optimal blind signatures than [AKSY22].
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(in)security of ROS. Journal of Cryptology, 35(4):25, October 2022. 4

BLNS23a. Ward Beullens, Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. Lattice-based blind
signatures: Short, efficient, and round-optimal. In Weizhi Meng, Christian Damsgaard Jensen, Cas
Cremers, and Engin Kirda, editors, ACM CCS 2023, pages 16–29. ACM Press, November 2023. 4

23



BLNS23b. Jonathan Bootle, Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Alessandro Sorniotti. A framework
for practical anonymous credentials from lattices. In Helena Handschuh and Anna Lysyanskaya, editors,
CRYPTO 2023, Part II, volume 14082 of LNCS, pages 384–417. Springer, Cham, August 2023. 2, 3, 4,
15, 17, 18, 19, 20, 21

BLS19. Jonathan Bootle, Vadim Lyubashevsky, and Gregor Seiler. Algebraic techniques for short(er) ex-
act lattice-based zero-knowledge proofs. In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part I, volume 11692 of LNCS, pages 176–202. Springer, Cham, August 2019. 4

CGT23. Alishah Chator, Matthew Green, and Pratyush Ranjan Tiwari. SoK: Privacy-preserving signatures.
Cryptology ePrint Archive, Report 2023/1039, 2023. 4

CL03. Jan Camenisch and Anna Lysyanskaya. A signature scheme with efficient protocols. In Stelvio Cimato,
Clemente Galdi, and Giuseppe Persiano, editors, SCN 02, volume 2576 of LNCS, pages 268–289.
Springer, Berlin, Heidelberg, September 2003. 1

CL04. Jan Camenisch and Anna Lysyanskaya. Signature schemes and anonymous credentials from bilinear
maps. In Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 56–72. Springer,
Berlin, Heidelberg, August 2004. 4

CLM23. Valerio Cini, Russell W. F. Lai, and Giulio Malavolta. Lattice-based succinct arguments from
vanishing polynomials - (extended abstract). In Helena Handschuh and Anna Lysyanskaya, editors,
CRYPTO 2023, Part II, volume 14082 of LNCS, pages 72–105. Springer, Cham, August 2023. 3, 6, 8,
10
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dPK22. Rafaël del Pino and Shuichi Katsumata. A new framework for more efficient round-optimal lattice-based
(partially) blind signature via trapdoor sampling. In Yevgeniy Dodis and Thomas Shrimpton, editors,
CRYPTO 2022, Part II, volume 13508 of LNCS, pages 306–336. Springer, Cham, August 2022. 4
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and applications: Shorter, simpler, and more general. In Yevgeniy Dodis and Thomas Shrimpton,
editors, CRYPTO 2022, Part II, volume 13508 of LNCS, pages 71–101. Springer, Cham, August 2022.
2, 4, 16

LNPS21. Vadim Lyubashevsky, Ngoc Khanh Nguyen, Maxime Plançon, and Gregor Seiler. Shorter lattice-
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A Missing Proofs

A.1 Proof of Theorem 1

Proof. Case F ⊆ Rq[x̃] is a set of polynomials. In this case, g = m = 1 for any f/g ∈ F . We aim to

verify that, for any not-all-zero coefficients (cf )f∈F over Rq,

Pr
[∑

f∈F cf · f(aT) = 0 mod q
∣∣∣a←$Rk

q

]
≤ ϵ.

We show this by using the Schwartz-Zippel lemma over F, which states that for any non-zero k-variate
degree-d polynomial f over F,

Pr
[
f(aT) = 0

∣∣a←$ Fk
]
≤ d/|F| = ϵ.
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Consider a non-zero k-variate degree-d polynomial f over Rq, which splits via the Chinese Remainder
Theorem (for Rq) into a tuple of polynomials (f1, . . . , fe) over F. Since f is non-zero, one of (f1, . . . , fe),
say fi∗ , is non-zero. We thus have

Pr
[
f(aT) = 0

∣∣a←$Rk
q

]
≤ Pr

[
fi∗(a

T
i∗) = 0

∣∣ai ←$ Fk
]
≤ d/|F| = ϵ.

Now fix any not-all-zero coefficients (cf )f∈F over Rq. Since all f ∈ F are linearly independent as
polynomials over Rq, for each i ∈ [e], the i-th CRT components (fi)f∈F are also linearly independent
as polynomials over F. Thus, there exists i∗ ∈ [e] such that

∑
f∈F cf,i∗ · fi∗ , where cf,i∗ is the i∗-th

CRT component of cf , is a non-zero polynomial over F. Since the i∗-th CRT component is non-zero, the
polynomial

∑
f∈F cf · f over Rq is also non-zero.

Case F ⊆ Rq(x̃
T) is a set of rational function. The idea is to clear out the denominator using the common

multiple m. Consider the polynomial

h := m ·
∑

f/g∈F cf/g · f/g.

By the same argument as in the polynomial case,
∑

f/g∈F cf/g · f/g is a non-zero rational function, and

therefore h is a non-zero polynomial. Furthermore, deg(h) ≤ deg(m) + maxf/g∈F deg(f) = d. The claim
thus follows from the analysis of the polynomial case.

A.2 Proof of Lemma 2

Proof. From the definition of strong linear independence, if 1 /∈ Rq-span(F), it holds that, for any d ∈ Rq

and any not-all-zero (cf )f∈F ,

Pr
[∑

f∈F cf · f(aT) = d mod q
∣∣∣ a←$Rk

q

]
≤ ϵF .

Suppose w.l.o.g. that 1 /∈ spanRq
(F) (else, swap F and G). Unless ϵF = 1 or ϵG = 1, we know that all

elements in F (resp. in G) are linearly independent. By assumption spanRq
(F) ∩ spanRq

(G) = {0}, so
F ∪ G is a basis of spanRq

(F ∪ G). Hence, for any h ∈ spanRq
(F ∪ G), there is a unique coefficient vector

c ∈ RF∪G
q such that h is a linear combination of F ∪ G with coefficient c. Since F ,G are disjoint, c can

be split into cF ∈ RF and cG ∈ RG . Therefore

Pr
[
h(aT) = 0 mod q

∣∣a←$Rk
q

]
= Pr

[∑
f∈F cf · f(aT) +

∑
g∈G cg · g(aT) = 0 mod q

∣∣∣a←$Rk
q

]
= Pr

[∑
f∈F cf · f(aT) = −

∑
g∈G cg · g(aT) mod q

∣∣∣a←$Rk
q

]
≤ max

d∈Rq

Pr
[∑

f∈F cf · f(aT) = d mod q
∣∣∣a←$Rk

q

]
≤ ϵF .

On the other hand, if (cf )f∈F in the above are all-zero, then clearly the probability is bounded by ϵG .
Thus, we find ϵF∪G ≤ max(ϵF , ϵG).

A.3 Proof of Theorem 7

Proof. The detailed descriptions of both concerned experiments are provided in Figure 6. For ease of
comparison we incorporate syntactical changes to the sEUF-RMA experiment of ΣvSIS, in particular
introducing OSign for sampling Q random messages and generating their signatures. It is straightforward
to verify that the stated experiment is functionally equivalent to that in Definition 4 and Figure 3.

We define the following hybrids:

Hyb0: The sEUF-RMA experiment of ΣvSIS in Figure 6.
Hyb1: Same as Hyb0, except that we sample s ←$ DΛt

q(A),s inefficiently from the discrete Gaussian
distribution.

Hyb2: Same as Hyb1, except that we sample A←$Rn×m
q uniformly randomly.
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sEUF-RMAΣvSIS,A,Q(1
λ)

B←$Rn×ℓ
q

(A, tdA)← TrapGen(R, 1n, 1m, q)

(sig1, . . . , sigQ)← OSign()

(µ∗, (χ∗, s∗))← A(B,A, sig1, . . . , sigQ)

t∗ := hµ∗,χ∗(B) mod q

b0 := (A · s∗ = t∗ mod q)

b1 := (0 < ∥s∗∥ ≤ β)

b2 := (µ∗ ∈MX ,G,B) ∧ (χ∗ ∈ X )

b3 := ((msg∗, sig∗) /∈
{
(µi, sigi)

Q
i=1

}
)

return b0 ∧ b1 ∧ b2 ∧ b3

OSign()

for i ∈ [Q] :

µi ←$M; χi ←$ X
ti := hµi,χi(B) mod q

si ← SampPre(tdA, ti, s)

sigi := (χi, si)

return (sig1, . . . , sigQ)

ExpGenISISfB(1
λ)

S := ∅; κ←$ K

A←$Rn×m
q

(s∗, µ∗, χ∗)← BOPre(κ,A)

t∗ := f(κ, µ∗, χ∗)

b0 := (A · s∗ = t∗ mod q)

b1 := (0 < ∥s∗∥ ≤ β)

b2 := ((s∗, µ∗, χ∗) /∈ S)

return b0 ∧ b1 ∧ b2

OPre()

assert |S| < Q

µ←$M; χ←$ X
t = f(κ, µ, χ)

s←$ DΛt
q(A),s

S := S ∪ {(s, µ, χ)}
return (s, µ, χ)

Fig. 6: Experiments of sEUF-RMA security of ΣvSIS and GenISISf .

We have that Hyb0,Hyb1 and Hyb2 are computationally indistinguishably directly by the lattice trapdoor
properties (Definition 1). At the point, we observe that Hyb2 is almost identical to the ExpGenISISf
experiment in Figure 6, since f(κ, µ, χ) = hµ,χ(B) for any µ ∈M, χ ∈ X , and the sampling of κ←$ K is
identical to B←$Rn×l

q by definition.

Finally, we argue that there is a PPT B winning the ExpGenISISf experiment with non-negligible
probability if and only if there is a PPT A winning Hyb2 with non-negligible probability, hence completing
the proof.

For the “if” direction: Given A, we let B query the OPre oracle exactly Q times to obtain Q tuples of
random messages and their signatures, pass all of them together with κ = B and A to A, and observe
that a valid forgery of A in sEUF-RMAΣvSIS,A,Q is immediately also a valid forgery in ExpGenISISfB.

For the “only if” direction: Given B, we let A proceed as follows. A obtains B,A and Q tuples of
random messages and their signatures from the sEUF-RMA experiment upfront, passes B,A to B, and
upon each OPre query made by B, it answers with one of the Q message-signature tuples. By design
of ExpGenISISfB, B can query at most Q times so A can answer all queries. Then, we observe that a
valid forgery of B in ExpGenISISfB is also a valid forgery in sEUF-RMAΣvSIS,A,Q, since Condition b2 in
sEUF-RMAΣvSIS,A,Q is satisfied only if hµ,χ(B) ̸=⊥, i.e. if f(κ, µ, χ) ̸=⊥. If this condition is not satisfied,
then b0 in ExpGenISISfB is not.

A.4 Proof of Theorem 8

Proof. Suppose there exists a PPT solver A for s-$Hint-vSIS, we construct a PPT solver B for GenISISf .
On input (κ,A), where κ = B ←$ Rn×ℓ

q and A ←$ Rn×m
q , our reduction B queries OPre Q times to

obtain (si, µi, χi) for i ∈ [Q], and passes ([A|B], {(si, µi, χi)}i∈[Q]) to A. Upon receiving (g∗, s∗) from A,
where g∗ = hµ∗,χ∗ for some (µ∗, χ∗), B returns (s∗, µ∗, χ∗).

It is clear that B runs in PPT, and simulates a s-$Hint-vSIS instance for A faithfully. Denote
Q := {hµi,χi

: i ∈ [Q]}. By assumption, with non-negligible probability, the output of A satisfies A · s∗ =
hµ∗,χ∗(B) mod q, 0 < ∥s∗∥ ≤ β, g∗ ∈ G \ Q, and P(F ∪Q ∪ ({g∗} \ {0})) = 1. The condition g∗ ∈ G \ Q
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translates to (s∗, µ∗, χ∗) /∈ {(s1, µ1, χ1), . . . , (sQ, µQ, χQ)}. Our reduction B therefore solves the given
GenISISf instance with non-negligible probability.
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